WO2019114020A1 - 一种改善淀粉慢消化性能的改性方法 - Google Patents

一种改善淀粉慢消化性能的改性方法 Download PDF

Info

Publication number
WO2019114020A1
WO2019114020A1 PCT/CN2017/117786 CN2017117786W WO2019114020A1 WO 2019114020 A1 WO2019114020 A1 WO 2019114020A1 CN 2017117786 W CN2017117786 W CN 2017117786W WO 2019114020 A1 WO2019114020 A1 WO 2019114020A1
Authority
WO
WIPO (PCT)
Prior art keywords
starch
branching enzyme
improving
slow
modification
Prior art date
Application number
PCT/CN2017/117786
Other languages
English (en)
French (fr)
Inventor
李兆丰
顾正彪
任俊彦
李才明
程力
洪雁
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Priority to US16/033,214 priority Critical patent/US10392640B2/en
Publication of WO2019114020A1 publication Critical patent/WO2019114020A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B30/00Preparation of starch, degraded or non-chemically modified starch, amylose, or amylopectin
    • C08B30/12Degraded, destructured or non-chemically modified starch, e.g. mechanically, enzymatically or by irradiation; Bleaching of starch
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/16Preparation of compounds containing saccharide radicals produced by the action of an alpha-1, 6-glucosidase, e.g. amylose, debranched amylopectin

