WO2019116431A1 - Method for producing vinyl polymer - Google Patents

Method for producing vinyl polymer Download PDF

Info

Publication number
WO2019116431A1
WO2019116431A1 PCT/JP2017/044434 JP2017044434W WO2019116431A1 WO 2019116431 A1 WO2019116431 A1 WO 2019116431A1 JP 2017044434 W JP2017044434 W JP 2017044434W WO 2019116431 A1 WO2019116431 A1 WO 2019116431A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl polymer
reaction
reaction system
parts
producing
Prior art date
Application number
PCT/JP2017/044434
Other languages
French (fr)
Japanese (ja)
Inventor
岡田 和寿
順司 稲垣
未希 山崎
秀哉 尾関
Original Assignee
竹本油脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 竹本油脂株式会社 filed Critical 竹本油脂株式会社
Priority to KR1020207016303A priority Critical patent/KR102453882B1/en
Priority to CN201780097548.4A priority patent/CN111433227B/en
Priority to PCT/JP2017/044434 priority patent/WO2019116431A1/en
Priority to TW106146068A priority patent/TWI744452B/en
Publication of WO2019116431A1 publication Critical patent/WO2019116431A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/285Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters

Definitions

  • the present invention relates to a process for the production of vinyl polymers.
  • Vinyl polymers are widely used as cement dispersants, antistatic agents, antifogging agents, emulsifiers, adhesives and the like.
  • an antistatic agent when such vinyl polymers vary widely, when such vinyl polymers are used as a cement dispersant, an antistatic agent, an antifogging agent, an emulsifier, an adhesive, etc.
  • the variation in performance is large, and the desired performance may not be sufficiently exhibited.
  • the molecular weight is a problem in the production of vinyl polymers.
  • the present invention relates to a method for producing a vinyl polymer capable of obtaining a vinyl polymer having a small variation in molecular weight.
  • vinyl polymers are generally produced under an inert gas atmosphere (see, for example, Patent Documents 1 and 2).
  • Patent Documents 1 and 2 there is a problem that variation in molecular weight of the obtained vinyl polymer is large.
  • the problem to be solved by the present invention is to provide a method for producing a vinyl polymer capable of obtaining a vinyl polymer having a small variation in molecular weight.
  • the present inventors have found that, in a method for producing a vinyl polymer by radical reaction using a specific polymerization initiator and a molecular weight modifier, the atmosphere in the reaction system at the start of the reaction It has been found that maintaining the oxygen concentration of 5% by volume or more is properly suitable.
  • the oxygen concentration of the atmosphere in the reaction system at the start of the reaction is The present invention relates to a method for producing a vinyl polymer which is maintained at 5% by volume or more.
  • a vinyl polymer is obtained by radical reaction using a peroxide as a polymerization initiator and a thiol compound as a molecular weight modifier.
  • a peroxide used as a polymerization initiator sodium persulfate, potassium persulfate, ammonium persulfate, hydrogen peroxide and the like can be mentioned. These can be used as a redox initiator in combination with a reducing substance such as sulfite or L-ascorbic acid, an amine or the like.
  • a peroxides can also be used in combination of two or more.
  • examples of the thiol compound used as a molecular weight modifier include 2-mercaptoethanol, 2-mercaptopropionic acid, 3-mercaptopropionic acid, thioglycolic acid, thioglycerin and the like. Two or more of these thiol compounds can be used in combination.
  • the type of vinyl monomer used as the raw material is not particularly limited, but as the vinyl monomer, one containing unsaturated (poly) alkylene glycol is preferable, and such unsaturated (poly) alkylene is used.
  • the vinyl monomer one containing unsaturated (poly) alkylene glycol is preferable, and such unsaturated (poly) alkylene is used.
  • a glycol the compound shown by following Chemical formula 1 is preferable.
  • R 1 , R 2 , R 3 a hydrogen atom, a methyl group or an organic group represented by — (CH 2 ) p COOM (with the proviso that at least one of R 1 , R 2 and R 3 is a hydrogen atom or a methyl group )
  • R 4 is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms
  • R 5 O an oxyalkylene group having 2 to 4 carbon atoms
  • p an integer of 0 to 2 M: hydrogen atom or metal atom
  • R 1 , R 2 and R 3 each is a hydrogen atom, a methyl group or an organic group represented by — (CH 2 ) p COOM, and at least of R 1 , R 2 and R 3 One is a hydrogen atom or a methyl group.
  • R 4 is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms. Examples of such a hydrocarbon group include a methyl group, an ethyl group, a propyl group and a butyl group.
  • R 5 O is an oxyalkylene group having 2 to 4 carbon atoms.
  • Examples of such an oxyalkylene group include an oxyethylene group, an oxypropylene group, an oxybutylene group and the like, and these may be a single system or a mixed system. In the case of a mixed system, any addition form such as random addition, block addition, alternate addition, etc. may be used.
  • x is an integer of 0 to 5, and y is 0 or 1.
  • m is an integer of 1 to 300.
  • p is an integer of 0 to 2; M is a hydrogen atom or a metal atom.
  • vinyl copolymer other vinyl monomers can be used besides the unsaturated (poly) alkylene glycol as described above.
  • vinyl monomers carboxylic acid monomers represented by the following chemical formula 2, phosphate ester monomers represented by the chemical formula 3, phosphate ester monomers represented by the chemical formula 4, The sulfonic acid type monomer shown by Chemical formula 5 and the polyalkylene polyamine type monomer shown by Chemical formula 6 are mentioned. These other monomers can be used alone or in combination of two or more.
  • R 6 , R 7 , R 8 a hydrogen atom, a methyl group or an organic group represented by-(CH 2 ) q COOM 2 q an integer of 0 to 2 M 1 , M 2 : a hydrogen atom or a metal atom
  • R 6 , R 7 and R 8 are a hydrogen atom, a methyl group or an organic group represented by — (CH 2 ) q COOM 2 .
  • q is an integer of 0 to 2;
  • M 1 and M 2 are a hydrogen atom or a metal atom.
  • Examples of the carboxylic acid-based monomer represented by Chemical Formula 2 include (meth) acrylic acid, (anhydride) maleic acid, fumaric acid, itaconic acid, crotonic acid and salts thereof.
  • R 9 , R 11 , R 14 hydrogen atom or methyl group
  • R 10 , R 12 , R 13 alkylene group having 2 to 12 carbon atoms r, s, t: integer of 1 to 30
  • M 3 , M 4 , M 5 Hydrogen atom or metal atom
  • R 9 , R 11 and R 14 are a hydrogen atom or a methyl group.
  • R 10 , R 12 and R 13 each represent an alkylene group having 2 to 12 carbon atoms such as a methylene group, a propylene group or a butylene group.
  • r, s and t are integers of 1 to 30.
  • M 3 , M 4 and M 5 are a hydrogen atom or a metal atom.
  • phosphoric acid ester type monomer shown by Chemical formula 3 or Chemical formula 4 for example, phosphoric acid mono- ⁇ (2-hydroxyethyl) methacrylic acid ⁇ ester, phosphoric acid mono- ⁇ (2-hydroxyethyl) acrylic acid ⁇ Ester, phosphoric acid di- ⁇ (2-hydroxyethyl) methacrylic acid ⁇ ester, phosphoric acid di- ⁇ (2-hydroxyethyl) acrylic acid ⁇ ester, etc. may be mentioned.
  • phosphoric acid ester-based monomers commercially available products such as light ester P-1M, light ester P-2M, light acrylate P-1A (N) (all trade names of Kyoeisha Chemical Co., Ltd.) and the like are used. It can also be done.
  • R 15 hydrogen atom or methyl group
  • M 6 hydrogen atom or metal atom
  • R 15 is hydrogen atom or a methyl group.
  • M 6 is a hydrogen atom or a metal atom.
  • Examples of sulfonic acid-based monomers represented by Chemical Formula 5 include allyl sulfonic acid and methallyl sulfonic acid.
