WO2019109901A2 - 一种阵列转镜的光束扫描装置 - Google Patents

一种阵列转镜的光束扫描装置 Download PDF

Info

Publication number
WO2019109901A2
WO2019109901A2 PCT/CN2018/119109 CN2018119109W WO2019109901A2 WO 2019109901 A2 WO2019109901 A2 WO 2019109901A2 CN 2018119109 W CN2018119109 W CN 2018119109W WO 2019109901 A2 WO2019109901 A2 WO 2019109901A2
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
rotating
beam scanning
scanning device
array
Prior art date
Application number
PCT/CN2018/119109
Other languages
English (en)
French (fr)
Other versions
WO2019109901A3 (zh
Inventor
付立鼎
史光远
李松
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18886814.5A priority Critical patent/EP3712677B1/en
Publication of WO2019109901A2 publication Critical patent/WO2019109901A2/zh
Publication of WO2019109901A3 publication Critical patent/WO2019109901A3/zh
Priority to US16/895,792 priority patent/US11650413B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/121Mechanical drive devices for polygonal mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/1821Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors for rotating or oscillating mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/127Adaptive control of the scanning light beam, e.g. using the feedback from one or more detectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors

Definitions

  • Embodiments of the present application relate to the field of artificial intelligence, and more particularly, to a beam scanning device for array mirroring.
  • laser radar as a core sensor has higher requirements on performance, cost, volume and power consumption.
  • Traditional mechanical beam scanning methods have the disadvantages of large size, high energy consumption and high cost. Is gradually being replaced.
  • the concept machine of solid-state laser radar or hybrid solid-state laser radar has appeared many times. Although reliable measured data has not been released, it has represented the future development direction of laser radar.
  • the laser radar in prior art 1 uses optical phased array technology to realize beam scanning with a maximum scanning angle of up to 60°, which is a beam scanning technique without any mechanical or micromechanical structure.
  • the shortcomings of this technology are as follows: 1.
  • the laser transmitting module and the signal receiving module of the system are separately and separately operated. Only the transmitting module performs scanning, and the signal receiving part does not scan, and synchronous scanning cannot be performed. Therefore, it is necessary to increase the signal.
  • the detection field of the receiving module causes the APD detector array to be used in the system, which makes the cost of the signal receiving module very high.
  • the optical phased array technology requires very much the photonic integration process technology and the phased array control algorithm. High, the technology is still in the laboratory stage.
  • the hybrid solid-state laser radar based on MEMS digital micro-mirror in prior art 2 has a detection range of 250 meters and an angular resolution of 0.1°. Some of the so-called hybrid solid-state laser radars still retain some of the mechanical structure, but they are miniaturized, and the internal mechanical moving parts are hidden by the package.
  • MEMS micro-galvanometers There are several disadvantages of MEMS micro-galvanometers: 1. The scanning angle is relatively small, and the linear motion can be maintained at a high precision only in the range of 6°; 2. The size of the micro-mirror is small, generally only 1 to 3 mm, which needs to be matched. A complex optical system can be used.
  • An embodiment of the present application provides a beam scanning device for an array mirror, which uses a mirror as a mirror (5) for the beam scanning device of the array mirror, and decomposes the scanning mirror into a plurality of sub-rotating mirrors. That is, a plurality of the rotating mirrors (5) form a transmission structure in which a plurality of the rotating mirrors (5) are linked, and the structures of other components of the scanning device are correspondingly arranged with respect to the rotating mirror (5), thereby solving the problem.
  • the prior art laser radar has the defects of small scanning angle, large space occupation, high power consumption, etc., and achieves the effects of small volume, low power consumption, large gliding angle, high precision, and simple structure, especially applicable. Lidar system for low cost and miniaturization needs.
  • the worm (2) and the worm wheel (3) are located on the mounting frame (4) and are coupled to each other by a gear (11);
  • the rotating mirror (5) is located in the mounting bracket (4) and coaxially connected with the worm wheel (3);
  • the motor (1) is configured to drive the worm (2) to rotate to drive the worm wheel (3) and the rotating mirror (5) to rotate coaxially;
  • the rotating mirror (5) includes a rotating mirror portion (5c) and a rotating mirror holder (5a, 5b) respectively connected to both ends of the rotating mirror portion (5c), and the two rotating mirror holders (5a, 5b) respectively
  • a bearing (6a, 6b) rotatably connected to the mounting bracket (4) is disposed outside the two ends of the rotating mirror, and one of the bearings (6a) is coaxially connected to the turbine (3).
  • the beam scanning device of the array mirror in the embodiment of the present application adopts a mirror as the rotating mirror (5), and decomposes the scanning mirror into a plurality of sub-rotating mirrors, that is, a plurality of the rotating mirrors ( 5) forming a plurality of transmission structures linked by the rotating mirrors (5), and correspondingly setting the structure of other components of the beam scanning device with respect to the rotating mirror (5), achieving simultaneous scanning speed and viewing Large angle, high precision, simple structure, etc., especially suitable for low-cost, miniaturized Lidar systems.
  • the scanning angle of the device can reach 60° or more, or reach 100 degrees or more, which effectively improves the range of beam scanning.
  • the volume of the beam scanning device of the array rotating mirror is greatly reduced, the space utilization rate of the entire system is fully improved, and the space utilization is reduced.
  • Power consumption and noise solve the shortcomings of the prior art beam scanning device that the scanning angle is too small, the response speed is slow, the cost is high, the volume and the power consumption are large, and the scanning speed is fast, the field of view angle is large, and the precision is achieved.
  • High in structure, simple in structure, small in size, and low in power consumption in particular, by greatly reducing the volume of the beam scanning device of the array mirror, such that the volume of the beam scanning device of the array mirror is larger than that of the market
  • the mainstream products on the market have the advantage of outstanding small size.
  • each of the sets of bearings (6a, 6b) is further provided with an angle encoder (7), and the angle encoder (7) is combined with the beam scanning device of the array mirror.
  • the bearing (6a or 6b) is provided with an angle encoder (7).
  • the axial direction of the rotating mirror (5) is perpendicular to the upper surface of the base (8), and each group of the rotating mirror is combined with the beam scanning device of the array rotating mirror. (5) Arranged at the same height with respect to the upper surface of the base (8) in the axial direction of the rotating mirror (5).
  • the mirror faces of the sets of the rotating mirrors (5) are arranged in the same direction and are synchronously rotated.
  • the mounting bracket (4) includes a base (8), a flat plate (12) parallel to the base (8), and a base connected to the base. (8) and a column (13) of the plate (12), wherein the plate (12) is parallel to an upper surface of the base (8), and the motor (1), the worm (2), and the worm wheel (3) Both are disposed on the upper surface of the flat plate (12).
  • the beam scanning device of the array mirror further includes a coupling (10), and the motor (1) passes through a coupling (in conjunction with the beam scanning device of the array mirror). 10) coaxially connected to the worm (2).
  • the rotating mirror (5) comprises a double-sided parallel mirror, a three-sided parallel mirror, and a double-sided pyramid mirror.
  • the rotating mirror (5) comprises a double-sided parallel mirror, a three-sided parallel mirror, and a double-sided pyramid mirror.
  • the number of the rotating mirrors (5) is at least two groups in combination with the beam scanning device of the array mirror.
  • a multi-sub-mirror that is, a plurality of sets of the rotating structures of the rotating mirrors (5) are formed, and the beam scanning device is correspondingly arranged to achieve simultaneous scanning. It features fast speed, large field of view, high precision and simple structure. It is especially suitable for low-cost and miniaturized Lidar systems.
  • each group of the rotating mirrors (5) are arranged in the same orientation and synchronously rotated.
  • the plurality of sets of mirrors are oriented in a uniform direction and maintain synchronous motion, ensuring that the laser beams reflected by each of the rotating mirrors (5) are directed to be uniform, and the plurality of rotating mirrors (5) do not collide during the movement.
  • the linkage mode of the plurality of sets of the rotating mirrors (5) may be a transmission mode such as a worm, a timing belt, a gear meshing or the like.
  • each group of the mirrors (5) can be independently detected, or installed, or debugged, or repaired, or disassembled or replaced.
  • the use of array sub-mirrors replaces the traditional large-size mirrors, which greatly reduces the volume, noise and power consumption of the beam scanning system.
  • the rotating parts can be hidden, and each group of sub-mirrors can be flexibly installed and operated independently. Or maintenance.
  • the device in the technical solution of the present application is also provided with good scalability.
  • the interval between the groups of the groups of the mirrors (5) is greater than or equal to 0.2 mm. In combination with the beam scanning device described above, in another embodiment of the present application, the interval of each of the groups of the rotating mirrors (5) is 0.5 mm. A certain gap is set between the groups of the groups of the mirrors (5) to avoid grinding or collision between the groups of mirrors (5).
  • the worm (2) performs a one-way circular motion.
  • the one-way motion makes the scanning precision of the rotating mirror (5) high, avoiding missing scenes to be scanned or scanning to jump.
  • the number of the worm gears (3) is the same as the number of the rotating mirrors (5).
  • the parameters of each group of the mirrors (5) are the same.
  • the parameters include structural parameters or optical parameters.
  • the base (8) is provided with a lying groove, and the bearing (6) is disposed in the lying groove of the base (8).
