WO2019114037A1 - 一种零电压开和零电流关的开关实现方法 - Google Patents

一种零电压开和零电流关的开关实现方法 Download PDF

Info

Publication number
WO2019114037A1
WO2019114037A1 PCT/CN2017/119172 CN2017119172W WO2019114037A1 WO 2019114037 A1 WO2019114037 A1 WO 2019114037A1 CN 2017119172 W CN2017119172 W CN 2017119172W WO 2019114037 A1 WO2019114037 A1 WO 2019114037A1
Authority
WO
WIPO (PCT)
Prior art keywords
zero
current
voltage
switch
load
Prior art date
Application number
PCT/CN2017/119172
Other languages
English (en)
French (fr)
Inventor
邹高迪
邹新
Original Assignee
深圳迈睿智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈睿智能科技有限公司 filed Critical 深圳迈睿智能科技有限公司
Publication of WO2019114037A1 publication Critical patent/WO2019114037A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/021Details concerning the disconnection itself, e.g. at a particular instant, particularly at zero value of current, disconnection in a predetermined order

Definitions

  • the invention relates to the technical field of LED power sources, in particular to a method for realizing a switch of zero voltage on and zero current off.
  • Surge is also called a surge, which is a transient over-voltage that exceeds the normal voltage. It generally refers to a large current caused by a high voltage like a "wave" that occurs in the power grid for a short period of time. In essence, a surge is a violent pulse that occurs in just one million of a million. There are two reasons for the surge voltage, one is lightning, and the other is generated when a large load on the grid is turned on or off (including switching of the compensation capacitor).
  • NTC Series temperature coefficient thermistor
  • Electromagnetic relay type a large current limiting resistor is connected in series on the circuit. After a certain delay, the contact of the electromagnetic relay will short-circuit the current limiting resistor after the power is turned on.
  • the disadvantage is that the volume is large, the noise is generated when the suction is made, and the relay touches. The point life is short, the impact vibration resistance is poor, and the cost is high.
  • the object of the present invention is to reduce or avoid the damage caused by the surge current to the relay contacts when the device is switched, and to improve the life of the relay.
  • the present invention provides a zero voltage open and zero current off switch implementation method, which is characterized in that the control switch is closed when the input AC voltage is zero, and the opening operation is completed; when the load current is zero, the control switch is broken. Open, complete the closing action.
  • the zero voltage on and zero current off switch implementation method is characterized in that an input voltage detection module and a load current detection module are added, and the input voltage detection module samples the signal of the AC input voltage or the input voltage zero crossing time point and Input to the main controller, the load current detecting module samples the load working current or the load working current zero-crossing time point signal and inputs it to the main controller, and the main controller monitors the sampled AC input voltage when receiving the control switch opening command When the AC input voltage is zero, the control switch is turned on; when the main controller receives the control switch OFF command, the sampled load operating current is monitored, and when the load working current is zero, the control switch is turned off.
  • the zero voltage on and zero current off switch implementation method is characterized in that the load is AC powered, the execution unit of the switch is a relay, and the power supply module of the main controller samples the half wave rectification mode, and the output of the power supply module
  • the ground wire of the DC power source is floating and connected to the neutral line N pole of the AC input voltage.
  • the load current detecting module performs sampling by a current sampling resistor connected in series with the load, and two A/D input ports of the main controller. Directly connected to the two ends of the current sampling resistor, respectively, the voltage of the current sampling resistor is used to obtain the voltage difference across the current sampling resistor, and then the load operating current is calculated.
  • the zero voltage on and zero current off switch implementation method is characterized in that input half wave rectification is adopted to solve the problem of potential difference.
  • the zero voltage on and zero current off switch implementation method is characterized in that an output voltage detection module is further added; an A/D input port of the main controller is directly connected to the hot line L of the input voltage after being connected in series with a large resistance Connection, realize input voltage detection; an A/D input port of the main controller is connected in series with a large resistor and directly connected to the live line L' of the load supply end to realize output voltage detection.
  • the zero voltage on and zero current off switch implementation method is characterized in that a switch self-learning module is added, and the switch self-learning module realizes an autonomous test relay contact contact time delay T3 and a contact disconnection delay T1
  • the contact contact time delay is a time when the relay receives the closing control command to the actual contact of the relay contact; the contact opening time delay is when the relay receives the closing control command and the relay contact is actually disconnected. Time; when the input voltage is zero, the main controller controls the relay switch to close and completes the opening action; when the load current is zero, the main controller controls the relay switch to open and completes the closing action.
  • the zero voltage on and zero current off switch implementation method is characterized in that the signal period of the AC input voltage is T, and the main controller controls the relay switch to close after the delay of T/2-T3 when the input voltage is zero. , the opening action is completed; after the delay of T/2-T1 when the load current is zero, the main controller controls the relay switch to open, and the closing action is completed.
  • the zero voltage on and zero current off switch implementation method is characterized in that when the load is idling or disconnected, the control switch is turned off when the output voltage is zero, and the closing action is completed.
