WO2019110051A1 - Anordnung für ein messsystem zum messen an einem messobjekt und verfahren zum messen an einem messobjekt mittels eines messsystems - Google Patents

Anordnung für ein messsystem zum messen an einem messobjekt und verfahren zum messen an einem messobjekt mittels eines messsystems Download PDF

Info

Publication number
WO2019110051A1
WO2019110051A1 PCT/DE2018/100987 DE2018100987W WO2019110051A1 WO 2019110051 A1 WO2019110051 A1 WO 2019110051A1 DE 2018100987 W DE2018100987 W DE 2018100987W WO 2019110051 A1 WO2019110051 A1 WO 2019110051A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
measuring
joints
measuring arm
articulated
Prior art date
Application number
PCT/DE2018/100987
Other languages
English (en)
French (fr)
Other versions
WO2019110051A9 (de
Inventor
Alina Grädener
Leo Rokeach
Original Assignee
Graedener Alina
Leo Rokeach
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Graedener Alina, Leo Rokeach filed Critical Graedener Alina
Publication of WO2019110051A1 publication Critical patent/WO2019110051A1/de
Publication of WO2019110051A9 publication Critical patent/WO2019110051A9/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/004Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points
    • G01B5/008Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points using coordinate measuring machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/03Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring coordinates of points

