WO2019115074A1 - Fördereinrichtung für eine brennstoffzellenanordnung zum fördern und/oder rezirkulieren von einem gasförmigen medium - Google Patents

Fördereinrichtung für eine brennstoffzellenanordnung zum fördern und/oder rezirkulieren von einem gasförmigen medium Download PDF

Info

Publication number
WO2019115074A1
WO2019115074A1 PCT/EP2018/079191 EP2018079191W WO2019115074A1 WO 2019115074 A1 WO2019115074 A1 WO 2019115074A1 EP 2018079191 W EP2018079191 W EP 2018079191W WO 2019115074 A1 WO2019115074 A1 WO 2019115074A1
Authority
WO
WIPO (PCT)
Prior art keywords
conveyor
flow
connection
recirculation
flow channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2018/079191
Other languages
German (de)
English (en)
French (fr)
Inventor
Hans-Christoph Magel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to JP2020531760A priority Critical patent/JP7038826B2/ja
Priority to KR1020257011357A priority patent/KR20250057908A/ko
Priority to CN201880079861.XA priority patent/CN111433954B/zh
Priority to KR1020207016455A priority patent/KR20200096926A/ko
Priority to US16/762,135 priority patent/US11404707B2/en
Publication of WO2019115074A1 publication Critical patent/WO2019115074A1/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • B60L50/72Constructional details of fuel cells specially adapted for electric vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D23/00Other rotary non-positive-displacement pumps
    • F04D23/008Regenerative pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/16Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/54Installations characterised by use of jet pumps, e.g. combinations of two or more jet pumps of different type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K2015/03243Fuel tanks characterised by special pumps, the mounting thereof
    • B60K2015/0325Jet pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K2015/03256Fuel tanks characterised by special valves, the mounting thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K2015/03309Tanks specially adapted for particular fuels
    • B60K2015/03315Tanks specially adapted for particular fuels for hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • Conveying device for a fuel cell arrangement for conveying and / or recirculating a gaseous medium
  • the present invention relates to a delivery device for a fuel cell system for conveying and controlling a gaseous medium, in particular hydrogen, which is intended in particular for use in vehicles with a fuel cell drive.
  • gaseous fuels will also play an increasing role in the future.
  • gas flows must be controlled.
  • the gas flows are no longer controlled discontinuously as in the injection of liquid fuel, but the gas is taken from at least one high-pressure tank and passed to the conveyor via an inflow line of a medium-pressure line system.
  • This conveyor leads the gas via a connecting line of a low-pressure line system to a fuel cell.
  • DE 10 2011 105 710 A1 discloses a conveying device for a fuel cell system for conveying and / or recirculating a gaseous medium, comprising a recirculation fan and a jet pump driven by a propulsion jet of a pressurized gaseous medium, wherein an anode outlet of a Fuel cell is fluidly connected to an input of the winningeinrich device, an output of the conveyor with a Ano deneingang the fuel cell is fluidly connected.
  • the components of the conveyor are at least partially connected to each other by means of fluidic connections in the form of pipelines and / or a divider plate with internal channels with each other and / or with the fuel cell ,
  • the efficiency of the conveyor is reduced.
  • the Ver connection of the components of the conveyor by pipes is so far disadvantageous that the pipes over the life of the conveyor, especially in severe temperature fluctuations, can lead to leakage problems, especially in welded and / or welded pipe lines.
  • a conveying device for a fuel cell system for conveying and / or recirculating a gaseous medium, in particular hydrogen, the hydrogen being referred to below as Fh.
  • the conveyor is designed such that the components of the conveyor are positioned on a plate-shaped Trä gerelement such that the flow lines extend between and / or within the components of the conveyor exclusively parallel to plat tenförmigen support member, wherein the plate-shaped support member between a fuel cell and the conveyor is arranged.
  • a direct and shortest possible flow line between the components of the conveyor can be produced.
  • the number of flow deflections and / or change a flow Rich lines of the gaseous medium in the conveyor to a possible ge rings number can be reduced.
  • the gaseous medium flows through the conveyor in an at least approximately parallel to the plate-shaped support member extending plane. Furthermore, takes place within the plane of the conveyor deflection and / or Strö tion management of the gaseous medium in the conveyor exclusively in the region of a recirculation fan and / or a valve Strahlpumpenano rdnung instead. In this way, the advantage can be achieved that the gaseous medium flows exclusively in the plane through the conveyor, whereby the direction of movement of the gaseous medium is limited to two dimensions. A deflection of the gaseous medium in a third dimension is completely avoided.
  • the gaseous medium with a small number of flow deflections and / or change tion of the flow directions through the conveyor move, which leads to reumbled flow losses and / or pressure losses. This in turn he increases the efficiency of the conveyor. Furthermore, by minimizing the flow deflections and / or the change in the direction of flow, the noise level of the conveyor during operation, in particular in full-load operation of the fuel cell system, can be reduced.
  • the recirculation fan forms a first flow connection, the first flow connection being part of a housing of the recirculation fan and the first flow connection discharging directly into a first inlet of the valve jet pump arrangement.