Definitions

  • the invention relates to a modification method for improving the slow digestion performance of starch, belonging to the field of bio-modified starch.
  • starch As the main energy source for humans and most animals, starch is commonly used in food, medicine, textile and other industrial fields. In contemporary society, consumers' pursuit of nutritional health is becoming more and more intense. Foods that can maintain a sense of satiety after consumption and continue to provide energy slowly meet the needs of consumers.
  • the slow-digested starch in natural starch can be slowly absorbed and continuously released after being ingested by the human body, avoiding the drastic fluctuation of blood sugar, conforming to the trend of food development today, and has great market application prospects as a food material.
  • Brancing enzyme (BE; EC 2.4.1.18) is a glycosyltransferase belonging to glycoside hydrolase 13 which first hydrolyzes the ⁇ -1,4 glycosidic bond on the substrate molecule and cuts off the linear oligodecans. The sugar fragment is then transferred to the remaining substrate molecule by transglycosylation to form an alpha-1,6 glycosidic linkage.
  • the present invention provides a modification method for improving the slow-digesting property of starch, which changes the molecular structure of starch by starch branching enzyme, has smaller branching and higher degree of branching, and slows down.
  • the purpose of starch digestion More importantly, by controlling the modified substrate, the two-stage treatment of gelatinized starch modified by the first granular starch modification is adopted to achieve the purpose of enhancing the starch branching enzyme modification effect, and further improving the slow digestion of the modified starch.
  • the content of starch reduces the rate of starch digestion and provides ideas for bio-modification of slowly digested starch.
  • the biological modification method for improving the content of slow-digested starch of the invention mainly comprises the following steps: preheating the starch milk sample at 50-60 ° C for 10-15 minutes, adding 20-50 U/g starch branching enzyme, 50-60 After treatment at °C for 4-20h, put it in a boiling water bath to gelatinize the enzyme, preheat it at 50-60 °C for 10-15 minutes, add 20-50U/g starch branching enzyme and then treat it at 50-60 °C. After 20 h, the reaction was terminated and dried to obtain a modified starch.
  • the starch milk sample is preheated at 50 to 60 ° C for 10 minutes, then 20-50 U / g of starch branching enzyme is added, and the mixture is treated at 50 to 60 ° C for 4-20 hours, and placed in boiling water. After gelatinization in the bath for 30 min, the enzyme was preheated at 50-60 ° C for 10 min, 20-50 U/g starch branching enzyme was added, and then treated at 50-60 ° C for 4-20 h, the reaction was terminated, and the modified starch was obtained by drying.
  • the starch may be plain corn starch.
  • the starch milk has a mass concentration of 5%.
  • the pH of the starch emulsion is adjusted to between 7.0 and 8.0.
  • the starch branching enzyme is added in an amount of from 20 to 50 U/g starch on a dry basis.
  • the sample to which the starch branching enzyme is added is treated at a constant temperature of 50 to 60 °C.
  • the starch branching enzyme is derived from Geobacillus thermoglucosidans STB02.
  • the present invention utilizes a starch branching enzyme to convert a slender starch molecule into a chunky, more structurally branched structure, thereby slowing the rate of starch digestion.
  • a starch branching enzyme to convert a slender starch molecule into a chunky, more structurally branched structure, thereby slowing the rate of starch digestion.
  • reaction solution was mixed in 10 mL of 66.6% ethanol, and the mixture was centrifuged at 3500 rpm for 5 min, and 100 ⁇ L of the supernatant was taken for determination of glucose content (glucose oxidase GOPOD method).
  • sample after 120 min of reaction was shaken and placed in a boiling water bath for 30 min. After cooling, 10.0 ml of 7 M KOH was added and placed at 4 ° C for 30 min.
  • G 20 the amount of glucose produced after hydrolysis of the amylase for 20 min;
  • G 120 the amount of glucose produced after hydrolysis of the amylase for 120 min;
  • Comparative Example 1 Effect of starch branching enzyme modification on slow-digested starch content in starch milk
  • the corn starch was dissolved in water to prepare 5% starch milk. After preheating at 50 °C for 10 min, 30 U/g starch branching enzyme was added, treated at 50 °C for 10 h, and the enzyme was stopped by boiling water for 30 min to terminate the reaction. Starch.
  • the results of the modified starch digestibility measurement are shown in Table 1.
  • starch branching enzyme modification can improve the digestion performance of corn starch milk.
  • the content of fast-digested starch in the modified starch decreased significantly, and the content of slow-digested starch and resistant starch increased significantly.
  • the starch content of the fast-digested starch decreased by 8.4%, the content of slow-digested starch increased by 29.5%, and the content of resistant starch increased by 17.5%.
  • starch branching enzyme modification can improve the slow digestion performance of the product.
  • the modification produces a highly branched structure which increases the steric hindrance of starch and delays the digestion and hydrolysis of the enzyme.
  • the current level of slow-digested starch is insufficient to meet the needs of the food industry, and there is still room for further improvement.
  • Comparative Example 2 Effect of starch branching enzyme modification on slow-digested starch content in starch paste