Definitions

  • the invention relates to an arrangement for a measuring system for measuring on a measuring object and to a method for measuring on a measuring object by means of a measuring system.
  • Such arrangements provide mobility in space and are used in measurement systems that can measure different types of measurement objects.
  • Measuring systems are known in which arm links are connected via joints.
  • the document WO 2007/017235 A2 relates to a robot coordinate measuring machine arm comprising a robot, a coordinate measuring machine arm and transmission means.
  • the robotic coordinate measuring machine arm is configured to translate and / or rotate a probe end in a haptic mode and further includes a gripping arm for receiving the hand pressure of a haptic control operator, the gripping arm being mounted behind a final hinge on the robot arm
  • the document DE 10 2014 105 456 A1 discloses a method for measuring the outer contour of three-dimensional measuring objects.
  • the method relates in particular to the measurement of industrial components by means of a measuring system comprising a robot unit with a plurality of robot arms and a preferably integrated robot control unit, at least one measuring sensor unit arranged at the free end on a robot arm of the robot unit and at least one computer system.
  • the document DE 10 2010 043 798 A1 discloses a method for determining systematic geometric deviations in a technical multi-body system comprising a final effector and a base. Summary
  • the object of the invention is to specify an arrangement for a measuring system for measuring on a measuring object and a method for measuring on a measuring object by means of a measuring system, with which an improved measurement is made possible.
  • an arrangement for a measuring system for measuring at a measuring object includes an articulated arm with hinges, each having a hinge axis, and link members connecting the hinges in a serial articulated arm assembly.
  • It is a measuring arm comprising: measuring arm joints each having a measuring arm hinge axis extending coaxially with the hinge axis of an associated hinge of the articulated arm; Rotary encoders, which are each assigned to one of the measuring arm joints; and gauge arm members connecting the gauge joints in a serial arm assembly.
  • the measuring arm forms a parallel kinematic with the articulated arm, in which the end of the articulated arm is connected to one end of the measuring arm and an opposite end of the articulated arm to an opposite end of the measuring arm.
  • a measurement reference point is provided on one of the link elements or on one of the gauge arm link elements associated with and connected to the link element. is arranged. wherein at least three of the rotary encoders are arranged between the end of the measuring arm and the measuring arm member element. Furthermore, a measuring device is provided, which is set up to determine a spatial position of the measuring reference point, taking into account measurement signals of the rotary encoders of the measuring arm joints. In another aspect, a method of measuring on a measurement object by means of a measurement system is provided.
  • the measurement system includes an articulated arm with hinges each having a hinge axis, and link members connecting the joints in a serial articulated arm assembly, and a measuring arm with metering arm joints each having a metering arm hinge axis coaxial with the articulation axis of an associated articulation arm Articulated extends. Encoders, each one of the measuring arm associated Lenkenke, and Messarmgliedierin that connect the Meßarmgelenke in a serial Meßarman nie.
  • the measuring arm forms a parallel kinematics with the catching arm, in which the end of the articulated arm is connected to one end of the measuring arm and an opposite end of the articulated arm to an opposite end of the measuring arm.
  • a measurement reference point which is arranged on one of the link elements or on one of the measuring arm link elements, which is assigned to the link element and connected thereto. wherein between the end of the measuring arm and the Messarmgliederelement at least three of the encoders are arranged, and provided a measuring device.
  • the method comprises the steps of: forming parallel arm and arm joint kinematics wherein one end of the measurement arm is connected to the end of the articulated arm and an opposite end of the measurement arm is connected to an opposite end of the articulated arm; manually moving the articulated arm, whereby the measuring arm is moved in parallel; Detecting measuring signals for the rotary encoders of the measuring arm joints by means of a measuring device: and determining a spatial position of the measuring reference point, including the measuring signals by means of the measuring device.
  • the spatial position (in particular position and / or orientation) of the measuring reference point can be determined from the measured signals obtained from the rotary encoders in the measuring arm joints. The position of the measuring reference point can then be determined therefrom.
  • the position determination for the measuring reference point which serves as a measuring transmitter, takes place with the aid of the measuring arm, in that the measuring signals of the rotary sensors in the measuring arm joints are evaluated by means of the measuring device.
  • a vertical measuring system can be formed.
  • the articulated arm and arm arm parallel arm structure arrangement may also be used for a non-vertical measuring system, for example a measuring system mounted on an upright wall. While the end-side measuring arm members of the measuring arm and the end-side link elements (arm members) of the articulated arm are connected to one another, such a connection exists between the non-terminal arm members and not the non-end member elements.
  • One or more of the non-end Messarmglieder of the measuring arm and the non-end member members of the articulated arm may be associated with a connection means which is adapted to form a detachable connection for the non-end Messarmglieder and the non-end member members in pairs.
  • a connection means which is adapted to form a detachable connection for the non-end Messarmglieder and the non-end member members in pairs.
  • connection device can be set up, for example, to form the detachable connection as a clamping connection.
  • the detachable connection can be activated and deactivated by means of associated control signals and / or manually, so that the connection is formed or released upon the activation / deactivation.
  • the detachable connection is manually made to be later released, for example, if there is no likelihood for the subsequent movement of the articulated robot assembly to cause the measuring arm to move during this movement Articulated arm would not follow.
  • the associated control signals for activating and deactivating can be generated, for example, as a function of angular positions of one or more of the measuring arm joints.
  • the respective angular position of one or more of the measuring arm joints can be used to activate or deactivate the detachable connection, ie to close or open it.
  • measuring signals for Geienk einen the joints of the articulated arm are used to determine a position that triggers the activation of the releasable connection.
  • the link elements of the articulated arm may have an element housing, and the measuring arm may be arranged at least in sections in one or more of the element housings.
  • measuring arm member elements of the measuring arm extend in the element housing.
  • the articulated arm and the measuring arm can each have at least five axes of rotation. which are provided with the gullies and the measuring arm joints.
  • the Geienkarm and the measuring arm on six or more joints with associated axes of rotation.
  • the measuring arm member elements may be rods of a fiber reinforced material.
  • carbon fiber reinforced materials can be used for the Betspiel.
  • the measuring reference point can be arranged on an end effector which is connected to the divider element or to the measuring arm element elements which is assigned to the sectional element and connected thereto. is arranged.
  • a connecting device for one or more non-terminal measuring arm members of the measuring arm and non-end member members of the articulated arm is activated when a singular arm position is determined for the articulated arm and / or the measuring arm, by predetermined positions for one or more of the joints / measuring arm joints is determined, wherein one or more releasable connections between the non-end Messarmglie- countries and the non-end element members are formed in pairs when activating the Mattseinrich-.
  • the detachable connection can be activated for one or more movement sections, whereas the connection is released in other movement sections.
  • the loosening or connection may vary depending on the currently measured joint Positions for the measuring arm joints and / or the joints of the articulated arm are executed.
  • the measurement reference point is arranged on one of the link elements or on one of the measuring arm link elements, for example on a measuring element.
  • the measuring element can be formed with a stylus, for example a probe ball.
  • the position can be detected without contact using a laser distance measuring device.
  • a 3D camera can also be provided on the measuring element, with the aid of which a 3D image of the measuring object can be detected.
  • the FIGURE shows a schematic representation of an arrangement for a measuring system for measuring on a measuring object with an articulated arm 1 and a measuring arm 2 formed parallel thereto.
  • Articulated arm 1 and measuring arm 2 form parallel kinematics (parallel arm structure) such that the measuring arm 2 followed by an executed by the articulated arm 1 arm movement (mandatory).
  • the articulated arm 1 is mounted on a platform 3 and has joints 4.1, ... 4.6. which are connected to each other via link elements 5.1 5.6.
  • the figure shows a simplified representation. Notwithstanding this, one or more of the link elements 5.1, 5.6 may be directed at different angles into the plane of the drawing, as is known for articulated-arm robots as such.
  • the measuring arm 2 has measuring joints 6.1 6.6 as well as these serially connecting measuring-arm element elements 7.1, .... 7.6.
  • Rotary axes of the measuring arm joints 6.1, .., 6.6 are arranged coaxially with the axes of rotation of the joints 4.1, 4.6.
  • End-link elements 5.1. 5 6 as well as end-side measuring arm member elements 7.1. 7.6 are paired together in pairs.
  • the measuring arm joints 6.1. ..., 6.6 each have a rotary encoder. which couples to a measuring device 8. Based on the measuring signals of the rotary encoder from the measuring arm joints 6.1, ..., 6.6, the measuring device 8, the position and / or orientation of an end 9 of the measuring arm 2 determine. From this, the position and / or orientation of an end 10 of the articulated arm 1 can be determined, on which a measuring reference point 11 is arranged, for example on a measuring element.
  • the measuring element can be formed with a probe, for example a probe ball. Furthermore, the position can be detected without contact with a laser distance measuring device.
  • a 3D camera can also be provided on the measuring element, with the aid of which a 3D image of the measuring object can be detected.
  • the position determination by means of the measuring arm 2 makes it possible to determine the position and / or orientation of the measuring reference point 11.
  • the Messarmgliedmaschine 7.1 7.1.6 can be performed for example as rods. for example, a fiber-reinforced material.
  • the arrangement for the measuring system has, on the measuring arm 2, preferably high-resolution rotary encoders in the measuring arm joints 6.1, 6.6 parallel to the articulated arm 1.
  • a physical contact for the respective first and last member element in the chain of the articulated arm 1 and the measuring arm 2 is provided.
  • the axes of the measuring arm joints 6.1, .... 6.6 coincide with the axes of the joints 4.1, .... 4.6 (both axes of rotation are coaxial).
  • a clamping mechanism which only for these positions has a firm connection of the relevant joint with the joint proposed. In this case, the activation of this clamping can take place mechanically or externally activated.
  • the axes of rotation of the arrangement with the measuring arm 2 are in the context of manufacturing accuracy and deformation accuracy coaxial with the respective axes of the articulated arm. 1
  • the system is applied to a six-axis system.
  • the arrangement for the measuring system with the fixed member (frame) and the measurement Access point connected Since there is a total of six axes movement in the measuring system, the measuring system must be fixed in all six axes at the measuring reference point (fixed clamping). It is also conceivable to have a five-axis system. In order to avoid any constraints in the measuring system, it would only be necessary to hold on to five axes at the measuring reference point - the axis of rotation, where the sixth axis normally would be, should be freely rotatable.
  • the measuring system with the measuring arm 2 then has only five angle rotary encoder.
  • all six degrees of freedom of the measuring system can be maintained at the measuring reference point and only five axes can be kept at the beginning of the measuring system.
  • the degree of freedom of the first axis (vertical axis of rotation) should be kept free.
  • the arrangement with the measuring arm 2 only for a limited number of axes of rotation.
  • the arrangement on the measuring arm member 7.1 could lie between axis 1 and 2 (in the measuring arm joints 6.1, 6.2) and on the measuring arm member 7.5.
  • measuring systems with more than six axes as used for example in weightless space, can be equipped with such an arrangement.
  • the arrangement with the measuring arm 2 then has no more than six degrees of freedom. Then it would span only six axes.
  • the arrangement with the measuring arm 2 could have more than six rotary encoders, and a number of rotary encoders, which are more than six, can be guided by the articulated arm 1 with one degree of freedom.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Manipulator (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

