WO2020258895A1 - 一种具有高灵敏度的漏磁检测探头 - Google Patents

一种具有高灵敏度的漏磁检测探头 Download PDF

Info

Publication number
WO2020258895A1
WO2020258895A1 PCT/CN2020/076288 CN2020076288W WO2020258895A1 WO 2020258895 A1 WO2020258895 A1 WO 2020258895A1 CN 2020076288 W CN2020076288 W CN 2020076288W WO 2020258895 A1 WO2020258895 A1 WO 2020258895A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic flux
flux leakage
insulation layer
leakage detection
detection probe
Prior art date
Application number
PCT/CN2020/076288
Other languages
English (en)
French (fr)
Inventor
羊箭锋
沈铭鸿
周文康
花敏恒
周怡
温建新
钟炜
郑宾
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2020258895A1 publication Critical patent/WO2020258895A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields
    • G01N27/87Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields using probes

Definitions

  • the invention belongs to the technical field of nondestructive testing, and specifically relates to a magnetic flux leakage detection probe with high sensitivity.
  • Magnetic flux leakage detection is a kind of non-destructive testing technology, and its application involves railway, petroleum, boiler pipeline, aviation and other industries. For these ferromagnetic equipment, scientific and technical personnel in various countries have proposed corresponding methods to solve specific problems. In the next few decades, magnetic flux leakage detection technology will play a huge role in detecting the defects of ferromagnetic materials, and has a broad market and application prospects.
  • the total mileage of my country's onshore oil and gas pipelines reached 120,000 kilometers, including crude oil pipelines and refined oil pipelines, including approximately 23,000 kilometers of crude oil pipelines, 21,000 kilometers of refined oil pipelines, and 76,000 kilometers of natural gas pipelines.
  • the ultrasonic displacement measurement signal needs to be added in the data acquisition mode in the detection system process, while ensuring that the magnetic flux leakage detection signal is consistent with the ultrasonic displacement sensor signal sequence. Correcting the magnetic flux leakage detection signal by compensation can improve the consistency of the magnetic flux leakage detection signal, directly improve the detection efficiency of the steel pipe magnetic flux leakage detection equipment, and improve the detection sensitivity of the probe in the non-contact magnetic flux leakage detection.
  • Another example is the Chinese utility model patent CN205538822U which discloses "A non-destructive testing device based on a tunnel resistance sensor", which improves the detection sensitivity by composing an array sensor and a detection device composed of a magnetic circuit composed of two permanent magnets and a magnetic conductor. Detecting deeper defects can be mainly applied to steel wire ropes, pipe outer walls, etc.
  • the actual detection probe is designed to avoid direct contact between the detection sensor and the measured object and damage the sensor , And the needs of the probe itself, there is always a certain height between the measured object and the sensor, which is the reason for the low detection sensitivity. Therefore, the designs in the above two patents cannot be applied to this kind of environment.
  • the purpose of the present invention is to provide a magnetic flux leakage detection probe with high sensitivity, which can make the detection probe detect a stronger magnetic field signal under a certain lift-off value, and the signal strength is higher than the signal strength when it is close to the surface of the object to be measured , So as to complete non-contact real-time magnetic flux leakage detection in high temperature and other complex environments.
  • a high-sensitivity magnetic flux leakage detection probe comprising a rectangular upper non-ferromagnetic heat insulation layer and a lower non-ferromagnetic heat insulation layer with the same shape and size, and the upper non-ferromagnetic heat insulation layer
  • Three rectangular periodic structures with the same shape and size are sandwiched between the layer and the lower non-ferromagnetic heat insulation layer, each of the periodic structures is provided with a cylindrical hole from the top to the bottom thereof, and the three periodic structures The line connecting the centers of the inner cylindrical holes forms a virtual equilateral triangle;
  • the probe for detecting magnetic flux leakage is arranged at the center of the three periodic structures, and longitudinally coincides with the center of the equilateral triangle.
  • the periodic structure is an artificially designed and constructed electromagnetic structure, which is characterized by periodic characteristics, and its purpose is to obtain the electromagnetic performance that people need.
  • the center of the equilateral triangle and the center of the upper non-ferromagnetic heat insulation layer or the center of the lower non-ferromagnetic heat insulation layer overlap longitudinally.
  • the height of each periodic structure is 2.8-3.2 mm. Preferably it is 3 mm.
  • the side length of the equilateral triangle is 10.8 to 11.2 mm. Preferably it is 11 mm.
  • the diameter of the cylindrical hole is 4.8-5.2 mm. Preferably it is 5 mm.