  • the corn starch was dissolved in water to prepare 5% starch milk. After 30 minutes of boiling water gelatinization, 30 U/g starch branching enzyme was added, preheated at 50 ° C for 10 min, treated at 50 ° C for 10 h, and then stopped in boiling water bath for 30 min. A modified starch is obtained. The results of the modified starch digestibility measurement are shown in Table 1.
  • the results of the reaction in Table 1 show that the modified starch has a slow-digested starch content of 24.6%, which is 77.0% higher than that of the control, compared with the control 1 (corn starch granules).
  • the substrate was further increased by 36.7%; the fast-digested starch content was increased by 20.4%, which was further increased by 13.1% compared to Comparative Example 1 (corn starch granules as a substrate).
  • the corn starch was dissolved in water to prepare 5% starch milk. After 30 minutes of boiling water gelatinization, 30 U/g starch branching enzyme was added, preheated at 50 ° C for 10 min, treated at 50 ° C for 20 h, and then stopped in a boiling water bath for 30 min. A modified starch is obtained. The results of the modified starch digestibility measurement are shown in Table 1.
  • the modified starch had a slow-digested starch content of 25.4%, which was 82.7% higher than that of the control, compared with the control 1 (corn starch granules). Substrate) further increased by 15.0%.
  • the modification is compared with the granular starch as the substrate, and the starch branching enzyme modification is carried out with the gelatinized starch as the substrate, and the modification effect is more remarkable.
  • the destruction of the starch granules facilitates the sufficient reaction of the substrate with the enzyme and significantly improves the slow digestion performance of the product.
  • Example 1 Effect of two-stage modification on the content of slow-digested starch in starch
  • the corn starch was dissolved in water to prepare 5% starch milk. After preheating at 50 °C for 10 min, 30 U/g starch branching enzyme was added, treated at 50 °C for 10 h, gelatinized in a boiling water bath for 30 min, and preheated at 50 °C for 10 min. Thereafter, 30 U/g of starch branching enzyme was added, and after treatment at 50 ° C for 6 hours, the reaction was terminated by boiling water bath, and lyophilized to obtain a modified starch. The results of the modified starch digestibility measurement are shown in Table 1.
  • Example 3 (gelatinized corn starch as a substrate) was further increased by 2.4%; the fast-digested starch content was increased by 23.9%, which was further increased by 2.3% compared to Comparative Example 3 (gelatinized corn starch as a substrate).
  • the corn starch was dissolved in water to prepare 5% starch milk. After preheating at 50 °C for 10 min, 30 U/g starch branching enzyme was added, treated at 50 °C for 10 h, gelatinized in a boiling water bath for 30 min, and preheated at 50 °C for 10 min. Thereafter, 30 U/g of starch branching enzyme was added, and after treatment at 50 ° C for 8 hours, the reaction was terminated by boiling water bath, and lyophilized to obtain a modified starch. The results of the modified starch digestibility measurement are shown in Table 1.
  • the corn starch was modified by a two-stage modification strategy, and the fast-digested starch content of the modified starch was 54.8%, which was further reduced by 5.0 compared with the control example 3 (gelatinized corn starch as a substrate). %; slow-digested starch content reached 26.3%, further increased by 3.5% compared to Control 3 (gelatinized corn starch as substrate); resistant starch further increased by 11.8% compared to Control 3 (gelatinized corn starch as substrate) .
  • the corn starch was dissolved in water to prepare 5% starch milk. After preheating at 50 °C for 10 min, 30 U/g starch branching enzyme was added, treated at 50 °C for 10 h, gelatinized in a boiling water bath for 30 min, and preheated at 50 °C for 10 min. Thereafter, 30 U/g of starch branching enzyme was added, and after treatment at 50 ° C for 10 hours, the reaction was terminated by boiling water bath, and lyophilized to obtain a modified starch. The results of the modified starch digestibility measurement are shown in Table 1.
  • the corn starch was modified by a two-stage modification strategy, and the fast-digested starch content of the modified starch was 53.8%, which was further reduced by 6.8 compared with the control example 3 (gelatinized corn starch as a substrate). %; slow-digested starch content of 26.5%, further increased by 4.3% compared to Control 3 (gelatinized corn starch as substrate); resistant starch further increased by 16.6% compared to Control 3 (gelatinized corn starch as substrate) . It is indicated that the two-stage modification process is beneficial to further improve the slow digestion performance of the product, and the slow digestion performance of the product is enhanced as the gelatinization time increases.
  • the results of the reaction showed that the two-stage modification strategy was modified with granular corn starch and gelatinized corn starch as the substrate.
  • the fast-digested starch content of the modified starch was 53.8%, which was 27.4% lower than that of the control.
  • Slow-digested starch content reached 26.5%, an increase of 90.6% compared to the control; resistant starch increased by 64.2% compared to the control.
  • Example 3 compared with the gelatinized starch modification, the two-stage modification strategy of the first post-particle gelatinization can significantly improve the slow-digested starch content in the modified starch, which is an effective improvement of the starch branching enzyme modification product.
  • a strategy for slowly digesting starch content was an effective improvement of the starch branching enzyme modification product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Genetics & Genomics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Cereal-Derived Products (AREA)