Die Erfindung betrifft eine Anordnung für ein Messsystem zum Messen an einem Messobjekt mit einem Gelenkarm, mit Gelenken, die jeweils eine Gelenkachse aufweisen, und Gliederelementen, die die Gelenke in einer seriellen Gelenkarmanordnung verbinden; einem Messarm, mit Messarmgelenken, die jeweils eine Messarmgelenkachse aufweisen, die sich koaxial zur Gelenkachse eines zugeordneten Gelenks des Gelenkarms erstreckt; Drehgebern, die jeweils einem der Messarmgelenke zugeordnet sind; und Messarmgliederelementen, die die Messarmgelenke in einer seriellen Messarmanordnung verbinden; wobei der Messarm mit dem Gelenkarm eine parallele Kinematik bildet, bei der das Ende des Gelenkarms mit einem Ende des Messarms sowie ein gegenüberliegendes Ende des Gelenkarms mit einem gegenüberliegenden Ende des Messarms verbunden sind; einem Messbezugspunkt, der an einem der Gliederelemente oder an einem der Messarmgliederelemente, welches dem Gliederelement zugeordnet und mit diesem verbunden ist, angeordnet ist, wobei zwischen dem Ende des Messarms und dem Messarmgliederelement wenigstens drei der Drehgeber angeordnet sind; und einer Messeinrichtung, die eingerichtet ist, unter Einbeziehung von Messsignalen der Drehgeber der Messarmgelenke eine räumliche Position des Messbezugspunkts zu bestimmen. Weiterhin ist ein Verfahren zum Messen an einem Messobjekt mittels eines Messsystems geschaffen.

