WO2019114823A1 - 一种仿生手术器械 - Google Patents

一种仿生手术器械 Download PDF

Info

Publication number
WO2019114823A1
WO2019114823A1 PCT/CN2018/121221 CN2018121221W WO2019114823A1 WO 2019114823 A1 WO2019114823 A1 WO 2019114823A1 CN 2018121221 W CN2018121221 W CN 2018121221W WO 2019114823 A1 WO2019114823 A1 WO 2019114823A1
Authority
WO
WIPO (PCT)
Prior art keywords
winch
yaw
sub
yarn
shaft
Prior art date
Application number
PCT/CN2018/121221
Other languages
English (en)
French (fr)
Inventor
杨波
王林辉
肖亮
孙颖浩
Original Assignee
中国人民解放军第二军医大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国人民解放军第二军医大学 filed Critical 中国人民解放军第二军医大学
Publication of WO2019114823A1 publication Critical patent/WO2019114823A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots

Definitions

  • the invention relates to the technical field of medical instruments, in particular to a biomimetic surgical instrument.
  • Minimally invasive surgery refers to a number of perforations in the body surface, through the small holes into the body cavity, such as the abdominal cavity, chest cavity, pelvic cavity, joint cavity, etc., under the supervision of the endoscope
  • the device is operated outside the patient's body, and the instrument is inserted into the working end of the patient's body cavity to excise the lesion in the cavity, or the organ is repaired, sutured, etc., and the endoscope and the instrument are taken out after the operation, and the suture surface is obtained.
  • the small hole can complete the entire operation.
  • the slender surgical instrument has severely limited operating angles and reduced tactile feedback, making it one of the biggest challenges of laparoscopic techniques.
  • a large number of dry (in vitro model operation training) and wet (live animal experiment) training are required to establish a more stable surgical experience curve to complete some simple laparoscopic surgery.
  • Beginners who want to complete relatively complex functional reconstruction such as laparoscopic radical prostatectomy and laparoscopic partial nephrectomy require a large number of clinical procedures before they can be competent.
  • One of the main reasons is that traditional laparoscopic instruments do not have the same "wrist" movement as a human hand, but only have three degrees of freedom. For routine surgical but complicated and delicate surgical operations such as suturing and tying, more experience must be used. To compensate for the inconvenience caused by equipment design defects.
  • multi-degree-of-freedom laparoscopic surgical instruments have been developed and applied. Because of the bendable end of the instrument, the traditional laparoscopic instruments are solved to some extent. The problem of limited operating angle.
  • the current multi-degree-of-freedom laparoscopic surgical instruments in the world are mostly in the form of "reverse operation", that is, the bending direction of the instrument is opposite to the actual operation direction of the surgeon, which poses a considerable challenge to the smooth operation of the doctor.
  • Patent Document 1 (CN101909526B) and Patent Document 2 (CN102076268A) disclose a surgical instrument including a proximal control handle and a distal tool interconnected by an elongate instrument shaft for accessing an anatomy a proximal movable member and a distal movable member respectively interconnecting the proximal control handle and the distal tool through the instrument shaft; a cable control device disposed between the movable member; located at the handle And an coupling member for controlling the distal tool by the movable member; and a coupling device for selectively engaging or disengaging the shaft portion of the instrument with the handle portion.
  • the handle has a distal receiver portion and a shaft connector on the proximal moving member is selectively engageable with and detachable from the receiver portion.
  • the surgical instrument can cause the distal tool to move by the operation of the control handle, and the proximal flexible member can be bent in any direction, thereby controlling the distal flexible member to bend in the same or opposite direction,
  • "forward operation” can be achieved, but 1) since the handle is constructed in a vertical pistol grip type and is substantially obtuse with the elongate instrument shaft, it is susceptible to space limitations during minimally invasive surgical procedures. , resulting in poor flexibility and accuracy; 2) bending of the distal bendable member requires actuation of the proximal bendable member, and bending of the proximal bendable member requires the surgeon to use the swing of the forearm or even the forearm The control is realized, so the ergonomics performance is poor.
  • Patent Document 3 discloses a surgical instrument including an elongated instrument shaft having a proximal end and a distal end; a distal functional portion; and a control handle disposed at the proximal end of the instrument shaft; the functional portion coupled to the distal end of the elongated instrument shaft by a distal moving element; the control A handle is coupled to the proximal end of the elongated instrument shaft by a proximal bendable element; an actuation device extends between the distal and proximal elements, whereby the control handle is relative to the thin Any deflection of the long instrument shaft causes the distal moving element to produce a corresponding bend to control the functional portion; wherein at least the proximal bendable member comprises an integrally slotted structure, the integrally slotted structure having A plurality of discs separated by slots.
  • the housing device uses a linear handle to achieve "forward operation” while reducing vertical space occupancy, which increases flexibility to a certain extent, but also reduces the comfort of the surgeon during operation.
  • an object of the present invention is to provide a bionic surgical instrument comprising: an instrument shaft; a functional portion disposed at a distal end of the instrument shaft; and a hand portion disposed at a proximal end of the instrument shaft,
  • the handheld portion transmits a control action of the hand-held portion to the functional portion through a transmission component; a first reference in the first direction with the proximal end of the instrument shaft as a vertex being collinear or parallel with the central axis of the handheld portion a second reference ray that is collinear or parallel with the central axis of the instrument shaft and in a second direction with the proximal end of the instrument shaft as a vertex, the first reference ray and the second reference ray
  • the angle between the two is >0° and ⁇ 90°, wherein the first direction is a direction in which the connecting end of the hand-held portion is directed to the free end of the hand-held portion, and the second direction is near the instrument shaft
  • the proximal end of the instrument shaft is located in a space sandwiched by the first plane and the second plane, wherein the first plane is a reference plane with a sectional plane of the operator's wrist, and the parallel direction is 10 cm in the proximal direction.
  • the second plane is a parallel plane made with a sectional plane of the operator's wrist as a reference plane and 10 cm in the distal direction.
  • the pitching motion, the yaw motion, or both of the combination and/or the switching motion of the hand-held portion can cause the function portion to have a corresponding pitch motion, yaw motion, or both, and/or switching motions.
  • control action of the handheld portion is proportionally transmitted to the functional portion.
  • the ratio is 0.1 to 5.
  • the transmission component includes: a first yaw winch disposed at a proximal end of the instrument shaft for transmitting an action in a yaw direction with operation of the hand-held portion;
  • a second yaw winch disposed at a distal end of the instrument shaft for actuating with the action of the first yaw winch, and transmitting a corresponding action to the functional portion
  • first yaw winch drives the second yaw winch through at least one yaw cable.
  • the transmission component comprises:
  • a first pitching winch disposed at a proximal end of the instrument shaft for transmitting an action in a pitch direction as the handpiece is operated;
  • a second pitching winch disposed at a distal end of the instrument shaft for actuating with the action of the first pitch winch, and transmitting a corresponding action to the functional portion
  • first pitch winch drives the second pitch winch through at least one pitch cable.
  • the transmission component includes: a first switch cable pulley disposed at the handheld portion, capable of rotating according to a switching operation of the handheld portion;
  • a second switch cable pulley is disposed at the functional portion for transmitting the operation of the first switch cable pulley to the functional portion through a switch cable.
  • the method further includes: a connecting mechanism connected to the proximal end of the instrument shaft and disposed at an angle to the instrument shaft;
  • the handheld portion includes: a first grip portion and a second grip portion;
  • the transmission component further includes:
  • first connecting member having a first end and a second end
  • the first yaw winch includes a first sub-yarn winch and a second sub-yarn winch disposed coaxially, the first sub-yarn winch is disposed on the first grip portion, and the second sub-cross The pendulum is provided on the second grip portion, and the first grip portion is rotatably connected to the first end in a yaw direction by the first sub-yarn winch, the second a grip portion is rotatably coupled to the first shaft in a yaw direction by the second sub-yarn winch;
  • the first pitching winch is disposed at the second end, and the first connecting member is wound around the second axis in a pitch direction by the first pitch winch and an end of the connecting mechanism not connected to the instrument bar Rotate the connection;
  • the functional portion includes: a first action portion and a second action portion;
  • the transmission component further includes:
  • a second connecting member having a first end and a second end
  • the second yaw winch includes a third sub-yarn winch and a fourth sub-yarn winch disposed coaxially, and the third sub-yarn winch is disposed at the first action portion, and the first sub-cross
  • the pendulum winch is connected by a yaw cable, and the fourth sub-yarn winch is disposed at the second action portion, and is connected to the second sub-yarn winch through a yaw cable;
  • the first action portion is rotatably connected to the third axis in a yaw direction by the third sub-yarn winch and the first end of the second connecting member, and the second action portion passes the fourth sub-portion
  • the yaw winch and the first end of the second connecting member are rotatably connected in a yaw direction about a third axis;
  • the second pitch winch is disposed at the second end of the second connecting member, and the second connecting member rotates around the fourth axis in the pitch direction by the second pitch winch and the distal end of the instrument lever connection;
  • the second shaft is provided with a first pulley, and the first pulley is provided with a plurality of wire grooves arranged along the axial direction of the second shaft;
  • One end of the connecting mechanism connected to the instrument rod is provided with a second pulley, the second pulley is parallel with the first pulley, and the second pulley is provided with a plurality of extending directions along the second pulley A slot that is set at intervals.
  • a third pulley and a fourth pulley are disposed on the fourth shaft, and the second pitch winch is located between the third pulley and the fourth pulley, and the third pulley and the first A plurality of wire grooves disposed along the axial direction of the fourth shaft are respectively disposed on the four pulleys.
  • a portion between the first end and the second end of the second connecting member is provided with a fifth pulley and a sixth pulley, wherein the fifth pulley and the third pulley are located at the second connection On the same side of the component, the sixth pulley and the fourth pulley are located on the same side of the second connecting component, and the fifth pulley and the sixth pulley are respectively provided with a plurality of edges and the fourth The wire grooves are arranged at intervals in the axially parallel direction of the shaft.
  • a fixing portion having a spherical inner cavity connected to the proximal end of the instrument shaft, the cable passage of the instrument shaft being in communication with the spherical inner cavity;
  • the transmission component includes:
  • a first yoke winch is disposed on the hand-held portion, and the hand-held portion is rotatably connected to the rotating portion in a yaw direction about the first axis by the first yaw winch;
  • a second yaw winch disposed at a distal end of the instrument shaft for actuating with the action of the first yaw winch, and transmitting a corresponding action to the functional portion
  • first yaw winch drives the second yaw winch through at least one yaw cable.
  • the spherical inner cavity is provided with a guide rail extending in a pitch direction, and an outer surface of the rotating portion is provided with a slider movable along the guide rail, and the hand-held portion passes through the rotating portion and the fixed portion
  • the part is rotatably connected to the second axis in the pitch direction;
  • the transmission component includes:
  • a second pitching winch disposed at a distal end of the instrument shaft for actuating with the action of the rotating portion, and transmitting a corresponding action to the functional portion
  • the rotating portion drives the second pitch winch by at least one pitch cable, the axial direction of the first shaft and the axial direction of the second shaft being orthogonal.
  • the handheld portion includes: a first grip portion and a second grip portion;
  • the first yaw winch includes a first sub-yarn winch and a second sub-yarn winch disposed coaxially, the first sub-yarn winch is disposed on the first grip portion, and the second sub-cross The pendulum is provided on the second grip portion, and the first grip portion is rotatably connected to the rotating portion in the yaw direction about the first axis by the first sub-yarn winch, the first The second grip portion is rotatably coupled to the first shaft by the second sub-yarn winch and the rotating portion in a yaw direction.
  • the functional portion includes: a first action portion and a second action portion;
  • the transmission component further includes:
  • a second connecting member having a first end and a second end
  • the second yaw winch includes a third sub-yarn winch and a fourth sub-yarn winch disposed coaxially, and the third sub-yarn winch is disposed at the first action portion, and the first sub-cross
  • the pendulum winch is connected by a yaw cable, and the fourth sub-yarn winch is disposed at the second action portion, and is connected to the second sub-yarn winch through a yaw cable;
  • the first action portion is rotatably connected to the third axis in a yaw direction by the third sub-yarn winch and the first end of the second connecting member, and the second action portion passes the fourth sub-portion
  • the yaw winch and the first end of the second connecting member are rotatably connected in a yaw direction about a third axis;
  • the second pitch winch is disposed at the second end of the second connecting member, and the second connecting member rotates around the fourth axis in the pitch direction by the second pitch winch and the distal end of the instrument lever connection;
  • the bionic surgical instrument provided by the present invention improves the flexibility in operation while achieving "forward operation", thereby making it more in line with human body operating habits.