  • the advantage can be achieved that the recirculation, which is in particular the unused gaseous recirculation medium from the fuel cell, is compressed by the recirculation fan and then directly and / or by means of a shortest possible first flow connection in the region of a jet pump is promoted, in which it comes into contact with a driving medium and is driven by the driving medium.
  • the efficiency of the entire fuel cell system can be improved, since an optimal conveying effect of the conveyor device can be ensured at different operating states of the fuel cell system.
  • the flow losses and / or Druckver losses of the gaseous medium between the recirculation fan and the jet pump can be reduced, since the first flow connection can be made as short as possible.
  • this has a water separator, wherein the water between the anode output of the fuel cell and the recirculation fan befin det.
  • the water is fluidly connected to the anode output of the fuel cell and the recirculation fan and the Wasserab separator forms a direct second flow connection with the recirculation blower.
  • the second flow connection is formed as part of the housing of the recirculation blower, wherein the second flow connection opens directly into a drain of the water separator.
  • the flow losses and / or pressure losses between the components water separator and Rezirkulati onsgebläse can be reduced because the flow connections between the components have the shortest possible length. Due to the small length, a slight friction loss of the gaseous medium with the neren surface of the flow connections instead of whereby the flow loss and / or the pressure loss remains low.
  • the economic Improve the degree of improvement of the conveyor.
  • the design of the second flow connection as part of the housing of the recirculation fan a compact and space-saving design can be achieved.
  • the first flow connection forms a first connecting pin, in particular a cylindrical first connecting pin, with a first inner flow channel, wherein the first connecting pin of the recirculation blower projects away from the recirculation fan in the direction of the first flow channel.
  • the first connecting pin of the first Strömungsver connection projects into a first recess, in particular a cylindrical first Ausspa tion, the valve jet pump assembly into it, with a seal between tween the first connecting pin and the first recess is made by a first sealing ring extending between the Outer diameter of the first connecting pin and the inner diameter of the first recess befin det.
  • the advantage can be achieved that the Rezirkulati onsgebläse can be fluidly connected to the jet pump and wherein the components can also fix each other.
  • the first internal flow channel of the recirculation blower can be connected to the first inlet of the jet pump, so that the first flow connection is formed.
  • the components recirculation fan and jet pump can be fluidly connected to each other in a single assembly step in a cost-effective manner of mounting and simultaneously fixed together. This is in contrast to a Jerusalemwyeri gene fluidic connection by means of a piping and / or a distributor plate on the one hand and an additional fixation of the components to the other. This can reduce the assembly costs of the Föder worn.
  • the risk of assembly errors in the fluidic connection and / or the fixation of the components is reduced to each other, which reduces the probability of failure of the conveyor.
  • the advantage can be achieved that a compact and space-saving arrangement of the components recirculation pump and jet pump can be achieved, whereby the required installation space of the conveyor is reduced, which in turn to further advantages in the transport of the product to the customer and the installation of the conveyor means the fuel cell system and in terms of space requirements in the entire fuel cell system.
  • Another advantage can be achieved by the first sealing ring used so that a reliable encapsulation of the Ers th flow connection can be achieved, so that leakage from gaseous medium can be reduced, whereby the efficiency of För der worn can be improved.
  • the second flow connection forms a second connecting pin, in particular a cylindrical second connecting pin, with a second inner flow channel, where in the second connecting pin of the recirculation blower protrudes in the direction of the second flow channel from the recirculation fan. Furthermore, the second connecting pin of the second flow connection protrudes into a second recess, in particular a cylindrical second recess, of the What serabscheiders in, wherein a seal between the second connec tion pin and the second recess is made by a second sealing ring extending between the outer diameter of the second Connecting pin and the inner diameter of the second recess is located.
  • a second sealing ring extending between the outer diameter of the second Connecting pin and the inner diameter of the second recess is located.
  • the advantage can be achieved that the recirculation fan can be fluidically connected to the water separator, wherein the components can also be fixed together.
  • the second internal flow channel of the recirculation blower can be connected to the outlet of the water separator, so that the second flow connection is formed.
  • the risk of assembly errors in the fluidic connection and / or the fixation of the components is reduced to each other, which reduces the probability of failure of the entire conveyor.
  • the advantage can be achieved that a compact and space-saving Anord tion of the components recirculation pump and jet pump can be achieved which in turn reduces the required installation space of the conveyor.
