WO2010111817A1 - 一种电磁磁电效应式传感器 - Google Patents

一种电磁磁电效应式传感器 Download PDF

Info

Publication number
WO2010111817A1
WO2010111817A1 PCT/CN2009/001355 CN2009001355W WO2010111817A1 WO 2010111817 A1 WO2010111817 A1 WO 2010111817A1 CN 2009001355 W CN2009001355 W CN 2009001355W WO 2010111817 A1 WO2010111817 A1 WO 2010111817A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
electromagnetic
coil
energy balance
magnetic field
Prior art date
Application number
PCT/CN2009/001355
Other languages
English (en)
French (fr)
Inventor
窦毓棠
杨旭
窦伯英
窦柏林
Original Assignee
洛阳逖悉开钢丝绳检测技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41081187&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010111817(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 洛阳逖悉开钢丝绳检测技术有限公司 filed Critical 洛阳逖悉开钢丝绳检测技术有限公司
Publication of WO2010111817A1 publication Critical patent/WO2010111817A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/04Measuring direction or magnitude of magnetic fields or magnetic flux using the flux-gate principle

Definitions

  • the present invention relates to an electromagnetic non-destructive testing device for ferromagnetic members, and more particularly to an electromagnetic magnetoelectric effect sensor. Background technique
  • the magnetic phenomenon in the field of magnetic technology is roughly divided into weak magnetic field, strong magnetic field and very strong magnetic field.
  • weak magnetic field detection technology is widely used and has broad development prospects.
  • the magnetic saturation method is a method for measuring a magnetic field by using a nonlinear relationship between a magnetic induction intensity and a magnetic field strength of a magnetic core in a magnetic field under test, which is also called a "flux gate” technique.
  • the method can be divided into two application forms: frequency selection and time coding.
  • the application fields are very extensive, such as in aerospace engineering, military reconnaissance, and geological exploration.
  • the ferromagnetic material is measured by measuring the characteristic magnetic field to determine the spatial position, structural state, physical properties, chemical composition, etc. of the ferromagnetic member, and has the characteristics of non-contact detection and online real-time detection.
  • the current magnetic material testing mainly uses "induction coil + excitation device”, “Hall element + excitation device”, or “induction coil + Hall element + excitation device” and other technical forms.
  • the magnetic fluxgate sensor with the principle of "magnetic saturation method” in weak magnetic field detection has high sensitivity, high stability and high response characteristics, and has been applied in the field of material detection in recent years.
  • Canada Rotesco has adopted the technical form of "fluxgate + induction coil”.
  • the Shanghai Maritime Academy of China has adopted the technical form of "multiple fluxgate + magnetization device”.
  • Such products still have the following problems: (1) high sensitivity also leads to an increase in structural leakage magnetic interference; (2) an increase in the time domain-space conversion circuit in the signal processing process, which affects signal reduction; (3)
  • the probes and circuit devices are still large and bulky, and are not convenient for practical application and operation in industrial fields. Summary of the invention
  • the technical problem to be solved by the present invention is to provide an electromagnetic magnetoelectric effect type sensor in view of the above-mentioned deficiencies of the prior art.
  • the electromagnetic magnetoelectric effect type sensor of the present invention mainly comprises an electromagnetic energy release coil and a magnetic energy balance coil L 2 .
  • the technical characteristics of "electromagnetic effect” and “magnetoelectric effect” linkage, two-way mutual control of input and output power namely: the formation of the excitation current ii and the magnetic energy potential difference through the electromagnetic circuit design;
  • the electrical circuit is designed to form an equivalent electromagnetic induction field (Bo or an equivalent sensing link with the output energy of the magnetic energy balance coil L 2 ( U() or i 0 ).
  • the electromagnetic discharge coil of the sensor and the magnetic energy balance coil L 2 are placed adjacent to each other in parallel.
  • the electromagnetic discharge coil is provided with a constant DC excitation current i given by the embedded program modulation, and the magnetic energy balance coil L 2 end (modulation end) is input to the frequency modulation oscillation fi, the other end (output) output power (u 0 or i 0 ).
  • the ferromagnetic member to be tested is placed on the side adjacent to the magnetic energy balance coil L 2 ; the magnetic field ⁇ 0 direction of the ferromagnetic member to be tested and the magnetic energy of the electromagnetic discharge coil The direction of the balance coil L 2 is parallel.
  • each link realizes the self-control conversion between the input variable and the output variable, and the output level u Q of the electromagnetic magnetoelectric effect sensor will reflect the iron
  • the space on the magnetic member corresponds to the steady-state magnetic field Bo of the volume element.
  • the detection information contained in the output of the weak magnetic sensor includes the frequency selection amplitude and the resonance spectrum, which can be used independently or in combination.
  • the advantages of the above technical solutions are as follows: 1.
