WO2019113718A1 - Bidirectional tuned mass damper based on multiple composite levers - Google Patents

Bidirectional tuned mass damper based on multiple composite levers Download PDF

Info

Publication number
WO2019113718A1
WO2019113718A1 PCT/CL2018/000039 CL2018000039W WO2019113718A1 WO 2019113718 A1 WO2019113718 A1 WO 2019113718A1 CL 2018000039 W CL2018000039 W CL 2018000039W WO 2019113718 A1 WO2019113718 A1 WO 2019113718A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
levers
dmsb
bidirectional
lever
Prior art date
Application number
PCT/CL2018/000039
Other languages
Spanish (es)
French (fr)
Inventor
Luis Alejandro ROZAS TORRES
Rubén Luis BOROSCHEK KRAUSKOPF
Rodrigo Alfredo AILLAPAN QUINTEROS
Original Assignee
Universidad De Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Chile filed Critical Universidad De Chile
Publication of WO2019113718A1 publication Critical patent/WO2019113718A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/0235Anti-seismic devices with hydraulic or pneumatic damping
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/36Bearings or like supports allowing movement
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/98Protection against other undesired influences or dangers against vibrations or shocks; against mechanical destruction, e.g. by air-raids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/104Vibration-dampers; Shock-absorbers using inertia effect the inertia member being resiliently mounted
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B1/00Frameworks, boards, panels, desks, casings; Details of substations or switching arrangements
    • H02B1/54Anti-seismic devices or installations

Definitions

  • the present invention relates to a bidirectional tuned mass sink based on multiple composite levers, which corresponds to a type of tuned mass dissipator capable of simultaneously controlling two perpendicular vibrating modes whose frequencies are not necessarily equal.
  • the tuned mass dampers are devices used in structural control, these mechanisms basically consist of a mass, spring and damper system, usually fixed to a vibrating system to reduce the demand on structural elements by dissipating energy.
  • the present invention relates to "bidirectional tuned mass dissipator based on multiple composite levers" (hereinafter DMSB) which corresponds to a type of tuned mass dissipator capable of simultaneously controlling two perpendicular vibrating modes whose frequencies are not necessarily equal.
  • DMSB didirectional tuned mass dissipator based on multiple composite levers
  • the mechanisms that make up the DMSB allow the mass of it to cover large displacements in any direction in the plane. These displacements typically occur when the DMSB is used to control vibrations produced by the effects of earthquakes, wind, excitations caused by rotating machinery, among others.
  • the DMSB can also be used to control vibrations in smaller mechanisms or structures, such as those resulting from the passage of vehicles or excitations due to pedestrian crossing. Its use can also be extended to control vibrations produced by the operation of equipment resulting from its operation, impact loads, among others.
  • document CN 102995786 discloses a horizontally adjustable two-directional tuned mass damper comprising a rectangular base that is provided with a longitudinal carriage, in which a transverse carriage is disposed on the upper part of the longitudinal carriage; the front end and the rear end of the longitudinal carriage are each provided with a first shock absorber; one end of each first shock absorber is connected to a longitudinal carriage body by a universal coupling, and the other end of the first shock absorber is connected to the base by another universal coupling; the front end and the rear end of the cross slide are respectively provided with a second damper; one end of each shock absorber is connected to a transverse body of the carriage by a universal coupling, and the other end of the second shock absorber is connected to a second sliding block by another universal coupling; two longitudinal sliding rails are respectively arranged on the two sides of the base; the second sliding blocks correspond respectively with the longitudinal sliding rails; and an equilibrium weight is
  • the adjustable two-way tuned mass damper disclosed in this document is capable of absorbing bidirectional impacts and only needs a set of counterweights, so that the weight of the tuned mass damper is lighter than that of the traditional tuned mass damper ; and the two-way adjustable tuned dough damper is especially suitable for buildings such as a high-voltage power transmission tower and a radio tower.
  • the document CN 105756219 discloses a horizontal bidirectional viscoelastic tuned mass damper system and a working method thereof.
  • the horizontal bidirectional viscoelastic tuned mass cushion system comprises a hollow circular outer cylinder, an upper cover plate disposed above the hollow circular outer cylinder and a lower cover plate disposed below the hollow circular outer cylinder; a universal joint is disposed in the middle of the surface of the lower end of the upper cover plate; a circular viscoelastic limiting device is disposed in the middle of the upper end surface of the lower cover plate.
  • the shock absorber system adjusted by bi-directional horizontal viscoelastic collision also comprises a first block of cylindrical mass and a second block of cylindrical mass; the central part of the circle at the upper end of the first cylindrical mass block is articulated with the universal joint through a first rigid rod, and the central part of the circle at the lower end of the first cylindrical block is connected to the central part of the cylinder.
  • circle to the upper end of the second block of cylindrical mass through a second rigid rod; the bottom of the second block of dough cylindrical is located in the circular viscoelastic limiting device;
  • the first cylindrical mass block is also connected to the inner wall of the hollow circular outer cylinder through a plurality of springs.
  • the horizontal bidirectional viscoelastic tuned mass cushion system disclosed in this document is simple in structure and easy to perform and overcomes the defect of the cushioning effect of a traditional device.
  • CN 101021089 discloses a horizontal bidirectional multi-tuned mass damping device arranged in an area of a structure. It is characterized in that said device can be arranged by zones, in each zone the mass tuned in the direction of the guide is composed of two blocks of dough, said two blocks of dough, a guide rod and a rigid rod are part of a system; said device uses a guide and a device the lower roller and makes the roller slide along the direction of the guide to implement the control of the vibration in the direction of the guide; the mass tuned in the direction of the guide rod is provided by a mass block mentioned above, said device uses the roller of the lower part of the device and slides said roller along the guide bar to implement the control of the vibration in the direction of the guide rod.
  • Said invention is applicable to a high-rise tower, a nuclear power plant, an underground space structure and related structures.
  • the DMSB is composed of a mass which rests on systems that support its weight and at the same time allow its displacement in the plane. These systems can be of different types depending on the magnitude of the mass, being the most common: frictional sliders; bidirectional spherical wheels; low friction perpendicular rails, or similar devices.