  • due to the short length of the second flow connection between the water separator and the recirculation pump a lesser friction loss of the gaseous medium with the inner surface of the second flow connection takes place, whereby the flow loss and / or the pressure loss remain low.
  • the efficiency of the conveyor can be improved.
  • the first flow connection is designed as a first connection plate with the first inner flow channel, wherein the first connection plate is formed as part of the housing of the recirculation fan and wherein the first connection plate of the circulation blower in the direction of the first flow channel from the recirculation Onsgebläse protrudes. Furthermore, the housing of the recirculation blower is in contact with the valve jet pump arrangement in the direction of the first flow channel by means of the first connection plate, wherein the first sealing ring in the direction of the first flow channel and / or circumferentially around the first flow channel between the first connection plate and the valve jet pump arrangement is located.
  • the advantage can be achieved that a positioning of the components recirculation fan and jet pump can be done to each other on the end plate, regardless of Tole ranzabweichitch the components to each other, especially in the direction of the first flow connection.
  • rapid installation can be ensured and thus the assembly costs can be reduced.
  • the components Rezirkulationsgebläse and jet pump can be connected together as a compact assembly network.
  • a lower friction loss of the gaseous medium with the inner surface of the first Strömungsverbin tion instead, whereby the flow loss and / or the pressure loss remains low.
  • the efficiency of the conveyor can be improved.
  • the second Strömungsver connection is formed as a second connection plate with the second inner Strö mungskanal, wherein the second connection plate of the recirculation blower is formed as part of the housing of the recirculation blower and wherein the second connection plate of the recirculation blower in the direction of the second flow channel away from the recirculation fan.
  • the housing of the Rezirkulationsgebläses by means of the second connection plate with the water separator in the direction of the second flow channel in abutment, wherein the second sealing ring in the direction of the second flow channel and / or circulating around the second flow channel between the second connec tion plate and the water separator.
  • the part can be achieved before that positioning of the components Rezirkulationsge blower and water separator can be done to each other on the end plate, regardless of tolerance deviations of the components to each other, in particular special in the direction of the first flow connection.
  • rapid assembly of the components of the recirculation pump and water separator can be ensured on each other and thus the assembly costs can be reduced.
  • the components recirculation fan and jet pump can be connected together in a compact design.
  • the efficiency of the conveyor can be improved.
  • a vorteihaften embodiment of the first inner Strö mungskanal within the housing of the recirculation blower forms a Krüm determination, wherein a deflection and / or flow guidance of the gaseous medium in the first flow channel is effected by the curvature.
  • the radius of curvature is chosen such that the friction losses between the gaseous medium and the inner surface of the first inner flow channel are as small as possible ring.
  • the radius of curvature and / or the diameter of the first flow channel in the flow direction is varied in an advantageous manner, for example by a taper, so that the lowest possible friction occurs.
  • FIG. 1 shows a plan view of a conveyor with the components combined valve jet pump assembly, recirculation blower and water separator, which are positioned on a plate-shaped support member according to a first embodiment
  • FIG. 2 shows in a top view the conveyor with the components combined valve jet pump arrangement, recirculation blower and water separator, which are positioned on the plate-shaped carrier element according to a second embodiment
  • FIG. 3 shows a side view of a fuel cell system with the delivery device according to the first exemplary embodiment
  • FIG. 4 shows a section of the recirculation fan designated II in FIG. 1, with a housing in a top view.
  • FIG. 1 shows a first embodiment of a conveyor device 1 according to the invention in a plan view.
  • the conveyor 1 comprises a plate-shaped Suelee- element 2, on which the components jet pump 4, Dossierventil 6, Re circulation blower 8 and water separator 10 are mounted.
  • the conveying device 1 serves to promote and / or recirculation of a gaseous medium, in particular Fh.
  • the jet pump 4 of a lower Driven pressurized gaseous medium, wherein the pressurized gas coming gende medium, which is in particular a driving medium, the jet pump 4 is supplied by means of the Dossierventils 6.
  • the dossier valve 6 and the jet pump 4 form a combined valve jet pump arrangement 12, wherein the dossier valve 6 is at least partially integrated into the jet pump 4.
  • the combined valve jet pump assembly 12 also has a first inlet 28, a second inlet 36, a rich Ansaugbe 18 and a diffuser area 20.
  • the recirculation fan 8 forms a first flow connection 7, wherein the first flow connection 7 is formed as part of a housing 24 of the Rezirkulationsgebläses 8 and where in the first flow connection 7 directly into the first inlet 28 of the valve jet pump assembly 12 opens.
  • the recirculation fan 8 and the valve jet pump assembly 12, in particular the jet pump 4 are fluidly connected to one another by means of the first flow connection 7.
  • the first flow connection 7 forms a first connecting pin 11, in particular a cylindrical first connecting pin 11, with a first inner flow channel 15, wherein the first connecting pin 11 is formed as part of the housing 24 of the Rezirkulationsgebläses 8 and in Rich tion of the first flow channel 15 protrudes from the recirculation fan 8.