  • the zero voltage on and zero current off switch implementation method wherein the phase difference between the input voltage and the load current is calculated by analyzing the sampled input AC voltage waveform and the load current waveform, wherein the phase difference corresponds to The zero-crossing time difference is TT, the TT is the timing load current leading the input voltage; the TT is the negative load current lags the input voltage; the AC input voltage signal period is T, when the load current leads the input voltage, the input
  • the main controller controls the relay switch to open after the delay of T/2-TT, and completes the closing action; when the load current lags the input voltage, the main control after the delay of the TT when the input voltage is zero The control relay switch is turned off to complete the closing action.
  • the invention effectively turns on the switch at the zero-crossing point of the alternating current input voltage, and accurately turns off the switch at the zero crossing point of the load current, so as to achieve zero surge current when the electrical load is turned on, cut off the electrical circuit under the zero load state, and all the common relays It is compatible with all kinds of loads, which greatly improves the life of the relay, reduces the cost, and reduces the current impact caused by the electrical load, without causing interference and impact on the power supply grid and other electrical equipment.
  • Figure 1 is a block diagram of a specific implementation circuit system
  • Figure 2 is a schematic diagram of the phase of different types of loads
  • Figure 3 is a circuit diagram of a specific implementation.
  • the invention mainly detects the zero-crossing state through the input voltage zero-crossing detection, the output voltage zero-crossing detection, and the load current zero-crossing detection, plus signal processing and execution.
  • FIG. 1 is a block diagram of a specific implementation circuit system, AC AC input, through the power supply module 1 to convert the input AC high voltage into 5V DC to provide working power for each unit module, the input voltage detection module 2 detects the input AC voltage, when input AC sine wave When the voltage is zero, the output signal is sent to the main controller MCU5, through the MCU internal calculation processing, and a control signal is output to control the output control circuit 6 to realize the relay pull-in, thereby achieving the purpose of opening when the input voltage crosses zero.
  • the actual normal relay may have to pass the contact contact time delay T3 of the delay contact is actually in contact, so if it is simply detected that the input voltage is zero
  • the contact delay time T3 is actually present due to the contact of the relay. Therefore, the input voltage of the actual relay contact is not exactly zero, so it needs to be adjusted according to T3. Since the input voltage is an AC signal, The period is T, there are two voltage zero points in each cycle, so in order to ensure that the input voltage of the relay contacts is exactly zero when contact, and in order to ensure the timeliness of response, the main controller detects the input AC voltage according to the input voltage detection module 2.
  • the delay control relay of T/2-T3 performs the closing operation, so that the relay receives the closed control signal at the time T3 before the actual voltage zero-crossing point, and just after the T3 time is the contact.
  • the time of contact, and this time is also the moment when the input voltage is zero, realizing Voltage is turned on.
  • the T3 is obtained by recording the time difference between the control relay and the actual closing.
  • the method can be obtained as follows: when the input voltage crosses zero, the delay control relay is turned on when T/8 is passed, and the recording time is t1, and the output voltage is sampled and monitored. When the output voltage is detected to be zero, the recording time is t2, t2.
  • T3 the time required to correct the control time for the next use.
  • the acquisition of T3 can also take multiple sampling calculations, take multiple averages, and dynamically update the T1 value in the non-volatile memory. It is compatible with the purpose of all different brand relays and is compatible with the same brand.
  • the output voltage detecting module 3 detects the output AC voltage.
  • the output signal is sent to the MCU 5 through the internal calculation process of the MCU, and a control signal control 6 is output to achieve the relay disconnection, thereby achieving zero crossing of the output voltage.
  • the purpose of shutdown is due to the different nature of the load, resistive, capacitive, and inductive. Therefore, when the voltage is turned off, the voltage zero-crossing method cannot meet the requirement of complete zero-crossing.
  • the output voltage zero-crossing can only be effective for no-load. .
  • the load current detecting module 4 performs load current detection through the sampling resistor 7, and the sampling resistor 7 is connected in series with the load;
  • FIG. 2 is a phase diagram of different types of loads, input voltage waveform A, current ideal waveform B, current lead waveform C, and current hysteresis waveform D
  • the current response waveform of the pure resistive load is the ideal waveform of the current B.
  • the voltage zero-crossing detection circuit and the current sampling detection circuit jointly detect the zero-crossing detection, and the current zero-crossing detection takes precedence; the capacitive load: the load current advances Output voltage, current response waveform, such as current ideal waveform C, there will be a phase difference.
  • the output signal is sent to the MCU 5 through the MCU.
  • the internal calculation process outputs a control signal control 6 to achieve the relay disconnection, thereby achieving the purpose of closing the capacitive load load current zero crossing.
  • the inductive load the load current lags the output voltage, and the current response waveform is the current ideal waveform D, so There is a phase difference.
  • the output voltage is zero, the load current is not zero and must be
  • the output signal to the MCU. 5 is calculated by the internal MCU processing, it outputs a control signal 6 to achieve the relay to open, thereby achieving the purpose of closing the inductive load the load current zero crossing.
  • the load current of the actual relay contact is not exactly zero, so it needs to be adjusted according to T1, because the load current is AC signal (sine wave), the period is T, there are two current zero points in each cycle, so in order to ensure that the contact current of the relay is off when the load current is exactly zero, and in order to ensure the timeliness of the response, the main controller according to the load
  • the current detecting module 4 detects the output alternating current, and when the detected load current is zero, the delay control relay of T/2-T1 performs the disconnecting operation, so that the relay receives the disconnection control at the time T1 before the actual current is zero.