  • M 7 is a hydrogen atom or a metal atom.
  • Z is a polyamidepolyamine obtained by condensing a dibasic acid with a polyalkylenepolyamine or an active imino group of such a polyamidepolyamine, an amino group, 0.1 to 10 moles of an alkylene oxide having 2 to 4 carbon atoms per equivalent of amide residue
  • the modified polyamidepolyamine added at a ratio of 1 to 4 is a group bonded to a carbon atom of the main chain via an amide bond.
  • the polyalkylenepolyamine-based monomer represented by Chemical Formula 6 condenses a dibasic acid with a polyamidepolyamine, and further forms an amide group with (anhydride) maleic acid or fumaric acid, and then adds an alkylene oxide as necessary.
  • radical reaction itself, known radical reactions can be applied.
  • an aqueous solution containing a vinyl monomer and a molecular weight modifier is prepared, a polymerization initiator is added thereto, and a vinyl polymer is obtained by radical reaction at a reaction temperature of 50 to 90 ° C. for 4 to 8 hours.
  • the pressure in the reaction system is not particularly limited, but normal pressure is preferred.
  • a / B 0.1 to 200 m 2 / m 3 when the ratio of gas-liquid interface area A and liquid volume B in the reaction system is measured in a stationary state. Is preferred.
  • the oxygen concentration of the atmosphere in the reaction system at the start of the reaction is maintained at 5% by volume or more, but from 5% by volume to less than 30% by volume in terms of safety, workability and economy. It is preferable to hold it, and it is most preferable to keep it in the atmosphere.
  • Various methods can be applied to the adjustment of the oxygen concentration in the reaction system. An example of this is a method in which oxygen, an inert gas and the atmosphere are introduced into the atmosphere after pressure reduction.
  • the vinyl polymer obtained by the production method of the present invention has less variation in molecular weight and sufficiently exerts the desired performance depending on the application, so a cement dispersant, an antistatic agent, an antifogging agent, an emulsifier, an adhesive Although it is useful as an etc., it is useful as a cement dispersing agent especially.
  • a vinyl polymer having a small variation in molecular weight can be obtained.
  • the reaction was continued for 2 hours, 21.9 parts of a 8.8% aqueous solution of sodium persulfate was added, and the reaction was continued for another 2 hours to complete the reaction.
  • the oxygen concentration of the atmosphere in the reaction system was measured by an oxygen monitor, it was 10% by volume.
  • the gas-liquid interface area A / liquid volume B 23.4 m 2 / m 3 in a stationary state in the reaction vessel at this point in time. Thereafter, 55.6 parts of water was added to obtain an aqueous solution of a vinyl polymer (p-1).
  • Examples 2 to 5 and Comparative Examples 1 to 3 (Production of Vinyl Polymers (p-2) to (p-5) and (pr-1) to (pr-3))
  • the same procedure as in the production of the vinyl polymer (p-1) of Example 1 was repeated except that the conditions such as the pressure reduction operation in the reaction system and the introduction of nitrogen gas into the reaction system were changed as shown in Table 1.
  • aqueous solutions of vinyl polymers (p-2) to (p-5) and (pr-1) to (pr-3) were obtained.
  • the reaction was carried out in the air without introducing the nitrogen gas without performing the pressure reduction operation.
  • Comparative Example 3 the same pressure reduction operation and the introduction of nitrogen gas were performed. It is a case where it has been repeated.
  • the gas-liquid interface area A / liquid volume B 29.9 m 2 / m 3 in a stationary state in the reaction vessel at this point in time.
  • the reaction vessel is sealed and the reaction system is kept at 40 ° C. for 24 hours, and then the temperature is raised and when the temperature in the reaction vessel is stabilized at 60 ° C., 18.3 parts of 3.0% aqueous solution of hydrogen peroxide and L 25.5 parts of a 2.2% aqueous solution of ascorbic acid were added to initiate radical polymerization.
  • Comparative Example 4 (Production of Vinyl Polymer (pr-4)) The same procedure as in the production of the vinyl polymer (p-6) in Example 6 was carried out except that the conditions such as depressurization in the reaction system and introduction of nitrogen gas into the reaction system were changed as shown in Table 1. Thus, an aqueous solution of a vinyl polymer (pr-4) was obtained.
  • the comparative example 4 is a case where decompression operation and introduction of nitrogen gas were performed twice.
  • Comparative Example 5 (Production of Vinyl Polymer (pr-5)) The same procedure as in the production of the vinyl polymer (p-7) of Example 7 was carried out except that the conditions such as depressurization in the reaction system and introduction of nitrogen gas into the reaction system were changed as shown in Table 1. Thus, an aqueous solution of a vinyl polymer (pr-5) was obtained.
  • a first solution was prepared by stirring and homogenizing 0.8 parts of 3-mercaptopropionic acid, 0.8 parts of L-ascorbic acid and 32.4 parts of water. Further, 11.9 parts of acrylic acid and 48.2 parts of water were stirred and homogenized to obtain a second solution. Further, 0.8 parts of 35% hydrogen peroxide water and 18.1 parts of water were stirred and homogenized to obtain a third solution.
  • the above reaction vessel is sealed and kept at 40 ° C. for 24 hours, and when the temperature in the reaction vessel is stabilized at 70 ° C. after raising the temperature, the first solution, the second solution and the third solution are simultaneously carried out for 180 minutes. It dripped by this, and radical polymerization was performed. The reaction was continued for 1 hour to complete the reaction.
  • the gas-liquid interface area A / liquid volume B 23.4 m 2 / m 3 in the reaction vessel in the stationary state at the end of the reaction. Thereafter, 11.5 parts of a 30% aqueous solution of sodium hydroxide and 92.8 parts of water were added to obtain an aqueous solution of a vinyl polymer (p-8).
  • Comparative Example 6 (Production of Vinyl Polymer (pr-6)) The same procedure as in the production of the vinyl polymer (p-8) of Example 8 was repeated except that the conditions such as depressurization in the reaction system and introduction of nitrogen gas into the reaction system were changed as shown in Table 1. Thus, an aqueous solution of a vinyl polymer (pr-6) was obtained.
  • the comparative example 6 is a case where decompression operation and nitrogen gas introduction were performed twice.
  • the production conditions of the vinyl polymer in each of the above examples are summarized in Table 1 and shown.
  • Test division 2 (measurement of manufactured vinyl polymer etc.) -Measurement of mass average molecular weight and number average molecular weight
  • the weight average molecular weight and number average molecular weight in terms of polyethylene glycol were determined, and the results are summarized in Table 2.
  • Mortar flow value 500 g of ordinary portland cement (manufactured by Pacific Cement Co., Ltd.) as cement, 750 g of land sand from Okazaki, Aichi Prefecture, as fine aggregate, and a vinyl polymer manufactured in test division 1 as a cement dispersant at a solid content of 0.
  • a mortar was prepared according to JIS R 5201 using 6 g and 175 g of water, and the spread of the mortar without tapping was taken as the mortar flow value (mm).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

In this method for producing a vinyl polymer by radical reaction in which a peroxide is used as a polymerization initiator, and a thiol-based compound is used as a molecular weight regulator, the oxygen concentration of the atmosphere in a reaction system at the start of the reaction was maintained at 5 vol% or more.