Abstract

一种改善淀粉慢消化性能的改性方法,包括:利用淀粉分支酶将淀粉分子转变成更加紧密的分支结构,减缓淀粉消化的速率。通过对改性底物进行控制,采取先颗粒淀粉改性后糊化淀粉改性的两阶段处理,达到增强淀粉分支酶改性效果的目的。

Description

一种改善淀粉慢消化性能的改性方法 技术领域
本发明涉及一种改善淀粉慢消化性能的改性方法,属于生物改性淀粉领域。
背景技术
淀粉作为人类和大多数动物的主要能量来源,常用于食品、医药、纺织等工业领域中。当代社会,消费者对营养健康的追求日趋强烈,摄入后能够维持饱腹感、持续而缓慢提供能量的食品满足了消费者的需求。天然淀粉中的慢消化淀粉被人体摄入后可以缓慢吸收、持续释放能量,避免了血糖的剧烈波动,顺应了当今食品发展的趋势,作为食品原料具有极大市场应用前景。
然而天然淀粉在食品加工过程中,经过加热、辐照、煎煮等处理过程,淀粉颗粒结构破坏,抗消化性能急剧减弱,使其难以满足现代消费者的要求。利用物理、化学或生物方法对淀粉进行改性处理,可改变淀粉的分子结构,从而改善淀粉的消化性能,使其满足健康饮食的需要。其中生物酶法具有底物特异性等优势,应用最广泛。淀粉分支酶(Branching enzyme;BE;EC 2.4.1.18)是一种属于糖苷水解酶13的糖基转移酶,它首先将底物分子上α-1,4糖苷键水解,切下直链葡聚糖片段,继而通过转糖基作用将所切下片段转移至余下底物分子上,形成α-1,6糖苷键。
已有报道中淀粉分支酶改性处理条件较为单一,改性淀粉的消化性能仍有较大改善空间。本发明通过优化改性工艺,提高改性淀粉的慢消化性能。
发明内容
为了提高慢消化淀粉含量,本发明提供了一种改善淀粉慢消化性能的改性方法,通过淀粉分支酶使淀粉分子结构发生改变,具有更小的支链及更高的支化程度,达到减缓淀粉消化的目的。更重要的是,通过对改性底物进行控制,采取先颗粒淀粉改性后糊化淀粉改性的两阶段处理,达到增强淀粉分支酶改性效果的目的,进一步提高改性淀粉中慢消化淀粉的含量,降低淀粉消化速率,为生物改性制备慢消化淀粉提供思路。
本发明的提高慢消化淀粉含量的生物改性方法,主要包括以下步骤:将淀粉乳样品于50~60℃下预热10~15min后,加入20-50U/g淀粉分支酶,于50~60℃下处理4-20h,置于沸水浴中糊化灭酶后,置于50~60℃下预热10~15min,加入20-50U/g淀粉分支酶后于50~60℃下处理4-20h,终止反应,干燥得到改性淀粉。
在本发明的一种实施反式中,将淀粉乳样品于50~60℃下预热10min后,加入20-50U/g 淀粉分支酶,于50~60℃下处理4-20h,置于沸水浴中糊化30min灭酶后,置于50~60℃下预热10min,加入20-50U/g淀粉分支酶后于50~60℃下处理4-20h,终止反应,干燥得到改性淀粉。
在本发明的一种实施方式中,所述淀粉可以是普通玉米淀粉。
在本发明的一种实施方式中,所述淀粉乳质量浓度为5%。
在本发明的一种实施方式中,调节淀粉乳的pH至7.0~8.0。
在本发明的一种实施方式中,淀粉分支酶的添加量为以干基计20-50U/g淀粉。
在本发明的一种实施方式中,加入淀粉分支酶的样品于恒温50~60℃下处理。
在本发明的一种实施方式中,淀粉分支酶来源为热葡糖苷酶地芽孢杆菌(Geobacillus thermoglucosidans STB02)。
本发明的有益效果:
本发明利用淀粉分支酶将细长型的淀粉分子转变成矮胖型的结构更加紧密的分支结构,从而减缓了淀粉消化的速率。通过对改性底物进行控制,采取先颗粒淀粉改性后糊化淀粉改性的两阶段处理,达到增强淀粉分支酶改性效果的目的,进一步提高改性淀粉中慢消化淀粉的含量,降低淀粉消化速率,为生物改性制备慢消化淀粉的提供思路。
具体实施方式
淀粉消化性的测定方法:
称取0.6g淀粉,50mg瓜尔豆胶于离心管中,加入10mL胃蛋白酶(用0.05M HCl配制成5mg/mL的酶液),37℃水浴中以160r/min振荡反应30min后加入10.0ml 0.25M乙酸钠缓冲液、30颗玻璃珠(d=5mm),混匀后再加入5mL混酶液(胰淀粉酶64.5×10 3Ceralpha Units/g淀粉、糖化酶167U/g淀粉),于37℃水浴中反应。
分别反应20min、120min后取250μL反应液于10mL 66.6%乙醇中混匀,混合物于3500rpm离心5min,取100μL上清测定葡萄糖含量测定(葡萄糖氧化酶GOPOD法)。此外,反应120min后的样品振匀后置于沸水浴30min,冷却后加入10.0ml 7M KOH,4℃中放置30min。取0.5ml上述混合液于5.0mL 0.5M乙酸中,加84μL淀粉葡萄糖苷酶于70℃下反应30min后,沸水浴10min。加20mL水稀释,1500rpm下离心5min后,取0.1mL上清进行葡萄糖含量测定。具体计算公式如下:
RDS=G 20×0.9
SDS=(G 120-G 20)×0.9
RS=(TG-G 120)×0.9
式中:RDS—快消化淀粉含量;
SDS—慢消化淀粉含量;
RS—抗性淀粉含量;
G 20—淀粉酶水解20min后产生的葡萄糖含量;
G 120—淀粉酶水解120min后产生的葡萄糖含量;
TG—酶水解后淀粉中总葡萄糖含量
对照例1:淀粉分支酶改性对淀粉乳中慢消化淀粉含量的影响