  • the present invention has high compatibility with an automatic control signal, and can perform signal modulation according to the characteristics of the object to meet the needs of detection; and is suitable for weak magnetic field detection below lmT, The effect of the separation effect is small, and the distance from the surface of the magnetic member can be up to 5 cm when measured; 2.
  • the present invention is not affected by the dynamic factors of its own time domain, and the steady-state magnetic field B corresponding to the volume element of the space.
  • FIG. 1 is a schematic structural view of an electromagnetic magnetoelectric effect sensor of the present invention
  • FIG. 2 is a block diagram showing the principle of the electromagnetic magnetoelectric effect sensor of the present invention.
  • FIG. 3 is a schematic view showing an application structure type (detecting device) of the electromagnetic magnetoelectric effect sensor of the present invention
  • L 1 Electromagnetic energy release coil
  • L 2 Magnetic energy balance coil
  • 1 Energy release component link
  • 2 Magnetic balance component link
  • 3 Tested elongated ferromagnetic component
  • 4 Sensor
  • 5 Plastic skeleton
  • 6 Opening and closing the pin.
  • an electromagnetic magnetoelectric effect sensor uses an electromagnetic magnetoelectric effect sensor composed of an electromagnetic energy release coil and a magnetic energy balance coil L 2 ;
  • the sensor has the characteristics of "double electric and double magnetic" loop distribution from the technical principle, that is, the electromagnetic circuit design has a dual loop of excitation current and magnetic potential difference, and the magnetic circuit design has an energy dissipating electromagnetic field and a magnetic energy balance coil.
  • L 2 external space magnetic field correlation senses nested double loop, correlates response by nested magnetic circuit;
  • Electromagnetic release coil L of the sensor, magnetic energy balance coil L 2 both use high magnetic core , placed adjacent to each other in parallel; (3) on the electromagnetic release coil!
  • an electromagnetic magnetoelectric effect sensor according to the present invention: (1) The electromagnetic release coil L, the magnetic core provides an unsaturated characteristic equivalent to a linear link, and the input is constant. Current i, producing B 1; (2) Stable weak magnetic field B of the ferromagnetic member.
  • FIG. 4 are schematic diagrams showing the structure of an application structure type (detecting device) of the electromagnetic magnetoelectric effect type sensor of the present invention, wherein 3 is a measured elongated ferromagnetic member, 4 is a sensor, and 5 is a plastic skeleton, 6 For opening and closing the pin.
  • the electromagnetic discharge coil of the sensor is used! ⁇ is 674 ⁇ 0.05mm copper wire coil, ⁇ 2.5 ⁇ (section diameter) x40mm (long) microcrystalline core; magnetic energy balance coil L 2 is 796 ⁇ c
  • the higher resolution of O.lGs ( lGs ⁇ O ⁇ mT lO ⁇ T ) for weak magnetic field detection below ImT is affected by the lift-off effect, and the upper limit of the distance from the surface of the magnetic member can be 5cm during measurement. It can be detected without being affected by small vibration and relative movement speed of the component system. It is reliable, simple, economical and durable. It can be widely used and has low manufacturing cost.
  • the electromagnetic release coil L is opposite to the outer side of the skeleton
  • the magnetic energy balance coil L 2 is opposite to the inner side of the skeleton.
  • the sensor is connected to the TCK-MZ type industrial microcomputer board (each contains 16-bit 80C196 single-chip microcomputer, 12-bit high-speed AD/DA converter, 16M FLASH memory, RS232 external data communication interface) and TCK-PZ type oscillation modulation board. (each contains 7 channels of 160MHz
  • the crystal oscillator constitutes a peripheral circuit, and uses special custom software to control the modulation of the input signal, the demodulation of the output signal, and the sampling input and output switching.
  • the constant DC current modulated by the embedded program is input to each electromagnetic discharge coil. i
  • Each magnetic energy balance coil L 2 modulation terminal input high frequency oscillation fi 160MHz.
  • the main magnetic flux of the ferromagnetic test piece in the weak magnetic state is basically kept constant
  • the electromagnetic magnetoelectric effect sensor in the above embodiment has high compatibility with the automatic control signal, and can perform signal modulation according to the characteristics of the object to meet the needs of detection; and is suitable for weak magnetic field detection below lmT, subject to lift-off effect
  • the effect is small and the distance from the surface of the magnetic member can be measured on the order of 5 cm.
  • the present invention is not affected by the dynamic factors of its own time domain, and has a high resolution of 0.1 G s (lGs ⁇ lO-'mT ⁇ lO-'T) for the steady-state magnetic field B 0 of the space-corresponding volume element. Can be affected by small vibrations of the component system and changes in relative motion speed.
  • the present invention uses low voltage (5V)
  • the weak current ( ⁇ 0.5A) constant current electromagnetic field does not constitute any residual magnetic pollution to the magnetic member; the invention is reliable, simple, economical and durable, and can not only be widely used, but also has a high performance price advantage.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Description