  • the bearing (6) comprises a plain bearing or a ball bearing.
  • the mirror of each group of the rotating mirrors (5) is plated with a reflective film. It is used to enhance the reflection effect of the rotating mirror (5).
  • the beam scanning device of the array mirror further includes a power source (9) for the motor ( 1) Power is supplied, and the power source (9) is provided with an upper surface of the base (8).
  • an array mirroring beam scanning device includes a motor (1), at least one group of rotating mirrors (5), a rotating mirror holder (5b), at least one set of bearings (6), Angle encoder (7), base (8), timing pulley (14), timing belt (15);
  • the motor (1) is coaxial with the set of bearings (6) and drives the set of bearings (6) to rotate, and each group of the bearings (6) is provided with a timing pulley (14), the bearing (6) being connected by the timing belt (15) such that the sets of bearings (6) rotate synchronously;
  • each of the rotating mirrors (5) is provided with a rotating mirror base (5b), and the rotating mirror base (5b) is connected with a set of the bearings (6) to make the respective sets of bearings (6) Driving the groups of rotating mirrors (5) respectively;
  • the base (8) is disposed between the motor (1) and the mirror base (5b), and the base (8) is provided with an opening to make the base (8) and each group
  • the bearing (6) forms a nest
  • the angle encoder (7) is disposed on the one of the sets of bearings (6).
  • the number of the rotating mirrors (5) is at least two in combination with the beam scanning device of the array mirror.
  • each of the sets of bearings (6) is provided with an angle encoder (7), and the angle encoder (7) is used for The azimuth information of each group of the rotating mirrors (5) is obtained to precisely associate the groups of the rotating mirrors (5).
  • the beam scanning device of the array mirror adopts a mirror as the rotating mirror (5), and the mirror mirror (5) is formed by decomposing the rotating mirror into a plurality of sub-mirrors.
  • a plurality of rotating mirrors (5) linked to the transmission structure, and the structure of the other components of the scanning device of the beam scanning device of the array rotating mirror is correspondingly set with respect to the rotating mirror (5), achieving simultaneous scanning speed Fast, wide field of view, high precision, simple structure, etc., especially suitable for low-cost, miniaturized Lidar systems.
  • the scanning angle of the device can reach more than 60°, or reach 100 degrees or more, which effectively improves the range of beam scanning.
  • the angle encoder (7) is disposed on the bearing (6a or 6b) of the embodiment of the present application, which ensures the accuracy of the off-angle of the beam scanning, and also effectively improves the stability of the mirror beam scanning.
  • a rotating mirror (5) that can be independently detected, installed, debugged, repaired, disassembled or replaced, the field of view, scanning frequency, and even the frequency of the beam scanning device of the array rotating mirror can be changed by replacing the rotating mirror (5) It can also expand 1D scanning into 2D scanning, which is very scalable.
  • FIG. 1 is a schematic diagram showing the overall structure of a beam scanning device for an array mirror according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram showing the overall structure of a beam scanning device of another array mirror according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram showing the working principle of a beam scanning device for an array mirror according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a single group of mirrors in a beam scanning device of an array mirror according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram showing the connection between a motor and a worm in a beam scanning device of an array mirror according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a worm and a worm gear transmission in a beam scanning device of an array mirror according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a worm synchronous driving worm wheel in a beam scanning device of an array mirror according to an embodiment of the present application.
  • FIG. 8 is a schematic top view of a mirror in a beam scanning device of an array mirror according to an embodiment of the present application.
  • FIG. 9 is another schematic structural diagram of a mirror in a beam scanning device of an array mirror according to an embodiment of the present application.
  • FIG. 10 is a schematic structural view of a package rotating mirror in a beam scanning device of an array rotating mirror according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a beam scanning device for providing another array rotating mirror according to an embodiment of the present application.
  • a beam scanning device for an array mirror in some embodiments of the present application, can be applied to an intelligent scanning scene of a smart device such as an intelligent driving or an intelligent robot.
  • the beam scanning device of the array mirror is disposed on a roof of a car, or a bumper or on a windshield of a car.
  • the beam scanning device of the array mirror is used in conjunction with other parts of the laser detecting device on the automobile, such as a laser transmitter, a signal receiver, and the like.
  • the laser emitter emits laser light to a mirror (5) of the beam scanning device of the array mirror, the mirror (5) reflects or refracts the laser onto an obstacle in the scene to be scanned, and then the turn A mirror (5) reflects or refracts the laser reflected back from the object in the scanned scene to the signal receiver.
  • the laser emitter as a signal light source illuminates the measurement signal to a distant place, and the signal receiver receives the reflected light to generate an echo signal by using the built-in signal receiving unit, and then processes the echo signal by a control unit on the automobile.
  • the beam scanning device of the array mirror comprises: a motor (1), a worm (2), a worm wheel (3), a mounting bracket (4), and a rotating mirror (5); the worm (2) and the The worm wheel (3) is located on the mounting frame (4) and is interlockedly coupled to each other by a gear (11); the rotating mirror (5) is located in the mounting frame (4), and the worm wheel (3) a coaxial connection; the motor (1) is configured to drive the worm (2) to rotate to drive the worm wheel (3) and the rotating mirror (5) to rotate coaxially; wherein the rotating mirror (5) a rotating mirror portion (5c) and a rotating mirror holder (5a, 5b) respectively connected to both ends of the rotating mirror portion (5c), the two rotating mirror holders (5a, 5b) respectively extending outside the two ends of the rotating mirror A bearing (6a, 6b) rotatably coupled to the mounting bracket (4) is provided, one of the bearings (6a) being coaxially coupled to the turbine (3). Wherein, the number of the rotating mirrors (5) is greater than
  • the beam scanning device of the array mirror in the embodiment of the present application adopts a mirror as the rotating mirror (5), and decomposes the scanning mirror into a plurality of sub-rotating mirrors, that is, a plurality of the rotating mirrors ( 5) forming a plurality of transmission structures linked by the rotating mirrors (5), and correspondingly setting the structure of other components of the beam scanning device with respect to the rotating mirror (5), achieving simultaneous scanning speed and viewing Large angle, high precision, simple structure, etc., especially suitable for low-cost, miniaturized Lidar systems.
  • the scanning angle of the device can reach 60° or more, or reach 100 degrees or more, which effectively improves the range of beam scanning.
  • the volume of the beam scanning device of the array rotating mirror is greatly reduced, the space utilization rate of the entire system is fully improved, and the space utilization is reduced.
  • Power consumption and noise solve the shortcomings of the prior art beam scanning device that the scanning angle is too small, the response speed is slow, the cost is high, the volume and the power consumption are large, and the scanning speed is fast, the field of view angle is large, and the precision is achieved.
  • High in structure, simple in structure, small in size, and low in power consumption in particular, by greatly reducing the volume of the beam scanning device of the array rotating mirror, so that the volume ratio of the beam scanning device of the array rotating mirror is
  • the beam scanning device of the array mirror is further provided with an angle encoder (7) on the bearing (6a, 6b), the angle coding
  • the device (7) is configured to acquire azimuth information of the rotating mirror (5).
  • the bearing (6a or 6b) is provided with an angle encoder (7).
  • the mounting bracket (4) includes a base (8), a flat plate (12) parallel to the base (8), and a post (13) connecting the base (8) and the flat plate (12), wherein
  • the flat plate (12) is parallel to the upper surface of the base (8), and the motor (1), the worm (2), and the worm wheel (3) are both disposed on the upper surface of the flat plate (12).
  • the beam scanning device of the array mirror further includes a coupling (10), and the motor (1) passes through The shaft joint (10) is coaxially connected to the worm (2).
  • the base (8) is disposed at the bottom of the beam scanning device of the array rotating mirror, and the mounting frame (4) is used to support other components of the beam scanning device of the array rotating mirror.
  • the column (13) is connected to support the plate (12); the rotating mirror (5) and the battery (9) are disposed between the plate (12) and the base (8).
  • the rotating mirror portion (5c) Two ends of the rotating mirror portion (5c) are respectively connected to the rotating mirror base (5a) and the rotating mirror base (5b); the bearing (6a) passes through a plane of the flat plate (12), The rotating mirror (5) is coaxially connected to the worm wheel (3) through the bearing (6a); the motor (1) is coaxially connected with the worm (2), the worm (2) and the The worm wheel (3) is driven by the gear (11); the mirror base (5b) is connected to the base (8) through the bearing (6b), and the upper surface of the base (8) is provided with The bearing (6b) is fixed in the lying groove of the base (8), the rotating mirrors (5) are arranged in the same direction and synchronously rotated, and the rotating mirrors of the adjacent groups (5) There is a gap of about 0.2 mm between them, so that the rotating mirror (5) does not collide during rotation; the bearing (6a or 6b) is further provided with an angle encoder (7), the angle encoder ( 7) Azimuth information for obtaining the rotating mirror (5).
  • the rotating mirrors (5) are arranged in a one-dimensional arrangement in the horizontal direction and are maintained at the same height.
  • the rotating mirror (5) is a mirror, and the reflecting surfaces are all plated with a reflecting film, and the rotating mirrors (5) are spaced apart by about 0.2 mm, and the rotating mirror (5) does not occur during the rotation. collision.
