WO2019111350A1 - Compressor and refrigeration cycle device - Google Patents

Compressor and refrigeration cycle device Download PDF

Info

Publication number
WO2019111350A1
WO2019111350A1 PCT/JP2017/043826 JP2017043826W WO2019111350A1 WO 2019111350 A1 WO2019111350 A1 WO 2019111350A1 JP 2017043826 W JP2017043826 W JP 2017043826W WO 2019111350 A1 WO2019111350 A1 WO 2019111350A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
cylinder
accumulator
compressor
diameter
Prior art date
Application number
PCT/JP2017/043826
Other languages
French (fr)
Japanese (ja)
Inventor
公平 櫻田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/043826 priority Critical patent/WO2019111350A1/en
Priority to JP2019557920A priority patent/JPWO2019111350A1/en
Priority to CN201790001056.6U priority patent/CN210197788U/en
Publication of WO2019111350A1 publication Critical patent/WO2019111350A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat

Definitions

  • the present invention relates to a compressor having an accumulator and a refrigeration cycle apparatus provided with the compressor.
  • the diameter of the inner pipe in the accumulator be large in order to reduce pressure loss.
  • the conventional rotary compressor having a cylinder connects with the suction pipe by limiting the size of the diameter of the suction pipe connecting the accumulator and the cylinder to the size of the diameter of the suction port of the cylinder
  • the size of the outer diameter of the inner pipe is limited. Therefore, there is a limitation in reducing the pressure loss of the inner pipe.
  • the present invention is for solving the problems as described above, and provides a compressor having an accumulator capable of reducing the pressure loss of the inner pipe, and a refrigeration cycle apparatus.
  • one end is opened in the container and the other end is opened in the container that constitutes the accumulator, and the accumulator that separates the refrigerant into the gas and the liquid.
  • the suction pipe comprises an accumulator connection portion forming a pipe connected to the inner pipe, and a pipe connection connected to the suction port of the cylinder, and a cylinder connection portion having a diameter smaller than that of the accumulator connection portion;
  • the suction pipe comprises an accumulator connection portion forming a pipe connected to the inner pipe and a pipe connected to the suction port of the cylinder, and the cylinder connection having a diameter smaller than that of the accumulator connection portion Part.
  • the suction pipe is a pipe having one end of a large diameter continuously formed with the accumulator connection portion and constituting the other end of a small diameter continuously formed with the cylinder connection portion, from one end to the other It has a tapered portion which is continuously reduced in diameter by being put on the end. Therefore, the compressor can be provided with an inner pipe having a pipe diameter larger than the diameter of the suction port of the cylinder in the accumulator, and the pressure loss of the inner pipe can be reduced.
  • FIG. 1 is a schematic view showing a refrigeration cycle apparatus provided with a compressor according to Embodiment 1 of the present invention. It is a longitudinal cross-sectional view of the compressor concerning Embodiment 1 of the present invention.
  • 1 is a perspective view of a suction pipe of a compressor according to Embodiment 1 of the present invention. It is a longitudinal cross-sectional view of the conventional compressor. It is a longitudinal cross-sectional view of the compressor concerning Embodiment 2 of this invention. It is a perspective view of the suction pipe of the compressor concerning Embodiment 2 of the present invention. It is a longitudinal cross-sectional view of the conventional compressor. It is a cross-sectional schematic diagram of the accumulator of the conventional compressor of FIG. It is a cross-sectional schematic diagram of the accumulator of the compressor of FIG.
  • FIG. 1 is a schematic view showing a refrigeration cycle apparatus 10 provided with a compressor 100 according to Embodiment 1 of the present invention.
  • the refrigeration cycle apparatus 10 includes a compressor 100, a condenser 110, an expansion device 120, and an evaporator 130.
  • a compressor 100, a condenser 110, an expansion device 120, and an evaporator 130 are connected in series by a refrigerant pipe to constitute a refrigerant circulation circuit.
  • the compressor 100 is a rotary compressor, and compresses a low-pressure gas phase refrigerant introduced therein to change it into a high-temperature high-pressure gas phase refrigerant.
  • the compressor 100 has an accumulator 140.
  • the condenser 110 dissipates heat from the high temperature and high pressure gas phase refrigerant sent from the compressor 100, and changes the gas phase refrigerant into a high pressure liquid phase refrigerant.
  • the expansion device 120 reduces the pressure of the high-pressure liquid-phase refrigerant fed from the condenser 110 and changes it to a low-temperature low-pressure liquid-phase refrigerant.
  • the evaporator 130 vaporizes the liquid-phase refrigerant fed from the expansion device 120 and changes it to a low-pressure gas-phase refrigerant. At this time, the heat of vaporization is taken away by the phase-changing refrigerant, and the periphery of the evaporator 130 is cooled. The gas phase refrigerant deprived of the heat of vaporization is again introduced into the compressor 100 via the accumulator 140. As described above, in the refrigeration cycle apparatus 10, the refrigerant, which is the working fluid, circulates while undergoing phase change between the gas phase refrigerant and the liquid phase refrigerant.
  • Heat is dissipated from the refrigerant in the process of phase change from gas phase refrigerant to liquid phase refrigerant, and is absorbed by the refrigerant in the process of phase change from liquid phase refrigerant to gas phase refrigerant. Heating or cooling is performed using these heat radiation or heat absorption.
  • FIG. 2 is a longitudinal cross-sectional view of the compressor 100 according to Embodiment 1 of the present invention.
  • the electric mechanism unit 2 and the compression mechanism unit 3 are accommodated inside the hermetic container 1.
  • the compressor 100 also has an accumulator 140 outside the hermetic container 1 and a suction pipe 5 connecting the hermetic container 1 and the accumulator 140.
  • the closed container 1 comprises a central container 11 having a cylindrical shape, a hemispherical upper container 12 for closing the upper opening of the central container 11, and a bottomed cylindrical lower container 13 for closing the lower opening of the central container 11. It is done.
  • the upper container 12 is fitted in the upper opening of the central container 11, and the lower container 13 is fitted in the lower opening of the central container 11 to maintain a sealed state.
  • a suction pipe 5 to which an accumulator 140 is attached is connected to the central container 11, and a discharge pipe 7 is connected to the upper container 12.
  • the suction pipe 5 is a connection pipe for feeding the gas refrigerant (low temperature and low pressure) to be sucked through the accumulator 140 into the compression mechanism 3.
  • the discharge pipe 7 is a connection pipe for discharging the gas refrigerant (high temperature and high pressure) in the closed container 1 compressed by the compression mechanism section 3 to the refrigerant pipe constituting the refrigeration cycle apparatus 10.
  • gas refrigerant high temperature and high pressure
  • a space A is formed between the lower portion of the electric mechanism 2 and the upper portion of the compression mechanism 3.
  • the electric mechanism unit 2 is disposed at an upper portion in the closed container 1.
  • the electric mechanism 2 includes a stator 21 fixed to the central container 11 and a rotor 22 rotatably fitted on the inner peripheral side of the stator 21.
  • the stator 21 is fixed to the central container 11 of the closed container 1 by, for example, various fixing methods such as shrink fitting, welding and the like.
  • a main shaft 23 extending downward is fixed.
  • the main shaft 23 is rotatably supported by the upper bearing 38 and the lower bearing 39 and rotates with the rotor 22.
  • the compression mechanism portion 3 is accommodated in the closed container 1 and compresses the refrigerant flowing into the closed container 1.
  • the compression mechanism portion 3 is a rotary type compression mechanism having at least one cylindrical cylinder.
  • the compression mechanism 3 is disposed below the motorized mechanism 2 and is fixed to the central container 11.
  • the compression mechanism portion 3 includes a cylinder 31 having a substantially cylindrical shape, a piston 33, a vane 35, an upper bearing 38, a lower bearing 39, and an upper silencer 40.
  • the substantially cylindrical cylinder 31 is disposed such that the central axis is eccentric to the axis of the main shaft 23.
  • the cylinder 31 is formed with a suction port 42 to which the suction pipe 5 described above is connected.
  • a substantially cylindrical upper bearing 38 is disposed in contact with the upper end surface of the cylinder 31, and closes the upper end surface of the cylinder 31.
  • a substantially cylindrical lower bearing 39 is disposed in contact with the lower end face of the cylinder 31, and closes the lower end face of the cylinder 31.
  • the upper bearing 38 has a discharge port (not shown) through which the refrigerant compressed in the cylinder 31 passes.
  • the piston 33 is at a position eccentric to the central axis of the main shaft 23 and is fitted to the main shaft 23 so as to rotate with the main shaft 23.
  • the piston 33 is fitted to the eccentric shaft of the main shaft 23 and eccentrically rotates in the cylinder 31. Further, a vane 35 is slidably in contact with the piston 33.
  • An upper silencer 40 is provided on the upper bearing 38.
  • the accumulator 140 separates the refrigerant into a gas and a liquid so that the liquid refrigerant that can not be evaporated by the evaporator 130 is not compressed by the compressor 100, and allows the compressor 100 to absorb only the gas refrigerant.
  • the accumulator 140 has a cylindrical container 141, a connection suction pipe 8 provided at the upper part of the container 141, and an inner pipe 44 disposed in the container 141.
  • the connection suction pipe 8 is connected to the evaporator 130 constituting the refrigeration cycle apparatus 10 and guides the refrigerant into the accumulator 140.
  • the inner pipe 44 is a cylindrical through pipe, and is disposed in the container 141 so as to extend in the vertical direction.
  • one end 45a is disposed to face the connection suction pipe 8 in the container 141 constituting the accumulator 140, the inner pipe 44 is opened in the container 141, and the other end 45b is provided in the lower portion of the container 141.
  • the suction pipe 5 is connected with the opening 141 a.
  • the pipe diameter of the inner pipe 44 is smaller than the inner diameter of the container 141 and larger than the diameter of the suction port 42 of the cylinder 31.
  • FIG. 3 is a perspective view of the suction pipe 5 of the compressor 100 according to Embodiment 1 of the present invention.
  • the suction pipe 5 will be described with reference to FIGS. 2 and 3.
  • the suction pipe 5 is a connection pipe for feeding the gas refrigerant flowing from the evaporator 130 of the refrigeration cycle apparatus 10 into the compression mechanism 3 via the accumulator 140.
  • the suction pipe 5 is connected to the inner pipe 44 whose one end 51 a is located at the opening 141 a, and the other end 51 b is connected to the suction port 42 of the cylinder 31 to connect the accumulator 140 and the compression mechanism 3.
  • the suction pipe 5 constitutes a cylindrical accumulator connection portion 5a constituting a pipe connected to the inner pipe 44 and a pipe connected to the suction port 42 of the cylinder 31, and is a cylinder smaller in diameter than the accumulator connection portion 5a. And a connection portion 5c.
  • the suction pipe 5 also has a tapered portion 5b.
  • the tapered portion 5b is a tube having one end 5b1 of large diameter continuously formed with the accumulator connection portion 5a and the other end 5b2 of small diameter continuously formed with the cylinder connection portion 5c. The diameter is continuously reduced from 5b1 to the other end 5b2.
  • the size of the inner diameter of the accumulator connection 5 a is equal to the size of the inner diameter of the inner pipe 44.
  • sizes of an internal diameter are equal includes the case where it is completely equal, and the case where it is substantially equal.
  • the tapered portion 5b is located between the accumulator connection portion 5a and the cylinder connection portion 5c, and the peripheral wall is continuously reduced in diameter from the accumulator connection portion 5a side to the cylinder connection portion 5c side.
  • the cylinder connection portion 5 c is bent between the tapered portion 5 b and the suction port 42 of the cylinder 31.
  • the cylinder connection portion 5c is a circular pipe, but is not limited to a circular pipe, and may be, for example, a flat pipe.
  • the suction pipe 5 is separate from the inner pipe 44.
  • the compressor 100 and the accumulator 140 can be connected only by changing the suction pipe 5 in which the number of cylinder connection portions 5c formed is changed.
  • the structure of the accumulator 140 in which the inner pipe 44 used for the compressor 100 is disposed can be unified.
  • the gas refrigerant compressed in the compression chamber is discharged from the discharge port (not shown) provided in the upper bearing 38 into the internal space B of the upper silencer 40.
  • the gas refrigerant discharged into the internal space B is discharged into the space A from a discharge port (not shown) provided in the upper silencer 40.
  • the gas refrigerant circulating in the space A passes through the gas holes 22 a provided in the rotor 22 and the air gap 2 a between the stator 21 and the rotor 22 to reach the upper portion in the closed container 1,
  • the discharge pipe 7 discharges the refrigerant into the refrigerant circuit of the refrigeration cycle apparatus 10.
  • the compressor 100 is configured as described above, and the refrigerant gas having passed through the condenser 110, the expansion device 120, and the evaporator 130 shown in FIG. 1 is returned from the connection suction pipe 8 to the accumulator 140.
  • the refrigerant gas stored in the space C inside the accumulator 140 is discharged from the inner pipe 44 and is again supplied into the compressor 100 from the suction port 42 of the cylinder 31 through the suction pipe 5.
  • the compressor 100 includes the suction pipe 5 connected to the accumulator connection portion 5a constituting the pipe connected to the inner pipe 44 and the suction port 42 of the cylinder 31, and the accumulator connection portion 5a And a cylinder connection portion 5c of smaller diameter.
  • the suction pipe 5 has a tapered portion 5b which is continuously reduced in diameter from one end 5b1 to the other end 5b2. Therefore, the compressor 100 can include the inner pipe 44 having a pipe diameter larger than the diameter of the suction port 42 of the cylinder 31 in the accumulator 140, and the pressure loss of the inner pipe 44 can be reduced.
  • the tapered portion 5b of the suction pipe 5 is continuously reduced in diameter from one end 5b1 to the other end 5b2. Therefore, it is possible to suppress the disturbance of the refrigerant in the flow path which may occur due to the difference between the pipe diameter of the inner pipe 44 and the diameter of the suction port 42 of the cylinder 31.
  • the inner pipe 44 has a pipe diameter larger than the diameter of the suction port 42 of the cylinder 31. Therefore, the compressor 100 can reduce the pressure loss of the inner pipe 44.
  • the refrigeration cycle apparatus 10 can obtain the refrigeration cycle apparatus 10 having the effects of the compressor 100 according to the first embodiment by including the compressor 100 according to the first embodiment.
  • FIG. 4 is a longitudinal sectional view of the conventional compressor 100A.
  • the parts having the same configuration as that of the compressor 100 of FIGS. 1 to 3 are denoted by the same reference numerals, and the description thereof will be omitted.
  • the conventional compressor 100A has a suction pipe 5A connecting the accumulator 140A and the cylinder 31.
  • the diameter of the suction pipe 5A is limited with respect to the diameter of the suction port 42 of the cylinder 31.
  • the inner diameter of the inner pipe 44A connected to the suction pipe 5A is substantially equal to the diameter of the suction port 42. Therefore, there is a limit to the reduction of the pressure loss of the inner pipe 44A.
  • compressor 100 has accumulator connecting part 5a, taper part 5b, and cylinder connecting part 5c. Therefore, the inner pipe 44 having a pipe diameter larger than the diameter of the suction port 42 of the cylinder 31 can be provided in the accumulator 140, and the pressure loss of the inner pipe 44 can be reduced.
  • the tapered portion 5b of the suction pipe 5 is continuously reduced in diameter from one end 5b1 to the other end 5b2. Therefore, it is possible to suppress the disturbance of the refrigerant in the flow path which may occur due to the difference between the pipe diameter of the inner pipe 44 and the diameter of the suction port 42 of the cylinder 31.
  • FIG. 5 is a longitudinal sectional view of a compressor 200 according to Embodiment 2 of the present invention.