Description

ビニル重合体の製造方法Method for producing vinyl polymer
 本発明はビニル重合体の製造方法に関する。ビニル重合体は、セメント分散剤、静電防止剤、防曇剤、乳化剤、接着剤等に広く使用されている。しかし、ビニル重合体の製造において、得られるビニル重合体にばらつきが大きいと、そのようなビニル重合体をセメント分散剤、静電防止剤、防曇剤、乳化剤、接着剤等として用いたときに性能のばらつきが大きく、所望の性能を十分に発揮しないことが生じる。なかでも、ビニル重合体の製造において問題となるのが分子量である。本発明は、分子量のばらつきが小さいビニル重合体を得ることができるビニル重合体の製造方法に関する。 The present invention relates to a process for the production of vinyl polymers. Vinyl polymers are widely used as cement dispersants, antistatic agents, antifogging agents, emulsifiers, adhesives and the like. However, in the production of vinyl polymers, when the obtained vinyl polymers vary widely, when such vinyl polymers are used as a cement dispersant, an antistatic agent, an antifogging agent, an emulsifier, an adhesive, etc. The variation in performance is large, and the desired performance may not be sufficiently exhibited. Among them, the molecular weight is a problem in the production of vinyl polymers. The present invention relates to a method for producing a vinyl polymer capable of obtaining a vinyl polymer having a small variation in molecular weight.
 従来、ビニル重合体の製造は一般に、不活性ガス雰囲気下で行われている(例えば、特許文献1及び2参照)。しかし、かかる従来法によると、得られるビニル重合体に分子量のばらつきが大きいという問題がある。 Heretofore, vinyl polymers are generally produced under an inert gas atmosphere (see, for example, Patent Documents 1 and 2). However, according to such a conventional method, there is a problem that variation in molecular weight of the obtained vinyl polymer is large.
特開2001-31722号公報JP 2001-31722 A 特開2006-52132号公報Unexamined-Japanese-Patent No. 2006-52132
 本発明が解決しようとする課題は、分子量のばらつきが小さいビニル重合体を得ることができるビニル重合体の製造方法を提供することにある。 The problem to be solved by the present invention is to provide a method for producing a vinyl polymer capable of obtaining a vinyl polymer having a small variation in molecular weight.
 本発明者らは、前記の課題を解決するべく研究した結果、特定の重合開始剤及び分子量調整剤を用いるラジカル反応によりビニル重合体を製造する方法においては、反応開始時の反応系内における雰囲気の酸素濃度を5容量%以上に保持することが正しく好適であることを見出した。 As a result of research conducted to solve the above problems, the present inventors have found that, in a method for producing a vinyl polymer by radical reaction using a specific polymerization initiator and a molecular weight modifier, the atmosphere in the reaction system at the start of the reaction It has been found that maintaining the oxygen concentration of 5% by volume or more is properly suitable.
 すなわち本発明は、重合開始剤として過酸化物を用い、また分子量調整剤としてチオール系化合物を用いるラジカル反応によりビニル重合体を製造する方法において、反応開始時の反応系内における雰囲気の酸素濃度を5容量%以上に保持するビニル重合体の製造方法に係る。 That is, according to the present invention, in the method of producing a vinyl polymer by radical reaction using a peroxide as a polymerization initiator and a thiol compound as a molecular weight modifier, the oxygen concentration of the atmosphere in the reaction system at the start of the reaction is The present invention relates to a method for producing a vinyl polymer which is maintained at 5% by volume or more.
 本発明に係るビニル重合体の製造方法(以下、本発明の製造方法という)では、重合開始剤として過酸化物を用い、また分子量調整剤としてチオール系化合物を用いるラジカル反応により、ビニル重合体を製造する。重合開始剤として用いる過酸化物としては、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、過酸化水素等が挙げられる。これらは、亜硫酸塩やL-アスコルビン酸のような還元性物質やアミン等と組み合わせ、レドックス開始剤として用いることもできる。これらの過酸化物は、2種以上を併用することもできる。 In the method for producing a vinyl polymer according to the present invention (hereinafter referred to as the production method of the present invention), a vinyl polymer is obtained by radical reaction using a peroxide as a polymerization initiator and a thiol compound as a molecular weight modifier. Manufacture. As a peroxide used as a polymerization initiator, sodium persulfate, potassium persulfate, ammonium persulfate, hydrogen peroxide and the like can be mentioned. These can be used as a redox initiator in combination with a reducing substance such as sulfite or L-ascorbic acid, an amine or the like. These peroxides can also be used in combination of two or more.
 また分子量調整剤として用いるチオール系化合物としては、2-メルカプトエタノール、2-メルカプトプロピオン酸、3-メルカプトプロピオン酸、チオグリコール酸、チオグリセリン等が挙げられる。これらのチオール系化合物は、2種以上を併用することもできる。 Further, examples of the thiol compound used as a molecular weight modifier include 2-mercaptoethanol, 2-mercaptopropionic acid, 3-mercaptopropionic acid, thioglycolic acid, thioglycerin and the like. Two or more of these thiol compounds can be used in combination.
 本発明の製造方法において、原料として用いるビニル単量体の種類に特に制限はないが、ビニル単量体としては不飽和(ポリ)アルキレングリコールを含有するものが好ましく、かかる不飽和(ポリ)アルキレングリコールとしては、下記の化1で示される化合物が好ましい。 In the production method of the present invention, the type of vinyl monomer used as the raw material is not particularly limited, but as the vinyl monomer, one containing unsaturated (poly) alkylene glycol is preferable, and such unsaturated (poly) alkylene is used. As a glycol, the compound shown by following Chemical formula 1 is preferable.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 化1において、
 R、R、R:水素原子、メチル基又は-(CHCOOMで示される有機基(但し、R、R、Rのうちで少なくとも一つは水素原子又はメチル基)
 R:水素原子又は炭素数1~20の炭化水素基
 RO:炭素数2~4のオキシアルキレン基
 x:0~5の整数
 y:0又は1
 m:1~300の整数
 p:0~2の整数
 M:水素原子又は金属原子
In Scheme 1,
R 1 , R 2 , R 3 : a hydrogen atom, a methyl group or an organic group represented by — (CH 2 ) p COOM (with the proviso that at least one of R 1 , R 2 and R 3 is a hydrogen atom or a methyl group )
R 4 is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms R 5 O: an oxyalkylene group having 2 to 4 carbon atoms x: an integer of 0 to 5 y: 0 or 1
m: an integer of 1 to 300 p: an integer of 0 to 2 M: hydrogen atom or metal atom
 化1で示される化合物において、R、R、Rは水素原子、メチル基又は-(CHCOOMで示される有機基であり、R、R、Rのうちで少なくとも一つは水素原子又はメチル基である。Rは、水素原子又は炭素数1~20の炭化水素基である。かかる炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基等が挙げられる。ROは炭素数2~4のオキシアルキレン基である。かかるオキシアルキレン基としては、オキシエチレン基、オキシプロピレン基、オキシブチレン基等が挙げられ、これらは単独系でも又は混合系でもよい。混合系の場合はランダム付加、ブロック付加、交互付加等のいずれの付加形態であってもよい。xは0~5の整数であり、yは0又は1である。mは1~300の整数である。pは0~2の整数である。Mは水素原子又は金属原子である。 In the compound represented by Chemical Formula 1 , R 1 , R 2 and R 3 each is a hydrogen atom, a methyl group or an organic group represented by — (CH 2 ) p COOM, and at least of R 1 , R 2 and R 3 One is a hydrogen atom or a methyl group. R 4 is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms. Examples of such a hydrocarbon group include a methyl group, an ethyl group, a propyl group and a butyl group. R 5 O is an oxyalkylene group having 2 to 4 carbon atoms. Examples of such an oxyalkylene group include an oxyethylene group, an oxypropylene group, an oxybutylene group and the like, and these may be a single system or a mixed system. In the case of a mixed system, any addition form such as random addition, block addition, alternate addition, etc. may be used. x is an integer of 0 to 5, and y is 0 or 1. m is an integer of 1 to 300. p is an integer of 0 to 2; M is a hydrogen atom or a metal atom.