  • the mass of the DMSB can be materialized, if used as a vibration control device in structures, by means of a reinforced concrete box inside which it is possible to use a high density filler, such as steel balls, barite or other to reach the target mass.
  • Other possibilities for the mass of the DMSB include the use of steel plates.
  • the mass can be materialized by any element that allows reaching the design mass of the DMSB.
  • the mass is connected to the structure, equipment or vibratory mechanism to be controlled, by means of multiple compound levers, each of which has three articulated points. It is these levers that allow to accommodate the displacements of the DMSB mass in the plane.
  • the compound levers are formed in turn by two biarticulated arms. The first one, the main arm, has at one end a pivot or articulation point anchored to the structure to be controlled. This arm, depending on the application of the DMSB, can be materialized by means of a lattice structure. At the opposite end, a second pivot point capable to move on the plane joins it with the second arm, or secondary arm.
  • the secondary arm in turn has a connection that connects it with the mass of the DMSB, by means of a pivot point capable of moving again in the plane.
  • the DMSB is shown schematically in an arbitrary deformed position.
  • the restitutive elements can be helical tension or compression springs; Belleville type disc spring assemblies; elastomeric springs; gas springs or any other element that subject to deformation restores the initial resting position of the DMSB as outlined in figure 1.
  • the dampers fulfill the function to dissipate energy and can be linear or non-linear viscous dampers; friction dampers; viscoelastic shock absorbers or any element that fulfills the function of dissipating energy.
  • Both the lever ratios and the stiffness of the springs can be adjusted in such a way that the mass of the DMSB vibrates with different frequencies according to each of its main axes. It is this feature that converts the DMSB into a bidirectional vibration control system, capable of adjusting to control two mutually perpendicular vibratory modes of different frequencies.
  • vibrations that occur in two mutually perpendicular directions.
  • these vibrations do not necessarily have the same frequency, since in general, the system to be controlled can have different dynamic properties according to each of said directions.
  • the DMSB is able to vibrate in opposition to the system to be controlled with different vibrating frequencies in its two main directions.
  • the present invention offers the possibility of adjusting these frequencies in different ways. One of these, the most direct, is simply to use restitutive elements (springs) of different rigidities in each of the two main directions of the invention, see figure 1.
  • Another alternative is to use springs of equivalent stiffness but whose location in the levers according to the X axes and the Y axis is different from each other. In this way, by means of a change in the geometric configuration, the global stiffness of the DMSB becomes different in its main directions, vibrating in this way with different frequencies in each one of them. It is also possible to use a combination of the aforementioned alternatives, ie springs of different stiffnesses and locations.
  • the vibration frequency of the DMSB is adjusted to match, or is close to, the vibration frequency of the equipment or structure in which it is located.
  • the dissipator enters into resonance oscillating in opposition to the system to be controlled thereby reducing the vibrations that occur in the latter.
  • the mass of the dissipator is subject to large displacements, which can occur according to any direction in the plane. Accommodating these displacements by means of springs and shock absorbers in a direct way is not always possible due to the restrictions in the deformations maximum that these elements are capable of supporting. That is why the present invention has a system of composite levers within which the springs and shock absorbers are installed.
  • Figure 1 shows a schematic plan view of the constituent elements of the bidirectional tuned mass dissipator based on multiple composite levers of the present invention.
  • Figure 2 shows a schematic plan view with an arbitrary deformation of the bidirectional tuned mass sink based on multiple composite levers of the present invention.
  • Figure 3 shows a schematic view of the composite levers in rest state of the composite levers of the bi-directional tuned mass dissipator based on multiple composite levers of the present invention.
  • Figure 4 shows a schematic view of the composite levers in the state of deformation of the composite levers of the bi-directional tuned mass dissipator based on multiple composite levers of the present invention.
  • the present invention relates to "bidirectional tuned mass dissipator based on multiple composite levers" (hereinafter DMSB) which corresponds to a type of tuned mass dissipator capable of simultaneously controlling two perpendicular vibrating modes whose frequencies are not necessarily equal.
  • DMSB didirectional tuned mass dissipator based on multiple composite levers
  • the mechanisms that make up the DMSB allow the mass of it to cover large displacements in any direction in the plane. These displacements typically occur when the DMSB is used to control vibrations produced by the effects of earthquakes, wind, excitations caused by rotating machinery, among others. Notwithstanding the above, the DMSB can also be used to control vibrations in smaller mechanisms or structures, such as those resulting from the passage of vehicles or excitations due to pedestrian crossing.
  • the mass (1) of the dissipator is connected to the structure (9) by means of main levers (2) and secondary levers (3).
  • the main lever (2) is connected to the structure (9) by means of a first pivot point (4).
  • the main lever (2) is connected to the secondary lever (3) by means of a second pivot (5).
  • the secondary lever (3) is connected to the ground
  • the springs (7) and the dampers (8) are connected between the mass (1) of the heatsink and the main lever (3).
  • Figure 2 shows the deformed DMSB in an arbitrary position. It is possible to observe that the mass (1) of the dissipator moves. For this, the main levers (2) and the secondary levers (3) move causing the springs (7) and shock absorbers (8) located on the left, upper and lower part of figure 2 to stretch as a result of the displacement of the mass (1) and the main levers
  • the main lever (2) and the secondary lever (3) form composite levers which are formed in turn by two Particulate arms.
  • the first of them, main arm (2) has at one end a pivot point (4) or articulation anchored to the structure (9) to be controlled.
  • a second pivot point (5) capable of traveling in the plane joins it with the second arm or secondary arm (3).
  • the secondary arm (3) in turn has a connection that connects it with the mass (1) of the DMSB, by means of a pivot point (6) able to move again in the plane.
  • the combination of the turning capabilities of the arms that make up the levers (2, 3), together with the three articulated points described (4, 5, 6), enable the mass (1) to move in the plane in any direction.
  • the DMSB is shown schematically in an arbitrary deformed position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Emergency Management (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Power Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