  • the present invention firstly, through the design of the detection probe, enables the magnetic flux leakage detection to achieve non-contact detection of ferromagnetic materials in a high-temperature environment; secondly, the detection probe is protected by setting an upper non-ferromagnetic heat insulation layer and a lower non-ferromagnetic heat insulation layer , Avoiding direct contact between the probe and the measured object, reducing the detection cost; finally, the magnetic field strength of the detection point is enhanced by constructing a periodic structure, so that the magnetic field strength of the detection point is larger under a certain lift-off value Enhancement is greater than the magnetic field strength obtained when close to the surface of the test object when there is no periodic structure, which improves the detection sensitivity to a large extent, thereby greatly improving the detection efficiency of the entire detection device.
  • FIG. 1 is a schematic diagram of the periodic structure in the first embodiment of the present invention in a magnetic field environment.
  • FIG. 2 is a diagram of a periodic structure model of Embodiment 1 of the present invention.
  • Figure 3 is a top view of the probe structure according to the first embodiment of the present invention.
  • Fig. 4 is a structural model diagram of the probe according to the first embodiment of the present invention.
  • one of the embodiments of the present invention provides a high-sensitivity magnetic flux leakage detection probe, including a rectangular upper non-ferromagnetic probe with uniform shape and size.
  • the thermal insulation layer 1 and the lower non-ferromagnetic thermal insulation layer 2 are sandwiched between the upper non-ferromagnetic thermal insulation layer and the lower non-ferromagnetic thermal insulation layer with three rectangular periodic structures 3 of the same shape and size, each The periodic structure is provided with a cylindrical hole 4 from the top to the bottom thereof, and the connection of the centers of the three cylindrical holes in the periodic structure forms a virtual equilateral triangle, and the center of the equilateral triangle is connected to The center of the upper non-ferromagnetic thermal insulation layer or the center of the lower non-ferromagnetic thermal insulation layer overlap longitudinally;
  • the probe for detecting magnetic flux leakage is arranged at the center of the three periodic structures, and longitudinally coincides with the center of the equilateral triangle.
  • the periodic structure is an artificially designed and constructed electromagnetic structure, which is characterized by periodic characteristics, and its purpose is to obtain the electromagnetic performance required by people.
  • the present invention constructs the periodic structure as shown in Fig. 1, and the leakage magnetic field will be coupled at the center of the periodic structure so that the magnetic field signal at the center is enhanced.
  • the relationship between the magnetic field strength and the lift-off value and by changing the aperture size and the interval of the periodic structure, the relationship between the three is studied to determine the parameters in the periodic structure.
  • the lift-off value obtained in this simulation is 3mm, the magnitude of the magnetic field intensity of the detection point will be best enhanced.
  • the data obtained in the simulation of Fig. 1 is specifically applied to the periodic structure, and the model shown in Fig. 2 is obtained.
  • the magnetic field intensity of the detection point under different parameters of the model is obtained at this time, and the aperture of the periodic structure is obtained.
  • the detection point is at the center position.
  • the magnetic field strength when the lift-off value is 0mm is measured, and the magnetic field strength obtained in the other two different situations is compared.
  • the lift-off value is the case without periodic structure.
  • the magnetic field intensity of the measured point at 0mm and 3mm can be found from the simulation data that in either case, the magnetic field intensity after the periodic structure is added is large, and the magnetic field intensity of the detected point is increased by 3 times.
  • the present invention firstly, through the design of the detection probe, enables the magnetic flux leakage detection to achieve non-contact detection of ferromagnetic materials in a high-temperature environment; secondly, the detection probe is protected by setting an upper non-ferromagnetic heat insulation layer and a lower non-ferromagnetic heat insulation layer , Avoiding direct contact between the probe and the measured object, reducing the detection cost; finally, the magnetic field strength of the detection point is enhanced by constructing a periodic structure, so that the magnetic field strength of the detection point is larger under a certain lift-off value Enhancement is greater than the magnetic field strength obtained when close to the surface of the test object when there is no periodic structure, which improves the detection sensitivity to a large extent, thereby greatly improving the detection efficiency of the entire detection device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