  • the signal, just after the T1 time is just the time when the contact is disconnected, and this time is also the moment when the load current is zero, and the zero current is turned off.
  • T1 Due to the difference in T1 of relays of different brands, if a uniform solid T1 is used, there must be some relays that can not really achieve the effect of zero current shutdown, so there is still some damage to the relay.
  • a self-learning function for T1 is also added, and the main controller triggers the self-learning function when it is first used or by other means, and obtains T1 by recording the time difference between the control relay being turned off and the actual disconnection. Specifically, it can be obtained by: when the output current crosses zero, the delay control relay is turned off when T/8 is passed, and the recording time is t3, and the output current is sampled and monitored. When the output current is detected to be zero, the recording time is t4, t4.
  • T1 of the relay used by the control device is obtained, T1 is written into the non-volatile memory of the controller, and the stored T1 is used to correct the control time in the next use, and the acquisition of T1 can also be adopted.
  • FIG. 3 is a specific implementation circuit diagram, AC AC input, through the power supply module 8 to convert the input AC high voltage into 5V DC to provide working power for each unit module, when the sensing module 9 detects the human body moving signal, send the signal to the signal.
  • the amplification module 10 performs amplification processing, and the amplified signal is sent to the MCU 11 for arithmetic processing, and the MCU 11 receives the amplified signal.
  • Another important improvement of the present invention is the use of circuit design.
  • the load is AC powered, the execution unit of the switch is a relay, and the power supply module of the main controller MCU samples the half-wave rectification mode.
  • the ground of the output DC power supply of the power supply module 8 is floating, and the zero line N pole of the AC input voltage.
  • the load current detection module is sampled by a current sampling resistor R8 connected in series with the load.
  • the main controller MCU uses a single-chip microcomputer with multiple high-speed A/D ports.
  • the two A/D input ports of the MCU are directly connected to the current sampling resistor.
  • the two ends are connected, and the voltage of the current sampling resistor is respectively used to obtain the voltage difference across the current sampling resistor, thereby calculating the working current of the load. Since the half-wave rectification is adopted, the ground of the weak current part is directly connected to the N-phase of the AC power supply, that is, the neutral line is grounded, and the isolation requirement of the strong electric power and the weak electric part is reduced, and the input voltage, the output voltage, and the load current can be directly sampled.
  • the circuit design is further simplified.
  • the main controller MCU controls the contacts of the relay by controlling the three-stage tube Q3.
  • the sensing module 9 detects the human body moving signal, it is necessary to control the relay to pull in, and the output high level passes through the base of R11 to Q3, so that Q3 is turned on, thereby the relay is closed; when the sensing module does not detect the human body moving signal, after the output delay,
  • the amplification module 10 has no signal output, and the MCU 11 performs processing and detects the current zero-crossing signal. After the zero-crossing condition is reached, a low level is output through the base of R11 to Q3, so that Q3 is turned off, and the relay is turned off.
  • the input voltage crosses zero through R9 and R10 to detect the input AC voltage.
  • MCU 11 detects that MCU 11 outputs a high level through R11 to Q3 base, Q3 is turned on, and the relay is reliably connected. Thereby achieving the purpose of turning on when the input voltage crosses zero.
  • the output voltage crosses zero through R12 and R13 to detect the output AC voltage.
  • MCU 11 detects that MCU 11 outputs a high level through R11 to Q3 base, Q3 is turned on, and the relay is reliably connected. It can achieve the purpose of turning on when the output voltage crosses zero. Because the load is different in nature, resistive, capacitive and inductive, when the voltage is turned off, the method of voltage zero crossing can not meet the requirement of complete zero-crossing. Can only be valid for no-load.
  • the MCU 11 is provided with a switch self-learning module, and the switch self-learning module realizes self-test relay contact contact time delay T3 and contact disconnection delay T1, and the contact contact time delay is that the relay receives the closed control command to the relay touch The time at the actual contact; the contact off time delay is the time when the relay receives the closing control command to the actual contact of the relay contact; the main controller controls the relay switch to close when the input voltage is zero. The action of the main controller controls the relay switch to be turned off before the load current is zero, and the closing action is completed.
  • the amplifying module 10 when the sensing module does not detect the human body moving signal, after the output delay is over, the amplifying module 10 has no signal output, and the MCU 11 performs processing, and simultaneously samples the voltage across the R8 and calculates the load current.
  • the load current is detected to be zero, That is, the load current zero-crossing signal, after the delay of T/2-T1, the MCU 11 outputs a low level through the base of R11 to Q3, so that Q3 is turned on, and the relay is turned off.
  • the sensing module detects the human body moving signal
  • the input voltage of the samples sampled by R9 and R10 detects that the input voltage is zero, that is, the input voltage zero-crossing signal, and after the delay of T/2-T3, the output of the MCU11 is low.
  • the level passes through the base of R11 to Q3, turning Q3 off and the relay is turned off.
  • the above zero-crossing detection method can be realized by the sampling resistors in FIGS. 1 and 3, or by the current transformer, and the method of realizing the detection by the current transformer is also the scope of patent protection.
  • the above zero-crossing detection method can be realized by the MCU in FIG. 1 and FIG. 3, or can be realized by an operational amplifier and a comparator, and the detection method by the operational amplifier and the comparator is also a patent protection category. .