  • a mirror is used as a rotating mirror (5), and the scanning mirror of the beam scanning device is set as a plurality of sub-rotating mirrors, that is, a plurality of the rotating mirrors (5)
  • the transmission structure of the plurality of rotating mirrors (5) is formed, and the beam scanning device of the array rotating mirror is set correspondingly, and the scanning speed is fast, the angle of view is large, the precision is high, and the structure is simple.
  • the scanning angle of the beam scanning device of the array rotating mirror can reach 60° or more.
  • the scanning angle reaches 100 degrees or more, which effectively improves the range of beam scanning.
  • An angle encoder (7) is also disposed on the bearing (6a or 6b) of the present application, and the angle encoder (7) is used to acquire azimuth information of the rotating mirror (5). Thereby, the accuracy of the off-angle of the beam scanning of the rotating mirror (5) is ensured, and the stability of the scanning of the rotating mirror (5) beam is also effectively improved.
  • the scanning mirror of the beam scanning device as a plurality of sub-rotating mirrors, that is, a plurality of the rotating mirrors (5), a plurality of transmission structures of the rotating mirrors (5) are formed, and the beam is formed
  • the scanning device is set accordingly, which greatly improves the space utilization rate of the whole system, reduces power consumption and noise, and greatly reduces the volume of the beam scanning device, so that the device has a large scanning field angle, high precision, and small volume.
  • Outstanding features such as strong scalability and low cost.
  • the volume of the product has the advantage of being smaller than the mainstream products on the market.
  • the laser emitter emits laser light to the rotating mirror (5), and the rotating mirror (5) reflects or refracts the laser light.
  • the rotating mirror (5) receives the laser light reflected from the object in the scanning scene, and reflects or refracts the laser reflected back from the object to the signal receiver.
  • the angle encoder (7) can record and control the angle and the rotation speed of each group of rotating mirrors to improve the stability of the beam scanning of the rotating mirror (5) and ensure the accuracy of the off-angle of the beam scanning.
  • two ends of the rotating mirror portion (5c) are respectively connected to the two mirror bases (5a or 5b), wherein the mirror housing (5a) is coaxial with the worm wheel (3) Connected, the mirror mount 5b is coupled to the base (8) via the bearing 6, and the bearing 6b is fixed in the lying groove of the base (8).
  • An angle encoder (7) is placed on the bearing (6a or 6b) to ensure the angular accuracy of the rotation of the mirror (5).
  • Each of the rotating mirrors (5) can be independently detected, installed, debugged, repaired, disassembled and replaced, so that the maintenance of the device is more convenient and has strong expandability.
  • the motor (1) is coaxially connected to the worm (2) through the coupling to drive the worm (2) to rotate circumferentially.
  • the worm (2) always makes a circular motion, which ensures the smooth rotation speed of the rotating mirror (5) and effectively improves the scanning frequency of the beam.
  • the rotating shaft of the worm (2) and the rotating shaft of the worm wheel (3) are perpendicular to each other, meshed by a gear (11), and the worm (2) drives the worm wheel (3) to interlock .
  • the transmission mode of the worm (2) and the worm wheel (3) has the characteristics of compact structure, high precision, small vibration shock and long service life.
  • the initial orientation of the rotating mirrors (5) of each group is kept consistent, and the worm (2) is mounted to be associated with the groups.
  • the worm wheel (3) performs gear meshing. Therefore, under the driving of the motor (1), the sets of rotating mirrors (5) can perform high-precision linkage to ensure uniformity of beam deflection directions.
  • FIG. 7 and Fig. is a schematic view of the worm (2) synchronously driving the worm wheel (3).
  • the rotating shaft of the worm (2) and the rotating shaft of the worm wheel (3) are perpendicular to each other, and meshed by gears, and the worm (2) drives the worm wheel (3) to interlock.
  • the right half of Fig. 8 shows a plan view of the rotating mirror (5) in the beam scanning device of the array rotating mirror of the embodiment of the present application.
  • the direction of rotation of the rotating mirror is as indicated by the arrow.
  • the array mirror (5) shown in the right half of Fig. 8 is modified in accordance with the mirror of the left half of Fig. 8.
  • the radius of rotation of each of the rotating mirrors (5) is reduced, and in the case of scanning the same angle, The volume and power consumption of the scanning components are greatly reduced, so that the volume and power consumption are reduced to 1/3 of the prior art.
  • the embodiment of the present application forms a transmission structure in which a plurality of the rotating mirrors (5) are linked by decomposing the rotating mirror into a plurality of sub-rotating mirrors, that is, a plurality of the rotating mirrors (5), and is opposite to other parts of the beam scanning device.
  • the corresponding setting of the rotating mirror (5) fully improves the space utilization rate of the whole system, reduces power consumption and noise, greatly reduces the volume of the beam scanning device, and makes the device occupy less space, the product The volume has a smaller volume advantage than the mainstream products on the market.
  • the application has good expandability, and the angle of view and scanning frequency of the beam scanning can be determined according to the structural parameters of the rotating mirror (5), and the suitable rotating mirror (5) is equipped according to the actual use.
  • Common types of mirrors that can be used as the mirror (5) are: a double-sided parallel mirror, a three-sided parallel mirror, a double-sided pyramid mirror, etc., in the working state of the motor (1) rotating at 20 Hz.
  • the transmission ratio of the worm (2) and the worm wheel (3) is 1. After experimental tests, the performance of the above three types of mirrors is good, and the output results are shown in the following table:
  • FIG. 9 a schematic diagram of a beam scanning device using a three-sided parallel mirror as the rotating mirror (5) is different from that of FIG. 1 in that the rotating mirror (5) is different from the three-sided parallel mirror.
  • the structure of other mechanical components does not change substantially, the scanning frequency is 60 Hz, and the scanning angle can reach about 60°.
  • FIG. 10 is a schematic structural diagram of a package rotating mirror in a beam scanning device of an array rotating mirror according to an embodiment of the present application.
  • the beam scanning device replaces the traditional large-size rotating mirror by using the array rotating mirror, thereby greatly reducing the volume, noise and power consumption of the beam scanning system, and the rotating component can be hidden after being packaged.
  • the mechanically rotating component can be hidden, and it is in a static state from the appearance, and is very suitable for use in an unmanned vehicle or an intelligent robot.
  • the hybrid solid state laser radar is used to be used in an unmanned vehicle or an intelligent robot.
  • the technology adopted in the embodiments of the present application has matured, and the components used are relatively inexpensive, and can be mass-produced smoothly in the existing water level, and has outstanding market popularization advantages.
  • the solution of the embodiment of the present application has the advantages of large scanning field angle, high precision, small volume, strong expandability, and low cost.
  • 11 is a beam scanning device of an array mirror according to another embodiment of the present application, including a motor (1), at least one group of mirrors (5), a mirror base (5), at least one Group bearing (6), angle encoder (7), timing pulley (14), timing belt (15), base (8);
  • the motor (1) is coaxial with the set of bearings (6) and drives the set of bearings (6) to rotate, and each group of the bearings (6) is provided with a timing pulley (14), the bearing (6) being connected by the timing belt (15) such that the sets of bearings (6) rotate synchronously;
  • each of the rotating mirrors (5) is provided with a rotating mirror base (5b), and the rotating mirror base (5b) is connected with a set of the bearings (6) to make the respective sets of bearings (6) Driving the groups of rotating mirrors (5) respectively;
  • the base (8) is disposed between the motor (1) and the mirror base (5b), and the base (8) is provided with an opening to make the base (8) and each group
  • the bearing (6) forms a nest
  • the angle encoder (7) is disposed on the one of the sets of bearings (6).
  • each of the sets of bearings (6) is provided with an angle encoder (7) for acquiring each group of the rotating mirrors (5).
  • the azimuth information is such that the groups of the rotating mirrors (5) are precisely linked.
  • the number of rotating mirrors (5) is at least two.
  • a mirror is used as the rotating mirror (5), and a plurality of the rotating mirrors are formed by decomposing the rotating mirror into a plurality of sub-mirrors, that is, the array rotating mirror (5).
  • the linkage transmission structure and the corresponding structure of the other components of the beam scanning device are correspondingly set with respect to the rotating mirror (5), thereby achieving the characteristics of high scanning speed, large field of view angle, high precision and simple structure, especially A laser radar system suitable for low cost and miniaturization needs.
  • the scanning angle of the device can reach more than 60°, or reach 100 degrees or more, which effectively improves the range of beam scanning.
  • the angle encoder (7) is disposed on the rotating mirror (5) of the rotating mirror (5) of the embodiment of the present application, which ensures the accuracy of the off-angle of the beam scanning, and effectively improves the stability of the mirror beam scanning.
  • the rotating mirror (5) which can be independently detected, installed, debugged, repaired, disassembled or replaced, the field of view and scanning frequency of the beam scanning device of the array rotating mirror can be changed by replacing the rotating mirror (5) It can even extend 1D scanning into 2D scanning, which is very scalable.
  • the beam scanning device in the prior art has the disadvantages of small scanning angle, slow response speed, high cost, large volume and power consumption, and the like. At the same time, it has the advantages of fast scanning speed, large field of view, high precision, simple structure, small size and low power consumption, and is especially suitable for low-cost and miniaturized laser radar systems.