一种电磁磁电效应式传感器 技术领域
本发明涉及铁磁性构件电磁无损检测装置,特别涉及一种电磁磁 电效应式传感器。 背景技术
目前, 磁 量技术领域的磁现象, 大体分为弱磁场、 强磁场和甚 强磁场,而作为当今高新技术的一个热点,弱磁场检测技术应用广泛, 发展前景十分广阔。
随着磁性材料、 磁效应理论、 磁敏元件、 数据建模与分析、 以及 计算机网络技术的大规模应用, 弱磁检测技术不断发展, 针对不同应 用领域的各种弱磁检测方法应运而生。 目前依据测量原理已有 "磁 - 力法"、 "电磁感应法"、 "磁饱和法"、 "磁电效应法"、 "磁共振法"、 "超导效应法"、 "磁光效应法" 等方法门类。
其中,磁饱和法是利用被测磁场中的磁芯在交变磁场的饱和激励 下磁感应强度与磁场强度的非线性关系来测量磁场的方法,也被称为 "磁通门"技术, 这种方法又可分为频率选择和时间编码两种应用形 式, 应用的领域十分广泛, 例如在宇航工程、 军事侦察、 地质探测等 方面均有采用。
铁磁性材料检测, 是通过测量特征磁场对铁磁性构件的空间位 置、 结构状态、 物理性能、 化学成分等进行测定, 具有能够非接触式 检测和在线实时检测的特点。 综合来看, 目前的磁性材料检测主要采 用 "感应线圈 +励磁装置"、 "霍尔元件 +励磁装置"、 或者 "感应线圈 +霍尔元件 +励磁装置" 等技术形式。 这些方法均存在以下几大缺点:
( 1 ) 过度依赖强磁激励, 弱磁状态下的检测性能明显变差, 甚至根 本不能检测; (2 )磁路设计复杂, 对构件存在缺陷的定量分辨力十分 有限; (3 )趋肤效应显著, 难以检测构件内部的缺陷; (4 )受提离效 应影响, 很难在不影响构件自由运行的条件下完成检测。
弱磁场检测中 "磁饱和法" 原理的磁通门传感器具有高灵敏、 高 稳定和高响应特性, 近年来在材料检测领域得到一定的应用。 如加拿 大 Rotesco公司釆用了 "磁通门 +感应线圈" 的技术形式, 我国上海海 运学院釆用了 "多路磁通门 +磁化装置" 的技术形式。 但此类产品还 是存在以下问题:( 1 )高灵敏度同时导致了结构性漏磁干扰增大; ( 2 ) 在信号处理过程增加了时域-空域转换电路, 对信号还原构成影响; ( 3 ) 探头以及电路装置仍旧硕大笨重, 不便于在工业现场实际应用 和操作。 发明内容
本发明要解决的技术问题是针对上述现有技术的不足, 提供一 种电磁磁电效应式传感器。
本发明所述电磁磁电效应式传感器主要包括电磁释能线圈 和 磁能衡线圈 L2。 从技术原理上来看, 具有 "电磁效应" 与 "磁电效 应" 联动、 输入输出电量双向互控的技术特征, 即: 通过电磁回路 设计形成励磁电流 ii与磁能势差的关联响应环节; 通过磁电回路设 计形成释能电磁场 (Bo或 与磁能衡线圈 L2输出电量 (U()或 i0 ) 的等价感应环节。 所述传感器的电磁释能线圈 、 磁能衡线圈 L2 相邻平行放置, 均釆用高导磁磁芯; 对电磁释能线圈 提供由嵌入 式程序调制给定的稳恒直流励磁电流 i,, 磁能衡线圈 L2—端 (调制 端)输入调频振荡 fi, 另一端(输出端)输出电量(u0或 i0 )。 另外, 被测铁磁性构件被置于邻近磁能衡线圈 L2的一侧; 被测铁磁性构件 的磁场 Β0方向与电磁释能线圈 磁能衡线圈 L2的方向平行。