Abstract

本发明公开了一种零电压开启和零电流关闭的开关实现方法,其特征在于在交流电网电压为零时控制开关闭合,完成开启的动作;在负荷电流为零时控制开关断开,完成关闭的动作。通过在交流电输入电压过零点有效接通开关,及负荷电流过零点准确的断开开关,做到电气负荷开启时零浪涌电流,在零负载状态下切断电气回路,且通用所有的继电器,兼容所有性质的负载,从而大大提高了继电器的寿命,降低了成本,同时降低电气负荷开启的电流冲击,不会对供电电网和其他电气设备造成干扰与冲击。

Description

一种零电压开和零电流关的开关实现方法 技术领域
本发明涉及LED电源技术领域,特别涉及一种零电压开和零电流关的开关实现方法。
背景技术
浪涌也叫突波,就是超出正常电压的瞬间过电压,一般指电网中出现的短时间象“浪”一样的高电压引起的大电流。从本质上讲,浪涌就是发生在仅仅百万上之一秒内的一种剧烈脉冲。浪涌电压的产生原因有两个,一个是雷电,另一个是电网上的大型负荷接通或断开(包括补偿电容的投切)时产生的。
常规的控制器在开关接通或断开的瞬间,由于电网中存在电感,将在电网产生“浪涌电压”,从而引发浪涌电流。特别对于采用继电器作为开关执行单元时,一般不管负载大小,是容性负载、感性负载还是容性负载,在继电器的地触点接触或断开的瞬间,只要存在电压和电流,都会产生极大的浪涌电电流,这个电流比产品正常开关时的电流大几倍乃至几十倍,这样的大电流不仅会干扰到电网的其他设备,同时还会大大的缩短继电器的寿命;因此继电器的寿命在一定程度上决定了设备的寿命,为了缓解该问题,保证设备的整体使用寿命,不得不采用更高的耐压和更大电流的继电器,而继电器随着耐压和电流的提高,其成本急剧上升,因此也带来了设备成本上升的问题。
针对浪涌电流的问题,现在也存在以下几种通过抑制浪涌电流方法来解决或缓解该问题,但并不能从根本上解决该问题。
1.串联温度系数热敏电阻(NTC),利用负温度系数上电时限制浪涌电流,启动后NTC流过电流发热使其电阻值降低。这种方法简单,但自身发热,热启动特性差的限制一般只适用于50W以下并且对电源的使用要求不高的场合中。
2.电磁继电器式,在电路上串联大的限流电阻,电源上电后经一定延时后电磁继电器的触点将限流电阻短路,其缺点是体积大、吸合时产生噪音、继电器触点寿命短、耐冲击振动性差,且成本高。
3.固态继电器式,用可控硅代替机械触点,其缺点是外围电路较繁琐,双 向可控漏电流大因此不能有效的抑制浪涌电流。
发明内容
针对以上缺陷,本发明目的如何降低或避免设备开关时产生浪涌电流对继电器触点的破坏,提升继电器的寿命。
为了解决以上问题本发明提出了一种零电压开和零电流关的开关实现方法,其特征在于在输入交流电压为零时控制开关闭合,完成开的动作;在负荷电流为零时控制开关断开,完成关的动作。
所述的零电压开和零电流关的开关实现方法,其特征在于增加了输入电压检测模块和负荷电流检测模块,所述输入电压检测模块采样交流输入电压或输入电压过零时间点的信号并输入到主控制器,所述负荷电流检测模块采样负载工作电流或负载工作电流过零时间点的信号并输入到主控制器,主控制器接收到控制开关打开指令时,监控采样的交流输入电压,当交流输入电压为零的瞬间控制开关打开;当主控制器接收到控制开关关闭指令时,监控采样的负载工作电流,当负载工作电流为零的瞬间控制开关关闭。
所述的零电压开和零电流关的开关实现方法,其特征在于负载采用交流供电,开关的执行单元为继电器,所述主控制器的电源供电模块采样半波整流模式,电源供电模块的输出直流电源的地线为浮地,与交流输入电压的零线N极相连接,所述负荷电流检测模块通过一个与负载串联的电流采样电阻实现采样,主控制器的两个A/D输入端口直接与电流采样电阻的两端相连,分别采用电流采样电阻的电压,获得电流采样电阻两端的压差,进而计算获得负载工作电流。
所述的零电压开和零电流关的开关实现方法,其特征在于采用了输入半波整流,解决电位差的问题。
所述的零电压开和零电流关的开关实现方法,其特征在于还增加了输出电压检测模块;主控制器的一个A/D输入端口串接大电阻后直接与输入电压的火线L极相连接,实现输入电压检测;主控制器的一个A/D输入端口串接大电阻后直接与负载供电端的火线L’极相连接,实现输出电压检测。
所述的零电压开和零电流关的开关实现方法,其特征在于增加了开关自学习模块,所述开关自学习模块实现自主测试继电器触点接触时间时延T3和触点断开时延T1,所述触点接触时间时延为继电器接收到闭合控制指令到继电器触 点实际接触上的时间;所述触点断开时间时延为继电器接收到闭合控制指令到继电器触点实际断开的时间;在输入电压为零的前T3时刻主控制器控制继电器开关闭合,完成开的动作;在负荷电流为零的前T1时刻主控制器控制继电器开关断开,完成关的动作。
所述的零电压开和零电流关的开关实现方法,其特征在于交流输入电压的信号周期为T,在输入电压为零时经过T/2-T3的时延后主控制器控制继电器开关闭合,完成开的动作;在负荷电流为零时经过T/2-T1的时延后主控制器控制继电器开关断开,完成关的动作。
所述的零电压开和零电流关的开关实现方法,其特征在于当负载为空载或断开时,在输出电压为零时控制开关断开,完成关的动作。