The invention relates to a bidirectional tuned mass damper (BTMD) based on multiple composite levers, in which a mass (1) controls the vibration of a structure (9). According to the invention, the mass (1) of the damper is connected to the structure (9) by means of primary levers (2) and secondary levers (3), the primary lever (2) is connected to the structure (9) by means of a first pivot point (4), the primary lever (2) is connected to the secondary lever (3) by means of a second pivot (5), the secondary lever (3) is connected to the mass (1) by means of a third pivot (6), and springs (7) and shock absorbers (8) are connected between the mass (1) of the damper and the primary lever (3).

Description

DISIPADOR DE MASA SINTONIZADA BIDIRECCIONAL EN BASE A MULTIPLES  BIDIRECTIONAL TUNNEL MASS DISSECTOR BASED ON MULTIPLE
PALANCAS COMPUESTAS  COMPOSITE LEVERS
CAMPO TECNICO DE LA INVENCIÓN TECHNICAL FIELD OF THE INVENTION
La presente invención se refiere a un disipador de masa sintonizada bidireccional en base a múltiples palancas compuestas, que corresponde a un tipo de disipador de masa sintonizada capaz de controlar simultáneamente dos modos de vibrar perpendiculares cuyas frecuencias no son necesariamente iguales.  The present invention relates to a bidirectional tuned mass sink based on multiple composite levers, which corresponds to a type of tuned mass dissipator capable of simultaneously controlling two perpendicular vibrating modes whose frequencies are not necessarily equal.
ANTECEDENTES DE LA INVENCION BACKGROUND OF THE INVENTION
Los amortiguadores de masa sintonizados son dispositivos utilizados en el control estructural, estos mecanismos consisten básicamente en un sistema masa, resorte y amortiguador, generalmente fijado a un sistema vibrante para reducir la demanda en elementos estructurales mediante la disipación de energía.  The tuned mass dampers are devices used in structural control, these mechanisms basically consist of a mass, spring and damper system, usually fixed to a vibrating system to reduce the demand on structural elements by dissipating energy.
Esta reducción de energía se obtiene cuando la frecuencia del amortiguador de masa se sintoniza a una frecuencia particular de la estructura. Cuando esa frecuencia es alcanzada, el amortiguador vibrará fuera de fase con el movimiento estructural y parte de la energía vibratoria es transferida al amortiguador de masa sintonizada.  This energy reduction is obtained when the frequency of the mass absorber is tuned to a particular frequency of the structure. When that frequency is reached, the damper will vibrate out of phase with the structural movement and part of the vibratory energy is transferred to the tuned mass damper.
La presente invención se refiere a “disipador de masa sintonizada bidireccional en base a múltiples palancas compuestas” (en adelante DMSB) que corresponde a un tipo de disipador de masa sintonizada capaz de controlar simultáneamente dos modos de vibrar perpendiculares cuyas frecuencias no son necesariamente iguales. Los mecanismos que componen el DMSB permiten que la masa del mismo cubra grandes desplazamientos en cualquier dirección en el plano. Estos desplazamientos típicamente se producen cuando el DMSB es utilizado para controlar vibraciones producidas por los efectos de los sismos, viento, excitaciones causadas por maquinarias rotatorias, entre otros. Sin perjuicio de lo anterior, el DMSB puede ser también utilizado para controlar vibraciones en mecanismos o estructuras de menor envergadura, como aquellas que resultan de la acción de paso de vehículos o excitaciones debidas a paso de peatones. Su uso también puede ser extendido para controlar vibraciones producidas por la operación de equipos producto de su operación, cargas de impacto, entre otros. The present invention relates to "bidirectional tuned mass dissipator based on multiple composite levers" (hereinafter DMSB) which corresponds to a type of tuned mass dissipator capable of simultaneously controlling two perpendicular vibrating modes whose frequencies are not necessarily equal. The mechanisms that make up the DMSB allow the mass of it to cover large displacements in any direction in the plane. These displacements typically occur when the DMSB is used to control vibrations produced by the effects of earthquakes, wind, excitations caused by rotating machinery, among others. Notwithstanding the above, the DMSB can also be used to control vibrations in smaller mechanisms or structures, such as those resulting from the passage of vehicles or excitations due to pedestrian crossing. Its use can also be extended to control vibrations produced by the operation of equipment resulting from its operation, impact loads, among others.
En el estado del arte existen varios disipadores de masa sintonizada, como el de la presente invención. Así por ejemplo, el documento CN 102995786 divulga un amortiguador de masa sintonizado regulable horizontal de dos direcciones que comprende una base rectangular que está provista de un carro longitudinal, en el que un carro transversal está dispuesto en la parte superior del carro longitudinal; el extremo delantero y el extremo posterior del carro longitudinal están provistos respectivamente de un primer amortiguador; un extremo de cada primer amortiguador está conectado con un cuerpo de carro longitudinal mediante un acoplamiento universal, y el otro extremo del primer amortiguador está conectado con la base por otro acoplamiento universal; el extremo delantero y el extremo posterior del carro transversal están provistos respectivamente de un segundo amortiguador; un extremo de cada amortiguador está conectado con un cuerpo transversal del carro mediante un acoplamiento universal, y el otro extremo del segundo amortiguador está conectado con un segundo bloque deslizante mediante otro acoplamiento universal; dos carriles deslizantes longitudinales están dispuestos respectivamente en los dos lados de la base; los segundos bloques deslizantes se corresponden respectivamente con los carriles deslizantes longitudinales; y un peso de equilibrio está dispuesto en el carro transversal. El amortiguador de masa sintonizado ajustable en dos sentidos divulgado en este documento, es capaz de absorber los impactos bidireccionales y solo necesita un juego de contrapesos, de modo que el peso del amortiguador de masa sintonizado sea más ligero que el del amortiguador de masa sintonizado tradicional; y el amortiguador de masa sintonizado ajustable en dos sentidos es especialmente adecuado para edificios como una torre de transmisión de energía de alto voltaje y una torre de radio. In the state of the art there are several tuned mass dissipators, like the one of the present invention. For example, document CN 102995786 discloses a horizontally adjustable two-directional tuned mass damper comprising a rectangular base that is provided with a longitudinal carriage, in which a transverse carriage is disposed on the upper part of the longitudinal carriage; the front end and the rear end of the longitudinal carriage are each provided with a first shock absorber; one end of each first shock absorber is connected to a longitudinal carriage body by a universal coupling, and the other end of the first shock absorber is connected to the base by another universal coupling; the front end and the rear end of the cross slide are respectively provided with a second damper; one end of each shock absorber is connected to a transverse body of the carriage by a universal coupling, and the other end of the second shock absorber is connected to a second sliding block by another universal coupling; two longitudinal sliding rails are respectively arranged on the two sides of the base; the second sliding blocks correspond respectively with the longitudinal sliding rails; and an equilibrium weight is disposed in the transverse carriage. The adjustable two-way tuned mass damper disclosed in this document is capable of absorbing bidirectional impacts and only needs a set of counterweights, so that the weight of the tuned mass damper is lighter than that of the traditional tuned mass damper ; and the two-way adjustable tuned dough damper is especially suitable for buildings such as a high-voltage power transmission tower and a radio tower.