本发明所述电磁磁电效应式传感器的原理框架是: ( 1 ) 电磁释 能线圈 L,的磁芯提供的非饱和特性等效于一个线性环节, 其输入为 恒直电流 产生 Bt。 ( 2 ) 铁磁性构件的稳态磁场 BQ在与 空间交 互时产生关联磁场 B, 磁能衡线圈 L2处于关联磁场 B中。 (3 )磁能 衡线圈 L2, 由于其磁芯提供的饱和变幅特性, 而等效于一个双增益 非线性环节, 其输入为关联感应磁通 ΦΒ =恒流磁通 ΦΒ1 +响应磁通 ΦΒ0, 输出为电量(u0或 i0 )。 (4 ) 由 (1 ) ( 2 ) ( 3 )各环节所组成的 系统, 实现了输入变量与输出变量之间的自控式转换, 电磁磁电效 应式传感器的输出电平 uQ将能反映铁磁性构件上空间对应体积元的 稳态磁场 Bo。 ( 5 ) 弱磁传感器的输出电量 (uo或 io )所包含的探测 信息包括选频幅值和谐振频谱两种形式, 可被独立采用, 也可综合 运用。
上述技术方案所具备的优点有: 一、 本发明与自动化控制信号具 有高度的相容性, 能够根据对象特性实施信号调制, 以满足检测的需 要; 且适合于 lmT以下的弱磁场检测, 受提离效应的影响很小, 测量 时距离磁性构件表面的距离能够达到 5cm量级; 二、 本发明不受自身 时域动态因素的影响, 对空间对应体积元的稳态磁场 B。具有 0.1 G s ( lGs=10-1mT=10-4T )的高分辨力, 实施检测时能够不受构件系统小 幅振动和相对运动速度变化的影响; 三、 本发明釆用低压 (5V ) 弱 电( < 0.5A )恒流电磁场, 不对磁性构件构成任何剩磁污染; 本发明 可靠、 简易、 经济、 耐用, 不仅能够广泛使用, 而且具有很高的性能 价格优势。 具体实施方式
下面结合附图,进一步详细说明本发明电磁磁电效应式传感器的 具体实施方式, 以下实施例用于说明本发明, 但不用来限制本发明的 保护范围。
图 1是本发明电磁磁电效应式传感器的结构示意图;
图 2是本发明电磁磁电效应式传感器技术原理框图;
图 3是本发明电磁磁电效应式传感器一种应用结构型式 (检测 装置) 示意图;
图 4是本发明的电磁磁电效应式传感器一种应用结构型式 (检 测装置) 的轴向视图。
图中: L1: 电磁释能线圈; L2: 磁能衡线圈; 1: 释能元件环节; 2: 磁衡元件环节; 3: 被测细长铁磁性构件; 4: 传感器; 5: 塑料骨 架; 6: 开合轴销。
如图 1所示, 本发明所述的一种电磁磁电效应式传感器, 釆用 由电磁释能线圈 和磁能衡线圈 L2所组成的一种电磁磁电效应式 传感器; 其特征在于: (1)所述传感器从技术原理上具有 "双电双 磁" 回路分布特征, 即电磁电路设计上具有励磁电流与磁能势压差 输出双回路, 磁电电路设计上具有释能电磁场与磁能衡线圈 L2外部 空间磁场关联感应嵌套的双回路, 通过嵌套磁路而关联响应; (2) 所述传感器的电磁释能线圈 L,、磁能衡线圈 L2,均釆用高导磁磁芯, 相邻平行放置; (3)对电磁释能线圈!^提供由嵌入式程序调制给定 的稳恒直流电流 i 磁能衡线圈 L2—端(调制端)输入调频振荡 fi, 另一端(输出端) 输出电量 (uo或 i0); (4)磁性构件被置于邻近线 圈 L2的一侧; (5)被测铁磁性构件磁场方向与电磁释能线圈 L,、 磁 能衡线圈1^2的方向平行。