Description

Anordnung für ein Messsystem zum Messen an einem Messobjekt und Verfahren zum Messen an einem Messobjekt mittels eines Messsystems
Die Erfindung betrifft eine Anordnung für ein Messsystem zum Messen an einem Messobjekt und ein Verfahren zum Messen an einem Messobjekt mittels eines Messsystems.
Hintergrund
Solche Anordnungen stellen eine Beweglichkeit im Raum bereit und finden in Messsystem Anwendung, mit denen Messobjekte unterschiedlicher Art vermessen werden können.
Es sind Messsysteme bekannt, bei denen Armgliedern über Gelenke verbunden sind. Die Anzahl der Gelenke wird als die Anzahl der möglichen Freiheitsgrade (Englisch '"Degrees of Freedom" = DOF) oder Anzahl der Achsen genannt.
Das Dokument WO 2007/017235 A2 betrifft einen Roboter-Koordinatenmessmaschinenarm, umfassend einen Roboter, einen Koordinatenmessmaschinenearm und Übertragungsmittel. Der Roboter-Koordinatenmessmaschinenarm ist konfiguriert zum Parallelverschieben und/oder Drehen eines Sondenendes in einem haptischen Modus und umfasst weiterhin einen Greifarm zum Empfangen des Handdrucks eines Bedieners für haptische Steuerung, wobei der Greifarm hinter einem finalen Gelenk an dem Roboterarm montiert ist
Aus dem Dokument DE 10 2014 105 456 A1 ist ein Verfahren zur Vermessung der Außen- kontur von dreidimensionalen Messobjekten bekannt Das Verfahren betrifft insbesondere die Vermessung von industriellen Bauteilen mittels eines Messsystems umfassend eine Robote- reinheit mit mehreren Roboterarmen und einer vorzugsweise integrierten Robotersteuerein- heit, zumindest einem freiendseitig an einem Roboterarm der Robotereinheit angeordneten Messsensoreneinheit und zumindest einem Computersystem. In dem Dokument DE 10 2010 043 798 A1 ist ein Verfahren zur Ermittlung systematischer geometrischer Abweichungen in einem technischen Mehrkörpersystem, welches einen End- effektor sowie eine Basis umfasst, offenbart. Zusammenfassung
Aufgabe der Erfindung ist es, eine Anordnung für ein Messsystem zum Messen an einem Messobjekt und ein Verfahren zum Messen an einem Messobjekt mittels eines Messsystems anzugeben, mit denen eine verbesserte Messung ermöglicht ist.
Zur Lösung sind eine Anordnung für ein Messsystem zum Messen an einem Messobjekt und ein Verfahren zum Messen an einem Messobjekt mittels eines Messsystems nach den un- abhängigen Ansprüchen 1 und 9 geschaffen. Ausgestaltungen sind Gegenstand von abhän- gigen Unteransprüchen.
Nach einem Aspekt ist eine Anordnung für ein Messsystem zum Messen an einem Messob- jekt geschaffen. Die Anordnung weist einen Gelenkarm mit Gelenken, die jeweils eine Ge- lenkachse aufweisen, und Gliederelementen auf, die die Gelenke in einer seriellen Gelenk- armanordnung verbinden. Es ist ein Messarm, aufweisend: Messarmgelenke, die jeweils eine Messarmgelenkachse aufweisen, die sich koaxial zur Gelenkachse eines zugeordneten Gelenks des Gelenkarms erstreckt; Drehgeber, die jeweils einem der Messarmgelenke zu- geordnet sind; und Messarmgliederelemente, die die Messarmgelenke in einer seriellen Messarmanordnung verbinden. Der Messarm bildet mit dem Gelenkarm eine parallele Kine- matik, bei der das Ende des Gelenkarms mit einem Ende des Messarms sowie ein gegen- überliegendes Ende des Gelenkarms mit einem gegenüberliegenden Ende des Messarms verbunden sind. Es ist ein Messbezugspunkt vorgesehen, der an einem der Gliedereiemente oder an einem der Messarmgliederelemente, welches dem Gliederelement zugeordnet und mit diesem verbunden ist. angeordnet ist. wobei zwischen dem Ende des Messarms und dem Messarmgliederelement wenigstens drei der Drehgeber angeordnet sind. Weiterhin ist eine Messeinrichtung vorgesehen, die eingerichtet ist, unter Einbeziehung von Messsignalen der Drehgeber der Messarmgelenke eine räumliche Position des Messbezugspunkts zu be- stimmen. Nach einem weiteren Aspekt ist ein Verfahren zum Messen an einem Messobjekt mittels eines Messsystems geschaffen. Das Messsystem um fasst einen Gelenkarm mit Gelenken, die jeweils eine Gelenkachse aufweisen, und Gliederelementen, die die Gelenke in einer seriellen Gelenkarmanordnung verbinden, sowie einen Messarm mit Messarmgelenken, die jeweils eine Messarmgelenkachse aufweisen, die sich koaxial zur Gelenkachse eines zuge- ordneten Gelenks des Gelenkarms erstreckt. Drehgebern, die jeweils einem der Messarmge- lenke zugeordnet sind, und Messarmgliederelementen, die die Messarmgelenke in einer seriellen Messarmanordnung verbinden. Der Messarm bildet mit dem Gefenkarm eine paral- lele Kinematik, bei der das Ende des Gelenkarms mit einem Ende des Messarms sowie ein gegenüberliegendes Ende des Gelenkarms mit einem gegenüberliegenden Ende des Mess- arms verbunden sind. Weiterhin sind ein Messbezugspunkt, der an einem der Gliederele- mente oder an einem der Messarmgliederelemente, welches dem Gliederelement zugeord- net und mit diesem verbunden ist, angeordnet ist. wobei zwischen dem Ende des Messarms und dem Messarmgliederelement wenigstens drei der Drehgeber angeordnet sind, und einer Messeinrichtung vorgesehen. Das Verfahren weist die folgende Schritte auf: Ausbilden einer parallelen Kinematik für Gelenkarm und Messarm, bei der ein Ende des Messarms mit dem Ende des Gelenkarms sowie ein gegenüberliegendes Ende des Messarms mit einem ge- genüberliegenden Ende des Gelenkarms verbunden wird; manuelles Bewegen des Gelenk- arms, wobei der Messarm hierbei parallel mitbewegt wird; Erfassen von Messsignalen für die Drehgeber der Messarmgelenke mittels einer Messeinrichtung: und Bestimmen einer räumli- chen Position des Messbezugspunkts unter Einbeziehung der Messsignale mittels der Mes- seinrichtung.
Es ist eine parallele Ausbildung von Gelenkarm und Messarm vorgesehen. Wird der Gefenk- arm vom Benutzer manuell bewegt, so führt der Messarm gezwungen die gleiche Bewegung aus. Die räumliche Lage (insbesondere Position und / oder Orientierung) des Messbezugs- punkts kann anhand der von den Drehgebern in den Messarmgelenken erhaltenen Messsig- nalen bestimmt werden. Hieraus kann sodann die Lage des Messbezugspunkts bestimmt werden Die Lagebestimmung für den Messbezugspunkt, welcher insoweit als Messgeber dient, er- folgt mithilfe des Messarms, indem mittels der Messeinrichtung die Messsignale der Drehge- ber in den Messarmgelenken ausgewertet werden.