  • the operator only needs to act on the wrist during the operation, and the operation is more flexible than the existing surgical instruments that require a large arm to achieve control of the functional part.
  • FIG. 1 is a perspective view 1 of a bionic surgical instrument according to an embodiment of the present invention.
  • FIG. 2 is a perspective view 2 of a bionic surgical instrument according to an embodiment of the present invention.
  • FIG. 3 is a schematic view showing the positional relationship between the hand-held portion and the instrument shaft in the prior art
  • FIG. 4 is a side view 1 of a bionic surgical instrument according to an embodiment of the present invention, showing the positional relationship between the hand and the instrument shaft;
  • FIG. 5 is a schematic view showing the positional relationship between the proximal end of the instrument shaft and the sectional plane of the wrist in the bionic surgical instrument according to the embodiment of the present invention
  • FIG. 6 is an exploded perspective view of a hand-held portion of a bionic surgical instrument according to an embodiment of the present invention.
  • FIG. 7 is a perspective view of an instrument lever and a functional portion of a bionic surgical instrument according to an embodiment of the present invention.
  • FIG. 8 is a top plan view of an instrument shaft and a functional portion of a bionic surgical instrument according to an embodiment of the present invention
  • FIG. 9 is an exploded perspective view of the instrument shaft and the functional portion of the bionic surgical instrument according to the embodiment of the present invention.
  • Figure 10 is a perspective view of a second pitch winch in a bionic surgical instrument according to an embodiment of the present invention.
  • Figure 11 is a perspective view 3 of a bionic surgical instrument according to an embodiment of the present invention.
  • Figure 12 is a perspective view 4 of a bionic surgical instrument according to an embodiment of the present invention.
  • Figure 13 is a perspective view 5 of a bionic surgical instrument according to an embodiment of the present invention.
  • Figure 14 is a side view 2 of the bionic surgical instrument of the embodiment of the present invention, showing the positional relationship between the hand and the instrument shaft;
  • 15 is a schematic view showing the connection of a fixing portion, a rotating portion and a hand portion in a bionic surgical instrument according to an embodiment of the present invention
  • Figure 16 is a perspective view of a rotating portion and a hand-held portion of a bionic surgical instrument according to an embodiment of the present invention
  • Figure 17 is a perspective view of a fixing portion of a bionic surgical instrument according to an embodiment of the present invention.
  • Figure 18 is a side view three of the bionic surgical instrument of the embodiment of the present invention, showing the initial state of the functional portion;
  • Fig. 19 is a side elevational view 4 of the bionic surgical instrument of the embodiment of the present invention, showing the pitch state of the functional portion.
  • the present invention provides a bionic surgical instrument comprising: an instrument shaft 10, the shape of which is not limited.
  • the instrument shaft 10 has a long axis.
  • a functional portion 20 is provided at the distal end of the instrument shaft 10, and the proximal end of the instrument shaft 10 is provided with a hand portion 30, and the hand portion 30 transmits the control action of the hand portion 30 to the functional portion 20 via the transmission member 40.
  • the specific type of the functional portion 20 is not limited.
  • the functional portion 20 is a forceps.
  • the functional portion may also be various articulating tools, such as scissors, graspers, needle holders, etc., or non-hinged tools such as cutting blades, probes, irrigators, catheters, and the like.
  • the proximal end of the instrument shaft 10 is near one end of an operator (eg, a surgeon).
  • the operator performs a corresponding action by operating the hand-held portion 30 to control the function portion 20 to perform a corresponding action, for example, the hand-held portion 30 performs a pitching motion, a yaw motion, or a combination of both and/or a switching motion, and the function portion 20 occurs correspondingly.
  • Pitch motion, yaw motion, or a combination of both and/or switching motion That is, the hand-held unit 30 performs the pitching motion, and the functional unit 20 also performs the pitching motion; the hand-held portion 30 performs the yaw motion, and the functional portion 20 also performs the yaw motion; the hand-held portion 30 performs the switching motion, and the functional portion 20 also performs the switching motion.
  • Each movement can be performed independently or simultaneously.
  • the surgical instrument 1 includes an instrument shaft 100 and a hand-held portion 110 having a grip portion 112.
  • the grip portion 112 When the operator's arm 2 operates the grip portion 112 to control the function portion to perform the corresponding action, the swing of the forearm or even the boom is often used to achieve the control, and the operator's motion amplitude is large and the operation comfort is poor.
  • the angle ⁇ between the hand-held portion 110 of the existing surgical instrument 1 and the instrument shaft 100 is obtuse when the surgical instrument is operated, which results in the operator's arm. 2
  • the grip portion 112 When the grip portion 112 is operated, the control of the functional portion is realized by the swing of the forearm or even the boom, so that the operator's operation comfort is poor.
  • the embodiment of the present invention makes the proximal end A of the instrument shaft 10 apex with the central axis of the hand-held portion 30 in collinear or parallel and along the first
  • the first reference ray R1 of the direction with the proximal end A of the instrument shaft 10 as the apex, is collinear or parallel with the central axis of the instrument shaft 10 and the second reference ray R2 along the second direction, the first reference ray R1 and the second
  • the angle ⁇ between the reference rays R2 is >0° and ⁇ 90°.
  • the first direction is the direction in which the connecting end of the hand piece 30 points toward the free end of the hand piece 30, and the second direction is the direction in which the proximal end A of the instrument shaft 10 points toward the distal end of the instrument shaft 10.
  • the free end of the hand piece 30 is the end that is held by the operator, and the distal end of the instrument shaft 10 is the end remote from the operator.
  • Center axis can be understood as: for a regular axisymmetric component, the intermediate line is the central axis; for irregular non-axisymmetric components, the central axis passes through the center of gravity of the component, and the central axis extends parallel to the component Extend the direction.
  • the angle ⁇ between the hand-held portion 30 and the instrument shaft 10 in the embodiment of the present invention is >0° and ⁇ 90°.
  • the operator's hand 90 holds the hand-held portion 30 and controls the function portion 20 to perform corresponding actions.
  • the arm is not moved, only the wrist is actuated, so that the functional portion 20 can achieve the corresponding action, and the operator's operation comfort is significantly improved.
  • the proximal end A of the instrument shaft 10 is located in a space sandwiched by the first plane Q and the second plane N, and the first plane Q is the reference plane P of the wrist of the hand 90 as a reference plane.
  • a parallel plane made 10 cm in the direction of the proximal end A.
  • the second plane N is a parallel plane which is made with the sectional plane P of the operator's wrist 90 as a reference surface and 10 cm in the distal direction.
  • proximal A direction is the direction in which the distal end of the instrument shaft 10 is directed toward the proximal end A of the instrument shaft 10
  • longitudinal direction is the direction in which the proximal end A of the instrument shaft 10 is directed toward the distal end of the instrument shaft 10.
  • the proximal end A of the instrument shaft 10 is located in the space between the first plane Q and the sectional plane P of the operator's wrist.
  • the distance between the wrist and the proximal end A of the instrument shaft 10 is relatively close, thereby making the operator more flexible in applying the control action to the hand 30.
  • the control action of the hand-held portion 30 of the present invention is proportionally transmitted to the functional portion 20, and the ratio is not limited, and may be, for example, 0.1 to 5, including 0.1 and 5, and may be 3, 3.1, 4.66, or the like. That is, the movement of the functional portion 20 in the pitch direction, the yaw direction, and the switching direction corresponds to the movement of the hand portion 30 in the pitch direction, the yaw direction, and the switching direction.
  • the hand portion 30 transmits the control action of the hand portion 30 to the function portion 20 via the transmission member 40.
  • the transmission member 40 includes a first yaw winch 5 disposed at the proximal end of the instrument shaft 10 for transmitting the yaw direction with the operation of the hand portion 30.
  • a second yaw winch 6 is provided at the distal end of the instrument shaft 10 for action with the action of the first yaw winch 5, and corresponding The action is transmitted to the functional part 20, wherein the first yaw winch 5 drives the second yaw winch 6 via at least one yaw cable. That is, the hand portion 30 transmits the yaw direction motion to the functional portion 20 via the first yaw winch 5 and the second yaw winch 6, and the functional portion 20 operates in the yaw direction accordingly.
  • the transmission component 40 further includes a first pitch winch 61 disposed at the proximal end of the instrument shaft 10 for transmitting the motion in the pitch direction as the hand portion 30 operates; 7 to 10 and in conjunction with FIG. 2, a second pitch winch 53 is provided at the distal end of the instrument shaft 10 for action with the action of the first pitch winch 61, and the corresponding action is transmitted to the functional portion 20.
  • the first pitch winch 61 drives the second pitch winch 53 through at least one pitch cable 61a, one end of the pitch cable 61a is fixedly coupled to the first pitch winch 61, and the other end is fixedly coupled to the second pitch winch 53. That is, the hand portion 30 transmits the motion in the pitch direction to the functional portion 20 by the first pitch winch 61 and the second pitch winch 53, and the functional portion 20 operates in the pitch direction accordingly.
  • the movement of the functional portion 20 in the yaw direction is that the hand portion 30 rotates about the first axis X, and the functional portion 20 rotates about the third axis M accordingly.
  • the movement of the functional portion 20 in the pitch direction is such that the hand portion 30 rotates about the second axis Y, and the functional portion 20 rotates about the fourth axis Z accordingly. That is, the hand-held portion 30 is rotated about the first axis X in the first circumferential direction (shown in the direction of B in FIG. 2), and the functional portion 20 is correspondingly wound around the third axis M in the first circumferential direction (shown in the direction of E in FIG. 2).
  • the hand-held portion 30 is rotated about the first axis X in the second circumferential direction (the direction opposite to the B direction in FIG. 2), and the functional portion 20 is correspondingly in the second circumferential direction (the direction opposite to the E direction in FIG. 2) Rotating around the third axis M.
  • the hand-held portion 30 is rotated about the second axis Y in the third circumferential direction (shown in the direction of C in FIG. 2), and the functional portion 20 is correspondingly rotated in the third circumferential direction (shown in the direction of D in FIG. 2) about the fourth axis Z;
  • the hand portion 30 is rotated about the second axis Y in the fourth circumferential direction (the direction opposite to the C direction in FIG. 2), and the functional portion 20 is correspondingly wound in the fourth circumferential direction (the direction opposite to the D direction in FIG. 2).
  • the axis Z rotates.
  • the surgical instrument of the present embodiment further includes: a coupling mechanism 100 coupled to the proximal end A of the instrument shaft 10 and disposed at an angle to the instrument shaft 10, handheld
  • the connection end of the portion 30 is connected to one end of the connection mechanism 100 that is not connected to the instrument shaft 10.
  • This design is equivalent to raising the hand 30, and the hand 90 is relatively labor intensive when operating the hand 30.
  • the angle between the connecting mechanism 100 and the instrument rod 10 is not limited as long as the angle between the first reference beam R1 and the second reference beam R2 is determined after the hand portion 30 is connected to the connecting mechanism 100. It is >0° and ⁇ 90°.
  • the angle between the connection mechanism 100 and the instrument shaft 10 is an acute angle.
  • the specific shape of the connection mechanism 100 is not limited as long as the instrument shaft 10 can be connected at one end and the hand portion 30 can be connected to the other end. Referring to FIG.
  • the connecting mechanism 100 has a pair of first portions 101 symmetrically disposed, and the pair of first portions 101 are connected by a second axis Y and a fifth axis N, wherein the second axis Y is parallel to the first Five axes N.
  • the handheld portion 30 includes a first grip portion 31 and a second grip portion 32 .
  • the transmission member 40 further includes a first connecting member 60 having a first end and a second end;
  • the first yaw winch 5 includes a first sub-yarn winch 54 and a second sub-yaw disposed coaxially
  • the winch 50 , the first sub-yarn winch 54 is disposed on the first grip portion 31
  • the second sub-yarn winch 50 is disposed on the second grip portion 32 .
  • the first grip portion 31 is rotatably coupled to the first axis X in the yaw direction by the first sub-yarn winch 54 and the first end of the first connecting member 60; referring to FIG. 12, the second grip portion 32 is rotatably coupled to the first axis X in the yaw direction by the second sub-yarn winch 50 and the first end of the first connecting member 60.
  • the first pitch winch 61 is disposed at the second end of the first connecting member 60, and the first connecting member 60 passes through the first pitch winch 61 and the end of the connecting mechanism 100 that is not connected to the instrument shaft 10.
  • the connection is rotated about the second axis Y in the pitch direction.
  • the first pitch winches 61 are two, and are arranged side by side and spaced apart along the axial direction of the second axis Y.
  • the first pitch winch 61 is located between a pair of first portions 101 of the connection mechanism 100.
  • the axial direction of the first axis X and the axial direction of the second axis Y are orthogonal, and the "orthogonal" is the axial direction of the first axis X and the axial direction of the second axis Y are perpendicular in the three-dimensional space. But not intersecting. This allows the hand piece 30 to be operated both in the yaw direction and in the pitch direction.
  • the functional portion 20 includes: a first action portion 21 and a second action portion 22; the transmission component 40 further includes: a second connecting member 70, a second The connecting member 70 has a first end and a second end.
  • the first end of the second connecting member 70 has a pair of plates 71 spaced apart in the axial direction of the third axis M and arranged in parallel.