  • the first flow channel 15 is designed as a blower in the housing 24 of Rezirkulationsge 8 extending inner piping and is used to Strö tion guide the gaseous medium.
  • the first connecting pin 11 of the first flow connection 7 and / or the housing 24 projects into a first recess 19, in particular a cylindrical first recess 19, the valve jet pump assembly 12, wherein a seal between the first connecting pin 11 and the first recess 19 through a first sealing ring 14 takes place, which is in particular a first sealing ring 14 made of an elastic material, for example an O-ring.
  • the first flow connection 7 merges into the first inlet 28 in the region of the jet pump 4.
  • a plate-shaped carrier element 2 in this case runs in the direction of a longitudinal axis 50 and a transverse axis 52 and / or parallel to a plane 48 formed by the longitudinal axis 50 and the transverse axis 52.
  • the conveyor 1 is firstly traversed by a gaseous medium, which is in particular a recirculation medium han delt, wherein the recirculation medium after it has flowed through a fuel cell 29 (shown in Fig. 3) flows again through the conveyor 1.
  • the conveying device 1 is supplied to the driving medium, wherein the driving medium by means of a supply line from a tank, in particular a high-pressure tank of the fuel cell system 31 is supplied.
  • the water separator 10 is located between an anode outlet 3 and the recirculation fan 8 and is fluidically connected thereto.
  • the water separator 10 forms a direct second flow connection 9 with the recirculation fan 8 and is fluidically connected thereto.
  • the second flow connection 9 is formed as part of the housing 24 of the Rezirkulationsgebläses 8, the second flow connection 9 opens directly into a drain 32 of the water separator 10.
  • the second flow connection 9 forms a second connec tion pin 13, in particular a cylindrical second connecting pin 13, with a second inner flow channel 17, wherein the second connecting pin 13 is formed as part of the housing 24 of the Rezirkulationsgebläses 8 and in the direction of the second flow channel 17 from Rezirkulati onsgebläse 8 projects.
  • the second flow channel 17 is designed as a housing in Ge 24 of the recirculation fan 8 extending internal piping and is used for flow guidance of the gaseous medium.
  • the second connecting pin 13 of the second flow connection 9 and / or the housing 24 protrudes into a second recess 21, in particular a cylindri cal second recess 21, the water separator 10, wherein a seal between the second connecting pin 13 and the second Ausspa tion 21st is performed by a second sealing ring 16, which is in particular a second sealing ring 16 made of an elastic material, for example an O-ring.
  • the second sealing ring 16 is located between the outer diameter of the second connecting pin 13 and the inner diameter of the second recess 21st It is furthermore shown in FIG.
  • an inlet of the conveying device 1 is connected to the anode outlet 3 of the fuel cell 29, in particular fluidically, and, on the other hand, an anode inlet 5 is connected to the outlet of the conveying device 1, in particular fluidically.
  • An exemplary flow passage of the gaseous medium, which is in particular the recirculation medium, from the fuel cell 29 through the conveying device 1 takes place in the order of water separator 10, recirculation fan 8, valve jet pump arrangement 12. The gaseous medium flows there in a flow direction VI through the components.
  • jet pumping effect takes place.
  • the gaseous propellant in particular H 2
  • the Dossierventil 6 in particular of egg nem high-pressure tank.
  • the recirculation medium is conveyed by the recirculation fan 8 through the first flow connection 7 and the first inlet 28 into the suction region 18 of the jet pump 4.
  • the propellant is now introduced into the intake region 18 by means of an opening of the dossier valve 6, in particular under high pressure.
  • the gaseous blowing medium flows in the direction of flow VI.
  • the flowing from the second inlet 36 into the suction 18 and serving as a driving medium H 2 has a pressure difference to the recirculation medium, which flows from the first inlet 28 into the intake 18, wherein the driving medium in particular egg nen higher pressure of at least 10 bar.
  • the jet pump adjusts pensky the recirculation medium is promoted with a low pressure and a small flow in the metering in the flow area 18 of the jet pump 4.
  • the driving medium flows with the described pressure difference and a high speed, which is in particular close to the speed Schallgeschwin, through the Dossierventil 6 in the intake area 18 a.
  • the driving medium meets the recirculation medium, which is already rich in Ansaugbe 18.
  • a delivery rate of the recirculation medium can be regulated and tailored to the respective requirements of a fuel cell system 31 (not shown in FIG. 1, cf. FIG. 3). be adapted to the operating status and operating requirements.
  • Fig. 2 shows a second embodiment of the conveyor 1 according to the invention in a plan view.
  • the first flow connection 7 is formed as a first connection plate 25 with the first inner flow channel 15, wherein the first connection plate 25 is formed as part of the housing 24 of the Rezirkulationsgebläses 8 and wherein the first connection plate 25 protrudes in the direction of the first flow channel 15 from the recirculation fan 8 ,
  • the housing 24 of the Rezirkulationsgebläses 8 by means of the first connecting plate 25 with the valve jet pump assembly 12 in the direction of the first flow channel 15 in abutment, wherein the first sealing ring 14 in the direction of the first flow channel 15 and / or circumferentially about the first flow channel 15th between the first connection plate 25 and the valve jet pump assembly 12 is located.
