WO2019109872A1 - 一种流体非金属颗粒浓度的检测系统及方法 - Google Patents

一种流体非金属颗粒浓度的检测系统及方法 Download PDF

Info

Publication number
WO2019109872A1
WO2019109872A1 PCT/CN2018/118697 CN2018118697W WO2019109872A1 WO 2019109872 A1 WO2019109872 A1 WO 2019109872A1 CN 2018118697 W CN2018118697 W CN 2018118697W WO 2019109872 A1 WO2019109872 A1 WO 2019109872A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
detection
particles
concentration
detecting
Prior art date
Application number
PCT/CN2018/118697
Other languages
English (en)
French (fr)
Inventor
聂泳忠
张中萍
Original Assignee
西人马联合测控(泉州)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西人马联合测控(泉州)科技有限公司 filed Critical 西人马联合测控(泉州)科技有限公司
Priority to EP18885474.9A priority Critical patent/EP3722781B1/en
Priority to US16/487,931 priority patent/US11099113B2/en
Publication of WO2019109872A1 publication Critical patent/WO2019109872A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/075Investigating concentration of particle suspensions by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0023Investigating dispersion of liquids
    • G01N2015/003Investigating dispersion of liquids in liquids, e.g. emulsion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0053Investigating dispersion of solids in liquids, e.g. trouble
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N2015/0294Particle shape
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N2015/0668Comparing properties of sample and carrier fluid, e.g. oil in water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1486Counting the particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1493Particle size
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1497Particle shape

Definitions

  • the present invention relates to the field of fluid detection technology, and more particularly to a detection system for fluid non-metallic particle concentration, and further, provides a detection method using the detection system.
  • the detection of metal particles by the principle of electromagnetic induction is a more common method.
  • the conventional device for detecting metal particles by using the principle of electromagnetic induction often uses two reverse-wound excitation excitation coils as excitation sources to generate magnetic fields having opposite directions of the same intensity.
  • the middle of the two coils The net magnetic field is zero; an induction coil that induces a change in the induced magnetic field in the middle is used to induce magnetic field disturbance caused by the metal particles.
  • the device still has the following drawbacks:
  • the laser tube is often fixed, and the particles are not uniform in size, so the distribution of particles in the cross section of the same oil pipeline is often not uniform. Therefore, the fixed laser tube arrangement may have a single fixed detection plane, and it is difficult to accurately realize the technical problem of detecting the particle form in the lubricating oil, so that the measurement accuracy of the particle concentration in the lubricating oil is insufficient.
  • the technical problem solved by the present invention is (1) to provide a detection system capable of improving the detection accuracy of non-metallic particle concentration in a fluid; (2) providing the detection system to make the concentration detection more accurate Detection method.
  • a detection system for concentration of non-metallic particles in a fluid comprising a particulate matter detecting device, a metal particle detecting device and a detecting pipe, wherein the particulate matter detecting device and the metal particle detecting device are connected to each other and wound around the detecting On the pipeline;
  • the particulate matter detecting device comprises: a laser tube for outputting an incident light beam; and a scattering detector for detecting a fluid outgoing light beam;
  • the metal particle detecting device includes a signal detecting system, an excitation coil, and a positive even number of induction coils, the excitation coil is connected to the signal processing system and wound on the detecting pipeline; the induction coils are all The signal processing systems are connected, sequentially and oppositely wound on the excitation coil;
  • the detection conduit allows the beam of the particulate matter detecting device to effect the incidence and exit of fluid within its tube.
  • the installation method usually requires two reverse excitation excitation coils, one induction coil, and two excitation coils are wound outwardly at both ends of the pipeline, and the induction coil is wound. Made in the middle of the two excitation coils.
  • the arrangement of the excitation coil of the excitation coil of the device can be conveniently installed, and the overall length of the sensor is greatly shortened, which is convenient for preparation and use.
  • the excitation coil is connected to the signal detection system, and the signal detection system inputs a sinusoidal alternating signal across the excitation coil to generate an alternating magnetic field to drive the induction coil.
  • the induction coil is wound on the detection pipe to detect the particulate matter, and the sensor is not required to directly contact the liquid in the pipe, which makes the test more convenient.
  • the inventors have adopted a scheme of positive and even magnetic induction coils in the present invention.
  • the magnetic induction coil is usually wound by only one.
  • the use of a magnetic induction coil seems to save costs, in fact, because the induction coil is located in the middle of the two excitation coils, the induced particles are disturbed by the magnetic field generated by the excitation coil; and the induction coil is far away from the excitation coil, often causing the magnetic field to decay. Larger, resulting in insufficient size accuracy of the measured induced particles.
  • the excitation coil is used, and the positive and even induction coils are used to wind the excitation coil to ensure the detection precision.
  • the excitation coil is used to generate a magnetic field and is therefore preferably wound with an excitation coil.
  • positive and even number of induction coils for example two, or a group of induction coils, can be adapted to the algorithm set by the inventor, and the concentration of the metal particles can be calculated by observing and inputting the magnetic field changes obtained by the two induction coils. .
  • the induction coil is sequentially wound on the excitation coil. This arrangement can quickly detect the magnetic field disturbance generated when the particles pass through the induction coil, and achieve the function of detecting metal particles.
  • the induction coil is reverse wound on the excitation coil. Due to the close proximity of the two induction coils, the environment can be considered consistent, which can suppress temperature drift, electromagnetic interference, improve signal stability and further improve system performance in complex and harsh environments.
  • a coil refers to a coil that is connected to the signal detection system at both ends and wound around the detection pipeline.
  • the sequential winding refers to the direction of the detecting pipe.
  • the other induction coil is wound at the next position in the direction, that is, the induction coil is used.
  • the two are not wound on each other and are wound on the detection pipe, but are independently wound on the detection pipe.
  • reverse winding means that the two induction coils are wound outside the excitation coil without being coincident with each other when wound, and one of the directions is wound clockwise and the other is wound counterclockwise.
  • particulate matter refers to the detection of, for example, metal particulate matter by electromagnetic induction, and the detection of the flow thereof, thereby facilitating further analysis of data such as the concentration of metal particulate matter in the liquid.
  • the signal detection system is for detecting electromagnetic induction conditions.
  • it includes a control circuit board, a signal output port, and the like. It should not be limited to the composition of the signal detection system, as long as the mechanism capable of detecting the electromagnetic change of the induction coil should be regarded as belonging to the signal detection system.
  • the number of induction coils is two or four or six.
  • the number of induction coils is preferable to set the number of induction coils to two.
  • the number of induction coils is set to four or six, etc., it is possible to perform multiple measurements and average values during the measurement process, which can improve the reliability of the detection.
  • the excitation coils are two or more, and each excitation coil is wound in the same direction on the detection pipeline.
  • the co-directional winding means that each of the excitation coils is wound clockwise or counterclockwise on the detection pipe. By setting in this way, the magnetic field strength can be increased, and at the same time, the mutual interference between the excitation coils can be prevented by the same direction winding, which affects the stability of the magnetic field.
  • the excitation coil and/or the induction coil are wound in at least one layer.
  • the excitation coil and/or the induction coil are wound by at least one layer (ie, multiple layers), which can further enhance the strength of the magnetic field generated by the excitation coil, and the signal generated on the induction coil is more obvious, which is favorable for improving the detection precision of the metal particles.
  • a spacer sleeve is further disposed between the excitation coil and the induction coil;
  • the material of the spacer sleeve is a non-magnetic material.
  • a spacer sleeve is added between the excitation coil and the induction coil for isolating the excitation coil and the induction coil.
  • the non-magnetic material is selected here, which is mainly used for the isolation of the excitation coil and the induction coil during the production process. In the process of inducing magnetic field disturbance of the metal particles, the magnetic field loss between the induction coil and the excitation coil is minimized. It is beneficial to improve the detection accuracy of metal particles, so the non-magnetic material is used here. At the same time, as the skeleton of the induction coil, the flatness of the induction coil can be improved.
  • a shielding ring is further disposed outside the induction coil.
  • a shielding ring is arranged outside the induction coil to isolate the external magnetic field and resist the interference of the external magnetic field, so that the detection result is more accurate and the detection effect is better.
  • the particulate matter detecting device further includes a driving device for driving the movement of the laser tube.
  • the laser tube is fixed, and the output light beam is also fixed at a certain position, so that the detected particulate matter is limited to the particulate matter at the position. Due to the different mass of the particles, the particles will form stratification in the fluid according to the mass. The existing device will result in a narrow detection range, and the detected particles are relatively local, resulting in insufficient fluid transparency and particle concentration. accurate. Therefore, the inventors have innovatively proposed to set the previously fixed laser tube to be movable, and the driving device is configured to drive the laser tube to move so that the output beam thereof can cover the detecting pipe, thereby flowing through the entire detecting pipe. The detection of particulate matter further improves the technical effect of improving the accuracy and accuracy of detection.
  • the driving device is a motor
  • a motor may be provided in the detecting device for driving the laser tube to move, thereby causing movement of the output incident light beam.
  • the movement of the laser tube is a screw movement or a gear movement.
  • the screw movement means that, in one embodiment, a nut is disposed on the laser, and the motor drive screw cooperates with the nut to effect movement.
  • the gear movement means that the motor and the laser tube are both provided with gear-like structural components to cooperate with each other to realize movement.
  • the range of movement of the laser tube is the diameter distance of the cross section of the detection tube.
  • the detecting pipe By setting the moving range of the laser tube to the diameter distance of the cross section of the detecting pipe, the detecting pipe can be covered to a greater extent, so that the fluid in the pipe can be fully covered by the light beam, thereby fully detecting the particles in each layer and improving the detection. Precision.
  • the movement of the laser tube is moved at a constant speed.
  • the signal of collecting particulate matter will be relatively stable, which makes the detection and analysis results more accurate.
  • the scattering detector is disposed in a position that is not in line with the laser tube output beam
  • Scattering detectors are used to identify the size and shape of the particles.
  • the scattering detector is disposed in a position that is not in line with the laser tube output beam. Since the scatter detector receives the beam with low sensitivity when the scatter detector is disposed in the same line as the laser tube output beam, it is susceptible to interference from the direct beam. Instead of being on the same line, the interference of the beam can be reduced, making the scattered beam detection more accurate.
  • the scattering detector is disposed at a vertical plane position of the laser tube output beam, and the scattering detector, the detecting pipeline, and the laser tube form a right angle shape.
  • S1 fluid particle concentration detection, specifically including:
  • S2 detection of fluid metal particle concentration, specifically including:
  • Fluid non-metallic particulate concentration fluid particulate matter concentration - fluid metal particulate matter concentration.
  • certain time period in the S1 may be within any time period, and may be selected according to actual conditions.
  • the particle shape detecting device is improved and applied, and the detection precision of the particle concentration in the fluid is improved.
  • the improved metal particle detecting device improves the detection accuracy of the metal particle concentration in the fluid.
  • the standard particulate matter is selected from particles having a particle diameter of 10 ⁇ m, and the corresponding voltage signal is U 10 ⁇ m .
  • preferentially selecting particles having a diameter of 10 ⁇ m as standard particles can improve the detection accuracy on the one hand and improve the detection sensitivity on the other hand. If the particles are too large, the detection accuracy of the subsequent calculated concentration will be lowered, and if the particles are too small, the sensitivity of the device detection will be lowered, resulting in the inability to detect the particulate matter. Therefore, the inventors can use the particles having a diameter of 10 ⁇ m as the standard particles to effectively balance the detection accuracy and the detection sensitivity, so that the detection process is more accurate.
  • the method for extracting the effective signal is to compare the collected signal with the scattered noise floor value, and select a signal larger than the scattering bottom noise value as the effective signal.
  • the effective signal needs to be selected as the basis for subsequent calculation, otherwise the accuracy of the detection calculation result is affected.
  • the inventor has chosen a simple and effective way to select an effective signal, which is to compare the collected signal with the previously collected scattering noise value, and use a signal larger than the scattering noise value as an effective signal to make the collected signal. More practical, making subsequent measurements more accurate.
  • the step of obtaining the number of particles by threshold analysis in S13 comprises:
  • the collected signal U x is compared with the bottom noise value U noise . If the U x -U noise floor is > 0, the count is incremented by 1. If the U x -U noise floor is ⁇ 0, the count is zero.
  • the inventor selects the counting method preferably by comparing the signal value with the noise floor value, instead of counting the numbers read by the signal value, so that the error caused by the bottom noise value can be eliminated, that is, only The signal when the U x -U noise floor > 0 is counted as a particulate matter, so that the detection result is more accurate, and the detection precision of the particle concentration is improved.
  • the step of obtaining the concentration of the particles in the S14 comprises:
  • V x volume of unknown particles
  • K sensor correction factor
  • V 10um standard particle volume
  • U x particle volume output voltage amplitude of unknown volume
  • U 10um standard particle output voltage amplitude
  • the sensor correction coefficient K refers to a situation in which the bottom noise calibration offset is inevitable during the calibration of the sensor, and the measurement error occurs, and a fine adjustment coefficient K is introduced here. Small fine-tuning; it is also possible that when selecting standard particles, the particles are not completely standard, resulting in some subtle volume calculation errors, which can be corrected together with the introduction of the correction factor.
  • the consideration of removing the influence of the noise floor value is also included, so that the detection result is more accurate.
  • the calculation formula of the above-mentioned particulate matter includes the factor of subtracting U noise from U x and the noise of U 10um minus U noise , which can make the calculated particle volume closer to the actual value and improve the calculation of the particle concentration in the fluid. Accuracy.
  • detecting the concentration of the metal particles in the S2 comprises the steps of:
  • the mass m of a metal, metal elapsed time t, and using the pipe cross-sectional area S is calculated by the following equation particulate metal concentration c:
  • the induced voltage E caused by the metal particles passing through the spiral induction coil is proportional to the volume V of the particulate matter, the magnetic permeability, and the velocity v metal .
  • the third power of the turns of the coil is proportional to the third power.
  • the metal after the time t refers to the time required for the metal particles to pass through a certain distance in the pipeline, which may correspond to the time elapsed between different amplitudes, or the difference between different amplitude moments. value.
  • the method for obtaining the metal particle flow rate v metal comprises the following steps:
  • the flow rate is measured according to the formula:
  • the L1 refers to the length of the induction coil during the passage of the voltage amplitude at the highest point and the zero-crossing point of the positive half cycle; the L2 refers to the voltage amplitude at the zero-crossing point and the highest point in the negative half-cycle. The length of the coil is sensed during the passage.
  • K1 refers to the correction coefficient when passing through one coil
  • k2 refers to the correction coefficient when passing through another coil.
  • the output signal is affected, so that it does not sense the middle part of the coil, so the correction coefficient k1 or K2, correct it.
  • the induction coil 1 and the induction coil 2 are sequentially passed through, and when the induction coil 1 is passed, the output signal is highest unless the influence of the induction coil 2 is considered.
  • the point should be in the middle portion of the induction coil 1, and after the induction coil 2 is introduced, the magnetic field generated by the induction coil 2 affects the highest point of the output signal, causing it to be slightly offset.
  • the rate of flow v of the metal particles of the metal through the induction coil the average flow rate of the induction coil in each group.
  • the flow velocity vgn (where n is a positive integer) of the metal particles passing through the gn group induction coils is respectively calculated, and the flow velocity v metal is an average value of the flow rates of the respective groups of induction coils, that is:
  • the calculation method of the average value can improve the calculation accuracy of the flow rate, and the calculation result is more accurate.
  • the frequency of the output signal of the signal detection system acquired in the S21 is 1 ms.
  • the frequency of the output signal is 500 Hz.
  • the sampling frequency is greater than 2 times of the highest frequency of the signal, so that the complete information of the signal can be preserved without distortion, so the sampling frequency of 1K is selected here. That is, 1 s is taken with 1000 valid signals (1 ms one) for analysis.
  • the detection system integrates a metal particle detecting device and a particle shape detecting device, and can directly obtain related information of fluid non-metal particles through the detection results of the above two devices, and the obtained information is convenient, fast and accurate;
  • the excitation coil of the metal particle detecting device in the detection system is wound with an induction coil, which can achieve convenient installation and greatly shorten the overall length of the sensor, and is convenient for preparation and use;
  • the induction coil of the metal particle detecting device in the detection system is wound on the detecting pipeline, and can detect the condition of measuring the particulate matter, and does not need to directly contact the sensor with the liquid in the tube, so that the test is more convenient;
  • the metal particle detecting device in the detection system uses at least two induction coils to wind the excitation coil to ensure the detection accuracy;
  • the metal particle detecting device in the detecting system adopts a spacer ring between the excitation coil and the induction coil for isolating the excitation coil and the induction coil, thereby reducing the magnetic field loss between the induction coil and the excitation coil; As a skeleton wound by the induction coil, the flatness of the induction coil winding can be improved;
  • the metal particle detecting device in the detecting system is provided with a shielding ring outside the induction coil to isolate the external magnetic field and resist the interference of the external magnetic field, so that the detection result is more accurate and the detection effect is better;
  • the particle shape detecting device in the detecting system sets the laser tube to be movable, so that the output beam can cover the detecting pipe, thereby detecting the particles flowing through the entire detecting pipe, thereby further improving the detection precision and Technical effect of accuracy;
  • the device further comprises a motor, wherein the motor is connected to the laser tube to drive the laser tube to move, and the laser tube can be moved;
  • the particle shape detecting device in the detecting system sets the moving range of the laser tube to the diameter distance of the cross section of the detecting pipe, and can cover the detecting pipe to a greater extent, so that the fluid in the pipe can be fully covered by the light beam. Thereby achieving sufficient detection of the particles of each layer and improving the accuracy of detection;
  • the particle shape detecting device in the detecting system the movement of the laser tube is moving at a constant speed, and in the process of uniform motion, the signal of collecting the particulate matter is relatively stable, so that the precision of the detection and analysis results is higher.
  • the detection method of the present invention in the particle concentration calculation step, includes the consideration of removing the influence of the noise floor value, so that the calculated particle volume is closer to the actual value, and the calculation accuracy of the particle concentration in the fluid is improved;
  • the detection method of the present invention selecting particles having a diameter of 10 ⁇ m as standard particles can improve the detection accuracy on the one hand and improve the detection sensitivity on the other hand;
  • the detection method of the present invention compares the acquired signal with the previously collected scatter noise value, and uses a signal larger than the scatter noise value as an effective signal, so that the collected signal is more practical, so that subsequent measurements are made. The result is more accurate.
  • the detection method of the present invention is preferably to compare the signal value with the noise floor value, instead of counting the numbers read by the signal value, so that the detection result is more accurate and the particle concentration is improved. Detection accuracy;
  • Figure 1 (a) is a schematic cross-sectional structural view of a preferred embodiment of the detection system of the present invention
  • Figure 1 (b) is a right side view of the portion of the particulate matter detecting device of the detecting system of Figure 1 (a);
  • FIG. 2 is a cross-sectional structural view showing a first preferred embodiment of the metal particle detecting device in the detecting system of the present invention
  • FIG. 3 is a cross-sectional structural view showing a second preferred embodiment of the metal particle detecting device in the detecting system of the present invention.
  • Figure 4 is a partial enlarged view of the area A in Figure 3;
  • FIG. 5 is a schematic diagram showing the principle of electromagnetic induction testing of the metal particle detecting device in the detecting system of the present invention
  • FIG. 6 is a graph showing a voltage output change corresponding to the schematic diagram of FIG. 5;
  • FIG. 7 is a schematic structural view of a preferred embodiment of a particulate matter detecting device in the detecting system of the present invention.
  • each reference numeral is: 1, a particle shape detecting device; 2. a metal particle detecting device; 3. a detecting pipe; 11, a laser tube; 12, a scattering detector; 13, a motor; 131, a gear; 21, signal detection system; 22, excitation coil; 23, first induction coil; 24, second induction coil; 25, spacer sleeve; 26, shielding ring; a, particles; b, particles.
  • Example 1 (a detection system for the concentration of non-metallic particles in a fluid)
  • FIG. 1( a ) is a schematic structural view of a preferred embodiment of a detection system for non-metallic particles in a fluid according to the present invention, the detection system including a particle shape detecting device and a metal particle detecting device. 2 and the detecting pipe 3, the particulate matter detecting device and the metal particle detecting device are connected to each other and wound on the detecting pipe;
  • the particulate matter detecting device includes: a laser tube 11 for outputting an incident light beam; and a scattering detector 12 for detecting a fluid outgoing light beam;
  • the metal particle detecting device includes a signal detecting system 21, an excitation coil 22, and two induction coils (a first induction coil 23 and a second induction coil 24, respectively), and the excitation coil is connected to the signal processing system and wound
  • the induction coils are connected to the signal processing system, and are sequentially wound on the excitation coils in reverse;
  • the detection conduit allows the beam of the particulate matter detecting device to effect the incidence and exit of fluid within its tube.
  • the above is a preferred embodiment of the basic embodiment of the technical solution.
  • the beneficial effect of the basic embodiment is that three groups of fluid concentration, metal particle concentration and non-metallic particle concentration can be obtained by measurement of primary equipment.
  • the data improves the detection efficiency, and the improvement of each device of the system can effectively improve the detection efficiency and accuracy.
  • the present non-metallic particle detecting system may be any combination of the following respective metal particle detecting device embodiments and the respective particle form detecting system embodiments, that is, only the preferred embodiments of the two detecting devices are respectively displayed, and the combination of the two is not displayed, the non-metal
  • the particle detection system can be a combination of any of the preferred means of the two detection devices.
  • the method for obtaining the signal such as the concentration of the non-metallic particles is: reading the concentration information of the fluid metal particles and the concentration information of the fluid particles obtained by the metal particle detecting device and the particle shape detecting device, respectively, and subtracting the concentration information of the fluid metal particles from the fluid particle concentration information. That is, information such as the concentration of non-metallic particles is obtained.
  • Embodiment 2 Metal particle detecting device in a detection system for concentration of non-metallic particles in a fluid
  • FIG. 2 is a schematic cross-sectional structural view of a first preferred embodiment of the metal particle detecting device in the system of the present invention
  • the detecting device comprises a signal detecting system 21, an excitation coil 22, and two induction coils (a first induction coil 23 and a second induction coil 24, respectively), and the excitation coil is connected to the signal processing system and wound
  • the detecting coils are connected to the signal processing system, and are sequentially wound on the excitation coils in reverse.
  • the arrangement of the induction coil of the excitation coil of the device can be easily installed, and the overall length of the sensor is greatly shortened, which is convenient for preparation and use;
  • the induction coil is sequentially wound on the excitation coil, and can quickly detect the magnetic field disturbance generated when the particulate matter passes through the induction coil, thereby achieving the function of detecting metal particulate matter;
  • the induction coil is reversely wound on the excitation coil. Since the two induction coils are close to each other, the environment can be considered consistent, which can suppress temperature drift, electromagnetic interference and improve signal stability in a complicated and harsh environment. Sex, further improve system performance.
  • the number of the excitation coils is one for generating a magnetic field. In other embodiments, the number of excitation coils may also be two or more, but it needs to be wound in the same direction to prevent mutual interference of magnetic fields and affect the measurement effect.
  • the number of the induction coils is two. Through this setting method, the detection accuracy can be effectively improved, and the detection effect is better. Or in other embodiments, the number of the induction coils is an even number, for example four, six or more, on the one hand, the same detection effect can be achieved, and on the other hand, the average value can be obtained by performing multiple measurements. The way to improve the reliability of detection.
  • the material of the detecting pipe is made of a non-magnetic material; more specifically, the material of the detecting pipe is made of stainless steel.
  • the material of the pipe is made of non-magnetic material, which is used to more accurately measure the magnetic field disturbance generated by the metal particles on the excitation coil. During the test, it is necessary to ensure that the magnetic field generated by the excitation coil passes through the middle of the pipeline to increase the strength of the magnetic field in the pipeline. More preferably, it is made of a non-magnetic stainless steel material, which is satisfactory, but is not limited to this material.
  • Embodiment 3 Metal particle detecting device in a detection system for concentration of non-metallic particles in a fluid
  • FIG. 3 is a cross-sectional structural view showing a second preferred embodiment of the metal particle detecting device in the detecting system of the present invention; the difference between this embodiment and the first embodiment is that, as shown in FIG. 4, A spacer sleeve 25 is further disposed between the excitation coil and the induction coil in the detecting device, that is, the excitation coil is jacketed with a spacer sleeve, and the induction coil is wound around the spacer sleeve. Above. And a shielding ring 26 is further disposed outside the induction coil.
  • both technical solutions may be implemented together, or only one may be implemented, as needed.
  • both solutions are implemented, that is, a spacer sleeve and a shield ring are provided, which is a more preferred embodiment.
  • the spacer sleeve which is mainly used for the isolation of the excitation coil and the induction coil during the production process; on the other hand, the spacer sleeve can be used as the skeleton of the induction coil at the same time, which can improve the winding of the induction coil. Flatness.
  • the spacer sleeve is made of a non-magnetic material, and the magnetic field loss between the induction coil and the excitation coil is minimized in the process of inducing magnetic field disturbance of the induced metal particles, thereby improving the detection of metal particles. Accuracy, so use a non-magnetic material here.
  • the shielding ring is provided, and the function is to provide a shielding ring outside the induction coil to isolate the external magnetic field and resist the interference of the external magnetic field, so that the detection result is more accurate and the detection effect is better.
  • the implementation principle of the device is as follows:
  • an alternating magnetic field By inputting a sinusoidal alternating signal across the excitation coil, an alternating magnetic field can be generated; under the action of the alternating magnetic field, an alternating signal can be generated at both ends of the induction coil.
  • the metal material can be roughly classified into antimagnetic ( ⁇ 1), paramagnetic (>1), and ferromagnetic (>>1). Among them, the diamagnetic material weakens the magnetic field, the paramagnetic material makes the magnetic field stronger, and the ferromagnetic material greatly increases the magnetic field strength.
  • the inverting outputs of the two induction coils are connected to measure the output signals at the other ends. When no metal particles pass through the inside of the excitation coil, the induced signals of the two induction coils are reversely cancelled, and the overall output of the system is zero.
  • metal particles (ferromagnetic material) pass through the inside of the excitation coil from left to right, they are divided into the following processes:
  • the first induction coil changes more sensitively, the voltage value rises first, and the second induction coil changes slowly, at which time a rising positive voltage is output across the induction coil;
  • the second induction coil is also affected.
  • the voltage generated by the first induction coil is gradually balanced by the voltage generated by the second induction coil, gradually decreasing, in the first induction coil and the first The second induction coil drops to 0 in the middle;
  • the sensor device when metal particles pass through the oil pipeline from left to right, the sensor device can detect a signal similar to a sine wave whose amplitude is proportional to the size of the particles, and the period is proportional to the flow velocity of the particles, thereby calculating the flow rate. .
  • Embodiment 4 (a particulate matter detecting device in a detection system for concentration of non-metallic particles in a fluid)
  • FIG. 7 is a schematic structural view of a more preferred embodiment of a particulate matter detecting device in the detecting system of the present invention, comprising: a detecting duct 3 that allows a light beam to achieve incident and exit of a fluid in the tube; 11, for outputting an incident beam; a scattering detector 12 for detecting a scattered beam.
  • the scattering detector is disposed at a vertical plane position of the output beam of the laser tube, and the scattering detector, the detecting pipeline, and the laser tube form a right angle shape at three points.
  • the detecting device further includes a motor 13 as a driving device, the motor being coupled to the laser tube to drive the movement of the laser tube.
  • the motor drives the movement of the laser tube through the gear 131 and the rack 132.
  • the laser tube is controlled by the motor, the gear and the rack to be at the lowermost end of the stroke, the liquid in the lowermost layer of the pipeline is detected, and the distribution of the lowest layer of the particulate matter is analyzed; then the laser tube is moved at a constant speed by controlling the motor driving program.
  • the laser light path is scanned in the pipeline, and the output signal of the photodetector is collected, and the situation of the particulate matter in different layers in the pipeline is analyzed, thereby realizing the function of dynamically analyzing the distribution of the particulate matter in the pipeline.
  • the relatively small particles a and the relatively large particles b in the figure may cause stratification of the particles due to different masses, and the device may move the beam to cover the fluid incident into the detection pipe by the device.
  • different particles are scattered and transmitted differently, which makes the detection result of the photodetector more comprehensive and accurate, and further improves the detection accuracy by detecting the transparency of the fluid and the concentration of the particles in the next step.
  • the laser tube is set to be movable so that the output beam thereof can cover the detection pipe, thereby detecting the particles flowing through the entire detection pipe, further achieving the technical effect of improving the detection accuracy and accuracy.
  • the movement mode of the laser tube is gear movement.
  • the movement mode may also be a screw movement or the like.
  • the moving range of the laser tube is the diameter distance of the cross section of the detecting pipe.
  • the detecting pipe can be covered to a greater extent, so that the fluid in the pipe can be fully covered by the light beam, thereby fully detecting the particles in each layer and improving the detection. Precision.
  • the range of motion may be determined on a case-by-case basis, and is not limited to the preferred embodiment of the embodiment.
  • the movement of the laser tube is moved at a constant speed.
  • the signal of collecting particulate matter will be relatively stable, which makes the detection and analysis results more accurate.
  • the scattering detector is disposed at a vertical plane position of the laser tube, the scattering detector, the detecting pipeline, the laser
  • the three points of the tube form a right angle shape.
  • the above-described technical effects can also be achieved by the scattering detector setting position not being on the same line as the laser tube output beam.
  • Example 5 (Method for detecting concentration of fluid non-metallic particles)
  • S1 fluid particle concentration detection, specifically including:
  • S2 detection of fluid metal particle concentration, specifically including:
  • Fluid non-metallic particulate concentration fluid particulate matter concentration - fluid metal particulate matter concentration.
  • the certain time period in the S1 may refer to any time period, and may be selected according to actual conditions.
  • the above is the basic implementation method of the detection method.
  • the inventors have solved the technical defects mentioned in the background art and more accurately detected the concentration of non-metallic particles in the fluid, and made the following improvements: (1) Improved particle morphology detection The device is applied and the detection accuracy of the concentration of the particles in the fluid is improved. (2) The improved metal particle detecting device improves the detection accuracy of the metal particle concentration in the fluid. (3) Improved method for detecting fluid concentration of particulate matter, including access detecting device outputs scattering noise floor value U of the background noise, and eliminate the influence of the background noise value caused by the subsequent detection calculation process, increasing the fluid particle density detection The accuracy of the calculation. Through the above improvements, the detection accuracy of increasing the concentration of non-metallic particles in the fluid is achieved.
  • the above is a preferred embodiment of the basic embodiment of the technical solution.
  • the beneficial effect of the basic embodiment is that three groups of fluid concentration, metal particle concentration and non-metallic particle concentration can be obtained by measurement of primary equipment.
  • the data improves the detection efficiency, and the improvement of each device of the system can effectively improve the detection efficiency and accuracy.
  • the method for detecting the concentration of the non-metallic particles may be any combination of the following methods for detecting the concentration of the respective metal particles and the method for detecting the concentration of the particles in the respective fluids, that is, only the preferred embodiments of the two detection methods are respectively shown, and the combination of the two is not shown.
  • the non-metallic particle concentration detecting method may be a combination of any of the preferred methods of the two detecting methods.
  • Embodiment 6 Method for detecting fluid particle concentration in a method for detecting concentration of fluid non-metallic particles
  • This embodiment is a preferred embodiment of the method for detecting the concentration of fluid particles in the method for detecting the concentration of fluid non-metallic particles in the present solution.
  • the standard particles are selected from particles having a particle diameter of 10 ⁇ m, and the corresponding voltage signal is U 10 ⁇ m .
  • the inventors can effectively balance the detection accuracy and the detection sensitivity by using particles having a diameter of 10 ⁇ m as standard particles, on the one hand, the detection accuracy can be improved, and on the other hand, the detection sensitivity can be improved.
  • the method for extracting the effective signal is to compare the collected signal with the scattered noise floor value, and select a signal larger than the scattering noise value as the effective signal.
  • the collected signal is compared with the previously collected scattering bottom noise value, and the signal larger than the scattering bottom noise value is used as an effective signal, so that the collected signal is more practical, and the subsequent measurement result is more accurate.
  • the step of obtaining the number of particles by threshold analysis in the step S13 includes:
  • the collected signal U x is compared with the bottom noise value U noise . If the U x -U noise floor is > 0, the count is incremented by 1. If the U x -U noise floor is ⁇ 0, the count is zero.
  • the inventor selects the counting method preferably by comparing the signal value with the noise floor value, instead of counting the numbers read by the signal value, so that the error caused by the bottom noise value can be eliminated, that is, only The signal when the U x -U noise floor > 0 is counted as a particulate matter, so that the detection result is more accurate, and the detection precision of the particle concentration is improved.
  • the step of acquiring the concentration of the particles in the S14 comprises:
  • V x volume of unknown particles
  • K sensor correction factor
  • V 10um standard particle volume
  • U x particle volume output voltage amplitude of unknown volume
  • U 10um standard particle output voltage amplitude
  • the consideration of removing the influence of the noise floor value is also included, so that the detection result is more accurate.
  • the calculation formula of the above-mentioned particulate matter includes the factor of subtracting U noise from U x and the noise of U 10um minus U noise , which can make the calculated particle volume closer to the actual value and improve the calculation of the particle concentration in the fluid. Accuracy.
  • the particles are defaulted to the particles commonly found in fluids, and the relative density is brought into, and the mass of the individual particles can be converted.
  • the total mass of the particles in the current time period can be obtained by accumulating the mass of the particles for a period of time based on the calculation of a single particle:
  • Embodiment 7 Method for detecting concentration of fluid metal particles in a method for detecting concentration of fluid non-metallic particles
  • This embodiment is a preferred embodiment of the method for detecting a concentration of a fluid metal particle in the method for detecting a concentration of a fluid non-metallic particulate according to the present embodiment, and detecting the concentration of the metal particle in the S2 includes the following steps:
  • the mass m of a metal, metal elapsed time t, and using the pipe cross-sectional area S is calculated by the following equation particulate metal concentration c:
  • the method of obtaining the metal particle flow rate v metal comprises the steps of:
  • the flow rate is measured according to the formula:
  • the highest point of the positive and negative half-cycle of the signal is selected as the time recording point for the flow rate analysis.
  • the length L of the pipeline is constant, and is extracted by sampling time, T1, T2, T3, where T1 is the time when the signal passes the highest point of the positive half cycle, and T2 is the time when the signal passes the zero point.
  • T3 is the moment when the signal passes the highest point of the negative half cycle, as shown in Figure 5; the flow rate can be obtained:
  • L is the total length through the induction coil and L/2 is the length of the coil passing through the two half cycles.
  • the above is the speed calculated when passing a set of induction coils.
  • the amplitude of the signal is related to the size of the metal particles. According to the cylindrical metal particles passing through the inside of the spiral tube at a constant speed, the induced electromotive force generated is:
  • V the volume of the particles
  • v the flow rate of the particles.
  • the induced voltage E caused by the metal particles passing through the coil induction coil is proportional to the volume V of the particulate matter, the magnetic permeability, the velocity v of the passage, and the third order of the coil density of the coil. Just proportional.
  • the volume and mass of the metal abrasive particles flowing through the oil pipeline can be converted.
  • the concentration of the metal particles is measured under the condition that the oil flow rate v is obtained, as follows:
  • the metal particle concentration can be obtained, that is, by the formula:
  • the frequency of the output signal of the signal detection system acquired in the S21 is 1 ms.
  • the frequency of the output signal is 500 Hz.
  • the sampling frequency is greater than 2 times of the highest frequency of the signal, so that the complete information of the signal can be preserved without distortion, so the sampling frequency of 1K is selected here. That is, 1 s is taken with 1000 valid signals (1 ms one) for analysis.
  • the induction coils when the plurality of sets, the velocity v of metal particles through the metal through the induction coil is the average velocity of the induction coil in each group.
  • the flow velocity vgn (where n is a positive integer) of the metal particles passing through the gn group induction coils is respectively calculated, and the flow velocity v metal is an average value of the flow rates of the respective groups of induction coils, that is:
  • the calculation method of the average value can improve the calculation accuracy of the flow rate, and the calculation result is more accurate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

一种流体非金属颗粒浓度的检测系统及检测方法,其中检测系统包括颗粒物形态检测装置(1)、金属颗粒检测装置(2)和检测管道(3),颗粒物形态检测装置(1)和金属颗粒检测装置(2)相互连接并且绕制于检测管道(3)上。检测方法包括S1:流体颗粒物浓度检测;S2:流体金属颗粒物浓度检测;S3:流体非金属颗粒物浓度检测。该检测系统和检测方法,可以更为准确地检测到流体内非金属颗粒物的浓度,提高检测准确度。

Description

一种流体非金属颗粒浓度的检测系统及方法 技术领域
本发明涉及流体检测技术领域,尤其涉及一种流体非金属颗粒浓度的检测系统,进一步地,提供应用该检测系统的检测方法。
背景技术
目前,检测流体内检测金属颗粒物浓度所采用的方法有多种,但检测流体内非金属颗粒浓度的方法则较少。有些方法直接测量非金属颗粒物质,但由于流体内颗粒物的形态、材质各异,且很容易相互影响,往往导致测量结果不佳。因此,分别测量流体内总的颗粒信息和金属颗粒再进行相减成为一种优选的实施方式。
对于流体内金属颗粒的检测来说,其中利用电磁感应原理检测金属颗粒是一种较常用的方法。具体来说,通常的应用电磁感应原理检测金属颗粒的装置往往采用两反向绕制的励磁激励线圈作为激励源,产生两强度相同方向相反的磁场,在无磁场扰动的情况下,两线圈中间的净磁场为零;在中间绕制一感应磁场变化的感应线圈,用于感应金属颗粒造成的磁场扰动。虽然这种装置能够实现金属颗粒的电磁检测,但是该装置仍存在以下缺陷:
(1)为了建立磁场平衡和感应金属颗粒磁场信号,需要两个反向的激励线圈,一个感应线圈,其设计使传感器长度较长,不利于实际的设计制备和安装使用;
(2)仅采用一个磁感线圈,在使用电磁感应进行磁场平衡时,激励线圈(励磁线圈)外部的磁场衰减比较明显,小颗粒物在激励线圈上产生的磁场扰动,反应在外部的感应线圈上时,往往已经衰减了很多,故对微小颗粒物的检测精度不足,影响检测效果,进而影响流体内颗粒物浓度的检测精度。
而对于流体颗粒物检测来说,在现有的颗粒物形态检测装置的技术中,激光管往往是固定的,而颗粒物由于大小不一,因此在同一滑油管道横截面中颗粒物的分布往往不是均匀的,因此固定的激光管设置可能出现检测平面固定单一,难以精确实现对滑油中颗粒物形态的检测的技术问题,从而使得滑油中颗 粒物浓度的测量精准度不够。
发明内容
为了克服现有技术的不足,本发明所解决的技术问题是(1)提供一种能提高流体内非金属颗粒物浓度检测精度的检测系统;(2)提供应用该检测系统,使得浓度检测更加准确的检测方法。
为解决上述第一个技术问题,本发明所采用的技术方案内容具体如下:
一种流体内非金属颗粒浓度的检测系统,所述检测系统包括颗粒物形态检测装置、金属颗粒检测装置和检测管道,所述颗粒物形态检测装置和金属颗粒检测装置相互连接并且绕制于所述检测管道上;
所述颗粒物形态检测装置包括:激光管,用于输出入射光束;散射探测器,用于检测流体出射光束;
所述金属颗粒检测装置包括信号检测系统、激励线圈,以及正偶数个感应线圈,所述激励线圈与所述信号处理系统连接并绕制于所述检测管道上;所述感应线圈均与所述信号处理系统连接,依次并彼此反向绕制于所述激励线圈上;
所述检测管道,其允许颗粒物形态检测装置的光束实现对其管内流体的入射和出射。
需要说明的是,对于金属颗粒检测装置来说。在现有的电磁感应检测颗粒物的装置技术方案中,安装的方式通常是需要两个反向的励磁激励线圈,一个感应线圈,两个激励线圈反向外绕制在管道两端,感应线圈绕制在两激励线圈中间。而在本技术方案中,该装置的激励线圈外绕制感应线圈的设置方式,能够达到安装方便,并且使得传感器整体长度大大缩短的效果,便于制备和使用。
激励线圈与信号检测系统连接,信号检测系统会在激励线圈两端输入一个正弦交变信号,产生一个交变磁场,驱动感应线圈。另外,将感应线圈绕制在所述检测管道上,能够检测颗粒物的情况,不需要将传感器直接接触管内的液体,使得测试更为方便。
为实现提高检测精度的效果,发明人在本实用新型方案中采用了正偶数个磁感线圈的方案。在以往的技术方案中,磁感线圈通常情况下只采用一个进行绕制。虽然采用一个磁感线圈看似节省了成本,但实际上由于感应线圈位于两个激励线圈的中间,感应颗粒物通过激励线圈产生的磁场扰动;而感应线圈在离激励线圈较远,往往造成磁场衰减较大,造成测得感应的颗粒物的大小精度 不足。
而在本技术方案中,采用了激励线圈,以及正偶数个的感应线圈进行对激励线圈的绕制,以确保检测精度。所述激励线圈用于产生磁场,因此优选用一个激励线圈进行绕制。而采用正偶数个感应线圈,例如两个,或者说一组感应线圈,可以适应于发明人随后设定的算法,依靠观测及输入通过两个感应线圈所得的磁场变化情况,计算金属颗粒的浓度。
所述感应线圈依次绕制于所述激励线圈上。这种设置方式能够快速的检测到颗粒物通过感应线圈时产生的磁场扰动,达到检测金属微粒物的功能。
所述感应线圈反向绕制在所述激励线圈上。由于两个感应线圈距离较近,所处环境可认为一致,能够在复杂、恶劣的环境下抑制温度漂移、电磁干扰,提高信号稳定性,进一步提高系统性能。
需要说明的是,一个线圈指的是一段两端与信号检测系统连接并绕制于检测管道的线圈。
需要说明的是,所述依次绕制指的是在检测管道方向上,,例如两个感应线圈其中一个绕制完成后,在该方向的下一个位置绕制另一个感应线圈,即感应线圈每个之间不互相重合绕制于检测管道,而是各自独立绕制于所述检测管道上。
需要说明的是,所述反向绕制指的是两感应线圈在绕制时,彼此不重合地绕制于激励线圈外,方向上一个采用顺时钟绕制,另一个采用逆时针绕制。
需要说明的是,这里所指的检测颗粒物,是指通过电磁感应的方式将如金属颗粒物进行检测,检测其流动的情况,便于进一步分析液体中金属颗粒物的浓度等数据。
需要说明的是,所述信号检测系统是用于检测电磁感应情况,在一种可选的实施方式中,其包括控制电路板、信号输出端口等。应当不限于信号检测系统的组成方式,只要能够检测感应线圈电磁变化的机构均应被视为属于信号检测系统。
优选地,所述感应线圈的数量为两个或四个或六个。
为使安装制造成本和确保检测精度达到最优的平衡,会优选将感应线圈的数量设置为两个。
又或者,将感应线圈的数量设置为四个或六个等,可以在测量过程中进行多次测量求平均值,能提高检测的可靠性。
优选地,所述激励线圈为两个或多个,各个激励线圈同向绕制于所述检测管道上。
需要说明的是,所述同向绕制指的是各个激励线圈均顺时针或均逆时针绕制与所述检测管道之上。通过这种方式的设置,可以加大磁场强度,同时通过同向绕制的方式可以防止激励线圈之间的互相干扰,影响磁场的稳定性。
进一步优选地,所述激励线圈和/或感应线圈采用至少一层的方式进行绕制。
激励线圈和/或感应线圈采用至少一层(即多层)绕制的方式,能进一步使激励线圈产生的磁场强度增强,感应线圈上产生的信号更加明显,有利于提高金属颗粒物的检测精度。
优选地,所述激励线圈和所述感应线圈之间还设置有隔环套筒;
进一步优选地,所述隔环套筒的材质是非导磁材料。
在激励线圈与感应线圈之间加装一个隔环套筒,用于隔离激励线圈与感应线圈。这里选用不导磁材料,主要用于生产制作过程中激励线圈与感应线圈绕制的隔离,在感应金属微粒物产生磁场扰动的过程中,尽量减少感应线圈与激励线圈之间的磁场损耗,有利于提高金属颗粒物的检测精度,故在此处选用不导磁材质;同时作为感应线圈绕制的骨架,能够提高感应线圈绕制的平整度。
优选地,所述感应线圈外还设有屏蔽环。
在感应线圈之外设置有屏蔽环可以隔离外部的磁场,抗外部磁场的干扰,使得检测结果更准确,检测效果更好。
优选地,所述颗粒物形态检测装置还包括用于驱动所述激光管移动的驱动装置。
需要说明的是,对于颗粒物形态检测装置来说。在现有的颗粒物形态检测装置中,激光管是固定的,而所输出的光束也固定在某一位置上,故其检测的颗粒物仅局限于该位置上的颗粒物。由于颗粒物的质量不同,会导致颗粒物根据质量大小在流体中形成分层,现有装置会导致检测范围较窄,检测到的颗粒物相对局部,从而导致所检测出的流体透明度和颗粒物浓度也并不够精确。因此发明人创新性地提出将之前固定的激光管设置为可移动的,所述驱动装置用于驱动所述激光管移动,使得其输出的光束可以覆盖检测管道,从而对整个检测管道的流经的颗粒物进行检测,进一步达到提高检测精度和准确度的技术效果。
进一步优选地,所述驱动装置是电机;
作为其中一种实施方式,可以在检测装置中设置有电机,用于驱动所述激光管进行移动,进而导致输出的入射光束的移动。
更进一步地,所述激光管的移动方式是丝杆移动或齿轮移动。
所述丝杆移动是指,在其中一种实施方式中,将螺母设置在激光器上,所述电机驱动螺杆与所述螺母配合实现移动。
所述齿轮移动是指,电机和激光管均设有齿轮状结构部件相互配合实现移动。
优选地,所述激光管的移动范围是所述检测管道横截面的直径距离。
将激光管的移动范围设定为检测管道横截面的直径距离,可以在更大程度上覆盖检测管道,使得管道内的流体能够被光束充分覆盖,从而达到对各层颗粒物的充分检测,提高检测的精度。
优选地,所述激光管的移动是匀速移动的。
在匀速运动的过程中,采集微粒物的信号会比较平稳,使得检测、分析的结果精度更高。
优选地,所述散射探测器设置位置与所述激光管输出光束不在同一直线上;
散射探测器用于识别颗粒物的大小和形状。在优选的实施方式中,所述散射探测器的设置位置与所述激光管输出光束不在同一直线上。因为当散射探测器设置位置与所述激光管输出光束在同一直线上时,所述散射探测器接收光束的灵敏度较低,而且很容易受到直射光束的干扰。而不在同一直线上,可以降低光束的干扰,使得散射光束检测更为准确。
进一步优选地,所述散射探测器设置于所述激光管输出光束的垂直面位置,所述散射探测器、所述检测管道、所述激光管三点形成一个直角形状。
经实验表明,通过上述位置关系的设置,可以在更大程度上避免直射光束的干扰,保证散射光束检测准确。
为解决上述第二个技术问题,本发明所采用的技术方案内容具体如下:
一种应用如上所述检测系统的流体非金属颗粒物浓度的检测方法,所述方法包括以下步骤:
S1:流体颗粒物浓度检测,具体包括:
S11:往检测管道中通入纯净的流体,获取颗粒物形态检测装置输出的散射底噪值U 底噪
S12:往检测管道中通入待测流体,获取颗粒物形态检测装置输出的散射信号,获取标准颗粒物的电压信号;
S13:对流体进行一定时间段内的信号采样,提取其中的有效信号,对采样得到的有效信号U x进行阈值分析,并获取该时间段内出现的颗粒物个数;
S14:根据S13颗粒物个数,获取流体内颗粒物的浓度;
以及,
S2:流体金属颗粒物浓度检测,具体包括:
S21:获取所述信号检测系统的输出信号,得到电压幅度变化情况;
S22:根据所获得的电压幅度变化情况,检测金属颗粒浓度;
以及,
S3:流体非金属颗粒物浓度检测,具体包括:
获取S1中所得的流体颗粒物浓度和S2中所得的流体金属颗粒物浓度,通过作差得到流体非金属颗粒物浓度,即:
流体非金属颗粒物浓度=流体颗粒物浓度-流体金属颗粒物浓度。
需要说明的是,所述S1中的一定时间段内可指任意时间段内,可根据实际情况选取。
发明人为解决背景技术中提到的技术缺陷,达到更准确地检测流体内非金属颗粒物的浓度,做出了以下几项改进:
(1)改进颗粒物形态检测装置并进行应用,提高了流体内颗粒物浓度的检测精度。
(2)改进金属颗粒物检测装置,提高了流体内金属颗粒物浓度的检测精度。
(3)改进流体颗粒物浓度的检测方法,包括获取检测设备输出的散射底噪值U 底噪,并在后续检测计算过程中对该底噪值所造成的影响进行剔除,提高流体内颗粒物浓度检测计算的准确度。
通过上述改进,从而达到提高流体内非金属颗粒物浓度的检测精度。
优选地,在S1中,所述标准颗粒物选取颗粒物直径为10μm的颗粒,对应的电压信号为U 10μm
在本技术方案中,优先选取直径为10μm的颗粒作为标准颗粒物能够一方面提高检测精度,另一方面提高检测的感应度。如果颗粒物过大,会导致后续计算浓度的检测精度降低,而如果颗粒物过小,设备检测的感应度会降低,导致无法检测到颗粒物的情况。因此发明人将直径为10μm的颗粒作为标准颗粒 物能够有效平衡检测精度和检测感应度,使得检测过程更为准确。
优选地,在S1中,所述提取有效信号的方法为将采集的信号与所述散射底噪值进行对比,选取大于散射底噪值的信号作为有效信号。
在本技术方案中,需要选取有效信号作为后续计算的依据,否则会影响检测计算结果的准确度。发明人选取了一种简单而有效的选取有效信号的方式,即将采集到的信号与之前采集到的散射底噪值进行对比,将大于散射底噪值的信号作为有效信号,使得采集到的信号更具有实用性,使得后续测量结果更具准确性。
优选地,所述S13中通过阈值分析获取颗粒物个数的步骤包括:
将采集到的信号U x与底噪值U 底噪进行比较,若U x-U 底噪>0,则计数加1,若U x-U 底噪<0,则计数为零。
在本步骤中,发明人选择计数的方式优选为将信号值与底噪值进行比较,而不是将信号值读取的数字之间进行计数,这样可以消除底噪值带来的误差,即只将U x-U 底噪>0时的信号作为颗粒物进行计数,使得检测结果更为准确,提高颗粒物浓度的检测精度。
优选地,所述S14中颗粒物浓度的获取步骤包括:
S141:计算颗粒物的体积V x
Figure PCTCN2018118697-appb-000001
其中,V x:未知颗粒的体积;K:传感器修正系数;V 10um:标准颗粒物体积;U x:未知体积的颗粒物输出电压幅值;U 10um:标准颗粒物输出电压幅值;
S142:获取流体颗粒物浓度:
获取流体流速v、检测管道横截面积S,并将一段时间t经过的颗粒个数和体积,转换成总质量m ,即可通过下列公式获取到颗粒物浓度c
Figure PCTCN2018118697-appb-000002
需要说明的是,所述传感器修正系数K指的是在传感器的标定使用过程中,难免出现底噪标定偏移,测量出现误差的情况,在此处引入一个微调的修正系数K,对此进行小幅微调;也有可能在选取标准颗粒物时,颗粒物并不完全标准,导致一些细微的体积计算误差,引入修正系数后也能一并修正。
本步骤中,同样包括了去除底噪值影响的考虑,使得检测结果更为精确。如上述颗粒物的计算公式中就包括了将U x减去U 底噪,以及U 10um减去U 底噪的因素,可以使得计算出的颗粒物体积更为接近实际值,提高流体内颗粒物浓度的计算准确度。
优选地,所述S2中检测金属颗粒浓度包括以下步骤:
获取金属颗粒经过感应线圈的流速v 金属
获取金属颗粒的质量m 金属
根据上述所得金属颗粒的流速v 金属、质量m 金属,经过时间t 金属,并利用管道横截面积S,通过以下公式计算得出颗粒物的浓度c 金属
Figure PCTCN2018118697-appb-000003
在获取金属颗粒质量m 金属的过程中,在单层密绕线圈中,金属颗粒物经过螺旋管感应线圈时引起的感应电压E与颗粒物的体积V、磁导率、通过的速度v 金属成正比、线圈绕制的匝数密度的3次方成正比。通过对传感器的输出信号进行定量分析,即可换算出流过滑油管道的金属颗粒的体积、质量。
需要说明的是,经过时间t 金属指的是金属颗粒在管道中在某一段距离经过所需要的时间,可对应于在不同幅值之间所经过的时间,或者是经过不同幅值时刻的差值。
优选地,获取所述金属颗粒流速v 金属的方法包括以下步骤:
分别记录信号处理系统测得金属颗粒经过一组感应线圈时电压幅值在正半周最高点与过零点的时刻,算得其时间差值ΔT1,以及相对应的感应线圈长度L1;分别记录信号处理系统测得电压幅值在过零点与在负半周最高点的时刻,算得其时间差值ΔT2,以及相对应的感应线圈长度L2;
根据公式测得流速:
Figure PCTCN2018118697-appb-000004
需要说明的是,所述L1指的是电压幅值在正半周最高点与过零点这一通过过程中感应线圈长度;所述L2指的是电压幅值在过零点与在负半周最高点这一通过过程中感应线圈长度。
k1指的是经过一个线圈时的修正系数;k2指的是经过另一个线圈时的修正 系数。
由于每个滑油传感器的线材(粗细、材质),绕线匝数,两感应线圈相互作用等不同因素,对输出信号产生影响,使其不再感应线圈的中间部分,故引入修正系数k1或k2,对其进行修正。
更具体地说,在铁磁性颗粒物经过两感应线圈的过程中,依次通过感应线圈1和感应线圈2,在通过感应线圈1的时候,若不考虑感应线圈2对其产生的影响,输出信号最高点应该在感应线圈1的中间部分,而引入感应线圈2以后,感应线圈2产生的磁场会对输出信号的最高点产生影响,使其进行微小的偏移。
优选地,若感应线圈有多组,则金属颗粒经过感应线圈的流速v 金属为经过各组感应线圈流速的平均值。
例如所述S1中分别计算金属颗粒经过第gn组感应线圈的流速vgn(其中n为正整数),所述流速v 金属为各组感应线圈流速的平均值,即:
Figure PCTCN2018118697-appb-000005
通过平均值计算的方法可以提高该流速的计算精度,使得计算结果更为准确。
优选地,所述S21中获取所述信号检测系统的输出信号的频率为1ms一次。
获取频率为1ms一次的有益效果在于:输出信号的频率为500Hz,根据采样定理,采样频率要大于信号最高频率的2倍,才能无失真的保留信号的完整信息,故在此选用1K的采样频率,即1s采1000个有效信号(1ms一个)进行分析。
与现有技术相比,本发明的有益效果在于:
1、本检测系统集成了金属颗粒检测装置和颗粒物形态检测装置,可以通过上述两装置的检测结果直接获取流体非金属颗粒的相关信息,并且获取的信息方便、快捷、准确;
2、本检测系统中的金属颗粒检测装置的激励线圈外绕制有感应线圈,能够达到安装方便,并且使得传感器整体长度大大缩短的效果,便于制备和使用;
3、本检测系统中的金属颗粒检测装置的感应线圈绕制在所述检测管道上,能够检测测量颗粒物的情况,不需要将传感器直接接触管内的液体,使得测试更为方便;
4、本检测系统中的金属颗粒检测装置采用了至少两个的感应线圈进行对激 励线圈的绕制,以确保检测精度;
5、本检测系统中的金属颗粒检测装置采用在激励线圈与感应线圈之间加装一个隔环套筒,用于隔离激励线圈与感应线圈,减少感应线圈与激励线圈之间的磁场损耗;同时作为感应线圈绕制的骨架,能够提高感应线圈绕制的平整度;
6、本检测系统中的金属颗粒检测装置在感应线圈之外设置有屏蔽环可以隔离外部的磁场,抗外部磁场的干扰,使得检测结果更准确,检测效果更好;
7、本检测系统中的颗粒物形态检测装置,将激光管设置为可移动的,使得其输出的光束可以覆盖检测管道,从而对整个检测管道的流经的颗粒物进行检测,进一步达到提高检测精度和准确度的技术效果;
8、本检测系统中的颗粒物形态检测装置,优选将装置还包括电机,所述电机与所述激光管连接,从而驱动所述激光管进行移动,可实现激光管的可移动;
9、本检测系统中的颗粒物形态检测装置,将激光管的移动范围设定为检测管道横截面的直径距离,可以在更大程度上覆盖检测管道,使得管道内的流体能够被光束充分覆盖,从而达到对各层颗粒物的充分检测,提高检测的精度;
10、本检测系统中的颗粒物形态检测装置,所述激光管的移动是匀速移动的,在匀速运动的过程中,采集微粒物的信号会比较平稳,使得检测、分析的结果精度更高。
11、本发明的检测方法,在颗粒物浓度计算步骤中,包括了去除底噪值影响的考虑,可以使得计算出的颗粒物体积更为接近实际值,提高流体内颗粒物浓度的计算准确度;
12、本发明的检测方法,选取直径为10μm的颗粒作为标准颗粒物能够一方面提高检测精度,另一方面提高检测的感应度;
13、本发明的检测方法,将采集到的信号与之前采集到的散射底噪值进行对比,将大于散射底噪值的信号作为有效信号,使得采集到的信号更具有实用性,使得后续测量结果更具准确性。
14、本发明的检测方法,发明人选择计数的方式优选为将信号值与底噪值进行比较,而不是将信号值读取的数字之间进行计数,使得检测结果更为准确,提高颗粒物浓度的检测精度;
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如 下。
附图说明
图1(a)为本实用新型检测系统一种优选实施方式的剖面结构示意图;
图1(b)为图1(a)检测系统中颗粒物形态检测装置部分的右视图;
图2为本实用新型检测系统中的金属颗粒检测装置的第一种较优选实施方式的剖面结构示意图;
图3为本实用新型检测系统中的金属颗粒检测装置的第二种较优选实施方式的剖面结构示意图;
图4为图3中A区域的局部扩大示意图;
图5为本实用新型检测系统中的金属颗粒检测装置进行电磁感应测试的原理示意图;
图6为图5原理示意图对应的电压输出变化曲线图;
图7为本实用新型检测系统中的颗粒物形态检测装置一种较优选实施方式的结构示意图;
其中,各附图标记为:1、颗粒物形态检测装置;2、金属颗粒检测装置;3、检测管道;11、激光管;12、散射探测器;13、电机;131、齿轮;132、齿条;21、信号检测系统;22、激励线圈;23、第一感应线圈;24、第二感应线圈;25、隔环套筒;26、屏蔽环;a、颗粒;b、颗粒。
具体实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明的具体实施方式、结构、特征及其功效,详细说明如下:
实施例1(一种流体内非金属颗粒浓度的检测系统)
如图1(a)所示,是本实用新型一种流体内非金属颗粒的检测系统的其中一种较优选实施方式的结构示意图,所述检测系统包括颗粒物形态检测装置1、金属颗粒检测装置2和检测管道3,所述颗粒物形态检测装置和金属颗粒检测装置相互连接并且绕制于所述检测管道上;
如图1(a)和图1(b)所示,所述颗粒物形态检测装置包括:激光管11,用于输出入射光束;散射探测器12,用于检测流体出射光束;
所述金属颗粒检测装置包括信号检测系统21、激励线圈22,以及两个感应线圈(分别为第一感应线圈23和第二感应线圈24),所述激励线圈与所述信号处理系统连接并绕制于所述检测管道上;所述感应线圈均与所述信号处理系统连接,依次并彼此反向绕制于所述激励线圈上;
所述检测管道,其允许颗粒物形态检测装置的光束实现对其管内流体的入射和出射。
以上为本技术方案的基础实施方式的其中一种优选实施例,此基础实施例中具有的有益效果是:能够通过一次设备的测量得到流体内颗粒物浓度、金属颗粒物浓度以及非金属颗粒物浓度三组数据,提高检测效率,同时本系统各设备的改进也能够有效提高检测效率和准确度。
出于方便文字及图片说明的考虑,以下分别对金属颗粒检测装置和颗粒物形态检测装置的实施方式以更具体的,不同实施例进行展示。本非金属颗粒检测系统可以是以下各个金属颗粒检测装置实施方式和各个颗粒物形态检测系统实施方式的任意组合,即仅分别展示两检测装置的优选实施方式,并不对两者组合进行展示,非金属颗粒检测系统可以是两检测装置任一优选方式的组合。
获取非金属颗粒物浓度等信号的方法为:分别读取金属颗粒物检测装置和颗粒物形态检测装置所获取的流体金属颗粒物浓度信息、流体颗粒物浓度信息,再将流体颗粒物浓度信息减去流体金属颗粒物浓度信息,即得到非金属颗粒物浓度等信息。
实施例2(一种流体内非金属颗粒浓度的检测系统内的金属颗粒检测装置)
如图2所示,是本实用新型系统中的金属颗粒检测装置的第一种较优选实施方式的剖面结构示意图;
该检测装置包括信号检测系统21、一个激励线圈22,以及两个感应线圈(分别为第一感应线圈23和第二感应线圈24),所述激励线圈与所述信号处理系统连接并绕制于所述检测管道3上;所述感应线圈均与所述信号处理系统连接,依次并彼此反向绕制于所述激励线圈上。
以上为本技术方案的其中一种优选实施方式。此基础实施方式中具有以下
有益效果:
(1)该装置的激励线圈外绕制感应线圈的设置方式,能够达到安装方便, 并且使得传感器整体长度大大缩短的效果,便于制备和使用;
(2)将感应线圈绕制在所述检测管道上,能够检测测量颗粒物的情况,不需要将传感器直接接触管内的液体,使得测试更为方便;
(3)感应线圈依次绕制于所述激励线圈上,能够快速的检测到颗粒物通过感应线圈时产生的磁场扰动,达到检测金属微粒物的功能;
(4)感应线圈反向绕制在所述激励线圈上,由于两个感应线圈距离较近,所处环境可认为一致,能够在复杂、恶劣的环境下抑制温度漂移、电磁干扰,提高信号稳定性,进一步提高系统性能。
在本实施例中,所述激励线圈的数量为一个,用于产生磁场。在其他实施方式中,激励线圈的个数也可以是两个或多个,但需要同向绕制,以防止磁场的相互干扰,影响测量效果。
在本实施例中,所述感应线圈的数量为两个。通过这种设置方式,可以有效提高检测精度,使得检测效果更加良好。或者在其他实施方式中,所述感应线圈的数量为偶数个,例如四个,六个或更多个,一方面能够达到同样检测的效果,另一方面可以通过进行多次测量求取平均值的方式提高检测的可靠性。
在本实施例中,所述检测管道的材质采用的是非导磁材料;更具体地,所述检测管道的材质是不锈钢材质。管道材质采用不导磁材质,是为了更准确的测得金属颗粒物在激励线圈上产生的磁场扰动。在测试过程中需要尽量保证激励线圈产生的磁场从管道中间通过,提高管道中的磁场强度。更优选采用不导磁的不锈钢材质,可满足要求,但不限于此材质。
实施例3(一种流体内非金属颗粒浓度的检测系统内的金属颗粒检测装置)
如图3所示是是本实用新型检测系统中的金属颗粒检测装置的第二种较优选实施方式的剖面结构示意图;本实施例与上述实施例1的区别在于:如图4所示,该检测装置中所述激励线圈和所述感应线圈之间还设置有隔环套筒25,亦即,所述激励线圈外套有一隔环套筒,所述感应线圈绕制于所述隔环套筒之上。以及,所述感应线圈外还设有一屏蔽环26。
上述两个技术方案可以一并实施,也可以只实施一个,视乎需要而定。在本实施例中两个方案均实施,即设有隔环套筒以及屏蔽环,为更加优选的实施方式。
设有隔环套筒,一方面主要用于生产制作过程中激励线圈与感应线圈绕制 的隔离;另一方面隔环套筒可以同时作为感应线圈绕制的骨架,能够提高感应线圈绕制的平整度。作为更进一步的优选,所述隔环套筒选用不导磁材料,在感应金属微粒物产生磁场扰动的过程中,尽量减少感应线圈与激励线圈之间的磁场损耗,有利于提高金属颗粒物的检测精度,故在此处选用不导磁材质。
设有屏蔽环,其作用在于在感应线圈之外设置有屏蔽环可以隔离外部的磁场,抗外部磁场的干扰,使得检测结果更准确,检测效果更好。
下面结合图5和图6,以上述实施例中的设置方式为例,对本装置的实施原理说明如下:
通过在激励线圈两端输入一个正弦交变信号,能产生一个交变磁场;在交变磁场的作用下,感应线圈两端能产生交变信号。
根据材料的导磁性,可以将金属材料大致区分为抗磁质(<1)、顺磁质(>1)和铁磁质(>>1)。其中,抗磁材料使磁场变弱,顺磁材料使磁场变强,铁磁材料大大增加磁场强度。在电路上,将两感应线圈的反向输出端相连,测得另外两端的输出信号。当无金属颗粒经过激励线圈内部时,两感应线圈的感应信号反向抵消,系统整体输出为零。当金属颗粒(铁磁质材料)从左往右通过激励线圈内部时,分为如下几个过程:
(1)金属颗粒物进入第一感应线圈的过程中,第一感应线圈变化较为敏感,电压值先升高,而第二感应线圈变化较为缓慢,此时感应线圈两端输出一个上升的正电压;
(2)随着金属颗粒物向中间靠近,第二感应线圈也受到影响,此时第一感应线圈产生的电压慢慢被第二感应线圈产生的电压平衡,逐渐下降,在第一感应线圈与第二感应线圈中间时降为0;
(3)金属颗粒物穿过第一感应线圈,进入到第二感应线圈,此时第二感应线圈的电压值高于第一感应线圈,出现一个负电压,且电压幅值不断变大;
(4)当颗粒物经过第二感应线圈,流出的过程中,对第二感应线圈造成的影响慢慢减弱,电压幅值慢慢下降,再穿出第二感应线圈一定距离后趋近于0。
依据电磁感应原理,当金属颗粒物从左往右经过滑油管道时,传感器设备能检测出一个类似正弦波的信号,其幅值正比于颗粒物的大小,周期正比于颗粒物的流速,从而计算出流速。
实施例4(一种流体内非金属颗粒浓度的检测系统内的颗粒物形态检测装置)
如图7所示是本实用新型检测系统中的颗粒物形态检测装置的一种较优选实施方式的结构示意图,其包括:检测管道3,其允许光束实现对其管内流体的入射和出射;激光管11,用于输出入射光束;散射探测器12,用于检测散射光束。
所述散射探测器设置于所述激光管输出光束的垂直面位置,所述散射探测器、所述检测管道、所述激光管三点形成一个直角形状。
所述检测装置还包括作为驱动装置的电机13,所述电机与所述激光管相连接以带动所述激光管的移动。所述电机通过与齿轮131和齿条132带动所述激光管的移动。
本检测装置的具体工作过程如下:
装置初始时,通过电机、齿轮、齿条控制激光管位于行程的最下端,检测管道的最下层的液体,分析最下层的微粒物分布情况;然后通过控制电机驱动程序,匀速的移动激光管,使激光光路在管道中呈移动扫描状,同时采集光电探测器的输出信号,分析微粒物在管道中不同层时的情况,实现动态分析管道微粒物分布的功能。对于不同大小的颗粒,如图中的相对较小的颗粒a和相对较大的颗粒b,由于质量不同会导致颗粒的分层,通过本装置可以移动地将光束覆盖入射到检测管道内的流体中,使得不同颗粒物进行不同的散射和透射,使得光电探测器检测的结果更为全面和准确,更能进一步为下一步探测流体的透明度和颗粒物浓度提高检测精度。
在本实施例中,将激光管设置为可移动的,使得其输出的光束可以覆盖检测管道,从而对整个检测管道的流经的颗粒物进行检测,进一步达到提高检测精度和准确度的技术效果。
在本实施例中,所述激光管的移动方式是齿轮移动,在其他的实施方式中,移动方式还可以是丝杆移动等。
在本实施例中,所述激光管的移动范围是所述检测管道横截面的直径距离。将激光管的移动范围设定为检测管道横截面的直径距离,可以在更大程度上覆盖检测管道,使得管道内的流体能够被光束充分覆盖,从而达到对各层颗粒物的充分检测,提高检测的精度。在其他的实施方式中,移动范围可以试具体情况而定,不限于本实施例的优选实施方式。
在本实施例中,所述激光管的移动是匀速移动的。在匀速运动的过程中, 采集微粒物的信号会比较平稳,使得检测、分析的结果精度更高。
在本实施例中,为降低光束的干扰,使得散射光束检测更为准确,所述散射探测器设置于所述激光管的垂直面位置,所述散射探测器、所述检测管道、所述激光管三点形成一个直角形状。在其他优选实施方式中,所述散射探测器设置位置与所述激光管输出光束不在同一直线上也可达到上述技术效果。
实施例5(一种流体非金属颗粒物浓度的检测方法)
一种应用如上所述检测系统的流体非金属颗粒物浓度的检测方法,所述方法包括以下步骤:
S1:流体颗粒物浓度检测,具体包括:
S11:往检测管道中通入纯净的流体,获取颗粒物形态检测装置输出的散射底噪值U 底噪
S12:往检测管道中通入待测流体,获取颗粒物形态检测装置输出的散射信号,获取标准颗粒物的电压信号;
S13:对流体进行一定时间段内的信号采样,提取其中的有效信号,对采样得到的有效信号U x进行阈值分析,并获取该时间段内出现的颗粒物个数;
S14:根据S13颗粒物个数,获取流体内颗粒物的浓度;
以及,
S2:流体金属颗粒物浓度检测,具体包括:
S21:获取所述信号检测系统的输出信号,得到电压幅度变化情况;
S22:根据所获得的电压幅度变化情况,检测金属颗粒浓度;
以及,
S3:流体非金属颗粒物浓度检测,具体包括:
获取S1中所得的流体颗粒物浓度和S2中所得的流体金属颗粒物浓度,通过作差得到流体非金属颗粒物浓度,即:
流体非金属颗粒物浓度=流体颗粒物浓度-流体金属颗粒物浓度。
所述S1中的一定时间段内可指任意时间段内,可根据实际情况选取。
以上是本检测方法的基础实施方式,发明人为解决背景技术中提到的技术缺陷,达到更准确地检测流体内非金属颗粒物的浓度,做出了以下几项改进:(1)改进颗粒物形态检测装置并进行应用,提高了流体内颗粒物浓度的检测精度。(2)改进金属颗粒物检测装置,提高了流体内金属颗粒物浓度的检测精度。(3)改 进流体颗粒物浓度的检测方法,包括获取检测设备输出的散射底噪值U 底噪,并在后续检测计算过程中对该底噪值所造成的影响进行剔除,提高流体内颗粒物浓度检测计算的准确度。通过上述改进,从而达到提高流体内非金属颗粒物浓度的检测精度。
以上为本技术方案的基础实施方式的其中一种优选实施例,此基础实施例中具有的有益效果是:能够通过一次设备的测量得到流体内颗粒物浓度、金属颗粒物浓度以及非金属颗粒物浓度三组数据,提高检测效率,同时本系统各设备的改进也能够有效提高检测效率和准确度。
出于方便文字及图片说明的考虑,以下分别对金属颗粒浓度检测方法和流体内颗粒物浓度检测方法的实施方式以更具体的,不同实施例进行展示。本非金属颗粒浓度检测方法可以是以下各个金属颗粒浓度检测方法实施方式和各个流体内颗粒物浓度检测方法的任意组合,即仅分别展示两检测方法的优选实施方式,并不对两者组合进行展示,非金属颗粒浓度检测方法可以是两检测方法任一优选方式的组合。
实施例6(一种流体非金属颗粒物浓度的检测方法中流体颗粒物浓度检测方法)
本实施例是本方案流体非金属颗粒物浓度的检测方法中流体颗粒物浓度检测方法的优选实施方式,在S1中,所述标准颗粒物选取颗粒物直径为10μm的颗粒,对应的电压信号为U 10μm
在实际选取标准颗粒物的过程中,如果颗粒物过大,会导致后续计算浓度的检测精度降低,而如果颗粒物过小,设备检测的感应度会降低,导致无法检测到颗粒物的情况。因此发明人将直径为10μm的颗粒作为标准颗粒物能够有效平衡检测精度和检测感应度,一方面能够提高检测精度,另一方面能够提高检测的感应度。
结合上述实施方式,在其中一种优选的实施方式中,所述提取有效信号的方法为将采集的信号与所述散射底噪值进行对比,选取大于散射底噪值的信号作为有效信号。
将采集到的信号与之前采集到的散射底噪值进行对比,将大于散射底噪值的信号作为有效信号,使得采集到的信号更具有实用性,使得后续测量结果更具准确性。
结合上述实施方式,在其中一种优选的实施方式中,所述S13中通过阈值 分析获取颗粒物个数的步骤包括:
将采集到的信号U x与底噪值U 底噪进行比较,若U x-U 底噪>0,则计数加1,若U x-U 底噪<0,则计数为零。
在本步骤中,发明人选择计数的方式优选为将信号值与底噪值进行比较,而不是将信号值读取的数字之间进行计数,这样可以消除底噪值带来的误差,即只将U x-U 底噪>0时的信号作为颗粒物进行计数,使得检测结果更为准确,提高颗粒物浓度的检测精度。
结合上述实施方式,在另一种优选的实施方式中,所述S14中颗粒物浓度的获取步骤包括:
S141:计算颗粒物的体积V x
Figure PCTCN2018118697-appb-000006
其中,V x:未知颗粒的体积;K:传感器修正系数;V 10um:标准颗粒物体积;U x:未知体积的颗粒物输出电压幅值;U 10um:标准颗粒物输出电压幅值;
S142:获取流体颗粒物浓度:
获取流体流速v、检测管道横截面积S,并将一段时间t经过的颗粒个数和体积,转换成总质量m ,即可通过下列公式获取到颗粒物浓度c
Figure PCTCN2018118697-appb-000007
本步骤中,同样包括了去除底噪值影响的考虑,使得检测结果更为精确。如上述颗粒物的计算公式中就包括了将U x减去U 底噪,以及U 10um减去U 底噪的因素,可以使得计算出的颗粒物体积更为接近实际值,提高流体内颗粒物浓度的计算准确度。
总质量m 的计算过程如下:
单个颗粒物质量计算
m=ρ*V
这里将颗粒物默认为流体中常见的颗粒物,带入其相对的密度,即可换算得到单个颗粒物的质量。
在单个颗粒物计算的基础上进行一段时间的颗粒物质量累加即可得到当前时间段内的颗粒物总质量:
Figure PCTCN2018118697-appb-000008
实施例7(一种流体非金属颗粒物浓度的检测方法中流体金属颗粒物浓度检测方法)
本实施例是本方案流体非金属颗粒物浓度的检测方法中流体金属颗粒物浓度检测方法的优选实施方式,所述S2中检测金属颗粒浓度包括以下步骤:
获取金属颗粒经过感应线圈的流速v 金属
获取金属颗粒的质量m 金属
根据上述所得金属颗粒的流速v 金属、质量m 金属,经过时间t 金属,并利用管道横截面积S,通过以下公式计算得出颗粒物的浓度c 金属
Figure PCTCN2018118697-appb-000009
在一种更优选的实施方式中,获取所述金属颗粒流速v 金属的方法包括以下步骤:
分别记录信号处理系统测得金属颗粒经过一组感应线圈时电压幅值在正半周最高点与过零点的时刻,算得其时间差值ΔT1,以及相对应的感应线圈长度L1;分别记录信号处理系统测得电压幅值在过零点与在负半周最高点的时刻,算得其时间差值ΔT2,以及相对应的感应线圈长度L2;
根据公式测得流速:
Figure PCTCN2018118697-appb-000010
由于输出信号中,过零点的检测点过多,在实际采样过程中,往往有可能造成误差;所以在本方法中,选取信号的正负半周最高点作为时间记录点,用于流速分析。
在颗粒物流过滑油管道的过程中,管道的长度L是一定的,通过采样时间抽取,T1、T2、T3,其中T1为信号通过正半周最高点的时刻,T2为信号通过零点的时刻,T3为信号通过负半周最高点的时刻,如图5所示;可以得到流速:
Figure PCTCN2018118697-appb-000011
由于每个滑油传感器的线材(粗细、材质),绕线匝数,两感应线圈相互作用等不同因素,对输出信号产生影响,使其不再感应线圈的中间部分,故引入修正系数K,对其进行修正。同时通过T1到T2,T2到T3两个时间段进行分析,取平均流速,减少误差。
Figure PCTCN2018118697-appb-000012
Figure PCTCN2018118697-appb-000013
Figure PCTCN2018118697-appb-000014
其中,L为通过感应线圈的总长度,L/2为分别通过两个半周期的线圈长度。
上述为通过一组感应线圈时所计算得出的速度。
在输出信号中,信号的幅值与金属颗粒物的大小有关。依据圆柱形金属颗粒物匀速的通过螺旋管内部时,产生的感应电动势有:
E=-4kμ 0μ rn 3VI 0ν
其中,k为系统修正系数,n为线圈匝数密度(单位长度的绕制匝数=总匝数/总长度),V为颗粒物体积,v为颗粒物流速。
在单层密绕线圈中,金属颗粒物经过螺旋管感应线圈时引起的感应电压E与颗粒物的体积V、磁导率、通过的速度v成正比、线圈绕制的匝数密度的3次方成正比。通过对传感器的输出信号进行定量分析,即可换算出流过滑油管道的金属磨粒的体积、质量。在获取到滑油流速v的条件下,测得金属颗粒物的浓度,方法如下:
已知管道横截面积S,一段时间t内,通过输出信号的幅值得到经过的金属颗粒数量、大小,转换成总质量m,即可获取到金属颗粒物浓度,即通过公式:
Figure PCTCN2018118697-appb-000015
计算得出。
在更进一步的一种优选实施方式中,所述S21中获取所述信号检测系统的输出信号的频率为1ms一次。
获取频率为1ms一次的有益效果在于:输出信号的频率为500Hz,根据采样定理,采样频率要大于信号最高频率的2倍,才能无失真的保留信号的完整 信息,故在此选用1K的采样频率,即1s采1000个有效信号(1ms一个)进行分析。
在一种更优选的实施方式中,若感应线圈有多组,则金属颗粒经过感应线圈的流速v 金属为经过各组感应线圈流速的平均值。
例如所述S1中分别计算金属颗粒经过第gn组感应线圈的流速vgn(其中n为正整数),所述流速v 金属为各组感应线圈流速的平均值,即:
Figure PCTCN2018118697-appb-000016
通过平均值计算的方法可以提高该流速的计算精度,使得计算结果更为准确。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

Claims (10)

  1. 一种流体非金属颗粒浓度的检测系统,其特征在于,所述检测系统包括颗粒物形态检测装置、金属颗粒检测装置和检测管道,所述颗粒物形态检测装置和金属颗粒检测装置相互连接并且绕制于所述检测管道上;
    所述颗粒物形态检测装置包括:激光管,用于输出入射光束;散射探测器,用于检测流体出射光束;
    所述金属颗粒检测装置包括信号检测系统、激励线圈,以及正偶数个感应线圈,所述激励线圈与所述信号处理系统连接并绕制于所述检测管道上;所述感应线圈均与所述信号处理系统连接,依次并彼此反向绕制于所述激励线圈上;
    所述检测管道,其允许颗粒物形态检测装置的光束实现对其管内流体的入射和出射;
    优选地,所述感应线圈的数量为两个或四个或六个;
    优选地,所述激励线圈为两个或多个,各个激励线圈同向绕制于所述检测管道上;
    优选地,所述激励线圈和/或感应线圈采用至少一层的方式进行绕制;
    优选地,所述激励线圈和所述感应线圈之间还设置有隔环套筒;
    更优选地,所述隔环套筒的材质是非导磁材料;
    优选地,所述感应线圈外还设有屏蔽环;
    优选地,所述颗粒物形态检测装置还包括用于驱动所述激光管移动的驱动装置;
    优选地,所述驱动装置是电机;
    更优选地,所述激光管的移动方式是丝杆移动或齿轮移动;
    优选地,所述激光管的移动范围是所述检测管道横截面的直径距离;
    优选地,所述激光管的移动是匀速移动的;
    优选地,所述散射探测器设置位置与所述激光管输出光束不在同一直线上;
    更优选地,所述散射探测器设置于所述激光管输出光束的垂直面位置,所述散射探测器、所述检测管道、所述激光管三点形成一个直角形状。
  2. 一种应用如上述权利要求1所述检测系统的流体非金属颗粒物浓度的检测方法,其特征在于,所述方法包括以下步骤:
    S1:流体颗粒物浓度检测,具体包括:
    S11:往检测管道中通入纯净的流体,获取颗粒物形态检测装置输出的散射底噪值U 底噪
    S12:往检测管道中通入待测流体,获取颗粒物形态检测装置输出的散射信号,获取标准颗粒物的电压信号;
    S13:对流体进行一定时间段内的信号采样,提取其中的有效信号,对采样得到的有效信号U x进行阈值分析,并获取该时间段内出现的颗粒物个数;
    S14:根据S13颗粒物个数,获取流体内颗粒物的浓度;
    以及,
    S2:流体金属颗粒物浓度检测,具体包括:
    S21:获取所述信号检测系统的输出信号,得到电压幅度变化情况;
    S22:根据所获得的电压幅度变化情况,检测金属颗粒浓度;
    以及,
    S3:流体非金属颗粒物浓度检测,具体包括:
    获取S1中所得的流体颗粒物浓度和S2中所得的流体金属颗粒物浓度,通过作差得到流体非金属颗粒物浓度,即:
    流体非金属颗粒物浓度=流体颗粒物浓度-流体金属颗粒物浓度。
  3. 如权利要求2所述的检测方法,其特征在于,在S1中,所述标准颗粒物选取颗粒物直径为10μm的颗粒,对应的电压信号为U 10μm
  4. 如权利要求2或3所述的检测方法,其特征在于,在S1中,所述提取有效信号的方法为将采集的信号与所述散射底噪值进行对比,选取大于散射底噪值的信号作为有效信号。
  5. 如权利要求2-4任一项所述的检测方法,其特征在于,所述S13中通过阈值分析获取颗粒物个数的步骤包括:
    将采集到的信号U x与底噪值U 底噪进行比较,若U x-U 底噪>0,则计数加1,若U x-U 底噪<0,则计数为零。
  6. 如权利要求2-5任一项所述的检测方法,其特征在于,所述S14中颗粒物浓度的获取步骤包括:
    S141:计算颗粒物的体积V x
    Figure PCTCN2018118697-appb-100001
    其中,V x:未知颗粒的体积;K:传感器修正系数;V 10um:标准颗粒物体积;U x:未知体积的颗粒物输出电压幅值;U 10um:标准颗粒物输出电压幅值;
    S142:获取流体颗粒物浓度:
    获取流体流速v、检测管道横截面积S,并将一段时间t经过的颗粒个数和体积,转换成总质量m ,即可通过下列公式获取到颗粒物浓度c
    Figure PCTCN2018118697-appb-100002
  7. 如权利要求2-6任一项所述的检测方法,其特征在于,所述S2中检测金属颗粒浓度包括以下步骤:
    获取金属颗粒经过感应线圈的流速v 金属
    获取金属颗粒的质量m 金属
    根据上述所得金属颗粒的流速v 金属、质量m 金属,经过时间t 金属,并利用管道横截面积S,通过以下公式计算得出颗粒物的浓度c 金属
    Figure PCTCN2018118697-appb-100003
  8. 如权利要求7任一项所述的检测方法,其特征在于,在S2中,获取所述金属颗粒流速v 金属的方法包括以下步骤:
    分别记录信号处理系统测得金属颗粒经过一组感应线圈时电压幅值在正半周最高点与过零点的时刻,算得其时间差值ΔT1,以及相对应的感应线圈长度L1;分别记录信号处理系统测得电压幅值在过零点与在负半周最高点的时刻,算得其时间差值ΔT2,以及相对应的感应线圈长度L2;
    根据公式测得流速:
    Figure PCTCN2018118697-appb-100004
  9. 如权利要求8任一项所述的检测方法,其特征在于,若感应线圈有多组,则金属颗粒经过感应线圈的流速v 金属为经过各组感应线圈流速的平均值。
  10. 如权利要求2-9任一项所述的检测方法,其特征在于,所述S21中获取所述信号检测系统的输出信号的频率为1ms一次。
PCT/CN2018/118697 2017-12-05 2018-11-30 一种流体非金属颗粒浓度的检测系统及方法 WO2019109872A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18885474.9A EP3722781B1 (en) 2017-12-05 2018-11-30 Detection system and method for concentration fluid nonmetal particles
US16/487,931 US11099113B2 (en) 2017-12-05 2018-11-30 Detection system and method for concentration fluid nonmetal particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711267524.7A CN108051348A (zh) 2017-12-05 2017-12-05 一种流体非金属颗粒浓度的检测系统及方法
CN201711267524.7 2017-12-05

Publications (1)

Publication Number Publication Date
WO2019109872A1 true WO2019109872A1 (zh) 2019-06-13

Family

ID=62122287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118697 WO2019109872A1 (zh) 2017-12-05 2018-11-30 一种流体非金属颗粒浓度的检测系统及方法

Country Status (4)

Country Link
US (1) US11099113B2 (zh)
EP (1) EP3722781B1 (zh)
CN (1) CN108051348A (zh)
WO (1) WO2019109872A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114034739A (zh) * 2021-11-05 2022-02-11 大连海事大学 一种变频式磨粒材质识别装置及方法
CN117929217A (zh) * 2024-03-22 2024-04-26 宁德时代新能源科技股份有限公司 磁性颗粒含量的检测系统以及检测方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107907455B (zh) * 2017-12-05 2021-07-20 西人马联合测控(泉州)科技有限公司 一种磁感应颗粒检测装置及浓度检测方法
CN108051348A (zh) * 2017-12-05 2018-05-18 西人马(厦门)科技有限公司 一种流体非金属颗粒浓度的检测系统及方法
CN111912755B (zh) * 2020-08-07 2021-08-10 山东中煤工矿物资集团有限公司 一种矿用粉尘浓度传感器、传感器系统及方法
CN112378834B (zh) * 2020-10-23 2023-06-02 国网江苏省电力有限公司检修分公司 一种利用振动/声学信号监测gil中金属颗粒的方法
CN112504921B (zh) * 2020-12-24 2022-06-24 爱德森(厦门)电子有限公司 一种电磁检测油液磨粒的相位幅度分析方法及其检测装置
CN112858464B (zh) * 2021-01-14 2023-06-06 长沙湘计海盾科技有限公司 一种磁性金属颗粒检测传感器及系统
CN116380740B (zh) * 2023-05-16 2023-08-08 江苏省环境监测中心 一种废气浓度检测机构及其使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3130867B2 (ja) * 1998-06-24 2001-01-31 山形日本電気株式会社 液体中の微粒子計測装置
CN102636422A (zh) * 2012-05-09 2012-08-15 上海理工大学 一种纳米颗粒溶液浓度测量装置及测量方法
CN103308431A (zh) * 2013-06-05 2013-09-18 桂林电子科技大学 用于在线监测油液金属磨粒的传感器及其应用方法
CN103592208A (zh) * 2013-11-13 2014-02-19 中国人民解放军国防科学技术大学 抗环境磁场干扰的电磁式油液金属颗粒监测传感器
CN108051348A (zh) * 2017-12-05 2018-05-18 西人马(厦门)科技有限公司 一种流体非金属颗粒浓度的检测系统及方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252493A (en) * 1986-09-22 1993-10-12 Nippon Telegraph And Telephone Corporation Laser magnetic immunoassay method and apparatus therefor
US5001424A (en) * 1989-02-03 1991-03-19 Product Resources, Inc. Apparatus for measuring magnetic particles suspended in a fluid based on fluctuations in an induced voltage
US6437563B1 (en) * 1997-11-21 2002-08-20 Quantum Design, Inc. Method and apparatus for making measurements of accumulations of magnetically susceptible particles combined with analytes
US9297737B2 (en) * 2004-03-06 2016-03-29 Michael Trainer Methods and apparatus for determining characteristics of particles
KR101351287B1 (ko) * 2006-05-30 2014-01-14 메이요덴키 가부시키가이샤 자성체 농도 계측 장치 및 자성체 농도 계측 방법
US7639359B2 (en) * 2006-10-23 2009-12-29 UChicagoArgonne, LLC Magneto-optic biosensor using bio-functionalized magnetized nanoparticles
JP3130867U (ja) 2007-01-31 2007-04-12 盛泓企業有限公司 ボタンキーボードのバックライト構造
DE102007039434A1 (de) * 2007-08-21 2009-02-26 Prüftechnik Dieter Busch AG Verfahren und Vorrichtung zum Erfassen von Partikeln in einer strömenden Flüssigkeit
JP5324598B2 (ja) * 2007-12-04 2013-10-23 パーティクル・メージャーリング・システムズ・インコーポレーテッド 非直角粒子検出システム及び方法
CN101963570B (zh) * 2010-05-17 2012-08-01 深圳市亚泰光电技术有限公司 快速检测润滑油中铁磁磨粒的装置和检测方法以及信号处理电路
CN202002870U (zh) * 2010-12-01 2011-10-05 张洪朋 一种油液颗粒区分计数装置
CN102486448A (zh) * 2010-12-01 2012-06-06 张洪朋 一种油液颗粒区分计数器
CN105842142A (zh) * 2016-05-18 2016-08-10 深圳市青核桃科技有限公司 一种使用单一标准颗粒对激光颗粒计数器进行校准的方法
CN107340544B (zh) * 2016-11-29 2019-09-03 北京理工大学 一种高灵敏度的微小金属颗粒在线检测系统及方法
CN108169086A (zh) * 2017-12-05 2018-06-15 西人马(厦门)科技有限公司 一种流体颗粒物浓度检测方法
CN107907455B (zh) * 2017-12-05 2021-07-20 西人马联合测控(泉州)科技有限公司 一种磁感应颗粒检测装置及浓度检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3130867B2 (ja) * 1998-06-24 2001-01-31 山形日本電気株式会社 液体中の微粒子計測装置
CN102636422A (zh) * 2012-05-09 2012-08-15 上海理工大学 一种纳米颗粒溶液浓度测量装置及测量方法
CN103308431A (zh) * 2013-06-05 2013-09-18 桂林电子科技大学 用于在线监测油液金属磨粒的传感器及其应用方法
CN103592208A (zh) * 2013-11-13 2014-02-19 中国人民解放军国防科学技术大学 抗环境磁场干扰的电磁式油液金属颗粒监测传感器
CN108051348A (zh) * 2017-12-05 2018-05-18 西人马(厦门)科技有限公司 一种流体非金属颗粒浓度的检测系统及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114034739A (zh) * 2021-11-05 2022-02-11 大连海事大学 一种变频式磨粒材质识别装置及方法
CN117929217A (zh) * 2024-03-22 2024-04-26 宁德时代新能源科技股份有限公司 磁性颗粒含量的检测系统以及检测方法

Also Published As

Publication number Publication date
CN108051348A (zh) 2018-05-18
EP3722781A4 (en) 2021-01-20
US20200340905A1 (en) 2020-10-29
EP3722781A1 (en) 2020-10-14
US11099113B2 (en) 2021-08-24
EP3722781B1 (en) 2022-01-26

Similar Documents

Publication Publication Date Title
WO2019109872A1 (zh) 一种流体非金属颗粒浓度的检测系统及方法
CN107907455B (zh) 一种磁感应颗粒检测装置及浓度检测方法
CN103499404B (zh) 铁磁构件交变应力测量装置及其测量方法
Zhang et al. Magnetization model and detection mechanism of a microparticle in a harmonic magnetic field
JP2738732B2 (ja) 劣化度予測装置および方法
CN109828023A (zh) 一种基于涡流成像的金属构件缺陷定量检测方法与装置
CN104833720B (zh) 单一线圈电磁谐振检测金属管道损伤的方法
CN110108788A (zh) 基于脉冲涡流的管道漏磁内检测集成探头及检测方法
Ma et al. Oil metal debris detection sensor using ferrite core and flat channel for sensitivity improvement and high throughput
Wang et al. Inspection of mine wire rope using magnetic aggregation bridge based on magnetic resistance sensor array
CN105866234B (zh) 电涡流和巴克豪森相融合的铁磁材料无损检测仪器和方法
CN111505726B (zh) 基于对称磁激励结构的管道液体磁异介质检测装置及方法
Zhang et al. Fast quantitative method to detect the cross-sectional loss of wire rope defects
Huang et al. A novel eddy current method for defect detection immune to lift-off
Fan et al. Research on crack monitoring technology of flexible eddy current array sensor based on TMR sensors
Li et al. Online symmetric magnetic excitation monitoring sensor for metal wear debris
EP3159854B1 (en) Coin detection system
KR101107757B1 (ko) 하이브리드 유도 자기 박막 센서를 이용한 복합형 비파괴 검사 장치
RU2694428C1 (ru) Измерительный тракт вихретокового дефектоскопа для контроля труб
KR100626228B1 (ko) 교류자기장을 이용한 유도자속 탐상장치 및 그 방법
CN207528594U (zh) 一种流体内非金属颗粒的检测系统
RU2586261C2 (ru) Устройство магнитного дефектоскопа и способ уменьшения погрешности определения размеров дефектов трубопровода магнитными дефектоскопами
CN112858470A (zh) 涡流检测装置和系统
Zhao et al. A Defect Visualization Method Based on ACFM Signals Obtained by a Uniaxial TMR Sensor
US20130124101A1 (en) Method for detecting magnetically marked objects and corresponding device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018885474

Country of ref document: EP

Effective date: 20200706