El documento CN 105756219 divulga un sistema amortiguador de masa sintonizado viscoelástico bidireccional horizontal y a un método de trabajo del mismo. El sistema de amortiguador de masa sintonizado viscoelástico bidireccional horizontal comprende un cilindro exterior circular hueco, una placa de cubierta superior dispuesta encima del cilindro externo circular hueco y una placa de cubierta inferior dispuesta debajo del cilindro externo circular hueco; una junta universal está dispuesta en el medio de la superficie del extremo inferior de la placa de cubierta superior; un dispositivo limitador de viscoelástico circular está dispuesto en el medio de la superficie extrema superior de la placa de cubierta inferior. El sistema de amortiguador de masa ajustado por colisión viscoelástica horizontal bidireccional comprende además un primer bloque de masa cilindrico y un segundo bloque de masa cilindrico; la parte central del círculo en el extremo superior del primer bloque de masa cilindrico está articulada con la junta universal a través de una primera varilla rígida, y la parte central del círculo en el extremo inferior del primer bloque cilindrico se conecta con la parte central del círculo al extremo superior del segundo bloque de masa cilindrico a través de una segunda varilla rígida; la parte inferior del segundo bloque de masa cilindrico está situada en el dispositivo limitador viscoelástico circular; el primer bloque de masa cilindrico también está conectado con la pared interna del cilindro externo circular hueco a través de una pluralidad de resortes. El sistema de amortiguador de masa sintonizado viscoelástico bidireccional horizontal divulgado en este documento es de estructura simple y fácil de realizar y supera el defecto de que el efecto de amortiguación de un dispositivo tradicional. The document CN 105756219 discloses a horizontal bidirectional viscoelastic tuned mass damper system and a working method thereof. The horizontal bidirectional viscoelastic tuned mass cushion system comprises a hollow circular outer cylinder, an upper cover plate disposed above the hollow circular outer cylinder and a lower cover plate disposed below the hollow circular outer cylinder; a universal joint is disposed in the middle of the surface of the lower end of the upper cover plate; a circular viscoelastic limiting device is disposed in the middle of the upper end surface of the lower cover plate. The shock absorber system adjusted by bi-directional horizontal viscoelastic collision also comprises a first block of cylindrical mass and a second block of cylindrical mass; the central part of the circle at the upper end of the first cylindrical mass block is articulated with the universal joint through a first rigid rod, and the central part of the circle at the lower end of the first cylindrical block is connected to the central part of the cylinder. circle to the upper end of the second block of cylindrical mass through a second rigid rod; the bottom of the second block of dough cylindrical is located in the circular viscoelastic limiting device; The first cylindrical mass block is also connected to the inner wall of the hollow circular outer cylinder through a plurality of springs. The horizontal bidirectional viscoelastic tuned mass cushion system disclosed in this document is simple in structure and easy to perform and overcomes the defect of the cushioning effect of a traditional device.
El documento CN 101021089 divulga un dispositivo amortiguador de masa multisintonizado bidireccional horizontal dispuesto en una zona de una estructura. Se caracteriza porque dicho dispositivo puede disponerse por zonas, en cada zona la masa sintonizada en la dirección de la guía está compuesta por dos bloques de masa, dichos dos bloques de masa, una varilla guía y una varilla rígida forman parte de un sistema; dicho dispositivo utiliza una guía y un dispositivo el rodillo inferior y hace deslizar el rodillo a lo largo de la dirección de la guía para implementar el control de la vibración en la dirección de la guía; la masa sintonizada en la dirección de la varilla guía está proporcionada por un bloque de masa mencionado anteriormente, dicho dispositivo utiliza el rodillo de la parte inferior del dispositivo y hace deslizar dicho rodillo a lo largo de la barra guía para implementar el control de la vibración en la dirección de la varilla guía. Dicha invención es aplicable a una torre de gran altura, una central nuclear, una estructura de espacio subterráneo y estructuras relacionadas.  CN 101021089 discloses a horizontal bidirectional multi-tuned mass damping device arranged in an area of a structure. It is characterized in that said device can be arranged by zones, in each zone the mass tuned in the direction of the guide is composed of two blocks of dough, said two blocks of dough, a guide rod and a rigid rod are part of a system; said device uses a guide and a device the lower roller and makes the roller slide along the direction of the guide to implement the control of the vibration in the direction of the guide; the mass tuned in the direction of the guide rod is provided by a mass block mentioned above, said device uses the roller of the lower part of the device and slides said roller along the guide bar to implement the control of the vibration in the direction of the guide rod. Said invention is applicable to a high-rise tower, a nuclear power plant, an underground space structure and related structures.
Ninguno de los documentos anteriormente mencionados permite que la masa del mismo cubra grandes desplazamientos en cualquier dirección en el plano, mediante barras pivotantes, permitiendo a su vez que la masa del disipador vibre con frecuencias distintas en sus dos direcciones principales RESEÑA DE LA INVENCION None of the aforementioned documents allows the mass of the same to cover large displacements in any direction in the plane, by means of pivoting bars, allowing in turn the mass of the dissipater to vibrate with different frequencies in its two main directions SUMMARY OF THE INVENTION
Como todo disipador de masa sintonizada, el DMSB está compuesto por una masa la cual descansa sobre sistemas que soportan su peso y al mismo tiempo permiten su desplazamiento en el plano. Estos sistemas pueden ser de distintos tipos dependiendo de la magnitud de la masa, siendo los más comunes: deslizadores fricciónales; ruedas esféricas bidireccionales; rieles perpendiculares de baja fricción, o dispositivos similares. La masa del DMSB puede ser materializada, en caso de utilizarse como dispositivo de control de vibraciones en estructuras, por medio de un cajón de hormigón armado dentro del cual es posible utilizar un relleno de alta densidad, tales como bolas de acero, baritina u otro para alcanzar la masa objetivo. Otras posibilidades para la masa del DMSB incluyen el uso de planchas de acero. En caso que el dispositivo se utilice para el control de vibraciones en equipos, mecanismos vibratorios o estructuras de menor envergadura, la masa podrá ser materializada mediante cualquier elemento que permita alcanzar la masa objetivo de diseño del DMSB.  Like every tuned mass dissipater, the DMSB is composed of a mass which rests on systems that support its weight and at the same time allow its displacement in the plane. These systems can be of different types depending on the magnitude of the mass, being the most common: frictional sliders; bidirectional spherical wheels; low friction perpendicular rails, or similar devices. The mass of the DMSB can be materialized, if used as a vibration control device in structures, by means of a reinforced concrete box inside which it is possible to use a high density filler, such as steel balls, barite or other to reach the target mass. Other possibilities for the mass of the DMSB include the use of steel plates. In case the device is used for the control of vibrations in equipment, vibratory mechanisms or smaller structures, the mass can be materialized by any element that allows reaching the design mass of the DMSB.