Werden Position und Orientierung bestimmt, kann dies auch als Bestimmung der Pose be- zeichnet.
Mit der Anordnung kann ein Vertikal-Messsystem ausgebildet werden. Alternativ kann die Anordnung mit der Parallelarmstruktur mit Gelenkarm und Messarm auch für einen Nicht- Vertikal- Messsystem verwendet werden, zum Beispiel einem Messsystem, das an einer aufrecht stehenden Wand montiert ist. Alle nicht endseitigen Messarmglieder des Messarms können frei von einer Verbindung mit nicht endseitigen Gliederelementen des Gelenkarms gebildet sein Während die endseitigen Messarmglieder des Messarms sowie die endseitigen Gliederelemente (Armglieder) des Ge- lenkarms miteinander verbunden sind, besteht eine solche Verbindung zwischen den nicht endseitigen Messarmgliedern und den nicht endseitigen Gliederelementen nicht.
Einem oder mehreren der nicht endseitigen Messarmglieder des Messarms und der nicht endseitigen Gliedereiemente des Gelenkarms kann eine Verbindungseinrichtung zugeordnet sein, die eingerichtet ist, für die nicht endseitigen Messarmglieder sowie die nicht endseitigen Gliederelemente paarweise eine lösbare Verbindung auszubilden. Mithilfe der Verbindungs- einrichtung können einander zugeordnete Messarmglieder des Messarms und Gliederele- mente des Gelenkarms, die in der jeweiligen seriellen Anordnung nicht endseitig angeordnet sind, beim Betrieb der Anordnung zeitweise miteinander verbunden werden. Dieses bedeu- tet, dass die lösbare Verbindung in einem Bewegungsabschnitt bestehen kann, wohingegen in einem hierauf folgenden Bewegungsabschnitt die Verbindung wieder gelöst ist. Auf diese Weise kann sichergestellt werden, dass der Messarm auch in singulären Stellungen der Ge- lenke des Gelenkarms der Bewegung des Gelenkarms folgt, auch wenn aufgrund einer sol- chen singulären Stellung eine gewisse Wahrscheinlichkeit besteht, dass dies nicht der Fall sein könnte. Mithilfe der Verbindungseinrichtung wird diese Wahrscheinlichkeit für ein Nicht- folgen überwunden. Es ist sichergestellt, dass der Messarm in jeder Stellung der Gelenke der Bewegung des Gelenkarms folgt. Die Verbindungseinrichtung kann beispielsweise ein- gerichtet sein, die lösbare Verbindung als eine Klemmverbindung auszubilden. Die lösbare Verbindung kann mittels zugeordneter Steuersignale und / oder manuell aktivier- bar und deaktivierbar sein, so dass die Verbindung auf die Aktivierung / Deaktivierung aus- gebildet oder gelöst wird. Im Fall der manuellen Aktivierung wird die lösbare Verbindung ma- nuell hergestellt, um diese später wieder zu lösen, beispielsweise dann, wenn für eine fol- gende Bewegung der Anordnung für den Knickarmroboter keine Wahrscheinlichkeit dafür besteht, dass der Messarm bei dieser Bewegung der Bewegung des Gelenkarms nicht fol- gen würde. Die zugeordneten Steuersignale zum Aktivieren und zum Deaktivieren können zum Beispiel in Abhängigkeit von Winkelstetlungen eines oder mehrerer der Messarmgelen- ke erzeugt werden. Hierbei kann die jeweilige Winkelstellung eines oder mehrerer der Mess- armgelenke herangezogen werden, um die lösbare Verbindung zu aktivieren oder zu deakti- vieren, also zu schließen oder zu öffnen. Alternativ oder ergänzend können Messsignale für Geienkstellungen der Gelenke des Gelenkarms zum Bestimmen einer Stellung herangezo- gen werden, die die Aktivierung der lösbaren Verbindung auslöst.
Die Gliedereiemente des Gelenkarms können ein Elementgehäuse aufweisen, und der Messarm kann zumindest abschnittsweise in einem oder mehreren der Elementgehäuse angeordnet sein. Bei dieser Ausführungsform verlaufen beispielsweise Messarmgliederele- mente des Messarms im Elementgehäuse.
Der Gelenkarm und der Messarm können jeweils mindestens fünf Drehachsen aufweisen. die mit den Geienken und den Messarmgelenken bereitgestellt sind. In einer Ausführungs- form weisen der Geienkarm und der Messarm sechs oder mehr Gelenke mit zugeordneten Drehachsen auf.
Die Messarmgliederelemente können als Stäbe aus einem faserverstärkten Material beste- hen. Hierbei können zum Betspiel kohlefaserverstärkte Materialien zum Einsatz kommen.
Der Messbezugspunkt kann an einem Endeffektor angeordnet sein, welcher an dem Glie- derelement oder dem der Messarmgliederelemente, welches dem Gliederelement zugeord- net und mit diesem verbunden ist. angeordnet ist.
In Verbindung mit dem Verfahren zum Messen an einem Messobjekt mittels eines Messsys- tems können die vorangehend erläuterten alternativen Ausgestaltungen entsprechend vor- gesehen sein. Bei dem Verfahren kann vorgesehen sein, dass eine Verbindungseinrichtung für ein oder mehrere nicht endseitige Messarmglieder des Messarms sowie nicht endseitige Gliedereie- mente des Gelenkarms aktiviert wird, wenn für den Gelenkarm und / oder den Messarm eine singulare Armstellung bestimmt wird, die durch vorgegebene Stellungen für ein oder mehrere der Gelenke / Messarmgelenke bestimmt ist, wobei beim Aktivieren der Verbindungseinrich- tung eine oder mehrere lösbare Verbindungen zwischen den nicht endseitigen Messarmglie- dern und den nicht endseitigen Gliederelementen paarweise ausgebildet werden. Im Laufe einer Bewegung von Gelenkarm und Messarm, die mehrere Bewegungsabschnitte oder -elemente aufweist, kann die lösbare Verbindung für einzelne oder mehrere Bewegungsab- schnitte aktiviert werden, wohingegen die Verbindung in anderen Bewegungsabschnitten gelöst ist. Das Lösen oder Verbinden kann in Abhängigkeit von aktuell gemessenen Gelenk- Stellungen für die Messarmgelenke und / oder die Gelenke des Gelenkarms ausgeführt wer- den.
