WO2019114032A1 - 一种铝钛硼合金细化剂的制备方法 - Google Patents

一种铝钛硼合金细化剂的制备方法 Download PDF

Info

Publication number
WO2019114032A1
WO2019114032A1 PCT/CN2017/118599 CN2017118599W WO2019114032A1 WO 2019114032 A1 WO2019114032 A1 WO 2019114032A1 CN 2017118599 W CN2017118599 W CN 2017118599W WO 2019114032 A1 WO2019114032 A1 WO 2019114032A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
aluminum liquid
alloy
slag
liquid
Prior art date
Application number
PCT/CN2017/118599
Other languages
English (en)
French (fr)
Inventor
唐鼎臣
Original Assignee
南通昂申金属材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通昂申金属材料有限公司 filed Critical 南通昂申金属材料有限公司
Publication of WO2019114032A1 publication Critical patent/WO2019114032A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/003Alloys based on aluminium containing at least 2.6% of one or more of the elements: tin, lead, antimony, bismuth, cadmium, and titanium

Definitions

  • the invention belongs to the field of metallurgical smelting, and in particular relates to a preparation method of an aluminum titanium boron alloy refiner.
  • titanium boron grain refiner has gone through three stages: titanium boron additive, aluminum titanium boron intermediate alloy top, aluminum titanium boron wire, wherein titanium boron wire grain refiner is a block additive, titanium boron
  • the grain refiner is superior to the imported titanium boron wire in its excellent refining effect, far superior to the aluminum-titanium intermediate alloy, and is an economically suitable grain refiner for most aluminum alloys.
  • the titanium boron grain refiner can make the castings have fine equiaxed crystals, eliminate the feather crystals and columnar crystals, and provide a good internal structure for future processing, which can effectively overcome the casting. Cracks improve the appearance of the casting.
  • the raw material is divided into an oxide method, a fluorine salt method, a pure titanium particle method, etc.
  • a fluorine salt method that is, using potassium fluorotitanate and Potassium fluoroborate produces aluminum-titanium-boron alloy by aluminothermic reaction.
  • the aluminum-titanium-boron alloy produced by this method has strong refining effect and is very stable.
  • the disadvantage is due to the potassium fluoroaluminate as a by-product produced during the alloying process.
  • the impurities of the metal compound carried by the reaction and the inclusions of the molten salt on the corrosion of the refractory material are difficult to be completely removed from the aluminum titanium boron alloy, and the impurities are brought into the refined alloy with the refiner. In the middle, the refining effect of the aluminum alloy is weakened, and at the same time, the presence of low melting salt impurities is present.
  • a manufacturing method for refining a high-purity aluminum titanium boron alloy comprises the following steps: 1) melting an aluminum ingot by adding potassium fluorotitanate and potassium fluoroborate; 2) Pour out the reaction by-product floating on the surface of the aluminum liquid and neutralize it with alumina powder; 3) Raise the temperature of the aluminum liquid and sprinkle the alumina powder layer; 4) Wrap the aluminum liquid with a tube of argon or nitrogen.
  • the residual liquid floats out and is neutralized; 5) the hydrogen content is measured by the small bubble rotary degassing refining technology; 6) the special high temperature oxidation preventing coating layer is sprinkled under the thermal state above 800 ° C; 7) The temperature of the aluminum liquid will be raised, the aluminum liquid is introduced into the filter box equipped with the alumina ceramic filter, and the aluminum alloy liquid is subjected to on-line filtration treatment; 8) the temperature of the aluminum liquid is finally lowered, the scum is removed, and the casting is formed into a production process.
  • Aluminum titanium boron wire Aluminum titanium boron wire.
  • the method can effectively separate the fluoride salt and other inclusions in the aluminum titanium boron alloy liquid, so that the impurities in the aluminum titanium boron alloy refiner are reduced and the cleanliness is greatly improved; the disadvantage is that the furnace quantity is low, and due to special The high-temperature anti-oxidation coating layer is added after degassing, and the gold liquid is oxidized or inhaled in the pre-step step, causing the material to have pores or looseness, which reduces the elongation of the material.
  • the patent CN 104561619 B discloses a preparation method of an aluminum titanium titanium boron grain refiner, which adopts a method of continuous casting and rolling after smelting, and the specific steps are as follows: 1) Melting: adding pure aluminum ingot into the crucible furnace to melt into aluminum liquid and heating; (2) alloying: adding the ingredients to the aluminum liquid during the heating process of the aluminum liquid in step (1), followed by potassium chloride, Potassium fluoroborate and potassium fluorotitanate are heated to a complete reaction to obtain an aluminum alloy solution; (3) agitation degassing and slag removal: the alloy aluminum liquid obtained in step (2) is transferred into a power frequency coreless electric insulation furnace.
  • the invention relates to a method for preparing the aluminum titanium boron wire grain refiner, which avoids the phenomenon that pores or looseness of the aluminum liquid is oxidized or inhaled, and the elongation of the aluminum titanium boron wire is improved; the disadvantage is that the reaction process occurs.
  • the large amount of liquid slag, which has excellent wettability with aluminum, is extremely difficult to remove.
  • the technical problem to be solved by the present invention is to provide a preparation method of an aluminum titanium boron alloy refiner capable of improving the elongation of the aluminum titanium boron alloy and greatly improving the cleanliness of the aluminum titanium boron alloy.
  • the technical solution of the present invention is: a method for preparing an aluminum titanium boron alloy refiner, which is innovative in that the preparation method comprises the following steps:
  • the slagging agent is composed of the following parts by weight: MgF 2 16-20 parts, Na 3 AlF 6 20-30 parts, CaF 2 26-32 parts, Al 2 O 3 10-20 parts, and Na 2 SiF 6 10-16 copies;
  • Rotary degassing and slag removal degassing treatment with argon or nitrogen using a rotary degasser, when the hydrogen content reaches 0.2-0.3 ml/100 g of Al, it is filtered with a 5/10 ppi alumina duplex ceramic filter. Removing inclusions in the aluminum alloy solution to complete degassing and secondary deslagging;
  • the weight ratio of the pure aluminum ingot, potassium fluoroborate, potassium fluorotitanate, potassium chloride, and sodium fluoride is 41-45:4-6:11-13:1-3:1-3.
  • the slag forming agent is added in an amount of 0.1% to 0.3% of the aluminum alloy solution.
  • the temperature of the rotary degassing treatment in the step (4) is 900-950 °C.
  • the invention has the advantages that: the method for preparing the aluminum titanium boron alloy refiner of the invention, after the aluminum ingot is melted, first adding potassium chloride and sodium fluoride to the aluminum liquid, thereby preventing the aluminum liquid from being oxidized or inhaling gas; Porosity or looseness increases the elongation of the aluminum-titanium-boron alloy; at the same time, it increases the slagging treatment between the primary slag removal and the secondary slag removal, and the special slag-forming agent is used in the slag treatment process. Al 2 O 3 added in the slag agent will not introduce new impurities, and its adsorption effect is good.
  • the fluoride in the aluminum titanium boron alloy can be well removed and slag is formed.
  • the effect is good, the alloy impurity content is greatly reduced, the alloy cleanliness and quality are improved, and the refining ability of the aluminum titanium boron alloy is also improved.
  • the preparation method of the aluminum titanium boron alloy refining agent of the embodiment comprises the following steps:
  • slagging Adding a special slag-forming agent for aluminum-titanium-boron alloy refining, which accounts for 1% of the alloy aluminum liquid, to the alloy aluminum liquid after slag removal, and stirring at 680-720r/min to make it and alloy The aluminum liquid is uniformly mixed; wherein the slag forming agent is composed of the following parts by weight: MgF 2 16 parts, Na 3 AlF 6 20 parts, CaF 2 26 parts, Al 2 O 3 10 parts, and Na 2 SiF 6 10 copies;
  • Rotary degassing and slag removal Degassing treatment with argon or nitrogen using a rotary degasser, the temperature of the rotary degassing treatment is 900-950 ° C, and when the hydrogen content reaches 0.2-0.3 ml/100 g Al, 5/ 10ppi alumina ceramic filter is filtered to remove inclusions in the alloy aluminum solution to complete degassing and secondary deslagging;
  • the aluminum titanium boron alloy refining agent obtained in this embodiment has no pores, dense structure and high cleanness of materials.
  • the probability of inclusions exceeding 0.1 mm in size per square centimeter is 5.8%, and 0.2 mm or more per square centimeter is present.
  • the probability of the material is 1.9%, the probability of 0.5 mm impurity per square centimeter is 0.8%; the Ti content is 5%, the B content is 1%, and the product refinement effect is good.
  • the preparation method of the aluminum titanium boron alloy refining agent of the embodiment comprises the following steps:
  • slagging adding 3% slag of aluminum-titanium-boron alloy refining slag to the alloy aluminum liquid after slag removal, and stirring at 680-720r/min to make it and alloy
  • the aluminum liquid is uniformly mixed; wherein the slag forming agent is composed of the following parts by weight: 20 parts of MgF 2 , 30 parts of Na 3 AlF 6 , 32 parts of CaF 2 , 20 parts of Al 2 O 3 and Na 2 SiF 6 16 copies;
  • Rotary degassing and slag removal degassing treatment with argon or nitrogen using a rotary degasser, the temperature of the rotary degassing treatment is 900-950 ° C, and when the hydrogen content reaches 0.2-0.3 ml/100 g Al, 5/ 10ppi alumina ceramic filter is filtered to remove inclusions in the alloy aluminum solution to complete degassing and secondary deslagging;
  • the aluminum-titanium-boron alloy refiner obtained in this embodiment has no pores, dense structure and high cleanliness.
  • the probability of inclusions exceeding 0.1 mm per square centimeter is 6.1%, and 0.2 mm or more per square centimeter is present.
  • the probability of the material is 1.8%, the probability of 0.5 mm impurity per square centimeter is 0.9%; the Ti content is 6%, the B content is 2%, and the product refinement effect is good.
  • the preparation method of the aluminum titanium boron alloy refining agent of the embodiment comprises the following steps:
  • slagging adding a special slag-forming agent for aluminum-titanium-boron alloy refining 2% of the alloy aluminum solution to the alloy aluminum liquid after slag removal, and stirring at 680-720r/min to make it and alloy
  • the aluminum liquid is uniformly mixed; wherein the slag forming agent is composed of the following parts by weight: MgF 2 18 parts, Na 3 AlF 6 25 parts, CaF 2 29 parts, Al 2 O 3 15 parts, and Na 2 SiF 6 13 copies;
  • Rotary degassing and slag removal degassing treatment with argon or nitrogen using a rotary degasser, the temperature of the rotary degassing treatment is 900-950 ° C, and when the hydrogen content reaches 0.2-0.3 ml/100 g Al, 5/ 10ppi alumina ceramic filter is filtered to remove inclusions in the alloy aluminum solution to complete degassing and secondary deslagging;
  • the aluminum-titanium-boron alloy refiner obtained in this embodiment has no pores, dense structure and high cleanliness.
  • the probability of inclusions exceeding 0.1 mm in size per square centimeter is 4.9%, and 0.2 mm or more per square centimeter is present.
  • the probability of the material is 1.6%, the probability of 0.5 mm impurity per square centimeter is 0.6%; the Ti content is 8%, the B content is 2%, and the product refining effect is good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