  • the parts having the same configuration as that of the compressor 100 of FIGS. 1 to 3 are denoted by the same reference numerals, and the description thereof will be omitted.
  • the compressor 200 has a twin rotary type compression mechanism 3A and a suction pipe 50 connecting the compression mechanism 3A and the accumulator 140. While the compressor 100 according to the first embodiment is a single rotary compressor with one cylinder 31, the compressor 200 according to the second embodiment has two cylinders, an upper cylinder 31 A and a lower cylinder 32.
  • the compressor 200 according to the second embodiment differs from the structure of the suction pipe 5 of the compressor 100 according to the first embodiment in the structure of the suction pipe 50.
  • the compressor 200 is corresponded to the compressor 100 which comprises the refrigerating-cycle apparatus 10 of FIG.
  • the compression mechanism portion 3A is accommodated in the closed container 1 and compresses the refrigerant flowing into the closed container 1.
  • the compression mechanism portion 3A is a rotary compression mechanism having two substantially cylindrical cylinders, an upper cylinder 31A and a lower cylinder 32.
  • the compression mechanism portion 3A is disposed below the motorized mechanism portion 2 and is fixed to the central container 11.
  • the compression mechanism 3A further includes an upper piston 33A, a lower piston 34, an upper vane 35A, a lower vane 36, an upper bearing 38, a lower bearing 39, a partition plate 37, an upper silencer 40, and a lower A silencer 41 is provided.
  • the central axis of the substantially cylindrical upper cylinder 31A and the substantially cylindrical lower cylinder 32 are arranged eccentrically with respect to the axial center of the main shaft 23.
  • An upper suction port 42A to which the upper cylinder connection portion 50d of the suction pipe 50 is connected is formed in the upper cylinder 31A.
  • the lower cylinder 32 is formed with a lower suction port 43 to which the lower cylinder connection portion 50 c of the suction pipe 50 is connected.
  • a substantially cylindrical upper bearing 38 is disposed in contact with the upper end face of the upper cylinder 31A, and closes the upper end face of the upper cylinder 31A.
  • a substantially cylindrical lower bearing 39 is disposed in contact with the lower end face of the lower cylinder 32 and closes the lower end face of the lower cylinder 32.
  • a discharge port (not shown) is formed in each of the upper bearing 38 and the lower bearing 39.
  • gas holes (not shown) communicating the inside of the upper cylinder 31A and the lower cylinder 32 are formed.
  • the upper piston 33A and the lower piston 34 are eccentrically located with respect to the central axis of the main shaft 23, and are fitted to the main shaft 23 so as to rotate together with the main shaft 23.
  • the upper piston 33A is fitted to the eccentric shaft of the main shaft 23, and eccentrically rotates in the upper cylinder 31A.
  • the lower piston 34 is fitted to the eccentric shaft of the main shaft 23 and eccentrically rotates in the lower cylinder 32.
  • An upper vane 35A and a lower vane 36 are in sliding contact with the upper piston 33A and the lower piston 34, respectively.
  • the partition plate 37 closes the lower end surface of the upper cylinder 31A and the upper end surface of the lower cylinder 32.
  • An upper silencer 40 is provided to the upper bearing 38, and a lower silencer 41 is provided to the lower bearing 39.
  • the accumulator 140 separates the refrigerant into a gas and a liquid so that the liquid refrigerant that can not be evaporated by the evaporator 130 is not compressed by the compressor 200, and allows the compressor 200 to absorb only the gas refrigerant.
  • the accumulator 140 has a cylindrical container 141, a connection suction pipe 8 provided at the upper part of the container 141, and an inner pipe 44 disposed in the container 141.
  • the connection suction pipe 8 is connected to the evaporator 130 constituting the refrigeration cycle apparatus 10 and guides the refrigerant into the accumulator 140.
  • the inner pipe 44 is a cylindrical through pipe, and is disposed in the container 141 so as to extend in the vertical direction.
  • one end 45a is disposed to face the connection suction pipe 8 in the container 141 constituting the accumulator 140, the inner pipe 44 is opened in the container 141, and the other end 45b is provided in the lower portion of the container 141.
  • the suction pipe 50 is connected with the opening 141 a.
  • the pipe diameter of the inner pipe 44 is smaller than the inner diameter of the container 141 and larger than the diameters of the upper suction port 42A and the lower suction port 43 of the upper cylinder 31A.
  • FIG. 6 is a perspective view of a suction pipe 50 of a compressor 200 according to Embodiment 2 of the present invention.
  • the suction pipe 50 will be described with reference to FIGS. 5 and 6.
  • the suction pipe 50 is a connection pipe for feeding the gas refrigerant flowing from the evaporator 130 of the refrigeration cycle apparatus 10 into the compression mechanism 3 via the accumulator 140.
  • the suction pipe 50 is connected to the inner pipe 44 whose one end 51a is located at the opening 141a, one other end 51b is connected to the upper suction port 42A of the upper cylinder 31A, and the other other end 51b is a lower cylinder It is connected to the lower suction port 43 of 32.
  • the suction pipe 50 connects the accumulator 140 and the compression mechanism unit 3.
  • the suction pipe 50 constitutes a cylindrical accumulator connection portion 50a constituting a pipe connected to the inner pipe 44 and a pipe connected to the lower suction port 43 of the lower cylinder 32, and has a diameter smaller than that of the accumulator connection portion 50a.
  • the suction pipe 50 also has a tapered portion 50b.
  • the tapered portion 50b is a tube having one end 50b1 of a large diameter continuously formed with the accumulator connection portion 50a and the other end 50b2 of a small diameter continuously formed with the lower cylinder connection portion 50c.
  • the tapered portion 50b is continuously reduced in diameter from one end 50b1 to the other end 50b2.
  • the suction pipe 50 has an upper cylinder connection portion 50d which constitutes a circular pipe which protrudes from the peripheral wall constituting the accumulator connection portion 50a and is connected to the upper suction port 42A of the upper cylinder 31A.
  • the lower cylinder connection portion 50c corresponds to the "cylinder connection portion” in the present invention
  • the upper cylinder connection portion 50d corresponds to the "upper cylinder connection portion” in the present invention.
  • the size of the inner diameter of the accumulator connection 50 a is equal to the size of the inner diameter of the inner pipe 44.
  • sizes of an internal diameter are equal includes the case where it is completely equal, and the case where it is substantially equal.
  • the tapered portion 50b is located between the accumulator connection portion 50a and the lower cylinder connection portion 50c, and the peripheral wall is continuously reduced in diameter from the accumulator connection portion 50a side to the lower cylinder connection portion 50c side.
  • the lower cylinder connection portion 50 c is bent between the tapered portion 50 b and the lower suction port 43 of the lower cylinder 32.
  • the lower cylinder connection part 50c and the upper cylinder connection part 50d are circular pipes, they are not limited to circular pipes, and may be flat pipes.
  • the lower cylinder connection portion 50c and the upper cylinder connection portion 50d are disposed in parallel.
  • the suction pipe 50 is not limited to what the lower cylinder connection part 50c and the upper cylinder connection part 50d are arrange
  • the pipe diameter of the lower cylinder connection portion 50c is smaller than the pipe diameter of the upper cylinder connection portion 50d. This is to equalize the pressure of the refrigerant flowing into the upper cylinder 31A and the lower cylinder 32 via the lower cylinder connection portion 50c and the upper cylinder connection portion 50d. More specifically, the lower cylinder connection portion 50c is positioned in the flow direction of the refrigerant flowing through the inner pipe 44, whereas the upper cylinder connection portion 50d is positioned to branch laterally from the flow direction of the refrigerant. .
  • the lower cylinder connection portion 50c and the upper cylinder connection portion 50d have the same diameter, the lower cylinder is positioned in the flow direction of the refrigerant flowing through the inner pipe 44 rather than the upper cylinder connection portion 50d branched to the side. A large pressure is applied to the connection 50c. Therefore, by equalizing the pressure of the refrigerant flowing through the lower cylinder connection portion 50c and the upper cylinder connection portion 50d, the pipe diameter is reduced by the tapered portion 50b and the flow rate of the refrigerant flowing through the lower cylinder connection portion 50c is adjusted. I am trying.
  • the suction pipe 50 is separate from the inner pipe 44. Therefore, even if the number of cylinders constituting the compression mechanism portion 3A increases or decreases, the compressor 200 and the accumulator 140 can be connected only by changing the suction pipe 50 in which the number of cylinder connection portions formed is changed. As a result, regardless of the number of cylinders of the compression mechanism 3A, the structure of the accumulator 140 in which the inner pipe 44 used for the compressor 200 is disposed can be unified.
  • FIG. 7 is a longitudinal sectional view of a conventional compressor 200A. Parts having the same configurations as those of the compressor 100 and the compressor 200 in FIGS. 1 to 5 are denoted by the same reference numerals, and the description thereof will be omitted.
  • the conventional compressor 200A having two cylinders, two inner pipes 44B equal in number to the number of cylinders are disposed in the accumulator 140B adjacently fixed.
  • the conventional compressor 200A includes two suction pipes, and includes an upper suction pipe 60B connecting the accumulator 140B and the upper cylinder 31A, and a lower suction pipe 60A connecting the accumulator 140B and the lower cylinder 32. .
  • the size of the diameter of the upper suction pipe 60B is limited with respect to the size of the diameter of the upper suction port 42A of the upper cylinder 31A.
  • the size of the diameter of the lower suction pipe 60A is restricted with respect to the size of the diameter of the lower suction port 43 of the lower cylinder 32.
  • the inner diameter of the inner pipe 44B connected to the upper suction pipe 60B is substantially equal to the diameter of the upper suction port 42A.
  • the size of the inner diameter of the inner pipe 44B connected to the lower suction pipe 60A is substantially equal to the size of the diameter of the lower suction port 43. Therefore, there is a limit to the reduction of the pressure loss of each inner pipe 44B.
  • the compressor 200 has an accumulator connection portion 50a, a taper portion 50b, a lower cylinder connection portion 50c, and an upper cylinder connection portion 50d. Therefore, the inner pipe 44 having a pipe diameter larger than the diameters of the upper suction port 42A of the upper cylinder 31A and the lower suction port 43 of the lower cylinder 32 can be provided in the accumulator 140, and the pressure loss of the inner pipe 44 is reduced. be able to.
  • the tapered portion 50b of the suction pipe 50 is continuously reduced in diameter from one end 50b1 to the other end 50b2. Therefore, it is possible to suppress the disturbance of the refrigerant in the flow path which may occur due to the difference between the pipe diameter of the inner pipe 44 and the diameter of the suction port 42 of the cylinder 31.
  • FIG. 8 is a schematic cross-sectional view of an accumulator 140B of the conventional compressor 200A of FIG.
  • the conventional compressor 200A has the following relationship between the inner pipe 44B and the container 141B of the accumulator 140B.
  • the outer diameter of the inner pipe 44B is defined as Y '.
  • the inner diameter of the container 141B of the accumulator 140B is Z, the distance between the outer peripheral wall of the inner pipe 44B in the arrangement direction of the inner pipe 44B and the inner peripheral wall of the container 141B of the accumulator 140B is X, the outer peripheral walls of the inner pipe 44B Let W be the distance between them.
  • FIG. 9 is a schematic cross-sectional view of the accumulator 140 of the compressor 200 of FIG.
  • one inner pipe 44 is disposed in the accumulator 140 fixed adjacently.
  • the compressor 200 has the following relationship between the inner pipe 44 and the container 141 of the accumulator 140.
  • the outer diameter of the inner pipe 44 is Y
  • the inner diameter of the container 141 of the accumulator 140 is Z
  • the distance between the outer peripheral wall of the inner pipe 44 and the inner peripheral wall of the container 141 of the accumulator 140 is X.
  • Outer diameter Y Z-2X. That is, the relationship between the outer diameter Y 'of the inner pipe 44B and the outer diameter Y of the inner pipe 44 is 2Y' ⁇ Y. Therefore, in the compressor 200, the outer diameter Y of the inner pipe 44 connected to the accumulator 140 can be provided as large as possible with respect to the inner diameter Z of the accumulator 140, as compared with the conventional compressor 200A. As a result, the compressor 200 can reduce the pressure loss of the inner pipe 44 more than the inner pipe 44B of the conventional compressor 200A.
  • the gas refrigerant enters the compression chamber surrounded by the inner wall of the upper cylinder 31A, the upper piston 33A and the upper vane 35A from the upper suction port 42A of the compression mechanism 3A through the upper cylinder connection portion 50d of the suction pipe 50 . Further, the gas refrigerant enters the compression chamber surrounded by the inner wall of the lower cylinder 32, the lower piston 34 and the lower vane 36 from the lower suction port 43 of the compression mechanism 3A via the lower cylinder connection portion 50c of the suction pipe 50. The gas refrigerant in the compression chamber is compressed as the volume in the compression chamber decreases as the upper piston 33A and the lower piston 34 rotate.
  • the gas refrigerant compressed in the compression chamber is discharged from the discharge ports (not shown) respectively provided in the upper bearing 38 and the lower bearing 39 via grooves communicating the inside of the upper cylinder 31A and the inside of the lower cylinder 32. It is discharged to the internal space of the upper silencer 40 and the lower silencer 41.
  • the gas refrigerant discharged into the internal space of the lower muffler 41 has gas holes (not shown) passing through the lower bearing 39, the lower cylinder 32, the partition plate 37, the upper cylinder 31A, and the upper bearing 38. It is led to the internal space B of the upper silencer 40 through it.
  • the gas refrigerant discharged into the internal space B is discharged into the space A from a discharge port (not shown) provided in the upper silencer 40.
  • the gas refrigerant circulating in the space A passes through the gas holes 22a provided in the rotor 22, the air gap 2a between the stator 21 and the rotor 22, and reaches the upper part in the closed container 1, and the discharge pipe 7 are discharged into the refrigerant circuit of the refrigeration cycle apparatus 10.
  • the compressor 200 is configured as described above, and the refrigerant gas having passed through the condenser 110, the expansion device 120, and the evaporator 130 shown in FIG. 1 is returned from the connection suction pipe 8 to the accumulator 140.
  • the refrigerant gas stored in the space C inside the accumulator 140 is discharged from the inner pipe 44 and is again supplied into the compressor 200 from the upper suction port 42A and the lower suction port 43 through the suction pipe 50.
  • the suction pipe 50 has the accumulator connection portion 50a, the tapered portion 50b, the lower cylinder connection portion 50c, and the upper cylinder connection portion 50d. Therefore, the compressor 200 can include the inner pipe 44 having a pipe diameter larger than the diameter of the upper suction port 42A of the upper cylinder 31A and the lower suction port 43 of the lower cylinder 32 in the accumulator 140. As a result, the compressor 200 can reduce the pressure loss of the inner pipe 44.
  • the tapered portion 50b of the suction pipe 50 is continuously reduced in diameter from one end 50b1 to the other end 50b2.
  • the pipe diameter of the lower cylinder connection part 50c is smaller than the pipe diameter of the upper cylinder connection part 50d. Therefore, the compressor 200 can balance the pressure of the refrigerant flowing through the lower cylinder connection portion 50c and the upper cylinder connection portion 50d.
  • the inner pipe 44 has a pipe diameter larger than the bores of the upper suction port 42A of the upper cylinder 31A and the lower suction port 43 of the lower cylinder 32. Therefore, the compressor 200 can reduce the pressure loss of the inner pipe 44.
  • the lower cylinder connection part 50c and the upper cylinder connection part 50d are arrange
  • the refrigeration cycle apparatus 10 can obtain the refrigeration cycle apparatus 10 having the effects of the compressor 200 according to the second embodiment by including the compressor 200 according to the second embodiment.
  • Embodiments 1 and 2 are rotary compressors, as long as they use the accumulator 140, they may be scroll compressors or other compressors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