如图 2所示, 本发明所述的一种电磁磁电效应式传感器: (1) 电磁释能线圈 L,的磁芯提供的非饱和特性而等效于一个线性环节, 其输入为恒直电流 i,产生 B1; (2)铁磁性构件的稳定弱磁场 B。在与 B,空间交互时产生关联磁场 B, 磁能衡线圈 L2处于关联磁感应场 B 中; (3)磁能衡线圈 L2, 由于其磁芯提供的饱和变幅特性, 而等效 于一个双增益非线性环节, 其输入为关联感应磁通 ΦΒ =恒流磁通 +响应磁通 ΦΒο, 输出为电平 uo; (4) 由上述三个环节所组成的 系统, 实现了输入变量与输出变量之间的自控式转换, 弱磁传感器 的输出电平 uQ将能反映铁磁性构件上空间对应体积元的稳态磁场 B0; (5) 弱磁传感器的输出电量 (UQ或 iQ)所包含的探测信息包括 选频幅值和谐振频谱两种形式, 可被独立釆用, 也可综合运用。 图 3和图 4是本发明电磁磁电效应式传感器一种应用结构型式 (检测装置)的结构示意图, .图中 3为被测细长铁磁性构件, 4为传 感器, 5为塑料骨架, 6为开合轴销。
在本实施例中, 所述传感器釆用的电磁释能线圈!^为 674匝 φ 0.05mm铜丝线圈, φ 2.5ιηπι (截面直径) x40mm (长)微晶磁芯; 磁能衡线圈 L2为 796 匝 c|) 0.2mm铜丝线圈, φ 2πιιη (截面直径) x30mm (长)坡莫合金磁芯, 电磁释能线圈 磁能衡线圈 L2由钢 性骨架固定平行放置, 中心距 6.30±0.04mm。
釆用低压 (5V ) 弱电 ( < 0.5A )恒流电磁场, 不对磁性构件构 成任何剩磁污染; 传感器可根据检测对象特性由自动化控制信号实 施信号调制,以满足检测的需要。对 ImT以下的弱磁场检测的 O.lGs ( lGs^O^mT lO^T ) 的较高分辨力, 受提离效应的影响很小, 测 量时距离磁性构件表面的距离上限能够达到 5cm, 实施检测时能够 不受构件系统小幅振动和相对运动速度变化的影响; 具有可靠、 简 易、 经济、 耐用的特点, 不仅能够广泛使用, 而且制造成本低廉。
实施例中接受弱磁检测的试件为一组均匀钢丝, 组内钢丝数量 100根,单根钢丝直径 cM.2mm,完好处体积元大小为 SQ=113.1mm2, 材质均为材料供应状态 45 钢, 齐头长度〉 8m。 经过弱磁规划后, 实施检测时该试件中间有效段完好部位具有的匀强弱磁场 ^。=8.4Gs。 组内钢丝存在两处集中断点, 第一处表层断丝 4根, 其 余钢丝完好, 第二处中心层断丝 10根, 其余钢丝完好。
为减小系统性误差, 在实施例中釆用 6只传感器同时工作。 如 图 3、 4所示, 根据沿外径 c|) 46mm的塑料骨架共面环形均匀排布, 电磁释能线圈 L ,对向骨架外侧, 磁能衡线圈 L2对向骨架内侧。