An einem der Gliederelemente oder an einem der Messarmgliederelemente ist der Messbe- zugspunkt angeordnet, zum Beispiel an einem Messglied. Das Messglied kann mit einem Taster gebildet sein, zum Beispiel einer Tastkugel. Weiter kann die Position mit einer Laser- Entfernungsmesseinrichtung berührungslos erfasst werden. Am Messglied kann auch eine 3D-Kamera vorgesehen sein, mit deren Hilfe ein 3D-Bild des Messobjektes erfasst werden kann.
Beschreibung von Ausführunqsbeispielen
Im Folgenden werden weitere Ausführungsbeispiele unter Bezugnahme auf eine Figur erläu- tert.
Die Figur zeigt eine schematische Darstellung einer Anordnung für ein Messsystem zum Messen an einem Messobjekt mit einem Gelenkarm 1 und einem parallel hierzu ausgebilde- ten Messarm 2. Gelenkarm 1 und Messarm 2 bilden parallele Kinematiken (Parallelarmstruk- tur), derart, dass der Messarm 2 eine von dem Gelenkarm 1 ausgeführte Armbewegung (zwingend) nachverfolgt.
Der Gelenkarm 1 ist auf einer Plattform 3 montiert und weist Gelenke 4.1, .. . 4.6 auf. die über Gliederelemente 5.1 5.6 seriell miteinander verbunden sind. Die Figur zeigt eine vereinfachte Darstellung. Abweichend hiervon können ein oder mehrere der Gliederelemente 5.1 , 5.6 unter unterschiedlichen Winkeln in die Zeichenebene hinein gerichtet sein, wie dies für Knickarmroboter als solches bekannt ist.
Der Messarm 2 weist Messgelenke 6.1 6.6 sowie diese seriell verbindenden Messarm- gliederelemente 7.1 , .... 7.6 auf. Drehachsen der Messarmgelenke 6.1 , .. , 6.6 sind koaxial zu den Drehachsen der Gelenke 4.1 , 4.6 angeordnet. Endseitige Gliederelemente 5.1. 5 6 sowie endseitige Messarmgliederelemente 7.1. 7.6 sind paarweise miteinander fest verbun- den.
Die Messarmgelenke 6.1. ... , 6.6 weisen jeweils einen Drehgeber auf. der an eine Messein- richtung 8 koppelt. Anhand der Messsignale der Drehgeber aus den Messarmgelenken 6.1 , ... , 6.6 kann die Messeinrichtung 8 die Position und / oder die Orientierung eines Endes 9 des Messarms 2 bestimmen. Hieraus ist die Position und / oder die Orientierung eines Endes 10 des Gelenkarms 1 bestimmbar, an dem ein Messbezugspunkt 11 angeordnet ist, zum Beispiel an einem Messglied. Das Messglied kann mit einem Taster gebildet sein, zum Bei- spiel einer Tastkugel. Weiter kann die Position mit einer Laser-Entfernungsmesseinrichtung berührungslos erfasst werden. Am Messglied kann auch eine 3D-Kamera vorgesehen sein, mit deren Hilfe ein 3D-Bild des Messobjektes erfasst werden kann. Die Positionsbestimmung mithilfe des Messarms 2 ermöglicht das Bestimmen der Position und / oder Orientierung der Messbezugspunkt 11.
Zum paarweisen Verbinden der endseitigen Gliederelemente 5.1 , 5 6 sowie der endseitige Messarmgliederelemente 7.1 , 7.6 sind Verbindungen 12, 13 vorgesehen, zum Beispiel in Form einer festen mechanischen Verbindung, die wahlweise lösbar sein kann.
Die Messarmgliederelemente 7.1 7.6 können beispielsweise als Stäbe ausgeführt sein. zum Beispiel aus einem faserverstärkten Material.
Die Anordnung für das Messsystem weist an dem Messarm 2 vorzugsweise hochauflösend ausgeführte Drehgeber in den Messarmgelenken 6.1 , 6.6 parallel zum Gelenkarm 1 auf. Hierbei ist ein physischer Kontakt für das jeweils erste und letzte Gliederelement in der Kette des Gelenkarms 1 und des Messarms 2 vorgesehen.
Die Achsen der Messarmgelenke 6.1 , .... 6.6 stimmen mit den Achsen der Gelenke 4.1 , .... 4.6 überein (beide Drehachsen sind koaxial). Für den Sonderfall der singulären Stellungen der einzelnen Gelenke könnte es ohne beson- dere Vorkehrungen vorkommen, dass der betreffende Messarm nicht der Gelenkarmkette folgt. Hierfür wird ein Klemmmechanismus, der nur für diese Stellungen eine feste Verbin- dung des betreffenden Gelenks mit dem Gelenk hat, vorgeschlagen. Hierbei kann die Akti- vierung dieser Klemmung mechanisch oder fremdaktiviert erfolgen.
Die Drehachsen der Anordnung mit dem Messarm 2 sind im Rahmen der Fertigungsgenau- igkeit und Verformungsgenauigkeit koaxial mit den jeweiligen Achsen des Gelenkarms 1.
In der Regel wird das System auf einem Sechs-Achsen-System angewendet. In diesem Fall wird die Anordnung für das Messsystem mit dem festen Glied (Gestell) und dem Messbe- zugspunkt verbunden. Da insgesamt eine Sechs-Achsen-Bewegung im Messsystem durch- geführt wird, muss das Messsystem in allen sechs Achsen am Messbezugspunkt befestigt werden (feste Einspannung). Denkbar ist auch ein Fünf-Achsen-System Hier wäre es nötig, damit keine Zwänge im Messsystem entstehen, nur fünf Achsen am Messbezugspunkt fest- zuhalten - die Drehachse, dort wo die sechste Achse normalerweise wäre, müsste frei dreh- bar sein. Das Messsystem mit dem Messarm 2 weist dann auch nur fünf Winkeldrehgeber auf.
Alternativ können alle sechs Freiheitsgrade des Messsystems am Messbezugspunkt gehal- ten und nur fünf Achsen am Anfang des Messsystems gehalten werden. Hierbei sollte der Freiheitsgrad der ersten Achse (vertikale Drehachse) frei gehalten werden.
Es kann vorgesehen sein, die Anordnung mit dem Messarm 2 nur für eine beschränkte An- zahl von Drehachsen zu verwenden. Zum Beispiel könnte die Anordnung an dem Messarm- glied 7.1 zwischen Achse 1 und 2 (in den Messarmgelenken 6.1 , 6.2) und an dem Messarm- glied 7.5 liegen. In diesem Fall hätte die Anordnung vier Drehgeber, und das Ende des Messarms 2 müsste zwei Freiheitsgrade freigeben (4+2 = 6), damit eine eindeutige Lage festgehalten wird und keine Zwänge in der Anordnung mit dem Messarm 2 entstehen. Auch Messsysteme mit mehr als sechs Achsen, wie sie zum Beispiel im schwerelosen Raum eingesetzt werden, kann mit einer solchen Anordnung ausgestattet sein. Die Anordnung mit dem Messarm 2 hat dann nicht mehr als sechs Freiheitsgrade. Dann würde es nur sechs Achsen überspannen. Alternativ könnte die Anordnung mit dem Messarm 2 mehr als sechs Drehgeber haben, und eine Anzahl von Drehgeber, die mehr als sechs sind, kann vom Ge- lenkarm 1 mit einem Freiheitsgrad geführt werden.
Die in der vorstehenden Beschreibung, den Ansprüchen sowie der Figur offenbarten Merk- male können sowohl einzeln als auch in beliebiger Kombination für die Verwirklichung der verschiedenen Ausführungen von Bedeutung sein.