一种铝钛硼合金细化剂的制备方法,包括以下步骤:1)将纯铝锭熔化成铝液并加热;2)向加热熔化的铝液中添加质量比为1:1的氟化钾和氟化钠,然后在740-860℃时向铝液中加入氟硼酸钾和氟钛酸钾,除去表面浮渣;3)向除渣后的铝液中加入造渣剂进行造渣;4)利用旋转除气机进行脱气处理,完成脱气与二次除渣;5)将步骤4)中除渣后的合金铝液浇铸至模具中,得到铝钛硼合金细化剂。该制备方法可以提高铝钛硼合金的延伸率以及洁净度。

Description

一种铝钛硼合金细化剂的制备方法 技术领域
本发明属于冶金熔炼领域,特别涉及一种铝钛硼合金细化剂的制备方法。
背景技术
钛硼晶粒细化剂的发展过程经历了三个阶段:钛硼添加剂,铝钛硼中间合金顶,铝钛硼丝,其中钛硼丝晶粒细化剂是一种块状添加剂,钛硼晶粒细化剂以其出色的细化效果堪与进口钛硼丝相媲美,远优于铝钛中间合金,对大多数的铝合金而言,实为经济适宜的晶粒细化剂。
钛硼晶粒细化剂由于其优异的细化效果,使铸件得到细小的等轴晶,消除了羽毛晶和柱状晶,为以后的加工提供了良好的内在的组织结构,能有效地克服铸造裂纹,改善铸件外观。
钛硼晶粒细化剂的制备方法中,按原料分为氧化物法、氟盐法、纯钛颗粒法等,目前,最广泛和有效的方法为氟盐法,即利用氟钛酸钾和氟硼酸钾通过铝热反应制造出铝钛硼合金,此方法生产的铝钛硼合金其细化效果强且十分稳定,其缺点是由于在合金化过程中产生的副产物氟铝酸钾盐以及反应所带入的金属化合物杂质以及熔盐对耐火材料的腐蚀带入的夹杂物,很难从铝钛硼合金中有效的彻底去除,导致这些杂质随细化剂而带入被细化的合金当中去,减弱了铝合金细化效果,同时低熔点盐类杂质的存 在。
专利号为CN 102031403 A的发明专利中,提到了一种高洁净度铝钛硼合金细化的制造方法,包括以下步骤:1)将铝锭熔化加入氟钛酸钾和氟硼酸钾合金化;2)倾倒出浮于铝液表面的反应副产物,并用氧化铝粉中和;3)提升铝液温度,撒上氧化铝粉层;4)用管通氩气或氮气,使铝液中包裹的残渣液浮出,并被中和;5)利用小气泡旋转除气精炼技术处理后测量其含氢量;6)在800℃以上的热状态下,撒上特殊高温防氧化覆盖剂层;7)将提升铝液温度,将铝液导入装有氧化铝陶瓷过滤器的过滤箱体,对合金铝液进行在线过滤处理;8)最后降低铝液温度,撇除浮渣,浇铸成型生产成铝钛硼丝。该方法能够有效分离出铝钛硼合金液中的氟化盐和其它夹杂物,使得铝钛硼合金细化剂中杂质减少、洁净度大幅度提高;其缺点为,出炉量低,且由于特殊高温防氧化覆盖剂层的在除气之后进行添加,金液在前序步骤中就会被氧化或吸入气体,使得材料出现气孔或疏松的现象,降低了材料的延伸率。
针对上述现象,专利CN 104561619 B公开了一种铝钛硼丝晶粒细化剂的制备方法,所述铝钛硼丝晶粒细化剂采用熔炼后连续铸轧的方式,具体步骤如下:(1)熔化:将纯铝锭加入坩埚炉内熔化成铝液并加热;(2)合金化:向步骤(1)中铝液加热的过程中向铝液中加入配料,依次为氯化钾、氟硼酸钾和氟钛酸钾,升温搅拌完全反应后得到合金铝液;(3)搅拌脱气除渣:将步骤(2) 中制得的合金铝液转入工频无芯电保温炉内搅拌脱气;(4)浇铸连轧:将步骤(3)中除渣后的铝液传输至模具中,依次经过流槽过滤、结晶轮型腔以及连轧机连轧后收线得到铝钛硼丝;该发明铝钛硼丝晶粒细化剂的制备方法,避免铝液被氧化或吸入气体而出现气孔或疏松的现象,提高了铝钛硼丝的延伸率;其缺点为反应过程中产生的大量液态渣,与铝有极好的润湿性,要清除干净,极其困难。
因此,研发一种能够提高铝钛硼合金的延伸率,且大大提高铝钛硼合金洁净度的铝钛硼合金细化剂的制备方法是非常有必要的。
发明内容
本发明要解决的技术问题是提供一种能够提高铝钛硼合金的延伸率,且大大提高铝钛硼合金洁净度的铝钛硼合金细化剂的制备方法。
为解决上述技术问题,本发明的技术方案为:一种铝钛硼合金细化剂的制备方法,其创新点在于:所述制备方法包括如下步骤:
(1)熔化:将99.95%的纯铝锭加入坩埚炉内熔化成铝液并加热,加热2-4小时,使铝液温度达到760-860℃;
