WO2019115564A1 - Dispositif pour détecter des défauts d'alignement d'un convoyeur à courroie - Google Patents

Dispositif pour détecter des défauts d'alignement d'un convoyeur à courroie Download PDF

Info

Publication number
WO2019115564A1
WO2019115564A1 PCT/EP2018/084428 EP2018084428W WO2019115564A1 WO 2019115564 A1 WO2019115564 A1 WO 2019115564A1 EP 2018084428 W EP2018084428 W EP 2018084428W WO 2019115564 A1 WO2019115564 A1 WO 2019115564A1
Authority
WO
WIPO (PCT)
Prior art keywords
belt
sensor module
rotation
conveyor
belt conveyor
Prior art date
Application number
PCT/EP2018/084428
Other languages
German (de)
English (en)
Inventor
Manfred Ziegler
Manfred BÄUMLER
Uwe BÖKER
Original Assignee
Voith Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voith Patent Gmbh filed Critical Voith Patent Gmbh
Publication of WO2019115564A1 publication Critical patent/WO2019115564A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G39/00Rollers, e.g. drive rollers, or arrangements thereof incorporated in roller-ways or other types of mechanical conveyors 
    • B65G39/10Arrangements of rollers
    • B65G39/12Arrangements of rollers mounted on framework
    • B65G39/16Arrangements of rollers mounted on framework for aligning belts or chains