Claims

Ansprüche 1 . Anordnung für ein Messsystem zum Messen an einem Messobjekt, mit
- einem Gelenkarm, mit
- Gelenken, die jeweils eine Gelenkachse aufweisen; und
- Gliederelementen, die die Gelenke in einer seriellen Gelenkarmanordnung verbinden;
- einem Messarm, mit
- Messarmgelenken, die jeweils eine Messarmgelenkachse aufweisen, die sich koaxial zur Gelenkachse eines zugeordneten Gelenks des Gelenkarms erstreckt;
- Drehgebern, die jeweils einem der Messarmgelenke zugeordnet sind, und
- Messarmgliederelementen, die die Messarmgelenke in einer seriellen Messarman- ordnung verbinden;
wobei der Messarm mit dem Gelenkarm eine parallele Kinematik bildet, bei der das Ende des Gelenkarms mit einem Ende des Messarms sowie ein gegenüberliegendes Ende des Getenkarms mit einem gegenüberliegenden Ende des Messarms verbunden sind;
- einem Messbezugspunkt, der an einem der Gliederelemente oder an einem der Mess- armgliederelemente. welches dem Gliederelement zugeordnet und mit diesem verbun- den ist, angeordnet ist. wobei zwischen dem Ende des Messarms und dem Messarm- gliederelement wenigstens drei der Drehgeber angeordnet sind; und
- einer Messeinrichtung, die eingerichtet ist. unter Einbeziehung von Messsignalen der Drehgeber der Messarmgelenke eine räumliche Position des Messbezugspunkts zu be- stimmen.
2. Anordnung nach mindestens einem der vorangehenden Ansprüche, dadurch g e k e n n - z e i c h n e t, dass alle nicht endseitigen Messarmgliedereiemente des Messarms, die von dem Messarmgliederelement verschieden sind, frei von einer Verbindung mit nicht endseiti- gen Gtiederelemente des Gelenkarms gebildet sind.
3. Anordnung nach mindestens einem der vorangehenden Ansprüche, dadurch g e k e n n - z e i c h n e t, dass einem oder mehreren der nicht endseitigen Messarmglieder des Mess- arms und der nicht endseitigen Gliederelemente des Gelenkarms eine Verbindungseinrich- tung zugeordnet ist. die eingerichtet ist. für die nicht endseitigen Messarmglieder sowie die nicht endseitigen Gliederelemente paarweise eine lösbare Verbindung auszubilden.
4. Anordnung nach Anspruch 3, dadurch gekennzeichnet, dass die lösbare Verbindung mittels zugeordneter Steuersignale und / oder manuell aktivierbar und deaktivierbar ist. so dass die Verbindung auf die Aktivierung I Oeaktivierung ausgebildet oder gelöst wird. 5. Anordnung nach mindestens einem der vorangehenden Ansprüche, dadurch gekenn- zeichnet, dass die Gliederelemente des Gelenkarms ein Elementgehäuse aufweisen und der Messarm zumindest abschnittsweise in einem oder mehreren der Eiementgehäuse angeordnet ist.
5. Anordnung nach mindestens einem der vorangehenden Ansprüche, dadurch gekenn- zeichnet, dass der Gelenkarm und der Messarm jeweils mindestens fünf Drehachsen aufweisen, die mit den Gelenken und den Messarmgelenken bereitgestellt sind.
6. Anordnung nach mindestens einem der vorangehenden Ansprüche, dadurch g e k e n n - zeichnet, dass die Messarmgliederelemente als Stäbe aus einem faserverstärkten Mate- rial bestehen.
7. Anordnung nach mindestens einem der vorangehenden Ansprüche, dadurch gekenn- zeichnet, dass der Messbezugspunkt verlagerbar angeordnet ist, derart, dass der Mess- bezugspunkt an verschiedenen Gliederelementen / Messarmgliederelementen angeordnet werden kann.
8. Anordnung nach mindestens einem der vorangehenden Ansprüche, dadurch gekenn- zeichnet, dass der Messbezugspunkt an einem Endeffektor angeordnet ist. welcher an dem Gliederelement oder dem der Messarmgliederelemente, weiches dem Gliederelement zugeordnet und mit diesem verbunden ist, angeordnet ist.
9. Verfahren zum Messen an einem Messobjekt mittels eines Messsystems mit
- einem Gelenkarm. aufweisend
- Gelenke, die jeweils eine Geienkachse aufweisen; und
- Gliederelemente, die die Gelenke in einer seriellen Gelenkarmanordnung verbinden;
- einem Messarm, aufweisend - Messarmgelenke, die jeweils eine Messarmgelenkach.se aufweisen, die sich koaxial 2ur Gelenkachse eines zugeordneten Gelenks des Gelenkarms erstreckt;
- Drehgeber, die jeweils einem der Messarmgelenke zugeordnet sind; und
- Messarmgliederelemente. die die Messarmgeienke in einer seriellen Messarman- Ordnung verbinden;
wobei der Messarm mit dem Gelenkarm eine parallele Kinematik bildet, bei der das Ende des Gelenkarms mit einem Ende des Messarms sowie ein gegenüberliegendes Ende des Gelenkarms mit einem gegenüberliegenden Ende des Messarms verbunden sind;
- einen Messbezugspunkt, der an einem der Gliederelemente oder an einem der Mess- armgliederelemente, welches dem Gliedereiement zugeordnet und mit diesem verbun- den ist, angeordnet ist, wobei zwischen dem Ende des Messarms und dem Messarm- gliederelement wenigstens drei der Drehgeber angeordnet sind; und
- einer Messeinrichtung:
wobei das Verfahren die folgenden Schritte aufweist:
- Ausbilden einer parallelen Kinematik für Gelenkarm und Messarm, bei der ein Ende des Messarms mit dem Ende des Gelenkarms sowie ein gegenüberliegendes Ende des Messarms mit einem gegenüberliegenden Ende des Gelenkarms verbunden wird.
- manuelles Bewegen des Gelenkarms, wobei der Messarm hierbei parallel mitbewegt wird;
- Erfassen von Messsignalen für die Drehgeber der Messarmgelenke mittels einer Mess- einrichtung; und
- Bestimmen einer räumlichen Position des Messbezugspunkts unter Einbeziehung der Messsignale mitteis der Messeinrichtung.
10. Verfahren nach Anspruch 9, dadurch g e k e n n z e i c h n e t, dass eine Verbindungseinrich- tung für ein oder mehrere nicht endseitige Messarmgüeder des Messarms sowie nicht end- seitige Gliederelemente des Gelenkarms aktiviert wird, wenn für den Gelenkarm und / oder den Messarm eine singuläre Armstellung bestimmt wird, die durch vorgegebene Steltungen für ein oder mehrere der Gelenke / Messarmgelenke bestimmt ist. wobei beim Aktivieren der Verbindungseinrichtung eine oder mehrere lösbare Verbindungen zwischen den nicht endseitigen Messarmgliedern und den nicht endseitigen Gliederelementen paarweise aus- gebildet werden.
PCT/DE2018/100987 2017-12-04 2018-12-04 Anordnung für ein messsystem zum messen an einem messobjekt und verfahren zum messen an einem messobjekt mittels eines messsystems WO2019110051A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017128736.1 2017-12-04
DE102017128736.1A DE102017128736A1 (de) 2017-12-04 2017-12-04 Anordnung für ein Messsystem zum Messen an einem Messobjekt und Verfahren zum Messen an einem Messobjekt mittels eines Messsystems