  • the second flow connection 9 is formed as a second connecting plate 27 with the second inner Strömungska 17, wherein the second connecting plate 27 is formed as part of the hous ses 24 of the recirculation fan 8 and wherein the second Verbin tion plate 27 of the recirculation fan 8 in the direction of the second Strö flow channel 17 protrudes from the recirculation fan 8.
  • the housing 24 of the Rezirkulationsgebläses 8 by means of the second connecting plate 27 with the water separator 10 in the direction of the second inner flow channel 17 is in abutment, wherein the second sealing ring 16 in the direction of second flow channel 17 and / or around the second Strömungska channel 17 between the second connecting plate 27 and the water separator 10 is located.
  • FIG. 3 shows a side view of the fuel cell system 31 with the delivery device 1 according to the first exemplary embodiment. It is shown that the components of the conveyor 1, in particular the water separator 10, the recirculation fan 8 and the valve jet pump assembly 12 of the type are positioned on the plate-shaped support member 2, that the Strö tion lines between and / or within the components of the conveying device. 1 auschliesslich extend parallel to the plate-shaped support member 2, wherein the plate-shaped support member 2 is disposed between the fuel cell 29 and the conveyor 1.
  • the gaseous medium which is in particular the recirculation medium flows from the fuel cell 29 via the anode output 3 by the plate-shaped Trä gerelement 2 in the conveyor 1, in particular in the Wasserab separator 10.
  • the conveyor 1 run the flow lines in the components and also between the components, which is in particular at the first flow connection 7 and the second Strö determination compound 9, at least approximately parallel to the plate-shaped support member and thus at least approximately parallel to the ge Service th in Fig. 3 th plane 48th
  • the plane 48 in this case runs in the direction of the longitudinal axis 50 and the transverse axis 52 (shown in Fig. 2).
  • the gaseous medium flows through the conveyor 1 exclusively in the at least approximately parallel to the plate-shaped support member 2 extending plane 48.
  • the conveyor 1 In the area in which the conveyor recirculates the gaseous medium via the anode inlet 5 into the fuel cell 29, the conveyor 1 has in the area of the jet pump 4 an outlet manifold 26 and a connecting piece 30, wherein the connecting piece 30 enters the anode 5 passes.
  • Fig. 4 is a plan view of Rezikulationsgebläses 8 shown with the housing 24.
  • the housing 24 has a second flow connection 9, by means of which the gaseous medium flows from the outlet 32 of the water separator 10 coming into the recirculation fan 8.
  • the gasför shaped medium flows in the flow direction VI through the second flow connection 9 in the second inner flow channel 17 of the Rezirkulationsgebläses 8.
  • the gaseous medium within the housing 34 of the Rezirkulati onsgebläse 8 reaches a compressor area 38 with a compressor wheel 33, wherein the compressor wheel 33 performs a rotation in a rotational direction 35.
  • the compressor wheel 33 By the rotation of the compressor wheel 33, on the outer circumference of which blades 37 are arranged, there is an acceleration and / or compression of the gasför shaped medium in the direction of rotation 35 in the compressor section 38 of the recirculation blower 8. After the acceleration and / or compression of the gaseous medium through the compressor wheel 33, the gaseous medium flows in the flow direction VI in the first inner flow channel 15 a. Since at the first inner flow channel 15 forms within the housing 24 of the Rezirkulationsgebläses 8, a curvature 22, wherein a deflection and / or flow guidance of the gaseous medium in the first Strömungska channel 15 through the curvature 22 takes place.
  • the conditional by the construction of the Rezirkulationsgebläses 8 and / or the conveyor 1 Umlen effect of the gaseous medium Auschliesslich at least approximately parallel to the plane 48 pressure losses and friction losses due to a deflection of the gaseous medium can be kept low.
  • the area of the bend 22 is disposed within the housing 24 whereby a Erdorderliche deflection and / or flow control of the gaseous medium without additional space and / or additional components between the compo nents recirculation fan 8 and valve jet pump assembly 12, as in example a piping , are necessary.
  • the area of curvature 22 can be optimized in terms of flow technology such that the Strö flow cross section in the direction of flow VI changes, for example in the form of a taper.
  • the invention is not limited to the embodiments described herein and the aspects highlighted therein. Rather, within the scope given by the claims a variety of modifications are possible, which are within the scope of expert action.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Fuel Cell (AREA)
  • Jet Pumps And Other Pumps (AREA)
PCT/EP2018/079191 2017-12-11 2018-10-24 Fördereinrichtung für eine brennstoffzellenanordnung zum fördern und/oder rezirkulieren von einem gasförmigen medium Ceased WO2019115074A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020531760A JP7038826B2 (ja) 2017-12-11 2018-10-24 ガス状の媒体を圧送するための及び/又は再循環させるための、燃料電池アセンブリ用の圧送装置
KR1020257011357A KR20250057908A (ko) 2017-12-11 2018-10-24 기체 매체를 운반 및/또는 재순환시키기 위한 연료 전지 조립체용 운반 장치
CN201880079861.XA CN111433954B (zh) 2017-12-11 2018-10-24 用于燃料电池装置的用于输送并且/或者再循环气态介质的输送装置
KR1020207016455A KR20200096926A (ko) 2017-12-11 2018-10-24 기체 매체를 운반 및/또는 재순환시키기 위한 연료 전지 조립체용 운반 장치
US16/762,135 US11404707B2 (en) 2017-12-11 2018-10-24 Conveying device for a fuel cell assembly for conveying and/or recirculating a gaseous medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017222390.1A DE102017222390A1 (de) 2017-12-11 2017-12-11 Fördereinrichtung für eine Brennstoffzellenanordnung zum Fördern und/oder Rezirkulieren von einem gasförmigen Medium
DE102017222390.1 2017-12-11