根据权利要求1所述的零电压开和零电流关的开关实现方法,其特征在于通过分析采样的输入交流电压波形和负荷电流波形,计算输入电压与负荷电流的相位差,所述相位差对应的过零时间差为TT,所述TT为正时负荷电流超前输入电压;所述TT为负时负荷电流滞后输入电压;交流输入电压的信号周期为T,当负荷电流超前输入电压时,在输入电压为零时经过T/2-TT的时延后主控制器控制继电器开关断开,完成关的动作;当负荷电流滞后输入电压时,在输入电压为零时经过TT的时延后主控制器控制继电器开关断开,完成关的动作。
本发明通过在交流电输入电压过零点有效接通开关,及负荷电流过零点准确的断开开关,做到电气负荷开启时零浪涌电流,在零负载状态下切断电气回路,且通用所有的继电器,兼容所有性质的负载,从而大大提高了继电器的寿命,降低了成本,同时降低电气负荷开启的电流冲击,不会对供电电网和其他电气设备造成干扰与冲击。
附图说明
图1是具体实施电路系统框图;
图2是不同类型负载的相位示意图;
图3为一种具体实施电路图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明主要通过输入电压过零检测,输出电压过零检测,及负荷电流过零检测,加上信号处理及执行,从而真正的实现在零负载状态下开关。
图1是具体实施电路系统框图,交流电AC输入,经电源供电模块1将输入的交流高压转换成5V直流为各个单元模块提供工作电源,输入电压检测模块2检测输入交流电压,当输入交流正弦波电压为零时,输出信号给主控制器MCU5,通过MCU内部计算处理,输出一控制信号控制输出控制电路6实现继电器吸合,从而实现在输入电压过零时开的目的。当继电器接收到开启的控制信号执行闭合操作,而实际正常的继电器可能要经过触点接触时间时延T3的延时触点才实际接触上,因此如果仅仅是简单的在检测到输入电压为零时直接控制继电器执行闭合操作,实际由于继电器存在触点接触时间时延T3,因此实际继电器的触点接触时输入电压并不能刚好为零,因此需要根据T3做调整,由于输入电压为交流信号,周期为T,每个周期存在两个电压零点,因此为了保证继电器的触点在接触时输入电压正好为零,同时为了保证响应的及时性,主控制器根据输入电压检测模块2检测输入交流电压,当检测到输入电压为零时经过T/2-T3的时延控制继电器执行闭合操作,这样继电器在实际电压过零点的前T3时刻接收到闭合的控制信号,经过T3时间后刚好是触点接触的时间,而这个时间也正是输入电压为零的时刻,真正实现零电压开启。
由于不同品牌的继电器的T3存在差异,如果采用统一固体的T3,则一定存在部分继电器并不能真正实现在零电压开启的效果,这样对继电器还是存在一定的损坏。为了改善该问题,还增加了对T3的自学习功能,主控制器在首次使用时或者由其它方式触发自学习功能,通过记录控制继电器开启到实际闭合的时间差获得T3。具体可以通过如下方式获取:在输入电压过零时经过T/8时延时控制继电器开启,并记录时刻为t1,同时采样监控输出电压,当检测到输出电压为零时记录时刻为t2,t2-t1=T3,这样获得该控制设备所采用的继电器的T3,将T3写到控制器的非易失性存储器中,下次使用时直接采用存储的T3修正控制时间。T3的获取还可以采用多次采样计算,取多次的平均值,并且动态更新非易失性存储器中的T1值。做到兼容所有不同品牌继电器的目的和兼容同一品 牌存在离散性的情况。
输出电压检测模块3检测输出交流电压,当输出交流正弦波为零时,输出信号给MCU 5通过MCU内部计算处理,输出一控制信号控制6来达到继电器断开,从而实现在输出电压过零时关闭的目的,由于负载性质不一样,有阻性,容性,感性,所以关闭时,电压过零的方法是达不到完全过零关闭的要求,输出电压过零只能针对空载时有效。
负荷电流检测模块4通过取样电阻7进行负荷电流检测,取样电阻7与负载串联;图2是不同类型负载的相位示意图,输入电压波形A、电流理想波形B、电流超前波形C和电流滞后波形D:对于阻性负载,纯阻性负载的电流响应波形如电流理想波形B:电压过零检测电路与电流取样检测电路共同检测完成过零检测,电流过零检测优先;容性负载:负荷电流超前输出电压,电流响应波形如电流理想波形C,所以会存在相位差,当输出电压为零时,负荷电流不为零,所以必须当输出交流正弦波电流为零时,输出信号给MCU 5通过MCU内部计算处理,输出一控制信号控制6来达到继电器断开,从而实现容性负载负荷电流过零时关闭的目的,感性负载:负荷电流滞后输出电压,电流响应波形如电流理想波形D,所以会存在相位差,当输出电压为零时,负荷电流不为零,必须当输出交流正弦波电流为零时,输出信号给MCU 5通过MCU内部计算处理,输出一控制信号控制6来达到继电器断开,从而实现感性负载负荷电流过零时关闭的目的。
继电器从接收到关闭信号到实际触点断开存在一个触点断开时延T1,因此实际继电器的触点断开时负荷电流并不能刚好为零,因此需要根据T1做调整,由于负荷电流为交流信号(正弦波),周期为T,每个周期存在两个电流零点,因此为了保证继电器的触点在断开时负荷电流正好为零,同时为了保证响应的及时性,主控制器根据负荷电流检测模块4检测输出交流电流,当检测到负荷电流为零时经过T/2-T1的时延控制继电器执行断开操作,这样继电器在实际电流为零的前T1时刻接收到断开的控制信号,经过T1时间后刚好是触点断开的时间,而这个时间也正是负荷电流为零的时刻,真正实现零电流关闭。