Publications (2)

Publication Number Publication Date
WO2019110051A1 true WO2019110051A1 (de) 2019-06-13
WO2019110051A9 WO2019110051A9 (de) 2019-08-01

Family

ID=65003036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2018/100987 WO2019110051A1 (de) 2017-12-04 2018-12-04 Anordnung für ein messsystem zum messen an einem messobjekt und verfahren zum messen an einem messobjekt mittels eines messsystems

Country Status (2)

Country Link
DE (1) DE102017128736A1 (de)
WO (1) WO2019110051A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11725929B2 (en) 2020-04-08 2023-08-15 Carl Zeiss Industrielle Messtechnik Gmbh Pose measurement in a positioning apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201918165D0 (en) 2019-12-11 2020-01-22 Renishaw Plc Coordinate positioning arm
DE102020110994B4 (de) 2020-04-22 2023-03-23 Carl Zeiss Industrielle Messtechnik Gmbh Koordinatenmessgerät zur dreidimensionellen Messung von Koordinaten eines Werkstücks
DE102020110995A1 (de) 2020-04-22 2021-10-28 Carl Zeiss Industrielle Messtechnik Gmbh Koordinatenmessgerät

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004096502A1 (en) * 2003-04-28 2004-11-11 Stephen James Crampton Cmm arm with exoskeleton
WO2007017235A2 (en) 2005-08-08 2007-02-15 3D Scanners Ltd Cmm arm with enhanced manual control
DE102010043798A1 (de) 2010-01-28 2011-09-15 Carl Zeiss Smt Gmbh Verfahren zur Ermittlung systematischer geometrischer Abweichungen in einen technischen Mehrkörpersystem
EP2732934A2 (de) * 2012-11-16 2014-05-21 CVUT V Praze, Fakulta Strojní Vorrichtung zum Messen einer Position eines Endeffektors, insbesondere eines Manipulators oder eines Bearbeitungswerkzeuges
DE102014105456A1 (de) 2014-04-16 2015-11-05 Minikomp Bogner GmbH Verfahren zur Vermessung der Außenkontur von dreidimensionalen Messobjekten und zugehöriges Messsystem

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004096502A1 (en) * 2003-04-28 2004-11-11 Stephen James Crampton Cmm arm with exoskeleton
WO2007017235A2 (en) 2005-08-08 2007-02-15 3D Scanners Ltd Cmm arm with enhanced manual control
DE102010043798A1 (de) 2010-01-28 2011-09-15 Carl Zeiss Smt Gmbh Verfahren zur Ermittlung systematischer geometrischer Abweichungen in einen technischen Mehrkörpersystem
EP2732934A2 (de) * 2012-11-16 2014-05-21 CVUT V Praze, Fakulta Strojní Vorrichtung zum Messen einer Position eines Endeffektors, insbesondere eines Manipulators oder eines Bearbeitungswerkzeuges
DE102014105456A1 (de) 2014-04-16 2015-11-05 Minikomp Bogner GmbH Verfahren zur Vermessung der Außenkontur von dreidimensionalen Messobjekten und zugehöriges Messsystem

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11725929B2 (en) 2020-04-08 2023-08-15 Carl Zeiss Industrielle Messtechnik Gmbh Pose measurement in a positioning apparatus

Also Published As

Publication number Publication date
WO2019110051A9 (de) 2019-08-01
DE102017128736A1 (de) 2019-06-06

Similar Documents

Publication Publication Date Title
WO2019110051A1 (de) Anordnung für ein messsystem zum messen an einem messobjekt und verfahren zum messen an einem messobjekt mittels eines messsystems
DE102009057585B4 (de) Verfahren zum Kalibrieren eines Roboters
EP2628575B1 (de) Verfahren zum Ermitteln eines Drehmoments und Industrieroboter
DE102010045531B4 (de) Serielles elastisches Drehstellglied
DE4207661C2 (de) Meßvorrichtung für die Form oder die Position eines Objekts
EP3066441A2 (de) Erfassungseinrichtung und erfassungsverfahren
DE102019100211B4 (de) Parallelglied-Roboter
EP2155444A2 (de) Einrichtung und verfahren zum einmessen von schwenkaggregaten, insbesondere an schneidmaschinen
DE102015214170A1 (de) Roboter mit einer Kraftmesseinrichtung
EP3651946B1 (de) Anordnung für einen knickarmroboter und verfahren zum bestimmen einer positionierung einer aufnahme für einen endeffektor eines knickarmroboters
DE102018216692B3 (de) Roboter-Handführgerät
CH639310A5 (de) Vorrichtung zum programmieren eines handhabungsgeraets.
DE102010029186A1 (de) Messvorrichtung und Roboter
EP3641993B1 (de) Greifer mit einem sensor an einem getriebegliedlager des greifers
DE102010052237B4 (de) Griff zur Erfassung einer Kraft auf der Grundlage einer Lichtschranke und Verwendungsverfahren
DE102010017119A1 (de) Zerstörungsfreies Prüfsystem mit selbstausrichtender Sondenanordnung
DE102010056607A1 (de) Kontinuierliche oder quasikontinuierliche kinematische Kette mit einem sensorischen System
WO2019091905A1 (de) Roboterarm und roboterarmeinheit
DE112018003597T5 (de) Greifsystem
DE202005001659U1 (de) Schweißzange mit Sensorbauteil
EP3589456B1 (de) Parallelkinematik
DE102019102798A1 (de) Kombinieren zweier einzelner Robotermanipulatoren zu einem Robotersystem durch Kalibrieren
DE102020110340B4 (de) Roboter
DE4307899C2 (de) Vorrichtung zum Biegen von auf Festigkeit zu prüfenden Probekörpern
EP3253540B1 (de) Verfahren zum justieren eines drehmomentsensors eines roboterarms und roboter mit einem roboterarm und einer steuervorrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18830367

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18830367

Country of ref document: EP

Kind code of ref document: A1