In order to provide a refrigeration cycle device and a compressor having an accumulator with which pressure loss in an inner pipe can be reduced, a compressor (100) comprises: a compression mechanism unit (3) having at least one cylinder (31); an accumulator (140) for separating a refrigerant into a gas and a liquid; an inner pipe (44) which is in the interior of a container (141) forming the accumulator, one end (45a) of the inner pipe opening inside the container and the other end (45b) connected to an opening provided in the container; and an intake pipe (5) connecting the accumulator and the compression mechanism unit, one end (51a) of the intake pipe connected to the inner pipe positioned in the opening, and the other end (51b) connected to an intake opening (42) of the cylinder. The intake pipe comprises: an accumulator connection section (5a) constituting a pipe connected to the inner pipe; a cylinder connection section (5c) constituting a pipe connected to the intake opening of the cylinder and having a smaller diameter than the accumulator connection section; and a tapered section (5b), which is a pipe one end of which is a larger-diameter end formed so as to be continuous with the accumulator connection section and the other end of which is a smaller-diameter end formed so as to be continuous with the cylinder connection section, wherein the diameter decreases continuously from the one end to the other end.

Description

圧縮機、及び、冷凍サイクル装置Compressor and refrigeration cycle device
 本発明は、アキュムレータを有する圧縮機、及び、当該圧縮機を備えた冷凍サイクル装置に関するものである。 The present invention relates to a compressor having an accumulator and a refrigeration cycle apparatus provided with the compressor.
 従来の圧縮機は、圧縮機を構成するシリンダーの数と同じ数の吸入管を有するアキュムレータが隣接して固定され、冷媒がアキュムレータから吸入管を介して圧縮機溝部へ供給されるものがある(例えば、特許文献1)。 In the conventional compressor, an accumulator having the same number of suction pipes as the number of cylinders constituting the compressor is fixed adjacently, and the refrigerant is supplied from the accumulator to the compressor groove via the suction pipe ( For example, Patent Document 1).
特開2012-57503号公報JP 2012-57503
 圧縮機は、圧力損失を低減させるために、アキュムレータ内のインナーパイプの径が大きいことが望ましい。しかし、シリンダーを有する従来のロータリー圧縮機は、アキュムレータとシリンダーとを接続する吸入管の径の大きさがシリンダーの吸入口の径の大きさに対して制限されることにより、吸入管と接続するインナーパイプの外径の大きさが制限される。そのため、インナーパイプの圧力損失の低減に制限がある。 In the compressor, it is desirable that the diameter of the inner pipe in the accumulator be large in order to reduce pressure loss. However, the conventional rotary compressor having a cylinder connects with the suction pipe by limiting the size of the diameter of the suction pipe connecting the accumulator and the cylinder to the size of the diameter of the suction port of the cylinder The size of the outer diameter of the inner pipe is limited. Therefore, there is a limitation in reducing the pressure loss of the inner pipe.
 本発明は、上記のような課題を解決するためのものであり、インナーパイプの圧力損失を低減できるアキュムレータを有する圧縮機、及び、冷凍サイクル装置を得るものである。 The present invention is for solving the problems as described above, and provides a compressor having an accumulator capable of reducing the pressure loss of the inner pipe, and a refrigeration cycle apparatus.
 本発明に係る圧縮機は、少なくとも1つのシリンダーを有する圧縮機構部と、冷媒を気体と液体とに分離させるアキュムレータと、アキュムレータを構成する容器内において、一端が容器内で開口し、他端が容器に設けられた開口部に接続されるインナーパイプと、一端が開口部に位置するインナーパイプと接続され、他端がシリンダーの吸入口と接続され、アキュムレータと圧縮機構部とを接続する吸入管と、を備え、吸入管は、インナーパイプと接続される管を構成するアキュムレータ接続部と、シリンダーの吸入口に接続される管を構成し、アキュムレータ接続部よりも細径のシリンダー接続部と、アキュムレータ接続部と連続して形成される太径の一端を有し、シリンダー接続部と連続して形成される細径の他端を構成する管であって、一端から他端にかけて連続して細径化されているテーパ部と、を有するものである。 In the compressor according to the present invention, one end is opened in the container and the other end is opened in the container that constitutes the accumulator, and the accumulator that separates the refrigerant into the gas and the liquid. A suction pipe connected to the inner pipe connected to the opening provided in the container and the inner pipe having one end located at the opening, the other end connected to the suction port of the cylinder, and connecting the accumulator and the compression mechanism And the suction pipe comprises an accumulator connection portion forming a pipe connected to the inner pipe, and a pipe connection connected to the suction port of the cylinder, and a cylinder connection portion having a diameter smaller than that of the accumulator connection portion; A tube having one end of a large diameter formed continuously with an accumulator connection and a small diameter formed continuously with a cylinder connection. Te, and has a, a tapered portion which is reduced in diameter continuously from one end to the other end.
 本発明に係る圧縮機は、吸入管が、インナーパイプと接続される管を構成するアキュムレータ接続部と、シリンダーの吸入口に接続される管を構成し、アキュムレータ接続部よりも細径のシリンダー接続部と、を有する。また、吸入管が、アキュムレータ接続部と連続して形成される太径の一端を有し、シリンダー接続部と連続して形成される細径の他端を構成する管であって、一端から他端に掛けて連続して細径化されているテーパ部を有するものである。そのため、圧縮機は、アキュムレータ内にシリンダーの吸入口の径よりも大きな管径を有するインナーパイプを備えることができ、インナーパイプの圧力損失を低減することができる。 In the compressor according to the present invention, the suction pipe comprises an accumulator connection portion forming a pipe connected to the inner pipe and a pipe connected to the suction port of the cylinder, and the cylinder connection having a diameter smaller than that of the accumulator connection portion Part. In addition, the suction pipe is a pipe having one end of a large diameter continuously formed with the accumulator connection portion and constituting the other end of a small diameter continuously formed with the cylinder connection portion, from one end to the other It has a tapered portion which is continuously reduced in diameter by being put on the end. Therefore, the compressor can be provided with an inner pipe having a pipe diameter larger than the diameter of the suction port of the cylinder in the accumulator, and the pressure loss of the inner pipe can be reduced.
本発明の実施の形態1に係る圧縮機を備えた冷凍サイクル装置を示す概略模式図である。1 is a schematic view showing a refrigeration cycle apparatus provided with a compressor according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る圧縮機の縦断面図である。It is a longitudinal cross-sectional view of the compressor concerning Embodiment 1 of the present invention. 本発明の実施の形態1に係る圧縮機の吸入管の斜視図である。1 is a perspective view of a suction pipe of a compressor according to Embodiment 1 of the present invention. 従来の圧縮機の縦断面図である。It is a longitudinal cross-sectional view of the conventional compressor. 本発明の実施の形態2に係る圧縮機の縦断面図である。It is a longitudinal cross-sectional view of the compressor concerning Embodiment 2 of this invention. 本発明の実施の形態2に係る圧縮機の吸入管の斜視図である。It is a perspective view of the suction pipe of the compressor concerning Embodiment 2 of the present invention. 従来の圧縮機の縦断面図である。It is a longitudinal cross-sectional view of the conventional compressor. 図7の従来の圧縮機のアキュムレータの横断面模式図である。It is a cross-sectional schematic diagram of the accumulator of the conventional compressor of FIG. 図5の圧縮機のアキュムレータの横断面模式図である。It is a cross-sectional schematic diagram of the accumulator of the compressor of FIG.
 以下、本発明の実施の形態に係る圧縮機100、及び、冷凍サイクル装置10について図面等を参照しながら説明する。なお、図1を含む以下の図面では、各構成部材の相対的な寸法の関係及び形状等が実際のものとは異なる場合がある。また、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。また、理解を容易にするために方向を表す用語(例えば「上」、「下」、「右」、「左」、「前」、「後」など)を適宜用いるが、それらの表記は、説明の便宜上、そのように記載しているだけであって、装置あるいは部品の配置及び向きを限定するものではない。 Hereinafter, a compressor 100 according to an embodiment of the present invention and a refrigeration cycle apparatus 10 will be described with reference to the drawings and the like. In the following drawings including FIG. 1, the relative dimensional relationships, shapes, and the like of the respective constituent members may differ from the actual ones. Moreover, in the following drawings, what attached | subjected the same code | symbol is the same or it corresponds to this, and this shall be common in the whole text of a specification. In addition, terms that indicate direction (for example, "upper", "lower", "right", "left", "front", "rear", etc.) are appropriately used to facilitate understanding, but their notations are as follows: For the convenience of the description, it is only described as such, and does not limit the arrangement and orientation of the device or parts.
実施の形態1.
[冷凍サイクル装置10]
 図1は、本発明の実施の形態1に係る圧縮機100を備えた冷凍サイクル装置10を示す概略模式図である。冷凍サイクル装置10は、圧縮機100と、凝縮器110と、膨張装置120と、蒸発器130とを備えている。冷凍サイクル装置10は、図1に示すように、圧縮機100、凝縮器110、膨張装置120、蒸発器130を直列に冷媒配管で接続して冷媒循環回路を構成する。
Embodiment 1
[Refrigeration cycle apparatus 10]
FIG. 1 is a schematic view showing a refrigeration cycle apparatus 10 provided with a compressor 100 according to Embodiment 1 of the present invention. The refrigeration cycle apparatus 10 includes a compressor 100, a condenser 110, an expansion device 120, and an evaporator 130. In the refrigeration cycle apparatus 10, as shown in FIG. 1, a compressor 100, a condenser 110, an expansion device 120, and an evaporator 130 are connected in series by a refrigerant pipe to constitute a refrigerant circulation circuit.
 圧縮機100は、ロータリー式の圧縮機であって、内部に取り込まれる低圧の気相冷媒を圧縮して高温高圧の気相冷媒に変化させる。圧縮機100は、アキュムレータ140を有する。凝縮器110は、圧縮機100から送り込まれる高温高圧の気相冷媒から熱を放熱させ、気相冷媒を高圧の液相冷媒に変化させる。膨張装置120は、凝縮器110から送り込まれる高圧の液相冷媒の圧力を下げ、低温低圧の液相冷媒に変化させる。蒸発器130は、膨張装置120から送り込まれる液相冷媒を気化させ、低圧の気相冷媒に変化させる。このとき、相変化する冷媒に気化熱が奪われて蒸発器130の周囲が冷却される。気化熱を奪った気相冷媒は、アキュムレータ140を介して再び圧縮機100内に取り込まれる。このように、冷凍サイクル装置10では、作動流体である冷媒が気相冷媒と液相冷媒とに相変化しながら循環している。気相冷媒から液相冷媒へ相変化する過程で冷媒から放熱され、液相冷媒から気相冷媒へ相変化する過程で冷媒に吸熱される。これら放熱又は吸熱を利用して暖房又は冷房が行われる。 The compressor 100 is a rotary compressor, and compresses a low-pressure gas phase refrigerant introduced therein to change it into a high-temperature high-pressure gas phase refrigerant. The compressor 100 has an accumulator 140. The condenser 110 dissipates heat from the high temperature and high pressure gas phase refrigerant sent from the compressor 100, and changes the gas phase refrigerant into a high pressure liquid phase refrigerant. The expansion device 120 reduces the pressure of the high-pressure liquid-phase refrigerant fed from the condenser 110 and changes it to a low-temperature low-pressure liquid-phase refrigerant. The evaporator 130 vaporizes the liquid-phase refrigerant fed from the expansion device 120 and changes it to a low-pressure gas-phase refrigerant. At this time, the heat of vaporization is taken away by the phase-changing refrigerant, and the periphery of the evaporator 130 is cooled. The gas phase refrigerant deprived of the heat of vaporization is again introduced into the compressor 100 via the accumulator 140. As described above, in the refrigeration cycle apparatus 10, the refrigerant, which is the working fluid, circulates while undergoing phase change between the gas phase refrigerant and the liquid phase refrigerant. Heat is dissipated from the refrigerant in the process of phase change from gas phase refrigerant to liquid phase refrigerant, and is absorbed by the refrigerant in the process of phase change from liquid phase refrigerant to gas phase refrigerant. Heating or cooling is performed using these heat radiation or heat absorption.
[圧縮機100]
 図2は、本発明の実施の形態1に係る圧縮機100の縦断面図である。圧縮機100は、密閉容器1の内部に電動機構部2及び圧縮機構部3が収納されている。また、圧縮機100は、密閉容器1の外部にアキュムレータ140を有し、密閉容器1とアキュムレータ140とを接続する吸入管5を有する。
[Compressor 100]
FIG. 2 is a longitudinal cross-sectional view of the compressor 100 according to Embodiment 1 of the present invention. In the compressor 100, the electric mechanism unit 2 and the compression mechanism unit 3 are accommodated inside the hermetic container 1. The compressor 100 also has an accumulator 140 outside the hermetic container 1 and a suction pipe 5 connecting the hermetic container 1 and the accumulator 140.
(密閉容器1)
 密閉容器1は、円筒形状の中央容器11と、中央容器11の上部の開口を塞ぐ半球状の上容器12と、中央容器11の下部の開口を塞ぐ有底円筒形状の下容器13とで構成されている。密閉容器1は、中央容器11の上方の開口部に上容器12が嵌入され、中央容器11の下方の開口部に下容器13が嵌入されて密閉状態が保たれている。中央容器11には、アキュムレータ140が取り付けられた吸入管5が接続されており、上容器12には、吐出管7が接続されている。吸入管5は、アキュムレータ140を介して吸入するガス冷媒(低温低圧)を圧縮機構部3内に送り込むための接続管である。吸入管5の詳細な構成は後述する。吐出管7は、圧縮機構部3によって圧縮された密閉容器1内のガス冷媒(高温高圧)を、冷凍サイクル装置10を構成する冷媒配管に吐出させるための接続管である。下容器13の内壁側には、主軸23の内部を経由して圧縮機構部3に供給される冷凍機油が貯留されている。圧縮機100は、密閉容器1内において、電動機構部2の下部と、圧縮機構部3の上部との間に空間Aが形成されている。
(Closed container 1)
The closed container 1 comprises a central container 11 having a cylindrical shape, a hemispherical upper container 12 for closing the upper opening of the central container 11, and a bottomed cylindrical lower container 13 for closing the lower opening of the central container 11. It is done. In the closed container 1, the upper container 12 is fitted in the upper opening of the central container 11, and the lower container 13 is fitted in the lower opening of the central container 11 to maintain a sealed state. A suction pipe 5 to which an accumulator 140 is attached is connected to the central container 11, and a discharge pipe 7 is connected to the upper container 12. The suction pipe 5 is a connection pipe for feeding the gas refrigerant (low temperature and low pressure) to be sucked through the accumulator 140 into the compression mechanism 3. The detailed configuration of the suction pipe 5 will be described later. The discharge pipe 7 is a connection pipe for discharging the gas refrigerant (high temperature and high pressure) in the closed container 1 compressed by the compression mechanism section 3 to the refrigerant pipe constituting the refrigeration cycle apparatus 10. On the inner wall side of the lower container 13, refrigeration oil supplied to the compression mechanism unit 3 via the inside of the main shaft 23 is stored. In the hermetic container 1 of the compressor 100, a space A is formed between the lower portion of the electric mechanism 2 and the upper portion of the compression mechanism 3.
 (電動機構部2)
 電動機構部2は、密閉容器1内の上部に配置されている。電動機構部2は、中央容器11に固定された固定子21と、固定子21の内周側に回転自在に嵌合された回転子22とを備えている。固定子21は、例えば、焼き嵌め、溶接など各種固定法により密閉容器1の中央容器11に固定されている。回転子22の中心部には、下方に延びる主軸23が固定されている。主軸23は、上部軸受38及び下部軸受39により回転自在に支持され、回転子22と共に回転する。
(Electric mechanism 2)
The electric mechanism unit 2 is disposed at an upper portion in the closed container 1. The electric mechanism 2 includes a stator 21 fixed to the central container 11 and a rotor 22 rotatably fitted on the inner peripheral side of the stator 21. The stator 21 is fixed to the central container 11 of the closed container 1 by, for example, various fixing methods such as shrink fitting, welding and the like. At the central portion of the rotor 22, a main shaft 23 extending downward is fixed. The main shaft 23 is rotatably supported by the upper bearing 38 and the lower bearing 39 and rotates with the rotor 22.
 (圧縮機構部3)
 圧縮機構部3は、密閉容器1に収容され、密閉容器1内に流入する冷媒を圧縮するものである。圧縮機構部3は、少なくとも1つの円筒シリンダーを有するロータリー式の圧縮機構である。圧縮機構部3は、電動機構部2の下方に配置され、中央容器11に固定されている。圧縮機構部3は、略円筒形状のシリンダー31と、ピストン33と、ベーン35と、上部軸受38と、下部軸受39と、上部消音器40とを備えている。
(Compression mechanism 3)