Definitions

  • the invention relates to a belt conveyor and a device for detecting alignment errors of a belt conveyor.
  • the correct alignment of the support rollers to the belt is a prerequisite for trouble-free operation and low energy consumption of a belt conveyor.
  • a poor alignment leads to belt misalignment with damage to the belt and the fixed structural parts, unloading of conveyed material with material return to the rear drum, contamination of the system and the resulting subsequent work.
  • the increase in energy demand can be e.g. by efficiency monitoring, as described in EP 2 099 701 A.
  • EP 2 099 701 A In WO2017001203 a further development of EP 2 099 701 A is described in terms of how the increase in the energy requirement can be limited to individual band sections.
  • An increase in energy demand may be due to misalignment of the belt frame. Furthermore, a misalignment of the belt may be due to a misalignment. A misalignment may cause damage to the belt and fixed structural parts, unloading of material to be conveyed with material return to the rear drum, contamination of the system and the resulting subsequent work.
  • the invention is based on the object to provide a method and apparatus for easy detection of alignment errors during operation.
  • the object is achieved by an embodiment according to claim 1. Further advantageous features of the embodiment according to the invention can be found in the subclaims.
  • the invention relates to a device for detecting alignment errors of a support frame in belt conveyors.
  • the device is characterized by rotation rate sensors.
  • the device according to the invention may be integrated in a belt conveyor, i. the sensors can be integrated in the belt.
  • the device may be a stand-alone device.
  • the device may then be attached to a belt conveyor secondarily. It may also be provided to subsequently provide a belt conveyor with such a device, in order then to be informed about alignment errors during operation.
  • the information about alignment errors during operation has the advantage that downtime of the belt conveyor can be reduced.
  • the acquired data is supplied to a data processing device.
  • the use of yaw rates has proven to be a reliable indicator of misalignment.
  • yaw rate sensors are provided for receiving a rotational movement in a preferably in at least two spatial directions. From the yaw rates or the detected angles of rotation, the position of passed idlers can be derived. Preferably, a filtering of the data before the derivation of the rotation rate / rotation angle is provided.
  • the device has the yaw rate sensors associated distance sensors for detecting support rollers.
  • a stationarily arranged base station is provided with a data communication unit for reading out or receiving measurement data of the sensors used and for further processing of the measurement data and control of the measurement procedure. It can be provided to perform a comparison with a stored profile or stored allowable rotation angle / rotation rate in the base station. This makes it possible to minimize the exchange of data to a central office by forwarding the data or insights only if a misalignment is detected.
  • a rotation rate sensor is part of a sensor module, wherein the sensor module comprises at least two interconnected housing segments.
  • the connection between the individual housing segments can be wireless or wired.
  • a bus system for connecting the housing segments has proven to be advantageous.
  • the connection between the housing segments can be provided for energy transfer and / or data transfer.
  • a housing segment represents a self-contained housing, wherein in a housing segment only a part of the components of the sensor module are arranged. Further possible components of a sensor module are data storage, energy storage and / or energy recovery system for feeding a rechargeable energy storage.
  • a base module for controlling the sensor module can be provided in one of the housing segments.
  • the measuring frequency and / or measuring accuracy can be controlled.
  • the sensor module comprises a distance sensor or another sensor for detecting a carrying roller at a predetermined distance
  • a rotation rate measurement can be triggered thereby.
  • the rotation rate measurement can be limited to a predetermined distance and / or path.
  • the measured data can be reduced.
  • the sensor module is provided with a fastening device for releasable mounting on the belt edge.
  • a fastening device for releasable mounting on the belt edge.
  • a fastening device is provided with a first fastening element which can be introduced into the belt and with a second pin element connected to the sensor module.
  • each housing segment is provided with at least two pin elements.
  • the sensor module is arranged integrated in the belt.
  • the sensor module can be glued or vulcanised with the belt.
  • a sensor comprising at least one coil is provided as the distance sensor.
  • a belt conveyor with an endless conveyor belt is provided with a device for detecting alignment errors.
  • the conveyor belt of the belt conveyor is mounted with a plurality of support rollers.
  • Both belt edges of the endless conveyed material are preferably provided with a plurality of rotation rate sensors or are associated therewith. It turned out to be advantageously found that the two belt edges associated sensors are offset from each other. This has the advantage that the sensors can be read from a stationary base station one behind the other when the base station is passed.
  • the sensor module used has a housing whose width is less than or equal to the thickness of the belt and wherein the mounted on the belt edge sensor module does not protrude beyond the belt. This is a particularly preferred position, since the expected angle of rotation of the belt edge are particularly large.
  • the belt recesses for receiving fastening elements are formed. These recesses may also be retrofitted in the belt, e.g. through drilling.
  • the belt has a T-shaped recess for attachment of a sensor module. This T-shaped recess can be produced easily by a vertical bore into which a horizontal bore opens.
  • Detecting the rate of rotation of the belt edge during operation by clearly identifiable sensor modules as a function of time The rotation rates are read out by a stationary base station. In this case, a pre-processing of the rotation rates can already be done.
  • the detected rotation rate or angle of rotation of each belt edge in the conveying direction and / or transversely to the conveying direction are assigned to the individual carrying roller stations. Based on the rotation rate or the angle of rotation can be closed on the course of the belt.