(2)合金化:在步骤(1)中铝液加热的过程中向铝液中加入配料,首先向铝液中加入质量比为1:1的氯化钾和氟化钠,使其熔化后覆盖铝液表面;然后在铝液温度达到740-860℃时,向铝液中加入氟硼酸钾,使其混合均匀,再向铝液加入氟钛酸钾,升温搅拌完全反应 后得到合金铝液,并将合金铝液表面的熔渣舀去,完成一次除渣;
(3)造渣:向一次除渣后的合金铝液中加入铝钛硼合金精炼专用造渣剂,边加边以680-720r/min速度搅拌,使其与合金铝液混合均匀;其中,所述造渣剂是由以下重量份的组分组成:MgF 216-20份、Na 3AlF 620-30份、CaF 226-32份、Al 2O 310-20份和Na 2SiF 610-16份;
(4)旋转脱气除渣:利用旋转除气机用氩或氮气进行脱气处理,当氢含量达到0.2-0.3ml/100gAl时,用5/10ppi的氧化铝复式陶瓷过滤器进行过滤处理,除去合金铝液中的夹杂物,完成脱气与二次除渣;
(5)浇铸:浇铸前对模具进行清洁和刷涂料,对模具进行预热,使模具温度达到160-260℃,然后将步骤(4)中除渣后的合金铝液浇铸至模具中,得到铝钛硼合金细化剂。
进一步地,所述纯铝锭、氟硼酸钾、氟钛酸钾、氯化钾以及氟化钠的重量比为41-45:4-6:11-13:1-3:1-3。
进一步地,所述造渣剂的加入量为合金铝液的0.1%-0.3%。
进一步地,所述步骤(4)中旋转脱气处理的温度为900-950℃。
本发明的优点在于:本发明铝钛硼合金细化剂的制备方法,在铝锭熔化后,首先向铝液中加入氯化钾和氟化钠,从而避免铝液被氧化或吸入气体而出现气孔或疏松的现象,提高了铝钛硼合金的延伸率;同时,在一次除渣与二次除渣之间增加造渣处理,且造渣处理过程中通过专用造渣剂处理,该专用造渣剂中添加的Al 2O 3既不会引入新的杂质,其吸附效果又佳,通过其与其他组分的配比协同,能够很好的 去除铝钛硼合金中的氟化物,造渣效果好,使合金杂质含量大幅降低,提升了合金洁净度和品质,同时,也提高了铝钛硼合金的细化能力。
具体实施方式
下面的实施例可以使本专业的技术人员更全面地理解本发明,但并不因此将本发明限制在所述的实施例范围之中。
实施例1
本实施例铝钛硼合金细化剂的制备方法,所述制备方法包括如下步骤:
(1)材料:99.95%的纯铝锭410kg、氟硼酸钾40kg、氟钛酸钾110kg、氯化钾10kg以及氟化钠10kg;
(2)熔化:将99.95%的纯铝锭加入坩埚炉内熔化成铝液并加热,加热2-4小时,使铝液温度达到760-860℃;
(3)合金化:在步骤(2)中铝液加热的过程中向铝液中加入配料,首先向铝液中加入质量比为1:1的氯化钾和氟化钠,使其熔化后覆盖铝液表面;然后在铝液温度达到740-860℃时,向铝液中加入氟硼酸钾,使其混合均匀,再向铝液加入氟钛酸钾,升温搅拌完全反应后得到合金铝液,并将合金铝液表面的熔渣舀去,完成一次除渣;
(4)造渣:向一次除渣后的合金铝液中加入占合金铝液1%的铝钛硼合金精炼专用造渣剂,边加边以680-720r/min速度搅拌,使其与合金铝液混合均匀;其中,所述造渣剂是由以下重量份的组分组成:MgF 216份、Na 3AlF 620份、CaF 226份、Al 2O 310份和Na 2SiF 610份;
(5)旋转脱气除渣:利用旋转除气机用氩或氮气进行脱气处理, 旋转脱气处理的温度为900-950℃,当氢含量达到0.2-0.3ml/100gAl时,用5/10ppi的氧化铝复式陶瓷过滤器进行过滤处理,除去合金铝液中的夹杂物,完成脱气与二次除渣;
(6)浇铸:浇铸前对模具进行清洁和刷涂料,对模具进行预热,使模具温度达到160-260℃,然后将步骤(5)中除渣后的合金铝液浇铸至模具中,得到铝钛硼合金细化剂。
本实施例得到的铝钛硼合金细化剂无气孔,组织结构密集,料洁净度高,经检测每平方厘米出现0.1毫米尺寸以上夹杂物的可能性5.8%,每平方厘米出现0.2毫米以上夹杂物的可能性1.9%,每平方厘米出现0.5毫米杂质的可能性为0.8%;Ti含量达到5%,B含量达到1%,产品细化效果好。