The compression mechanism portion 3 is accommodated in the closed container 1 and compresses the refrigerant flowing into the closed container 1. The compression mechanism portion 3 is a rotary type compression mechanism having at least one cylindrical cylinder. The compression mechanism 3 is disposed below the motorized mechanism 2 and is fixed to the central container 11. The compression mechanism portion 3 includes a cylinder 31 having a substantially cylindrical shape, a piston 33, a vane 35, an upper bearing 38, a lower bearing 39, and an upper silencer 40.
 略円筒形状のシリンダー31は、中心軸が主軸23の軸心に対して偏心して配置されている。このシリンダー31には、前述した吸入管5が接続される吸入口42が形成されている。また、シリンダー31の上部には、略円筒形状の上部軸受38が、シリンダー31の上端面に接して配置され、シリンダー31の上端面を閉塞する。シリンダー31の下部には、略円筒形状の下部軸受39が、シリンダー31の下端面に接して配置され、シリンダー31の下端面を閉塞する。上部軸受38にはシリンダー31内で圧縮された冷媒が通過する吐出口(図示せず)が形成されている。 The substantially cylindrical cylinder 31 is disposed such that the central axis is eccentric to the axis of the main shaft 23. The cylinder 31 is formed with a suction port 42 to which the suction pipe 5 described above is connected. In the upper part of the cylinder 31, a substantially cylindrical upper bearing 38 is disposed in contact with the upper end surface of the cylinder 31, and closes the upper end surface of the cylinder 31. At the lower part of the cylinder 31, a substantially cylindrical lower bearing 39 is disposed in contact with the lower end face of the cylinder 31, and closes the lower end face of the cylinder 31. The upper bearing 38 has a discharge port (not shown) through which the refrigerant compressed in the cylinder 31 passes.
 ピストン33は、主軸23の中心軸に対し偏心した位置にあり、主軸23と共に回転するように、主軸23に嵌合されている。ピストン33は、主軸23の偏芯軸に嵌り、シリンダー31内を偏芯回転する。また、ピストン33には、ベーン35が摺動自在に接している。上部軸受38には上部消音器40が設けられている。 The piston 33 is at a position eccentric to the central axis of the main shaft 23 and is fitted to the main shaft 23 so as to rotate with the main shaft 23. The piston 33 is fitted to the eccentric shaft of the main shaft 23 and eccentrically rotates in the cylinder 31. Further, a vane 35 is slidably in contact with the piston 33. An upper silencer 40 is provided on the upper bearing 38.
(アキュムレータ140)
 アキュムレータ140は、蒸発器130で蒸発しきれなかった液冷媒が圧縮機100で液圧縮しないように冷媒を気体と液体とに分離させ、圧縮機100にガス冷媒だけを吸い込ませる。アキュムレータ140は、円筒状の容器141と、容器141の上部に設けられた接続吸入管8と、容器141内に配置されたインナーパイプ44とを有する。接続吸入管8は、冷凍サイクル装置10を構成する蒸発器130と接続され、冷媒をアキュムレータ140内に導く。インナーパイプ44は、円筒形状の貫通管であり、容器141内において上下方向に延びるように配置されている。インナーパイプ44は、アキュムレータ140を構成する容器141内において、一端45aが接続吸入管8と対向して配置され、容器141内で開口しており、他端45bが容器141の下部に設けられた開口部141aと接続して吸入管5と接続される。インナーパイプ44の管径は、容器141の内径よりも小さく、シリンダー31の吸入口42の口径よりも大きい。
(Accumulator 140)
The accumulator 140 separates the refrigerant into a gas and a liquid so that the liquid refrigerant that can not be evaporated by the evaporator 130 is not compressed by the compressor 100, and allows the compressor 100 to absorb only the gas refrigerant. The accumulator 140 has a cylindrical container 141, a connection suction pipe 8 provided at the upper part of the container 141, and an inner pipe 44 disposed in the container 141. The connection suction pipe 8 is connected to the evaporator 130 constituting the refrigeration cycle apparatus 10 and guides the refrigerant into the accumulator 140. The inner pipe 44 is a cylindrical through pipe, and is disposed in the container 141 so as to extend in the vertical direction. In the inner pipe 44, one end 45a is disposed to face the connection suction pipe 8 in the container 141 constituting the accumulator 140, the inner pipe 44 is opened in the container 141, and the other end 45b is provided in the lower portion of the container 141. The suction pipe 5 is connected with the opening 141 a. The pipe diameter of the inner pipe 44 is smaller than the inner diameter of the container 141 and larger than the diameter of the suction port 42 of the cylinder 31.
 [吸入管5]
 図3は、本発明の実施の形態1に係る圧縮機100の吸入管5の斜視図である。図2及び図3を用いて吸入管5について説明する。吸入管5は、冷凍サイクル装置10の蒸発器130から流入するガス冷媒を、アキュムレータ140を介して圧縮機構部3内に送り込むための接続管である。吸入管5は、一端51aが開口部141aに位置するインナーパイプ44と接続され、他端51bがシリンダー31の吸入口42と接続され、アキュムレータ140と、圧縮機構部3とを接続する。吸入管5は、インナーパイプ44と接続される管を構成する円筒状のアキュムレータ接続部5aと、シリンダー31の吸入口42に接続される管を構成し、アキュムレータ接続部5aよりも細径のシリンダー接続部5cと、を有する。また、吸入管5は、テーパ部5bを有する。テーパ部5bは、アキュムレータ接続部5aと連続して形成される太径の一端5b1を有すると共に、シリンダー接続部5cと連続して形成される細径の他端5b2を有する管であって、一端5b1から他端5b2にかけて連続して細径化されている。アキュムレータ接続部5aの内径の大きさは、インナーパイプ44の内径の大きさと等しい。なお、内径の大きさが等しいとは、完全に等しい場合と、略等しい場合とを含む。テーパ部5bは、アキュムレータ接続部5aとシリンダー接続部5cとの間に位置し、アキュムレータ接続部5a側からシリンダー接続部5c側にかけて周壁が連続して細径化されている。シリンダー接続部5cは、テーパ部5bとシリンダー31の吸入口42との間で曲折している。シリンダー接続部5cは、円管であるが、円管に限定されるものではなく、例えば扁平管であってもよい。吸入管5は、インナーパイプ44と別体である。そのため、圧縮機構部3を構成するシリンダー31の数が増減したとしても、シリンダー接続部5cの形成数を変更した吸入管5の変更のみで圧縮機100とアキュムレータ140とを接続することができる。その結果、圧縮機構部3のシリンダーの数に係らず、圧縮機100に使用するインナーパイプ44を内部に配置したアキュムレータ140の構造を統一化することができる。
[Intake pipe 5]
FIG. 3 is a perspective view of the suction pipe 5 of the compressor 100 according to Embodiment 1 of the present invention. The suction pipe 5 will be described with reference to FIGS. 2 and 3. The suction pipe 5 is a connection pipe for feeding the gas refrigerant flowing from the evaporator 130 of the refrigeration cycle apparatus 10 into the compression mechanism 3 via the accumulator 140. The suction pipe 5 is connected to the inner pipe 44 whose one end 51 a is located at the opening 141 a, and the other end 51 b is connected to the suction port 42 of the cylinder 31 to connect the accumulator 140 and the compression mechanism 3. The suction pipe 5 constitutes a cylindrical accumulator connection portion 5a constituting a pipe connected to the inner pipe 44 and a pipe connected to the suction port 42 of the cylinder 31, and is a cylinder smaller in diameter than the accumulator connection portion 5a. And a connection portion 5c. The suction pipe 5 also has a tapered portion 5b. The tapered portion 5b is a tube having one end 5b1 of large diameter continuously formed with the accumulator connection portion 5a and the other end 5b2 of small diameter continuously formed with the cylinder connection portion 5c. The diameter is continuously reduced from 5b1 to the other end 5b2. The size of the inner diameter of the accumulator connection 5 a is equal to the size of the inner diameter of the inner pipe 44. In addition, the case where the magnitude | sizes of an internal diameter are equal includes the case where it is completely equal, and the case where it is substantially equal. The tapered portion 5b is located between the accumulator connection portion 5a and the cylinder connection portion 5c, and the peripheral wall is continuously reduced in diameter from the accumulator connection portion 5a side to the cylinder connection portion 5c side. The cylinder connection portion 5 c is bent between the tapered portion 5 b and the suction port 42 of the cylinder 31. The cylinder connection portion 5c is a circular pipe, but is not limited to a circular pipe, and may be, for example, a flat pipe. The suction pipe 5 is separate from the inner pipe 44. Therefore, even if the number of cylinders 31 constituting the compression mechanism portion 3 increases or decreases, the compressor 100 and the accumulator 140 can be connected only by changing the suction pipe 5 in which the number of cylinder connection portions 5c formed is changed. As a result, regardless of the number of cylinders of the compression mechanism portion 3, the structure of the accumulator 140 in which the inner pipe 44 used for the compressor 100 is disposed can be unified.
[圧縮機100の動作]
 次に、図2を用いて圧縮機100の動作について説明する。圧縮機100は、電動機構部2の駆動により主軸23が回転すると、主軸23と共にシリンダー31内のピストン33も回転する。ピストン33は、偏心的に回転し、ピストン33に摺動自在に接したベーン35がピストン33の回転によりピストン運動する。この時、ガス冷媒は、吸入管5を介して圧縮機構部3の吸入口42からシリンダー31の内壁、ピストン33及びベーン35により囲まれた圧縮室内に入る。そして、圧縮室内のガス冷媒は、ピストン33の回転に伴って圧縮室内の容積が小さくなるにつれ圧縮されていく。
[Operation of Compressor 100]
Next, the operation of the compressor 100 will be described using FIG. In the compressor 100, when the main shaft 23 is rotated by the drive of the electric mechanism 2, the piston 33 in the cylinder 31 is also rotated together with the main shaft 23. The piston 33 is eccentrically rotated, and the vane 35 slidably in contact with the piston 33 performs a piston movement by the rotation of the piston 33. At this time, the gas refrigerant enters the compression chamber surrounded by the inner wall of the cylinder 31, the piston 33 and the vanes 35 from the suction port 42 of the compression mechanism 3 via the suction pipe 5. The gas refrigerant in the compression chamber is compressed as the volume of the compression chamber decreases as the piston 33 rotates.
 圧縮室で圧縮されたガス冷媒は、上部軸受38に設けられた吐出口(図示せず)から上部消音器40の内部空間Bへ吐出される。内部空間Bに吐出されたガス冷媒は、上部消音器40に設けられた吐出口(図示せず)から空間Aに吐出される。空間Aを周回しているガス冷媒は、回転子22に設けられたガス穴22aと、固定子21と回転子22の間のエアギャップ2aとをそれぞれ通って密閉容器1内の上部に達し、吐出管7から冷凍サイクル装置10の冷媒回路内へと吐出される。 The gas refrigerant compressed in the compression chamber is discharged from the discharge port (not shown) provided in the upper bearing 38 into the internal space B of the upper silencer 40. The gas refrigerant discharged into the internal space B is discharged into the space A from a discharge port (not shown) provided in the upper silencer 40. The gas refrigerant circulating in the space A passes through the gas holes 22 a provided in the rotor 22 and the air gap 2 a between the stator 21 and the rotor 22 to reach the upper portion in the closed container 1, The discharge pipe 7 discharges the refrigerant into the refrigerant circuit of the refrigeration cycle apparatus 10.
 圧縮機100は上記のように構成され、図1に示す凝縮器110、膨張装置120、蒸発器130を通過した冷媒ガスは接続吸入管8からアキュムレータ140に戻される。このアキュムレータ140内部の空間Cに溜められた冷媒ガスは、インナーパイプ44から排出されると共に、吸入管5を経てシリンダー31の吸入口42から再び圧縮機100内に供給される。 The compressor 100 is configured as described above, and the refrigerant gas having passed through the condenser 110, the expansion device 120, and the evaporator 130 shown in FIG. 1 is returned from the connection suction pipe 8 to the accumulator 140. The refrigerant gas stored in the space C inside the accumulator 140 is discharged from the inner pipe 44 and is again supplied into the compressor 100 from the suction port 42 of the cylinder 31 through the suction pipe 5.
 以上のように圧縮機100は、吸入管5が、インナーパイプ44と接続される管を構成するアキュムレータ接続部5aと、シリンダー31の吸入口42に接続される管を構成し、アキュムレータ接続部5aよりも細径のシリンダー接続部5cと、を有する。また、圧縮機100は、吸入管5が、一端5b1から他端5b2に掛けて連続して細径化されているテーパ部5bを有するものである。そのため、圧縮機100は、アキュムレータ140内にシリンダー31の吸入口42の径よりも大きな管径を有するインナーパイプ44を備えることができ、インナーパイプ44の圧力損失を低減することができる。また、圧縮機100は、吸入管5のテーパ部5bが、一端5b1から他端5b2に掛けて連続して細径化されている。そのため、インナーパイプ44の管径と、シリンダー31の吸入口42の口径の相違から生じ得る流路内の冷媒の乱れを抑制することができる。 As described above, the compressor 100 includes the suction pipe 5 connected to the accumulator connection portion 5a constituting the pipe connected to the inner pipe 44 and the suction port 42 of the cylinder 31, and the accumulator connection portion 5a And a cylinder connection portion 5c of smaller diameter. In the compressor 100, the suction pipe 5 has a tapered portion 5b which is continuously reduced in diameter from one end 5b1 to the other end 5b2. Therefore, the compressor 100 can include the inner pipe 44 having a pipe diameter larger than the diameter of the suction port 42 of the cylinder 31 in the accumulator 140, and the pressure loss of the inner pipe 44 can be reduced. In the compressor 100, the tapered portion 5b of the suction pipe 5 is continuously reduced in diameter from one end 5b1 to the other end 5b2. Therefore, it is possible to suppress the disturbance of the refrigerant in the flow path which may occur due to the difference between the pipe diameter of the inner pipe 44 and the diameter of the suction port 42 of the cylinder 31.
 また、圧縮機100は、インナーパイプ44が、シリンダー31の吸入口42の口径よりも大きな管径を有する。そのため、圧縮機100は、インナーパイプ44の圧力損失を低減することができる。 In the compressor 100, the inner pipe 44 has a pipe diameter larger than the diameter of the suction port 42 of the cylinder 31. Therefore, the compressor 100 can reduce the pressure loss of the inner pipe 44.
 また、冷凍サイクル装置10は、実施の形態1に係る圧縮機100を備えることによって、実施の形態1に係る圧縮機100の効果を有する冷凍サイクル装置10を得ることができる。 Moreover, the refrigeration cycle apparatus 10 can obtain the refrigeration cycle apparatus 10 having the effects of the compressor 100 according to the first embodiment by including the compressor 100 according to the first embodiment.
 図4は、従来の圧縮機100Aの縦断面図である。図1~図3の圧縮機100と同一の構成を有する部位には同一の符号を付してその説明を省略する。従来の圧縮機100Aは、アキュムレータ140Aとシリンダー31とを接続する吸入管5Aを有する。吸入管5Aの管径の大きさは、シリンダー31の吸入口42の径の大きさに対して制限されている。そして、吸入管5Aと接続するインナーパイプ44Aの内径の大きさは、吸入口42の口径の大きさと略等しく構成されている。そのため、インナーパイプ44Aの圧力損失の低減には制限がある。これに対し、圧縮機100は、アキュムレータ接続部5aと、テーパ部5bと、シリンダー接続部5cとを有する。そのため、アキュムレータ140内にシリンダー31の吸入口42の径よりも大きな管径を有するインナーパイプ44を備えることができ、インナーパイプ44の圧力損失を低減することができる。また、圧縮機100は、吸入管5のテーパ部5bが、一端5b1から他端5b2に掛けて連続して細径化されている。そのため、インナーパイプ44の管径と、シリンダー31の吸入口42の口径との相違から生じ得る流路内の冷媒の乱れを抑制することができる。 FIG. 4 is a longitudinal sectional view of the conventional compressor 100A. The parts having the same configuration as that of the compressor 100 of FIGS. 1 to 3 are denoted by the same reference numerals, and the description thereof will be omitted. The conventional compressor 100A has a suction pipe 5A connecting the accumulator 140A and the cylinder 31. The diameter of the suction pipe 5A is limited with respect to the diameter of the suction port 42 of the cylinder 31. The inner diameter of the inner pipe 44A connected to the suction pipe 5A is substantially equal to the diameter of the suction port 42. Therefore, there is a limit to the reduction of the pressure loss of the inner pipe 44A. On the other hand, compressor 100 has accumulator connecting part 5a, taper part 5b, and cylinder connecting part 5c. Therefore, the inner pipe 44 having a pipe diameter larger than the diameter of the suction port 42 of the cylinder 31 can be provided in the accumulator 140, and the pressure loss of the inner pipe 44 can be reduced. In the compressor 100, the tapered portion 5b of the suction pipe 5 is continuously reduced in diameter from one end 5b1 to the other end 5b2. Therefore, it is possible to suppress the disturbance of the refrigerant in the flow path which may occur due to the difference between the pipe diameter of the inner pipe 44 and the diameter of the suction port 42 of the cylinder 31.
実施の形態2.
 図5は、本発明の実施の形態2に係る圧縮機200の縦断面図である。図1~図3の圧縮機100と同一の構成を有する部位には同一の符号を付してその説明を省略する。圧縮機200は、ツインロータリー式の圧縮機構部3Aと、圧縮機構部3Aとアキュムレータ140とを接続する吸入管50とを有する。実施の形態1に係る圧縮機100は、シリンダー31が1つのシングルロータリー式の圧縮機であるのに対し、実施の形態2に係る圧縮機200は、上部シリンダー31A及び下部シリンダー32の2つのシリンダーを有するツインロータリー式の圧縮機である。また、実施の形態2に係る圧縮機200は、吸入管50の構造が、実施の形態1に係る圧縮機100の吸入管5の構造と異なるものである。なお、圧縮機200は、図1の冷凍サイクル装置10を構成する圧縮機100に相当するものである。
Second Embodiment