Tal y como se muestra esquemáticamente en la figura 1 , la masa se conecta con la estructura, equipo o mecanismo vibratorio a controlar, por medio de múltiples palancas compuestas, cada una de las cuales cuenta con tres puntos articulados. Son estas palancas las que permiten acomodar los desplazamientos de la masa del DMSB en el plano. Las palancas compuestas están formadas a su vez por dos brazos biarticulados. El primero de ellos, brazo principal, tiene en uno de sus extremos un punto de pivote o articulación anclado a la estructura a controlar. Este brazo, dependiendo de la aplicación del DMSB, puede ser materializado por medio de una estructura enrejada. En el extremo contrario, un segundo punto de pivote capaz de desplazarse en el plano lo une con el segundo brazo, o brazo secundario. El brazo secundario posee a su vez una conexión que lo une con la masa del DMSB, mediante un punto de pivote capaz nuevamente de desplazarse en el plano. La combinación de las capacidades de giro de los brazos que componen las palancas, junto con los tres puntos articulados descritos, posibilitan que la masa se desplace en el plano según cualquier dirección. En la figura 2, se muestra esquemáticamente el DMSB en una posición deformada arbitraria. As shown schematically in Figure 1, the mass is connected to the structure, equipment or vibratory mechanism to be controlled, by means of multiple compound levers, each of which has three articulated points. It is these levers that allow to accommodate the displacements of the DMSB mass in the plane. The compound levers are formed in turn by two biarticulated arms. The first one, the main arm, has at one end a pivot or articulation point anchored to the structure to be controlled. This arm, depending on the application of the DMSB, can be materialized by means of a lattice structure. At the opposite end, a second pivot point capable to move on the plane joins it with the second arm, or secondary arm. The secondary arm in turn has a connection that connects it with the mass of the DMSB, by means of a pivot point capable of moving again in the plane. The combination of the turning capabilities of the arms that make up the levers, together with the three articulated points described, make it possible for the mass to move in the plane in any direction. In Figure 2, the DMSB is shown schematically in an arbitrary deformed position.
Con objeto de proveer las fuerzas de restitución y amortiguamiento necesarias para la operación del DMSB como mecanismo de control de vibraciones, se disponen de elementos restitutivos (resortes), así como de amortiguadores en cada una de las palancas compuestas. Los elementos restitutivos pueden ser resortes helicoidales de tracción o compresión; ensambles de resortes de disco tipo Belleville; resortes elastomericos; resortes de gas o cualquier otro elemento que sujeto a deformación restituya la posición inicial de reposo del DMSB tal y como se esquematiza en la figura 1. Por otra parte, los amortiguadores cumplen la función disipar energía y pueden ser amortiguadores viscosos lineales o no lineales; amortiguadores de fricción; amortiguadores viscoelásticos o cualquier elemento que cumpla la función de disipar energía. Tal y como se muestra en las figuras 1 y 2, ya sean estos los amortiguadores o los elementos restitutivos, estos componentes se ubican de tal forma que uno de sus extremos queda unido al brazo principal y el segundo extremo se conecta con la masa del DMSB. A su vez, y dependiendo de los requisitos de diseño, los ejes longitudinales de estos elementos pueden no necesariamente ser paralelos con las direcciones principales del DMSB, tal y como se muestra esquemáticamente en la figura 3. La razón entre la distancia medida desde la articulación fija a la estructura hasta el punto en donde se une cada uno de los componentes con el brazo principal, con respecto al largo total de dicho brazo, define la “razón de palanca” asociada al componente en cuestión. Por medio de este parámetro se puede controlar tanto la rigidez del DMSB como su amortiguamiento. Los valores de estos parámetros que definen el comportamiento global del DMSB, dependen tanto de la rigidez y amortiguamiento de cada uno de los resortes y amortiguadores a utilizar, así como de los respectivos factores de palanca elegidos para cada uno de estos elementos. Cabe también destacar que otra importante propiedad del factor de palanca es que permite utilizar resortes y amortiguadores con relativa poca capacidad de deformación. En efecto, el uso de los resortes y amortiguadores en conjunto con las palancas compuestas de la forma descrita anteriormente, permiten que la masa del DMSB alcance desplazamientos muy por sobre las capacidades de deformación de estos elementos. Este efecto de magnificación de deformaciones, que se ilustra gráficamente en la figura 4 (se muestra una sola palanca compuesta por claridad), puede ser controlado según sean los requisitos de diseño por medio de una adecuada elección de los factores de palanca. Tanto las razones de palanca como las rigideces de los resortes pueden ser ajustadas de forma tal de lograr que la masa del DMSB vibre con frecuencias diferentes según cada uno de sus ejes principales. Es esta característica la que convierte al DMSB en un sistema de control de vibraciones bidireccional, capaz de ajustarse para controlar dos modos vibratorios perpendiculares entre sí de frecuencias distintas. In order to provide the restitution and damping forces necessary for the operation of the DMSB as a vibration control mechanism, restitutive elements (springs) are available, as well as dampers in each of the composite levers. The restitutive elements can be helical tension or compression springs; Belleville type disc spring assemblies; elastomeric springs; gas springs or any other element that subject to deformation restores the initial resting position of the DMSB as outlined in figure 1. On the other hand, the dampers fulfill the function to dissipate energy and can be linear or non-linear viscous dampers; friction dampers; viscoelastic shock absorbers or any element that fulfills the function of dissipating energy. As shown in figures 1 and 2, whether these are the dampers or the restitutive elements, these components are located in such a way that one of their ends is joined to the main arm and the second end is connected to the mass of the DMSB . In turn, and depending on the design requirements, the longitudinal axes of these elements may not necessarily be parallel with the main directions of the DMSB, as shown schematically in Figure 3. The ratio between the distance measured from the joint fixed to the structure to the point where each of the components joins the main arm, with respect to the total length of said arm, defines the "lever ratio" associated with the component in question. By means of this parameter it is possible to control both the stiffness of the DMSB and its damping. The values of these parameters that define the overall behavior of the DMSB depend both on the stiffness and damping of each of the springs and dampers to be used, as well as on the respective lever factors chosen for each of these elements. It should also be noted that another important property of the lever factor is that it allows the use of springs and dampers with relatively low deformation capacity. In fact, the use of the springs and dampers in conjunction with the levers composed in the manner described above, allow the mass of the DMSB to reach displacements well above the deformation capacities of these elements. This effect of magnification of deformations, which is illustrated graphically in Figure 4 (a single lever shown by clarity is shown), can be controlled according to the design requirements by means of a suitable choice of the lever factors. Both the lever ratios and the stiffness of the springs can be adjusted in such a way that the mass of the DMSB vibrates with different frequencies according to each of its main axes. It is this feature that converts the DMSB into a bidirectional vibration control system, capable of adjusting to control two mutually perpendicular vibratory modes of different frequencies.