所述的传感器接入由 TCK-MZ型工业微机板 (各含 16位 80C196 单片机, 12位高速 AD/DA转换器, 16M的 FLASH存储器, RS232 外部数据通讯接口) 和 TCK-PZ型振荡调制板(各含 7路 160MHz 晶体振荡器)构成的外围电路, 并釆用专用定制软件控制输入信号 的调制、 输出信号的解调和采样输入输出开关量, 对各电磁释能线 圈 输入由嵌入式程序调制的稳恒直流电流 i 各磁能衡线圈 L2 调制端输入高频振荡 fi=160MHz。 磁能衡线圈 L2输出端釆样电平 u0 输入微机后按照选频幅值方式解调, 可以导出 uo的一个有效分量 uB。,' uB。又称为解调输出电压, 在技术架构上 1¾。= , fi, k, n, B0)是 一个关于 、 fi、 k、 n和 Bo的解调函数。 其中: k为外围电路增益 量, n为外围电路的频率选择参量,其它变量与本发明所述相应参量 的含义相同。 ιιΒ。能够映射给定电磁场与被测物弱磁场的关联磁场, 因此当给定 i,、 fi、 k、 n时, uB。就能够直接映射被测构件的内部磁 场 BQ。又因为 B。的变化量直接映射被测构件体积元(金属正横截面) 的变化量,所以由 uB。的变化量, 也就直接映射了被测构件体积元的 变化量。
在各传感器对位于试件上完好体积元时, 调制 ^SmA, 由同 一调制参量对试件三处典型部位实施检测,系统的解调输出电平 uB0 实测记录如下表 1所示。
Figure imgf000008_0001
Figure imgf000008_0002
理论评估, 经处于弱磁状态的铁磁性试件主磁通基本保持恒定
(漏磁通很小), 其磁场 B。与体积元大小呈反比例关系, 应分别为: 有效段完好处 。=8.4Gs; 4根表面断丝处 B。=8.75Gs; 10根内部断丝 处 B。=9.33Gs。 显然: = ^^ + , 其中: uB。单位 "mV", BQ单位" Gs", δ 为包含外转电路系统误差因素在内的总误差, 且 [-l,l]mV 可验证传感器实现了输入变量与输出变量之间的自控式转换, 弱磁传感器的输出电平 uo将能反映铁磁性构件上空间对应体积元的 稳态磁场 Bo
如欲通过 uB。的变化量直接映射试件体积元的变化当量, 可验 得:
I _u BRno As _ δ _
U Bo 其中: 各项的单位均为"%", ^ = ^^为 Uh。变化当量,
U Bo
为检测系统由体积元对应的磁场 Bc及其变化量 - 。测量换算 的映射值, ^ = ϋ为试件体积元变化当量, ^为检测系统映射 试件体积元的变化当量时的系统误差, 且 E (-0.5, 0.5)% 以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术 领域的普通技术人员来说, 在不脱离本发明技术原理的前提下, 还 可以做出若干改进和变型, 这些改进和变型也应视为本发明的保护 范围。 工业实用性
上述实施例中的电磁磁电效应式传感器与自动化控制信号具有 高度的相容性,能够根据对象特性实施信号调制,以满足检测的需要; 且适合于 lmT以下的弱磁场检测, 受提离效应的影响很小, 测量时距 离磁性构件表面的距离能够达到 5cm量级。 并且, 本发明不受自身时 域动态因素的影响, 对空间对应体积元的稳态磁场 B 0具有 0.1 G s ( lGs^lO-'mT^lO-'T ) 的高分辨力, 实施检测时能够不受构件系统小 幅振动和相对运动速度变化的影响。 还有, 本发明采用低压 (5V ) 弱电( <0.5A)恒流电磁场, 不对磁性构件构成任何剩磁污染; 本发 明可靠、 简易、 经济、 耐用, 不仅能够广泛使用, 而且具有很高的性 能价格优势。