  • the trajectory belonging to the conveying path is preferably stored in the base station. It may also be provided to record the trajectory during initial startup. Trajectory is the spatial course of the conveyor line to understand.
  • carrier roller positions detected by the distance sensors are used in the assignment of the rotational angle / rotational rates to the individual carrier roller stations. This makes it possible to detect even insufficient storage at a carrying roller station.
  • Fig.2 Schematic representation of a misalignment in the fleas of the position of a support roller
  • FIG. 3 Schematic representation of a misalignment, inclination, a carrying role station
  • FIG. 5 Schematic representation of a misalignment of a
  • FIG. 6 Schematic representation of a misalignment of a
  • FIG. 1 shows a belt conveyor 1 with upper 4 and lower 5.
  • the belt conveyor has a circumferential belt 2.
  • the belt 2 is mounted on support rollers 6 and pulleys 9.
  • One of the deflection rollers 9 can be driven by a drive. In this case, the pulleys on a diameter 12.
  • the conveying direction 11 is indicated by an arrow.
  • two sensor modules 18 are shown on the belt edge. Data recorded or generated by the sensor module is transmitted to this base station 14 when a stationary base station 14 passes. In the illustrated embodiment, wireless data transmission is provided. The data can be transmitted to a central office 30.
  • FIG. 2 shows various scenarios of misalignment of support rollers with respect to their fleas position. Thus, in the uppermost example, the middle support roller is positioned too high.
  • the detection of the rotation rate must be carried out at both belt edges, and if possible in the same belt cross section in order to exclude the influence of different levels of loading.
  • FIG. 3 shows a rotation of a carrying roller station 7 about a vertical axis 32.
  • the longitudinal axis corresponds to an axis in the conveying direction 1 1.
  • this signal offset results in the transition from the leading to the rotated support roller frame 7 and in opposite directions again at the transition from the rotated to the subsequent frame 7, FIG.
  • yaw rate signals from the right and left belt edges 33 are shown.
  • the signals recorded by a distance sensor are shown.
  • the distance sensors with different sensitivity are used.
  • the far-end range can also be used to limit a yaw rate measurement to a predetermined range around the idlers.
  • adjacent rollers are involved in a misalignment. An exception is the misalignment of a garland.
  • the misalignments can therefore be located within a framework 7 or are distributed over two or more frameworks 7.
  • a reference trajectory must be determined beforehand, which serves as the target corridor for the corrected course of the belt. This corresponds outside of the rear and head station with the deflection drums 5 approximately the terrain course under the conveyor. The course of the terrain is usually provided by the markers.
  • a sensor module 18 is shown by way of example and its attachment to the belt edge.
  • the sensor module comprises three housing segments 19. Each housing segment 19 is self-contained.
  • a base module 24 comprising a data processing device 13 and a data communication 15 is accommodated.
  • the base module 24 is provided for the control of the sensor module 18.
  • the data processing device is provided for the control of the detection process. In the detection process, the control of the sensors 16, 17, the receipt of the measurement data, the storage of the measurement data in m-file systems in a non-volatile memory, the start and stop of the measurement program, the communication with the sensors 16, 17 present in the system and the Communication with the stationary base station 14 controlled.
  • the power supply is housed in the base module 24.
  • an energy recovery module is provided for the energy supply.
  • the energy harvesting module uses the temperature gradient or the vibration or induction effects to obtain electrical energy.
  • a rotation rate sensor for 3-axis measurement of the rotation rate is provided
  • yaw rate sensors or yaw rate sensor 16 are accommodated in a further housing segment, and a last housing segment is provided for a distance sensor with coils 57.
  • the base station 14 is provided for further processing of the measurement data obtained from the sensor modules, parameterization and control of the measurement procedure and transmission of the data to the center 30, also referred to as data center.
  • the smallest occurring drum radius 12 and the lateral distance to stationary construction parts are accommodated in one or more housing segments 19.
  • the division into several, as wagons in a train successively arranged housing segments 19 allows flexible extension to other functions.
  • the required functions are configured by external parameterization.
  • the components accommodated in the housing segments are coupled to one another by a bus system 23, wherein the bus line 23 is laid protected in a flexible hose (FIG. 8).
  • Each housing segment 19 is each end provided in the conveying direction with a fastening device 27.
  • a fastening device 27 For easy accessibility, an attachment of the sensor module to the belt edge 33 was provided. Damage in this area of the belt is acceptable because the main load is related to the center of the belt.
  • the housing segments 19 are not lost during normal operation, ie when there is no contact with upright structural parts due to excessive misalignment. An attachment and dismantling can be done quickly. As a result, a quick replacement of a sensor module or retrofitting with sensor modules is possible.
  • the technical embodiment of the fastening device used will be explained in more detail below.
  • each housing segment 19 has a pin element 28 on its end in the conveying direction.
  • a vertically integrated in the belt locking element 29 corresponds to the transverse line, see Figure 9 and 10.
  • the horizontally installed pin member 28 is removed during disassembly of the sensor module 18 together with these during removal from the belt.
  • the preparation of the belt edge is done on site by means of template and drill.
  • the drill consists of a clamping part and a shaft with cutting crown. Using this tool and a cordless screwdriver as a drive, rubber cylinders are cut out of the belt edge.
  • the bore 35 for the locking member 29 is made vertically through or in the belt 2.
  • a horizontal bore 34 made in the previous hole 35 opening bore.
  • the width 20 of the housing segment 19 is smaller than the belt thickness.
  • the length 22 of the housing segment 29 is shown, wherein the smallest deflection roller of the belt conveyor has a maximum diameter of x times the length of the housing segment.
  • the height of the housing segment is denoted by 21.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Conveyors (AREA)