Muchos problemas vibratorios involucran vibraciones que ocurren en dos direcciones mutuamente perpendiculares. Como ejemplo de estas se pueden mencionar las vibraciones que ocurren en edificios altos productos de las cargas sísmicas o de viento. Adicionalmente estas vibraciones no necesariamente poseen la misma frecuencia, ya que en general, el sistema a controlar puede poseer distintas propiedades dinámicas según cada una de dichas direcciones. Para controlar este tipo de vibraciones de manera simultánea, el DMSB es capaz de vibrar en oposición al sistema a controlar con frecuencias de vibrar distintas en sus dos direcciones principales. La presente invención ofrece la posibilidad de ajustar estas frecuencias de distintas maneras. Una de estas, la más directa, consiste simplemente en utilizar elementos restitutivos (resortes) de distintas rigideces en cada una de las dos direcciones principales del invento, ver figura 1. Otra alternativa es la de usar resortes de rigideces equivalentes pero cuya ubicación en las palancas según los ejes X y el eje Y es diferente entre sí. De esta forma, mediante un cambio en la configuración geométrica, la rigidez global del DMSB se hace distinta en sus direcciones principales, vibrando de esta manera con frecuencias diferentes en cada una de ellas. También es posible usar una combinación de las alternativas antes mencionadas, esto es resortes de distintas rigideces y ubicaciones. Many vibrational problems involve vibrations that occur in two mutually perpendicular directions. As an example of these we can mention the vibrations that occur in high buildings, products of loads seismic or wind. Additionally, these vibrations do not necessarily have the same frequency, since in general, the system to be controlled can have different dynamic properties according to each of said directions. To control this type of vibration simultaneously, the DMSB is able to vibrate in opposition to the system to be controlled with different vibrating frequencies in its two main directions. The present invention offers the possibility of adjusting these frequencies in different ways. One of these, the most direct, is simply to use restitutive elements (springs) of different rigidities in each of the two main directions of the invention, see figure 1. Another alternative is to use springs of equivalent stiffness but whose location in the levers according to the X axes and the Y axis is different from each other. In this way, by means of a change in the geometric configuration, the global stiffness of the DMSB becomes different in its main directions, vibrating in this way with different frequencies in each one of them. It is also possible to use a combination of the aforementioned alternatives, ie springs of different stiffnesses and locations.
Como todo disipador de masa sintonizada, la frecuencia de vibración del DMSB se ajusta para que coincida, o sea cercana, a la frecuencia de vibración del equipo u estructura en la cual se encuentra emplazado. De esta forma, cuando el sistema a controlar comienza a vibrar, el disipador entra en resonancia oscilando en oposición al sistema a controlar reduciendo por tanto las vibraciones que se producen en este último. Esto tiene como consecuencia que la masa del disipador se vea sujeta a grandes desplazamientos, los que pueden ocurrir según cualquier dirección en el plano. Acomodar estos desplazamientos mediante resortes y amortiguadores de manera directa no siempre es posible debido a las restricciones en las deformaciones máximas que estos elementos son capaces de soportar. Es por esto que la presente invención cuenta con un sistema de palancas compuestas dentro de las cuales se instalan los resortes y amortiguadores. Tal y como se describe esquemáticamente en la figura 2 y la figura 4, cuando la masa del disipador se desplaza en el plano, este movimiento es acomodado por las palancas. Las palancas funcionan además como reductores geométricos de deformación. Lo anterior significa que cuando la masa del DMSB se desplaza en el plano, los resortes y amortiguadores se someten a deformaciones muy menores al desplazamiento de la masa. Esto resulta ser particularmente importante ya que la gran mayoría de los resortes y amortiguadores que se encuentran en el mercado poseen capacidades de deformación limitadas. Las deformaciones máximas en los resortes y amortiguadores pueden ser controladas a su vez modificando su ubicación en las palancas. Esto junto con la posibilidad de modificar las frecuencias de vibración del invento mediante las alternativas descritas en el punto anterior, ofrecen múltiples posibilidades de ajuste que facilitan el uso del invento en un gran número de aplicaciones. Like any tuned mass sink, the vibration frequency of the DMSB is adjusted to match, or is close to, the vibration frequency of the equipment or structure in which it is located. In this way, when the system to be controlled begins to vibrate, the dissipator enters into resonance oscillating in opposition to the system to be controlled thereby reducing the vibrations that occur in the latter. This has as a consequence that the mass of the dissipator is subject to large displacements, which can occur according to any direction in the plane. Accommodating these displacements by means of springs and shock absorbers in a direct way is not always possible due to the restrictions in the deformations maximum that these elements are capable of supporting. That is why the present invention has a system of composite levers within which the springs and shock absorbers are installed. As schematically described in figure 2 and figure 4, when the mass of the dissipator moves in the plane, this movement is accommodated by the levers. The levers also function as geometric deformation reducers. This means that when the mass of the DMSB moves in the plane, the springs and dampers are subjected to deformations much less than the displacement of the mass. This turns out to be particularly important since the vast majority of springs and dampers on the market have limited deformation capabilities. The maximum deformations in the springs and dampers can be controlled in turn by changing their location in the levers. This together with the possibility of modifying the vibration frequencies of the invention through the alternatives described in the previous point, offer multiple adjustment possibilities that facilitate the use of the invention in a large number of applications.
Una vez que el DMSB se ha instalado en el sistema a controlar sus propiedades dinámicas, frecuencia de vibrar y amortiguamiento, pueden ser modificadas en caso que se requiera. Esto puede llevarse a cabo de manera relativamente sencilla simplemente mediante un cambio en la ubicación de los resortes y amortiguadores en las palancas. Se modifican de esta manera, mediante un cambio en su configuración geométrica, las rigideces y amortiguamientos globales del DMSB en sus dos direcciones principales. Como se ha descrito las múltiples posibilidades de ajuste de la invención la convierten en una alternativa de control de vibraciones en muchas áreas de la ingeniería. Entre ellas se pueden mencionar: Once the DMSB has been installed in the system to control its dynamic properties, frequency of vibration and damping, can be modified if required. This can be carried out relatively simply by simply changing the location of the springs and dampers on the levers. The global rigidities and damping of the DMSB in its two main directions are modified in this way, by means of a change in its geometrical configuration. As described, the multiple adjustment possibilities of the invention make it an alternative for vibration control in many areas of engineering. Among them can be mentioned:
• Control de vibraciones en estructuras esbeltas (edificios altos, puentes, torres de puentes colgantes o atirantados, chimeneas etc.) producto de efectos de cargas sísmicas.  • Control of vibrations in slender structures (tall buildings, bridges, towers of hanging or cable stayed bridges, chimneys, etc.) product of effects of seismic loads.
• Control de vibraciones en estructuras esbeltas (edificios altos, puentes, torres de puentes colgantes o atirantados, chimeneas etc.) producto de efectos de la acción del viento.  • Control of vibrations in slender structures (tall buildings, bridges, towers of suspended or cable-stayed bridges, chimneys, etc.) due to effects of wind action.
• Control de vibraciones en estructuras industriales producidas por la acción de maquinarias rotatorias tales como harneros, centrifugas, ventiladores, etc.  • Control of vibrations in industrial structures produced by the action of rotating machinery such as screens, centrifuges, fans, etc.
• Reducción vibraciones producidas por efectos del paso de peatones en estructuras tales como escaleras, galerías, puentes peatonales etc. • Reduction of vibrations caused by pedestrian crossing effects in structures such as stairs, galleries, pedestrian bridges, etc.