一种具有高灵敏度的漏磁检测探头,包括形状大小一致的呈矩形的上层非铁磁性隔热层(1)和下层非铁磁性隔热层(2),上层非铁磁性隔热层(1)和下层非铁磁性隔热层(2)之间夹设有三个形状大小一致的呈矩形的周期结构(3),每个周期结构内开设有自其顶部到底部的圆柱形孔(4),三个周期结构内的圆柱形孔(4)的圆心的连线构成一个虚拟的等边三角形;用于检测漏磁的探头设置在三个周期结构(3)的中心位置,且与等边三角形的中心纵向重合。该检测探头在一定提离值下,检测到更强的磁场信号,并且此信号强度高于贴近被测物表面时的信号强度,从而能够完成在高温等复杂环境下的非接触式的实时漏磁检测。

Description

一种具有高灵敏度的漏磁检测探头 技术领域
本发明属于无损检测技术领域,具体涉及一种具有高灵敏度的漏磁检测探头。
背景技术
随着社会的不断进步,科学技术的迅猛发展,各个领域也都将向着更加广阔的方向前进,因此对现代无损检测技术也提出了更高的要求。在现代冶金、电力、铁路运输等行业中,机械设备装置被大量的应用,这些设备在运行过程,特别是在高温、高压、高速的环境下运行时,一旦设备或者设备零件内部存在缺陷,往往会有非常巨大的危险,有时甚至导致整个设备损毁,造成重大事故,致使人员伤亡和经济财产损失。
漏磁检测作为无损检测技术的一种,它的运用涉及铁路、石油、锅管道、航空等行业。针对这些铁磁性材料的设备,各个国家的科技人员都提出相应的方法以解决特定的问题。在今后的数十年里,漏磁检测技术在检测铁磁性材料缺陷中将发挥巨大作用,具有广阔的市场和应用前景。管道运输行业截止2015年8月,我国陆上油气管道总里程达到12万公里,包括原油管道、成品油管道,其中原油管道约2.3万公里,成品油管道2.1万公里,天然气管道7.6万公里。铁路方面,2017年年底我国铁路营业里程达到12.7万公里,其中高铁2.5万公里,相比2016年年底增加了3000多公里。这些数字在未来的几年里还将不断提升,可想而知,在这些行业中,当设备在使用时出现安全问题时,会导致多么严重的后果,所以对这些铁磁性材料进行实时有效率的漏磁无损检测具有重要意义。
随着科技的发展,漏磁检测技术发展越来越快,很多专家学者都对这一技术做了很多研究,但是在很多情况下,如高温、高压、高速的环境下,漏磁检测系统检测都是属于非接触式检测,这样就会存在灵敏度较低的情况,这一缺点使得漏磁检测技术的发展受到了限制,所以在最近几年,针对检测探头灵敏度以及漏磁场信号强度的研究逐渐增加。梁康武、贾银亮、王平等人在《一种漏磁检测探头的设计》这篇会议论文中,通过在磁路中加入铁氧 体导磁材料,降低漏磁磁路的磁阻,从而提高了漏磁场的强度,进而提高检测灵敏度。在李二龙的《基于提离值测量的钢管漏磁检测信号动态补偿方法》中针对高速环境下,对钢管表面进行漏磁检测会存在漏磁信号的误差,分析了提离值对探头检测信号的影响,通过使用超声波位移传感器对漏磁检测探头提离值进行测量,在此之后检测系统流程中数据采集模式中需增加超声波位移测量信号,同时保证漏磁检测信号与超声波位移传感器信号时序一致,通过补偿对漏磁检测信号进行校正可提高漏磁检测信号一致性,直接改善钢管漏磁探伤设备的检测效率,提高了非接触式漏磁探伤中探头的检测灵敏度。姜宵园在《钢丝绳在线漏磁检测探头仿真设计》中为了解决现有的漏磁检测探头磁吸力大,结构笨重,会对复杂环境下运行的钢丝绳产生强烈的冲击惯性破坏以及真正在线检测存在的技术空白问题等,首先提出了不同磁化结构的漏磁检测方法,即开环永磁磁化和开环电磁磁化漏磁检测方法,得到的漏磁检测信号均良好,且磁相互作用小,这些优点都特别适用于钢丝绳高速运行在线检测,最后通过仿真验证了该设计的可行性。
又如中国实用新型专利CN203658562U公开了《一种高灵敏度推挽桥式磁传感器》,从中可以知道TMR传感器本身就能检测出微弱磁场的变化,并且本身的噪声也很小,但是通过改变传感器内部的电路,设计一种新的内部电路来提高传感器对磁场响应,进一步提高了检测灵敏度,这一种高灵敏度传感器的响应曲线中输出电压进一步提升,也就是说能够检测到更加微弱的磁场,更加适用于各类电流传感器、开关传感器、流量计等方面。又如中国实用新型专利CN205538822U公开了《一种基于隧道电阻传感器的无损检测装置》,通过组成阵列传感器以及两块永磁体和一块导磁体构成的磁回路组成的检测装置来提高检测灵敏度,进而能够检测出更深的缺陷,主要能够应用在钢丝绳、管道外壁等方面。
上述两个专利针对实际应用中与灵敏度直接相关的因素而分别对传感器和检测装置做出改进跟提升,但在考虑实际检测中,外界条件对检测效率的影响也非常大,如高温、高压、高速等环境下检测装置无法与被测物直接接触,因此会导致检测过程中检测探头与被测物表面之间必然会存在一定的提离值,而在漏磁检测过程中发现信号随着提离值的增加而迅速减小,到达一定高度已经基本不存在磁场信号,检测装置要尽可能贴近被测物体表面, 但是实际检测探头在设计时为了避免检测传感器与被测物直接接触导致传感器损坏,以及探头本身设计的需要,在被测物与传感器之间总是存在一定高度,这就是导致检测灵敏度较低的原因。因此上述两种专利中的设计无法适用于该种环境。