  • the second yaw winch 6 includes a third sub-yarn winch 51 and a fourth sub-yarn winch 56 disposed coaxially. As shown in FIG.
  • the third sub-yarn winch 51 is disposed in the first action portion 21, and A yaw winch 54 is connected by a yaw cable 54a, one end of the yaw cable 54a is fixedly coupled to the first sub yoke winch 54, and the other end is fixedly coupled to the third sub yoke winch 51.
  • the fourth sub-yarn winch 56 is disposed in the second action portion 22, and is connected to the second sub-yarn winch 50 through the yaw cable 50a, and the yaw cable 50a has one end and the second sub-window 50a.
  • the yaw winch 50 is fixedly coupled and the other end is fixedly coupled to the fourth sub-yarn winch 56.
  • the first action portion 21 is rotatably coupled to the third axis M in the yaw direction by the third sub-yarn winch 51 and the first end of the second connecting member 70, and the second action portion 22 passes through the fourth sub-yarn winch 56 and The first end of the second connecting member 70 is rotatably coupled about the third axis M in the yaw direction.
  • the third sub-yarn winch 51 and the fourth sub-yarn winch 56 are disposed between the pair of plates 71 at the first end of the second connecting member 70.
  • a second pitch winch 53 is provided at the second end of the second connecting member 70, and the second connecting member 70 is passed through the second pitch winch 53 with the distal end of the instrument shaft 10.
  • the distal end of the instrument shaft 10 has a pair of plates 11 spaced apart and disposed in parallel in the axial direction of the fourth axis Z, and the second pitch winch 53 is disposed at the distal end of the instrument shaft 10 Between a pair of plates 11.
  • the axial direction of the third axis M and the axial direction of the fourth axis Z are orthogonal, and the "orthogonal" is the axial direction of the third axis M and the axial direction of the fourth axis Z direction is vertical in the three-dimensional space. But not intersecting. This allows the functional portion 20 to operate both in the yaw direction and in the pitch direction.
  • the functional portion 20 When the first action portion 21 and the second action portion 22 of the functional portion 20 are attached, the functional portion 20 is in a closed state, and the first grip portion 31 is controlled to rotate about the first axis X, and the second grip portion 32 is kept not.
  • the first grip portion 31 moves away from the second grip portion 32, the first action portion 21 rotates around the third axis M, and the second action portion 22 also remains stationary, realizing the expansion of the functional portion 20. open.
  • the first grip portion 31 is controlled to remain stationary, the second grip portion 32 is controlled to rotate about the first axis X, and the second grip portion 32 is moved away from the first grip portion 31, and the first action portion 21 is maintained. Without moving, the second operating portion 22 is rotated about the third axis M, thereby realizing the opening of the functional portion 20.
  • first grip portion 31 and the second grip portion 32 are simultaneously rotated in opposite directions about the first axis X, and the first grip portion 31 is moved away from the second grip portion 32, and the first action portion 21 is moved.
  • the second operating portion 22 is rotated about the third axis M, and the functional portion 20 can also be opened.
  • the first grip portion 31 is controlled to rotate about the first axis X, the second grip portion 32 is kept stationary, and the first grip portion 31 is moved toward the second grip portion 32.
  • the one operating portion 21 is rotated about the third axis M, and the second operating portion 22 is also held, the first operating portion 21 is moved toward the second operating portion 22, and finally joined to the second operating portion 22, thereby realizing The function portion 20 is closed.
  • the first grip portion 31 is controlled to remain stationary, the second grip portion 32 is controlled to rotate about the first axis X, and the second grip portion 32 is moved toward the first grip portion 31, and the first action portion 21 remains unchanged.
  • the second operating portion 22 is rotated about the third axis M, and the second operating portion 22 is moved toward the first operating portion 21 to finally engage the first operating portion 21, thereby achieving closure of the functional portion 20.
  • first grip portion 31 and the second grip portion 32 are simultaneously controlled to rotate about the first axis X in opposite directions, and the first grip portion 31 is moved toward the second grip portion 32, the first action portion 21 and The second operating portion 22 is rotated about the third axis M, and the first operating portion 21 moves toward the second operating portion 22, and finally the second operating portion 22 is brought into contact with the second operating portion 22, and the functional portion 20 can be closed.
  • the first grip portion 31 and the second grip portion 32 of the control hand 30 are simultaneously rotated about the first axis X in the same direction, the first action portion 21 and the second action portion 22 are also wound in the same direction at the same time.
  • the rotation of the third axis M realizes the movement of the functional portion 20 in the yaw direction.
  • the grip hand portion 30 controls the first connecting member 60 to rotate about the second axis Y
  • the second connecting member 60 is rotated about the fourth axis Z, thereby realizing the action of the functional portion 20 in the pitch direction.
  • the opening or closing of the hand portion 30 is controlled to realize the opening or closing of the functional portion 20; the movement of the hand portion 30 in the yaw direction is controlled, and the functional portion 20 is realized in the yaw direction.
  • the action of controlling the hand portion 30 in the pitch direction realizes the action of the function unit 20 in the pitch direction.
  • the second shaft Y is provided with a first pulley 52, and the first pulley 52 is provided with a plurality of wire grooves spaced along the axial direction of the second axis Y. . In the embodiment, four wire grooves are provided on the first pulley 52.
  • One end of the connection mechanism 100 connected to the instrument shaft 10 is provided with a second pulley 80.
  • the second pulley 80 is disposed on the fifth shaft N, the second pulley 80 is parallel to the first pulley 52, and the second pulley 80 is provided with a plurality of edges. In the embodiment, the second pulley 80 is provided with six wire grooves.
  • a third pulley 58 and a fourth pulley 59 are disposed on the fourth shaft Z, and the second pitch winch 53 is located between the third pulley 58 and the fourth pulley 59.
  • the three pulleys 58 and the fourth pulley 59 are respectively provided with a plurality of wire grooves which are arranged at an axial interval along the fourth axis Z.
  • the third pulley 58 and the fourth pulley 59 are respectively provided with two wire grooves.
  • a portion between the first end and the second end of the second connecting member 70 is provided with a fifth pulley 55 and a sixth pulley 57, wherein the fifth pulley 55 and the third pulley 58 are located on the same side of the second connecting member 70, The sixth pulley 57 and the fourth pulley 59 are located on the same side of the second connecting member 70, and the fifth pulley 55 and the sixth pulley 57 are respectively provided with a plurality of lines spaced apart in a direction parallel to the axial direction of the fourth axis Z.
  • the fifth pulley 55 and the sixth pulley 57 are respectively provided with two wire slots.
  • the yaw cable 54a connected to the first sub-yarn winch 54 and the yaw cable 50a connected to the second sub-yarn winch 50 are closed loop lines, that is, the yaw cable 54a has two The root cable, one end of each cable is fixedly connected to the first sub-yarn winch 54 through the wire slot on the first pulley 52, the wire slot on the second pulley 80, and the cable passage through the instrument shaft 10 After 10a (refer to FIG. 7), the wire groove on the third pulley 58, and the wire groove on the fifth pulley 55, the other end is fixedly connected to the third sub-yarn winch 51.
  • the yaw cable 50a also has two cables, one end of each cable is fixedly connected to the second sub-yarn winch 50, and passes through the slot on the first pulley 52, the slot on the second pulley 80, and the through After the cable passage 10a of the instrument shaft 10 (refer to FIG. 7), the wire groove on the fourth pulley 59, and the wire groove on the sixth pulley 57, the other end is fixedly connected with the fourth sub-yarn winch 56; The cables do not interfere with each other, and the action of the hand portion 30 can be stably transmitted.
  • the pitch cable 61a connected to the first pitch winch 61 is also a closed loop line, that is, the pitch cable 61a has two cables, one end of each cable is fixedly connected to the first pitch winch 61, and is passed through the second pulley 80. After the slot, the cable passage 10a (refer to FIG. 7) passing through the instrument shaft 10 and the other end are fixedly coupled to the second pitch winch 53.
  • Each of the pitch cables and the yaw cables does not interfere with each other, and the operation of the hand portion 30 can be stably transmitted.
  • each of the above-mentioned pulleys may exist at the same time, and some pulleys may be selectively used as long as it can prevent the cables from interfering with each other and enable the cables to more stably transmit the action of the hand-held portion 30. .
  • an embodiment of the present invention provides a bionic surgical instrument, which is collinear or parallel with the central axis of the hand-held portion 30 and in a first direction with the proximal end of the instrument shaft 10 as a vertex as in the first embodiment.
  • the first reference ray R1 has a second reference ray R2 collinear or parallel with the central axis of the instrument shaft 10 and a second reference ray R1 and a second reference ray R2 with the proximal end of the instrument shaft 10 as a vertex
  • the angle ⁇ between them is >0° and ⁇ 90°.
  • the proximal end A of the instrument shaft 10 is located in the sectional plane P of the wrist of the hand 90.
  • the wrist can be operated only when the arm is not moved, so that the functional portion 20 can achieve the corresponding action and the operator's operation comfort.
  • the bionic surgical instrument of the present embodiment further includes a fixing portion 12 having a spherical inner cavity 12a connected to the proximal end of the instrument shaft 10, and the cable passage of the instrument shaft 10 is in communication with the spherical inner cavity 12a;
  • the rotating portion 13 is rotatably held by the fixing portion 12.
  • the specific shape of the fixing portion 12 and the rotating portion 13 is not limited. As long as the rotating portion 13 is rotatably held by the fixing portion 12, in this embodiment, the rotating portion 13 is a ball, and the fixing portion 12 is Spherical shell.
  • the transmission member 40 includes: a first yaw winch 5 disposed at the hand-held portion 30, and the hand-held portion 30 is rotatably coupled to the first axis X in the yaw direction by the first yaw winch 5 and the rotating portion 13;
  • a second yaw winch 6 is provided at the distal end of the instrument shaft 10 for action with the action of the first yaw winch 5, and the corresponding action is transmitted to the functional portion 20, wherein the first transverse
  • the pendulum winch 5 drives the second yoke winch 6 through at least one yaw cable.
  • a spherical inner chamber 12a is provided with a guide rail 12b extending in the pitch direction, and an outer surface of the rotating portion 13 is provided with a slider 14 movable along the guide rail 12b, and the hand portion 30 is pitched by the rotating portion 13 and the fixed portion 12.
  • the transmission member 40 includes a second pitch winch 53 disposed at a distal end of the instrument shaft 10 for acting in accordance with the action of the rotating portion 13, and transmitting a corresponding motion to the functional portion 20, wherein
  • the rotating portion 13 drives the second pitch winch 53 via at least one pitch cable 61a, and the axial direction of the first axis X is orthogonal to the axial direction of the second axis Y.
  • the hand-held portion 30 includes: a first grip portion 31 and a second grip portion 32; the first yaw winch 5 includes a first sub-yarn winch 54 and a second sub-coaxially disposed coaxially
  • the rotation portion 13 is rotatably coupled to the first axis X in the yaw direction
  • the second grip portion 32 is rotatably coupled to the rotation portion 13 in the yaw direction about the first axis X by the second sub-yarn winch 50.
  • the functional portion 20 includes: a first action portion 21 and a second action portion 22; the transmission member 40 further includes: a second connecting member 70 having a first end and a second end;
  • the second yaw winch 6 includes a third sub-yarn winch 51 and a fourth sub-yarn winch 56 disposed coaxially, and the third sub-yarn winch 51 is disposed at the first action portion 21, and the first sub-yarn winch 54
  • the fourth sub-yarn winch 56 is provided in the second operating portion 22 by a yaw cable connection, and is connected to the second sub-yarn winch 50 via a yaw cable.
  • the first action portion 21 is rotatably coupled to the third axis M in the yaw direction by the third sub-yarn winch 51 and the first end of the second connecting member 70, and the second action portion 22 passes through the fourth sub-yarn winch 56 and
  • the first end of the second connecting member 70 is rotationally coupled about the third axis M in the yaw direction;
  • the second pitch winch 53 is disposed at the second end of the second connecting member 70, and the second connecting member 70 passes the second tilting winch 53 is rotationally coupled to the distal end of the instrument shaft 10 about the fourth axis Z in the pitch direction; wherein the axial direction of the third axis M is orthogonal to the axial direction of the fourth axis Z.
  • the function of the functional unit 20 in the first embodiment is the same as that of the functional unit 20 in the first embodiment.
  • the functional portion 20 is in the initial position; referring to Fig. 19 and in conjunction with Fig. 15, holding the hand portion 30 and controlling the rotation portion 13 to rotate about the second axis Y, the slider 14 on the rotating portion 13 is fixed along The guide rail 12b in the portion 12 moves in the pitch direction, so that the functional portion 20 operates in the pitch direction.
  • the manner in which the pitch cable, the yaw cable, and the switch cable of the present invention are wound with the corresponding pulley is not limited as long as the following conditions are satisfied: the pitch motion of the hand portion 30, the yaw motion, or The combination of the two and/or the switching motion enables the functional portion 20 to undergo a corresponding pitch motion, yaw motion, or both, and/or switching motion.
  • the hand portion 30 and the functional portion 20 in the same direction by setting the pitch cable, the yaw cable and the switch cable in a winding manner with the corresponding pulley, for example, the hand portion 30 moves upward in the pitch direction, the function The portion 20 also moves upward in the pitch direction accordingly; the hand portion 30 moves to the left in the yaw direction, and the functional portion 20 also moves to the left in the yaw direction accordingly. That is, the bionic surgical instrument achieves "forward operation.”
  • bionic surgical instrument component of the present invention provides improved operator comfort and "forward operation”.