• Sistema de protección para equipos sensitivos a vibraciones tales como: equipos ópticos, equipos utilizados para la fabricación de semiconductores y nanotecnología, entre otros. • Protection system for vibration sensitive equipment such as: optical equipment, equipment used for the manufacture of semiconductors and nanotechnology, among others.
BREVE DESCRIPCION DE LOS DIBUJOS  BRIEF DESCRIPTION OF THE DRAWINGS
Los dibujos que se acompañan se incluyen para proporcionar una mayor compresión de la invención y constituyen parte de esta descripción y muestran una de las ejecuciones preferidas.  The accompanying drawings are included to provide further understanding of the invention and constitute a part of this description and show one of the preferred embodiments.
La figura 1 muestra una vista esquemática en planta de los elementos constitutivos del disipador de masa sintonizada bidireccional en base a múltiples palancas compuestas de la presente invención. La figura 2 muestra una vista esquemática en planta con una deformación arbitraria del disipador de masa sintonizada bidireccional en base a múltiples palancas compuestas de la presente invención. Figure 1 shows a schematic plan view of the constituent elements of the bidirectional tuned mass dissipator based on multiple composite levers of the present invention. Figure 2 shows a schematic plan view with an arbitrary deformation of the bidirectional tuned mass sink based on multiple composite levers of the present invention.
Figura 3 muestra una vista esquemática de las palancas compuestas en estado de reposo de las palancas compuestas del disipador de masa sintonizada bidireccional en base a múltiples palancas compuestas de la presente invención.  Figure 3 shows a schematic view of the composite levers in rest state of the composite levers of the bi-directional tuned mass dissipator based on multiple composite levers of the present invention.
Figura 4 muestra una vista esquemática de las palancas compuestas en estado de deformación de las palancas compuestas del disipador de masa sintonizada bidireccional en base a múltiples palancas compuestas de la presente invención. DESCRIPCION DE LA INVENCIÓN  Figure 4 shows a schematic view of the composite levers in the state of deformation of the composite levers of the bi-directional tuned mass dissipator based on multiple composite levers of the present invention. DESCRIPTION OF THE INVENTION
La presente invención se refiere a “disipador de masa sintonizada bidireccional en base a múltiples palancas compuestas” (en adelante DMSB) que corresponde a un tipo de disipador de masa sintonizada capaz de controlar simultáneamente dos modos de vibrar perpendiculares cuyas frecuencias no son necesariamente iguales. Los mecanismos que componen el DMSB permiten que la masa del mismo cubra grandes desplazamientos en cualquier dirección en el plano. Estos desplazamientos típicamente se producen cuando el DMSB es utilizado para controlar vibraciones producidas por los efectos de los sismos, viento, excitaciones causadas por maquinarias rotatorias, entre otros. Sin perjuicio de lo anterior, el DMSB puede ser también utilizado para controlar vibraciones en mecanismos o estructuras de menor envergadura, como aquellas que resultan de la acción de paso de vehículos o excitaciones debidas a paso de peatones. Su uso también puede ser extendido para controlar vibraciones producidas por la operación de equipos producto de su operación, cargas de impacto, entre otros. De acuerdo a lo mostrado en la figura 1 , la masa (1 ) del disipador se conecta con la estructura (9) mediante palancas principales (2) y palancas secundarias (3). La palanca principal (2) se conecta a la estructura (9) mediante un primer punto pivote (4). La palanca principal (2) se conecta a la palanca secundaria (3) mediante un segundo pivote (5). La palanca secundaria (3) se conecta a la masaThe present invention relates to "bidirectional tuned mass dissipator based on multiple composite levers" (hereinafter DMSB) which corresponds to a type of tuned mass dissipator capable of simultaneously controlling two perpendicular vibrating modes whose frequencies are not necessarily equal. The mechanisms that make up the DMSB allow the mass of it to cover large displacements in any direction in the plane. These displacements typically occur when the DMSB is used to control vibrations produced by the effects of earthquakes, wind, excitations caused by rotating machinery, among others. Notwithstanding the above, the DMSB can also be used to control vibrations in smaller mechanisms or structures, such as those resulting from the passage of vehicles or excitations due to pedestrian crossing. Its use can also be extended to control vibrations produced by the operation of equipment resulting from its operation, impact loads, among others. According to what is shown in figure 1, the mass (1) of the dissipator is connected to the structure (9) by means of main levers (2) and secondary levers (3). The main lever (2) is connected to the structure (9) by means of a first pivot point (4). The main lever (2) is connected to the secondary lever (3) by means of a second pivot (5). The secondary lever (3) is connected to the ground
(1) mediante un tercer pivote (6). Entre la masa (1 ) del disipador y la palanca principal (3) se conectan los resortes (7) y los amortiguadores (8). (1) by means of a third pivot (6). The springs (7) and the dampers (8) are connected between the mass (1) of the heatsink and the main lever (3).
La figura 2 muestra el DMSB deformado en una posición arbitraria. Es posible observar que la masa (1 ) del disipador se desplaza. Para ello, las palancas principales (2) y las palancas secundarias (3) se mueven provocando que los resortes (7) y amortiguadores (8) ubicados a la izquierda, parte superior e inferior de la figura 2 se estiren producto del desplazamiento de la masa (1 ) y de las palancas principales Figure 2 shows the deformed DMSB in an arbitrary position. It is possible to observe that the mass (1) of the dissipator moves. For this, the main levers (2) and the secondary levers (3) move causing the springs (7) and shock absorbers (8) located on the left, upper and lower part of figure 2 to stretch as a result of the displacement of the mass (1) and the main levers
(2) y las palancas secundarias (3). A la derecha del dibujo, los resortes (7) y amortiguadores (8) se comprimen absorbiendo energía del desplazamiento de la masa (1 ). (2) and the secondary levers (3). To the right of the drawing, the springs (7) and dampers (8) are compressed by absorbing energy from the displacement of the mass (1).
Tal como se muestra en las figuras 3 y 4, la palanca principal (2) y la palanca secundaria (3) conforman palancas compuestas que están formadas a su vez por dos brazos Particulados. El primero de ellos, brazo principal (2), tiene en uno de sus extremos un punto de pivote (4) o articulación anclado a la estructura (9) a controlar. En el extremo contrario, un segundo punto de pivote (5) capaz de desplazarse en el plano lo une con el segundo brazo o brazo secundario (3). El brazo secundario (3) posee a su vez una conexión que lo une con la masa (1 ) del DMSB, mediante un punto de pivote (6) capaz nuevamente de desplazarse en el plano. La combinación de las capacidades de giro de los brazos que componen las palancas (2, 3), junto con los tres puntos articulados descritos (4, 5, 6), posibilitan que la masa (1 ) se desplace en el plano según cualquier dirección. En la figura 2, se muestra esquemáticamente el DMSB en una posición deformada arbitraria. As shown in Figures 3 and 4, the main lever (2) and the secondary lever (3) form composite levers which are formed in turn by two Particulate arms. The first of them, main arm (2), has at one end a pivot point (4) or articulation anchored to the structure (9) to be controlled. At the opposite end, a second pivot point (5) capable of traveling in the plane joins it with the second arm or secondary arm (3). The secondary arm (3) in turn has a connection that connects it with the mass (1) of the DMSB, by means of a pivot point (6) able to move again in the plane. The combination of the turning capabilities of the arms that make up the levers (2, 3), together with the three articulated points described (4, 5, 6), enable the mass (1) to move in the plane in any direction. In Figure 2, the DMSB is shown schematically in an arbitrary deformed position.