FIG. 5 is a longitudinal sectional view of a compressor 200 according to Embodiment 2 of the present invention. The parts having the same configuration as that of the compressor 100 of FIGS. 1 to 3 are denoted by the same reference numerals, and the description thereof will be omitted. The compressor 200 has a twin rotary type compression mechanism 3A and a suction pipe 50 connecting the compression mechanism 3A and the accumulator 140. While the compressor 100 according to the first embodiment is a single rotary compressor with one cylinder 31, the compressor 200 according to the second embodiment has two cylinders, an upper cylinder 31 A and a lower cylinder 32. It is a twin rotary compressor having Further, the compressor 200 according to the second embodiment differs from the structure of the suction pipe 5 of the compressor 100 according to the first embodiment in the structure of the suction pipe 50. In addition, the compressor 200 is corresponded to the compressor 100 which comprises the refrigerating-cycle apparatus 10 of FIG.
(圧縮機構部3A)
 圧縮機構部3Aは、密閉容器1に収容され、密閉容器1内に流入する冷媒を圧縮するものである。圧縮機構部3Aは、上部シリンダー31Aと、下部シリンダー32との2つの略円筒形状のシリンダーを有するロータリー式の圧縮機構である。圧縮機構部3Aは、電動機構部2の下方に配置され、中央容器11に固定されている。圧縮機構部3Aは、さらに、上部ピストン33Aと、下部ピストン34と、上部ベーン35Aと、下部ベーン36と、上部軸受38と、下部軸受39と、仕切り板37と、上部消音器40と、下部消音器41とを備えている。
(Compression mechanism 3A)
The compression mechanism portion 3A is accommodated in the closed container 1 and compresses the refrigerant flowing into the closed container 1. The compression mechanism portion 3A is a rotary compression mechanism having two substantially cylindrical cylinders, an upper cylinder 31A and a lower cylinder 32. The compression mechanism portion 3A is disposed below the motorized mechanism portion 2 and is fixed to the central container 11. The compression mechanism 3A further includes an upper piston 33A, a lower piston 34, an upper vane 35A, a lower vane 36, an upper bearing 38, a lower bearing 39, a partition plate 37, an upper silencer 40, and a lower A silencer 41 is provided.
 略円筒形状の上部シリンダー31Aと、略円筒形状の下部シリンダー32は、中心軸が主軸23の軸心に対して偏心して配置されている。この上部シリンダー31Aには、吸入管50の上方シリンダー接続部50dが接続される上部吸入口42Aが形成されている。また、下部シリンダー32には、吸入管50の下方シリンダー接続部50cが接続される下部吸入口43が形成されている。上部シリンダー31Aの上部には、略円筒形状の上部軸受38が、上部シリンダー31Aの上端面に接して配置され、上部シリンダー31Aの上端面を閉塞する。下部シリンダー32の下部には、略円筒形状の下部軸受39が、下部シリンダー32の下端面に接して配置され、下部シリンダー32の下端面を閉塞する。上部軸受38と下部軸受39とには、それぞれ吐出口(図示せず)が形成されている。また、上部シリンダー31A及び下部シリンダー32には、上部シリンダー31A及び下部シリンダー32内を連通するガス穴(図示せず)が形成されている。 The central axis of the substantially cylindrical upper cylinder 31A and the substantially cylindrical lower cylinder 32 are arranged eccentrically with respect to the axial center of the main shaft 23. An upper suction port 42A to which the upper cylinder connection portion 50d of the suction pipe 50 is connected is formed in the upper cylinder 31A. Further, the lower cylinder 32 is formed with a lower suction port 43 to which the lower cylinder connection portion 50 c of the suction pipe 50 is connected. At the upper part of the upper cylinder 31A, a substantially cylindrical upper bearing 38 is disposed in contact with the upper end face of the upper cylinder 31A, and closes the upper end face of the upper cylinder 31A. At the lower part of the lower cylinder 32, a substantially cylindrical lower bearing 39 is disposed in contact with the lower end face of the lower cylinder 32 and closes the lower end face of the lower cylinder 32. A discharge port (not shown) is formed in each of the upper bearing 38 and the lower bearing 39. Further, in the upper cylinder 31A and the lower cylinder 32, gas holes (not shown) communicating the inside of the upper cylinder 31A and the lower cylinder 32 are formed.
 上部ピストン33Aと、下部ピストン34とは、主軸23の中心軸に対し偏心したに位置にあり、主軸23と共に回転するように、主軸23に嵌合されている。上部ピストン33Aは、主軸23の偏芯軸に嵌り、上部シリンダー31A内を偏芯回転する。また、下部ピストン34は、主軸23の偏芯軸に嵌り、下部シリンダー32内を偏芯回転する。上部ピストン33Aと、下部ピストン34とには、上部ベーン35Aと、下部ベーン36とがそれぞれ摺動自在に接している。仕切り板37は、上部シリンダー31Aの下端面と、下部シリンダー32上端面とを閉塞している。上部軸受38には上部消音器40が、下部軸受39には下部消音器41がそれぞれ設けられている。 The upper piston 33A and the lower piston 34 are eccentrically located with respect to the central axis of the main shaft 23, and are fitted to the main shaft 23 so as to rotate together with the main shaft 23. The upper piston 33A is fitted to the eccentric shaft of the main shaft 23, and eccentrically rotates in the upper cylinder 31A. The lower piston 34 is fitted to the eccentric shaft of the main shaft 23 and eccentrically rotates in the lower cylinder 32. An upper vane 35A and a lower vane 36 are in sliding contact with the upper piston 33A and the lower piston 34, respectively. The partition plate 37 closes the lower end surface of the upper cylinder 31A and the upper end surface of the lower cylinder 32. An upper silencer 40 is provided to the upper bearing 38, and a lower silencer 41 is provided to the lower bearing 39.
[アキュムレータ140]
 アキュムレータ140は、蒸発器130で蒸発しきれなかった液冷媒が圧縮機200で液圧縮しないように冷媒を気体と液体とに分離させ、圧縮機200にガス冷媒だけを吸い込ませる。アキュムレータ140は、円筒状の容器141と、容器141の上部に設けられた接続吸入管8と、容器141内に配置されたインナーパイプ44とを有する。接続吸入管8は、冷凍サイクル装置10を構成する蒸発器130と接続され、冷媒をアキュムレータ140内に導く。インナーパイプ44は、円筒形状の貫通管であり、容器141内において上下方向に延びるように配置されている。インナーパイプ44は、アキュムレータ140を構成する容器141内において、一端45aが接続吸入管8と対向して配置され、容器141内で開口しており、他端45bが容器141の下部に設けられた開口部141aと接続して吸入管50と接続される。インナーパイプ44の管径は、容器141の内径よりも小さく、上部シリンダー31Aの上部吸入口42A及び下部吸入口43の口径よりも大きい。
[Accumulator 140]
The accumulator 140 separates the refrigerant into a gas and a liquid so that the liquid refrigerant that can not be evaporated by the evaporator 130 is not compressed by the compressor 200, and allows the compressor 200 to absorb only the gas refrigerant. The accumulator 140 has a cylindrical container 141, a connection suction pipe 8 provided at the upper part of the container 141, and an inner pipe 44 disposed in the container 141. The connection suction pipe 8 is connected to the evaporator 130 constituting the refrigeration cycle apparatus 10 and guides the refrigerant into the accumulator 140. The inner pipe 44 is a cylindrical through pipe, and is disposed in the container 141 so as to extend in the vertical direction. In the inner pipe 44, one end 45a is disposed to face the connection suction pipe 8 in the container 141 constituting the accumulator 140, the inner pipe 44 is opened in the container 141, and the other end 45b is provided in the lower portion of the container 141. The suction pipe 50 is connected with the opening 141 a. The pipe diameter of the inner pipe 44 is smaller than the inner diameter of the container 141 and larger than the diameters of the upper suction port 42A and the lower suction port 43 of the upper cylinder 31A.
 [吸入管50]
 図6は、本発明の実施の形態2に係る圧縮機200の吸入管50の斜視図である。図5及び図6を用いて吸入管50について説明する。吸入管50は、冷凍サイクル装置10の蒸発器130から流入するガス冷媒を、アキュムレータ140を介して圧縮機構部3内に送り込むための接続管である。吸入管50は、一端51aが開口部141aに位置するインナーパイプ44と接続され、一方の他端51bが上部シリンダー31Aの上部吸入口42Aと接続され、また、もう一方の他端51bが下部シリンダー32の下部吸入口43と接続される。そして、吸入管50は、アキュムレータ140と、圧縮機構部3とを接続する。吸入管50は、インナーパイプ44と接続される管を構成する円筒状のアキュムレータ接続部50aと、下部シリンダー32の下部吸入口43に接続される管を構成し、アキュムレータ接続部50aよりも細径の下方シリンダー接続部50cと、を有する。また、吸入管50は、テーパ部50bを有する。テーパ部50bは、アキュムレータ接続部50aと連続して形成される太径の一端50b1を有すると共に、下方シリンダー接続部50cと連続して形成される細径の他端50b2を有する管である。テーパ部50bは、一端50b1から他端50b2にかけて連続して細径化されている。さらに、吸入管50は、アキュムレータ接続部50aを構成する周壁から突出して上部シリンダー31Aの上部吸入口42Aに接続される円管を構成する上方シリンダー接続部50dを有する。なお、下方シリンダー接続部50cは、本発明の「シリンダー接続部」に相当し、上方シリンダー接続部50dは、本発明の「上方シリンダー接続部」に相当する。
[Intake pipe 50]
FIG. 6 is a perspective view of a suction pipe 50 of a compressor 200 according to Embodiment 2 of the present invention. The suction pipe 50 will be described with reference to FIGS. 5 and 6. The suction pipe 50 is a connection pipe for feeding the gas refrigerant flowing from the evaporator 130 of the refrigeration cycle apparatus 10 into the compression mechanism 3 via the accumulator 140. The suction pipe 50 is connected to the inner pipe 44 whose one end 51a is located at the opening 141a, one other end 51b is connected to the upper suction port 42A of the upper cylinder 31A, and the other other end 51b is a lower cylinder It is connected to the lower suction port 43 of 32. Then, the suction pipe 50 connects the accumulator 140 and the compression mechanism unit 3. The suction pipe 50 constitutes a cylindrical accumulator connection portion 50a constituting a pipe connected to the inner pipe 44 and a pipe connected to the lower suction port 43 of the lower cylinder 32, and has a diameter smaller than that of the accumulator connection portion 50a. Lower cylinder connection portion 50c. The suction pipe 50 also has a tapered portion 50b. The tapered portion 50b is a tube having one end 50b1 of a large diameter continuously formed with the accumulator connection portion 50a and the other end 50b2 of a small diameter continuously formed with the lower cylinder connection portion 50c. The tapered portion 50b is continuously reduced in diameter from one end 50b1 to the other end 50b2. Further, the suction pipe 50 has an upper cylinder connection portion 50d which constitutes a circular pipe which protrudes from the peripheral wall constituting the accumulator connection portion 50a and is connected to the upper suction port 42A of the upper cylinder 31A. The lower cylinder connection portion 50c corresponds to the "cylinder connection portion" in the present invention, and the upper cylinder connection portion 50d corresponds to the "upper cylinder connection portion" in the present invention.
 アキュムレータ接続部50aの内径の大きさは、インナーパイプ44の内径の大きさと等しい。なお、内径の大きさが等しいとは、完全に等しい場合と、略等しい場合とを含む。テーパ部50bは、アキュムレータ接続部50aと下方シリンダー接続部50cとの間に位置し、アキュムレータ接続部50a側から下方シリンダー接続部50c側にかけて周壁が連続して細径化されている。下方シリンダー接続部50cは、テーパ部50bと下部シリンダー32の下部吸入口43との間で曲折している。下方シリンダー接続部50c及び上方シリンダー接続部50dは、円管であるが、円管に限定されるものではなく、扁平管であってもよい。下方シリンダー接続部50cと、上方シリンダー接続部50dとは平行に配置されている。なお、吸入管50は、下方シリンダー接続部50cと、上方シリンダー接続部50dとが平行に配置されているものに限定されず、例えば、それぞれの管の延設方向が異なる方向に形成されていてもよい。 The size of the inner diameter of the accumulator connection 50 a is equal to the size of the inner diameter of the inner pipe 44. In addition, the case where the magnitude | sizes of an internal diameter are equal includes the case where it is completely equal, and the case where it is substantially equal. The tapered portion 50b is located between the accumulator connection portion 50a and the lower cylinder connection portion 50c, and the peripheral wall is continuously reduced in diameter from the accumulator connection portion 50a side to the lower cylinder connection portion 50c side. The lower cylinder connection portion 50 c is bent between the tapered portion 50 b and the lower suction port 43 of the lower cylinder 32. Although the lower cylinder connection part 50c and the upper cylinder connection part 50d are circular pipes, they are not limited to circular pipes, and may be flat pipes. The lower cylinder connection portion 50c and the upper cylinder connection portion 50d are disposed in parallel. In addition, the suction pipe 50 is not limited to what the lower cylinder connection part 50c and the upper cylinder connection part 50d are arrange | positioned in parallel, for example, the extension direction of each pipe | tube is formed in a different direction It is also good.
 下方シリンダー接続部50cの管径は、上方シリンダー接続部50dの管径よりも小さい。これは、下方シリンダー接続部50cと、上方シリンダー接続部50dとを介して上部シリンダー31Aと下部シリンダー32とに流れこむ冷媒の圧力を均一化するためである。より具体的には、下方シリンダー接続部50cは、インナーパイプ44を流れる冷媒の流れる方向に位置しているのに対し、上方シリンダー接続部50dは冷媒の流れる方向から側方に分岐する位置にある。下方シリンダー接続部50cと上方シリンダー接続部50dとが同じ大きさの径であれば、側方に分岐する上方シリンダー接続部50dよりもインナーパイプ44を流れる冷媒の流れる方向に位置している下方シリンダー接続部50cに大きな圧力がかかる。そのため、テーパ部50bで管径を細径化し、下方シリンダー接続部50cを流れる冷媒の流量を調整することで、下方シリンダー接続部50cと、上方シリンダー接続部50dとを流れる冷媒の圧力の均衡を図っている。 The pipe diameter of the lower cylinder connection portion 50c is smaller than the pipe diameter of the upper cylinder connection portion 50d. This is to equalize the pressure of the refrigerant flowing into the upper cylinder 31A and the lower cylinder 32 via the lower cylinder connection portion 50c and the upper cylinder connection portion 50d. More specifically, the lower cylinder connection portion 50c is positioned in the flow direction of the refrigerant flowing through the inner pipe 44, whereas the upper cylinder connection portion 50d is positioned to branch laterally from the flow direction of the refrigerant. . If the lower cylinder connection portion 50c and the upper cylinder connection portion 50d have the same diameter, the lower cylinder is positioned in the flow direction of the refrigerant flowing through the inner pipe 44 rather than the upper cylinder connection portion 50d branched to the side. A large pressure is applied to the connection 50c. Therefore, by equalizing the pressure of the refrigerant flowing through the lower cylinder connection portion 50c and the upper cylinder connection portion 50d, the pipe diameter is reduced by the tapered portion 50b and the flow rate of the refrigerant flowing through the lower cylinder connection portion 50c is adjusted. I am trying.
 吸入管50は、インナーパイプ44と別体である。そのため、圧縮機構部3Aを構成するシリンダーの数が増減したとしても、シリンダー接続部の形成数を変更した吸入管50の変更のみで圧縮機200とアキュムレータ140とを接続することができる。その結果、圧縮機構部3Aのシリンダーの数に係らず、圧縮機200に使用するインナーパイプ44を内部に配置したアキュムレータ140の構造を統一化することができる。 The suction pipe 50 is separate from the inner pipe 44. Therefore, even if the number of cylinders constituting the compression mechanism portion 3A increases or decreases, the compressor 200 and the accumulator 140 can be connected only by changing the suction pipe 50 in which the number of cylinder connection portions formed is changed. As a result, regardless of the number of cylinders of the compression mechanism 3A, the structure of the accumulator 140 in which the inner pipe 44 used for the compressor 200 is disposed can be unified.
 図7は、従来の圧縮機200Aの縦断面図である。図1~図5の圧縮機100及び圧縮機200と同一の構成を有する部位には同一の符号を付してその説明を省略する。シリンダーを2つ有する従来の圧縮機200Aは、隣接して固定されるアキュムレータ140B内にシリンダーの数と同じ数の2本のインナーパイプ44Bが配置されている。そして、従来の圧縮機200Aは、2本の吸入管を備え、アキュムレータ140Bと上部シリンダー31Aとを接続する上部吸入管60Bと、アキュムレータ140Bと下部シリンダー32とを接続する下部吸入管60Aとを有する。従来の圧縮機200Aは、上部吸入管60Bの径の大きさが上部シリンダー31Aの上部吸入口42Aの口径の大きさに対して制限される。また、圧縮機200Aは、下部吸入管60Aの径の大きさが下部シリンダー32の下部吸入口43の径の大きさに対して制限される。そして、上部吸入管60Bと接続するインナーパイプ44Bの内径の大きさは、上部吸入口42Aの口径の大きさと略等しく構成されている。また、下部吸入管60Aと接続するインナーパイプ44Bの内径の大きさは、下部吸入口43の口径の大きさと略等しく構成されている。そのため、各インナーパイプ44Bの圧力損失の低減には制限がある。これに対し、圧縮機200は、アキュムレータ接続部50aと、テーパ部50bと、下方シリンダー接続部50cと、上方シリンダー接続部50dとを有する。そのため、アキュムレータ140内に上部シリンダー31Aの上部吸入口42A及び下部シリンダー32の下部吸入口43の口径よりも大きな管径を有するインナーパイプ44を備えることができ、インナーパイプ44の圧力損失を低減することができる。また、圧縮機200は、吸入管50のテーパ部50bが、一端50b1から他端50b2に掛けて連続して細径化されている。そのため、インナーパイプ44の管径と、シリンダー31の吸入口42の口径との相違から生じ得る流路内の冷媒の乱れを抑制することができる。 FIG. 7 is a longitudinal sectional view of a conventional compressor 200A. Parts having the same configurations as those of the compressor 100 and the compressor 200 in FIGS. 1 to 5 are denoted by the same reference numerals, and the description thereof will be omitted. In the conventional compressor 200A having two cylinders, two inner pipes 44B equal in number to the number of cylinders are disposed in the accumulator 140B adjacently fixed. The conventional compressor 200A includes two suction pipes, and includes an upper suction pipe 60B connecting the accumulator 140B and the upper cylinder 31A, and a lower suction pipe 60A connecting the accumulator 140B and the lower cylinder 32. . In the conventional compressor 200A, the size of the diameter of the upper suction pipe 60B is limited with respect to the size of the diameter of the upper suction port 42A of the upper cylinder 31A. In the compressor 200A, the size of the diameter of the lower suction pipe 60A is restricted with respect to the size of the diameter of the lower suction port 43 of the lower cylinder 32. The inner diameter of the inner pipe 44B connected to the upper suction pipe 60B is substantially equal to the diameter of the upper suction port 42A. Further, the size of the inner diameter of the inner pipe 44B connected to the lower suction pipe 60A is substantially equal to the size of the diameter of the lower suction port 43. Therefore, there is a limit to the reduction of the pressure loss of each inner pipe 44B. On the other hand, the compressor 200 has an accumulator connection portion 50a, a taper portion 50b, a lower cylinder connection portion 50c, and an upper cylinder connection portion 50d. Therefore, the inner pipe 44 having a pipe diameter larger than the diameters of the upper suction port 42A of the upper cylinder 31A and the lower suction port 43 of the lower cylinder 32 can be provided in the accumulator 140, and the pressure loss of the inner pipe 44 is reduced. be able to. In the compressor 200, the tapered portion 50b of the suction pipe 50 is continuously reduced in diameter from one end 50b1 to the other end 50b2. Therefore, it is possible to suppress the disturbance of the refrigerant in the flow path which may occur due to the difference between the pipe diameter of the inner pipe 44 and the diameter of the suction port 42 of the cylinder 31.