 化1で示される化合物のなかでも、本発明の製造方法に用いる不飽和(ポリ)アルキレングリコールとしては、(ポリ)エチレングリコールモノ(メタ)アクリレート、(ポリ)プロピレン(ポリ)エチレングリコールモノ(メタ)アクリレート、メトキシ(ポリ)エチレングリコールモノ(メタ)アクリレート、メトキシ(ポリ)エチレン(ポリ)プロピレングリコールモノ(メタ)アクリレート、ブトキシ(ポリ)エチレングリコールモノ(メタ)アクリレート、(ポリ)エチレングリコールモノアリルエーテル、(ポリ)エチレングリコールモノ(2-メチル-2-プロペニル)エーテル、(ポリ)エチレングリコールモノ(3-メチル-3-ブテニル)エーテル、(ポリ)エチレン(ポリ)プロピレングリコールモノ(2-メチル-2-プロペニル)エーテル、(ポリ)エチレングリコール(ポリ)ブチレングリコールビニルエーテルが好ましい。 Among the compounds represented by Chemical Formula 1, as the unsaturated (poly) alkylene glycol used in the production method of the present invention, (poly) ethylene glycol mono (meth) acrylate, (poly) propylene (poly) ethylene glycol mono (meta) ) Acrylate, methoxy (poly) ethylene glycol mono (meth) acrylate, methoxy (poly) ethylene (poly) propylene glycol mono (meth) acrylate, butoxy (poly) ethylene glycol mono (meth) acrylate, (poly) ethylene glycol monoallyl Ether, (poly) ethylene glycol mono (2-methyl-2-propenyl) ether, (poly) ethylene glycol mono (3-methyl-3-butenyl) ether, (poly) ethylene (poly) propylene glycol mono (2-methyl) 2-propenyl) ether, (poly) ethylene glycol (poly) butylene glycol vinyl ether is preferred.
 本発明の製造方法においては、ビニル共重合体として、以上説明したような不飽和(ポリ)アルキレングリコール以外にも、他のビニル単量体を用いることができる。かかる他のビニル単量体としては、下記の化2で示されるカルボン酸系単量体、化3で示されるリン酸エステル系単量体、化4で示されるリン酸エステル系単量体、化5で示されるスルホン酸系単量体、化6で示されるポリアルキレンポリアミン系単量体が挙げられる。これらの他の単量体は1種又は2種以上を用いることができる。 In the production method of the present invention, as the vinyl copolymer, other vinyl monomers can be used besides the unsaturated (poly) alkylene glycol as described above. As such other vinyl monomers, carboxylic acid monomers represented by the following chemical formula 2, phosphate ester monomers represented by the chemical formula 3, phosphate ester monomers represented by the chemical formula 4, The sulfonic acid type monomer shown by Chemical formula 5 and the polyalkylene polyamine type monomer shown by Chemical formula 6 are mentioned. These other monomers can be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 化2において、
 R、R、R:水素原子、メチル基又は-(CHCOOMで示される有機基
 q:0~2の整数
 M、M:水素原子又は金属原子
In formula 2,
R 6 , R 7 , R 8 : a hydrogen atom, a methyl group or an organic group represented by-(CH 2 ) q COOM 2 q an integer of 0 to 2 M 1 , M 2 : a hydrogen atom or a metal atom
 化2において、R、R及びRは水素原子、メチル基又は-(CHCOOMで示される有機基である。qは0~2の整数である。M及びMは水素原子又は金属原子である。 In the chemical formula 2, R 6 , R 7 and R 8 are a hydrogen atom, a methyl group or an organic group represented by — (CH 2 ) q COOM 2 . q is an integer of 0 to 2; M 1 and M 2 are a hydrogen atom or a metal atom.
 化2で示されるカルボン酸系単量体としては、(メタ)アクリル酸、(無水)マレイン酸、フマル酸、イタコン酸、クロトン酸及びこれらの塩が挙げられる。 Examples of the carboxylic acid-based monomer represented by Chemical Formula 2 include (meth) acrylic acid, (anhydride) maleic acid, fumaric acid, itaconic acid, crotonic acid and salts thereof.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 化3及び化4において、
 R、R11、R14:水素原子又はメチル基
 R10、R12、R13:炭素数2~12のアルキレン基
 r、s、t:1~30の整数
 M、M、M:水素原子又は金属原子
In chemical formulas 3 and 4,
R 9 , R 11 , R 14 : hydrogen atom or methyl group R 10 , R 12 , R 13 : alkylene group having 2 to 12 carbon atoms r, s, t: integer of 1 to 30 M 3 , M 4 , M 5 : Hydrogen atom or metal atom
 化3及び化4において、R、R11、R14は水素原子又はメチル基である。R10、R12、R13はメチレン基、プロピレン基、ブチレン基等の炭素数2~12のアルキレン基である。r、s、tは1~30の整数である。M、M、Mは水素原子又は金属原子である。 In the chemical formula 3 and the chemical formula 4, R 9 , R 11 and R 14 are a hydrogen atom or a methyl group. R 10 , R 12 and R 13 each represent an alkylene group having 2 to 12 carbon atoms such as a methylene group, a propylene group or a butylene group. r, s and t are integers of 1 to 30. M 3 , M 4 and M 5 are a hydrogen atom or a metal atom.
 化3や化4で示されるリン酸エステル系単量体としては、例えば、リン酸モノ-{(2-ヒドロキシエチル)メタクリル酸}エステル、リン酸モノ-{(2-ヒドロキシエチル)アクリル酸}エステル、リン酸ジ-{(2-ヒドロキシエチル)メタクリル酸}エステル、リン酸ジ-{(2-ヒドロキシエチル)アクリル酸}エステル等が挙げられる。 As a phosphoric acid ester type monomer shown by Chemical formula 3 or Chemical formula 4, for example, phosphoric acid mono-{(2-hydroxyethyl) methacrylic acid} ester, phosphoric acid mono-{(2-hydroxyethyl) acrylic acid} Ester, phosphoric acid di-{(2-hydroxyethyl) methacrylic acid} ester, phosphoric acid di- {(2-hydroxyethyl) acrylic acid} ester, etc. may be mentioned.
 かかるリン酸エステル系単量体としては、ライトエステルP-1M、ライトエステルP-2M,ライトアクリレートP-1A(N)(いずれも共栄社化学株式会社製の商品名)等、市販品を使用することもできる。 As such phosphoric acid ester-based monomers, commercially available products such as light ester P-1M, light ester P-2M, light acrylate P-1A (N) (all trade names of Kyoeisha Chemical Co., Ltd.) and the like are used. It can also be done.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 化5において、
 R15:水素原子又はメチル基
 M:水素原子又は金属原子
In Formula 5,
R 15 : hydrogen atom or methyl group M 6 : hydrogen atom or metal atom
 化5において、R15は水素原子又はメチル基である。Mは水素原子又は金属原子である。 In formula 5, R 15 is hydrogen atom or a methyl group. M 6 is a hydrogen atom or a metal atom.
 化5で示されるスルホン酸系単量体としては、アリルスルホン酸、メタリルスルホン酸等が挙げられる。 Examples of sulfonic acid-based monomers represented by Chemical Formula 5 include allyl sulfonic acid and methallyl sulfonic acid.
 かかるスルホン酸系単量体としては、SAS(D)(旭化成ファインケム株式会社製の商品名)、Sodium 2-Methyl-2-propen-1-sulfonate(東京化成工業株式会社)等の市販品を使用することもできる。 As this sulfonic acid type monomer, commercially available products such as SAS (D) (trade name of Asahi Kasei Finechem Co., Ltd.), Sodium 2-Methyl-2-propen-1-sulfonate (Tokyo Kasei Kogyo Co., Ltd.), etc. are used. You can also