Claims

REIVINDICACIONES
1.- Un disipador de masa sintonizada bidireccional en base a múltiples palancas compuestas (DMSB) en donde una masa (1 ) controla la vibración de una estructura (9), CARACTERIZADO porque:  1.- A bidirectional tuned mass dissipator based on multiple compound levers (DMSB) where a mass (1) controls the vibration of a structure (9), CHARACTERIZED because:
la masa (1 ) de dicho disipador está conectada con la estructura (9) mediante palancas principales (2) y palancas secundarias (3);  the mass (1) of said dissipator is connected to the structure (9) by means of main levers (2) and secondary levers (3);
la palanca principal (2) se conecta a la estructura (9) mediante un primer punto pivote (4);  the main lever (2) is connected to the structure (9) by means of a first pivot point (4);
la palanca principal (2) se conecta a la palanca secundaria (3) mediante un segundo pivote (5);  the main lever (2) is connected to the secondary lever (3) by means of a second pivot (5);
la palanca secundaria (3) se conecta a la masa (1 ) mediante un tercer pivote (6); y  the secondary lever (3) is connected to the ground (1) by means of a third pivot (6); Y
entre la masa (1 ) del disipador y la palanca principal (3) se conectan resortes (7) y amortiguadores (8).  between the mass (1) of the heatsink and the main lever (3) springs (7) and dampers (8) are connected.
2.- El disipador según la reivindicación 1 , CARACTERIZADO porque la masa (1 ) tiene medios que soportan su peso.  2. The dissipator according to claim 1, characterized in that the mass (1) has means that support its weight.
3.- El disipador según la reivindicación 2, CARACTERIZADO porque los medios son deslizadores fricciónales; ruedas esféricas bidireccionales; rieles perpendiculares de baja fricción, o dispositivos similares.  3. The heatsink according to claim 2, CHARACTERIZED in that the means are frictional sliders; bidirectional spherical wheels; low friction perpendicular rails, or similar devices.
4.- El disipador según cualquiera de las reivindicaciones 1 a 3, CARACTERIZADO porque la masa (1 ) puede ser materializada mediante un cajón de hormigón armado dentro del cual es posible utilizar un relleno de alta densidad, tales como bolas de acero, baritina, planchas o por medio de cualquier elemento que permita alcanzar la masa objetivo de diseño del DMSB. 4. The dissipator according to any of claims 1 to 3, characterized in that the mass (1) can be materialized by a reinforced concrete box inside which it is possible to use a high density filler, such as steel balls, barite, plates or by means of any element that allows to reach the objective design mass of the DMSB.
PCT/CL2018/000039 2017-12-11 2018-12-06 Bidirectional tuned mass damper based on multiple composite levers WO2019113718A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2017003159A CL2017003159A1 (en) 2017-12-11 2017-12-11 Bidirectional tuned mass sink based on multiple composite levers
CL3159-2017 2017-12-11

Publications (1)

Publication Number Publication Date
WO2019113718A1 true WO2019113718A1 (en) 2019-06-20

Family

ID=65561324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2018/000039 WO2019113718A1 (en) 2017-12-11 2018-12-06 Bidirectional tuned mass damper based on multiple composite levers

Country Status (2)

Country Link
CL (1) CL2017003159A1 (en)
WO (1) WO2019113718A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110952433A (en) * 2020-01-13 2020-04-03 郑州大学 TMD vibration reduction frame for pin-connected sling
CN112253681A (en) * 2020-09-22 2021-01-22 江苏科技大学 Tension-compression type energy-absorbing buffering device
CN113374108A (en) * 2021-07-07 2021-09-10 北京市建筑设计研究院有限公司 Metal composite energy dissipater with double-order yield point for seismic isolation layer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109488723A (en) * 2018-12-29 2019-03-19 东莞中子科学中心 A kind of particle accelerator tuning mass bumper
CN113285380B (en) * 2021-05-24 2022-10-25 国网安徽省电力有限公司淮北供电公司 Electric power automation equipment machine case with safeguard function

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133844A (en) * 1993-11-11 1995-05-23 Tatsuji Ishimaru Lever mechanism and structural body for vibration damping device
JPH10169707A (en) * 1996-12-06 1998-06-26 Showa Electric Wire & Cable Co Ltd Base isolating device
JPH1136664A (en) * 1997-07-17 1999-02-09 Showa Electric Wire & Cable Co Ltd Dynamic vibration reducer
JP2003056200A (en) * 2001-08-09 2003-02-26 Univ Nihon Vibration control device for structure
CN203174801U (en) * 2013-03-11 2013-09-04 同济大学 Both-way independent stiffness particle tuned mass damper
CN103541460A (en) * 2013-11-08 2014-01-29 同济大学 Novel tuned particle mass damper
CN106988592A (en) * 2017-04-06 2017-07-28 东南大学 A kind of swing-type tuned mass damper device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133844A (en) * 1993-11-11 1995-05-23 Tatsuji Ishimaru Lever mechanism and structural body for vibration damping device
JPH10169707A (en) * 1996-12-06 1998-06-26 Showa Electric Wire & Cable Co Ltd Base isolating device
JPH1136664A (en) * 1997-07-17 1999-02-09 Showa Electric Wire & Cable Co Ltd Dynamic vibration reducer
JP2003056200A (en) * 2001-08-09 2003-02-26 Univ Nihon Vibration control device for structure
CN203174801U (en) * 2013-03-11 2013-09-04 同济大学 Both-way independent stiffness particle tuned mass damper
CN103541460A (en) * 2013-11-08 2014-01-29 同济大学 Novel tuned particle mass damper
CN106988592A (en) * 2017-04-06 2017-07-28 东南大学 A kind of swing-type tuned mass damper device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110952433A (en) * 2020-01-13 2020-04-03 郑州大学 TMD vibration reduction frame for pin-connected sling
CN112253681A (en) * 2020-09-22 2021-01-22 江苏科技大学 Tension-compression type energy-absorbing buffering device
CN113374108A (en) * 2021-07-07 2021-09-10 北京市建筑设计研究院有限公司 Metal composite energy dissipater with double-order yield point for seismic isolation layer

Also Published As

Publication number Publication date
CL2017003159A1 (en) 2018-11-16

Similar Documents

Publication Publication Date Title
WO2019113718A1 (en) Bidirectional tuned mass damper based on multiple composite levers
ES2585208T3 (en) Passive shock absorber
US8915375B2 (en) Vibrating screen suspension systems
CN102317548B (en) Multi-directional torsional hysteretic damper (MTHD)
ES2748801T3 (en) Vibration limiting module and device, construction segment for a wind power installation and construction device with a vibration limiting module
JP6974478B2 (en) Tower vibration damping device
EP2821668B1 (en) Vibration-insulating device and system
JP2009541626A (en) Stable flooring against earthquakes
ES2386209T3 (en) Tuned mass damper
US10591014B2 (en) Multi-performance hysteretic rheological device
KR101503484B1 (en) Earthquake isolation device having anti-bridge and tensile reinforcing
Javanmardi et al. Seismic response characteristics of a base isolated cable-stayed bridge under moderate and strong ground motions
US9580876B2 (en) Device for damping vibrations in cables of a suspension system of a civil engineering structure
JP5985927B2 (en) Sliding bearings for structures
CN103742587B (en) Six-dimension anti-shock vibration isolation system and manufacture method thereof
JP2019015310A (en) Vibration damping device for structure
ES2302445B1 (en) NEW VIBRATION LEVELING AND AMORTIGUATION SYSTEM.
Simonian Particle damping applications
JP6809853B2 (en) Vibration damping device
JP2005207521A (en) Vibration suppression device
KR100984744B1 (en) Anti-vibration apparatus and the method of anti-vibration
KR100549373B1 (en) Bearing for diminishing a vibration of a perpendicular direction in a structure
RU2654890C1 (en) Method of protected object dynamic oscillations damping and device for its implementation
RU2820180C1 (en) Adaptive system for seismic protection of objects (versions)
WO2020047684A1 (en) Device and system for three-dimensional vibration insulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18888746

Country of ref document: EP

Kind code of ref document: A1