Publications (1)

Publication Number Publication Date
WO2019115074A1 true WO2019115074A1 (de) 2019-06-20

Family

ID=64316476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/079191 Ceased WO2019115074A1 (de) 2017-12-11 2018-10-24 Fördereinrichtung für eine brennstoffzellenanordnung zum fördern und/oder rezirkulieren von einem gasförmigen medium

Country Status (6)

Country Link
US (1) US11404707B2 (enExample)
JP (1) JP7038826B2 (enExample)
KR (2) KR20200096926A (enExample)
CN (1) CN111433954B (enExample)
DE (1) DE102017222390A1 (enExample)
WO (1) WO2019115074A1 (enExample)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018213313A1 (de) * 2018-08-08 2020-02-13 Robert Bosch Gmbh Förderaggregat für ein Brennstoffzellen-System zur Förderung und/oder Steuerung eines gasförmigen Mediums
DE102018216299B3 (de) 2018-09-25 2020-02-13 Robert Bosch Gmbh Brennstoffzellen-System mit einem Förderaggregat und/oder ein Förderaggregat für ein Brennstoffzellen-System zur Förderung und/oder Steuerung eines gasför-migen Mediums
DE102019201170A1 (de) 2019-01-30 2020-07-30 Robert Bosch Gmbh Förderaggregat für einen Anodenkreislauf eines Brennstoffzellensystems zur Förderung eines gasförmigen Medium und Brennstoffzellensystem
DE102019201183A1 (de) * 2019-01-30 2020-07-30 Robert Bosch Gmbh Förderaggregat für einen Anodenkreislauf eines Brennstoffzellen-Systems zur Förderung eines gasförmigen Medium
DE102019204723A1 (de) * 2019-04-03 2020-10-08 Robert Bosch Gmbh Förderaggregat für ein Brennstoffzellen-System zur Förderung und/oder Steuerung eines gasförmigen Mediums
DE102019214654A1 (de) 2019-09-25 2021-03-25 Robert Bosch Gmbh Fördereinrichtung für ein Brennstoffzellen-System zur Förderung und/oder Rezirkulation eines gasförmigen Mediums
DE102019219992A1 (de) * 2019-12-18 2021-06-24 Robert Bosch Gmbh Fördereinrichtung für ein Brennstoffzellen-System zur Förderung und/oder Rezirkulation eines gasförmigen Mediums, insbesondere Wasserstoff
DE102020215983A1 (de) 2020-12-16 2022-06-23 Robert Bosch Gesellschaft mit beschränkter Haftung Gasfördereinheit, System aus einer Gasfördereinheit und einer Wasserabscheidevorrichtung und Brennstoffzellensystem
DE102021200242A1 (de) 2021-01-13 2022-07-14 Robert Bosch Gesellschaft mit beschränkter Haftung Fördereinrichtung für ein Brennstoffzellen-System zur Förderung und/oder Rezirkulation eines gasförmigen Mediums, insbesondere Wasserstoff
DE102021200245A1 (de) 2021-01-13 2022-07-14 Robert Bosch Gesellschaft mit beschränkter Haftung Fördereinrichtung für ein Brennstoffzellen-System zur Förderung und/oder Rezirkulation eines gasförmigen Mediums, insbesondere Wasserstoff
DE102021203755A1 (de) 2021-04-15 2022-10-20 Volkswagen Aktiengesellschaft Strahlpumpe, insbesondere Strahlpumpe für eine Brennstoffzellenanwendung
DE102021205685A1 (de) 2021-06-04 2022-12-08 Robert Bosch Gesellschaft mit beschränkter Haftung Fördereinrichtung für ein Brennstoffzellen-System zur Förderung und/oder Rezirkulation eines gasförmigen Mediums, insbesondere Wasserstoff.
DE102021206156A1 (de) * 2021-06-16 2022-12-22 Robert Bosch Gesellschaft mit beschränkter Haftung Förderaggregat für ein Brennstoffzellen-System zur Förderung und/oder Steuerung eines gasförmigen Mediums und Verfahren zum Betreiben des Förderaggregats
DE102021207487A1 (de) * 2021-07-14 2023-01-19 Robert Bosch Gesellschaft mit beschränkter Haftung Treibstofffördereinrichtung zum Fördern eines Treibstoffs für ein Brennstoffzellensystem und Verfahren zum Betreiben einer Treibstofffördereinrichtung zum Fördern eines Treibstoffs für ein Brennstoffzellensystem
US20240332563A1 (en) 2021-07-19 2024-10-03 Pierburg Gmbh Device for anode gas recirculation in a fuel cell system
DE102021208739A1 (de) 2021-08-11 2023-02-16 Robert Bosch Gesellschaft mit beschränkter Haftung Fördereinrichtung für ein Brennstoffzellen-System zur Förderung und/oder Rezirkulation eines gasförmigen Mediums, insbesondere Wasserstoff, Brennstoffzellensystem
DE102022201763A1 (de) 2022-02-21 2023-08-24 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betreiben eines Brennstoffzellensystems, Anodensubsystem sowie Brennstoffzellensystem mit Anodensubsystem
DE102022210604A1 (de) 2022-10-07 2024-04-18 Robert Bosch Gesellschaft mit beschränkter Haftung Fördereinrichtung für ein Brennstoffzellen-System zur Förderung und/oder Rezirkulation eines gasförmigen Mediums, insbesondere Wasserstoff
DE102022210601A1 (de) 2022-10-07 2024-04-18 Robert Bosch Gesellschaft mit beschränkter Haftung Fördereinrichtung für ein Brennstoffzellen-System zur Förderung und/oder Rezirkulation eines gasförmigen Mediums, insbesondere Wasserstoff
DE102022210605A1 (de) 2022-10-07 2024-04-18 Robert Bosch Gesellschaft mit beschränkter Haftung Fördereinrichtung für ein Brennstoffzellen-System zur Förderung und/oder Rezirkulation eines gasförmigen Mediums, insbesondere Wasserstoff
DE102022210600A1 (de) 2022-10-07 2024-04-18 Robert Bosch Gesellschaft mit beschränkter Haftung Fördereinrichtung für ein Brennstoffzellen-System zur Förderung und/oder Rezirkulation eines gasförmigen Mediums, insbesondere Wasserstoff
DE102022210602A1 (de) 2022-10-07 2024-04-18 Robert Bosch Gesellschaft mit beschränkter Haftung Fördereinrichtung für ein Brennstoffzellen-System zur Förderung und/oder Rezirkulation eines gasförmigen Mediums, insbesondere Wasserstoff
DE102023203935A1 (de) 2023-04-27 2024-10-31 Robert Bosch Gesellschaft mit beschränkter Haftung Fördereinrichtung für ein Brennstoffzellen-System zur Förderung und/oder Rezirkulation eines gasförmigen Mediums, insbesondere Wasserstoff
DE102023204360A1 (de) 2023-05-11 2024-11-14 Robert Bosch Gesellschaft mit beschränkter Haftung Fördereinrichtung für ein Brennstoffzellen-System zur Förderung und/oder Rezir-kulation eines gasförmigen Mediums, insbesondere Wasserstoff, Verfahren zum Betreiben einer Fördereinrichtung und/oder eines Brennstoffzellen-Systems
DE102023210204A1 (de) * 2023-10-18 2025-04-24 Zf Cv Systems Global Gmbh Gebläse für eine Brennstoffzellenanordnung
DE102023211010A1 (de) * 2023-11-07 2025-05-08 Robert Bosch Gesellschaft mit beschränkter Haftung Brennstoffzellensystem mit Abzweigvorrichtung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008043377A1 (de) * 2006-10-11 2008-04-17 Daimler Ag Brennstoffkreis eines brennstoffzellensystems
US20120244455A1 (en) * 2009-12-08 2012-09-27 Wilson Matthew P Fuel cell fuel recycle ejectors disposed in fuel manifold
DE102011105710A1 (de) 2011-06-22 2012-12-27 Pierburg Gmbh Rezirkulationsanordnung zur Rezirkulation von Anodenabgasen einer Brennstoffzelle
DE112011105389T5 (de) * 2011-06-28 2014-03-06 Toyota Jidosha Kabushiki Kaisha Brennstoffzellensystem
DE102015119275A1 (de) * 2014-11-14 2016-05-19 Toyota Jidosha Kabushiki Kaisha Brennstoffzellensystem
US9595725B2 (en) 2013-05-03 2017-03-14 Ford Global Technologies, Llc Heated ejector assembly for a fuel cell