由于不同品牌的继电器的T1存在差异,如果采用统一固体的T1,则一定存在部分继电器并不能真正实现在零电流关闭的效果,这样对继电器还是存在一定的损坏。为了改善该问题,还增加了对T1的自学习功能,主控制器在首次使 用时或者由其它方式触发自学习功能,通过记录控制继电器关闭到实际断开的时间差获得T1。具体可以通过如下方式获取:在输出电流过零时经过T/8时延时控制继电器关闭,并记录时刻为t3,同时采样监控输出电流,当检测到输出电流为零时记录时刻为t4,t4-t3=T1,这样获得该控制设备所采用的继电器的T1,将T1写到控制器的非易失性存储器中,下次使用时直接采用存储的T1修正控制时间,T1的获取还可以采用多次采样计算,取多次的平均值,并且动态更新非易失性存储器中的T1值,做到兼容所有不同品牌继电器的目的和兼容同一品牌存在离散性的情况。
第一次上电时,取样电阻7尚未有电流流过,必须先检测输入电压过零,使继电器导通,所以输入电压过零是有必要的;在输出空载,或开路的情况下,取样电阻7也没有电流流过,所以是通过输出电压过零检测,使继电器关断;只要是电路在闭环状态,都是以负荷电流检测为准,通过这三种检测方式结合,可确保在任何状态的过零。
图3为一种具体实施电路图,交流电AC输入,经电源供电模块8将输入的交流高压转换成5V直流为各个单元模块提供工作电源,当感应模块9检测到人体移动信号,将信号送到信号放大模块10进行放大处理,经放大的信号送到MCU11运算处理,MCU 11收到放大信号后。本发明的另外一个重要改进在于采用电路的设计。负载采用交流供电,开关的执行单元为继电器,主控制器MCU的电源供电模块采样半波整流模式,电源供电模块8的输出直流电源的地线为浮地,与交流输入电压的零线N极相连接,负荷电流检测模块通过一个与负载串联的电流采样电阻R8实现采样,主控制器MCU采用具有多个高速A/D口的单片机,MCU的两个A/D输入端口直接与电流采样电阻的两端相连,分别采用电流采样电阻的电压,获得电流采样电阻两端的压差,进而计算获得负载工作电流。由于采用的是半波整流,因此弱电部分的地直接与交流供电的N级也就是零线为地,减少了强电与弱电部分的隔离要求,可直接采样输入电压、输出电压和负荷电流,进一步简化了电路设计。
主控制器MCU通过控制三级管Q3控制继电器的触点。当感应模块9检测人体移动信号,需要控制继电器吸合,输出高电平通过R11到Q3基极,使Q3导通,从而继电器吸合;当感应模块未检测人体移动信号,输出延时过后,放大模块10没有信号输出,MCU 11运算处理,同时检测电流过零信号,达到过零 条件后,输出一低电平通过R11到Q3基极,使Q3截止,从而继电器断开。
输入电压过零通过R9,R10检测输入交流电压,当输入交流正弦波为零时,MCU 11检测到,MCU 11输出一高电平通过R11到Q3基极,Q3导通,继电器可靠吸合,从而实现在输入电压过零时开通的目的。
输出电压过零通过R12,R13检测输出交流电压,当输入交流正弦波为零时,MCU 11检测到,MCU 11输出一高电平通过R11到Q3基极,Q3导通,继电器可靠吸合,可以实现在输出电压过零时开通的目的,由于负载性质不一样,有阻性,容性,感性,所以关闭时,电压过零的方法是达不到完全过零关闭的要求,电压过零只能针对空载时有效。
MCU 11上设有开关自学习模块,开关自学习模块实现自测试继电器触点接触时间时延T3和触点断开时延T1,触点接触时间时延为继电器接收到闭合控制指令到继电器触点实际接触上的时间;触点断开时间时延为继电器接收到闭合控制指令到继电器触点实际断开的时间;在输入电压为零的前T3时刻主控制器控制继电器开关闭合,完成开的动作;在负荷电流为零的前T1时刻主控制器控制继电器开关断开,完成关的动作。因此当感应模块未检测人体移动信号,输出延时过后,放大模块10没有信号输出,MCU 11运算处理,通过同时采样R8两端的电压,并计算获得负荷电流,当检测到负荷电流为零时,也就是负荷电流过零信号,再经过T/2-T1的时延后,MCU 11输出一低电平通过R11到Q3基极,使Q3导通,从而继电器断开。
当感应模块检测人体移动信号,通过采样R9和R10采样的输入电压当检测到输入电压为零时,也就是输入电压过零信号,再经过T/2-T3的时延后,MCU11输出一低电平通过R11到Q3基极,使Q3截止,从而继电器断开。
以上的过零检测方式,可以是通过如图1,3中的取样电阻来实现检测,也可以通过电流互感器来实现检测,通过电流互感器来实现检测的方式也是专利保护的范畴。
以上的过零检测方式,可以是通过如图1,3中的MCU来实现检测,也可以通过运算放大器,比较器来实现检测,通过运算放大器,比较器来实现检测的方式也是专利保护的范畴。
以上所揭露的仅为本发明一种实施例而已,当然不能以此来限定本之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依 本发明权利要求所作的等同变化,仍属于本发明所涵盖的范围。