 図8は、図7の従来の圧縮機200Aのアキュムレータ140Bの横断面模式図である。従来の圧縮機200Aは、インナーパイプ44Bと、アキュムレータ140Bの容器141Bとの間に次のような関係がある。インナーパイプ44Bの外径をY´と規定する。そして、アキュムレータ140Bの容器141Bの内径をZ、インナーパイプ44Bの配列方向におけるインナーパイプ44Bの外周壁とアキュムレータ140Bの容器141Bの内周壁との間の距離をX、インナーパイプ44Bの外周壁同士の間の距離をWとする。このときインナーパイプ44Bの外径Y´は、Y´={Z-(W+2X)}/2として表すことができる。製造上W、Xの寸法は制限される事からアキュムレータ140Bの内径Zに対し、インナーパイプ44Bの外径Y´は制限される。 FIG. 8 is a schematic cross-sectional view of an accumulator 140B of the conventional compressor 200A of FIG. The conventional compressor 200A has the following relationship between the inner pipe 44B and the container 141B of the accumulator 140B. The outer diameter of the inner pipe 44B is defined as Y '. The inner diameter of the container 141B of the accumulator 140B is Z, the distance between the outer peripheral wall of the inner pipe 44B in the arrangement direction of the inner pipe 44B and the inner peripheral wall of the container 141B of the accumulator 140B is X, the outer peripheral walls of the inner pipe 44B Let W be the distance between them. At this time, the outer diameter Y 'of the inner pipe 44B can be expressed as Y' = {Z- (W + 2X)} / 2. Since the dimensions of W and X are limited in manufacture, the outer diameter Y 'of the inner pipe 44B is limited with respect to the inner diameter Z of the accumulator 140B.
 図9は、図5の圧縮機200のアキュムレータ140の横断面模式図である。実施の形態2に係る圧縮機200は、隣接して固定されるアキュムレータ140内に1本のインナーパイプ44が配置されている。圧縮機200は、インナーパイプ44と、アキュムレータ140の容器141との間に次のような関係がある。インナーパイプ44の外径をY、アキュムレータ140の容器141の内径をZ、インナーパイプ44の外周壁とアキュムレータ140の容器141の内周壁との間の距離をXとする。このときインナーパイプ44の外径Yは、Y=Z-2Xとして表すことができる。ここで、従来の圧縮機200Aと実施の形態2に係る圧縮機200とを比較すると、インナーパイプ44Bの外径Y´={Z-(W+2X)}/2に対してインナーパイプ44の外径Y=Z-2Xである。すなわち、インナーパイプ44Bの外径Y´と、インナーパイプ44の外径Yとの関係は2Y´<Yとなる。そのため、圧縮機200は、従来の圧縮機200Aと比較して、アキュムレータ140の内径Zに対し、アキュムレータ140に接続されるインナーパイプ44の外径Yを最大限に大きく設ける事ができる。その結果、圧縮機200は、従来の圧縮機200Aのインナーパイプ44Bよりもインナーパイプ44の圧力損失を低減することができる。 FIG. 9 is a schematic cross-sectional view of the accumulator 140 of the compressor 200 of FIG. In the compressor 200 according to the second embodiment, one inner pipe 44 is disposed in the accumulator 140 fixed adjacently. The compressor 200 has the following relationship between the inner pipe 44 and the container 141 of the accumulator 140. The outer diameter of the inner pipe 44 is Y, the inner diameter of the container 141 of the accumulator 140 is Z, and the distance between the outer peripheral wall of the inner pipe 44 and the inner peripheral wall of the container 141 of the accumulator 140 is X. At this time, the outer diameter Y of the inner pipe 44 can be expressed as Y = Z-2X. Here, when the conventional compressor 200A and the compressor 200 according to the second embodiment are compared, the outer diameter Y ′ of the inner pipe 44B = {Z− (W + 2X)} / 2 compared to the outer diameter Y ′ = {Z− (W + 2X)} / 2. Outer diameter Y = Z-2X. That is, the relationship between the outer diameter Y 'of the inner pipe 44B and the outer diameter Y of the inner pipe 44 is 2Y' <Y. Therefore, in the compressor 200, the outer diameter Y of the inner pipe 44 connected to the accumulator 140 can be provided as large as possible with respect to the inner diameter Z of the accumulator 140, as compared with the conventional compressor 200A. As a result, the compressor 200 can reduce the pressure loss of the inner pipe 44 more than the inner pipe 44B of the conventional compressor 200A.
[圧縮機200の動作]
 次に、圧縮機200の動作について説明する。圧縮機200は、電動機構部2の駆動により主軸23が回転すると、主軸23と共に上部シリンダー31A内の上部ピストン33Aと、下部シリンダー32内の下部ピストン34も回転する。上部ピストン33Aは、偏心的に回転し、上部ピストン33Aに摺動自在に接した上部ベーン35Aが上部ピストン33Aの回転によりピストン運動する。同様に、下部ピストン34は、偏心的に回転し、下部ピストン34に摺動自在に接した下部ベーン36が下部ピストン34の回転によりピストン運動する。この時、ガス冷媒は、吸入管50の上方シリンダー接続部50dを介して圧縮機構部3Aの上部吸入口42Aから上部シリンダー31Aの内壁、上部ピストン33A及び上部ベーン35Aにより囲まれた圧縮室内に入る。また、ガス冷媒は、吸入管50の下方シリンダー接続部50cを介して圧縮機構部3Aの下部吸入口43から下部シリンダー32の内壁、下部ピストン34及び下部ベーン36により囲まれた圧縮室内に入る。そして、圧縮室内のガス冷媒は、上部ピストン33Aと、下部ピストン34との回転に伴って圧縮室内の容積が小さくなるにつれ圧縮されていく。
[Operation of Compressor 200]
Next, the operation of the compressor 200 will be described. In the compressor 200, when the main shaft 23 is rotated by the drive of the electric mechanism 2, the upper piston 33A in the upper cylinder 31A and the lower piston 34 in the lower cylinder 32 are also rotated together with the main shaft 23. The upper piston 33A rotates eccentrically, and the upper vane 35A slidably in contact with the upper piston 33A performs a piston movement by the rotation of the upper piston 33A. Similarly, the lower piston 34 rotates eccentrically, and the lower vane 36 slidably in contact with the lower piston 34 performs a piston motion by the rotation of the lower piston 34. At this time, the gas refrigerant enters the compression chamber surrounded by the inner wall of the upper cylinder 31A, the upper piston 33A and the upper vane 35A from the upper suction port 42A of the compression mechanism 3A through the upper cylinder connection portion 50d of the suction pipe 50 . Further, the gas refrigerant enters the compression chamber surrounded by the inner wall of the lower cylinder 32, the lower piston 34 and the lower vane 36 from the lower suction port 43 of the compression mechanism 3A via the lower cylinder connection portion 50c of the suction pipe 50. The gas refrigerant in the compression chamber is compressed as the volume in the compression chamber decreases as the upper piston 33A and the lower piston 34 rotate.
 圧縮室で圧縮されたガス冷媒は、上部シリンダー31A内と、下部シリンダー32内とを連通する溝を介して、上部軸受38と下部軸受39とにそれぞれ設けられた吐出口(図示せず)から上部消音器40及び下部消音器41の内部空間へ吐出される。下部消音器41の内部空間に吐出されたガス冷媒は、下部軸受39と、下部シリンダー32と、仕切り板37と、上部シリンダー31Aと、上部軸受38とを貫通するガス穴(図示せず)を通って上部消音器40の内部空間Bに導かれる。内部空間Bに吐出されたガス冷媒は、上部消音器40に設けられた吐出口(図示せず)から空間Aに吐出される。空間Aを周回しているガス冷媒は、回転子22に設けられたガス穴22a、固定子21と回転子22の間のエアギャップ2aをそれぞれ通って密閉容器1内の上部に達し、吐出管7から冷凍サイクル装置10の冷媒回路内へと吐出される。 The gas refrigerant compressed in the compression chamber is discharged from the discharge ports (not shown) respectively provided in the upper bearing 38 and the lower bearing 39 via grooves communicating the inside of the upper cylinder 31A and the inside of the lower cylinder 32. It is discharged to the internal space of the upper silencer 40 and the lower silencer 41. The gas refrigerant discharged into the internal space of the lower muffler 41 has gas holes (not shown) passing through the lower bearing 39, the lower cylinder 32, the partition plate 37, the upper cylinder 31A, and the upper bearing 38. It is led to the internal space B of the upper silencer 40 through it. The gas refrigerant discharged into the internal space B is discharged into the space A from a discharge port (not shown) provided in the upper silencer 40. The gas refrigerant circulating in the space A passes through the gas holes 22a provided in the rotor 22, the air gap 2a between the stator 21 and the rotor 22, and reaches the upper part in the closed container 1, and the discharge pipe 7 are discharged into the refrigerant circuit of the refrigeration cycle apparatus 10.
 圧縮機200は上記のように構成され、図1に示す凝縮器110、膨張装置120、蒸発器130を通過した冷媒ガスは接続吸入管8からアキュムレータ140に戻される。このアキュムレータ140内部の空間Cに溜められた冷媒ガスは、インナーパイプ44から排出されると共に、吸入管50を経て上部吸入口42A及び下部吸入口43から再び圧縮機200内に供給される。 The compressor 200 is configured as described above, and the refrigerant gas having passed through the condenser 110, the expansion device 120, and the evaporator 130 shown in FIG. 1 is returned from the connection suction pipe 8 to the accumulator 140. The refrigerant gas stored in the space C inside the accumulator 140 is discharged from the inner pipe 44 and is again supplied into the compressor 200 from the upper suction port 42A and the lower suction port 43 through the suction pipe 50.
 以上のように圧縮機200は、吸入管50が、アキュムレータ接続部50aと、テーパ部50bと、下方シリンダー接続部50cと、上方シリンダー接続部50dとを有する。そのため、圧縮機200は、アキュムレータ140内に上部シリンダー31Aの上部吸入口42A及び下部シリンダー32の下部吸入口43の口径よりも大きな管径を有するインナーパイプ44を備えることができる。その結果、圧縮機200は、インナーパイプ44の圧力損失を低減することができる。また、圧縮機200は、吸入管50のテーパ部50bが、一端50b1から他端50b2に掛けて連続して細径化されている。そのため、インナーパイプ44の管径と、上部シリンダー31Aの上部吸入口42A及び下部シリンダー32の下部吸入口43の口径との相違から生じ得る流路内の冷媒の乱れを抑制することができる。 As described above, in the compressor 200, the suction pipe 50 has the accumulator connection portion 50a, the tapered portion 50b, the lower cylinder connection portion 50c, and the upper cylinder connection portion 50d. Therefore, the compressor 200 can include the inner pipe 44 having a pipe diameter larger than the diameter of the upper suction port 42A of the upper cylinder 31A and the lower suction port 43 of the lower cylinder 32 in the accumulator 140. As a result, the compressor 200 can reduce the pressure loss of the inner pipe 44. In the compressor 200, the tapered portion 50b of the suction pipe 50 is continuously reduced in diameter from one end 50b1 to the other end 50b2. Therefore, it is possible to suppress the disturbance of the refrigerant in the flow path which may occur due to the difference between the pipe diameter of the inner pipe 44 and the diameters of the upper suction port 42A of the upper cylinder 31A and the lower suction port 43 of the lower cylinder 32.
 また、圧縮機200は、下方シリンダー接続部50cの管径は、上方シリンダー接続部50dの管径よりも小さい。そのため圧縮機200は、下方シリンダー接続部50cと、上方シリンダー接続部50dとを流れる冷媒の圧力の均衡を図ることができる。 Moreover, as for the compressor 200, the pipe diameter of the lower cylinder connection part 50c is smaller than the pipe diameter of the upper cylinder connection part 50d. Therefore, the compressor 200 can balance the pressure of the refrigerant flowing through the lower cylinder connection portion 50c and the upper cylinder connection portion 50d.
 また、圧縮機200は、インナーパイプ44が、上部シリンダー31Aの上部吸入口42A及び下部シリンダー32の下部吸入口43の口径よりも大きな管径を有する。そのため、圧縮機200は、インナーパイプ44の圧力損失を低減することができる。 In the compressor 200, the inner pipe 44 has a pipe diameter larger than the bores of the upper suction port 42A of the upper cylinder 31A and the lower suction port 43 of the lower cylinder 32. Therefore, the compressor 200 can reduce the pressure loss of the inner pipe 44.
 また、圧縮機200は、下方シリンダー接続部50cと、上方シリンダー接続部50dとが平行に配置されている。そのため圧縮機200は、下方シリンダー接続部50cと、上方シリンダー接続部50dとを流れる冷媒の圧力の均衡を図ることができる。また、吸入管50を収容するのに必要な空間を削減でき、そのため、吸入管50の保管及び運搬時に必要な空間を削減することができる。 Moreover, as for the compressor 200, the lower cylinder connection part 50c and the upper cylinder connection part 50d are arrange | positioned in parallel. Therefore, the compressor 200 can balance the pressure of the refrigerant flowing through the lower cylinder connection portion 50c and the upper cylinder connection portion 50d. In addition, the space required to accommodate the suction pipe 50 can be reduced, and hence the space required for storing and transporting the suction pipe 50 can be reduced.
 また、冷凍サイクル装置10は、実施の形態2に係る圧縮機200を備えることによって、実施の形態2に係る圧縮機200の効果を有する冷凍サイクル装置10を得ることができる。 Moreover, the refrigeration cycle apparatus 10 can obtain the refrigeration cycle apparatus 10 having the effects of the compressor 200 according to the second embodiment by including the compressor 200 according to the second embodiment.
 なお、本発明の実施の形態は、上記実施の形態1~2に限定されず、種々の変更を加えることができる。例えば、圧縮機100及び圧縮機200は、ロータリー式の圧縮機であるが、アキュムレータ140を使用するものであれば、スクロール式等、他の形式の圧縮機であってもよい。 The embodiment of the present invention is not limited to the above-described Embodiments 1 and 2, and various modifications can be made. For example, although the compressor 100 and the compressor 200 are rotary compressors, as long as they use the accumulator 140, they may be scroll compressors or other compressors.
 1 密閉容器、2 電動機構部、2a エアギャップ、3 圧縮機構部、3A 圧縮機構部、5 吸入管、5A 吸入管、5a アキュムレータ接続部、5b テーパ部、5b1 一端、5b2 他端、5c シリンダー接続部、7 吐出管、8 接続吸入管、10 冷凍サイクル装置、11 中央容器、12 上容器、13 下容器、21 固定子、22 回転子、22a ガス穴、23 主軸、31 シリンダー、31A 上部シリンダー、32 下部シリンダー、33 ピストン、33A 上部ピストン、34 下部ピストン、35 ベーン、35A 上部ベーン、36 下部ベーン、37 仕切り板、38 上部軸受、39 下部軸受、40 上部消音器、41 下部消音器、42 吸入口、42A 上部吸入口、43 下部吸入口、44 インナーパイプ、44A インナーパイプ、44B インナーパイプ、45a 一端、45b 他端、50 吸入管、50a アキュムレータ接続部、50b テーパ部、50b1 一端、50b2 他端、50c 下方シリンダー接続部、50d 上方シリンダー接続部、51a 一端、51b 他端、60A 下部吸入管、60B 上部吸入管、100 圧縮機、100A 圧縮機、110 凝縮器、120 膨張装置、130 蒸発器、140 アキュムレータ、140A アキュムレータ、140B アキュムレータ、141 容器、141B 容器、141a 開口部、200 圧縮機、200A 圧縮機。 DESCRIPTION OF SYMBOLS 1 sealed container, 2 electric mechanism part, 2a air gap, 3 compression mechanism part, 3A compression mechanism part, 5 suction pipe, 5A suction pipe, 5a accumulator connection part, 5b taper part, 5b1 one end, 5b2 other end, 5c cylinder connection Part, 7 discharge pipe, 8 connection suction pipe, 10 refrigeration cycle device, 11 central container, 12 upper container, 13 lower container, 21 stator, 22 rotor, 22a gas hole, 23 main shaft, 31 cylinder, 31A upper cylinder, 32 lower cylinder, 33 piston, 33A upper piston, 34 lower piston, 35 vane, 35A upper vane, 36 lower vane, 37 partition plate, 38 upper bearing, 39 lower bearing, 40 upper silencer, 41 lower silencer, 42 suction Mouth, 42A upper suction port, 43 lower suction , 44 inner pipe, 44A inner pipe, 44B inner pipe, 45a one end, 45b other end, 50 suction pipe, 50a accumulator connection, 50b taper part, 50b1 one end, 50b2 other end, 50c lower cylinder connection, 50d upper cylinder connection Part, 51a one end, 51b the other end, 60A lower suction pipe, 60B upper suction pipe, 100 compressor, 100A compressor, 110 condenser, 120 expansion device, 130 evaporator, 140 accumulator, 140A accumulator, 140B accumulator, 141 container , 141B container, 141a opening, 200 compressor, 200A compressor.