Abstract

一种仿生手术器械,包括:器械杆(10);功能部(20),设于器械杆(10)的远端;手持部(30),设于器械杆(10)的近端,手持部(30)通过传动部件(40)将手持部(30)的控制动作传递至功能部(20);以器械杆(10)的近端(A)为顶点作与手持部(30)的中轴线共线或平行且沿第一方向的第一参考射线(R1),以器械杆(10)的近端(A)为顶点作与器械杆(10)的中轴线共线或平行且沿第二方向的第二参考射线(R2),第一参考射线(R1)与第二参考射线(R2)之间的夹角为>0°且≤90°,其中,第一方向为手持部(30)的连接端指向手持部(30)的自由端的方向,第二方向为器械杆(10)的近端(A)指向器械杆(10)的远端的方向。操作者使用仿生手术器械操作舒适度提升。

Description

一种仿生手术器械 技术领域
本发明涉及医疗器械技术领域,具体涉及一种仿生手术器械。
背景技术
自1987年法国医生成功实施第一例腹腔镜胆囊切除术后,以腹腔镜手术为代表的微创外科手术经历30年的发展,已经形成了一门相对独立的学科。
微创外科手术是指在人体体表作若干穿孔,将内窥镜和操作器械通过上述小孔进入体腔内,如腹腔、胸腔、盆腔、关节腔等,由术者在内窥镜的监视下,通过手在病人体外操作器械,使器械伸入病人体腔内的工作端对腔内的病灶进行切除,或对器官进行修补、缝合等手术,术毕将内窥镜和器械取出,缝合体表的小孔即可完成整个手术。
微创外科与传统外科相比,以其手术创伤小,术中并发症少,术后疼痛减轻,住院时间短等优点,现已成为众多外科常见疾病的诊断治疗金标准。但由于其通常以3-5个2cm左右的穿孔作为介入通道,使得人手不再能直接接触到目标器官,而必须借助细长型的专用腹腔镜手术器械进行手术操作。
然而,细长型的手术器械使得操作角度严重受限且触觉反馈减弱,成为腹腔镜技术的最大挑战之一。对于一些初学者而言,需要进行大量的干式(体外模型操作训练)与湿式(活体动物实验)训练才能建立较稳定的手术经验曲线,以完成一些简单的腹腔镜手术。初学者若想完成例如腹腔镜下前列腺癌根治术、腹腔镜下肾部分切除术等相对复杂的功能重建性手术,则需完成大量的临床手术操作之后才能够胜任。其中一个主要原因是传统腹腔镜器械没有人手一样的“腕式”运动,而只有3个自由度,针对缝合、打结这样的手术常规但复杂且精细的手术操作,则必须用更多的经验来弥补器械设计缺陷带来的操作不便。
随着单孔腹腔镜技术及经自然腔道内镜手术技术的出现,使得多自由度腹腔镜手术器械得到了开发与应用,因其器械头端可弯曲,一定程度上解决了传统腹腔镜器械操作角度受限的问题。但目前世界上现有的多自由度腹腔镜手术器械多为“反向操作”形式,即器械的弯曲方向与外科医生实际操作方向相反,对医生的顺利操作造成相当大的挑战。
例如,专利文献1(CN101909526B)及专利文献2(CN102076268A)公开了一种手术器械,包括由长形器械轴互联的近端控制手柄和远端工具,所述长形器械轴用于通入解剖体内部;通过所述器械轴分别互联近端控制手柄和远端工具的近端可动构件和远端可动构件;设置在所述可动构件之间的线缆控制装置;位于所述手柄处并用于通过所述可动构件控制所述远端工具的致动构件;以及用于使所述器械的轴部分与所述手柄部分选择性地接合或脱离接合的耦联装置。所述手柄具有远端接收器部分,并且位于所述近端运动构件上的轴连接器能够选择性地与所述接收器部分接合和从所述接收器部分释放。
该手术器械虽然可通过对控制手柄的操作进而致使远端工具的动作,且近端可弯曲构件能在任意方向上弯曲,从而控制远端可弯曲构件在相同或相反的方向上弯曲,在一定程度上可实现“正向操作”,但是1)由于手柄的构造为竖直的手枪握把型,且其与长形器械轴大致成钝角,在微创手术操作过程中,容易受到空间的限制,导致灵活度、精确度较差;2)远端可弯曲构件的弯曲需要近端可弯曲构件对其致动,而近端可弯曲构件的弯曲需要外科医生利用手前臂甚至大臂的摆动来实现控制,故人机工效学表现较差。
为了解决手枪握把型手柄在手术过程中的空间限制问题,专利文献3(CN101495045A)公开了一种外科器械,包括具有近端和远端的细长器械轴;设置在所述器械轴的所述远端的功能部;和设置在所述器械轴的所述近端的控制手柄;所述功能部通过远侧运动元件耦联到所述细长器械轴的所述远端;所述控制手柄通过近侧可弯曲元件耦联到所述细长器械轴的所述近端;致动装置在所述远侧和近侧元件之间延伸,由此,所述控制手柄相对于所述细长器械轴的任何偏转均导致所述远侧运动元件产生相应弯曲,以便对所述功能部进行控制;其中,至少所述近侧可弯曲元件包括一体开槽结构,所述一体开槽结构具有由狭槽分隔开的多个圆盘。
该外壳器械在实现“正向操作”的同时,采用了直线型手柄,减少了竖直方向的空间占有,一定程度上提升了灵活度,但同时也降低了外科医生操作时的舒适度。
因此,对于微创外科手术器械而言,如何在实现手术器械“正向操作”的同时提高舒适度、灵活度及精准度,是本领域亟待解决的技术问题。
发明内容
为了解决上述问题,本发明的目的在于提供一种仿生手术器械,包括:器械杆;功能部,设于所述器械杆的远端;手持部,设于所述器械杆的近端,所述手持部通过传动部件将手持部的控制动作传递至所述功能部;以所述器械杆的近端为顶点作与所述手持部的中 轴线共线或平行且沿第一方向的第一参考射线,以所述器械杆的近端为顶点作与所述器械杆的中轴线共线或平行且沿第二方向的第二参考射线,所述第一参考射线与所述第二参考射线之间的夹角为>0°且≤90°,其中,所述第一方向为所述手持部的连接端指向所述手持部的自由端的方向,所述第二方向为所述器械杆的近端指向所述器械杆的远端的方向。
进一步地,所述器械杆的近端位于第一平面和第二平面所夹的空间内,所述第一平面为以操作者手腕的截平面为参照面,向近端方向10厘米所作的平行平面,所述第二平面为以操作者手腕的截平面为参照面,向远端方向10厘米所作的平行平面。
进一步地,所述手持部的俯仰运动、横摆运动、或两者结合和/或开关运动,能够使所述功能部发生相应的俯仰运动、横摆运动、或两者结合和/或开关运动。
进一步地,所述手持部的控制动作按比例传递至所述功能部。
进一步地,所述比例为0.1~5。
进一步地,所述传动部件包括:第一横摆绞盘,设于所述器械杆的近端,用于随着所述手持部的操作传递横摆方向上的动作;
第二横摆绞盘,设于所述器械杆的远端,用于随着所述第一横摆绞盘的动作而动作,且将相应的动作传递至所述功能部,
其中,所述第一横摆绞盘通过至少一根横摆线缆驱动所述第二横摆绞盘。
进一步地,所述传动部件包括:
第一俯仰绞盘,设于所述器械杆的近端,用于随着所述手持部的操作传递俯仰方向上的动作;
第二俯仰绞盘,设于所述器械杆的远端,用于随着所述第一俯仰绞盘的动作而动作,且将相应的动作传递至所述功能部,
其中,所述第一俯仰绞盘通过至少一根俯仰线缆驱动所述第二俯仰绞盘。
进一步地,所述传动部件包括:第一开关线缆滑轮,设于所述手持部,能够随着所述手持部的开关操作而旋转;
第二开关线缆滑轮,设于所述功能部,用于通过开关线缆将所述第一开关线缆滑轮的操作传递至所述功能部。
进一步地,还包括:连接机构,所述连接机构与所述器械杆的近端连接,且与所述器械杆呈角度设置;
所述手持部包括:第一握持部和第二握持部;
所述传动部件还包括:
第一连接部件,所述第一连接部件具有第一端和第二端;
所述第一横摆绞盘包括同轴设置的第一子横摆绞盘和第二子横摆绞盘,所述第一子横摆绞盘设于所述第一握持部,所述第二子横摆绞盘设于所述第二握持部,所述第一握持部通过所述第一子横摆绞盘与所述第一端在横摆方向上绕第一轴转动连接,所述第二握持部通过所述第二子横摆绞盘与所述第一端在横摆方向上绕所述第一轴转动连接;
所述第一俯仰绞盘设于所述第二端,且所述第一连接部件通过所述第一俯仰绞盘与所述连接机构未与所述器械杆连接的一端在俯仰方向上绕第二轴转动连接;
其中,所述第一轴的轴向和所述第二轴的轴向正交。
进一步地,所述功能部包括:第一动作部和第二动作部;
所述传动部件还包括:
第二连接部件,所述第二连接部件具有第一端和第二端;
所述第二横摆绞盘包括同轴设置的第三子横摆绞盘和第四子横摆绞盘,所述第三子横摆绞盘设于所述第一动作部,与所述第一子横摆绞盘通过横摆线缆连接,所述第四子横摆绞盘设于所述第二动作部,与所述第二子横摆绞盘通过横摆线缆连接;
所述第一动作部通过所述第三子横摆绞盘与所述第二连接部件的第一端在横摆方向上绕第三轴转动连接,所述第二动作部通过所述第四子横摆绞盘与所述第二连接部件的第一端在横摆方向上绕第三轴转动连接;
所述第二俯仰绞盘设于所述第二连接部件的第二端,且所述第二连接部件通过所述第二俯仰绞盘与所述器械杆的远端在俯仰方向上绕第四轴转动连接;
其中,所述第三轴的轴向和所述第四轴的轴向正交。
进一步地,所述第二轴上设有第一滑轮,所述第一滑轮上设有多个沿所述第二轴的轴向间隔设置的线槽;
所述连接机构与所述器械杆连接的一端设有第二滑轮,所述第二滑轮与所述第一滑轮平行,所述第二滑轮上设有多个沿所述第二滑轮的延伸方向间隔设置的线槽。
进一步地,所述第四轴上间隔设有第三滑轮和第四滑轮,所述第二俯仰绞盘位于所述第三滑轮和所述第四滑轮之间,所述第三滑轮和所述第四滑轮上分别设有多个沿所述第四轴的轴向间隔设置的线槽。
进一步地,所述第二连接部件的第一端和第二端之间的部分设有第五滑轮和第六滑轮,其中,所述第五滑轮与所述第三滑轮位于所述第二连接部件的同一侧,所述第六滑轮 与所述第四滑轮位于所述第二连接部件的同一侧,所述第五滑轮和所述第六滑轮上分别设有多个沿与所述第四轴的轴向平行的方向间隔设置的线槽。
进一步地,还包括:
固定部,具有球形内腔,与所述器械杆的近端连接,器械杆的线缆通道与所述球形内腔连通;
转动部,所述转动部可转动地被所述固定部夹持;
所述传动部件包括:
第一横摆绞盘,设于所述手持部,所述手持部通过所述第一横摆绞盘与所述转动部在横摆方向上绕第一轴转动连接;
第二横摆绞盘,设于所述器械杆的远端,用于随着所述第一横摆绞盘的动作而动作,且将相应的动作传递至所述功能部,
其中,所述第一横摆绞盘通过至少一根横摆线缆驱动所述第二横摆绞盘。
进一步地,所述球形内腔内设有沿俯仰方向延伸的导轨,所述转动部的外表面设有能够沿所述导轨移动的滑块,所述手持部通过所述转动部与所述固定部在俯仰方向上绕第二轴转动连接;
所述传动部件包括:
第二俯仰绞盘,设于所述器械杆的远端,用于随着所述转动部的动作而动作,且将相应的动作传递至所述功能部,
其中,所述转动部通过至少一根俯仰线缆驱动所述第二俯仰绞盘,所述第一轴的轴向和所述第二轴的轴向正交。
进一步地,所述手持部包括:第一握持部和第二握持部;
所述第一横摆绞盘包括同轴设置的第一子横摆绞盘和第二子横摆绞盘,所述第一子横摆绞盘设于所述第一握持部,所述第二子横摆绞盘设于所述第二握持部,所述第一握持部通过所述第一子横摆绞盘与所述转动部在横摆方向上绕所述第一轴转动连接,所述第二握持部通过所述第二子横摆绞盘与所述转动部在横摆方向上绕所述第一轴转动连接。
进一步地,所述功能部包括:第一动作部和第二动作部;
所述传动部件还包括:
第二连接部件,所述第二连接部件具有第一端和第二端;
所述第二横摆绞盘包括同轴设置的第三子横摆绞盘和第四子横摆绞盘,所述第三子横摆绞盘设于所述第一动作部,与所述第一子横摆绞盘通过横摆线缆连接,所述第四子横摆 绞盘设于所述第二动作部,与所述第二子横摆绞盘通过横摆线缆连接;
所述第一动作部通过所述第三子横摆绞盘与所述第二连接部件的第一端在横摆方向上绕第三轴转动连接,所述第二动作部通过所述第四子横摆绞盘与所述第二连接部件的第一端在横摆方向上绕第三轴转动连接;
所述第二俯仰绞盘设于所述第二连接部件的第二端,且所述第二连接部件通过所述第二俯仰绞盘与所述器械杆的远端在俯仰方向上绕第四轴转动连接;
其中,所述第三轴的轴向和所述第四轴的轴向正交。
如上,本发明提供的仿生手术器械通过在实现“正向操作”的同时,提高了操作时的灵活度,使其更加符合人体操作习惯。操作者在操作时只需手腕作动,与现有的需要大幅度手臂的作动才能实现对功能部的控制的手术器械相较,操作更为灵活。
为让本发明的上述内容能更明显易懂,下文特举优选实施例并结合附图详细说明。
附图说明
图1是本发明实施例仿生手术器械的立体图一;
图2是本发明实施例仿生手术器械的立体图二;
图3是现有技术中手持部和器械杆的位置关系示意图;
图4是本发明实施例仿生手术器械的侧视图一,图中示出了手和器械杆的位置关系;
图5是本发明实施例仿生手术器械中器械杆的近端与手腕的截平面的位置关系示意图
图6是本发明实施例仿生手术器械中手持部的立体分解图;
图7是本发明实施例仿生手术器械中器械杆和功能部的立体图;
图8是本发明实施例仿生手术器械中器械杆和功能部的俯视图;
图9是本发明实施例仿生手术器械中器械杆和功能部的立体分解图;
图10是本发明实施例仿生手术器械中第二俯仰绞盘的立体图;
图11是本发明实施例仿生手术器械的立体图三;
图12是本发明实施例仿生手术器械的立体图四;
图13是本发明实施例仿生手术器械的立体图五;
图14是本发明实施例仿生手术器械的侧视图二,图中示出了手和器械杆的位置关系;
图15是本发明实施例仿生手术器械中固定部、转动部及手持部的连接示意图;
图16是是本发明实施例仿生手术器械中转动部及手持部的立体图;
图17是是本发明实施例仿生手术器械中固定部的立体图;
图18是本发明实施例仿生手术器械的侧视图三,图中示出了功能部的初始状态;
图19是本发明实施例仿生手术器械的侧视图四,图中示出了功能部的俯仰状态。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的其他优点及功效。虽然本发明的描述将结合较佳实施例一起介绍,但这并不代表此发明的特征仅限于该实施方式。恰恰相反,结合实施方式作发明介绍的目的是为了覆盖基于本发明的权利要求而有可能延伸出的其它选择或改造。为了提供对本发明的深度了解,以下描述中将包含许多具体的细节。本发明也可以不使用这些细节实施。此外,为了避免混乱或模糊本发明的重点,有些具体细节将在描述中被省略。
第一实施例
参考图1和图2,本发明提供一种仿生手术器械,包括:器械杆10,器械杆10的形状不做限制,本实施例中器械杆10呈长轴状。在器械杆10的远端设有功能部20,器械杆10的近端设有手持部30,手持部30通过传动部件40将手持部30的控制动作传递至功能部20。功能部20的具体类型不做限制,本实施例中功能部20为钳子。在其它实施例中,功能部还可以是各种铰接工具,例如剪刀、抓紧器、持针器等,也可以是非铰接工具,例如切割刀片、探针、冲洗器、导管等。需说明的是,器械杆10的近端为靠近操作者(例如外科医生)的一端。
操作者通过操作手持部30进行相应的动作以控制功能部20执行相应的动作,例如,手持部30进行俯仰运动、横摆运动、或两者结合和/或开关运动,功能部20发生相应的俯仰运动、横摆运动、或两者结合和/或开关运动。即,手持部30进行俯仰运动,功能部20也发生俯仰运动;手持部30进行横摆运动,功能部20也发生横摆运动;手持部30进行开关运动,功能部20也发生开关运动。各运动可以独立进行,也可以同时进行。
现有技术中,参考图3,手术器械1包括器械杆100和手持部110,手持部110具有握持部112。操作者的手臂2操作握持部112控制功能部执行相应动作时,往往会利用手前臂甚至大臂的摆动来实现控制,操作者的运动幅度较大,操作舒适度差。发明人经过长时间的观察、分析和研究后发现:在操作手术器械时,现有的手术器械1的手持部110和器械杆100之间的夹角β呈钝角,这就导致操作者的手臂2操作握持部112时,会利用手前臂甚至大臂的摆动来实现对功能部的控制,使得操作者的操作舒适度差。
为解决上述技术问题,继续参考图1和图2并结合图4所示,本发明实施例以器械杆10的近端A为顶点作与手持部30的中轴线共线或平行且沿第一方向的第一参考射线R1,以器械杆10的近端A为顶点作与器械杆10的中轴线共线或平行且沿第二方向的第二参考射线R2,第一参考射线R1与第二参考射线R2之间的夹角α为>0°且≤90°。
其中,第一方向为手持部30的连接端指向手持部30的自由端的方向,第二方向为器械杆10的近端A指向器械杆10的远端的方向。手持部30的自由端为供操作者握持的一端,器械杆10的远端为远离操作者的一端。“中轴线”可以理解为:对于规则的轴对称部件,其中间线为中轴线;对于不规则的非轴对称部件,中轴线穿过该部件的重心,且中轴线的延伸方向平行于部件的延伸方向。
即,本发明实施例的手持部30与器械杆10之间的夹角α为>0°且≤90°,这样设置后,操作者的手90握持手持部30控制功能部20进行相应动作时,可在手臂不动的情况下,仅手腕动作,即可使得功能部20实现相应的动作,操作者的操作舒适度明显提升。
参考图4并结合图5所示,器械杆10的近端A位于第一平面Q和第二平面N所夹的空间内,第一平面Q为以手90的手腕的截平面P为参照面,向近端A方向10厘米所作的平行平面,第二平面N为以操作者手腕90的截平面P为参照面,向远端方向10厘米所作的平行平面。其中,“向近端A方向”为器械杆10的远端指向器械杆10的近端A的方向,“向远端方向”为器械杆10的近端A指向器械杆10的远端的方向。图5中所示的第一平面Q和第二平面N分别与截平面P的距离L≤10厘米。
本实施例中,参考图4和图5,器械杆10的近端A位于第一平面Q和操作者手腕的截平面P所夹的空间内。当操作者握持手持部30时,其手腕与器械杆10的近端A之间距离较近,从而使得操作者对手持部30施加控制动作更为灵活。
本发明的手持部30的控制动作按比例传递至功能部20,比例不做限制,例如可以是0.1至5,包括0.1和5,还可以是3、3.1、4.66等。也即,功能部20在俯仰方向、横摆方向及开关方向上的运动对应手持部30在俯仰方向、横摆方向及开关方向上的运动。
如前文所述:手持部30通过传动部件40将手持部30的控制动作传递至功能部20。具体而言,参考图6并结合图2所示,传动部件40包括:第一横摆绞盘5,设于器械杆10的近端,用于随着手持部30的操作传递横摆方向上的动作;参考图7至图9并结合图2所示,在器械杆10的远端设有第二横摆绞盘6,用于随着第一横摆绞盘5的动作而动作,且将相应的动作传递至功能部20,其中,第一横摆绞盘5通过至少一根横摆线缆驱动第二横摆绞盘6。即,手持部30通过第一横摆绞盘5和第二横摆绞盘6将横摆方向的动作传递 至功能部20,功能部20相应地在横摆方向上动作。
继续参考图6并结合图2所示,传动部件40还包括:第一俯仰绞盘61,设于器械杆10的近端,用于随着手持部30的操作传递俯仰方向上的动作;参考图7至图10并结合图2所示,在器械杆10的远端设有第二俯仰绞盘53,用于随着第一俯仰绞盘61的动作而动作,且将相应的动作传递至功能部20。参考图13,第一俯仰绞盘61通过至少一根俯仰线缆61a驱动第二俯仰绞盘53,俯仰线缆61a一端与第一俯仰绞盘61固定连接,另一端与第二俯仰绞盘53固定连接。即,手持部30通过第一俯仰绞盘61和第二俯仰绞盘53将俯仰方向上的动作传递至功能部20,功能部20相应地在俯仰方向上动作。
需说明的是,参考图1和图2,功能部20的在横摆方向上的运动为:手持部30绕第一轴X转动,功能部20相应地绕第三轴M转动。功能部20在俯仰方向上的运动为:手持部30绕第二轴Y转动,功能部20相应地绕第四轴Z转动。即,手持部30沿第一周向(图2中B方向所示)绕第一轴X转动,功能部20相应地沿第一周向(图2中E方向所示)绕第三轴M转动;或者,手持部30沿第二周向(图2中与B方向相反的方向)绕第一轴X转动,功能部20相应地沿第二周向(图2中与E方向相反的方向)绕第三轴M转动。
手持部30沿第三周向(图2中C方向所示)绕第二轴Y转动,功能部20相应地沿第三周向(图2中D方向所示)绕第四轴Z转动;手持部30沿第四周向(图2中与C方向相反的方向)绕第二轴Y转动,功能部20相应地沿第四周向(图2中与D方向相反的方向)绕第四轴Z转动。
继续参考图1和图2并结合图6所示,本实施例的手术器械还包括:连接机构100,连接机构100与器械杆10的近端A连接,且与器械杆10呈角度设置,手持部30的连接端与连接机构100未与器械杆10连接的一端连接。这样设计,相当于抬高了手持部30,手90操作手持部30时比较省力。
需说明的是,连接机构100与器械杆10之间的夹角不做限制,只要保证手持部30与连接机构100连接后,第一参考射线R1与第二参考射线R2之间的夹角α为>0°且≤90°。例如本实施例中,连接机构100与器械杆10之间的夹角为锐角。连接机构100的具体形状不做限制,只要能够一端连接器械杆10,另一端用于连接手持部30即可。参考图6,本实施例中,连接机构100具有对称设置的一对第一部分101,一对第一部分101之间通过第二轴Y和第五轴N连接,其中,第二轴Y平行于第五轴N。
继续参考图6和图2,本实施例中,手持部30包括:第一握持部31和第二握持部32。 传动部件40还包括:第一连接部件60,第一连接部件60具有第一端和第二端;第一横摆绞盘5包括同轴设置的第一子横摆绞盘54和第二子横摆绞盘50,第一子横摆绞盘54设于第一握持部31,第二子横摆绞盘50设于第二握持部32。参考图11,第一握持部31通过第一子横摆绞盘54与第一连接部件60的第一端在横摆方向上绕第一轴X转动连接;参考图12,第二握持部32通过第二子横摆绞盘50与第一连接部件60的第一端在横摆方向上绕第一轴X转动连接。
继续参考图6和图2,第一俯仰绞盘61设于第一连接部件60的第二端,且第一连接部件60通过第一俯仰绞盘61与连接机构100未与器械杆10连接的一端在俯仰方向上绕第二轴Y转动连接。结合图1所示,本实施例中第一俯仰绞盘61为两个,沿第二轴Y的轴向并排且间隔设置。第一俯仰绞盘61位于连接机构100的一对第一部分101之间。
其中,参考图2,第一轴X的轴向和第二轴Y的轴向正交,“正交”为第一轴X的轴向和第二轴Y向的轴向在三维空间内垂直,但不相交。这样可以使得手持部30既可在横摆方向上动作,又可以在俯仰方向上动作。