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050208357A1 (en) * 2004-03-16 2005-09-22 Bitzer Alan S Fuel cell hybrid pump-ejector fuel recycle system
DE102004049623B4 (de) * 2004-10-06 2015-03-26 Reinz-Dichtungs-Gmbh Endplatte für einen Brennstoffzellenstapel, Brennstoffzellenstapel und Verfahren zur Herstellung der Endplatte
JP4670544B2 (ja) * 2005-08-16 2011-04-13 トヨタ自動車株式会社 燃料電池システム
JP5099474B2 (ja) * 2006-11-24 2012-12-19 トヨタ自動車株式会社 燃料電池システムおよび燃料電池車両
DE112009001821T5 (de) * 2008-08-30 2011-06-30 Daimler AG, 70327 Vorrichtung zur Versorgung einer Brennstoffzelle in einem Brennstoffzellensystem mit Brenngas
KR101417269B1 (ko) * 2012-05-07 2014-07-08 기아자동차주식회사 통합형 매니폴드 블록을 갖는 연료전지용 수소공급시스템
JP6126974B2 (ja) * 2013-11-05 2017-05-10 本田技研工業株式会社 燃料電池システム
KR101610457B1 (ko) * 2014-01-28 2016-04-07 현대자동차주식회사 이젝터 기능을 가지는 연료전지 스택 매니폴드
JP6483598B2 (ja) * 2015-12-21 2019-03-13 本田技研工業株式会社 燃料電池システム
JP6313347B2 (ja) * 2016-02-29 2018-04-18 本田技研工業株式会社 燃料電池システムの制御方法
US10305127B2 (en) * 2016-03-15 2019-05-28 Nissan Motor Co., Ltd. Wet state control method for fuel cell system and wet state control device for the same
KR102496179B1 (ko) * 2016-12-20 2023-02-03 현대자동차주식회사 수소공급밸브와 수소차단밸브 사이의 파단부를 포함하는 연료전지 시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008043377A1 (de) * 2006-10-11 2008-04-17 Daimler Ag Brennstoffkreis eines brennstoffzellensystems
US20120244455A1 (en) * 2009-12-08 2012-09-27 Wilson Matthew P Fuel cell fuel recycle ejectors disposed in fuel manifold
DE102011105710A1 (de) 2011-06-22 2012-12-27 Pierburg Gmbh Rezirkulationsanordnung zur Rezirkulation von Anodenabgasen einer Brennstoffzelle
DE112011105389T5 (de) * 2011-06-28 2014-03-06 Toyota Jidosha Kabushiki Kaisha Brennstoffzellensystem
US9595725B2 (en) 2013-05-03 2017-03-14 Ford Global Technologies, Llc Heated ejector assembly for a fuel cell
DE102015119275A1 (de) * 2014-11-14 2016-05-19 Toyota Jidosha Kabushiki Kaisha Brennstoffzellensystem

