WO2019109870A1 - 一种磁感应颗粒检测装置及浓度检测方法 - Google Patents

一种磁感应颗粒检测装置及浓度检测方法 Download PDF

Info

Publication number
WO2019109870A1
WO2019109870A1 PCT/CN2018/118694 CN2018118694W WO2019109870A1 WO 2019109870 A1 WO2019109870 A1 WO 2019109870A1 CN 2018118694 W CN2018118694 W CN 2018118694W WO 2019109870 A1 WO2019109870 A1 WO 2019109870A1
Authority
WO
WIPO (PCT)
Prior art keywords
induction
detecting
coil
induction coil
coils
Prior art date
Application number
PCT/CN2018/118694
Other languages
English (en)
French (fr)
Inventor
聂泳忠
张中萍
Original Assignee
西人马联合(泉州)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西人马联合(泉州)科技有限公司 filed Critical 西人马联合(泉州)科技有限公司
Priority to US16/487,920 priority Critical patent/US20200056975A1/en
Priority to EP18885562.1A priority patent/EP3722782A4/en
Publication of WO2019109870A1 publication Critical patent/WO2019109870A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; viscous liquids; paints; inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2835Oils, i.e. hydrocarbon liquids specific substances contained in the oil or fuel
    • G01N33/2858Oils, i.e. hydrocarbon liquids specific substances contained in the oil or fuel metal particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N2015/0003Determining electric mobility, velocity profile, average speed or velocity of a plurality of particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0053Investigating dispersion of solids in liquids, e.g. trouble
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N2015/0687Investigating concentration of particle suspensions in solutions, e.g. non volatile residue
    • G01N2015/1027

Definitions

  • the present invention relates to the field of detection devices, and more particularly to a magnetic induction particle detecting device, and more particularly to a method for performing concentration detection using the device.
  • the conventional device for detecting metal particles by using the principle of electromagnetic induction often uses two reverse-wound excitation excitation coils as excitation sources to generate magnetic fields having opposite directions of the same intensity.
  • the middle of the two coils The net magnetic field is zero; an induction coil that induces a change in the induced magnetic field in the middle is used to induce magnetic field disturbance caused by the metal particles.
  • the method of detecting using the data measured by the prior art device is correspondingly inaccurate, and it is difficult to accurately detect the concentration of metal particles in the fluid.
  • the technical object to be achieved by the present invention is to (1) provide a magnetic induction particle detecting device capable of being easily prepared and installed, capable of improving detection accuracy, and (2) providing a metal particle using the detecting device The method of concentration detection.
  • a magnetic induction particle detecting device comprising: a signal detecting system, a detecting pipeline, an exciting coil, and a positive even number of induction coils, wherein the exciting coil is connected to the signal processing system and wound on the detecting pipeline;
  • the induction coils are each coupled to the signal processing system and sequentially wound on the excitation coils in opposite directions.
  • the installation method usually requires two reverse excitation excitation coils, one induction coil, and two excitation coils are wound outwardly at both ends of the pipeline, and the induction coil is wound. Made in the middle of the two excitation coils.
  • the arrangement of the excitation coil of the excitation coil of the device can be conveniently installed, and the overall length of the sensor is greatly shortened, which is convenient for preparation and use.
  • the excitation coil is connected to the signal detection system, and the signal detection system inputs a sinusoidal alternating signal across the excitation coil to generate an alternating magnetic field to drive the induction coil.
  • the induction coil is wound on the detection pipe to detect the particulate matter, and the sensor is not required to directly contact the liquid in the pipe, which makes the test more convenient.
  • the inventors employed a scheme of positively-numbered magnetic induction coils in the solution of the present invention.
  • the magnetic induction coil is usually wound by only one.
  • the use of a magnetic induction coil seems to save costs, in fact, because the induction coil is located in the middle of the two excitation coils, the induced particles are disturbed by the magnetic field generated by the excitation coil; and the induction coil is far away from the excitation coil, often causing the magnetic field to decay. Larger, resulting in insufficient size accuracy of the measured induced particles.
  • the excitation coil is used, and the positive and even induction coils are used to wind the excitation coil to ensure the detection precision.
  • the excitation coil is used to generate a magnetic field and is therefore preferably wound with an excitation coil.
  • positive and even number of induction coils for example two, or a group of induction coils, can be adapted to the algorithm set by the inventor, and the concentration of the metal particles can be calculated by observing and inputting the magnetic field changes obtained by the two induction coils. .
  • the induction coil is sequentially wound on the excitation coil. This arrangement can quickly detect the magnetic field disturbance generated when the particles pass through the induction coil, and achieve the function of detecting metal particles.
  • the induction coil is reverse wound on the excitation coil. Because the induction coils are close to each other, the environment can be considered consistent, which can suppress temperature drift and electromagnetic interference in complex and harsh environments, improve signal stability, and further improve system performance.
  • a coil refers to a coil that is connected to the signal detection system at both ends and wound around the detection pipeline.
  • the sequential winding refers to winding the other induction coil in the direction of the detection pipeline, for example, after one of the two induction coils is completed, that is, the induction coil is each in the next position in the direction. They are not wound on each other and are wound on the detection pipe, but are independently wound on the detection pipe.
  • the reverse winding means that the two induction coils are wound outside the excitation coil without being coincident with each other when wound, and one of the directions is wound clockwise and the other is wound counterclockwise.
  • the detection of particulate matter as used herein refers to the detection of, for example, metal particulate matter by electromagnetic induction, and the detection of the flow thereof, thereby facilitating further analysis of data such as the concentration of metal particulate matter in the liquid.
  • the signal detection system is for detecting electromagnetic induction conditions.
  • it includes a control circuit board, a signal output port, and the like. It should not be limited to the composition of the signal detection system, as long as the mechanism capable of detecting the electromagnetic change of the induction coil should be regarded as belonging to the signal detection system.
  • two adjacent, sequentially opposite inductive coils are a group of induction coils.
  • the number of induction coils is two or four or six.
  • the number of induction coils is preferable to set the number of induction coils to two.
  • the number of induction coils is set to four or six, etc., it is possible to perform multiple measurements and average values during the measurement process, which can improve the reliability of the detection.
  • the excitation coils are two or more, and each excitation coil is wound in the same direction on the detection pipeline.
  • the co-directional winding means that each of the excitation coils is wound clockwise or counterclockwise on the detection pipe. By setting in this way, the magnetic field strength can be increased, and at the same time, the mutual interference between the excitation coils can be prevented by the same direction winding, which affects the stability of the magnetic field.
  • the excitation coil and/or the induction coil are wound in at least one layer.
  • the excitation coil and/or the induction coil are wound by at least one layer (ie, multiple layers), which can further enhance the strength of the magnetic field generated by the excitation coil, and the signal generated on the induction coil is more obvious, which is favorable for improving the detection precision of the metal particles.
  • the material of the detecting pipe is a non-magnetic material; further preferably, the material of the detecting pipe is made of stainless steel.
  • the material of the pipe is made of non-magnetic material, which is used to more accurately measure the magnetic field disturbance generated by the metal particles on the excitation coil. During the test, it is necessary to ensure that the magnetic field generated by the excitation coil passes through the middle of the pipeline to increase the strength of the magnetic field in the pipeline. More preferably, it is made of a non-magnetic stainless steel material, which is satisfactory, but is not limited to this material.
  • a spacer sleeve is further disposed between the excitation coil and the induction coil; further preferably, the material of the spacer sleeve is a non-magnetic material.
  • a spacer sleeve is added between the excitation coil and the induction coil for isolating the excitation coil and the induction coil.
  • the non-magnetic material is selected here, which is mainly used for the isolation of the excitation coil and the induction coil during the production process. In the process of inducing magnetic field disturbance of the metal particles, the magnetic field loss between the induction coil and the excitation coil is minimized. It is beneficial to improve the detection accuracy of metal particles, so the non-magnetic material is used here. At the same time, as the skeleton of the induction coil, the flatness of the induction coil can be improved.
  • a shielding ring is further disposed outside the induction coil.
  • a shielding ring is arranged outside the induction coil to isolate the external magnetic field and resist the interference of the external magnetic field, so that the detection result is more accurate and the detection effect is better.
  • a concentration detecting method using the magnetic induction particle detecting device as described above includes the following steps:
  • S1 acquiring an output signal of the signal detection system to obtain a voltage amplitude change condition
  • the voltage amplitude variation includes a voltage amplitude and a time change, that is, a relationship between a voltage amplitude change and a time, for example, a voltage amplitude at a certain point and a moment thereof. More specifically, it may be the highest point of the amplitude and the moment of the zero point.
  • detecting the concentration of the metal particles comprises the steps of:
  • the concentration c of the particulate matter is calculated by the following formula:
  • the induced voltage E caused by the metal particles passing through the coil induction coil is proportional to the volume V of the particulate matter, the magnetic permeability, the velocity v passing through, and the coil winding.
  • the system's number of turns is proportional to the third power.
  • the elapsed time t refers to the time required for the metal particles to pass through a certain distance in the pipeline, which may correspond to the time elapsed between different amplitudes, or the difference between different amplitude moments. .
  • the method of obtaining the metal particle flow rate v comprises the following steps:
  • the flow rate is measured according to the formula:
  • the L1 refers to the length of the induction coil during the passage of the voltage amplitude at the highest point and the zero-crossing point of the positive half cycle; the L2 refers to the voltage amplitude at the zero-crossing point and the highest point in the negative half-cycle. The length of the coil is sensed during the passage.
  • K1 refers to the correction coefficient when passing through one coil
  • k2 refers to the correction coefficient when passing through another coil.
  • the output signal is affected, so that it does not sense the middle part of the coil, so the correction coefficient k1 or K2, correct it.
  • the induction coil 1 and the induction coil 2 are sequentially passed through, and when the induction coil 1 is passed, the output signal is highest unless the influence of the induction coil 2 is considered.
  • the point should be in the middle portion of the induction coil 1, and after the induction coil 2 is introduced, the magnetic field generated by the induction coil 2 affects the highest point of the output signal, causing it to be slightly offset.
  • the flow velocity v of the metal particles passing through the induction coil is an average value of the flow rates through the respective sets of induction coils.
  • the flow velocity vgn (where n is a positive integer) of the metal particles passing through the gn group induction coil is respectively calculated, and the flow velocity v is an average value of the flow velocity of each group of induction coils, that is:
  • the calculation method of the average value can improve the calculation accuracy of the flow rate, and the calculation result is more accurate.
  • the frequency of the output signal of the signal detection system acquired in the S1 is 1 ⁇ s.
  • the frequency of the output signal is 500 Hz.
  • the sampling frequency is greater than 2 times of the highest frequency of the signal, so that the complete information of the signal can be preserved without distortion, so the sampling frequency of 1K is selected here. That is, 1 s is taken with 1000 valid signals (1 ms one) for analysis.
  • the magnetic induction particle detecting device of the present invention has the following beneficial effects:
  • the excitation coil of the device is wound with an induction coil, which can achieve convenient installation and greatly shorten the overall length of the sensor, and is convenient for preparation and use;
  • the induction coil of the device is wound on the detection pipeline, and can detect the measurement of the particulate matter, and does not need to directly contact the sensor with the liquid in the tube, so that the test is more convenient;
  • the device uses at least two induction coils to wind the excitation coil to ensure the detection accuracy
  • the device adopts a spacer sleeve between the excitation coil and the induction coil to isolate the excitation coil and the induction coil, reduce the magnetic field loss between the induction coil and the excitation coil, and simultaneously serve as a skeleton for the induction coil winding. , can improve the flatness of the induction coil winding;
  • the device is provided with a shielding ring outside the induction coil to isolate the external magnetic field and resist the interference of the external magnetic field, so that the detection result is more accurate and the detection effect is better.
  • FIG. 1 is a cross-sectional structural view showing a first preferred embodiment of a magnetic induction particle detecting device of the present invention
  • FIG. 2 is a cross-sectional structural view showing a second preferred embodiment of the magnetic induction particle detecting device of the present invention
  • Figure 3 is a partial enlarged view of the area A in Figure 2;
  • FIG. 4 is a schematic diagram showing the principle of electromagnetic induction testing of the magnetic induction particle detecting device of the present invention
  • FIG. 5 is a graph showing a voltage output change corresponding to the schematic diagram of FIG. 4.
  • Embodiment 1 Magnetic Induction Particle Detection Apparatus
  • the detecting device includes a signal detecting system 1, a detecting pipe 2, an exciting coil 3, and two induction coils (respectively a first induction coil 4 and a second induction coil 5), the excitation coil is connected to the signal processing system and wound on the detection pipeline; the induction coils are connected to the signal processing system, and They are wound on the excitation coil in opposite directions from each other.
  • the arrangement of the excitation coil of the excitation coil of the device can be easily installed, and the overall length of the sensor is greatly shortened, which is convenient for preparation and use;
  • the induction coil is sequentially wound on the excitation coil, and can quickly detect the magnetic field disturbance generated when the particulate matter passes through the induction coil, thereby achieving the function of detecting metal particulate matter;
  • the induction coil is reversely wound on the excitation coil. Since the two induction coils are close to each other, the environment can be considered consistent, which can suppress temperature drift, electromagnetic interference and improve signal stability in a complicated and harsh environment. Sex, further improve system performance.
  • the number of the excitation coils is one for generating a magnetic field. In other embodiments, the number of excitation coils may also be two or more, but it needs to be wound in the same direction to prevent mutual interference of magnetic fields and affect the measurement effect.
  • the number of the induction coils is two. Through this setting method, the detection accuracy can be effectively improved, and the detection effect is better. Or in other embodiments, the number of the induction coils is a positive number, for example four, six or more, on the one hand, the same detection effect can be achieved, and on the other hand, the average can be obtained by performing multiple measurements. The value of the way improves the reliability of the test.
  • the material of the detecting pipe is made of a non-magnetic material; more specifically, the material of the detecting pipe is made of stainless steel.
  • the material of the pipe is made of non-magnetic material, which is used to more accurately measure the magnetic field disturbance generated by the metal particles on the excitation coil. During the test, it is necessary to ensure that the magnetic field generated by the excitation coil passes through the middle of the pipeline to increase the strength of the magnetic field in the pipeline. It is more preferable to use a non-magnetic stainless steel material to meet the requirements, but is not limited to this material.
  • Example 2 magnetic induction particle detecting device
  • FIG. 2 is a schematic structural view of a second preferred embodiment of the magnetic induction particle detecting device of the present invention; the difference between this embodiment and the first embodiment is that, as shown in FIG. 3, the excitation coil and the excitation coil are A spacer sleeve 6 is also disposed between the induction coils, that is, the excitation coil is jacketed with a spacer sleeve, and the induction coil is wound on the spacer sleeve. And a shielding ring 7 is further disposed outside the induction coil.
  • both technical solutions may be implemented together, or only one may be implemented, as needed.
  • both solutions are implemented, that is, a spacer sleeve and a shield ring are provided, which is a more preferred embodiment.
  • the spacer sleeve which is mainly used for the isolation of the excitation coil and the induction coil during the production process; on the other hand, the spacer sleeve can be used as the skeleton of the induction coil, which can improve the induction coil winding. Flatness.
  • the spacer sleeve is made of a non-magnetic material, and the magnetic field loss between the induction coil and the excitation coil is minimized in the process of inducing magnetic field disturbance of the induced metal particles, thereby improving the detection of metal particles. Accuracy, so use a non-magnetic material here.
  • the shielding ring is provided, and the function is to provide a shielding ring outside the induction coil to isolate the external magnetic field and resist the interference of the external magnetic field, so that the detection result is more accurate and the detection effect is better.
  • an alternating magnetic field By inputting a sinusoidal alternating signal across the excitation coil, an alternating magnetic field can be generated; under the action of the alternating magnetic field, an alternating signal can be generated at both ends of the induction coil.
  • the metal material can be roughly classified into antimagnetic ( ⁇ 1), paramagnetic (>1), and ferromagnetic (>>1). Among them, the diamagnetic material weakens the magnetic field, the paramagnetic material makes the magnetic field stronger, and the ferromagnetic material greatly increases the magnetic field strength.
  • the inverting outputs of the two induction coils are connected to measure the output signals at the other ends. When no metal particles pass through the inside of the excitation coil, the induced signals of the two induction coils are reversely cancelled, and the overall output of the system is zero.
  • metal particles (ferromagnetic material) pass through the inside of the excitation coil from left to right, they are divided into the following processes:
  • the first induction coil is more sensitive, the voltage value is increased first, and the second induction coil is changed slowly, and a rising positive voltage is outputted at both ends of the induction coil;
  • the second induction coil is also affected.
  • the voltage generated by the first induction coil is gradually balanced by the voltage generated by the second induction coil, gradually decreasing, in the first induction coil and the first The second induction coil drops to 0 in the middle;
  • the sensor device when metal particles pass through the oil pipeline from left to right, the sensor device can detect a signal similar to a sine wave whose amplitude is proportional to the size of the particles, and the period is proportional to the flow velocity of the particles, thereby calculating the flow rate. .
  • Embodiment 3 (Concentration detecting method using magnetic induction particle detecting device)
  • the present embodiment provides a detection method using the magnetic induction particle detecting device of the above embodiment, comprising the following steps:
  • S1 acquiring an output signal of the signal detection system to obtain a voltage amplitude change condition
  • the voltage amplitude variation includes a voltage amplitude and a time change, that is, a relationship between a voltage amplitude change and a time, for example, a voltage amplitude at a certain point and a moment thereof.
  • detecting the concentration of the metal particles comprises the steps of:
  • the concentration c of the particulate matter is calculated by the following formula:
  • the method for calculating the metal particle flow rate v comprises the following steps:
  • the flow rate is measured according to the formula:
  • the highest point of the positive and negative half-cycle of the signal is selected as the time recording point for the flow rate analysis.
  • the length L of the pipeline is constant, and is extracted by sampling time, T1, T2, T3, where T1 is the time when the signal passes the highest point of the positive half cycle, and T2 is the time when the signal passes the zero point.
  • T3 is the moment when the signal passes the highest point of the negative half cycle, as shown in Figure 5; the flow rate can be obtained:
  • L is the total length through the induction coil and L/2 is the length of the coil passing through the two half cycles.
  • the above is the speed calculated when passing a set of induction coils.
  • the amplitude of the signal is related to the size of the metal particles. According to the cylindrical metal particles passing through the inside of the spiral tube at a constant speed, the induced electromotive force generated is:
  • V the volume of the particles
  • v the flow rate of the particles.
  • the induced voltage E caused by the metal particles passing through the coil induction coil is proportional to the volume V of the particulate matter, the magnetic permeability, the speed v of the passage, and the third order of the number of turns of the coil. Just proportional.
  • the volume and mass of the metal abrasive particles flowing through the oil pipeline can be converted.
  • the concentration of the metal particles is measured under the condition that the oil flow rate v is obtained, as follows:
  • the metal particle concentration can be obtained, that is, by the formula:
  • the frequency of the output signal of the signal detection system acquired in the S1 is once 1 ms.
  • Embodiment 4 (Concentration detecting method using magnetic induction particle detecting device)
  • the flow rate of the embodiment adopts a more preferred embodiment, that is, if there are multiple sets of induction coils, the flow velocity v of the metal particles passing through the induction coil is the average of the flow velocity of each group of induction coils. value.
  • the flow velocity vgn (where n is a positive integer) of the metal particles passing through the nth group induction coil is respectively calculated, and the flow velocity v is an average value of the flow velocity of each group of induction coils, that is:
  • the calculation method of the average value can improve the calculation accuracy of the flow rate, and the detection result is more accurate.
  • the induction coil has two groups in total, the flow velocity measured by the first group of induction coils is vg1, and the flow velocity measured by the second group of induction coils is vg2, and the flow rate finally calculated by the S1 is To pass the formula:

Abstract

本发明提供一种磁感应颗粒检测装置及浓度检测方法,所述检测装置包括信号检测系统、检测管道、激励线圈,以及正偶数个感应线圈,所述激励线圈与所述信号处理系统连接并绕制于所述检测管道上;所述感应线圈均与所述信号处理系统连接,依次并彼此反向绕制于所述激励线圈上。通过该装置,能够方便制备安装、能够提高检测精度。所述方法包括以下步骤:S1:获取所述信号检测系统的输出信号,得到电压幅度变化情况;S2:根据所获得的电压幅度变化情况,检测金属颗粒浓度。通过该方法,可以提高计算的准确度。

Description

一种磁感应颗粒检测装置及浓度检测方法 技术领域
本发明涉及检测设备领域,尤其涉及一种磁感应颗粒检测装置,进一步地,涉及一种利用该装置进行浓度检测的方法。
背景技术
目前,检测金属颗粒所采用的方法有多种,其中利用电磁感应原理检测金属颗粒是一种较常用的方法。具体来说,通常的应用电磁感应原理检测金属颗粒的装置往往采用两反向绕制的励磁激励线圈作为激励源,产生两强度相同方向相反的磁场,在无磁场扰动的情况下,两线圈中间的净磁场为零;在中间绕制一感应磁场变化的感应线圈,用于感应金属颗粒造成的磁场扰动。
虽然这种装置能够实现金属颗粒的电磁检测,但是该装置仍存在以下缺陷:
(1)为了建立磁场平衡和感应金属颗粒磁场信号,需要两个反向的激励线圈,一个感应线圈,其设计使传感器长度较长,不利于实际的设计制备和安装使用;
(2)仅采用一个磁感线圈,在使用电磁感应进行磁场平衡时,激励线圈(励磁线圈)外部的磁场衰减比较明显,小颗粒物在激励线圈上产生的磁场扰动,反应在外部的感应线圈上时,往往已经衰减了很多,故对微小颗粒物的检测精度不足,影响检测效果。
进一步地,利用现有技术装置测得的数据进行的检测的方法相应地精度不佳,难以准确检测流体内金属颗粒的浓度。
发明内容
为了克服现有技术的不足,本发明所要实现的技术目的是(1)提供一种能够方便制备安装、能够提高检测精度的磁感应颗粒检测装置,以及(2)提供一种利用该检测装置金属颗粒进行浓度检测的方法。
为实现上述第一个技术目的,本发明所采用的技术方案内容具体如下:
一种磁感应颗粒检测装置,所述检测装置包括信号检测系统、检测管道、 激励线圈,以及正偶数个感应线圈,所述激励线圈与所述信号处理系统连接并绕制于所述检测管道上;所述感应线圈均与所述信号处理系统连接,依次并彼此反向绕制于所述激励线圈上。
在现有的电磁感应检测颗粒物的装置技术方案中,安装的方式通常是需要两个反向的励磁激励线圈,一个感应线圈,两个激励线圈反向外绕制在管道两端,感应线圈绕制在两激励线圈中间。而在本技术方案中,该装置的激励线圈外绕制感应线圈的设置方式,能够达到安装方便,并且使得传感器整体长度大大缩短的效果,便于制备和使用。
激励线圈与信号检测系统连接,信号检测系统会在激励线圈两端输入一个正弦交变信号,产生一个交变磁场,驱动感应线圈。另外,将感应线圈绕制在所述检测管道上,能够检测颗粒物的情况,不需要将传感器直接接触管内的液体,使得测试更为方便。
为实现提高检测精度的效果,发明人在本发明方案中采用了正偶数个磁感线圈的方案。在以往的技术方案中,磁感线圈通常情况下只采用一个进行绕制。虽然采用一个磁感线圈看似节省了成本,但实际上由于感应线圈位于两个激励线圈的中间,感应颗粒物通过激励线圈产生的磁场扰动;而感应线圈在离激励线圈较远,往往造成磁场衰减较大,造成测得感应的颗粒物的大小精度不足。
而在本技术方案中,采用了激励线圈,以及正偶数个的感应线圈进行对激励线圈的绕制,以确保检测精度。所述激励线圈用于产生磁场,因此优选用一个激励线圈进行绕制。而采用正偶数个感应线圈,例如两个,或者说一组感应线圈,可以适应于发明人随后设定的算法,依靠观测及输入通过两个感应线圈所得的磁场变化情况,计算金属颗粒的浓度。
所述感应线圈依次绕制于所述激励线圈上。这种设置方式能够快速的检测到颗粒物通过感应线圈时产生的磁场扰动,达到检测金属微粒物的功能。
所述感应线圈反向绕制在所述激励线圈上。由于感应线圈距离较近,所处环境可认为一致,能够在复杂、恶劣的环境下抑制温度漂移、电磁干扰,提高信号稳定性,进一步提高系统性能。
需要说明的是,一个线圈指的是一段两端与信号检测系统连接并绕制于检测管道的线圈。
需要说明的是,所述依次绕制指的是在检测管道方向上,例如两个感应线圈其中一个绕制完成后,在该方向的下一个位置绕制另一个感应线圈,即感应 线圈每个之间不互相重合绕制于检测管道,而是各自独立绕制于所述检测管道上。
需要说明的是,所述反向绕制指的是两感应线圈在绕制时,彼此不重合地绕制于激励线圈外,方向上一个采用顺时钟绕制,另一个采用逆时针绕制。需要说明的是,这里所指的检测颗粒物,是指通过电磁感应的方式将如金属颗粒物进行检测,检测其流动的情况,便于进一步分析液体中金属颗粒物的浓度等数据。
需要说明的是,所述信号检测系统是用于检测电磁感应情况,在一种可选的实施方式中,其包括控制电路板、信号输出端口等。应当不限于信号检测系统的组成方式,只要能够检测感应线圈电磁变化的机构均应被视为属于信号检测系统。
需要说明的是,两个相邻、依次反向对应的感应线圈为一组感应线圈。
优选地,所述感应线圈的数量为两个或四个或六个。
为使安装制造成本和确保检测精度达到最优的平衡,会优选将感应线圈的数量设置为两个。
又或者,将感应线圈的数量设置为四个或六个等,可以在测量过程中进行多次测量求平均值,能提高检测的可靠性。
优选地,所述激励线圈为两个或多个,各个激励线圈同向绕制于所述检测管道上。
需要说明的是,所述同向绕制指的是各个激励线圈均顺时针或均逆时针绕制与所述检测管道之上。通过这种方式的设置,可以加大磁场强度,同时通过同向绕制的方式可以防止激励线圈之间的互相干扰,影响磁场的稳定性。
优选地,所述激励线圈和/或感应线圈采用至少一层的方式进行绕制。
激励线圈和/或感应线圈采用至少一层(即多层)绕制的方式,能进一步使激励线圈产生的磁场强度增强,感应线圈上产生的信号更加明显,有利于提高金属颗粒物的检测精度。
优选地,所述检测管道的材质是非导磁材料;进一步优选地,所述检测管道的材质是不锈钢材质。
管道材质为不导磁材质,是为了更准确的测得金属颗粒物在激励线圈上产生的磁场扰动。在测试过程中需要尽量保证激励线圈产生的磁场从管道中间通过,提高管道中的磁场强度。更优选采用不导磁的不锈钢材质,可满足要求, 但不限于此材质。
优选地,所述激励线圈和所述感应线圈之间还设置有隔环套筒;进一步优选地,所述隔环套筒的材质是非导磁材料。
在激励线圈与感应线圈之间加装一个隔环套筒,用于隔离激励线圈与感应线圈。这里选用不导磁材料,主要用于生产制作过程中激励线圈与感应线圈绕制的隔离,在感应金属微粒物产生磁场扰动的过程中,尽量减少感应线圈与激励线圈之间的磁场损耗,有利于提高金属颗粒物的检测精度,故在此处选用不导磁材质;同时作为感应线圈绕制的骨架,能够提高感应线圈绕制的平整度。
优选地,所述感应线圈外还设有屏蔽环。
在感应线圈之外设置有屏蔽环可以隔离外部的磁场,抗外部磁场的干扰,使得检测结果更准确,检测效果更好。
为实现上述第二个技术目的,本发明所采用的技术方案内容具体如下:
一种应用如上所述磁感应颗粒检测装置的浓度检测方法,包括以下步骤:
S1:获取所述信号检测系统的输出信号,得到电压幅度变化情况;
S2:根据所获得的电压幅度变化情况,检测金属颗粒浓度;
其中,所述电压幅度变化情况包括电压幅值和时间的变化情况,即电压幅值变化与所在时刻的关系,例如电压幅值在某一点上其幅值及其所在的时刻。更具体地,可以是幅值最高点与零点其时刻情况。
优选地,检测金属颗粒浓度包括以下步骤:
获取金属颗粒经过感应线圈的流速v;
获取金属颗粒的质量m;
根据上述所得金属颗粒的流速v、质量m,经过时间t,并利用管道横截面积S,通过以下公式计算得出颗粒物的浓度c:
Figure PCTCN2018118694-appb-000001
在获取金属颗粒质量m的过程中,在单层密绕线圈中,金属颗粒物经过螺旋管感应线圈时引起的感应电压E与颗粒物的体积V、磁导率、通过的速度v成正比、线圈绕制的匝数密度的3次方成正比。通过对传感器的输出信号进行定量分析,即可换算出流过滑油管道的金属颗粒的体积、质量。
需要说明的是,经过时间t指的是金属颗粒在管道中在某一段距离经过所需要的时间,可对应于在不同幅值之间所经过的时间,或者是经过不同幅值时刻 的差值。
优选地,获取所述金属颗粒流速v的方法包括以下步骤:
分别记录信号处理系统测得金属颗粒经过一组感应线圈时电压幅值在正半周最高点与过零点的时刻,算得其时间差值ΔT1,以及相对应的感应线圈长度L1;分别记录信号处理系统测得电压幅值在过零点与在负半周最高点的时刻,算得其时间差值ΔT2,以及相对应的感应线圈长度L2;
根据公式测得流速:
Figure PCTCN2018118694-appb-000002
需要说明的是,所述L1指的是电压幅值在正半周最高点与过零点这一通过过程中感应线圈长度;所述L2指的是电压幅值在过零点与在负半周最高点这一通过过程中感应线圈长度。
k1指的是经过一个线圈时的修正系数;k2指的是经过另一个线圈时的修正系数。
由于每个滑油传感器的线材(粗细、材质),绕线匝数,两感应线圈相互作用等不同因素,对输出信号产生影响,使其不再感应线圈的中间部分,故引入修正系数k1或k2,对其进行修正。
更具体地说,在铁磁性颗粒物经过两感应线圈的过程中,依次通过感应线圈1和感应线圈2,在通过感应线圈1的时候,若不考虑感应线圈2对其产生的影响,输出信号最高点应该在感应线圈1的中间部分,而引入感应线圈2以后,感应线圈2产生的磁场会对输出信号的最高点产生影响,使其进行微小的偏移。
优选地,若感应线圈有多组,则金属颗粒经过感应线圈的流速v为经过各组感应线圈流速的平均值。
例如所述S1中分别计算金属颗粒经过第gn组感应线圈的流速vgn(其中n为正整数),所述流速v为各组感应线圈流速的平均值,即:
Figure PCTCN2018118694-appb-000003
通过平均值计算的方法可以提高该流速的计算精度,使得计算结果更为准确。
优选地,所述S1中获取所述信号检测系统的输出信号的频率为1μs一次。
获取频率为1ms一次的有益效果在于:输出信号的频率为500Hz,根据采 样定理,采样频率要大于信号最高频率的2倍,才能无失真的保留信号的完整信息,故在此选用1K的采样频率,即1s采1000个有效信号(1ms一个)进行分析。
与现有技术相比,本发明的磁感应颗粒检测装置的有益效果在于:
1、本装置的激励线圈外绕制有感应线圈,能够达到安装方便,并且使得传感器整体长度大大缩短的效果,便于制备和使用;
2、本装置的感应线圈绕制在所述检测管道上,能够检测测量颗粒物的情况,不需要将传感器直接接触管内的液体,使得测试更为方便;
3、本装置采用了至少两个的感应线圈进行对激励线圈的绕制,以确保检测精度;
4、本装置采用在激励线圈与感应线圈之间加装一个隔环套筒,用于隔离激励线圈与感应线圈,减少感应线圈与激励线圈之间的磁场损耗;同时作为感应线圈绕制的骨架,能够提高感应线圈绕制的平整度;
5、本装置在感应线圈之外设置有屏蔽环可以隔离外部的磁场,抗外部磁场的干扰,使得检测结果更准确,检测效果更好。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。
附图说明
图1为本发明磁感应颗粒检测装置第一种较优选实施方式的剖面结构示意图;
图2为本发明磁感应颗粒检测装置第二种较优选实施方式的剖面结构示意图;
图3为图2中A区域的局部扩大示意图;
图4为本发明磁感应颗粒检测装置进行电磁感应测试的原理示意图;
图5为图4原理示意图对应的电压输出变化曲线图。
具体实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下 结合附图及较佳实施例,对依据本发明的具体实施方式、结构、特征及其功效,详细说明如下:
实施例1(磁感应颗粒检测装置)
如图1所示,是本发明磁感应颗粒检测装置第一种较优选实施方式的剖面结构示意图;该检测装置包括信号检测系统1、检测管道2、一个激励线圈3,以及两个感应线圈(分别为第一感应线圈4和第二感应线圈5),所述激励线圈与所述信号处理系统连接并绕制于所述检测管道上;所述感应线圈均与所述信号处理系统连接,依次并彼此反向绕制于所述激励线圈上。
以上为本技术方案的其中一种优选实施方式。此基础实施方式中具有以下
有益效果:
(1)该装置的激励线圈外绕制感应线圈的设置方式,能够达到安装方便,并且使得传感器整体长度大大缩短的效果,便于制备和使用;
(2)将感应线圈绕制在所述检测管道上,能够检测测量颗粒物的情况,不需要将传感器直接接触管内的液体,使得测试更为方便;
(3)感应线圈依次绕制于所述激励线圈上,能够快速的检测到颗粒物通过感应线圈时产生的磁场扰动,达到检测金属微粒物的功能;
(4)感应线圈反向绕制在所述激励线圈上,由于两个感应线圈距离较近,所处环境可认为一致,能够在复杂、恶劣的环境下抑制温度漂移、电磁干扰,提高信号稳定性,进一步提高系统性能。
在本实施例中,所述激励线圈的数量为一个,用于产生磁场。在其他实施方式中,激励线圈的个数也可以是两个或多个,但需要同向绕制,以防止磁场的相互干扰,影响测量效果。
在本实施例中,所述感应线圈的数量为两个。通过这种设置方式,可以有效提高检测精度,使得检测效果更加良好。或者在其他实施方式中,所述感应线圈的数量为正偶数个,例如四个、六个或更多个,一方面能够达到同样检测的效果,另一方面可以通过进行多次测量求取平均值的方式提高检测的可靠性。
在本实施例中,所述检测管道的材质采用的是非导磁材料;更具体地,所述检测管道的材质是不锈钢材质。管道材质采用不导磁材质,是为了更准确的测得金属颗粒物在激励线圈上产生的磁场扰动。在测试过程中需要尽量保证激励线圈产生的磁场从管道中间通过,提高管道中的磁场强度。更优选采用不导 磁的不锈钢材质,可满足要求,但不限于此材质。
实施例2(磁感应颗粒检测装置)
如图2所示是本发明磁感应颗粒检测装置第二种较优选实施方式的结构示意图;本实施例与上述实施例1的区别在于:如图3所示,该检测装置中所述激励线圈和所述感应线圈之间还设置有隔环套筒6,亦即,所述激励线圈外套有一隔环套筒,所述感应线圈绕制于所述隔环套筒之上。以及,所述感应线圈外还设有一屏蔽环7。
上述两个技术方案可以一并实施,也可以只实施一个,视乎需要而定。在本实施例中两个方案均实施,即设有隔环套筒以及屏蔽环,为更加优选的实施方式。
设有隔环套筒,一方面主要用于生产制作过程中激励线圈与感应线圈绕制的隔离;另一方面隔环套筒可以;同时作为感应线圈绕制的骨架,能够提高感应线圈绕制的平整度。作为更进一步的优选,所述隔环套筒选用不导磁材料,在感应金属微粒物产生磁场扰动的过程中,尽量减少感应线圈与激励线圈之间的磁场损耗,有利于提高金属颗粒物的检测精度,故在此处选用不导磁材质。
设有屏蔽环,其作用在于在感应线圈之外设置有屏蔽环可以隔离外部的磁场,抗外部磁场的干扰,使得检测结果更准确,检测效果更好。
下面结合图4和图5,以上述实施例中的设置方式为例,对本装置的实施原理说明如下:
通过在激励线圈两端输入一个正弦交变信号,能产生一个交变磁场;在交变磁场的作用下,感应线圈两端能产生交变信号。
根据材料的导磁性,可以将金属材料大致区分为抗磁质(<1)、顺磁质(>1)和铁磁质(>>1)。其中,抗磁材料使磁场变弱,顺磁材料使磁场变强,铁磁材料大大增加磁场强度。在电路上,将两感应线圈的反向输出端相连,测得另外两端的输出信号。当无金属颗粒经过激励线圈内部时,两感应线圈的感应信号反向抵消,系统整体输出为零。当金属颗粒(铁磁质材料)从左往右通过激励线圈内部时,分为如下几个过程:
(1)金属颗粒物进入第一感应线圈的过程中,第一感应线圈变化较为敏感,电压值先升高,而第二感应线圈变化较为缓慢,此时感应线圈两端输出一个上 升的正电压;
(2)随着金属颗粒物向中间靠近,第二感应线圈也受到影响,此时第一感应线圈产生的电压慢慢被第二感应线圈产生的电压平衡,逐渐下降,在第一感应线圈与第二感应线圈中间时降为0;
(3)金属颗粒物穿过第一感应线圈,进入到第二感应线圈,此时第二感应线圈的电压值高于第一感应线圈,出现一个负电压,且电压幅值不断变大;
(4)当颗粒物经过第二感应线圈,流出的过程中,对第二感应线圈造成的影响慢慢减弱,电压幅值慢慢下降,再穿出第二感应线圈一定距离后趋近于0。
依据电磁感应原理,当金属颗粒物从左往右经过滑油管道时,传感器设备能检测出一个类似正弦波的信号,其幅值正比于颗粒物的大小,周期正比于颗粒物的流速,从而计算出流速。
实施例3(利用磁感应颗粒检测装置的浓度检测方法)
本实施例提供的是利用上述实施例磁感应颗粒检测装置的检测方法,包括以下步骤:
S1:获取所述信号检测系统的输出信号,得到电压幅度变化情况;
S2:根据所获得的电压幅度变化情况,检测金属颗粒浓度;
其中,所述电压幅度变化情况包括电压幅值和时间的变化情况,即电压幅值变化与所在时刻的关系,例如电压幅值在某一点上其幅值及其所在的时刻。
在其中一种优选的实施方式中,检测金属颗粒浓度包括以下步骤:
获取金属颗粒经过感应线圈的流速v;
获取金属颗粒的质量m;
根据上述所得金属颗粒的流速v、质量m,经过时间t,并利用管道横截面积S,通过以下公式计算得出颗粒物的浓度c:
Figure PCTCN2018118694-appb-000004
在一种更优选的实施方式中,所述金属颗粒流速v的计算方法包括以下步骤:
分别记录信号处理系统测得金属颗粒经过一组感应线圈时电压幅值在正半周最高点与过零点的时刻,算得其时间差值ΔT1,以及相对应的感应线圈长度L1;分别记录信号处理系统测得电压幅值在过零点与在负半周最高点的时刻, 算得其时间差值ΔT2,以及相对应的感应线圈长度L2;
根据公式测得流速:
Figure PCTCN2018118694-appb-000005
由于输出信号中,过零点的检测点过多,在实际采样过程中,往往有可能造成误差;所以在本方法中,选取信号的正负半周最高点作为时间记录点,用于流速分析。
在颗粒物流过滑油管道的过程中,管道的长度L是一定的,通过采样时间抽取,T1、T2、T3,其中T1为信号通过正半周最高点的时刻,T2为信号通过零点的时刻,T3为信号通过负半周最高点的时刻,如图5所示;可以得到流速:
Figure PCTCN2018118694-appb-000006
由于每个滑油传感器的线材(粗细、材质),绕线匝数,两感应线圈相互作用等不同因素,对输出信号产生影响,使其不再感应线圈的中间部分,故引入修正系数K,对其进行修正。同时通过T1到T2,T2到T3两个时间段进行分析,取平均流速,减少误差。
Figure PCTCN2018118694-appb-000007
Figure PCTCN2018118694-appb-000008
Figure PCTCN2018118694-appb-000009
其中,L为通过感应线圈的总长度,L/2为分别通过两个半周期的线圈长度。
上述为通过一组感应线圈时所计算得出的速度。
在输出信号中,信号的幅值与金属颗粒物的大小有关。依据圆柱形金属颗粒物匀速的通过螺旋管内部时,产生的感应电动势有:
E=-4kμ 0μ rn 3VI 0ν
其中,k为系统修正系数,n为线圈匝数密度(单位长度的绕制匝数=总匝数/总长度),V为颗粒物体积,v为颗粒物流速。
在单层密绕线圈中,金属颗粒物经过螺旋管感应线圈时引起的感应电压E与颗粒物的体积V、磁导率、通过的速度v成正比、线圈绕制的匝数密度的3 次方成正比。通过对传感器的输出信号进行定量分析,即可换算出流过滑油管道的金属磨粒的体积、质量。在获取到滑油流速v的条件下,测得金属颗粒物的浓度,方法如下:
已知管道横截面积S,一段时间t内,通过输出信号的幅值得到经过的金属颗粒数量、大小,转换成总质量m,即可获取到金属颗粒物浓度,即通过公式:
Figure PCTCN2018118694-appb-000010
计算得出。
在更进一步的一种优选实施方式中,所述S1中获取所述信号检测系统的输出信号的频率为1ms一次。
实施例4(利用磁感应颗粒检测装置的浓度检测方法)
本实施例与上述实施例3的区别在于,本实施例的流速采用了更优选的实施方式,即若感应线圈有多组,则金属颗粒经过感应线圈的流速v为各组感应线圈流速的平均值。
例如所述S1中分别计算金属颗粒经过第n组感应线圈的流速vgn(其中n为正整数),所述流速v为各组感应线圈流速的平均值,即:
Figure PCTCN2018118694-appb-000011
通过平均值计算的方法可以提高该流速的计算精度,使得检测结果更为准确。
例如在该装置中,所述感应线圈总共有两组,第一组感应线圈所测得的流速为vg1,第二组感应线圈所测得的流速为vg2,则所述S1最终计算之流速可为通过公式:
Figure PCTCN2018118694-appb-000012
计算得出。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

Claims (10)

  1. 一种磁感应颗粒检测装置,其特征在于,所述检测装置包括信号检测系统、检测管道、激励线圈,以及正偶数个感应线圈,所述激励线圈与所述信号处理系统连接并绕制于所述检测管道上;所述感应线圈均与所述信号处理系统连接,依次并彼此反向绕制于所述激励线圈上;
    优选地,所述感应线圈的数量为两个或四个或六个。
  2. 如权利要求1所述的磁感应颗粒检测装置,其特征在于,所述激励线圈为两个或多个,各个激励线圈同向绕制于所述检测管道上。
  3. 如权利要求1或2所述的磁感应颗粒检测装置,其特征在于,所述激励线圈和/或感应线圈采用至少一层的方式进行绕制。
  4. 如权利要求1-3任一项所述的磁感应颗粒检测装置,其特征在于,所述检测管道的材质是非导磁材料;
    优选地,所述检测管道的材质是不锈钢材质。
  5. 如权利要求1-4任一项所述的磁感应颗粒检测装置,其特征在于,所述激励线圈和所述感应线圈之间还设置有隔环套筒;
    优选地,所述隔环套筒的材质是非导磁材料。
  6. 如权利要求1-5任一项所述的磁感应颗粒检测装置,其特征在于,所述感应线圈外还设有屏蔽环。
  7. 一种应用如权利要求1至6任一项所述磁感应颗粒检测装置的浓度检测方法,其特征在于,包括以下步骤:
    S1:获取所述信号检测系统的输出信号,得到电压幅度变化情况;
    S2:根据所获得的电压幅度变化情况,检测金属颗粒浓度;
    优选地,检测金属颗粒浓度包括以下步骤:
    获取金属颗粒经过感应线圈的流速v;
    获取金属颗粒的质量m;
    根据上述所得金属颗粒的流速v、质量m,经过时间t,并利用管道横截面积S,通过以下公式计算得出颗粒物的浓度c:
    Figure PCTCN2018118694-appb-100001
  8. 如权利要求7所述的浓度检测方法,其特征在于,获取所述金属颗粒流速v的方法包括以下步骤:
    分别记录信号处理系统测得金属颗粒经过一组感应线圈时电压幅值在正半周最高点与过零点的时刻,算得其时间差值ΔT1,以及相对应的感应线圈长度L1;分别记录信号处理系统测得电压幅值在过零点与在负半周最高点的时刻,算得其时间差值ΔT2,以及相对应的感应线圈长度L2;
    根据公式测得流速:
    Figure PCTCN2018118694-appb-100002
  9. 如权利要求7或8所述的浓度检测方法,其特征在于,若感应线圈有多组,则金属颗粒经过感应线圈的流速v为经过各组感应线圈流速的平均值。
  10. 如权利要求7-9任一项所述的浓度检测方法,其特征在于,所述S1中获取所述信号检测系统的输出信号的频率为1ms一次。
PCT/CN2018/118694 2017-12-05 2018-11-30 一种磁感应颗粒检测装置及浓度检测方法 WO2019109870A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/487,920 US20200056975A1 (en) 2017-12-05 2018-11-30 Magnetic induction particle detection device and concentration detection method
EP18885562.1A EP3722782A4 (en) 2017-12-05 2018-11-30 MAGNETIC INDUCTION PARTICLE DETECTION DEVICE AND CONCENTRATION DETECTION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711268483.3A CN107907455B (zh) 2017-12-05 2017-12-05 一种磁感应颗粒检测装置及浓度检测方法
CN201711268483.3 2017-12-05

Publications (1)

Publication Number Publication Date
WO2019109870A1 true WO2019109870A1 (zh) 2019-06-13

Family

ID=61854077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118694 WO2019109870A1 (zh) 2017-12-05 2018-11-30 一种磁感应颗粒检测装置及浓度检测方法

Country Status (4)

Country Link
US (1) US20200056975A1 (zh)
EP (1) EP3722782A4 (zh)
CN (1) CN107907455B (zh)
WO (1) WO2019109870A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107907455B (zh) * 2017-12-05 2021-07-20 西人马联合测控(泉州)科技有限公司 一种磁感应颗粒检测装置及浓度检测方法
CN108051348A (zh) * 2017-12-05 2018-05-18 西人马(厦门)科技有限公司 一种流体非金属颗粒浓度的检测系统及方法
USD907573S1 (en) * 2018-05-11 2021-01-12 Fatri United Testing & Control (Quanzhou) Technologies Co., Ltd. Acceleration sensor magnetic mounting base
CN108435269B (zh) * 2018-05-23 2023-05-26 南京信息工程大学 多鞘大气化学层流反应系统
CN109579894A (zh) * 2018-09-20 2019-04-05 西人马联合测控(泉州)科技有限公司 一种滑油金属屑末传感器的标定方法及系统
CN111505726B (zh) * 2020-04-09 2023-03-10 中北大学 基于对称磁激励结构的管道液体磁异介质检测装置及方法
CN111426614A (zh) * 2020-04-30 2020-07-17 中国工程物理研究院机械制造工艺研究所 一种基于互感法的磁流变抛光液铁粉浓度检测装置
CN111855748B (zh) * 2020-07-30 2023-01-10 南昌航空大学 一种基于电磁互感的钢丝绳损伤检测装置及检测方法
CN112557264A (zh) * 2020-11-23 2021-03-26 中国电子科技集团公司第四十九研究所 一种高温金属屑传感器敏感芯体及其制备方法
CN112881244B (zh) * 2021-01-15 2022-06-03 重庆邮电大学 基于高频高梯度磁场的金属颗粒检测传感器及其检测方法
FR3119890A1 (fr) * 2021-02-12 2022-08-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif de caractérisation d’un bain de corium formé ou en cours de formation dans un réacteur nucléaire
CN113035565B (zh) * 2021-03-10 2023-03-28 远景能源有限公司 一种工作液金属颗粒检测设备及其线圈制作方法
CN113791372B (zh) * 2021-08-17 2023-05-09 北京航空航天大学 一种磁纳米粒子空间定位装置及方法
CN114034739A (zh) * 2021-11-05 2022-02-11 大连海事大学 一种变频式磨粒材质识别装置及方法
CN115639116B (zh) * 2022-11-14 2023-03-14 南京航空航天大学 一种感应式油液磨粒传感器信号处理系统及方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5001424A (en) * 1989-02-03 1991-03-19 Product Resources, Inc. Apparatus for measuring magnetic particles suspended in a fluid based on fluctuations in an induced voltage
CN101963570A (zh) * 2010-05-17 2011-02-02 深圳市亚泰光电技术有限公司 快速检测润滑油中铁磁磨粒的装置和检测方法以及信号处理电路
CN103344535A (zh) * 2013-06-09 2013-10-09 桂林电子科技大学 油液金属磨粒在线监测系统
CN103592208A (zh) * 2013-11-13 2014-02-19 中国人民解放军国防科学技术大学 抗环境磁场干扰的电磁式油液金属颗粒监测传感器
US20150091556A1 (en) * 2013-09-30 2015-04-02 Electronics & Telecommunications Research Institute Method and apparatus for analyzing materials by using pattern analysis of harmonic peaks
CN105954156A (zh) * 2016-05-12 2016-09-21 绍兴文理学院 用变结构工况自适应滤波的双激励螺线管式微粒敏感装置
CN105954067A (zh) * 2016-04-26 2016-09-21 中南大学 一种采样膜及基于采用膜检测分析铁矿烧结烟气超细颗粒物的方法
CN206863240U (zh) * 2017-06-22 2018-01-09 济南大学 油液中金属颗粒检测装置
CN107907455A (zh) * 2017-12-05 2018-04-13 西人马(厦门)科技有限公司 一种磁感应颗粒检测装置及浓度检测方法
CN108051348A (zh) * 2017-12-05 2018-05-18 西人马(厦门)科技有限公司 一种流体非金属颗粒浓度的检测系统及方法
CN108169086A (zh) * 2017-12-05 2018-06-15 西人马(厦门)科技有限公司 一种流体颗粒物浓度检测方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU655216B2 (en) * 1990-11-28 1994-12-08 Ge Aviation Uk System and method for monitoring debris in a fluid
CN105973776A (zh) * 2016-05-12 2016-09-28 绍兴文理学院 一种用工况自适应滤波的双激励螺线管式微粒敏感方法
CN207502347U (zh) * 2017-12-05 2018-06-15 西人马(厦门)科技有限公司 一种磁感应颗粒检测装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5001424A (en) * 1989-02-03 1991-03-19 Product Resources, Inc. Apparatus for measuring magnetic particles suspended in a fluid based on fluctuations in an induced voltage
CN101963570A (zh) * 2010-05-17 2011-02-02 深圳市亚泰光电技术有限公司 快速检测润滑油中铁磁磨粒的装置和检测方法以及信号处理电路
CN103344535A (zh) * 2013-06-09 2013-10-09 桂林电子科技大学 油液金属磨粒在线监测系统
US20150091556A1 (en) * 2013-09-30 2015-04-02 Electronics & Telecommunications Research Institute Method and apparatus for analyzing materials by using pattern analysis of harmonic peaks
CN103592208A (zh) * 2013-11-13 2014-02-19 中国人民解放军国防科学技术大学 抗环境磁场干扰的电磁式油液金属颗粒监测传感器
CN105954067A (zh) * 2016-04-26 2016-09-21 中南大学 一种采样膜及基于采用膜检测分析铁矿烧结烟气超细颗粒物的方法
CN105954156A (zh) * 2016-05-12 2016-09-21 绍兴文理学院 用变结构工况自适应滤波的双激励螺线管式微粒敏感装置
CN206863240U (zh) * 2017-06-22 2018-01-09 济南大学 油液中金属颗粒检测装置
CN107907455A (zh) * 2017-12-05 2018-04-13 西人马(厦门)科技有限公司 一种磁感应颗粒检测装置及浓度检测方法
CN108051348A (zh) * 2017-12-05 2018-05-18 西人马(厦门)科技有限公司 一种流体非金属颗粒浓度的检测系统及方法
CN108169086A (zh) * 2017-12-05 2018-06-15 西人马(厦门)科技有限公司 一种流体颗粒物浓度检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU XIAO-LIN: "Research on Three-Coil Inner and Outer Layer Inductive Wear Particle Sensor", TRANSDUCER AND MICROSYSTEM TECHNOLOGIES, vol. 33, no. 11, 20 November 2014 (2014-11-20), pages 12 - 15, XP009521393, DOI: 10.13873/J.1000-9787(2014)11-0012-04 *
See also references of EP3722782A4 *

Also Published As

Publication number Publication date
CN107907455B (zh) 2021-07-20
EP3722782A4 (en) 2021-01-20
EP3722782A1 (en) 2020-10-14
CN107907455A (zh) 2018-04-13
US20200056975A1 (en) 2020-02-20

Similar Documents

Publication Publication Date Title
WO2019109870A1 (zh) 一种磁感应颗粒检测装置及浓度检测方法
WO2019109872A1 (zh) 一种流体非金属颗粒浓度的检测系统及方法
Rifai et al. Giant magnetoresistance sensors: A review on structures and non-destructive eddy current testing applications
CN103499404B (zh) 铁磁构件交变应力测量装置及其测量方法
CN101545958B (zh) 双向磁饱和时间差磁通门传感器
CN103675094A (zh) 一种无损探伤装置
Li et al. Online symmetric magnetic excitation monitoring sensor for metal wear debris
Wei et al. A transducer made up of fluxgate sensors for testing wire rope defects
US3191436A (en) Electromagnetic flowmeter
EP3159854B1 (en) Coin detection system
CN207502347U (zh) 一种磁感应颗粒检测装置
CN102087245B (zh) 基于非晶合金的电磁检测传感器
Ripka et al. AMR proximity sensor with inherent demodulation
CN204129826U (zh) 一种硬币检测系统
KR100626228B1 (ko) 교류자기장을 이용한 유도자속 탐상장치 및 그 방법
JP2016008931A (ja) 非破壊検査装置および非破壊検査方法
CN203616286U (zh) 一种无损探伤装置
CN106053544A (zh) 感应式工业型管道内复电导率在线检测装置和方法
Rebican et al. Investigation of numerical precision of 3-D RFECT signal simulations
RU2586261C2 (ru) Устройство магнитного дефектоскопа и способ уменьшения погрешности определения размеров дефектов трубопровода магнитными дефектоскопами
Zhao et al. A Defect Visualization Method Based on ACFM Signals Obtained by a Uniaxial TMR Sensor
Yuan et al. Magnetic compression effect for the enhancement of crack response signals in non-ferromagnetic conductive tubes
Liu et al. Study on high precision measurement method of chromium plating thickness of zirconium tube
RU2265816C2 (ru) Снаряд-дефектоскоп для контроля отверстий в стенках внутри трубопровода
CN114764086A (zh) 基于偏置磁化下涡流检测差动磁导率的管道内检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885562

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018885562

Country of ref document: EP

Effective date: 20200706