实施例2
本实施例铝钛硼合金细化剂的制备方法,所述制备方法包括如下步骤:
(1)材料:99.95%的纯铝锭450kg、氟硼酸钾60kg、氟钛酸钾130kg、氯化钾30kg以及氟化钠30kg;
(2)熔化:将99.95%的纯铝锭加入坩埚炉内熔化成铝液并加热,加热2-4小时,使铝液温度达到760-860℃;
(3)合金化:在步骤(2)中铝液加热的过程中向铝液中加入配料,首先向铝液中加入质量比为1:1的氯化钾和氟化钠,使其熔化后覆盖铝液表面;然后在铝液温度达到740-860℃时,向铝液中加入氟硼酸钾,使其混合均匀,再向铝液加入氟钛酸钾,升温搅拌完全反应 后得到合金铝液,并将合金铝液表面的熔渣舀去,完成一次除渣;
(4)造渣:向一次除渣后的合金铝液中加入占合金铝液3%的铝钛硼合金精炼专用造渣剂,边加边以680-720r/min速度搅拌,使其与合金铝液混合均匀;其中,所述造渣剂是由以下重量份的组分组成:MgF 220份、Na 3AlF 630份、CaF 232份、Al 2O 320份和Na 2SiF 616份;
(5)旋转脱气除渣:利用旋转除气机用氩或氮气进行脱气处理,旋转脱气处理的温度为900-950℃,当氢含量达到0.2-0.3ml/100gAl时,用5/10ppi的氧化铝复式陶瓷过滤器进行过滤处理,除去合金铝液中的夹杂物,完成脱气与二次除渣;
(6)浇铸:浇铸前对模具进行清洁和刷涂料,对模具进行预热,使模具温度达到160-260℃,然后将步骤(5)中除渣后的合金铝液浇铸至模具中,得到铝钛硼合金细化剂。
本实施例得到的铝钛硼合金细化剂无气孔,组织结构密集,料洁净度高,经检测每平方厘米出现0.1毫米尺寸以上夹杂物的可能性6.1%,每平方厘米出现0.2毫米以上夹杂物的可能性1.8%,每平方厘米出现0.5毫米杂质的可能性为0.9%;Ti含量达到6%,B含量达到2%,产品细化效果好。
实施例3
本实施例铝钛硼合金细化剂的制备方法,所述制备方法包括如下步骤:
(1)材料:99.95%的纯铝锭430kg、氟硼酸钾50kg、氟钛酸钾120kg、氯化钾20kg以及氟化钠20kg;
(2)熔化:将99.95%的纯铝锭加入坩埚炉内熔化成铝液并加热,加热2-4小时,使铝液温度达到760-860℃;
(3)合金化:在步骤(2)中铝液加热的过程中向铝液中加入配料,首先向铝液中加入质量比为1:1的氯化钾和氟化钠,使其熔化后覆盖铝液表面;然后在铝液温度达到740-860℃时,向铝液中加入氟硼酸钾,使其混合均匀,再向铝液加入氟钛酸钾,升温搅拌完全反应后得到合金铝液,并将合金铝液表面的熔渣舀去,完成一次除渣;
(4)造渣:向一次除渣后的合金铝液中加入占合金铝液2%的铝钛硼合金精炼专用造渣剂,边加边以680-720r/min速度搅拌,使其与合金铝液混合均匀;其中,所述造渣剂是由以下重量份的组分组成:MgF 218份、Na 3AlF 625份、CaF 229份、Al 2O 315份和Na 2SiF 613份;
(5)旋转脱气除渣:利用旋转除气机用氩或氮气进行脱气处理,旋转脱气处理的温度为900-950℃,当氢含量达到0.2-0.3ml/100gAl时,用5/10ppi的氧化铝复式陶瓷过滤器进行过滤处理,除去合金铝液中的夹杂物,完成脱气与二次除渣;
(6)浇铸:浇铸前对模具进行清洁和刷涂料,对模具进行预热,使模具温度达到160-260℃,然后将步骤(5)中除渣后的合金铝液浇铸至模具中,得到铝钛硼合金细化剂。
本实施例得到的铝钛硼合金细化剂无气孔,组织结构密集,料洁净度高,经检测每平方厘米出现0.1毫米尺寸以上夹杂物的可能性4.9%,每平方厘米出现0.2毫米以上夹杂物的可能性1.6%,每平方厘米出现0.5毫米杂质的可能性为0.6%;Ti含量达到8%,B含量达 到2%,产品细化效果好。
以上显示和描述了本发明的基本原理和主要特征以及本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (4)