Claims

权 利 要 求
1、 一种电磁磁电效应式传感器, 包括电磁释能线圈和磁能衡线 圈, 其特征在于: 所述电磁释能线圈和磁能衡线圈相邻平行放置, 均 釆用高导磁磁芯, 构成 "双电双磁" 回路分布, 电磁电路上具有励磁 电流与磁能势压差输出双回路,磁电电路上具有释能电磁场与磁能衡 线圈外部空间磁场关联感应嵌套的双回路, 通过嵌套磁路关联响应。
2、 如权利要求 1所述的电磁磁电效应式传感器, 其特征在于: 所述电磁释能线圈的磁芯具有非饱和特性, 等效为一个线性环节。
3、 如权利要求 1所述的电磁磁电效应式传感器, 其特征在于: 所述磁能衡线圈的磁芯具有饱和变幅特性, 等效为双增益非线性环 节。
4、 一种电磁磁电效应式传感器用于检测铁磁性构件电磁的方 法, 其特征在于: 在磁能衡线圈一侧放置一被测铁磁性构件, 其产 生的磁场 Bo的方向与所述电磁释能线圈和磁能衡线圏的放置方向平 行; 电磁释能线圈输入稳恒直流励磁电流, 产生磁场 Β,; 磁能衡线 圈置于所述磁场 Bo和所述磁场 在空间交互产生的关联磁场 Β中, 所述磁能衡线圈调制端输入调频震荡频率, 输出端输出电量。
5、根据权利要求 4所述的电磁磁电效应式传感器用于检测铁磁 性构件电磁的方法, 其特征在于: 所述稳恒直流励磁电流产生的磁 通为恒流磁通 ΦΒ1,所述被测铁磁性构件产生的磁通为响应磁通 ΦΒ。, 两者产生的关联感应磁通 ΦΒ =恒流磁通 ΦΒ1 +响应磁通 ΦΒο。
6、根据权利要求 4所述的电磁磁电效应式传感器用于检测铁磁 性构件电磁的方法, 其特征在于: 所述磁能衡线圈输出端的输出电 量反映被测铁磁性构件上空间对应体积元的稳态磁场 Β0
7、根据权利要求 4或 6所述的电磁磁电效应式传感器用于检测 铁磁性构件电磁的方法, 其特征在于: 所述磁能衡线圈输出端的输 出电量包含的信息包括选频幅值和 /或谐振频谱两种形式。
PCT/CN2009/001355 2009-03-31 2009-12-01 一种电磁磁电效应式传感器 WO2010111817A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910064519.5 2009-03-31
CN2009100645195A CN101520494B (zh) 2009-03-31 2009-03-31 一种电磁磁电效应式传感器

Publications (1)

Publication Number Publication Date
WO2010111817A1 true WO2010111817A1 (zh) 2010-10-07

Family

ID=41081187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/001355 WO2010111817A1 (zh) 2009-03-31 2009-12-01 一种电磁磁电效应式传感器

Country Status (2)

Country Link
CN (1) CN101520494B (zh)
WO (1) WO2010111817A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102043136A (zh) * 2010-12-08 2011-05-04 中国科学院宁波材料技术与工程研究所 一种磁传感器
CN113824188A (zh) * 2021-09-24 2021-12-21 山东国恒机电配套有限公司 一种节能电气自动化配电柜