继续参考图7至图10并结合图2所示,本实施例中,功能部20包括:第一动作部21和第二动作部22;传动部件40还包括:第二连接部件70,第二连接部件70具有第一端和第二端,参考图9和图2,第二连接部件70的第一端具有沿第三轴M的轴向间隔且平行设置的一对板71。第二横摆绞盘6包括同轴设置的第三子横摆绞盘51和第四子横摆绞盘56,结合图11所示,第三子横摆绞盘51设于第一动作部21,与第一子横摆绞盘54通过横摆线缆54a连接,横摆线缆54a一端与第一子横摆绞盘54固定连接,另一端与第三子横摆绞盘51固定连接。
结合图12和图9所示,第四子横摆绞盘56设于第二动作部22,与第二子横摆绞盘50通过横摆线缆50a连接,横摆线缆50a一端与第二子横摆绞盘50固定连接,另一端与第四子横摆绞盘56固定连接。第一动作部21通过第三子横摆绞盘51与第二连接部件70的第一端在横摆方向上绕第三轴M转动连接,第二动作部22通过第四子横摆绞盘56与第二连接部件70的第一端在横摆方向上绕第三轴M转动连接。其中,第三子横摆绞盘51和第四子横摆绞盘56设于第二连接部件70的第一端的一对板71之间。
参考图8至图10并结合图13所示,第二俯仰绞盘53设于第二连接部件70的第二端,且第二连接部件70通过第二俯仰绞盘53与器械杆10的远端在俯仰方向上绕第四轴Z转动连接;器械杆10的远端沿第四轴Z的轴向具有间隔且平行设置的一对板11,第二俯仰绞盘53设于器械杆10的远端的一对板11之间。
其中,参考图2,第三轴M的轴向和第四轴Z的轴向正交,“正交”为第三轴M的轴向和第四轴Z向的轴向在三维空间内垂直,但不相交。这样可以使得功能部20既可在横摆方向上动作,又可以在俯仰方向上动作。
当功能部20的第一动作部21和第二动作部22相贴合时,功能部20处于闭合状态,控制第一握持部31绕第一轴X转动,第二握持部32保持不动,第一握持部31背向第二握持部32运动,第一动作部21会相应地绕第三轴M转动,第二动作部22也保持不动,实现了功能部20的张开。
或者,控制第一握持部31保持不动,控制第二握持部32绕第一轴X转动,第二握持部32背向第一握持部31运动,第一动作部21会保持不动,第二动作部22相应地绕第三轴M转动,实现了功能部20的张开。
或者,同时控制第一握持部31和第二握持部32分别沿相反的方向绕第一轴X转动,第一握持部31背向第二握持部32运动,第一动作部21和第二动作部22相应地分别绕第三轴M转动,功能部20也能张开。
当功能部20处于张开状态时,控制第一握持部31绕第一轴X转动,第二握持部32保持不动,第一握持部31朝向第二握持部32运动,第一动作部21会相应地绕第三轴M转动,第二动作部22也保持不动,第一动作部21朝向第二动作部22运动,最终与第二动作部22相贴合,实现了功能部20的闭合。
或者,控制第一握持部31保持不动,控制第二握持部32绕第一轴X转动,第二握持部32朝向第一握持部31运动,第一动作部21会保持不动,第二动作部22相应地绕第三轴M转动,第二动作部22朝向第一动作部21运动,最终与第一动作部21相贴合,实现了功能部20的闭合。
或者,同时控制第一握持部31和第二握持部32分别沿相反的方向绕第一轴X转动,第一握持部31朝向第二握持部32运动,第一动作部21和第二动作部22相应地分别绕第三轴M转动,第一动作部21朝向第二动作部22运动,最终与第二动作部22相贴合,功能部20也能闭合。
当控制手持部30的第一握持部31和第二握持部32同时沿相同方向绕第一轴X转动时,第一动作部21和第二动作部22也相应地同时沿相同方向绕第三轴M转动,实现了功能部20在横摆方向上的运动。
当握持手持部30控制第一连接部件60绕第二轴Y转动时,第二连接部件60会相应地绕第四轴Z转动,从而实现了功能部20在俯仰方向上的动作。
综上,通过上述操作,控制手持部30的张开或闭合,实现了功能部20的张开或闭合;控制手持部30在横摆方向上的动作,实现了功能部20在横摆方向上的动作;控制手持部30在俯仰方向上的动作,实现了功能部20在俯仰方向上的动作。
为了防止各线缆相互干涉,并使得各线缆更稳定地传递手持部30的动作。继续参考2并结合图6、图11和图12所示,第二轴Y上设有第一滑轮52,第一滑轮52上设有多个沿第二轴Y的轴向间隔设置的线槽。本实施例中第一滑轮52上设有四个线槽。连接机构100与器械杆10连接的一端设有第二滑轮80,第二滑轮80设于第五轴N上,第二滑轮80与第一滑轮52平行,第二滑轮80上设有多个沿第二滑轮80的延伸方向间隔设置的线槽,本实施例中,第二滑轮80上设有六个线槽。
参考图7至图9并结合图2所示,第四轴Z上间隔设有第三滑轮58和第四滑轮59,第二俯仰绞盘53位于第三滑轮58和第四滑轮59之间,第三滑轮58和第四滑轮59上分别设有多个沿第四轴Z的轴向间隔设置的线槽,本实施例中第三滑轮58和第四滑轮59上分别设有两个线槽。第二连接部件70的第一端和第二端之间的部分设有第五滑轮55和第六滑轮57,其中,第五滑轮55与第三滑轮58位于第二连接部件70的同一侧,第六滑轮57与第四滑轮59位于第二连接部件70的同一侧,第五滑轮55和第六滑轮57上分别设有多个沿与第四轴Z的轴向平行的方向间隔设置的线槽,本实施例中,第五滑轮55和第六滑轮57上分别设有两个线槽。
本发明实施例中,与第一子横摆绞盘54连接的横摆线缆54a和与第二子横摆绞盘50连接的横摆线缆50a均为封闭环线,即横摆线缆54a具有两根线缆,每根线缆的一端与第一子横摆绞盘54固定连接,分别经第一滑轮52上的线槽、第二滑轮80上的线槽、穿过器械杆10的线缆通道10a(参考图7)、第三滑轮58上的线槽及第五滑轮55上的线槽后,另一端与第三子横摆绞盘51固定连接。横摆线缆50a也具有两根线缆,每根线缆的一端与第二子横摆绞盘50固定连接,分别经第一滑轮52上的线槽、第二滑轮80上的线槽、穿过器械杆10的线缆通道10a(参考图7)、第四滑轮59上的线槽及第六滑轮57上的线槽后,另一端与第四子横摆绞盘56固定连接;各横摆线缆相互不干涉,且能够稳定地传递手持部30的动作。
与第一俯仰绞盘61连接的俯仰线缆61a也为封闭环线,即俯仰线缆61a具有两根线缆,每根线缆的一端与第一俯仰绞盘61固定连接,经第二滑轮80上的线槽后,穿过器械杆10的线缆通道10a(参考图7)、另一端与第二俯仰绞盘53固定连接。各俯仰线缆与各横摆线缆相互不干涉,且能够稳定地传递手持部30的动作。
需说明的是,上述各滑轮可以同时存在,也可以选择性使用某些滑轮,只要能够起到防止各线缆相互干涉,并使得各线缆更稳定地传递手持部30的动作的作用即可。
第二实施例
参考图14,本发明实施例提供一种仿生手术器械,与第一实施例中一样,以器械杆10的近端为顶点作与手持部30的中轴线共线或平行且沿第一方向的第一参考射线R1,以器械杆10的近端为顶点作与器械杆10的中轴线共线或平行且沿第二方向的第二参考射线R2,第一参考射线R1与第二参考射线R2之间的夹角α为>0°且≤90°。结合第一实施例所记载的内容,本实施例中,器械杆10的近端A位于手90的手腕的截平面P内。同样,操作者通过手90操作手持部30控制功能部20进行相应动作时,可在手臂不动的情况下,仅手腕动作,即可使得功能部20实现相应的动作,操作者的操作舒适度明显提升。
参考图14至图17,本实施例的仿生手术器械还包括:固定部12,具有球形内腔12a,与器械杆10的近端连接,器械杆10的线缆通道与球形内腔12a连通;转动部13,转动部13可转动地被固定部12夹持。本实施例中,固定部12和转动部13的具体形状不做限制,只要转动部13可转动地被固定部12夹持即可,本实施例中,转动部13为球体,固定部12为球壳。
参考图15,传动部件40包括:第一横摆绞盘5,设于手持部30,手持部30通过第一横摆绞盘5与转动部13在横摆方向上绕第一轴X转动连接;参考图9,在器械杆10的远端设有第二横摆绞盘6,用于随着第一横摆绞盘5的动作而动作,且将相应的动作传递至功能部20,其中,第一横摆绞盘5通过至少一根横摆线缆驱第二横摆绞盘6。
参考图17,球形内腔12a内设有沿俯仰方向延伸的导轨12b,转动部13的外表面设有能够沿导轨12b移动的滑块14,手持部30通过转动部13与固定部12在俯仰方向上绕第二轴Y转动连接。参考图9,传动部件40包括:第二俯仰绞盘53,设于器械杆10的远端,用于随着转动部13的动作而动作,且将相应的动作传递至功能部20,其中,结合图16所示,转动部13通过至少一根俯仰线缆61a驱动第二俯仰绞盘53,第一轴X的轴向和第二轴Y的轴向正交。
参考图15,本实施例中,手持部30包括:第一握持部31和第二握持部32;第一横摆绞盘5包括同轴设置的第一子横摆绞盘54和第二子横摆绞盘50,第一子横摆绞盘54设于第一握持部31,第二子横摆绞盘50设于第二握持部32,第一握持部31通过第一子横摆绞盘54与转动部13在横摆方向上绕第一轴X转动连接,第二握持部32通过第二子横 摆绞盘50与转动部13在横摆方向上绕第一轴X转动连接。
参考图7至图10,功能部20包括:第一动作部21和第二动作部22;传动部件40还包括:第二连接部件70,第二连接部件70具有第一端和第二端;第二横摆绞盘6包括同轴设置的第三子横摆绞盘51和第四子横摆绞盘56,第三子横摆绞盘51设于第一动作部21,与第一子横摆绞盘54通过横摆线缆连接,第四子横摆绞盘56设于第二动作部22,与第二子横摆绞盘50通过横摆线缆连接。
第一动作部21通过第三子横摆绞盘51与第二连接部件70的第一端在横摆方向上绕第三轴M转动连接,第二动作部22通过第四子横摆绞盘56与第二连接部件70的第一端在横摆方向上绕第三轴M转动连接;第二俯仰绞盘53设于第二连接部件70的第二端,且第二连接部件70通过第二俯仰绞盘53与器械杆10的远端在俯仰方向上绕第四轴Z转动连接;其中,第三轴M的轴向和第四轴Z的轴向正交。
关于本实施例中功能部20和第一实施例中功能部20的结构相同,具体细节结构等可参照第一实施例记载,在此不再赘述。
参考图18,功能部20处于初始位置;参考图19并结合图15所示,握持手持部30并控制转动部13绕第二轴Y转动,转动部13上的滑块14会沿着固定部12内的导轨12b在俯仰方向上移动,从而功能部20在俯仰方向上动作。
需说明的是,本发明的俯仰线缆、横摆线缆及开关线缆与相应的滑轮的缠绕方式不做限制,只要满足以下条件即可:手持部30的俯仰运动、横摆运动、或两者结合和/或开关运动,能够使功能部20发生相应的俯仰运动、横摆运动、或两者结合和/或开关运动。还可以通过设置俯仰线缆、横摆线缆及开关线缆与相应的滑轮的缠绕方式使得手持部30和功能部20在相同方向上运动,例如,手持部30在俯仰方向上向上运动,功能部20也相应地在俯仰方向上向上运动;手持部30在横摆方向上向左运动,功能部20也相应地在横摆方向上向左运动。也即,仿生手术器械实现了“正向操作”。
综上,本发明的仿生手术器械部件使得操作者操作的舒适度提高,还可以实现“正向操作”。
综上所述,本发明提供的上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (16)