Claims (6)

  1.  少なくとも1つのシリンダーを有する圧縮機構部と、
     冷媒を気体と液体とに分離させるアキュムレータと、
     前記アキュムレータを構成する容器内において、一端が前記容器内で開口し、他端が前記容器に設けられた開口部に接続されるインナーパイプと、
     一端が前記開口部に位置する前記インナーパイプと接続され、他端が前記シリンダーの吸入口と接続され、前記アキュムレータと前記圧縮機構部とを接続する吸入管と、
    を備え、
     前記吸入管は、
     前記インナーパイプと接続される管を構成するアキュムレータ接続部と、
     前記シリンダーの前記吸入口に接続される管を構成し、前記アキュムレータ接続部よりも細径のシリンダー接続部と、
     前記アキュムレータ接続部と連続して形成される太径の一端を有し、前記シリンダー接続部と連続して形成される細径の他端を構成する管であって、前記一端から前記他端にかけて連続して細径化されているテーパ部と、
    を有する圧縮機。
    A compression mechanism having at least one cylinder;
    An accumulator that separates the refrigerant into a gas and a liquid;
    In a container constituting the accumulator, an inner pipe having one end opened in the container and the other end connected to an opening provided in the container;
    A suction pipe connected at one end to the inner pipe located at the opening and connected at the other end to a suction port of the cylinder to connect the accumulator and the compression mechanism portion;
    Equipped with
    The suction pipe is
    An accumulator connection that constitutes a pipe connected to the inner pipe;
    Forming a pipe connected to the suction port of the cylinder, and a cylinder connection smaller in diameter than the accumulator connection;
    A pipe having one end of a large diameter continuously formed with the accumulator connection portion and constituting the other end of a small diameter continuously formed with the cylinder connection portion, from the one end to the other end A tapered portion which is continuously reduced in diameter,
    With a compressor.
  2.  前記インナーパイプは、前記シリンダーの前記吸入口の口径よりも大きな管径を有する請求項1に記載の圧縮機。 The compressor according to claim 1, wherein the inner pipe has a pipe diameter larger than a diameter of the suction port of the cylinder.
  3.  前記圧縮機構部が、上部シリンダーと下部シリンダーとを有し、
     前記吸入管は、
     前記アキュムレータ接続部を構成する周壁から突出して前記上部シリンダーの吸入口に接続される上方シリンダー接続部を更に有し、
     前記シリンダー接続部は、前記下部シリンダーの吸入口に接続される請求項1又は2に記載の圧縮機。
    The compression mechanism has an upper cylinder and a lower cylinder,
    The suction pipe is
    It further comprises an upper cylinder connection projecting from the peripheral wall constituting the accumulator connection and connected to the suction port of the upper cylinder,
    The compressor according to claim 1, wherein the cylinder connection portion is connected to a suction port of the lower cylinder.
  4.  前記シリンダー接続部の管径は、前記上方シリンダー接続部の管径よりも小さい請求項3に記載の圧縮機。 The compressor according to claim 3, wherein a pipe diameter of the cylinder connection portion is smaller than a pipe diameter of the upper cylinder connection portion.
  5.  前記シリンダー接続部と、前記上方シリンダー接続部とが平行に配置されている請求項3又は4に記載の圧縮機。 The compressor according to claim 3 or 4, wherein the cylinder connection portion and the upper cylinder connection portion are disposed in parallel.
  6.  請求項1~5のいずれか1項に記載された圧縮機と、前記圧縮機に接続された凝縮器と、前記凝縮器に接続された膨張装置と、前記膨張装置及び前記圧縮機の間に接続された蒸発器と、を備えた冷凍サイクル装置。 A compressor according to any one of claims 1 to 5, a condenser connected to the compressor, an expansion device connected to the condenser, and a space between the expansion device and the compressor. And a connected evaporator.
PCT/JP2017/043826 2017-12-06 2017-12-06 Compressor and refrigeration cycle device WO2019111350A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/043826 WO2019111350A1 (en) 2017-12-06 2017-12-06 Compressor and refrigeration cycle device
JP2019557920A JPWO2019111350A1 (en) 2017-12-06 2017-12-06 Compressor and refrigeration cycle device
CN201790001056.6U CN210197788U (en) 2017-12-06 2017-12-06 Compressor and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/043826 WO2019111350A1 (en) 2017-12-06 2017-12-06 Compressor and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2019111350A1 true WO2019111350A1 (en) 2019-06-13