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 化6において、Mは水素原子又は金属原子である。Zは二塩基酸とポリアルキレンポリアミンを縮合させたポリアミドポリアミン又はかかるポリアミドポリアミンの活性イミノ基、アミノ基、アミド残基1当量に対して炭素数2~4のアルキレンオキサイドを0.1~10モルの割合で付加させたポリアミドポリアミン変性物がアミド結合を介して主鎖の炭素原子と結合した基である。 In Formula 6, M 7 is a hydrogen atom or a metal atom. Z is a polyamidepolyamine obtained by condensing a dibasic acid with a polyalkylenepolyamine or an active imino group of such a polyamidepolyamine, an amino group, 0.1 to 10 moles of an alkylene oxide having 2 to 4 carbon atoms per equivalent of amide residue The modified polyamidepolyamine added at a ratio of 1 to 4 is a group bonded to a carbon atom of the main chain via an amide bond.
 化6で示されるポリアルキレンポリアミン系単量体は、二塩基酸とポリアミドポリアミンを縮合させ、更に(無水)マレイン酸やフマル酸とアミド基を形成させた後、必要に応じてアルキレンオキサイドを付加する方法により製造することができる。 The polyalkylenepolyamine-based monomer represented by Chemical Formula 6 condenses a dibasic acid with a polyamidepolyamine, and further forms an amide group with (anhydride) maleic acid or fumaric acid, and then adds an alkylene oxide as necessary. Can be manufactured by the following method.
 本発明の製造方法において、ラジカル反応それ自体は、公知のラジカル反応を適用することができる。例えば、ビニル単量体と分子量調整剤とを含む水溶液を調製し、ここに重合開始剤を加えて、反応温度50~90℃で4~8時間ラジカル反応させることにより、ビニル重合体を得ることができる。反応系内の圧力は特に問わないが、常圧が好ましい。ラジカル反応による重合反応中、反応系内における気液界面積Aと液体体積Bの割合が静置状態で測定した場合にA/B=0.1~200m/mとなる工程を含むことが好ましい。 In the production method of the present invention, as the radical reaction itself, known radical reactions can be applied. For example, an aqueous solution containing a vinyl monomer and a molecular weight modifier is prepared, a polymerization initiator is added thereto, and a vinyl polymer is obtained by radical reaction at a reaction temperature of 50 to 90 ° C. for 4 to 8 hours. Can. The pressure in the reaction system is not particularly limited, but normal pressure is preferred. During the polymerization reaction by radical reaction, including the step of A / B = 0.1 to 200 m 2 / m 3 when the ratio of gas-liquid interface area A and liquid volume B in the reaction system is measured in a stationary state. Is preferred.
 本発明の製造方法では、反応開始時の反応系内における雰囲気の酸素濃度を5容量%以上に保持するが、安全性、作業性及び経済性の面から、5容量%以上30容量%未満に保持することが好ましく、大気雰囲気下に保持することが最も好ましい。反応系内の酸素濃度の調整には、種々の方法を適用することができる。これには例えば、雰囲気を減圧後に、該雰囲気に酸素、不活性ガス、大気を導入する方法が挙げられる。 In the production method of the present invention, the oxygen concentration of the atmosphere in the reaction system at the start of the reaction is maintained at 5% by volume or more, but from 5% by volume to less than 30% by volume in terms of safety, workability and economy. It is preferable to hold it, and it is most preferable to keep it in the atmosphere. Various methods can be applied to the adjustment of the oxygen concentration in the reaction system. An example of this is a method in which oxygen, an inert gas and the atmosphere are introduced into the atmosphere after pressure reduction.
 本発明の製造方法により得られるビニル重合体は、分子量のばらつきが少なく、用途に応じて所望の性能を十分に発揮するため、セメント分散剤、静電防止剤、防曇剤、乳化剤、接着剤等として有用であるが、なかでもセメント分散剤として有用である。 The vinyl polymer obtained by the production method of the present invention has less variation in molecular weight and sufficiently exerts the desired performance depending on the application, so a cement dispersant, an antistatic agent, an antifogging agent, an emulsifier, an adhesive Although it is useful as an etc., it is useful as a cement dispersing agent especially.
 本発明によると、分子量のばらつきが小さいビニル重合体を得ることができる。 According to the present invention, a vinyl polymer having a small variation in molecular weight can be obtained.
 以下、本発明の構成及び効果をより具体的にするため、実施例等を挙げるが、本発明が該実施例に限定されるというものではない。なお、以下の実施例等において、別に記載しない限り、%は質量%を、また部は質量部を意味する。 Hereinafter, in order to make the configuration and effects of the present invention more specifically, examples and the like will be described, but the present invention is not limited to the examples. In the following Examples etc., unless otherwise indicated,% means mass%, and a part means mass part.
 試験区分1(ビニル重合体の製造)
 ・実施例1(ビニル重合体(p-1)の製造)
 メタクリル酸28.9部、メトキシポリ(オキシエチレン単位数が23、以下n=23とする)エチレングリコールメタクリレート163.0部、3-メルカプトプロピオン酸1.7部、水182.6部及び30%水酸化ナトリウム水溶液2.5部を反応容器に仕込んだ後、撹拌して均一にした。アスピレーターにて反応系内の圧力を常圧(102kPa)から45kPaまで減圧した後に、窒素ガスを導入して反応系内の圧力を常圧に戻した。反応系内の雰囲気の酸素濃度を酸素モニタ(OXY-1S-M、株式会社ジコ―製の商品名、以下同じ)にて測定したところ、10容量%であった。またこの時点における反応系内の静置状態での気液界面積A/液体体積B=29.9m/mであった。反応容器を密閉して反応系を20℃で48時間保った後、昇温して反応系の温度が60℃で安定したとき、過硫酸ナトリウムの8.8%水溶液43.8部を加えてラジカル反応を開始した。2時間反応を継続した後に、過硫酸ナトリウムの8.8%水溶液を21.9部加え、更に2時間反応を継続して反応を終了した。反応系内の雰囲気の酸素濃度を酸素モニタにて測定したところ、10容量%であった。またこの時点における反応容器内の静置状態での気液界面積A/液体体積B=23.4m/mであった。その後、水55.6部を加えて、ビニル重合体(p-1)の水溶液を得た。
Test division 1 (production of vinyl polymer)
Example 1 (Production of Vinyl Polymer (p-1))
28.9 parts of methacrylic acid, 163.0 parts of methoxypoly (number of oxyethylene units: 23, n = 23) ethylene glycol methacrylate, 1.7 parts of 3-mercaptopropionic acid, 182.6 parts of water and 30% water After charging 2.5 parts of an aqueous solution of sodium oxide to the reaction vessel, the mixture was stirred to be uniform. After the pressure in the reaction system was reduced from normal pressure (102 kPa) to 45 kPa with an aspirator, nitrogen gas was introduced to return the pressure in the reaction system to normal pressure. The oxygen concentration of the atmosphere in the reaction system was measured by an oxygen monitor (trade name of OXY-1S-M, manufactured by Giko Co., Ltd., hereinafter the same), and it was 10% by volume. Further, the gas-liquid interface area A / liquid volume B = 29.9 m 2 / m 3 in a stationary state in the reaction system at this point in time. The reaction vessel is closed and the reaction system is kept at 20 ° C. for 48 hours. Then, when the temperature of the reaction system is stabilized at 60 ° C., 43.8 parts of a 8.8% aqueous solution of sodium persulfate is added. A radical reaction was initiated. The reaction was continued for 2 hours, 21.9 parts of a 8.8% aqueous solution of sodium persulfate was added, and the reaction was continued for another 2 hours to complete the reaction. When the oxygen concentration of the atmosphere in the reaction system was measured by an oxygen monitor, it was 10% by volume. In addition, the gas-liquid interface area A / liquid volume B = 23.4 m 2 / m 3 in a stationary state in the reaction vessel at this point in time. Thereafter, 55.6 parts of water was added to obtain an aqueous solution of a vinyl polymer (p-1).
 ・実施例2~5及び比較例1~3(ビニル重合体(p-2)~(p-5)及び(pr-1)~(pr-3)の製造)