  1. 一种铝钛硼合金细化剂的制备方法,其特征在于:所述制备方法包括如下步骤:
    (1)熔化:将99.95%的纯铝锭加入坩埚炉内熔化成铝液并加热,加热2-4小时,使铝液温度达到760-860℃;
    (2)合金化:在步骤(1)中铝液加热的过程中向铝液中加入配料,首先向铝液中加入质量比为1:1的氯化钾和氟化钠,使其熔化后覆盖铝液表面;然后在铝液温度达到740-860℃时,向铝液中加入氟硼酸钾,使其混合均匀,再向铝液加入氟钛酸钾,升温搅拌完全反应后得到合金铝液,并将合金铝液表面的熔渣舀去,完成一次除渣;
    (3)造渣:向一次除渣后的合金铝液中加入铝钛硼合金精炼专用造渣剂,边加边以680-720r/min速度搅拌,使其与合金铝液混合均匀;其中,所述造渣剂是由以下重量份的组分组成:MgF 216-20份、Na 3AlF 620-30份、CaF 226-32份、Al 2O 310-20份和Na 2SiF 610-16份;
    (4)旋转脱气除渣:利用旋转除气机用氩或氮气进行脱气处理,当氢含量达到0.2-0.3ml/100gAl时,用5/10ppi的氧化铝复式陶瓷过滤器进行过滤处理,除去合金铝液中的夹杂物,完成脱气与二次除渣;
    (5)浇铸:浇铸前对模具进行清洁和刷涂料,对模具进行预热,使模具温度达到160-260℃,然后将步骤(4)中除渣后的合金铝 液浇铸至模具中,得到铝钛硼合金细化剂。
  2. 根据权利要求1所述的铝钛硼合金细化剂的制备方法,其特征在于:所述纯铝锭、氟硼酸钾、氟钛酸钾、氯化钾以及氟化钠的重量比为41-45:4-6:11-13:1-3:1-3。
  3. 根据权利要求1所述的铝钛硼合金细化剂的制备方法,其特征在于:所述造渣剂的加入量为合金铝液的0.1%-0.3%。
  4. 根据权利要求1所述的铝钛硼合金细化剂的制备方法,其特征在于:所述步骤(4)中旋转脱气处理的温度为900-950℃。
PCT/CN2017/118599 2017-12-15 2017-12-26 一种铝钛硼合金细化剂的制备方法 WO2019114032A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711352399.X 2017-12-15
CN201711352399.XA CN108220646A (zh) 2017-12-15 2017-12-15 一种铝钛硼合金细化剂的制备方法