Abstract

本申请公开了一种阵列转镜的光束扫描装置,它包括电机(1)、蜗杆(2)、蜗轮(3)、安装架(4)、以及转镜(5);所述蜗杆(2)以及所述蜗轮(3)位于所述安装架(4)上并通过齿轮(11)相互咬合联动连接;所述转镜(5)位于所述安装架(4)内,并与所述蜗轮(3)同轴连接;所述电机(1)用于驱动所述蜗杆(2)转动,以带动所述所述蜗轮(3)以及转镜(5)同轴转动,可替换不同结构光学参数的转镜(5)来调整光束扫描装置的性能输出,以提高可扩展性,且能够降低解决传统光束扫描装置中体积大、转动惯量大和功耗高等问题,大幅度提高系统的空间利用率和稳定性,尤其适用于无人车和智能机器人用途的小型化激光雷达应用。

Description

一种阵列转镜的光束扫描装置 技术领域
本申请实施例涉及人工智能领域,并且更具体地,涉及一种阵列转镜的光束扫描装置。
背景技术
随着无人车、智能机器人技术的兴起,激光雷达作为核心传感器对性能、成本、体积和功耗的要求越来越高,传统的机械光束扫描方式存在体积庞大、能耗高和成本高等缺点,正逐步被取代。近年来,固态激光雷达或混合固态激光雷达的概念机多次出现,虽然还没有公布可靠的实测数据,但已代表了激光雷达未来的发展方向。
现有技术1中的激光雷达,采用光学相控阵技术实现光束扫描,最大扫描角度可达60°,是一种没有任何机械或微机械结构的光束扫描技术。该技术的缺点有如下:1.系统的激光发射模块和信号接收模块是独立分开工作的的,只有发射模块做扫描,而信号接收部分不做扫描,无法进行同步扫描,为此需要增大信号接收模块的探测视场,导致系统中使用了APD探测器阵列,这使得信号接收模块的成本变得非常高;2.光学相控阵技术对光子集成工艺技术和相控阵控制算法的要求非常高,目前该技术仍尚处于实验室阶段。现有技术2中的基于MEMS数字微振镜的混合固态激光雷达,探测距离达到250米,角度分辨率为0.1°。所谓混合固态激光雷达中仍保留部分机械结构,只是将其小型化,通过封装后隐藏了内部的机械运动部件。MEMS微振镜存在几个缺点:1.扫描角比较小,且只有在6°范围内才能保持较高精度的线性运动;2.微振镜的尺寸很小,一般只有1至3mm,需要配合上复杂的光学系统才能使用。
此外,还有声光晶体扫描、液晶扫描、陶瓷压电晶体电光扫描等多种固态技术,但都存在扫描角太小、响应速度蛮、成本高等缺点,适用于无人车或智能机械领域。
发明内容
本申请实施例提供一种阵列转镜的光束扫描装置,通过将所述阵列转镜的光束扫描装置采用了反射镜作为所述转镜(5),并通过将扫描镜分解成多个子转镜即多个所述转镜(5),形成了多个所述转镜(5)联动的传动结构,并对扫描装置其他部件的结构相对于所述转镜(5)做相应设置,解决了现有技术中的激光雷达存在的扫描角太小、占用空间大、高功耗等缺陷,达到了同时兼顾体积小、功耗低、扫视场角大、精度高、结构简单的效果,尤其适用于低成本、小型化需求的激光雷达系统。
本申请实施例提供的一种阵列转镜的光束扫描装置,包括:
电机(1)、蜗杆(2)、蜗轮(3)、安装架(4)、以及转镜(5);
所述蜗杆(2)以及所述蜗轮(3)位于所述安装架(4)上并通过齿轮(11)相互咬合联动连接;
所述转镜(5)位于所述安装架(4)内,并与所述蜗轮(3)同轴连接;
所述电机(1)用于驱动所述蜗杆(2)转动,以带动所述所述蜗轮(3)以及转镜 (5)同轴转动;
其中,所述转镜(5)包括转镜部(5c)以及分别连接所述转镜部(5c)两端的转镜座(5a,5b),所述二转镜座(5a,5b)分别向所述转镜两端外延伸设置有与所述安装架(4)可转动连接的轴承(6a,6b),其中一所述轴承(6a)与所述涡轮(3)同轴连接。
有益效果:本申请实施例中的所述阵列转镜的光束扫描装置采用了反射镜作为所述转镜(5),并通过将扫描镜分解成多个子转镜即多个所述转镜(5),形成了多个所述转镜(5)联动的传动结构,并对光束扫描装置其他部件的结构相对于所述转镜(5)做相应设置,达到了同时兼顾扫描速度快、视场角大、精度高、结构简单等特点,尤其适用于低成本、小型化需求的激光雷达系统。所述装置的扫描角度可达60°以上,或达到100度以上,有效提升了光束扫描的范围。
本申请实施例中通过设置所述阵列转镜的光束扫描装置的结构,大幅度地减小了所述阵列转镜的光束扫描装置的体积,充分提高了整个系统的空间利用率,并降低了功耗和噪声,解决了现有技术中光束扫描装置存在的扫描角太小、响应速度慢、成本高,体积和功耗大等缺点,达到了同时兼顾扫描速度快、视场角大、精度高、结构简单、小体积且低功耗等特点,特别地,通过大幅度地减小了所述阵列转镜的光束扫描装置的体积,使得所述阵列转镜的光束扫描装置的体积比市面上的主流产品具有突出的体积小的优点。
结合所述阵列转镜的光束扫描装置,在本申请另一种实施方式中,各组所述轴承(6a,6b)上还设置有角度编码器(7),所述角度编码器(7)用于获取各组所述转镜(5)的方位角信息,以使各组所述转镜(5)进行精确联动。从而保证了所述转镜(5)光束扫描的偏角精确度,也有效提升了所述转镜(5)光束扫描的稳定性。具体地,所述轴承(6a或6b)上设置有角度编码器(7)。
结合所述阵列转镜的光束扫描装置,在本申请另一种实施方式中,所述转镜(5)的轴向垂直于所述底座(8)的上表面,且各组所述转镜(5)相对于所述底座(8)的上表面沿所述转镜(5)轴向方向同一高度排列。
结合所述阵列转镜的光束扫描装置,在本申请另一种实施方式中,各组所述转镜(5)的镜面按相同的朝向排列并进行同步转动。
结合所述阵列转镜的光束扫描装置,在本申请另一种实施方式中,所述安装架(4)包括底座(8)、平行于底座(8)的平板(12)和连接所述底座(8)以及平板(12)的立柱(13),其中,所述平板(12)平行于所述底座(8)的上表面,且所述电机(1)、与蜗杆(2)、与蜗轮(3)均设置所述平板(12)的上表面上。
结合所述阵列转镜的光束扫描装置,在本申请另一种实施方式中,所述阵列转镜的光束扫描装置还包括联轴节(10),所述电机(1)通过联轴节(10)与所述蜗杆(2)同轴连接。
结合所述阵列转镜的光束扫描装置,在本申请另一种实施方式中,所述转镜(5)包括双面平行反射镜、三面平行反射镜、双面棱锥反射镜。其中,在双面棱锥反射镜的场景下,还可以进行空间二维或三维扫描。
结合所述阵列转镜的光束扫描装置,在本申请另一种实施方式中,所述转镜(5) 的数量至少为2组。通过将扫描镜镜分解成至少两组转镜(5),形成了多子镜即多组所述转镜(5)联动的传动结构,并对光束扫描装置做相应设置,达到了同时兼顾扫描速度快、视场角大、精度高、结构简单等特点,尤其适用于低成本、小型化需求的激光雷达系统。
结合所述阵列转镜的光束扫描装置,在本申请另一种实施方式中,各组所述转镜(5)按相同的朝向排列并进行同步转动。多组转镜朝向一致,并保持同步运动,确保每个所述转镜(5)反射的激光束指向统一,多个所述转镜(5)在运动过程中不发生碰撞。多组所述转镜(5)的联动方式可以是涡轮蜗杆、同步带、齿轮啮合等传动方式。
结合所述阵列转镜的光束扫描装置,在本申请另一种实施方式中,各组所述转镜(5)可独立检测、或安装、或调试、或维修、或拆卸或替换。使用阵列子转镜取代了传统的大尺寸转镜,从而大幅度降低了光束扫描系统的体积、噪声和功耗,经封装后可隐藏转动部件,且各组子转镜可灵活独立安装、工作或维护。也使得本申请技术方案中的装置具备良好的扩展性
结合所述阵列转镜的光束扫描装置,在本申请另一种实施方式中,各组所述各组转镜(5)的之间的间隔大于或等于0.2mm。结合上述光束扫描装置,在本申请另一种实施方式中,各组所述转镜(5)的间隔为0.5mm。各组所述各组转镜(5)之间设置一定空隙,以避免各组转镜(5)之间发生磨檫或碰撞。
结合所述阵列转镜的光束扫描装置,在本申请另一种实施方式中,所述蜗杆(2)做单向圆周运动。单向运动使得所述转镜(5)的扫描精确度高,避免遗漏待扫描场景或扫描发生跳跃。
结合所述阵列转镜的光束扫描装置,在本申请另一种实施方式中,所述蜗轮(3)的数量和所述转镜(5)的数量相同。
结合所述阵列转镜的光束扫描装置,在本申请另一种实施方式中,各组所述转镜(5)的参数相同。所述参数包括结构参数或光学参数。
结合所述阵列转镜的光束扫描装置,在本申请另一种实施方式中,所述底座(8)设置有卧槽,所述轴承(6)设置于底座(8)的卧槽内。
结合所述阵列转镜的光束扫描装置,在本申请另一种实施方式中,所述轴承(6)包括滑动轴承或滚珠轴承。