Abstract

L'invention concerne un dispositif et un procédé pour détecter des défauts d'alignement d'une installation de transport à courroie (1) en cours de fonctionnement. L'installation de transport à courroie comprend des capteurs destinés à acquérir des paramètres d'état d'une courroie (2) de l'installation de transport à courroie (1) et transmet les paramètres enregistrés à un système de traitement de données (13). Ledit dispositif comprend des capteurs de vitesse de rotation (16) destinés à enregistrer des vitesses de rotation et un mouvement de rotation dans une direction dans l'espace, de préférence dans au moins deux directions dans l'espace. Les données sont ensuite envoyées à un système de traitement de données (13) pour permettre de déterminer des défauts d'alignement de rouleaux porteurs de l'installation de transport à courroie (1).
PCT/EP2018/084428 2017-12-15 2018-12-12 Dispositif pour détecter des défauts d'alignement d'un convoyeur à courroie WO2019115564A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017130104.6A DE102017130104A1 (de) 2017-12-15 2017-12-15 Vorrichtung zur Erkennung von Ausrichtfehlern eines Gurtförderers
DE102017130104.6 2017-12-15

Publications (1)

Publication Number Publication Date
WO2019115564A1 true WO2019115564A1 (fr) 2019-06-20

Family

ID=64744725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/084428 WO2019115564A1 (fr) 2017-12-15 2018-12-12 Dispositif pour détecter des défauts d'alignement d'un convoyeur à courroie

Country Status (2)

Country Link
DE (1) DE102017130104A1 (fr)
WO (1) WO2019115564A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019126060B4 (de) * 2019-09-26 2022-05-05 Otto-Von-Guericke-Universität Magdeburg Verfahren und Messsystem zur Erkennnung und Lokalisation von Fehlstellungen von Tragrollen in Gurtförderanlagen
DE102022120533A1 (de) 2022-08-15 2024-02-15 Körber Technologies Gmbh Transporteinrichtung zum Transportieren von Monozellen in einer Laminiervorrichtung sowie Verfahren zum Transportieren von Monozellen

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005021627A1 (de) * 2005-05-06 2006-11-16 Rwe Power Ag Verfahren zur Überwachung der Bandausrichtung und/oder des Bandlaufs einer Gurtbandfördereinrichtung sowie Gurtbandförderer
US20090194390A1 (en) * 2008-02-04 2009-08-06 Honeywell International Inc. Apparatus and method for in-belt conveyor idler condition monitoring
EP2099701A1 (fr) 2007-01-08 2009-09-16 RWE Power Aktiengesellschaft Procédé de détermination des besoins en énergie spécifiques d'une installation de transport à courroie en fonctionnement pour des produits en vrac en cas de chargement non constant
JP2010189168A (ja) * 2009-02-19 2010-09-02 Bridgestone Corp コンベヤベルト及びガイドローラの不良判定システム
JP2011042468A (ja) * 2009-08-21 2011-03-03 Bridgestone Corp コンベアベルト及びベルトコンベア装置
JP2016060556A (ja) * 2014-09-16 2016-04-25 Jfeスチール株式会社 ベルトコンベアの異常検知方法
WO2017001203A1 (fr) 2015-07-01 2017-01-05 Voith Patent Gmbh Procédé et dispositif de détermination d'une consommation d'énergie spécifique de convoyeurs à bande
EP3171131A1 (fr) * 2014-07-16 2017-05-24 Seiko Epson Corporation Unité capteur, appareil électronique et corps mobile
WO2017151447A1 (fr) * 2016-03-02 2017-09-08 The Regents Of The University Of California Système magnétique complémentaire à capacités de détection acoustique et de vibration permettant de surveiller l'état d'un outil
US20170316683A1 (en) * 2015-02-13 2017-11-02 Ideation Systems Llc Modular Sensor Systems
DE102018101057A1 (de) 2017-01-31 2018-08-02 Computational Systems Inc. Detektieren einer fehlerhaften Sammlung von Vibrationsdaten

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005021627A1 (de) * 2005-05-06 2006-11-16 Rwe Power Ag Verfahren zur Überwachung der Bandausrichtung und/oder des Bandlaufs einer Gurtbandfördereinrichtung sowie Gurtbandförderer
EP2099701A1 (fr) 2007-01-08 2009-09-16 RWE Power Aktiengesellschaft Procédé de détermination des besoins en énergie spécifiques d'une installation de transport à courroie en fonctionnement pour des produits en vrac en cas de chargement non constant
US20090194390A1 (en) * 2008-02-04 2009-08-06 Honeywell International Inc. Apparatus and method for in-belt conveyor idler condition monitoring
US7673739B2 (en) 2008-02-04 2010-03-09 Honeywell International Inc. Apparatus and method for in-belt conveyor idler condition monitoring
JP2010189168A (ja) * 2009-02-19 2010-09-02 Bridgestone Corp コンベヤベルト及びガイドローラの不良判定システム
JP2011042468A (ja) * 2009-08-21 2011-03-03 Bridgestone Corp コンベアベルト及びベルトコンベア装置
EP3171131A1 (fr) * 2014-07-16 2017-05-24 Seiko Epson Corporation Unité capteur, appareil électronique et corps mobile
JP2016060556A (ja) * 2014-09-16 2016-04-25 Jfeスチール株式会社 ベルトコンベアの異常検知方法
US20170316683A1 (en) * 2015-02-13 2017-11-02 Ideation Systems Llc Modular Sensor Systems
WO2017001203A1 (fr) 2015-07-01 2017-01-05 Voith Patent Gmbh Procédé et dispositif de détermination d'une consommation d'énergie spécifique de convoyeurs à bande
WO2017151447A1 (fr) * 2016-03-02 2017-09-08 The Regents Of The University Of California Système magnétique complémentaire à capacités de détection acoustique et de vibration permettant de surveiller l'état d'un outil
DE102018101057A1 (de) 2017-01-31 2018-08-02 Computational Systems Inc. Detektieren einer fehlerhaften Sammlung von Vibrationsdaten

