CN112557264A - 一种高温金属屑传感器敏感芯体及其制备方法 - Google Patents

一种高温金属屑传感器敏感芯体及其制备方法 Download PDF

Info

Publication number
CN112557264A
CN112557264A CN202011320563.0A CN202011320563A CN112557264A CN 112557264 A CN112557264 A CN 112557264A CN 202011320563 A CN202011320563 A CN 202011320563A CN 112557264 A CN112557264 A CN 112557264A
Authority
CN
China
Prior art keywords
coil
coils
sensitive core
ceramics
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011320563.0A
Other languages
English (en)
Inventor
张宁
刘志远
杨思远
柴寿臣
徐冬
唐胜武
乔路
张宪
刘继江
李宝生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 49 Research Institute
Original Assignee
CETC 49 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 49 Research Institute filed Critical CETC 49 Research Institute
Priority to CN202011320563.0A priority Critical patent/CN112557264A/zh
Publication of CN112557264A publication Critical patent/CN112557264A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables

Landscapes

  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

一种高温金属屑传感器敏感芯体及其制备方法,属于传感器制造技术领域,本发明为解决现有技术无法解决高温环境下发动机滑油中微米级金属屑颗粒在线监测的问题。它包括一组感应线圈和两个激励线圈;所述两个激励线圈分立在感应线圈的两侧,激励线圈和感应线圈之间填充隔离陶瓷,其中一个激励线圈的外侧设置转接陶瓷板;两个激励线圈差动连接;金属屑能够使感应线圈的输出电压产生变化,电压的幅值变化和频率变化能够判断金属屑的颗粒大小和材料属性。本发明用于对高温环境下的滑油管道金属屑进行实时监测。

Description

一种高温金属屑传感器敏感芯体及其制备方法
技术领域
本发明涉及一种高温金属屑传感器敏感芯体及其制备方法,属于传感器制造技术领域。
背景技术
在航空发动机的工作过程中,采用滑油润滑的各个摩擦部件的磨损碎屑都落入到了发动机滑油中,因此滑油携带着大量的关于发动机内部机械设备的运行状态的信息。在航空发动机故障诊断与状态监控过程中,通过对滑油进行在线采样,并进行滑油分析技术进行处理后,就能够实时对发动机的故障进行诊断和预警监控。滑油在线检测技术是通过分析被监测发动机润滑油的性能变化和携带的金属颗粒情况,获得发动机摩擦学系统的润滑和磨损状态的信息,评价发动机的工况和预测故障,并确定故障原因、类型和零件种类的技术。随着新型航空发动机的研制与应用,最大飞行马赫数不断增加,加速过程温度变化更加剧烈,发动机磨损情况更加复杂,发动机滑油系统对金属屑在线检测能力及传感器耐高温能力提出了新的要求。若此时发动机系统出现异常,而未能提前预警和采取应急处置,将会引起灾难性的后果。
健康诊断系统对高温环境下滑油中金属屑的高灵敏度在线检测存在迫切需求,通过滑油中铁磁、非铁磁金属屑情况的实时在线检测,可对发动机机械故障提供早期预警,从而有效避免空中停车甚至机毁人亡的严重后果。
而针对高温环境下的滑油管道金属屑末实时监测的技术需求,所需监测的最小金属屑末直径50μm,为了提高传感器的测试灵敏度,需要保证敏感线圈磁场分布一致性,采用耐热性更好的高温陶瓷和金属材料异质共烧工艺制备一体化敏感线圈,并将现代检测、信号处理等手段与之融合,可预见性的开发出满足高温环境下高灵敏度的发动机在线金属屑传感器。
发明内容
本发明目的是为了解决现有技术无法解决高温环境下发动机滑油中微米级金属屑颗粒在线监测的问题,提供了一种高温金属屑传感器敏感芯体及其制备方法。
本发明所述一种高温金属屑传感器敏感芯体,包括一组感应线圈和两个激励线圈;
所述两个激励线圈分立在感应线圈的两侧,激励线圈和感应线圈之间填充隔离陶瓷,其中一个激励线圈的外侧设置转接陶瓷板;
两个激励线圈差动连接;
金属屑能够使感应线圈的输出电压产生变化,电压的幅值变化和频率变化能够判断金属屑的颗粒大小和材料属性。
优选的,还包括导磁屏蔽罩,所述一组感应线圈和两个激励线圈整体封装在导磁屏蔽罩内。
本发明所述一种高温金属屑传感器敏感芯体的制备方法,该制备方法用于制备高温金属屑传感器敏感芯体,该制备方法包括:
S1、通过流延平台制备流延膜片;
S2、将S1获取的流延膜片裁切成大小适合的基片陶瓷;
S3、在S2获取的基片陶瓷上冲出实现电气连接的通孔;
S4、将铜金属浆料丝网印刷出多层螺旋线圈图形,同时将S3中的通孔金属化,制备出套引填充陶瓷;
S5、按照S1-S4分别制备出感应线圈和激励线圈的套引填充陶瓷,在感应线圈和激励线圈的套引填充陶瓷之间填充隔离陶瓷,然后叠加在一起,切割成敏感芯体生坯;
S6、将S5获取的敏感芯体生坯放入排胶炉中进行烧结。
优选的,S1所述通过流延平台制备流延膜片的具体方法包括:
对氧化铝陶瓷依次经过粉体掺杂设计、流延添加剂设计、流延工艺优化后,制备出设定收缩率和热膨胀系数的流延膜片。
优选的,S4所述将铜金属浆料丝网印刷出多层螺旋线圈图形,相邻两层螺旋线圈的旋向相反。
本发明的优点:本发明提出的一种高温金属屑传感器敏感芯体及其制备方法,采用立体堆叠工艺制成耐高温、高一致性螺旋电感线圈来实现滑油中微小金属屑颗粒的测量。通过对双相对称螺旋线圈电磁场仿真模型的研究,解决了在无金属颗粒通过的情况下降低敏感元件自身零点噪声干扰的问题;通过敏感元件物理参数的优化设计,提高了传感器检测灵敏度并降低了敏感元件的外形尺寸;通过螺旋线圈立体堆叠技术,提高了双相对称线圈的一致性,能够解决现有工艺绕制线圈工作温度低、零点自噪声大的问题,提高敏感元件工作温度及输出信号的信噪比。
本发明提出的一种高温金属屑传感器敏感芯体及其制备方法,能够极大地提高传感器的使用温度,并可以推广应用至所有绕制线圈测量原理的传感器。
附图说明
图1是本发明所述一种高温金属屑传感器敏感芯体的结构示意图,其中1表示激励线圈1,2表示感应线圈,3表示激励线圈2,4表示隔离陶瓷;
图2是采用本发明所述一种高温金属屑传感器敏感芯体进行实时监测的原理图,5表示转接陶瓷板,6表示导磁屏蔽罩,7表示密封腔,A表示滑油方向;
图3是采用本发明所述一种高温金属屑传感器敏感芯体进行实时监测的等效电路图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
具体实施方式一:下面结合图1说明本实施方式,本实施方式所述一种高温金属屑传感器敏感芯体,包括一组感应线圈和两个激励线圈;
所述两个激励线圈分立在感应线圈的两侧,激励线圈和感应线圈之间填充隔离陶瓷,其中一个激励线圈的外侧设置转接陶瓷板;
两个激励线圈差动连接;
金属屑能够使感应线圈的输出电压产生变化,电压的幅值变化和频率变化能够判断金属屑的颗粒大小和材料属性。
本实施方式中,所述转接陶瓷板用于三组线圈的连线。
本实施方式中,两个激励线圈差动连接能够提高敏感芯体内的磁感应强度。
进一步的,还包括导磁屏蔽罩,所述一组感应线圈和两个激励线圈整体封装在导磁屏蔽罩内。
具体实施方式二:本实施方式所述一种高温金属屑传感器敏感芯体的制备方法,该制备方法用于制备高温金属屑传感器敏感芯体,该制备方法包括:
S1、通过流延平台制备流延膜片;
S2、将S1获取的流延膜片裁切成大小适合的基片陶瓷;
S3、在S2获取的基片陶瓷上冲出实现电气连接的通孔;
S4、将铜金属浆料丝网印刷出多层螺旋线圈图形,同时将S3中的通孔金属化,制备出套引填充陶瓷;
S5、按照S1-S4分别制备出感应线圈和激励线圈的套引填充陶瓷,在感应线圈和激励线圈的套引填充陶瓷之间填充隔离陶瓷,然后叠加在一起,切割成敏感芯体生坯;
S6、将S5获取的敏感芯体生坯放入排胶炉中进行烧结。
进一步的,S1所述通过流延平台制备流延膜片的具体方法包括:
对氧化铝陶瓷依次经过粉体掺杂设计、流延添加剂设计、流延工艺优化后,制备出设定收缩率和热膨胀系数的流延膜片。
再进一步的,S4所述将铜金属浆料丝网印刷出多层螺旋线圈图形,相邻两层螺旋线圈的旋向相反。
本实施方式中,所述相邻两层螺旋线圈的旋向相反,能够保证各层螺旋线圈的磁场方向一致。
本发明中,敏感线圈采用铜金属与氧化铝陶瓷两种异质材料制作而成,设计通过对陶瓷材料的掺杂改性,在氧化铝材料参杂其它金属氧化物材料降低烧结温度同时调整热膨胀系数,实现异质材料共烧结界面应力的最佳匹配,提高在其在500℃的结构热稳定性。
本发明中,敏感芯体制备工艺流程中基片粉体材料制备、基片流延成型、叠压、烧结工艺为异质材料共烧结技术的关键,丝网印刷技术是实现敏感绕组高精度制备的关键。
本发明提出的一种高温金属屑传感器采用电磁感应原理,当金属屑颗粒进入激励线圈时,由于金属的磁导率不同于空气的磁导率,打破了原来的平衡状态。系统的中点部分(感应线圈)感应强度不再为0,其变化值ΔB是金属颗粒引起的磁场的变化值,激励线圈的一侧被金属颗粒覆盖部分的磁导率由空气磁导率μ0变成了金属磁导率μr,则中点两侧的感应强度差值即:
Figure BDA0002792749620000041
其中,N1表示激励线圈1的匝数;ra表示颗粒小球半径;μr表示金属颗粒的相对磁导率。
如图2和图3所示,随着金属颗粒从左侧离开进入右侧时,左侧磁场逐渐减少,右侧磁场逐渐增大,两侧的磁感应强度的变化以中点对称。当颗粒从激励线圈1中离开时,颗粒对外磁场的增强作用越来越不明显,感应电动势开始变小,因此,想要获得最大的磁感应强度,就要保证两侧激励线圈的加工一致性,同时在无金属颗粒通过时,在感应线圈的中心点处获得的磁感应强度尽量接近于零。
本发明采用立体堆叠工艺制成耐高温、高一致性螺旋电感线圈来实现滑油中微小金属屑颗粒的测量。通过对双相对称螺旋线圈电磁场仿真模型的研究,解决了在无金属颗粒通过的情况下降低敏感元件自身零点噪声干扰的问题;通过敏感元件物理参数的优化设计,提高了传感器检测灵敏度并降低了敏感元件的外形尺寸;通过螺旋线圈立体堆叠技术,提高了双相对称线圈的一致性,能够解决现有工艺绕制线圈工作温度低、零点自噪声大的问题,提高敏感元件工作温度及输出信号的信噪比。
虽然在本文中参照了特定的实施方式来描述本发明,但是应该理解的是,这些实施例仅仅是本发明的原理和应用的示例。因此应该理解的是,可以对示例性的实施例进行许多修改,并且可以设计出其他的布置,只要不偏离所附权利要求所限定的本发明的精神和范围。应该理解的是,可以通过不同于原始权利要求所描述的方式来结合不同的从属权利要求和本文中所述的特征。还可以理解的是,结合单独实施例所描述的特征可以使用在其他所述实施例中。

Claims (5)

1.一种高温金属屑传感器敏感芯体,其特征在于,包括一组感应线圈和两个激励线圈;
所述两个激励线圈分立在感应线圈的两侧,激励线圈和感应线圈之间填充隔离陶瓷,其中一个激励线圈的外侧设置转接陶瓷板;
两个激励线圈差动连接;
金属屑能够使感应线圈的输出电压产生变化,电压的幅值变化和频率变化能够判断金属屑的颗粒大小和材料属性。
2.根据权利要求1所述的一种高温金属屑传感器敏感芯体,其特征在于,还包括导磁屏蔽罩,所述一组感应线圈和两个激励线圈整体封装在导磁屏蔽罩内。
3.一种高温金属屑传感器敏感芯体的制备方法,该制备方法用于制备权利要求1所述的高温金属屑传感器敏感芯体,其特征在于,该制备方法包括:
S1、通过流延平台制备流延膜片;
S2、将S1获取的流延膜片裁切成大小适合的基片陶瓷;
S3、在S2获取的基片陶瓷上冲出实现电气连接的通孔;
S4、将铜金属浆料丝网印刷出多层螺旋线圈图形,同时将S3中的通孔金属化,制备出套引填充陶瓷;
S5、按照S1-S4分别制备出感应线圈和激励线圈的套引填充陶瓷,在感应线圈和激励线圈的套引填充陶瓷之间填充隔离陶瓷,然后叠加在一起,切割成敏感芯体生坯;
S6、将S5获取的敏感芯体生坯放入排胶炉中进行烧结。
4.根据权利要求3所述的一种高温金属屑传感器敏感芯体的制备方法,其特征在于,S1所述通过流延平台制备流延膜片的具体方法包括:
对氧化铝陶瓷依次经过粉体掺杂设计、流延添加剂设计、流延工艺优化后,制备出设定收缩率和热膨胀系数的流延膜片。
5.根据权利要求3或4所述的一种高温金属屑传感器敏感芯体的制备方法,其特征在于,S4所述将铜金属浆料丝网印刷出多层螺旋线圈图形,相邻两层螺旋线圈的旋向相反。
CN202011320563.0A 2020-11-23 2020-11-23 一种高温金属屑传感器敏感芯体及其制备方法 Pending CN112557264A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011320563.0A CN112557264A (zh) 2020-11-23 2020-11-23 一种高温金属屑传感器敏感芯体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011320563.0A CN112557264A (zh) 2020-11-23 2020-11-23 一种高温金属屑传感器敏感芯体及其制备方法

Publications (1)

Publication Number Publication Date
CN112557264A true CN112557264A (zh) 2021-03-26

Family

ID=75044862

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011320563.0A Pending CN112557264A (zh) 2020-11-23 2020-11-23 一种高温金属屑传感器敏感芯体及其制备方法

Country Status (1)

Country Link
CN (1) CN112557264A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113125314A (zh) * 2021-04-08 2021-07-16 北京信息科技大学 一种外包裹高磁导率材料的高灵敏度金属磨损颗粒检测传感器

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444367A (en) * 1992-04-06 1995-08-22 Minister Of National Defence Method and apparatus for detecting particles in a fluid having coils isolated from external vibrations
JP2004161562A (ja) * 2002-11-14 2004-06-10 Murata Mfg Co Ltd 回路基板用セラミックス材料
JP2004303476A (ja) * 2003-03-28 2004-10-28 Central Res Inst Of Electric Power Ind 高温導電性セラミックス粉体、その焼結体およびそれを利用した固体酸化物形燃料電池
CN101038814A (zh) * 2007-01-26 2007-09-19 华中科技大学 片式低温共烧陶瓷式共模滤波器
CN101615481A (zh) * 2009-05-15 2009-12-30 梁耀国 微型高品质绕线型片式电感的制造方法
US20100233497A1 (en) * 2007-04-18 2010-09-16 Alfred Thimm Ceramic material with a composition which is matched to a coefficient of thermal expansion specified by a metallic material
CN102331389A (zh) * 2010-11-30 2012-01-25 蒋伟平 一种高灵敏度的油液磨粒在线监测传感器
CN103592208A (zh) * 2013-11-13 2014-02-19 中国人民解放军国防科学技术大学 抗环境磁场干扰的电磁式油液金属颗粒监测传感器
CN103728227A (zh) * 2012-10-13 2014-04-16 陕西杰创科技有限公司 一种在线检测油液中金属颗粒的装置
CN103915244A (zh) * 2013-01-04 2014-07-09 三星电机株式会社 线圈元件及其制造方法
CN104201442A (zh) * 2014-07-16 2014-12-10 电子科技大学 一种基于ltcc技术的微带线移相器
US20150241328A1 (en) * 2014-02-24 2015-08-27 Bell Helicopter Textron Inc. Non-metallic debris monitoring system
CN107907455A (zh) * 2017-12-05 2018-04-13 西人马(厦门)科技有限公司 一种磁感应颗粒检测装置及浓度检测方法
CN109283101A (zh) * 2018-11-19 2019-01-29 北京理工大学 一种高灵敏度磨损颗粒在线检测系统及方法
CN109283102A (zh) * 2018-08-22 2019-01-29 四川新川航空仪器有限责任公司 一种运动机械构件磨损状态的实时监测系统

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444367A (en) * 1992-04-06 1995-08-22 Minister Of National Defence Method and apparatus for detecting particles in a fluid having coils isolated from external vibrations
JP2004161562A (ja) * 2002-11-14 2004-06-10 Murata Mfg Co Ltd 回路基板用セラミックス材料
JP2004303476A (ja) * 2003-03-28 2004-10-28 Central Res Inst Of Electric Power Ind 高温導電性セラミックス粉体、その焼結体およびそれを利用した固体酸化物形燃料電池
CN101038814A (zh) * 2007-01-26 2007-09-19 华中科技大学 片式低温共烧陶瓷式共模滤波器
US20100233497A1 (en) * 2007-04-18 2010-09-16 Alfred Thimm Ceramic material with a composition which is matched to a coefficient of thermal expansion specified by a metallic material
CN101615481A (zh) * 2009-05-15 2009-12-30 梁耀国 微型高品质绕线型片式电感的制造方法
CN102331389A (zh) * 2010-11-30 2012-01-25 蒋伟平 一种高灵敏度的油液磨粒在线监测传感器
CN103728227A (zh) * 2012-10-13 2014-04-16 陕西杰创科技有限公司 一种在线检测油液中金属颗粒的装置
CN103915244A (zh) * 2013-01-04 2014-07-09 三星电机株式会社 线圈元件及其制造方法
CN103592208A (zh) * 2013-11-13 2014-02-19 中国人民解放军国防科学技术大学 抗环境磁场干扰的电磁式油液金属颗粒监测传感器
US20150241328A1 (en) * 2014-02-24 2015-08-27 Bell Helicopter Textron Inc. Non-metallic debris monitoring system
CN104201442A (zh) * 2014-07-16 2014-12-10 电子科技大学 一种基于ltcc技术的微带线移相器
CN107907455A (zh) * 2017-12-05 2018-04-13 西人马(厦门)科技有限公司 一种磁感应颗粒检测装置及浓度检测方法
CN109283102A (zh) * 2018-08-22 2019-01-29 四川新川航空仪器有限责任公司 一种运动机械构件磨损状态的实时监测系统
CN109283101A (zh) * 2018-11-19 2019-01-29 北京理工大学 一种高灵敏度磨损颗粒在线检测系统及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113125314A (zh) * 2021-04-08 2021-07-16 北京信息科技大学 一种外包裹高磁导率材料的高灵敏度金属磨损颗粒检测传感器

Similar Documents

Publication Publication Date Title
CN103674787B (zh) 微型化集成的感应式滑油磨粒在线监测传感器
US9410985B2 (en) Printed circuit board and magnetic field or current sensor
CN106093146B (zh) 一种容抗式油液检测系统及其制作方法
CN106052918B (zh) 扭矩传感器
CN107422030A (zh) 柔性涡流阵列传感器及监测螺栓连接结构孔边裂纹的方法
CN106383146A (zh) 一种感抗式油液检测系统及其制作方法
CN112797885A (zh) 一种用于恶劣环境的高温电涡流位移传感器
CN112557264A (zh) 一种高温金属屑传感器敏感芯体及其制备方法
CN202749218U (zh) 基于PCB型Rogowski线圈的电流互感器
CN102738140A (zh) 电感器和包括电感器的涡电流传感器
JP7145229B2 (ja) 平面コイルアセンブリの製造方法及びこれを備えたセンサーヘッド
CN110332880B (zh) 一种无线位移传感器
US8633703B2 (en) Inductive conductivity sensor
US20160356866A1 (en) Embedded Sensor Systems
CN102721738A (zh) 硅基底多层线圈结构的微型涡流传感器
CN105203251B (zh) 压力传感芯片及其加工方法
CN110317066B (zh) 基于高温共烧结的陶瓷敏感芯体及其制备方法
CN110907529A (zh) 一种电感式磨粒检测传感器及其制作方法
CA2735220A1 (en) System and method for sensing the periodic position of an object
CN206832877U (zh) 检测漏电流的装置、变送器、传感器和自动控制系统
EP4212861A1 (en) Electromagnetic chip detector
CN105444663B (zh) 一种基于黑盒的rvdt设计方法
CN104567951A (zh) 双余度电感式接近传感器
Li et al. Influence of structural parameters on the static performance of self-inductive radial displacement sensor
Ihle et al. Low temperature co-fired ceramics technology for active eddy current turbocharger speed sensors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210326

WD01 Invention patent application deemed withdrawn after publication