将玉米淀粉溶于水中制得5%淀粉乳,于50℃下预热10min后,加入30U/g淀粉分支酶,50℃处理10h,沸水浴糊化灭酶30min,终止反应,冷冻干燥得到改性淀粉。改性淀粉消化性测定结果如表1所示。
从反应结果显示,淀粉分支酶改性可以改善玉米淀粉乳的消化性能。淀粉分支酶处理10h后,改性淀粉中快消化淀粉含量显著降低,慢消化淀粉及抗性淀粉含量显著增加。相比对照(未经淀粉分支酶处理),淀粉分支酶改性后快消化淀粉含量降低8.4%,慢消化淀粉含量增加29.5%,抗性淀粉含量增加17.5%。说明淀粉分支酶改性可改善产物的慢消化性能,改性生成高度分支的结构增加了淀粉的空间位阻,延缓了酶的消化水解。但当前慢消化淀粉水平不足以满足食品工业需求,仍有进一步提升空间。
对照例2:淀粉分支酶改性对淀粉糊中慢消化淀粉含量的影响
将玉米淀粉溶于水中制得5%淀粉乳,沸水糊化30min后加入30U/g淀粉分支酶,于50℃下预热10min后,50℃下处理10h后,沸水浴30min终止反应,冷冻干燥得到改性淀粉。改性淀粉消化性测定结果如表1所示。
表1反应结果显示,以糊化玉米淀粉为底物进行改性10h,制得的改性淀粉中慢消化淀粉含量达24.6%,相比对照提高77.0%,相比对照例1(玉米淀粉颗粒为底物)进一步提高36.7%;快消化淀粉含量对照提高20.4%,相比对照例1(玉米淀粉颗粒为底物)进一步提高13.1%。
对照例3:淀粉分支酶改性对淀粉糊中慢消化淀粉含量的影响
将玉米淀粉溶于水中制得5%淀粉乳,沸水糊化30min后加入30U/g淀粉分支酶,于50℃下预热10min后,50℃下处理20h后,沸水浴30min终止反应,冷冻干燥得到改性淀粉。改性淀粉消化性测定结果如表1所示。
从反应结果显示,以糊化玉米淀粉为底物进行改性20h,制得的改性淀粉中慢消化淀粉含量达25.4%,相比对照提高82.7%,相比对照例1(玉米淀粉颗粒为底物)进一步提高15.0%。 说明相比颗粒淀粉为底物进行改性,以糊化淀粉为底物进行淀粉分支酶改性,其改性效果更为显著。淀粉颗粒的破坏有利于底物与酶的充分反应,显著改善了产物的慢消化性能。
实施例1:两阶段改性对淀粉中慢消化淀粉含量的影响
将玉米淀粉溶于水中制得5%淀粉乳,于50℃下预热10min后,加入30U/g淀粉分支酶,50℃处理10h,沸水浴糊化灭酶30min,于50℃下预热10min后,加入30U/g淀粉分支酶,50℃下处理6h后,沸水浴终止反应,冷冻干燥得到改性淀粉。改性淀粉消化性测定结果如表1所示。
从反应结果显示,以分别以颗粒玉米淀粉及糊化玉米淀粉为底物进行两阶段改性,制得的改性淀粉中慢消化淀粉含量达26.0%,相比对照提高87.0%,相比对照例3(糊化玉米淀粉为底物)进一步提高2.4%;快消化淀粉含量对照提高23.9%,相比对照例3(糊化玉米淀粉为底物)进一步提高2.3%。
实施例2:两阶段改性对淀粉中慢消化淀粉含量的影响
将玉米淀粉溶于水中制得5%淀粉乳,于50℃下预热10min后,加入30U/g淀粉分支酶,50℃处理10h,沸水浴糊化灭酶30min,于50℃下预热10min后,加入30U/g淀粉分支酶,50℃下处理8h后,沸水浴终止反应,冷冻干燥得到改性淀粉。改性淀粉消化性测定结果如表1所示。
从反应结果显示,采用两阶段改性策略对玉米淀粉进行改性,制得的改性淀粉中快消化淀粉含量达54.8%,相比对照例3(糊化玉米淀粉为底物)进一步降低5.0%;慢消化淀粉含量达26.3%,相比对照例3(糊化玉米淀粉为底物)进一步增加3.5%;抗性淀粉相比对照例3(糊化玉米淀粉为底物)进一步增加11.8%。
实施例3:两阶段改性对淀粉中慢消化淀粉含量的影响
将玉米淀粉溶于水中制得5%淀粉乳,于50℃下预热10min后,加入30U/g淀粉分支酶,50℃处理10h,沸水浴糊化灭酶30min,于50℃下预热10min后,加入30U/g淀粉分支酶,50℃下处理10h后,沸水浴终止反应,冷冻干燥得到改性淀粉。改性淀粉消化性测定结果如表1所示。
从反应结果显示,采用两阶段改性策略对玉米淀粉进行改性,制得的改性淀粉中快消化淀粉含量达53.8%,相比对照例3(糊化玉米淀粉为底物)进一步降低6.8%;慢消化淀粉含量达26.5%,相比对照例3(糊化玉米淀粉为底物)进一步增加4.3%;抗性淀粉相比对照例3(糊化玉米淀粉为底物)进一步增加16.6%。说明两阶段改性过程有利于进一步改善产物的慢消化性能,且产物慢消化性能随糊化时间增加而增强。
表1各改性样品的消化性能
Figure PCTCN2017117786-appb-000001
从反应结果显示,采用两阶段改性策略分别以颗粒玉米淀粉及糊化玉米淀粉为底物进行改性,制得的改性淀粉中快消化淀粉含量达53.8%,相比对照降低27.4%;慢消化淀粉含量达26.5%,相比对照增加90.6%;抗性淀粉相比对照增加64.2%。对照例3与实施例3说明相比糊化淀粉改性,先颗粒后糊化的两阶段改性策略能显著提高改性淀粉中慢消化淀粉含量,是一种有效提高淀粉分支酶改性产物中慢消化淀粉含量的策略。
上述结果表明,采用淀粉分支酶对淀粉进行改性处理,有利于提高淀粉中慢消化淀粉的含量,改善淀粉糊化后的消化性能。更重要的是,两阶段改性策略可以有效提高淀粉分支酶的改性效果,显著提高产品中慢消化淀粉含量。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (8)