结合所述阵列转镜的光束扫描装置,在本申请另一种实施方式中,各组所述转镜(5)的镜面镀有反射膜。用以增强所述转镜(5)的反射效果。
结合所述阵列转镜的光束扫描装置,在本申请另一种实施方式中,阵列转镜的光束扫描装置还包括还包括电源(9),所述电源(9)用于为所述电机(1)供电,且所述电源(9)设置所述底座(8)的上表面。
在本申请另一种实施方式中,一种阵列转镜的光束扫描装置,包括电机(1)、至少一组转镜(5)、转镜座(5b)、至少一组轴承(6)、角度编码器(7)、底座(8)、同步带轮(14)、同步带(15);
所述电机(1)与所述一组轴承(6)同轴并带动所述一组轴承(6)转动,各组所述轴承(6)上设置有同步带轮(14),所述轴承(6)之间通过所述同步带(15)进 行连接,使得所述各组轴承(6)同步转动;
各组所述转镜(5)的一端设置有一个转镜座(5b),所述转镜座(5b)与一组所述轴承(6)连接,以使所述各组轴承(6)分别带动所述各组转镜(5)转动;
所述底座(8)设置于所述电机(1)与所述转镜座(5b)之间,且所述底座(8)上设置有开孔以使所述底座(8)与各组所述轴承(6)形成嵌套;
所述角度编码器(7)设置于所述其中一组轴承(6)上。
结合所述阵列转镜的光束扫描装置,在本申请另一种实施方式中,所述转镜(5)的数量至少为2组。
结合所述阵列转镜的光束扫描装置,在本申请另一种实施方式中,各组所述轴承(6)上都设置有角度编码器(7),所述角度编码器(7)用于获取各组所述转镜(5)的方位角信息,以使各组所述转镜(5)进行精确联动。
有益效果:本申请各实施例中阵列转镜的光束扫描装置采用了反射镜作为所述转镜(5),通过将转镜分解成多个子镜即所述阵列转镜(5),形成了多个所述转镜(5)联动的传动结构,并对所述阵列转镜的光束扫描装置扫描装置其他部件的结构相对于所述转镜(5)做相应设置,达到了同时兼顾扫描速度快、视场角大、精度高、结构简单等特点,尤其适用于低成本、小型化需求的激光雷达系统。装置的扫描角度可达60°以上,或达到100度以上,有效提升了光束扫描的范围。本申请实施例的所述轴承(6a或6b)上设置所述角度编码器(7),保证了光束扫描的偏角精确度,也有效提升了镜面光束扫描的稳定性。采用可独立检测、安装、调试、维修、拆卸或替换的转镜(5),通过替换所述转镜(5)可以改变所述阵列转镜的光束扫描装置的视场角、扫描频率,甚至还能将一维扫描扩展成二维扫描,具有很强的扩展性。
本申请实施例中,通过设置一种阵列转镜的光束扫描装置的结构,解决了现有技术中存在扫描角太小、响应速度慢、成本高,体积和功耗大等缺点,达到了同时兼顾扫描速度快、视场角大、精度高、结构简单、小体积且低功耗等特点,尤其适用于低成本、小型化需求的激光雷达系统。
附图说明
图1示出了本申请实施例提供的一种阵列转镜的光束扫描装置整体结构示意图。
图2示出了本申请实施例提供的另一种阵列转镜的光束扫描装置整体结构示意图。
图3示出了本申请实施例提供的一种阵列转镜的光束扫描装置工作原理示意图。
图4示出了本申请实施例提供的一种阵列转镜的光束扫描装置中单组转镜的结构示意图。
图5出了本申请实施例提供的一种阵列转镜的光束扫描装置中电机与蜗杆连接示意图。
图6出了本申请实施例提供的一种阵列转镜的光束扫描装置中蜗杆和蜗轮传动示意图。
图7出了本申请实施例提供的一种阵列转镜的光束扫描装置中蜗杆同步驱动蜗轮示意图。
图8出了本申请实施例提供的一种阵列转镜的光束扫描装置中转镜俯视图示意图。
图9出了本申请实施例提供的一种阵列转镜的光束扫描装置中转镜的另一种结构示意图。
图10出了本申请实施例提供的一种阵列转镜的光束扫描装置中封装转镜的结构示意图。
图11示出了本申请实施例提供另一种阵列转镜的光束扫描装置的结构示意图。
附图标记说明:1-电机;2-蜗杆;3-蜗轮;4-转镜;5-转镜;5a、5b-转镜座;5c-转镜部;6、6a、6b-轴承;7-角度编码器;8-底座;9-电源;10-联轴节;11-齿轮;12-平板;13-立柱;14-同步带轮;15-同步带。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
如图1所示,为本申请一些实施例中的一种阵列转镜的光束扫描装置,所述光束扫描装置可以应用于智能驾驶、智能机器人等智能设备的智能扫描场景。在所述阵列转镜的光束扫描装置应用在汽车上的情形下,所述阵列转镜的光束扫描装置设置在汽车的车顶、或保险杠上或者汽车挡风玻璃上。所述阵列转镜的光束扫描装置与汽车上的激光探测装置的其他部分如激光发射器、信号接收器等配合使用。所述激光发射器发射激光到所述阵列转镜的光束扫描装置的转镜(5),所述转镜(5)将激光反射或折射到需要扫描场景中的障碍物上,然后所述转镜(5)将所述扫描场景中的物体反射回来的激光反射或折射到信号接收器。其中,所述激光发射器作为信号光源向远处照射测量信号,信号接收器利用内置的信号接收单元接收反射光线生成回波信号,然后由汽车上的控制单元处理所述回波信号。
所述一种阵列转镜的光束扫描装置,包括:电机(1)、蜗杆(2)、蜗轮(3)、安装架(4)、以及转镜(5);所述蜗杆(2)以及所述蜗轮(3)位于所述安装架(4)上并通过齿轮(11)相互咬合联动连接;所述转镜(5)位于所述安装架(4)内,并与所述蜗轮(3)同轴连接;所述电机(1)用于驱动所述蜗杆(2)转动,以带动所述所述蜗轮(3)以及转镜(5)同轴转动;其中,所述转镜(5)包括转镜部(5c)以及分别连接所述转镜部(5c)两端的转镜座(5a,5b),所述二转镜座(5a,5b)分别向所述转镜两端外延伸设置有与所述安装架(4)可转动连接的轴承(6a,6b),其中一所述轴承(6a)与所述涡轮(3)同轴连接。其中,所述转镜(5)的数量为大于或等于两组,在图1中示例性的显示为7组。
有益效果:本申请实施例中的所述阵列转镜的光束扫描装置采用了反射镜作为所述转镜(5),并通过将扫描镜分解成多个子转镜即多个所述转镜(5),形成了多个所述转镜(5)联动的传动结构,并对光束扫描装置其他部件的结构相对于所述转镜(5)做相应设置,达到了同时兼顾扫描速度快、视场角大、精度高、结构简单等特点,尤其适用于低成本、小型化需求的激光雷达系统。所述装置的扫描角度可达60°以上,或达到100度以上,有效提升了光束扫描的范围。
本申请实施例中通过设置所述阵列转镜的光束扫描装置的结构,大幅度地减小了所述阵列转镜的光束扫描装置的体积,充分提高了整个系统的空间利用率,并降低了功耗和噪声,解决了现有技术中光束扫描装置存在的扫描角太小、响应速度慢、成本高,体积和功耗大等缺点,达到了同时兼顾扫描速度快、视场角大、精度高、结构简单、小体积且低功耗等特点,特别地,通过大幅度地减小了所述阵列转镜的光束扫描装置的体积,使得所述阵列转镜的光束扫描装置的体积比现有的主流产品具有突出的体积小的优点。
如图2所示,为本申请实施例中的另一种所述阵列转镜的光束扫描装置,在所述轴承(6a,6b)上还设置有角度编码器(7),所述角度编码器(7)用于获取所述转镜(5)的方位角信息。从而保证了所述转镜(5)光束扫描的偏角精确度,也有效提升了所述转镜(5)光束扫描的稳定性。具体地,所述轴承(6a或6b)上设置有角度编码器(7)。
进一步地,所述安装架(4)包括底座(8)、平行于底座(8)的平板(12)和连接所述底座(8)以及平板(12)的立柱(13),其中,所述平板(12)平行于所述底座(8)的上表面,且所述电机(1)、与蜗杆(2)、与蜗轮(3)均设置所述平板(12)的上表面上。
进一步地,结合所述阵列转镜的光束扫描装置,在本申请另一种实施方式中,所述阵列转镜的光束扫描装置还包括联轴节(10),所述电机(1)通过联轴节(10)与所述蜗杆(2)同轴连接。
所述底座(8)设置在所述阵列转镜的光束扫描装置的底部,所述安装架(4)用以支撑所述阵列转镜的光束扫描装置的其他各个部件。所述立柱(13)连接用以支撑所述平板(12);所述转镜(5)与所述电池(9)设置在所述平板(12)与所述底座(8)之间。
所述转镜部(5c)的两端分别与所述转镜座(5a)和所述转镜座(5b)相连接;所述轴承(6a)穿过所述平板(12)所在平面,所述转镜(5)通过所述轴承(6a)与所述蜗轮(3)同轴连接;所述电机(1)与所述蜗杆(2)同轴连接,所述蜗杆(2)和所述蜗轮(3)之间通过齿轮(11)啮合进行传动;所述转镜座(5b)通过所述轴承(6b)与所述底座(8)连接,所述底座(8)上表面设置有卧槽,所述轴承(6b)固定于所述底座(8)的卧槽内,所述转镜(5)按相同的朝向排列并进行同步转动,相邻各组所述转镜(5)之间留有0.2mm左右的空隙,使所述转镜(5)在转动中不发生碰撞;所述轴承(6a或6b)上还设置有角度编码器(7),所述角度编码器(7)用于获取所述转镜(5)的方位角信息。