  1. 一种仿生手术器械,其特征在于,包括:
    器械杆;
    功能部,设于所述器械杆的远端;
    手持部,设于所述器械杆的近端,所述手持部通过传动部件将手持部的控制动作传递至所述功能部;
    以所述器械杆的近端为顶点作与所述手持部的中轴线共线或平行且沿第一方向的第一参考射线,以所述器械杆的近端为顶点作与所述器械杆的中轴线共线或平行且沿第二方向的第二参考射线,所述第一参考射线与所述第二参考射线之间的夹角为>0°且≤90°,
    其中,所述第一方向为所述手持部的连接端指向所述手持部的自由端的方向,所述第二方向为所述器械杆的近端指向所述器械杆的远端的方向。
  2. 根据权利要求1所述的仿生手术器械,其特征在于,所述器械杆的近端位于第一平面和第二平面所夹的空间内,所述第一平面为以操作者手腕的截平面为参照面,向近端方向10厘米所作的平行平面,所述第二平面为以操作者手腕的截平面为参照面,向远端方向10厘米所作的平行平面。
  3. 根据权利要求1所述的仿生手术器械,其特征在于,所述手持部的俯仰运动、横摆运动、或两者结合和/或开关运动,能够使所述功能部发生相应的俯仰运动、横摆运动、或两者结合和/或开关运动。
  4. 根据权利要求3所述的仿生手术器械,其特征在于,所述手持部的控制动作按比例传递至所述功能部。
  5. 根据权利要求4所述的仿生手术器械,其特征在于,所述比例为0.1~5。
  6. 根据权利要求4或5所述的仿生手术器械,其特征在于,所述传动部件包括:
    第一横摆绞盘,设于所述器械杆的近端,用于随着所述手持部的操作传递横摆方向上的动作;
    第二横摆绞盘,设于所述器械杆的远端,用于随着所述第一横摆绞盘的动作而动作,且将相应的动作传递至所述功能部,
    其中,所述第一横摆绞盘通过至少一根横摆线缆驱动所述第二横摆绞盘。
  7. 根据权利要求6所述的仿生手术器械,其特征在于,所述传动部件包括:
    第一俯仰绞盘,设于所述器械杆的近端,用于随着所述手持部的操作传递俯仰方向上的动作;
    第二俯仰绞盘,设于所述器械杆的远端,用于随着所述第一俯仰绞盘的动作而动作,且将相应的动作传递至所述功能部,
    其中,所述第一俯仰绞盘通过至少一根俯仰线缆驱动所述第二俯仰绞盘。
  8. 根据权利要求7所述的仿生手术器械,其特征在于,还包括:连接机构,所述连接机构与所述器械杆的近端连接,且与所述器械杆呈角度设置;
    所述手持部包括:第一握持部和第二握持部;
    所述传动部件还包括:
    第一连接部件,所述第一连接部件具有第一端和第二端;
    所述第一横摆绞盘包括同轴设置的第一子横摆绞盘和第二子横摆绞盘,所述第一子横摆绞盘设于所述第一握持部,所述第二子横摆绞盘设于所述第二握持部,所述第一握持部通过所述第一子横摆绞盘与所述第一端在横摆方向上绕第一轴转动连接,所述第二握持部通过所述第二子横摆绞盘与所述第一端在横摆方向上绕所述第一轴转动连接;
    所述第一俯仰绞盘设于所述第二端,且所述第一连接部件通过所述第一俯仰绞盘与所述连接机构未与所述器械杆连接的一端在俯仰方向上绕第二轴转动连接;
    其中,所述第一轴的轴向和所述第二轴的轴向正交。
  9. 根据权利要求8所述的仿生手术器械,其特征在于,所述功能部包括:第一动作部和第二动作部;
    所述传动部件还包括:
    第二连接部件,所述第二连接部件具有第一端和第二端;
    所述第二横摆绞盘包括同轴设置的第三子横摆绞盘和第四子横摆绞盘,所述第三子横摆绞盘设于所述第一动作部,与所述第一子横摆绞盘通过横摆线缆连接,所述第四子横摆绞盘设于所述第二动作部,与所述第二子横摆绞盘通过横摆线缆连接;
    所述第一动作部通过所述第三子横摆绞盘与所述第二连接部件的第一端在横摆方向 上绕第三轴转动连接,所述第二动作部通过所述第四子横摆绞盘与所述第二连接部件的第一端在横摆方向上绕第三轴转动连接;
    所述第二俯仰绞盘设于所述第二连接部件的第二端,且所述第二连接部件通过所述第二俯仰绞盘与所述器械杆的远端在俯仰方向上绕第四轴转动连接;
    其中,所述第三轴的轴向和所述第四轴的轴向正交。
  10. 根据权利要求9所述的仿生手术器械,其特征在于,所述第二轴上设有第一滑轮,所述第一滑轮上设有多个沿所述第二轴的轴向间隔设置的线槽;
    所述连接机构与所述器械杆连接的一端设有第二滑轮,所述第二滑轮与所述第一滑轮平行,所述第二滑轮上设有多个沿所述第二滑轮的延伸方向间隔设置的线槽。
  11. 根据权利要求10所述的仿生手术器械,其特征在于,所述第四轴上间隔设有第三滑轮和第四滑轮,所述第二俯仰绞盘位于所述第三滑轮和所述第四滑轮之间,所述第三滑轮和所述第四滑轮上分别设有多个沿所述第四轴的轴向间隔设置的线槽。
  12. 根据权利要求11所述的仿生手术器械,其特征在于,所述第二连接部件的第一端和第二端之间的部分设有第五滑轮和第六滑轮,其中,所述第五滑轮与所述第三滑轮位于所述第二连接部件的同一侧,所述第六滑轮与所述第四滑轮位于所述第二连接部件的同一侧,所述第五滑轮和所述第六滑轮上分别设有多个沿与所述第四轴的轴向平行的方向间隔设置的线槽。
  13. 根据权利要求4或5所述的仿生手术器械,其特征在于,还包括:
    固定部,具有球形内腔,与所述器械杆的近端连接,器械杆的线缆通道与所述球形内腔连通;
    转动部,所述转动部可转动地被所述固定部夹持;
    所述传动部件包括:
    第一横摆绞盘,设于所述手持部,所述手持部通过所述第一横摆绞盘与所述转动部在横摆方向上绕第一轴转动连接;
    第二横摆绞盘,设于所述器械杆的远端,用于随着所述第一横摆绞盘的动作而动作,且将相应的动作传递至所述功能部,
    其中,所述第一横摆绞盘通过至少一根横摆线缆驱动所述第二横摆绞盘。
  14. 根据权利要求13所述的仿生手术器械,其特征在于,所述球形内腔内设有沿俯仰方向延伸的导轨,所述转动部的外表面设有能够沿所述导轨移动的滑块,所述手持部通过所述转动部与所述固定部在俯仰方向上绕第二轴转动连接;
    所述传动部件包括:
    第二俯仰绞盘,设于所述器械杆的远端,用于随着所述转动部的动作而动作,且将相应的动作传递至所述功能部,
    其中,所述转动部通过至少一根俯仰线缆驱动所述第二俯仰绞盘,所述第一轴的轴向和所述第二轴的轴向正交。
  15. 根据权利要求14所述的仿生手术器械,其特征在于,所述手持部包括:第一握持部和第二握持部;
    所述第一横摆绞盘包括同轴设置的第一子横摆绞盘和第二子横摆绞盘,所述第一子横摆绞盘设于所述第一握持部,所述第二子横摆绞盘设于所述第二握持部,所述第一握持部通过所述第一子横摆绞盘与所述转动部在横摆方向上绕所述第一轴转动连接,所述第二握持部通过所述第二子横摆绞盘与所述转动部在横摆方向上绕所述第一轴转动连接。
  16. 根据权利要求15所述的仿生手术器械,其特征在于,所述功能部包括:第一动作部和第二动作部;
    所述传动部件还包括:
    第二连接部件,所述第二连接部件具有第一端和第二端;
    所述第二横摆绞盘包括同轴设置的第三子横摆绞盘和第四子横摆绞盘,所述第三子横摆绞盘设于所述第一动作部,与所述第一子横摆绞盘通过横摆线缆连接,所述第四子横摆绞盘设于所述第二动作部,与所述第二子横摆绞盘通过横摆线缆连接;
    所述第一动作部通过所述第三子横摆绞盘与所述第二连接部件的第一端在横摆方向上绕第三轴转动连接,所述第二动作部通过所述第四子横摆绞盘与所述第二连接部件的第一端在横摆方向上绕第三轴转动连接;
    所述第二俯仰绞盘设于所述第二连接部件的第二端,且所述第二连接部件通过所述第二俯仰绞盘与所述器械杆的远端在俯仰方向上绕第四轴转动连接;
    其中,所述第三轴的轴向和所述第四轴的轴向正交。
PCT/CN2018/121221 2017-12-15 2018-12-14 一种仿生手术器械 WO2019114823A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711352877.7A CN109925061A (zh) 2017-12-15 2017-12-15 一种仿生手术器械
CN201711352877.7 2017-12-15