 反応系内の減圧操作や反応系内への窒素ガスの導入等の条件を表1記載のように変更したこと以外は実施例1のビニル重合体(p-1)の製造の場合と同様にして、ビニル重合体(p-2)~(p-5)及び(pr-1)~(pr-3)の水溶液を得た。尚、実施例2~5は減圧操作を行なわず、したがって窒素ガスを導入せず、大気雰囲気で反応を行なった場合であり、また比較例3は、同様の減圧操作及び窒素ガスの導入を2回行なった場合である。
Examples 2 to 5 and Comparative Examples 1 to 3 (Production of Vinyl Polymers (p-2) to (p-5) and (pr-1) to (pr-3))
The same procedure as in the production of the vinyl polymer (p-1) of Example 1 was repeated except that the conditions such as the pressure reduction operation in the reaction system and the introduction of nitrogen gas into the reaction system were changed as shown in Table 1. Thus, aqueous solutions of vinyl polymers (p-2) to (p-5) and (pr-1) to (pr-3) were obtained. In Examples 2 to 5, the reaction was carried out in the air without introducing the nitrogen gas without performing the pressure reduction operation. In Comparative Example 3, the same pressure reduction operation and the introduction of nitrogen gas were performed. It is a case where it has been repeated.
 ・実施例6(ビニル重合体(p-6)の製造)
 メタクリル酸28.9部、メトキシポリ(n=23)エチレングリコールメタクリレート163.0部、3-メルカプトプロピオン酸1.7部、水182.6部及び30%水酸化ナトリウム水溶液2.5部を反応容器に仕込んだ後、撹拌して均一にした。アスピレーターにて反応系内の圧力を常圧(102kPa)から45kPaまで減圧した後に、窒素ガスを導入して反応系内の圧力を常圧に戻した。反応系内の雰囲気の酸素濃度を酸素モニタにて測定したところ、10容量%であった。またこの時点における反応容器内の静置状態での気液界面積A/液体体積B=29.9m/mであった。反応容器を密閉して反応系を40℃で24時間保った後、昇温して反応容器内の温度が60℃で安定したとき、過酸化水素の3.0%水溶液18.3部とL-アスコルビン酸の2.2%水溶液25.5部を加えてラジカル重合を開始した。2時間反応を継続した後に、過酸化水素の3.0%水溶液9.2部とL-アスコルビン酸の2.2%水溶液12.8部加え、更に2時間反応を継続して反応を終了した。反応系内の雰囲気の酸素濃度を酸素モニタにて測定したところ、10容量%であった。またこの時点における反応容器内の静置状態での気液界面積A/液体体積B=23.4m/mであった。その後、水55.6部を加えて、ビニル重合体(p-6)の水溶液を得た。
Example 6 (Production of Vinyl Polymer (p-6))
Reaction vessel with 28.9 parts of methacrylic acid, 163.0 parts of methoxypoly (n = 23) ethylene glycol methacrylate, 1.7 parts of 3-mercaptopropionic acid, 182.6 parts of water and 2.5 parts of 30% aqueous sodium hydroxide solution The mixture was stirred and homogenized. After the pressure in the reaction system was reduced from normal pressure (102 kPa) to 45 kPa with an aspirator, nitrogen gas was introduced to return the pressure in the reaction system to normal pressure. When the oxygen concentration of the atmosphere in the reaction system was measured by an oxygen monitor, it was 10% by volume. Further, the gas-liquid interface area A / liquid volume B = 29.9 m 2 / m 3 in a stationary state in the reaction vessel at this point in time. The reaction vessel is sealed and the reaction system is kept at 40 ° C. for 24 hours, and then the temperature is raised and when the temperature in the reaction vessel is stabilized at 60 ° C., 18.3 parts of 3.0% aqueous solution of hydrogen peroxide and L 25.5 parts of a 2.2% aqueous solution of ascorbic acid were added to initiate radical polymerization. After continuing the reaction for 2 hours, 9.2 parts of a 3.0% aqueous solution of hydrogen peroxide and 12.8 parts of a 2.2% aqueous solution of L-ascorbic acid were added, and the reaction was continued for another 2 hours to complete the reaction. . When the oxygen concentration of the atmosphere in the reaction system was measured by an oxygen monitor, it was 10% by volume. In addition, the gas-liquid interface area A / liquid volume B = 23.4 m 2 / m 3 in a stationary state in the reaction vessel at this point in time. Thereafter, 55.6 parts of water was added to obtain an aqueous solution of a vinyl polymer (p-6).
 ・比較例4(ビニル重合体(pr-4)の製造)
 反応系内の減圧操作や反応系内への窒素ガスの導入等の条件を表1記載のように変更したこと以外は実施例6のビニル重合体(p-6)の製造の場合と同様にして、ビニル重合体(pr-4)の水溶液を得た。比較例4は、減圧操作及び窒素ガスの導入を2回行なった場合である。
Comparative Example 4 (Production of Vinyl Polymer (pr-4))
The same procedure as in the production of the vinyl polymer (p-6) in Example 6 was carried out except that the conditions such as depressurization in the reaction system and introduction of nitrogen gas into the reaction system were changed as shown in Table 1. Thus, an aqueous solution of a vinyl polymer (pr-4) was obtained. The comparative example 4 is a case where decompression operation and introduction of nitrogen gas were performed twice.
 ・実施例7(ビニル重合体(p-7)の製造)
 メタクリル酸26.7部、メトキシポリ(n=23)エチレングリコールメタクリレート162.8部、3-メルカプトプロピオン酸1.7部、水135.4部及び30%水酸化ナトリウム水溶液4.4部を反応容器に仕込んだ後、撹拌して均一にした。アスピレーターにて反応系内の圧力を常圧(102kPa)から45kPaまで減圧した後に、窒素ガスを導入して反応系内の圧力を常圧に戻した。反応系内の雰囲気の酸素濃度を酸素モニタにて測定したところ、10容量%であった。反応容器を密閉して反応系を40℃で24時間保ったものを単量体溶液とした。反応容器に水76.7部を仕込み、昇温して反応系の温度が60℃で安定した時点で、前記の単量体溶液と過硫酸ナトリウムの10.0%水溶液27.8部の2液を同時に120分間かけて滴下し、その後更に過硫酸ナトリウムの10.0%水溶液9.3部を60分間かけて滴下して、ラジカル重合を行なった。1時間反応を継続して反応を終了した。単量体溶液滴下前の静置状態での気液界面積A/液体体積B=23.4m/mであった。なお、反応系内の酸素濃度は単量体溶液の容器内と同じになるように調整した。反応終了後、30%水酸化ナトリウム水溶液18.9部及び水55.6部を加えてビニル重合体(p-7)の水溶液を得た。
Example 7 (Production of Vinyl Polymer (p-7))
Reaction vessel with 26.7 parts of methacrylic acid, 162.8 parts of methoxypoly (n = 23) ethylene glycol methacrylate, 1.7 parts of 3-mercaptopropionic acid, 135.4 parts of water and 4.4 parts of 30% aqueous sodium hydroxide solution The mixture was stirred and homogenized. After the pressure in the reaction system was reduced from normal pressure (102 kPa) to 45 kPa with an aspirator, nitrogen gas was introduced to return the pressure in the reaction system to normal pressure. When the oxygen concentration of the atmosphere in the reaction system was measured by an oxygen monitor, it was 10% by volume. The reaction vessel was sealed and the reaction system was kept at 40 ° C. for 24 hours to obtain a monomer solution. 76.7 parts of water is charged into the reaction vessel, and when the temperature of the reaction system is stabilized at 60 ° C. by raising the temperature, 2% of the monomer solution and 27.8 parts of 10.0% aqueous solution of sodium persulfate are The solution was simultaneously dropped over 120 minutes, and then 9.3 parts of a 10.0% aqueous solution of sodium persulfate was further dropped over 60 minutes to perform radical polymerization. The reaction was continued for 1 hour to complete the reaction. The gas-liquid interface area A / liquid volume B = 23.4 m 2 / m 3 in a stationary state before dropping of the monomer solution. The oxygen concentration in the reaction system was adjusted to be the same as in the container of the monomer solution. After completion of the reaction, 18.9 parts of a 30% aqueous sodium hydroxide solution and 55.6 parts of water were added to obtain an aqueous solution of a vinyl polymer (p-7).