发明内容
本发明目的是提供一种具有高灵敏度的漏磁检测探头,能够使得检测探头在一定提离值下,检测到更强的磁场信号,并且此信号强度高于贴近被测物表面时的信号强度,从而能够完成在高温等复杂环境下的非接触式的实时漏磁检测。
本发明的技术方案是:一种具有高灵敏度的漏磁检测探头,包括形状大小一致的呈矩形的上层非铁磁性隔热层和下层非铁磁性隔热层,所述上层非铁磁性隔热层和下层非铁磁性隔热层之间夹设有三个形状大小一致的呈矩形的周期结构,每个所述周期结构内开设有自其顶部到底部的圆柱形孔,三个所述周期结构内的圆柱形孔的圆心的连线构成一个虚拟的等边三角形;
用于检测漏磁的探头设置在三个周期结构的中心位置,且与所述等边三角形的中心纵向重合。
上文中,所述周期结构是一种人为设计构造出来的电磁结构,其特点是具有周期特性,其目的是为了获得人们需要的电磁性能。
上述技术方案中,所述等边三角形的中心与上层非铁磁性隔热层的中心或下层非铁磁性隔热层的中心纵向重合。
上述技术方案中,每个所述周期结构的高度为2.8~3.2mm。优选为3mm。
上述技术方案中,所述等边三角形的边长为10.8~11.2mm。优选为11mm。
上述技术方案中,所述圆柱形孔的孔径为4.8~5.2mm。优选为5mm。
本发明的优点是:
本发明首先通过该检测探头的设计,可以使得漏磁检测在高温环境对铁磁性材料实现非接触性检测;其次,通过设置上层非铁磁性隔热层和下层非铁磁性隔热层保护检测探头,避免了探头与被测物直接接触,降低了检测成本;最后,通过构造周期结构对探测点的磁场强度进行增强,使得在一定提 离值下,被探测点的磁场强度得到了较大的增强,比无周期结构时贴近被测物表面时得到的磁场强度更大,在很大程度上提升了检测灵敏度,进而使得整个检测设备的检测效率得到较大的提升。
附图说明
下面结合附图及实施例对本发明作进一步描述:
图1为本发明实施例一的周期结构在磁场环境下的示意图。
图2为本发明实施例一的周期结构模型图。
图3为本发明实施例一的探头结构俯视图。
图4为本发明实施例一的探头结构模型图。
其中:1、上层非铁磁性隔热层;2、下层非铁磁性隔热层;3、周期结构;4、圆柱形孔。
具体实施方式
实施例一:
为达到本发明的发明目的,参见图1至4所示,本发明的其中一种实施方式中提供了一种具有高灵敏度的漏磁检测探头,包括形状大小一致的呈矩形的上层非铁磁性隔热层1和下层非铁磁性隔热层2,所述上层非铁磁性隔热层和下层非铁磁性隔热层之间夹设有三个形状大小一致的呈矩形的周期结构3,每个所述周期结构内开设有自其顶部到底部的圆柱形孔4,三个所述周期结构内的圆柱形孔的圆心的连线构成一个虚拟的等边三角形,所述等边三角形的中心与上层非铁磁性隔热层的中心或下层非铁磁性隔热层的中心纵向重合;
用于检测漏磁的探头设置在三个周期结构的中心位置,且与所述等边三角形的中心纵向重合。
本实施例中,所述周期结构是一种人为设计构造出来的电磁结构,其特点是具有周期特性,其目的是为了获得人们需要的电磁性能。
本发明构造了如图1所示的周期结构,漏磁场会在周期结构的中心处耦合使得中心处的磁场信号增强。通过对中心处的磁场进行探测,分析其磁场强度与提离值的关系,并通过改变孔径大小和周期结构的间距,研究三者之 间存在的关系,从而确定周期结构中各参数,在本次仿真中得到提离值的大小在3mm时,探测点磁场强度的大小会得到最好的增强。
再将图1仿真中得到的数据具体运用到周期结构中,得到如图2所示的模型,通过具体的仿真得到了此时模型不同参数条件下探测点磁场强度大小,进而得到周期结构的孔径以及间距大小,并且从该模型不同参数下的仿真结果进行分析得到在某一具体参数下从探测点磁场强度最大时对应的孔径以及间距大小。如图2所示,探测点位于中心位置,此时测量提离值为0mm时的磁场强度,再于另两种不同情况得到的磁场强度进行比较,分别是无周期结构情况下提离值为0mm和3mm时被测点的磁场强度大小,从仿真数据中可以发现,无论哪一种情况,都是加入周期结构后的磁场强度大,且被探测点的磁场强度提升了3倍。
将图1和2所得到的仿真数据进行综合,得到每个所述周期结构的高度为2.8~3.2mm,所述等边三角形的边长为10.8~11.2mm,所述圆柱形孔的孔径为4.8~5.2mm。经验证,当每个所述周期结构的高度为3mm,所述等边三角形的边长为11mm,所述圆柱形孔的孔径为5mm时,检测效果最佳。
本发明首先通过该检测探头的设计,可以使得漏磁检测在高温环境对铁磁性材料实现非接触性检测;其次,通过设置上层非铁磁性隔热层和下层非铁磁性隔热层保护检测探头,避免了探头与被测物直接接触,降低了检测成本;最后,通过构造周期结构对探测点的磁场强度进行增强,使得在一定提离值下,被探测点的磁场强度得到了较大的增强,比无周期结构时贴近被测物表面时得到的磁场强度更大,在很大程度上提升了检测灵敏度,进而使得整个检测设备的检测效率得到较大的提升。
当然上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明主要技术方案的精神实质所做的修饰,都应涵盖在本发明的保护范围之内。