Family

ID=66751354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043826 WO2019111350A1 (en) 2017-12-06 2017-12-06 Compressor and refrigeration cycle device

Country Status (3)

Country Link
JP (1) JPWO2019111350A1 (en)
CN (1) CN210197788U (en)
WO (1) WO2019111350A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830489A (en) * 1981-08-19 1983-02-22 Toshiba Corp Closed type compressor
JPS5994186U (en) * 1982-12-17 1984-06-26 三菱電機株式会社 Hermetic rotary compressor
JPS61175461A (en) * 1985-01-30 1986-08-07 株式会社東芝 Gas liquid separator
JPS61127368U (en) * 1985-01-29 1986-08-09
JPH01247776A (en) * 1988-03-29 1989-10-03 Toshiba Corp Piping structure of multi-cylinder type compressor and gas-liquid separator
JPH04350479A (en) * 1991-05-27 1992-12-04 Izumi Giken:Kk Accumulator
JPH11336666A (en) * 1998-05-27 1999-12-07 Funai Electric Co Ltd Compressor
JP2003090651A (en) * 2001-09-17 2003-03-28 Denso Corp Refrigeration cycle system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830489A (en) * 1981-08-19 1983-02-22 Toshiba Corp Closed type compressor
JPS5994186U (en) * 1982-12-17 1984-06-26 三菱電機株式会社 Hermetic rotary compressor
JPS61127368U (en) * 1985-01-29 1986-08-09
JPS61175461A (en) * 1985-01-30 1986-08-07 株式会社東芝 Gas liquid separator
JPH01247776A (en) * 1988-03-29 1989-10-03 Toshiba Corp Piping structure of multi-cylinder type compressor and gas-liquid separator
JPH04350479A (en) * 1991-05-27 1992-12-04 Izumi Giken:Kk Accumulator
JPH11336666A (en) * 1998-05-27 1999-12-07 Funai Electric Co Ltd Compressor
JP2003090651A (en) * 2001-09-17 2003-03-28 Denso Corp Refrigeration cycle system

Also Published As

Publication number Publication date
JPWO2019111350A1 (en) 2020-07-27
CN210197788U (en) 2020-03-27

Similar Documents

Publication Publication Date Title
US8936448B2 (en) Rotary compressor having main cylinder chamber and sub-cylinder chamber with an end plate received therein
EP1284366B1 (en) Multistage compressor
KR101316247B1 (en) 2 stage rotary compressor
JP2008286037A (en) Rotary compressor and heat pump system
US20060177335A1 (en) Low-pressure type orbiting vane compressor
US11339999B2 (en) Compressor and accumulator with multiple suction tubes for a refrigeration cycle device
JP2009209928A (en) Compressor and refrigeration device
JP2015129475A (en) Electric compressor
JP2009209927A (en) Fluid machine
KR20150006278A (en) 2-stage scroll compressor and refrigerating cycle system having the same
US7192259B2 (en) Variable capacity rotary compressor
JP3909332B2 (en) Variable capacity rotary compressor
JPWO2005010370A1 (en) Refrigeration equipment
JP2008240666A (en) Rotary compressor and heat pump system
WO2019111350A1 (en) Compressor and refrigeration cycle device
JP2011032958A (en) Rotary fluid machine
US11971201B2 (en) Compressor and refrigeration cycle device
JP2003166472A (en) Compressor
JP2010085001A (en) Refrigerating device
JPH11241693A (en) Compressor
JP2003161280A (en) Rotary compressor
JP2015129476A (en) electric compressor
CN112771273B (en) Rotary compressor and refrigeration cycle device
JP2007113447A5 (en)
JP2010156487A (en) Refrigerating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933920

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019557920

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17933920

Country of ref document: EP

Kind code of ref document: A1