所述转镜(5)沿水平方向排列呈一维排列,并保持在同一高度。所述转镜(5)为反射镜,反射面均镀有反射膜,相邻所述转镜(5)间隔0.2mm左右,保持相邻地所述转镜(5)在转动过程中不发生碰撞。
有益效果:本申请阵列转镜的光束扫描装置中采用了反射镜作为转镜(5),通过将所述光束扫描装置的扫描镜设置为多个子转镜即多个所述转镜(5),形成了多个所述转镜(5)联动的传动结构,并对阵列转镜的光束扫描装置做相应设置,达到了同时 兼顾扫描速度快、视场角大、精度高、结构简单等特点,尤其适用于低成本、小型化需求的激光雷达系统。所述阵列转镜的光束扫描装置的扫描角度可达60°以上,在所述转镜(5)为双面平行反射镜的情形下,扫描角度达到100度以上,有效提升了光束扫描的范围。本申请所述轴承(6a或6b)上还设置有角度编码器(7),所述角度编码器(7)用于获取所述转镜(5)的方位角信息。从而保证了所述转镜(5)光束扫描的偏角精确度,也有效提升了所述转镜(5)光束扫描的稳定性。
本申请实施例通过将所述光束扫描装置的扫描镜设置为多个子转镜即多个所述转镜(5),形成了多个所述转镜(5)联动的传动结构,并对光束扫描装置做相应设置,充分提高了整个系统的空间利用率,降低了功耗和噪声,大幅度地减小了光束扫描装置的体积,使得本装置具有扫描视场角大、精度高、体积小、扩展性强、成本低等突出特点。产品的体积比市面上的主流产品具有突出的体积小的优点。
如图3所示,为所述阵列转镜的光束扫描装置的工作原理,所述激光发射器发射激光到所述所述转镜(5),所述转镜(5)将激光反射或折射到需要扫描场景中的障碍物上,然后所述转镜(5)再接收所述扫描场景中的物体反射回来的激光,并将所述物体反射回来的激光反射或折射到信号接收器。所述角度编码器(7)可以记录并控制各组转镜的角度和转动速度,以提高所述转镜(5)光束扫描的稳定性,保证光束扫描的偏角精确度。
如图4所示,所述转镜部(5c)的两端分别与所述两个转镜底座(5a或5b)相连接,其中转镜座(5a)与所述蜗轮(3)同轴连接,转镜座5b通过所述轴承6与所述底座(8)连接,所述轴承6b固定于所述底座(8)的卧槽内。在所述轴承(6a或6b)上安置一个所述角度编码器(7),保证所述转镜(5)转动的角精度。每个所述转镜(5)可独立检测、安装、调试、维修、拆卸和替换,使得装置的维护更为便捷,具有很强的扩展性。
如图5所示,所述电机(1)通过所述联轴节与所述蜗杆(2)同轴连接,以驱动所述蜗杆(2)做圆周旋转。所述蜗杆(2)始终做圆周运动,保证了所述转镜(5)的转动速度平稳,也有效提高了光束的扫描频率。
如图6所示,所述蜗杆(2)的转动轴与所述蜗轮(3)的转动轴相互垂直,通过齿轮(11)啮合,所述蜗杆(2)带动所述蜗轮(3)进行联动。所述蜗杆(2)和所述蜗轮(3)的传动方式具有结构紧凑、精度高、振动冲击小、寿命长等特点。在安装中,首先通过调节所述蜗轮(3)的转向角,以保证各组所述转镜(5)的初始朝向保持一致,再安装所述蜗杆(2),使其与所述各组蜗轮(3)进行齿轮啮合。因此,在所述电机(1)的驱动下,所述各组转镜(5)能够进行高精度的联动,以保证光束偏转指向的统一性。
如图7和所示,是所述蜗杆(2)同步驱动所述蜗轮(3)的示意图。所述蜗杆(2)的转动轴与所述蜗轮(3)的转动轴相互垂直,通过齿轮啮合,所述蜗杆(2)带动所述蜗轮(3)进行联动。
如图8所示,图8右半部分所示为本申请实施例的阵列转镜的光束扫描装置中的所述转镜(5)的俯视图。所述转镜旋转方向如箭头所示。图8右半部分所示的所述阵 列转镜(5)是根据图8中左半部分的转镜改进而来。如图8右半部分所示,本申请实施例的阵列转镜的光束扫描装置中,每个所述转镜(5)的旋转半径都减小了,扫描同样的的角度的情形下,能够大幅度缩减扫描部件的体积和功耗,使得体积和功耗减小为现有技术的1/3。本申请实施例通过将转镜分解成多个子转镜即多个所述转镜(5),形成了多个所述转镜(5)联动的传动结构,并对光束扫描装置其他部分做相对于所述转镜(5)做相应设置,充分提高了整个系统的空间利用率,降低了功耗和噪声,大幅度地减小了光束扫描装置的体积,使得本装置占用空间更小,产品的体积比市面上的主流产品具有突出的体积小的优点。
本申请具备良好的扩展性,可根据所述转镜(5)的结构参数决定光束扫描的视场角和扫描频率,按照实际用途来配备适合的所述转镜(5)。可用作所述转镜(5)的常见的反射镜类型有:双面平行反射镜、三面平行反射镜、双面棱锥反射镜等,在所述电机(1)的转速为20Hz的工作状态下,所述蜗杆(2)和所述蜗轮(3)的传动比为1。经实验测试,上述三类反射镜实现的工作性能表现良好,输出结果如下表所示:
  双面平行反射镜 三面平行反射镜 双面棱锥反射镜
扫描角 100°以上 60°左右 100°以上
扫描频率 40Hz 60Hz 40Hz
备注     可进行空间三维扫描
如图9所示,是采用三面平行反射镜作为所述转镜(5)的光束扫描装置示意图,与图1的区别在于所述转镜(5)的不同,是采用所述三面平行反射镜,其他机械部件的结构基本不发生变化,扫描频率为60Hz,扫描角度可达60°左右。
图10示出了本申请实施例提供的一种阵列转镜的光束扫描装置中封装转镜的结构示意图。本申请实施例中光束扫描装置使用阵列转镜取代了传统的大尺寸转镜,从而大幅度降低了光束描系统的体积、噪声和功耗,经封装后可隐藏转动部件。将本申请实施例的转镜(5)或整个所述阵列转镜的光束扫描装置进行封装,可以隐藏机械转动的部件,从外观上看处于静止状态,非常适用于无人车、智能机器人用途的混合固态激光雷达中。本申请实施例所采用的技术已经成熟,所采用的元器件价格比较低廉,在现有水平均可以顺利实现批量生产,具有突出市场普及推广优势。综上所述,相比于现有的光束扫描技术,本申请实施例的方案具有扫描视场角大、精度高、体积小、扩展性强、成本低等突出优点。
图11示出了本申请实施例另一种实施方式中的一种阵列转镜的光束扫描装置,包括电机(1)、至少一组转镜(5)、转镜座(5)、至少一组轴承(6)、角度编码器(7)、同步带轮(14)、同步带(15)、底座(8);
所述电机(1)与所述一组轴承(6)同轴并带动所述一组轴承(6)转动,各组所述轴承(6)上设置有同步带轮(14),所述轴承(6)之间通过所述同步带(15)进行连接,使得所述各组轴承(6)同步转动;
各组所述转镜(5)的一端设置有一个转镜座(5b),所述转镜座(5b)与一组所述轴承(6)连接,以使所述各组轴承(6)分别带动所述各组转镜(5)转动;
所述底座(8)设置于所述电机(1)与所述转镜座(5b)之间,且所述底座(8)上设置有开孔以使所述底座(8)与各组所述轴承(6)形成嵌套;
所述角度编码器(7)设置于所述其中一组轴承(6)上。
在本申请另一种实施方式中,各组所述轴承(6)上都设置有角度编码器(7),所述角度编码器(7)用于获取各组所述转镜(5)的方位角信息,以使各组所述转镜(5)进行精确联动。在另一实施例中,所述转镜(5)的数量至少为2组。
有益效果:本申请实施例中采用了反射镜作为所述转镜(5),通过将转镜分解成多个子镜即所述阵列转镜(5),形成了多个所述转镜(5)联动的传动结构,并对光束扫描装置其他部件的结构相对于所述转镜(5)做相应设置,达到了同时兼顾扫描速度快、视场角大、精度高、结构简单等特点,尤其适用于低成本、小型化需求的激光雷达系统。装置的扫描角度可达60°以上,或达到100度以上,有效提升了光束扫描的范围。本申请实施例的所述转镜(5)的转镜(5)上安置所述角度编码器(7),保证了光束扫描的偏角精确度,也有效提升了镜面光束扫描的稳定性。采用可独立检测、安装、调试、维修、拆卸或替换的所述转镜(5),通过替换所述转镜(5)可以改变所述阵列转镜的光束扫描装置的视场角、扫描频率,甚至还能将一维扫描扩展成二维扫描,具有很强的扩展性。
本申请实施例中,通过设置一种阵列转镜的光束扫描装置的结构,现有技术中光束扫描装置存在的扫描角太小、响应速度慢、成本高,体积和功耗大等缺点,达到了同时兼顾扫描速度快、视场角大、精度高、结构简单、小体积且低功耗等效果,尤其适用于低成本、小型化需求的激光雷达系统。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (16)