Also Published As

Publication number Publication date
DE102017130104A1 (de) 2019-06-19

Similar Documents

Publication Publication Date Title
DE3406519C2 (fr)
EP3864401B1 (fr) Dispositif et procédé de mesure d'un état d'usure d'éléments de roulement ou de guidage
EP1374657B1 (fr) Dispositif et procede d'alimentation de composants electriques sur bande
DE19643997A1 (de) Verfahren zur Überwachung eines Fördergurtes und System zur Durchführung des Verfahrens
WO2019115564A1 (fr) Dispositif pour détecter des défauts d'alignement d'un convoyeur à courroie
DE102005029637A1 (de) Einrichtung zur Überwachung einer Förderanlage
DE112018004648T5 (de) Überwachungsanlage für ein Förderband
DE4210104C2 (de) Magnetkartenleser mit einer Kopfumkehrfunktion
DE102015105317A1 (de) Verfahren und Vorrichtung zur Änderung der Ausrichtung von Artikeln in einem Förderfluss
DE4435842A1 (de) Strebmaschine für bergbauliche Untertagebetriebe mit umlaufender Arbeitskette sowie mit einer Einrichtung zur Erfassung und Auswertung von Funktionsparametern der Arbeitskette
EP3914545A1 (fr) Transporteur à courroie et tambour destiné à un transporteur à courroie
EP3540698A1 (fr) Procédé de détection d'erreurs et installation d'usinage d'une pièce
DE19854176A1 (de) Vorrichtung zur laufenden Kontrolle des Betriebszustands der Reifen von Kraftfahrzeugen
EP4097034A1 (fr) Transporteur à courroie comportant un appareil de détection et appareil de détection et procédé de détection d'états de fonctionnement de rouleaux de support de charge
EP3552723A1 (fr) Dispositif et procédé de guidage de bandes métalliques pourvues d'éléments d'usure au moyen de l'élément de support
DE102008049830A1 (de) Verfahren zur Ermittlung des normierten Leimverbrauchs bei Etikettiermaschien sowie Etikettiermaschine
EP3670747A1 (fr) Engin de construction autonome et procédé d'usinage d'un revêtement de sol
DE69305664T2 (de) Messstation zum Kontrollieren von Eisenbahnfahrzeugrädern
DE4415544C1 (de) Vorrichtung zur Erfassung und Korrektur der Verdrehung des zu einem Schlauch geschlossenen Fördergurtes eines Schlauchgurtförderers
DE112009003500T5 (de) Hubvorrichtung für eine Personalisierungsmaschine und Personalisierungsmaschine, die mit einer Hubvorrichtung ausgestattet ist
WO2013020974A1 (fr) Procédé de détection de la position des rails et/ou de la charge exercée sur des roulettes dans des moyens de transport de produits en vrac guidés sur rails, ainsi que roulette de mesure adaptée à la mise en œuvre du procédé
EP3802385B1 (fr) Dispositif de transport
DE102012107847A1 (de) Kontrollvorrichtung zur Kontrolle des Zustandes einer Förderbandanlage
DE3931386C2 (de) Werkstückfördersystem
WO2020074520A1 (fr) Dispositif et procédé pour déterminer la position et/ou l'emplacement d'un cylindre dans une cage de laminoir

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18822028

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18822028

Country of ref document: EP

Kind code of ref document: A1