 ・比較例5(ビニル重合体(pr-5)の製造)
 反応系内の減圧操作や反応系内への窒素ガスの導入等の条件を表1記載のように変更したこと以外は実施例7のビニル重合体(p-7)の製造の場合と同様にして、ビニル重合体(pr-5)の水溶液を得た。
Comparative Example 5 (Production of Vinyl Polymer (pr-5))
The same procedure as in the production of the vinyl polymer (p-7) of Example 7 was carried out except that the conditions such as depressurization in the reaction system and introduction of nitrogen gas into the reaction system were changed as shown in Table 1. Thus, an aqueous solution of a vinyl polymer (pr-5) was obtained.
 ・実施例8(ビニル重合体(p-8)の製造)
 メタリルアルコールEO付加物(n=57)185.7部及び水99.6部を反応容器に仕込んだ後、撹拌して均一にした。アスピレーターにて反応系内の圧力を常圧(102kPa)から45kPaまで減圧した後に、窒素ガスを導入して反応系内の圧力を常圧に戻した。反応系内の雰囲気の酸素濃度を酸素モニタにて測定したところ、10容量%であった。この時点での反応容器内の静置状態での気液界面積A/液体体積B=35.0m/mであった。3-メルカプトプロピオン酸0.8部、L-アスコルビン酸0.8部及び水32.4部を撹拌して均一にしたものを第1溶液とした。またアクリル酸11.9部及び水48.2部を撹拌して均一にしたものを第2溶液とした。更に35%過酸化水素水0.8部及び水18.1部を撹拌して均一にしたものを第3溶液とした。前記の反応容器を密閉して40℃で24時間保った後、昇温して反応容器内の温度が70℃で安定した時点で、第1溶液、第2溶液及び第3溶液を同時に180分間で滴下し、ラジカル重合を行なった。1時間反応を継続して反応を終了した。反応終了時の静置状態での反応容器内の気液界面積A/液体体積B=23.4m/mであった。その後、30%水酸化ナトリウム水溶液11.5部及び水92.8部を加えてビニル重合体(p-8)の水溶液を得た。
Example 8 (Production of Vinyl Polymer (p-8))
After charging 185.7 parts of methallyl alcohol EO adduct (n = 57) and 99.6 parts of water in a reaction vessel, the mixture was stirred and homogenized. After the pressure in the reaction system was reduced from normal pressure (102 kPa) to 45 kPa with an aspirator, nitrogen gas was introduced to return the pressure in the reaction system to normal pressure. When the oxygen concentration of the atmosphere in the reaction system was measured by an oxygen monitor, it was 10% by volume. The gas-liquid interface area A / liquid volume B = 35.0 m 2 / m 3 in a stationary state in the reaction vessel at this point in time. A first solution was prepared by stirring and homogenizing 0.8 parts of 3-mercaptopropionic acid, 0.8 parts of L-ascorbic acid and 32.4 parts of water. Further, 11.9 parts of acrylic acid and 48.2 parts of water were stirred and homogenized to obtain a second solution. Further, 0.8 parts of 35% hydrogen peroxide water and 18.1 parts of water were stirred and homogenized to obtain a third solution. The above reaction vessel is sealed and kept at 40 ° C. for 24 hours, and when the temperature in the reaction vessel is stabilized at 70 ° C. after raising the temperature, the first solution, the second solution and the third solution are simultaneously carried out for 180 minutes. It dripped by this, and radical polymerization was performed. The reaction was continued for 1 hour to complete the reaction. The gas-liquid interface area A / liquid volume B = 23.4 m 2 / m 3 in the reaction vessel in the stationary state at the end of the reaction. Thereafter, 11.5 parts of a 30% aqueous solution of sodium hydroxide and 92.8 parts of water were added to obtain an aqueous solution of a vinyl polymer (p-8).
 ・比較例6(ビニル重合体(pr-6)の製造)
 反応系内の減圧操作や反応系内への窒素ガスの導入等の条件を表1記載のように変更したこと以外は実施例8のビニル重合体(p-8)の製造の場合と同様にして、ビニル重合体(pr-6)の水溶液を得た。比較例6は、減圧操作及び窒素ガスの導入を2回行なった場合である。以上の各例におけるビニル重合体の製造条件を表1にまとめて示した。
Comparative Example 6 (Production of Vinyl Polymer (pr-6))
The same procedure as in the production of the vinyl polymer (p-8) of Example 8 was repeated except that the conditions such as depressurization in the reaction system and introduction of nitrogen gas into the reaction system were changed as shown in Table 1. Thus, an aqueous solution of a vinyl polymer (pr-6) was obtained. The comparative example 6 is a case where decompression operation and nitrogen gas introduction were performed twice. The production conditions of the vinyl polymer in each of the above examples are summarized in Table 1 and shown.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 試験区分2(製造したビニル重合体についての測定等)
 ・質量平均分子量及び数平均分子量の測定
 試験区分1で製造した各例のビニル重合体(p-1)~(p-8)及び(pr-1)~(pr-6)について、GPC法によるポリエチレングリコール換算の質量平均分子量及び数平均分子量を求め、結果を表2にまとめて示した。
Test division 2 (measurement of manufactured vinyl polymer etc.)
-Measurement of mass average molecular weight and number average molecular weight For the vinyl polymers (p-1) to (p-8) and (pr-1) to (pr-6) of each example produced in Test Category 1, according to GPC method The weight average molecular weight and number average molecular weight in terms of polyethylene glycol were determined, and the results are summarized in Table 2.
 ・分散度の算出
 試験区分1で製造した各例のビニル重合体(p-1)~(p-8)及び(pr-1)~(pr-6)について、分子量のばらつきを表す指標として、質量平均分子量(Mw)/数平均分子量(Mn)の比で分散度を求め、結果を表2にまとめて示した。
-Calculation of the degree of dispersion For the vinyl polymers (p-1) to (p-8) and (pr-1) to (pr-6) of each example produced in Test Category 1, as an index indicating the variation in molecular weight, The degree of dispersion was determined by the ratio of mass average molecular weight (Mw) / number average molecular weight (Mn), and the results are summarized in Table 2.
 ・モルタルフロー値の測定
 試験区分1で製造した各例のビニル重合体(p-1)~(p-8)及び(pr-1)~(pr-6)について、セメント分散剤としての分散性を表す指標として、モルタルフロー値を次のように求め、結果を表2にまとめて示した。
· Measurement of mortar flow value Dispersion as a cement dispersant for the vinyl polymers (p-1) to (p-8) and (pr-1) to (pr-6) of each example manufactured in Test Category 1 The mortar flow value was determined as follows as an index representing H. The results are summarized in Table 2.
 ・モルタルフロー値:セメントとして普通ポルトランドセメント(太平洋セメント株式会社製)500g、細骨材として愛知県岡崎産陸砂750g、セメント分散剤として試験区分1で製造したビニル重合体を固形分で0.6g及び水175gを用いて、JIS R 5201に準拠してモルタルを調製し、タッピングなしでのモルタルの広がりをモルタルフロー値(mm)とした。 Mortar flow value: 500 g of ordinary portland cement (manufactured by Pacific Cement Co., Ltd.) as cement, 750 g of land sand from Okazaki, Aichi Prefecture, as fine aggregate, and a vinyl polymer manufactured in test division 1 as a cement dispersant at a solid content of 0. A mortar was prepared according to JIS R 5201 using 6 g and 175 g of water, and the spread of the mortar without tapping was taken as the mortar flow value (mm).
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表1に対応する表2の結果から明らかなように、本発明によると、分子量のばらつきが小さいビニル重合体が得られ、かかるビニル重合体はセメント分散剤として優れた効果を発揮する。
 