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101520494B (zh) * 2009-03-31 2011-09-28 洛阳逖悉开钢丝绳检测技术有限公司 一种电磁磁电效应式传感器
CN102426190B (zh) * 2011-12-19 2015-09-30 杨旭 一种自平衡激励法磁场信息感应装置
CN106597102B (zh) * 2016-12-12 2020-05-05 四川大学 磁性薄膜结构以及含有其的磁敏传感器器件、应用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339770A (ja) * 1997-06-10 1998-12-22 Tech Res & Dev Inst Of Japan Def Agency 光ファイバ磁気センサ
CN2540639Y (zh) * 2002-04-27 2003-03-19 赵一丁 软磁材料测量仪
CN1417872A (zh) * 2001-10-29 2003-05-14 雅马哈株式会社 磁传感器
CN2718596Y (zh) * 2004-06-18 2005-08-17 上海磁浮交通发展有限公司 长定子直线电机硅钢叠片铁芯磁性能测试装置
CN101004441A (zh) * 2007-01-25 2007-07-25 上海交通大学 基于交流法的剩磁系数测试方法
CN101520494A (zh) * 2009-03-31 2009-09-02 洛阳逖悉开钢丝绳检测技术有限公司 一种电磁磁电效应式传感器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991018299A1 (fr) * 1990-05-19 1991-11-28 Nkk Corporation Dispositif detecteur de magnetisme
JP2841153B2 (ja) * 1993-04-06 1998-12-24 株式会社日本非破壊計測研究所 微弱磁気測定方法及びその装置並びにそれを用いた非破壊検査方法
KR100465335B1 (ko) * 2002-09-18 2005-01-13 삼성전자주식회사 플럭스게이트를 구비한 감지장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339770A (ja) * 1997-06-10 1998-12-22 Tech Res & Dev Inst Of Japan Def Agency 光ファイバ磁気センサ
CN1417872A (zh) * 2001-10-29 2003-05-14 雅马哈株式会社 磁传感器
CN2540639Y (zh) * 2002-04-27 2003-03-19 赵一丁 软磁材料测量仪
CN2718596Y (zh) * 2004-06-18 2005-08-17 上海磁浮交通发展有限公司 长定子直线电机硅钢叠片铁芯磁性能测试装置
CN101004441A (zh) * 2007-01-25 2007-07-25 上海交通大学 基于交流法的剩磁系数测试方法
CN101520494A (zh) * 2009-03-31 2009-09-02 洛阳逖悉开钢丝绳检测技术有限公司 一种电磁磁电效应式传感器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102043136A (zh) * 2010-12-08 2011-05-04 中国科学院宁波材料技术与工程研究所 一种磁传感器
CN102043136B (zh) * 2010-12-08 2013-07-24 中国科学院宁波材料技术与工程研究所 一种磁传感器
CN113824188A (zh) * 2021-09-24 2021-12-21 山东国恒机电配套有限公司 一种节能电气自动化配电柜

Also Published As

Publication number Publication date
CN101520494B (zh) 2011-09-28
CN101520494A (zh) 2009-09-02

Similar Documents

Publication Publication Date Title
CN101726535B (zh) 时间分辨剩磁弛豫检测仪及其在超顺磁性纳米材料检测中的应用
CN102937705B (zh) 复合结构的直流磁传感器
CN107656120A (zh) 一种新型高精度低噪声直流大电流检测装置及方法
WO2010111817A1 (zh) 一种电磁磁电效应式传感器
CN209264810U (zh) 一种电流传感器
CN207380115U (zh) 一种新型高精度低噪声直流大电流检测装置
Chen et al. A giant-magnetoresistance sensor for magnetic-flux-leakage nondestructive testing of a pipeline
CN106018920A (zh) 一种单磁芯复杂波形电流传感器
CN103675094A (zh) 一种无损探伤装置
Zhao et al. A method to compensate for the lift off effect of ACFM in crack estimation of nonferromagnetic metals
WO2020258895A1 (zh) 一种具有高灵敏度的漏磁检测探头
CN205538817U (zh) 磁巴克豪森噪声信号和磁性参数的检测装置
Reutov et al. Possibilities for the selection of magnetic field transducers for nondestructive testing.
CN105974349A (zh) 一种电流互感器跟踪精度的测量方法
Ripka et al. Multiwire core fluxgate
CN207067062U (zh) 一种基于dsp的涡流检测系统
Tayalia et al. Characterization and theoretical modeling of magnetostrictive strain sensors
Ripka et al. Characterisation of magnetic wires for fluxgate cores
Riveros et al. Design, implementation and experimental characterisation of a high sensitivity GMI gradiometer with an interference compensation system
CN205539420U (zh) 磁巴克豪森及磁性参数传感器
CN106291431A (zh) 一种电流传感器的跟踪精度测量方法
CN210155073U (zh) 基于铁磁性材料磁滞特性的谐波失真分析无损检测系统
CN106125021A (zh) 一种正交偏置磁场下导磁材料特性的测量方法
Peng et al. A new eddy current sensor composed of three circumferential gradient winding coils
CN102998522B (zh) 一种电流测量装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09842474

Country of ref document: EP

Kind code of ref document: A1