  1. 一种阵列转镜的光束扫描装置,其特征在于,包括:
    电机(1)、蜗杆(2)、蜗轮(3)、安装架(4)、以及转镜(5);
    所述蜗杆(2)以及所述蜗轮(3)位于所述安装架(4)上并通过齿轮(11)相互咬合联动连接;
    所述转镜(5)位于所述安装架(4)内,并与所述蜗轮(3)同轴连接;
    所述电机(1)用于驱动所述蜗杆(2)转动,以带动所述所述蜗轮(3)以及转镜(5)同轴转动;
    其中,所述转镜(5)包括转镜部(5c)以及分别连接所述转镜部(5c)两端的转镜座(5a,5b),所述二转镜座(5a,5b)分别向所述转镜两端外延伸设置有与所述安装架(4)可转动连接的轴承(6a,6b),其中一所述轴承(6a)与所述涡轮(3)同轴连接。
  2. 根据权利要求1所述的阵列转镜的光束扫描装置,其特征在于,所述转镜(5)的数量至少为2组。
  3. 根据权利要求1或2所述的阵列转镜的光束扫描装置,其特征在于,
    各组所述转镜(5)的镜面按相同的朝向排列并进行同步转动。
  4. 根据权利要求3所述的阵列转镜的光束扫描装置,其特征在于,所述转镜(5)包括双面平行反射镜、三面平行反射镜、双面棱锥反射镜。
  5. 根据权利要求4所述的阵列转镜的光束扫描装置,其特征在于,各组所述轴承(6a,6b)上还设置有角度编码器(7),所述角度编码器(7)用于获取各组所述转镜(5)的方位角信息,以使各组所述转镜(5)进行精确联动。
  6. 根据权利要求5所述的阵列转镜的光束扫描装置,其特征在于,
    所述转镜(5)的轴向垂直于所述底座(8)的上表面,且各组所述转镜(5)相对于所述底座(8)的上表面沿所述转镜(5)轴向方向同一高度排列。
  7. 根据权利要求3所述的阵列转镜的光束扫描装置,其特征在于,各组所述转镜(5)的镜面镀有反射膜。
  8. 根据权利要求3所述的阵列转镜的光束扫描装置,其特征在于,
    所述安装架(4)包括底座(8)、平行于所述底座(8)的平板(12)和连接所述底座(8)以及平板(12)的立柱(13),其中,所述平板(12)平行于所述底座(8)的上表面,且所述电机(1)、与蜗杆(2)、与蜗轮(3)均设置所述平板(12)的上表面上。
  9. 根据权利要求3所述的阵列转镜的光束扫描装置,其特征在于,所述底座(8)设置有卧槽,所述轴承(6b)设置于底座(8)的卧槽内。
  10. 根据权利要求3所述的阵列转镜的光束扫描装置,其特征在于,还包括联轴节(10),所述电机(1)通过联轴节(10)与所述蜗杆(2)同轴连接。
  11. 根据权利要求3所述的阵列转镜的光束扫描装置,其特征在于,各组所述转镜(5)的参数相同。
  12. 根据权利要求3所述的阵列转镜的光束扫描装置,其特征在于,所述底座(8)设置有卧槽,所述轴承(6b)设置于底座(8)的卧槽内。
  13. 根据权利要求3所述的阵列转镜的光束扫描装置,其特征在于,各组所述转镜(5)的镜面镀有反射膜。
  14. 根据权利要求3所述的阵列转镜的光束扫描装置,其特征在于,还包括电源(9),所述电源(9)用于为所述电机(1)供电,且所述电源(9)设置所述底座(8)的上表面。
  15. 一种阵列转镜的光束扫描装置,其特征在于,包括:
    电机(1)、至少一组转镜(5)、转镜座(5b)、至少一组轴承(6)、角度编码器(7)、底座(8)、同步带轮(14)、同步带(15);
    所述电机(1)与所述一组轴承(6)同轴并带动所述一组轴承(6)转动,各组所述轴承(6)上设置有同步带轮(14),所述轴承(6)之间通过所述同步带(15)进行连接,使得所述各组轴承(6)同步转动;
    各组所述转镜(5)的一端设置有一个转镜座(5b),所述转镜座(5b)与一组所述轴承(6)连接,以使所述各组轴承(6)分别带动所述各组转镜(5)转动;
    所述底座(8)设置于所述电机(1)与所述转镜座(5b)之间,且所述底座(8)上设置有开孔以使所述底座(8)与各组所述轴承(6)形成嵌套;
    所述角度编码器(7)设置于所述其中一组轴承(6)上。
  16. 根据权利要求15所述的阵列转镜的光束扫描装置,其特征在于,所述转镜(5)的数量至少为2组。
PCT/CN2018/119109 2017-12-08 2018-12-04 一种阵列转镜的光束扫描装置 WO2019109901A2 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18886814.5A EP3712677B1 (en) 2017-12-08 2018-12-04 Beam scanning device for rotating mirror array
US16/895,792 US11650413B2 (en) 2017-12-08 2020-06-08 Beam scanning apparatus with arrayed rotating mirrors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711294524.6 2017-12-08
CN201711294524.6A CN108227181B (zh) 2017-12-08 2017-12-08 一种阵列转镜的光束扫描装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/895,792 Continuation US11650413B2 (en) 2017-12-08 2020-06-08 Beam scanning apparatus with arrayed rotating mirrors