  1. 一种改善淀粉慢消化性能的方法,其特征在于,主要包括以下步骤:将淀粉乳样品于50~60℃下预热10~15min后,加入20-50U/g淀粉分支酶,于50~60℃下处理4-20h,置于沸水浴中糊化灭酶后,置于50~60℃下预热10~15min,加入20-50U/g淀粉分支酶后于50~60℃下处理4-20h,终止反应,干燥得到改性淀粉。
  2. 根据权利要求1所述的一种改善淀粉慢消化性能的方法,其特征在于,将淀粉乳样品于50~60℃下预热10min后,加入20-50U/g淀粉分支酶,于50~60℃下处理4-20h,置于沸水浴中糊化30min灭酶后,置于50~60℃下预热10min,加入20-50U/g淀粉分支酶后于50~60℃下处理4-20h,终止反应,干燥得到改性淀粉。
  3. 根据权利要求1或2所述的一种改善淀粉慢消化性能的方法,其特征在于,所述淀粉是普通玉米淀粉。
  4. 根据权利要求1或2所述的一种改善淀粉慢消化性能的方法,其特征在于,所述淀粉乳质量浓度为5%。
  5. 根据权利要求1或2或4所述的一种改善淀粉慢消化性能的方法,其特征在于,调节淀粉乳的pH至7.0~8.0。
  6. 根据权利要求1~5任一所述的一种改善淀粉慢消化性能的方法,其特征在于,淀粉分支酶来源为热葡糖苷酶地芽孢杆菌(Geobacillus thermoglucosidans STB02)。
  7. 根据权利要求1或2所述的一种改善淀粉慢消化性能的方法,其特征在于,将淀粉乳样品于50℃下预热10min后,加入20-50U/g淀粉分支酶,于50℃下处理6-10h,置于沸水浴中糊化30min灭酶后,置于50℃下预热10min,加入20-50U/g淀粉分支酶后于50℃下处理6-10h,终止反应,干燥得到改性淀粉。
  8. 根据权利要求7所述的一种改善淀粉慢消化性能的方法,其特征在于,将淀粉乳样品于50℃下预热10min后,加入30U/g淀粉分支酶,于50℃下处理8-10h,置于沸水浴中糊化30min灭酶后,置于50℃下预热10min,加入30U/g淀粉分支酶后于50℃下处理8-10h,终止反应,干燥得到改性淀粉。
PCT/CN2017/117786 2017-12-11 2017-12-21 一种改善淀粉慢消化性能的改性方法 WO2019114020A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/033,214 US10392640B2 (en) 2017-12-11 2018-07-12 Method for modifying starch to slow down the digestion rate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711304745.7 2017-12-11
CN201711304745.7A CN108047340A (zh) 2017-12-11 2017-12-11 一种改善淀粉慢消化性能的改性方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/033,214 Continuation US10392640B2 (en) 2017-12-11 2018-07-12 Method for modifying starch to slow down the digestion rate