Claims (9)

  1. 一种零电压开和零电流关的开关实现方法,其特征在于在输入交流电压为零时控制开关闭合,完成开的动作;在负荷电流为零时控制开关断开,完成关的动作。
  2. 根据权利要求1所述的零电压开和零电流关的开关实现方法,其特征在于增加了输入电压检测模块和负荷电流检测模块,所述输入电压检测模块采样交流输入电压或输入电压过零时间点的信号并输入到主控制器,所述负荷电流检测模块采样负载工作电流或负载工作电流过零时间点的信号并输入到主控制器,主控制器接收到控制开关打开指令时,监控采样的交流输入电压,当交流输入电压为零的瞬间控制开关打开;当主控制器接收到控制开关关闭指令时,监控采样的负载工作电流,当负载工作电流为零的瞬间控制开关关闭。
  3. 根据权利要求2所述的零电压开和零电流关的开关实现方法,其特征在于负载采用交流供电,开关的执行单元为继电器,所述主控制器的电源供电模块采样半波整流模式,电源供电模块的输出直流电源的地线为浮地,与交流输入电压的零线N极相连接,所述负荷电流检测模块通过一个与负载串联的电流采样电阻实现采样,主控制器的两个A/D输入端口直接与电流采样电阻的两端相连,分别采用电流采样电阻的电压,获得电流采样电阻两端的压差,进而计算获得负载工作电流。
  4. 根据权利要求3所述的零电压开和零电流关的开关实现方法,其特征在于采用了输入半波整流,解决电位差的问题。
  5. 根据权利要求3所述的零电压开和零电流关的开关实现方法,其特征在于还增加了输出电压检测模块;主控制器的一个A/D输入端口串接大电阻后直接与输入电压的火线L极相连接,实现输入电压检测;主控制器的一个A/D输入端口串接大电阻后直接与负载供电端的火线L’极相连接,实现输出电压检测。
  6. 根据权利要求1至4任意一项所述的零电压开和零电流关的开关实现方法,其特征在于增加了开关自学习模块,所述开关自学习模块实现自主测试继电器 触点接触时间时延T3和触点断开时延T1,所述触点接触时间时延为继电器接收到闭合控制指令到继电器触点实际接触上的时间;所述触点断开时间时延为继电器接收到闭合控制指令到继电器触点实际断开的时间;在输入电压为零的前T3时刻主控制器控制继电器开关闭合,完成开的动作;在负荷电流为零的前T1时刻主控制器控制继电器开关断开,完成关的动作。
  7. 根据权利要求5所述的零电压开和零电流关的开关实现方法,其特征在于交流输入电压的信号周期为T,在输入电压为零时经过T/2-T3的时延后主控制器控制继电器开关闭合,完成开的动作;在负荷电流为零时经过T/2-T1的时延后主控制器控制继电器开关断开,完成关的动作。
  8. 根据权利要求1至4任意一项所述的零电压开和零电流关的开关实现方法,其特征在于当负载为空载或断开时,在输出电压为零时控制开关断开,完成关的动作。
  9. 根据权利要求1所述的零电压开和零电流关的开关实现方法,其特征在于通过分析采样的输入交流电压波形和负荷电流波形,计算输入电压与负荷电流的相位差,所述相位差对应的过零时间差为TT,所述TT为正时负荷电流超前输入电压;所述TT为负时负荷电流滞后输入电压;交流输入电压的信号周期为T,当负荷电流超前输入电压时,在输入电压为零时经过T/2-TT的时延后主控制器控制继电器开关断开,完成关的动作;当负荷电流滞后输入电压时,在输入电压为零时经过TT的时延后主控制器控制继电器开关断开,完成关的动作。
PCT/CN2017/119172 2017-12-14 2017-12-28 一种零电压开和零电流关的开关实现方法 WO2019114037A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711341390.9A CN107895931B (zh) 2017-12-14 2017-12-14 一种零电压开和零电流关的开关实现方法
CN201711341390.9 2017-12-14

Publications (1)

Publication Number Publication Date
WO2019114037A1 true WO2019114037A1 (zh) 2019-06-20