Publications (1)

Publication Number Publication Date
WO2019114032A1 true WO2019114032A1 (zh) 2019-06-20

Family

ID=62652235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118599 WO2019114032A1 (zh) 2017-12-15 2017-12-26 一种铝钛硼合金细化剂的制备方法

Country Status (2)

Country Link
CN (1) CN108220646A (zh)
WO (1) WO2019114032A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111349822B (zh) * 2020-03-20 2021-08-13 永城金联星铝合金有限公司 一种铝-钛-硼-锶-稀土合金线材及制备方法
CN113846242B (zh) * 2021-09-07 2022-10-11 哈尔滨理工大学 一种铝合金用复合精炼/变质剂及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155334A (en) * 1981-03-19 1982-09-25 Kobe Steel Ltd Production of al-ti-b alloy for grain refining
JPS6223946A (ja) * 1985-07-23 1987-01-31 Nippon Light Metal Co Ltd アルミニウム結晶微細化剤の製造方法
CN101775499A (zh) * 2010-02-05 2010-07-14 新星化工冶金材料(深圳)有限公司 一种铝钛硼合金熔体的净化方法
CN102031403A (zh) * 2010-11-12 2011-04-27 湖南金联星冶金材料技术有限公司 一种高洁净度铝钛硼合金细化的制造方法
CN104561619A (zh) * 2015-01-28 2015-04-29 南通昂申金属材料有限公司 一种铝钛硼丝晶粒细化剂的制备方法
CN106868329A (zh) * 2017-01-09 2017-06-20 山东滨州华创金属有限公司 一种铝钛硼合金精炼专用高温造渣剂