Publications (2)

Publication Number Publication Date
WO2019109901A2 true WO2019109901A2 (zh) 2019-06-13
WO2019109901A3 WO2019109901A3 (zh) 2019-07-25

Family

ID=62654099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119109 WO2019109901A2 (zh) 2017-12-08 2018-12-04 一种阵列转镜的光束扫描装置

Country Status (4)

Country Link
US (1) US11650413B2 (zh)
EP (1) EP3712677B1 (zh)
CN (1) CN108227181B (zh)
WO (1) WO2019109901A2 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108227181B (zh) * 2017-12-08 2020-06-16 华为技术有限公司 一种阵列转镜的光束扫描装置
CN108680096B (zh) * 2018-07-06 2023-12-19 北方工业大学 一种方位扫描定位机构和雷达系统
CN109633607B (zh) * 2019-01-14 2023-12-22 山东省科学院海洋仪器仪表研究所 一种激光雷达大口径双轴光学扫描转镜系统
CN114270236B (zh) * 2020-07-10 2023-08-25 深圳市速腾聚创科技有限公司 镜片调节装置、反射组件、激光雷达及智能驾驶设备
CN115494478B (zh) * 2022-11-15 2023-03-10 杭州欧镭激光技术有限公司 一种激光雷达

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1256645A (en) * 1916-06-29 1918-02-19 J I Clingman Advertising-machine.
JPS5717918A (en) * 1980-07-07 1982-01-29 Dainippon Screen Mfg Co Ltd Method and apparatus for scanning of light beam
US5339188A (en) * 1992-09-16 1994-08-16 Hughes Aircraft Company Step stare scanning apparatus and method
JP4512262B2 (ja) * 2000-12-19 2010-07-28 オリンパス株式会社 光学素子駆動装置
KR100574507B1 (ko) * 2004-09-24 2006-04-27 삼성전자주식회사 자동 스큐조정장치, 그것을 갖는 화상형성장치 및 그스큐조정방법
EP2333603A1 (en) * 2009-12-08 2011-06-15 Alcatel Lucent An optical beam scanner
CN102759736A (zh) * 2011-04-28 2012-10-31 鸿富锦精密工业(深圳)有限公司 激光测距仪
US20120319445A1 (en) * 2011-06-16 2012-12-20 Dynalloy, Inc.@@Gm Global Technology Operations Llc Single input and multi-output drive system utilizing an active material actuated transmission
JP2014052366A (ja) * 2012-08-06 2014-03-20 Ricoh Co Ltd 光計測装置、車両
US10132928B2 (en) 2013-05-09 2018-11-20 Quanergy Systems, Inc. Solid state optical phased array lidar and method of using same
CN103543526B (zh) * 2013-09-29 2016-04-13 华中科技大学 一种阵列式激光扫描器
JP6324817B2 (ja) * 2014-06-03 2018-05-16 スタンレー電気株式会社 光スキャナ及び光偏向器の制御方法
CN105043541B (zh) * 2015-09-08 2017-09-19 四川双利合谱科技有限公司 一种摆扫型光谱仪的转镜组件
CN105292508B (zh) * 2015-11-24 2018-06-29 孙颖 一种基于旋翼无人机的扫描成像系统的成像方法
CN206200343U (zh) * 2016-08-29 2017-05-31 华南理工大学 一种多光束阵列振镜扫描系统
CN108227181B (zh) * 2017-12-08 2020-06-16 华为技术有限公司 一种阵列转镜的光束扫描装置

Also Published As

Publication number Publication date
US20200301132A1 (en) 2020-09-24
WO2019109901A3 (zh) 2019-07-25
CN108227181B (zh) 2020-06-16
EP3712677B1 (en) 2023-02-08
CN108227181A (zh) 2018-06-29
EP3712677A2 (en) 2020-09-23
US11650413B2 (en) 2023-05-16
EP3712677A4 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
WO2019109901A2 (zh) 一种阵列转镜的光束扫描装置
CN109471126B (zh) 一种用于线阵激光雷达的振转结合周向扫描装置
CN205982639U (zh) 扫描装置及无人驾驶设备
CN212008926U (zh) 一种激光雷达
WO2020114229A1 (zh) 激光雷达光学系统及扫描方法
CN203178569U (zh) 一种两自由度高速并联扫描平台
CN109633607B (zh) 一种激光雷达大口径双轴光学扫描转镜系统
CN101788668B (zh) 准双多普勒激光雷达装置及其测量方法
CN111693965A (zh) 一种激光雷达扫描方法及激光雷达
CN210864033U (zh) 一种扫描装置及激光雷达系统
CN113933813A (zh) 一种混合固态激光雷达及其扫描方法
CN103176270B (zh) 两自由度高速并联扫描平台及其垂直度误差的校准方法
CN113640773A (zh) 一种激光雷达系统
CN103197416B (zh) 一种两自由度高速并联扫描平台及垂直度误差校准方法
CN203350530U (zh) 两自由度高速并联扫描平台
CN103307418B (zh) 一种二自由度串联式扫描平台
CN211061696U (zh) 一种旋转反射式激光雷达系统
CN220105293U (zh) 一种避障传感器及移动机器人
CN210142188U (zh) 一种棱镜及多线激光雷达系统
WO2011030333A1 (en) Device and method for object detection and location
CN112147597A (zh) 区域覆盖扫描激光雷达装置
CN216117999U (zh) 一种混合固态激光雷达
KR20200107659A (ko) 라이다 광학 장치 및 이를 구비하는 라이다 장치
CN219936107U (zh) 一种三维扫描式测风激光雷达
CN213517535U (zh) 区域覆盖扫描激光雷达装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18886814

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018886814

Country of ref document: EP

Effective date: 20200619