Family

ID=61807491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119172 WO2019114037A1 (zh) 2017-12-14 2017-12-28 一种零电压开和零电流关的开关实现方法

Country Status (2)

Country Link
CN (1) CN107895931B (zh)
WO (1) WO2019114037A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107895931B (zh) * 2017-12-14 2020-12-25 深圳迈睿智能科技有限公司 一种零电压开和零电流关的开关实现方法
CN108683159B (zh) * 2018-04-27 2022-06-21 东莞龙升电子有限公司 防电压突波的供电保护电路及其控制方法
CN108766835A (zh) * 2018-06-05 2018-11-06 深圳绿米联创科技有限公司 智能开关及其控制方法
CN109557955B (zh) * 2018-12-29 2020-09-29 重庆华渝电气集团有限公司 一种捷联惯导设备的温度控制装置及温度控制方法
CN110459433B (zh) * 2019-08-27 2022-11-01 九阳股份有限公司 一种继电器过零控制方法以及烹饪器具
CN112146253B (zh) * 2020-09-23 2021-12-17 海信(山东)空调有限公司 一种空调器及其压缩机控制方法
CN113190073B (zh) * 2021-05-10 2022-05-31 深圳市海和科技股份有限公司 一种负载控制方法及装置
CN113394876A (zh) * 2021-06-25 2021-09-14 漳州科华电气技术有限公司 一种基于负载短路的ups供电方法、系统及ups

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201752109U (zh) * 2010-07-01 2011-02-23 西北工业大学 一种交流固态功率控制器的软开关装置
US20110063759A1 (en) * 2009-09-14 2011-03-17 Electronic Systems Protection, Inc. Hybrid Switch Circuit
CN203432615U (zh) * 2013-08-16 2014-02-12 苏州智信通电子科技有限公司 一种双向无线智能开关
CN103916112A (zh) * 2014-04-21 2014-07-09 南京航空航天大学 具有限流功能的交流固态功率控制器控制方法及装置
CN105186866A (zh) * 2015-09-23 2015-12-23 三峡大学 一种非隔离型软开关高增益dc/dc变换器
CN107895931A (zh) * 2017-12-14 2018-04-10 深圳迈睿智能科技有限公司 一种零电压开和零电流关的开关实现方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101577192B (zh) * 2009-06-12 2011-05-04 百利通电子(上海)有限公司 电磁继电器过零开关方法及电路
CN106469629B (zh) * 2015-08-19 2018-04-27 艾默生电气公司 自学习继电器关断控制系统和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110063759A1 (en) * 2009-09-14 2011-03-17 Electronic Systems Protection, Inc. Hybrid Switch Circuit
CN201752109U (zh) * 2010-07-01 2011-02-23 西北工业大学 一种交流固态功率控制器的软开关装置
CN203432615U (zh) * 2013-08-16 2014-02-12 苏州智信通电子科技有限公司 一种双向无线智能开关
CN103916112A (zh) * 2014-04-21 2014-07-09 南京航空航天大学 具有限流功能的交流固态功率控制器控制方法及装置
CN105186866A (zh) * 2015-09-23 2015-12-23 三峡大学 一种非隔离型软开关高增益dc/dc变换器
CN107895931A (zh) * 2017-12-14 2018-04-10 深圳迈睿智能科技有限公司 一种零电压开和零电流关的开关实现方法

Also Published As

Publication number Publication date
CN107895931B (zh) 2020-12-25
CN107895931A (zh) 2018-04-10

Similar Documents

Publication Publication Date Title
WO2019114037A1 (zh) 一种零电压开和零电流关的开关实现方法
CN203026904U (zh) 过流保护电路及具有该过流保护电路的pfc控制电路
CN208127862U (zh) 零电压开和零电流关的开关、感应控制器及灯具
CN102253335A (zh) 一种用于可控硅关断的检测电路
CN104155505A (zh) 一种地线带电检测装置、空调及电器设备
CN204967236U (zh) 漏电保护器
CN206041466U (zh) 一种带过温保护的开关电源电路
CN102236402A (zh) 节能检测电路
CN105305458B (zh) 一种同步开关过零投切自修正系统及方法
CN104235803A (zh) 具有主动散热装置的灯具
CN203561875U (zh) 一种远程控制的电热水器故障诊断系统
CN105223533A (zh) 一种超高精度快速响应直流电流校准仪电路
CN110416009B (zh) 无电弧长寿命的继电器开关电路及控制器
CN207586374U (zh) 图像形成装置
CN202562994U (zh) 用于控制保护开关的三相电压采样电路
CN217278860U (zh) 一种电磁铁线圈的监视系统
CN202351397U (zh) 开关器件检测电路
CN208589767U (zh) 一种电源或电池输出自恢复短路保护电路
CN114744864A (zh) 功率控制电路及其控制方法
CN208239920U (zh) 一种电脑电源
CN219893016U (zh) 晶闸管投切开关
CN208672722U (zh) 一种直流负载故障状态检测电路
CN207557419U (zh) 一种对燃气电磁阀非正常驱动状态监测的电路
CN103066571B (zh) 复合开关的过负荷保护方法及装置
CN207318573U (zh) 一种用于220v电源线的毫安级电流检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17934771

Country of ref document: EP

Kind code of ref document: A1