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101838751B (zh) * 2010-02-05 2011-05-18 新星化工冶金材料(深圳)有限公司 控制TiB2颗粒团平均名义直径的铝钛硼合金制备方法
CN102644002B (zh) * 2012-05-16 2013-09-04 山东滨州渤海活塞股份有限公司 一种铝合金熔液精炼无氯清渣剂
CN104651646B (zh) * 2015-02-09 2016-11-30 江苏华企铝业科技股份有限公司 一种使用多频感应炉生产的铝钛硼合金及其生产工艺
CN104789811B (zh) * 2015-04-03 2016-09-28 昆明冶金研究院 一种铝钛硼中间合金的制备方法
CN106676336A (zh) * 2017-01-19 2017-05-17 西峡县中嘉合金材料有限公司 一种铝钛硼合金生产工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57155334A (en) * 1981-03-19 1982-09-25 Kobe Steel Ltd Production of al-ti-b alloy for grain refining
JPS6223946A (ja) * 1985-07-23 1987-01-31 Nippon Light Metal Co Ltd アルミニウム結晶微細化剤の製造方法
CN101775499A (zh) * 2010-02-05 2010-07-14 新星化工冶金材料(深圳)有限公司 一种铝钛硼合金熔体的净化方法
CN102031403A (zh) * 2010-11-12 2011-04-27 湖南金联星冶金材料技术有限公司 一种高洁净度铝钛硼合金细化的制造方法
CN104561619A (zh) * 2015-01-28 2015-04-29 南通昂申金属材料有限公司 一种铝钛硼丝晶粒细化剂的制备方法
CN106868329A (zh) * 2017-01-09 2017-06-20 山东滨州华创金属有限公司 一种铝钛硼合金精炼专用高温造渣剂

Also Published As

Publication number Publication date
CN108220646A (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
CN102031403B (zh) 一种高洁净度铝钛硼合金细化剂的制造方法
CN104561619B (zh) 一种铝钛硼丝晶粒细化剂的制备方法
JPS6127323B2 (zh)
US4099965A (en) Method of using MgCl2 -KCl flux for purification of an aluminum alloy preparation
CN108048676B (zh) 铝热还原法制备铝镧中间合金的方法
CN110938745A (zh) 825镍基合金电渣重熔渣系及其制备方法
CN110819817B (zh) 用于含铝钛镍基高温合金的基础渣系及电渣重熔方法
WO2019114032A1 (zh) 一种铝钛硼合金细化剂的制备方法
CN103468864B (zh) 一种1Cr21Ni5Ti钢冶炼方法
CN110241342B (zh) 一种高锰含量铝锰中间合金及其制备方法
CN107287462A (zh) 一种铝合金精炼变质剂及其制备方法和应用
CN107400783A (zh) 一种高纯镁精炼剂及高纯镁精炼工艺
CN107365918A (zh) 一种铝合金锭的铸造工艺
CN112301248B (zh) 一种高效含镁铝合金精炼、打渣两用熔剂及其制备方法
CN106191481B (zh) 一种熔盐法生产铝钒合金的制备工艺
CN111411245A (zh) 一种高硅铝硅中间合金锭的制备方法
CN104388731A (zh) 一种铝合金精炼剂及其制备方法
JPS6223946A (ja) アルミニウム結晶微細化剤の製造方法
CN117418122A (zh) 一种铝钛硼丝及其制备方法
CN111218564B (zh) 一种白银的熔铸方法
CN211036051U (zh) 一种铝钛硼合金细化剂的制备系统
CN107858525B (zh) 一种电渣重熔无氟渣工艺配方及其用于电渣重熔的方法
JPH0364423A (ja) 金属間化合物Ti―Al基合金の溶解方法
CN114262814A (zh) 一种Al-Mg-Si-Cu系铝合金的精炼工艺
CN117568634A (zh) 一种铝钛硼稀土合金的制备方法及制备的合金

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17934528

Country of ref document: EP

Kind code of ref document: A1