 
As apparent from the results of Table 2 corresponding to Table 1, according to the present invention, a vinyl polymer having a small variation in molecular weight is obtained, and such a vinyl polymer exerts an excellent effect as a cement dispersant.


Claims (5)

  1.  重合開始剤として過酸化物を用い、かつ分子量調整剤としてチオール系化合物を用いるラジカル反応によりビニル重合体を製造する方法において、反応開始時の反応系内における雰囲気の酸素濃度を5容量%以上に保持するビニル重合体の製造方法。 In a method of producing a vinyl polymer by radical reaction using a peroxide as a polymerization initiator and a thiol compound as a molecular weight modifier, the oxygen concentration of the atmosphere in the reaction system at the start of the reaction is 5% by volume or more Method for producing a vinyl polymer to be held.
  2.  ビニル単量体が不飽和(ポリ)アルキレングリコールを含有するものである請求項1記載のビニル重合体の製造方法。 The method for producing a vinyl polymer according to claim 1, wherein the vinyl monomer contains unsaturated (poly) alkylene glycol.
  3.  反応開始時の反応系内における雰囲気の酸素濃度を5容量%以上30容量%未満に保持する請求項1又は2記載のビニル重合体の製造方法。 The method for producing a vinyl polymer according to claim 1 or 2, wherein the oxygen concentration of the atmosphere in the reaction system at the start of the reaction is maintained at 5% by volume or more and less than 30% by volume.
  4.  反応中の反応系内における気液界面積Aと液体体積Bの割合が、静置状態で測定した場合にA/B=0.1~200m/mとなる工程を含む請求項1~3のいずれか一つの項記載のビニル重合体の製造方法。 The process according to claim 1, wherein the ratio of the gas-liquid interface area A and the liquid volume B in the reaction system during the reaction is such that A / B = 0.1 to 200 m 2 / m 3 when measured in a stationary state. The manufacturing method of the vinyl polymer as described in any one of 3 items.
  5.  ビニル重合体がセメント分散剤として用いるものである請求項1~4のいずれか一つの項記載のビニル重合体の製造方法。

     
    The method for producing a vinyl polymer according to any one of claims 1 to 4, wherein the vinyl polymer is used as a cement dispersant.

PCT/JP2017/044434 2017-12-11 2017-12-11 Method for producing vinyl polymer WO2019116431A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207016303A KR102453882B1 (en) 2017-12-11 2017-12-11 Method for producing vinyl polymer
CN201780097548.4A CN111433227B (en) 2017-12-11 2017-12-11 Process for producing vinyl polymer
PCT/JP2017/044434 WO2019116431A1 (en) 2017-12-11 2017-12-11 Method for producing vinyl polymer
TW106146068A TWI744452B (en) 2017-12-11 2017-12-27 Manufacturing method of vinyl polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/044434 WO2019116431A1 (en) 2017-12-11 2017-12-11 Method for producing vinyl polymer

Publications (1)

Publication Number Publication Date
WO2019116431A1 true WO2019116431A1 (en) 2019-06-20

Family

ID=66819044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044434 WO2019116431A1 (en) 2017-12-11 2017-12-11 Method for producing vinyl polymer

Country Status (4)

Country Link
KR (1) KR102453882B1 (en)
CN (1) CN111433227B (en)
TW (1) TWI744452B (en)
WO (1) WO2019116431A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247403A (en) * 1988-03-29 1989-10-03 Nippon Shokubai Kagaku Kogyo Co Ltd Preparation of sh-terminated teleckelic polymer
JPH0713141B2 (en) * 1986-10-06 1995-02-15 株式会社クラレ Process for producing polyether having mercapto group at terminal
JPH093108A (en) * 1995-06-23 1997-01-07 Kuraray Co Ltd Production of mercapto-terminated polymer
JP2002362952A (en) * 2001-06-12 2002-12-18 Taiheiyo Cement Corp Production process of cement dispersant
JP2012062449A (en) * 2010-09-17 2012-03-29 Kyoto Univ Living radical polymerization method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4089853B2 (en) 1999-07-16 2008-05-28 株式会社日本触媒 Method for producing polymer for cement dispersant
JP4024669B2 (en) * 2002-12-24 2007-12-19 株式会社カネカ Stabilization method of vinyl polymer having terminal group with polymerizable carbon-carbon double bond
JP2006052132A (en) 2005-08-09 2006-02-23 Nippon Shokubai Co Ltd Cement composition
JP4331201B2 (en) * 2006-01-13 2009-09-16 花王株式会社 Method for producing phosphate ester polymer
EP2626374B1 (en) * 2010-10-06 2019-05-15 Nippon Shokubai Co., Ltd. Diene-based carboxylate anion and salt thereof, and polymerizable or curable composition thereof
US9453083B2 (en) * 2013-03-14 2016-09-27 Saudi Basic Industries Corporation Vinyl polymers prepared via suspension polymerization and methods thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713141B2 (en) * 1986-10-06 1995-02-15 株式会社クラレ Process for producing polyether having mercapto group at terminal
JPH01247403A (en) * 1988-03-29 1989-10-03 Nippon Shokubai Kagaku Kogyo Co Ltd Preparation of sh-terminated teleckelic polymer
JPH093108A (en) * 1995-06-23 1997-01-07 Kuraray Co Ltd Production of mercapto-terminated polymer
JP2002362952A (en) * 2001-06-12 2002-12-18 Taiheiyo Cement Corp Production process of cement dispersant
JP2012062449A (en) * 2010-09-17 2012-03-29 Kyoto Univ Living radical polymerization method

Also Published As

Publication number Publication date
KR102453882B1 (en) 2022-10-14
CN111433227A (en) 2020-07-17
KR20200088832A (en) 2020-07-23
TWI744452B (en) 2021-11-01
CN111433227B (en) 2022-07-01
TW201927827A (en) 2019-07-16

Similar Documents

Publication Publication Date Title
JP5409980B2 (en) Comb polymer manufacturing method
JP6074517B2 (en) Method for producing slump retention type polycarboxylate-based high performance fluidizing agent
EP1767564B1 (en) Polymer, a method for producing the polymer, and a cement admixture using the same
JP4744783B2 (en) Surfactant block copolymers made by controlled radical polymerization
JP2013533361A (en) Production method of polycarboxylic acid water reducing agent
US8541518B2 (en) Semi continuous operational method for producing copolymers
JP2008106238A (en) Method for manufacturing copolymer having polyalkylene glycol chain
JP6966254B2 (en) Cement Additives Containing Polycarboxylic Acid Copolymers and Defoamers, and Cement Compositions
JP2007131520A (en) Cement admixture
JP5559192B2 (en) Process for producing a semi-continuously operated copolymer
Li et al. Fast RAFT aqueous polymerization in a continuous tubular reactor: consecutive synthesis of a double hydrophilic block copolymer
JP2011525936A (en) Copolymers having polyether side chains and hydroxyalkyl and acid structural units
WO2019116431A1 (en) Method for producing vinyl polymer
JP2006232615A (en) Mixture of cement admixtures
JP6401218B2 (en) Method for producing aqueous solution of vinyl polymer
JP2011032132A (en) Method for production of polycarboxylic acid-based copolymer for cement admixture
KR101853124B1 (en) Cement admixture composition and method for preparing the same
JP2012511065A (en) Semi-continuous process for producing copolymers
JP2019137799A (en) Polycarboxylic acid copolymer and method for producing the same, and additive for inorganic particles and cement composition including the same
JP2009114040A (en) Copolymer composition for concrete admixture, concrete admixture, and cement composition
EP1290036A1 (en) Water soluble ampiphilic heteroarm star polymers and their use as emulsion stabilizers in emulsion polymerization
JP7021004B2 (en) A polycarboxylic acid-based copolymer and a method for producing the same, and an additive and cement composition for inorganic particles using the same.
JP2014088479A (en) Multi-branched polyalkylene glycol type copolymer, dispersant, cement additive, cement composition and method of producing multi-branched polyalkylene glycol type copolymer
JP7075692B1 (en) Method for Producing Admixture for Hydraulic Composition
JP2018076224A (en) Additive for inorganic particles and cement composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934880

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207016303

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17934880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP