CN110317066B - 基于高温共烧结的陶瓷敏感芯体及其制备方法 - Google Patents

基于高温共烧结的陶瓷敏感芯体及其制备方法 Download PDF

Info

Publication number
CN110317066B
CN110317066B CN201910722028.9A CN201910722028A CN110317066B CN 110317066 B CN110317066 B CN 110317066B CN 201910722028 A CN201910722028 A CN 201910722028A CN 110317066 B CN110317066 B CN 110317066B
Authority
CN
China
Prior art keywords
ceramic
sensitive core
temperature
functional layer
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910722028.9A
Other languages
English (en)
Other versions
CN110317066A (zh
Inventor
徐冬
吴凌慧
咸婉婷
周志炜
文吉延
刘柏青
柴寿臣
宋成君
王洋洋
李旭辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 49 Research Institute
Original Assignee
CETC 49 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 49 Research Institute filed Critical CETC 49 Research Institute
Priority to CN201910722028.9A priority Critical patent/CN110317066B/zh
Publication of CN110317066A publication Critical patent/CN110317066A/zh
Application granted granted Critical
Publication of CN110317066B publication Critical patent/CN110317066B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5122Pd or Pt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/22Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature differentially influencing two coils
    • G01D5/2291Linear or rotary variable differential transformers (LVDTs/RVDTs) having a single primary coil and two secondary coils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fuses (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

基于高温共烧结的陶瓷敏感芯体及其制备方法,属于高温传感器技术领域,本发明为解决现有传感器芯体的漆包线制备工艺无法满足超高温测量环境要求,并且存在制备的传感器精度较低的问题。本发明所述基于高温共烧陶瓷的超高温位移传感器陶瓷敏感芯体,将N层功能层基片高温共烧结为陶瓷敏感芯体,N为大于等于2的正整数;功能层基片包括陶瓷基片、螺旋线圈、填充陶瓷和信号引出孔;陶瓷基片为圆形,螺旋线圈螺旋状印刷在陶瓷基片上,陶瓷基片的空白处套印有填充陶瓷;相邻功能层基片上的螺旋线圈旋向相反。本发明用于高温传感器制备。

Description

基于高温共烧结的陶瓷敏感芯体及其制备方法
技术领域
本发明涉及一种陶瓷敏感芯体及其制备方法,属于高温传感器技术领域。
背景技术
传感器是一种检测装置,能够感受到被测量的信息,并能将感受到的信息按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。常用传感器有转速传感器、位移传感器、速度传感器、加速度传感器等,广泛应用于航空航天,机械,建筑,纺织,铁路等各个领域。随着国民经济的高速发展,自动化程度不断提高,传感器的用量越来越大,传感器具有精度高、动态特性好、工作可靠、使用方便等特点,开发高新技术传感器具有广阔的前景。
现有传感器芯体的制备通常应用漆包线绕制工艺技术。采用漆包线工艺技术制备的传感器芯体存在以下缺点:
1、由于漆包线使用温度的限制,采用漆包线工艺制备芯体的传感器最高工作温度仅为500度,无法应用在1000以上的超高温工作环境;
2、漆包线的绕线手法、绕线间隙与传感器的精度指标关系较大。例如:差动变压器式位移传感器主要由一个初级线圈绕组,两个次级线圈绕组以及一个可动铁芯组成。在初级线圈绕组上接入激励电源以后,两个次级线圈绕组将会因此产生感应电动势。铁芯作线性移动时,会使得两个次级线圈中产生的互感量发生变化,在两个次级线圈内所感应的电势一个增加一个减少,两个次级线圈绕组采用反向串联的方式进行连接,这样两个次级线圈中产生的电势差就等于传感器的输出电压。理想条件下,当保证两个次级线圈在物理尺寸等参数上一致,铁芯位于线圈的中间部位时,传感器的输出电压应该为零,当铁芯移动时,输出得电压值就会与铁芯位移量存在一定的线性关系。而实际操作中,即使精度最高的绕线机也无法保证次级线圈完全一致,这就造成传感器零位电压较大,精度较低。
综上,现有传感器芯体的制备由于采用漆包线制备工艺,导致传感器存在高温工作环境的限制和精度低的问题。
发明内容
本发明目的是为了解决现有传感器芯体的漆包线制备工艺无法满足超高温测量环境要求,并且存在制备的传感器精度较低的问题,提供了一种基于高温共烧结的陶瓷敏感芯体及其制备方法。
本发明所述基于高温共烧结的陶瓷敏感芯体,将N层功能层基片高温共烧结为陶瓷敏感芯体,N为大于等于2的正整数;
功能层基片包括陶瓷基片、螺旋线圈、填充陶瓷和信号引出孔;
陶瓷基片为圆形,螺旋线圈螺旋状印刷在陶瓷基片上,陶瓷基片的空白处套印有填充陶瓷;
相邻功能层基片上的螺旋线圈旋向相反。
优选的,螺旋线圈采用铂金属浆料制备。
优选的,信号引出孔内填充有铂金属浆料。
本发明所述基于高温共烧结的陶瓷敏感芯体的制备方法,该制备方法的具体过程为:
S1、根据设定的收缩率和热膨胀系数制备流延膜片;
S2、根据设定的尺寸将流延膜片裁切成陶瓷基片;
S3、在陶瓷基片上冲出信号引出孔;
S4、用金属浆料在陶瓷基片上丝网印刷出螺旋线圈;同时将S3获得的信号引出孔金属化;
S5、制备填充陶瓷,将填充陶瓷套印在陶瓷基片空白处,功能层基片制备完成;
S6、将各个制备完成的功能层基片叠压在一起,相邻层功能层基片的螺旋线圈旋向相反,切割成陶瓷敏感芯体坯体;
S7、将切割后的陶瓷敏感芯体放入排胶炉,根据陶瓷敏感芯体的坯体厚度和热重分析曲线设置排胶的工艺路线,将排胶后的陶瓷敏感芯体放入烧结炉,共烧结为陶瓷敏感芯体。
本发明的优点:
本发明提出的基于高温共烧结的陶瓷敏感芯体及其制备方法,采用高温共烧结技术,在1500~1600℃的高温状态下,将陶瓷基片、铂金属的螺旋线圈、填充陶瓷和信号引出孔共烧结为陶瓷敏感芯体,能够在1000℃以上的超感温环境下正常工作,甚至可以在1500~1600℃的环境下正常工作,填补了能够在高温环境下工作的制备传感器芯体的空白。具有耐腐蚀、耐高温、高效节能、温度均匀、导热性能良好、热补偿速度快等优点。
并且,该陶瓷敏感芯体式一次烧结而成,相比传统的缠绕漆包线式绕组,其对称性和一致性更好。
此外,通过平面的螺旋线圈的设计,降低了陶瓷敏感芯体的整体尺寸。
另外,该陶瓷敏感芯体可以应用所有漆包线绕制线圈的测试方法,如转速测量和压力测量等,可以极大地提高传感器的工作环境温度。
附图说明
图1是本发明所述基于高温共烧结的陶瓷敏感芯体的结构示意图;
图2是第一层螺旋线圈的结构示意图;
图3是第二层螺旋线圈的结构示意图;
图4是倒数第二层螺旋线圈的结构示意图;
图5是底层螺旋线圈的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
下面结合附图和具体实施例对本发明作进一步说明,但不作为本发明的限定。
具体实施方式一:下面结合图1-图5说明本实施方式,本实施方式所述基于高温共烧结的陶瓷敏感芯体,将N层功能层基片高温共烧结为陶瓷敏感芯体,N为大于等于2的正整数;
功能层基片包括陶瓷基片1、螺旋线圈2、填充陶瓷3和信号引出孔4;
陶瓷基片1为圆形,螺旋线圈2螺旋状印刷在陶瓷基片1上,陶瓷基片1的空白处套印有填充陶瓷3;
相邻功能层基片上的螺旋线圈2旋向相反。
本实施方式中,信号引出孔4为用于实现电气连接的通孔。
本实施方式中,相邻功能层基片上的螺旋线圈2旋向相反,能够保证各层线圈的磁场方向一致。
本实施方式中,填充陶瓷3防止相邻功能层基片叠加时边缘处开裂。
所述N为18-21。
螺旋线圈2采用铂金属浆料制备。
信号引出孔4内填充有铂金属浆料。
具体实施方式二:本实施方式所述基于高温共烧结的陶瓷敏感芯体的制备方法,该制备方法的具体过程为:
S1、根据设定的收缩率和热膨胀系数制备流延膜片;
S2、根据设定的尺寸将流延膜片裁切成陶瓷基片1;
S3、在陶瓷基片1上冲出信号引出孔4;
S4、用金属浆料在陶瓷基片1上丝网印刷出螺旋线圈2;同时将S3获得的信号引出孔4金属化;
S5、制备填充陶瓷3,将填充陶瓷3套印在陶瓷基片1空白处,功能层基片制备完成;
S6、将各个制备完成的功能层基片叠压在一起,相邻层功能层基片的螺旋线圈2旋向相反,切割成陶瓷敏感芯体坯体;
S7、将切割后的陶瓷敏感芯体放入排胶炉,根据陶瓷敏感芯体的坯体厚度和热重分析曲线设置排胶的工艺路线,将排胶后的陶瓷敏感芯体放入烧结炉,共烧结为陶瓷敏感芯体。
本实施方式中,热重分析曲线是待测样品的质量与温度变化关系的热分析曲线图。
本发明中,由于陶瓷敏感芯体是一次性烧结而成,相比绕线式绕组来说,它的对称性和一致性更好。
采用本发明提出的基于高温共烧结的陶瓷敏感芯体制备超高温位移传感器时,功能层基片的层数和螺旋线圈2参数的选取方法为:
根据超高温位移传感器的测量范围和精度要求计算获得初级线圈绕组和次级线圈绕组的长度和匝数;
根据长度、匝数和传感器功耗,获得功能层基片的层数,获得螺旋线圈2的圈数、线间距和线宽。
根据超高温位移传感器的技术指标确定所需陶瓷敏感芯体的数量,并将多个芯体通过玻璃粉烧结在一起,信号引出孔内填充有铂金属浆料并进行高温烧结,实现敏感芯体信号的有效引出。
设计超高温位移传感器时,首先根据测量范围和精度指标的要求计算出初级线圈绕组和次级线圈绕组的长度和匝数,然后根据绕组匝数和传感器功耗,确定陶瓷敏感芯体的层数和平面螺旋线圈的圈数n、线间距S、线宽w等设计参数,并结合HTCC工艺技术进行综合设计优化和调整。通过测量烧结后的敏感芯体电阻值和电感值来判定芯体是否合格。
本发明中,敏感芯体是采用高温共烧结陶瓷工艺,在高温状态下将铂金属和氧化铝陶瓷通过异质材料共烧结工艺制成金属,通过平面螺旋线圈设计,降低芯体的整体尺寸,通过平面线圈疏密设计,使敏感绕组内部形成阶梯型结构,再通过陶瓷-金属封接工艺,将氧化铝陶瓷件表面金属化后与高温同轴电缆的芯线、保护管进行焊接,实现高温环境下的弱信号有效输出。
虽然在本文中参照了特定的实施方式来描述本发明,但是应该理解的是,这些实施例仅仅是本发明的原理和应用的示例。因此应该理解的是,可以对示例性的实施例进行许多修改,并且可以设计出其他的布置,只要不偏离所附权利要求所限定的本发明的精神和范围。应该理解的是,可以通过不同于原始权利要求所描述的方式来结合不同的从属权利要求和本文中所述的特征。还可以理解的是,结合单独实施例所描述的特征可以使用在其他所述实施例中。

Claims (4)

1.基于高温共烧结的陶瓷敏感芯体,其特征在于,将N层功能层基片高温共烧结为陶瓷敏感芯体,N为大于等于2的正整数;
功能层基片包括陶瓷基片(1)、螺旋线圈(2)、填充陶瓷(3)和信号引出孔(4);
陶瓷基片(1)为圆形,螺旋线圈(2)螺旋状印刷在陶瓷基片(1)上,陶瓷基片(1)的空白处套印有填充陶瓷(3);
相邻功能层基片上的螺旋线圈(2)旋向相反;
所述N为18-21;
所述陶瓷敏感芯体用于制备超高温位移传感器。
2.根据权利要求1所述的基于高温共烧结的陶瓷敏感芯体,其特征在于,螺旋线圈(2)采用铂金属浆料制备。
3.根据权利要求1或2所述的基于高温共烧结的陶瓷敏感芯体,其特征在于,信号引出孔(4)内填充有铂金属浆料。
4.基于高温共烧结的陶瓷敏感芯体的制备方法,该制备方法用于制备权利要求1所述的基于高温共烧结的陶瓷敏感芯体,其特征在于,该制备方法的具体过程为:
S1、根据设定的收缩率和热膨胀系数制备流延膜片;
S2、根据设定的尺寸将流延膜片裁切成陶瓷基片(1);
S3、在陶瓷基片(1)上冲出信号引出孔(4);
S4、用金属浆料在陶瓷基片(1)上丝网印刷出螺旋线圈(2);同时将S3获得的信号引出孔(4)金属化;
S5、制备填充陶瓷(3),将填充陶瓷(3)套印在陶瓷基片(1)空白处,功能层基片制备完成;
S6、将各个制备完成的功能层基片叠压在一起,相邻层功能层基片的螺旋线圈(2)旋向相反,切割成陶瓷敏感芯体坯体;
S7、将切割后的陶瓷敏感芯体放入排胶炉,根据陶瓷敏感芯体的坯体厚度和热重分析曲线设置排胶的工艺路线,将排胶后的陶瓷敏感芯体放入烧结炉,共烧结为陶瓷敏感芯体。
CN201910722028.9A 2019-08-06 2019-08-06 基于高温共烧结的陶瓷敏感芯体及其制备方法 Expired - Fee Related CN110317066B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910722028.9A CN110317066B (zh) 2019-08-06 2019-08-06 基于高温共烧结的陶瓷敏感芯体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910722028.9A CN110317066B (zh) 2019-08-06 2019-08-06 基于高温共烧结的陶瓷敏感芯体及其制备方法

Publications (2)

Publication Number Publication Date
CN110317066A CN110317066A (zh) 2019-10-11
CN110317066B true CN110317066B (zh) 2022-07-12

Family

ID=68125551

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910722028.9A Expired - Fee Related CN110317066B (zh) 2019-08-06 2019-08-06 基于高温共烧结的陶瓷敏感芯体及其制备方法

Country Status (1)

Country Link
CN (1) CN110317066B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110360919B (zh) * 2019-08-06 2021-04-02 中国电子科技集团公司第四十九研究所 一种超高温位移传感器
CN111272056B (zh) * 2020-03-31 2021-12-10 成都科锐传感技术有限公司 一种高温电涡流传感器及其制造方法
CN115468624B (zh) * 2022-09-21 2023-09-29 中国电子科技集团公司第四十九研究所 连续式高温液态金属液位传感器及其敏感芯体的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4494100A (en) * 1982-07-12 1985-01-15 Motorola, Inc. Planar inductors
CN110057487A (zh) * 2019-04-19 2019-07-26 中北大学 全陶瓷超高温压力传感器及其封装方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4494100A (en) * 1982-07-12 1985-01-15 Motorola, Inc. Planar inductors
CN110057487A (zh) * 2019-04-19 2019-07-26 中北大学 全陶瓷超高温压力传感器及其封装方法

Also Published As

Publication number Publication date
CN110317066A (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
CN110317066B (zh) 基于高温共烧结的陶瓷敏感芯体及其制备方法
CN101131314B (zh) 一种铁基体上镍镀层的无损测厚方法
CN104465044B (zh) 线性可变差动传感器及其绕制方法
CN102680009B (zh) 线性薄膜磁阻传感器
CN101556138A (zh) 一种时栅直线位移传感器
CN100578233C (zh) 电容或电阻串接空心线圈的电子式电压互感器
CN107656120A (zh) 一种新型高精度低噪声直流大电流检测装置及方法
CN105841598A (zh) 一种执行器传感器一体化磁轴承位移测量方法
CN101324420B (zh) 具有误差平均效应的涡流栅绝对位置传感器
Liu et al. Non-contact and high-precision displacement measurement based on tunnel magnetoresistance
CN105742003A (zh) 一种lvdt次级线圈设计方法及应用该方法的间绕工艺
CN200989916Y (zh) 电容或电阻串接空心线圈的电子式电压互感器
WO2010111817A1 (zh) 一种电磁磁电效应式传感器
CN203552896U (zh) 线性可变差动传感器
CN110360919B (zh) 一种超高温位移传感器
CN114107923B (zh) 一种金属基薄膜热流微传感器及其制备方法
Dinulovic et al. Development of a linear micro-inductosyn sensor
CN85101004B (zh) 耐蒸汽耐高温差动变压器位移传感器
CN108918939A (zh) 一种高精度易安装的电流测量装置
CN87216550U (zh) 高载频差动电感位移传感器
CN204388777U (zh) Pcb平面差动电感式角位移传感器
CN104349594A (zh) 一种抗磁场干扰多块pcb开口罗氏线圈设计方法与实现
CN115468624B (zh) 连续式高温液态金属液位传感器及其敏感芯体的制备方法
CN207623273U (zh) 一种抗污染ctd电导率探头
CN106291431A (zh) 一种电流传感器的跟踪精度测量方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220712