Also Published As

Publication number Publication date
US20200365918A1 (en) 2020-11-19
KR20200096926A (ko) 2020-08-14
CN111433954A (zh) 2020-07-17
CN111433954B (zh) 2023-09-29
JP2021505815A (ja) 2021-02-18
US11404707B2 (en) 2022-08-02
JP7038826B2 (ja) 2022-03-18
KR20250057908A (ko) 2025-04-29
DE102017222390A1 (de) 2019-06-13

Similar Documents

Publication Publication Date Title
WO2019115074A1 (de) Fördereinrichtung für eine brennstoffzellenanordnung zum fördern und/oder rezirkulieren von einem gasförmigen medium
DE60029274T2 (de) Peristaltische Pumpe
EP0934466A1 (de) Förderpumpe
DE102018216299B3 (de) Brennstoffzellen-System mit einem Förderaggregat und/oder ein Förderaggregat für ein Brennstoffzellen-System zur Förderung und/oder Steuerung eines gasför-migen Mediums
WO2021121797A1 (de) Fördereinrichtung für ein brennstoffzellen-system zur förderung und/oder rezir-kulation eines gasförmigen mediums, insbesondere wasserstoff
WO2020030343A1 (de) Förderaggregat für ein brennstoffzellen-system zur förderung und/oder steuerung eines gasförmigen mediums
WO2021058372A1 (de) Förderaggregat für ein brennstoffzellen-system zur förderung und/oder steuerung eines gasförmigen mediums
WO2020216577A1 (de) Förderaggregat für ein brennstoffzellen-system zum fördern und steuern von einem gasförmigen medium
EP2161455B1 (de) Doppelpumpe
EP4348056B1 (de) Fördereinrichtung für ein brennstoffzellen-system zur förderung und/oder rezirkulation eines gasförmigen mediums, insbesondere wasserstoff
WO2005038259A1 (de) Kraftstoffpumpe
DE3816280C2 (de) Gehäuseteil für Kreiselpumpen
WO2002048551A1 (de) Förderpumpe
EP2587067A2 (de) Multiple Koaxialpumpe
EP0584106B1 (de) Mehrflutige flüssigkeitsringpumpe
DE102015010997B4 (de) Exzenterpumpe, insbesondere Förderpumpe für wässrige Harnstofflösungen, und Fördervorrichtung mit einer Exzenterpumpe
EP2776722B1 (de) Kreiselpumpe zum fördern von flüssigkeiten in einem kraftfahrzeug
WO2020200670A1 (de) Förderaggregat für ein brennstoffzellen-system zur förderung und/oder steuerung eines gasförmigen mediums
WO2021058370A1 (de) Fördereinrichtung für ein brennstoffzellen-system zur förderung und/oder rezirkulation eines gasförmigen mediums
DE102021200245A1 (de) Fördereinrichtung für ein Brennstoffzellen-System zur Förderung und/oder Rezirkulation eines gasförmigen Mediums, insbesondere Wasserstoff
DE3209296C2 (de) Anordnung mit einem Pulsationsdämpfer
EP4165313A1 (de) Förderaggregat für ein brennstoffzellen-system zur förderung und/oder steuerung eines gasförmigen mediums
DE102016209371A1 (de) Spindelpumpe
DE102023211438A1 (de) Mischkammer zur Erzeugung einer Pumpenaufladung
WO2023025446A1 (de) Vorrichtung und betriebsverfahren zur rezirkulation von anodengas in einem anodenkreis eines brennstoffzellensystems, fahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18803551

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020531760

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18803551

Country of ref document: EP

Kind code of ref document: A1

WWD Wipo information: divisional of initial pct application

Ref document number: 1020257011357

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020257011357

Country of ref document: KR