Publications (1)

Publication Number Publication Date
WO2019114020A1 true WO2019114020A1 (zh) 2019-06-20

Family

ID=62122976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117786 WO2019114020A1 (zh) 2017-12-11 2017-12-21 一种改善淀粉慢消化性能的改性方法

Country Status (2)

Country Link
CN (1) CN108047340A (zh)
WO (1) WO2019114020A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4077400A4 (en) * 2019-12-18 2024-01-03 Sveriges Staerkelseproducenter Foerening U P A CONVERTED STARCH AND FOOD COMPRISING SUCH CONVERTED STARCH

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108949861B (zh) 2018-08-13 2020-12-01 江南大学 一种制备慢消化糊精的方法
CN110156900B (zh) * 2019-06-20 2021-09-21 中南林业科技大学 一种提高锥栗缓慢消化淀粉含量的加工方法
CN110760532B (zh) * 2019-11-18 2022-08-12 南京农业大学 一种淀粉分支酶及其基因、含有该基因的工程菌及其应用
CN111172221A (zh) * 2020-01-16 2020-05-19 齐鲁工业大学 一种改性淀粉的制备方法及应用
CN111165534B (zh) * 2020-01-17 2023-03-21 广东省农业科学院蚕业与农产品加工研究所 一种慢消化型全谷物能量棒及其制备方法
CN111772094A (zh) * 2020-07-30 2020-10-16 四川东方主食产业技术研究院 一种低gi即食方便凉粉及其制备方法
CN115058466B (zh) * 2022-07-29 2023-08-25 江南大学 一种冻融稳定型生物改性淀粉及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101631474A (zh) * 2006-12-29 2010-01-20 荷兰应用科学研究组织 新型可缓慢消化的贮存碳水化合物
CN104293865A (zh) * 2014-10-27 2015-01-21 江南大学 一种多分支淀粉的合成方法
CN104544473A (zh) * 2014-12-08 2015-04-29 江南大学 一种抑制淀粉回生的生物改性方法
CN105199005A (zh) * 2015-11-11 2015-12-30 江南大学 一种制备高性能淀粉浆料的方法
CN105820259A (zh) * 2016-04-01 2016-08-03 广东食品药品职业学院 一种慢消化淀粉的制备方法
CN106591396A (zh) * 2016-12-23 2017-04-26 江南大学 一种提高淀粉中慢消化淀粉含量的方法
CN107418988A (zh) * 2017-08-31 2017-12-01 华南理工大学 一种抗消化淀粉及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2832728B1 (fr) * 2001-11-29 2004-01-30 Roquette Freres Procede continu de modification de l'amidon et de ses derives par enzymes de branchement