Publications (1)

Publication Number Publication Date
WO2019114823A1 true WO2019114823A1 (zh) 2019-06-20

Family

ID=66820766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121221 WO2019114823A1 (zh) 2017-12-15 2018-12-14 一种仿生手术器械

Country Status (2)

Country Link
CN (1) CN109925061A (zh)
WO (1) WO2019114823A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110576430B (zh) * 2019-10-13 2020-05-15 田亚丽 一种肿瘤手术机器人转动件
CN110897720B (zh) * 2019-12-16 2020-07-07 青岛大学附属医院 一种医疗手术机器人手术器械平移单元
CN111568542B (zh) * 2020-06-03 2021-04-09 中南大学湘雅医院 一种消化科腹腔镜微创手术器械

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101040798A (zh) * 2006-03-23 2007-09-26 伊西康内外科公司 带有具模仿功能的端部执行器的外科紧固件和切割器
EP2027811A1 (en) * 2007-08-23 2009-02-25 Tyco Healthcare Group LP Endoscopic surgical devices
CN104093370A (zh) * 2011-11-23 2014-10-08 利思梅德株式会社 手术用器械
CN104688346A (zh) * 2013-12-04 2015-06-10 柯惠Lp公司 双方向的关节式运动手用器械
WO2016052784A1 (ko) * 2014-10-02 2016-04-07 주식회사 리브스메드 수술용 인스트루먼트

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6817974B2 (en) * 2001-06-29 2004-11-16 Intuitive Surgical, Inc. Surgical tool having positively positionable tendon-actuated multi-disk wrist joint
US7648519B2 (en) * 2006-09-13 2010-01-19 Cambridge Endoscopic Devices, Inc. Surgical instrument
US20090171147A1 (en) * 2007-12-31 2009-07-02 Woojin Lee Surgical instrument
KR20100099817A (ko) * 2009-03-04 2010-09-15 주식회사 로보멕 수술기구
CN203029381U (zh) * 2012-08-13 2013-07-03 宁波胜杰康生物科技有限公司 多自由度的手术器械
EP3034028A1 (en) * 2014-12-17 2016-06-22 Suzhou Kang Multi Robot Co Ltd A multi-degree of freedom surgical instrument for minimally invasive surgery
CN208598524U (zh) * 2017-12-15 2019-03-15 中国人民解放军第二军医大学 一种仿生手术器械

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101040798A (zh) * 2006-03-23 2007-09-26 伊西康内外科公司 带有具模仿功能的端部执行器的外科紧固件和切割器
EP2027811A1 (en) * 2007-08-23 2009-02-25 Tyco Healthcare Group LP Endoscopic surgical devices
CN104093370A (zh) * 2011-11-23 2014-10-08 利思梅德株式会社 手术用器械
CN104688346A (zh) * 2013-12-04 2015-06-10 柯惠Lp公司 双方向的关节式运动手用器械
WO2016052784A1 (ko) * 2014-10-02 2016-04-07 주식회사 리브스메드 수술용 인스트루먼트

Also Published As

Publication number Publication date
CN109925061A (zh) 2019-06-25

Similar Documents

Publication Publication Date Title
ES2547001T3 (es) Empuñadura reductora de interferencias para instrumentos quirúrgicos articulados
US5860995A (en) Laparoscopic endoscopic surgical instrument
Thompson et al. Evaluation of a manually driven, multitasking platform for complex endoluminal and natural orifice transluminal endoscopic surgery applications (with video)
US20190175288A1 (en) System and apparatus for endoscopic deployment of robotic concentric tube manipulators for performing surgery
WO2019105350A1 (zh) 蛇形手术器械
US7963976B2 (en) Articulated surgical probe and method for use
JP4169142B2 (ja) 内視鏡用外科デバイス
JP5611946B2 (ja) 最小侵襲手術用器具
JP5615994B1 (ja) 手術器具用の作動ノブ
US8409175B2 (en) Surgical instrument guide device
JP5704926B2 (ja) 腹腔鏡把持器具のリストを首振りさせるための方法及び装置
US20100249497A1 (en) Surgical instrument
US8317811B2 (en) Surgical instrument for endoscopic surgery
JP2004154164A (ja) 多自由度型処置具
WO2019114823A1 (zh) 一种仿生手术器械
JP2003135473A (ja) 内視鏡手術用能動鉗子
WO2009091497A2 (en) Minimally invasive surgical instrument
US20110238108A1 (en) Surgical instrument
Anderson et al. Comparing a mechanical analogue with the Da Vinci user interface: suturing at challenging angles
CN208725874U (zh) 一种仿生手术器械和仿生手术器械套件
CN208598524U (zh) 一种仿生手术器械
CN110974319B (zh) 一种基于仿生原理的微创手术器械结构及控制方法
CN217772455U (zh) 联动手术器械
CN109925009A (zh) 用于手术器械的调节装置及手术器械
WO2019114822A1 (zh) 一种仿生手术器械及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18889286

Country of ref document: EP

Kind code of ref document: A1