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101631474A (zh) * 2006-12-29 2010-01-20 荷兰应用科学研究组织 新型可缓慢消化的贮存碳水化合物
CN104293865A (zh) * 2014-10-27 2015-01-21 江南大学 一种多分支淀粉的合成方法
CN104544473A (zh) * 2014-12-08 2015-04-29 江南大学 一种抑制淀粉回生的生物改性方法
CN105199005A (zh) * 2015-11-11 2015-12-30 江南大学 一种制备高性能淀粉浆料的方法
CN105820259A (zh) * 2016-04-01 2016-08-03 广东食品药品职业学院 一种慢消化淀粉的制备方法
CN106591396A (zh) * 2016-12-23 2017-04-26 江南大学 一种提高淀粉中慢消化淀粉含量的方法
CN107418988A (zh) * 2017-08-31 2017-12-01 华南理工大学 一种抗消化淀粉及其制备方法和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4077400A4 (en) * 2019-12-18 2024-01-03 Sveriges Staerkelseproducenter Foerening U P A CONVERTED STARCH AND FOOD COMPRISING SUCH CONVERTED STARCH

Also Published As

Publication number Publication date
CN108047340A (zh) 2018-05-18

Similar Documents

Publication Publication Date Title
WO2019114020A1 (zh) 一种改善淀粉慢消化性能的改性方法
CN1310950C (zh) 通过异淀粉酶脱支低直链淀粉的淀粉制成的耐性淀粉
WO2019153611A1 (zh) 一种高分支糊精产品的制备方法
US20200332326A1 (en) Green preparation methods of rice resistant starch
CN106616914B (zh) 一种多功能慢消化淀粉及其制备方法与应用
CN108949861B (zh) 一种制备慢消化糊精的方法
CN112715850B (zh) 提高大米抗性淀粉含量的制备方法
CN101914163A (zh) 一种慢性消化淀粉及其制备方法
CN103555793B (zh) 一种籼米强抗消化淀粉及其制备方法
CN106591396B (zh) 一种提高淀粉中慢消化淀粉含量的方法
KR101216058B1 (ko) 지소화성 및 난소화성이 증진된 전분의 제조방법
WO2018196356A1 (zh) 一种基于3d打印技术调节青稞淀粉消化性能的方法
Ye et al. Optimization of reaction conditions for improving nutritional properties in heat moisture treated maize starch
CN108251475B (zh) 一种利用双酶制备慢消化淀粉的方法
US10392640B2 (en) Method for modifying starch to slow down the digestion rate
CN115028748B (zh) 一种酶解脱支协同苹果酸酯化制备高含量抗性淀粉的方法
CN115651951A (zh) 一种酶法辅助制备抗性糊精的方法
CN114381482A (zh) 一种糯麦抗性淀粉的制备方法
CN113106131A (zh) 一种利用复合变性法制备慢消化淀粉的方法
KR101400966B1 (ko) 수열처리에 의해 물마로부터 지소화성 전분을 제조하는 방법
CN108823264A (zh) 一种以大米为原料制取高纯度麦芽糖浆的方法
Luong Effect of hydrolysis of sweet potato starch by pullulanase enzyme on the formation of slowly digestible starch
Onyango et al. Synthesis and in vitro digestion of resistant starch type III from enzymatically hydrolysed cassava starch
KR100294252B1 (ko) 효소저항전분의함량을증가시키는방법
Wang et al. Preparation of resistant starch by dual modified method from indica rice starch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17934584

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17934584

Country of ref document: EP

Kind code of ref document: A1