Claims (5)

  1. 一种具有高灵敏度的漏磁检测探头,其特征在于:包括形状大小一致的呈矩形的上层非铁磁性隔热层和下层非铁磁性隔热层,所述上层非铁磁性隔热层和下层非铁磁性隔热层之间夹设有三个形状大小一致的呈矩形的周期结构,每个所述周期结构内开设有自其顶部到底部的圆柱形孔,三个所述周期结构内的圆柱形孔的圆心的连线构成一个虚拟的等边三角形;
    用于检测漏磁的探头设置在三个周期结构的中心位置,且与所述等边三角形的中心纵向重合。
  2. 根据权利要求1所述的具有高灵敏度的漏磁检测探头,其特征在于:所述等边三角形的中心与上层非铁磁性隔热层的中心或下层非铁磁性隔热层的中心纵向重合。
  3. 根据权利要求1所述的具有高灵敏度的漏磁检测探头,其特征在于:每个所述周期结构的高度为2.8~3.2mm。
  4. 根据权利要求1所述的具有高灵敏度的漏磁检测探头,其特征在于:所述等边三角形的边长为10.8~11.2mm。
  5. 根据权利要求1所述的具有高灵敏度的漏磁检测探头,其特征在于:所述圆柱形孔的孔径为4.8~5.2mm。
PCT/CN2020/076288 2019-06-28 2020-02-22 一种具有高灵敏度的漏磁检测探头 WO2020258895A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910575627.2 2019-06-28
CN201910575627.2A CN110220969B (zh) 2019-06-28 2019-06-28 一种具有高灵敏度的漏磁检测探头

Publications (1)

Publication Number Publication Date
WO2020258895A1 true WO2020258895A1 (zh) 2020-12-30

Family

ID=67815445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076288 WO2020258895A1 (zh) 2019-06-28 2020-02-22 一种具有高灵敏度的漏磁检测探头

Country Status (2)

Country Link
CN (1) CN110220969B (zh)
WO (1) WO2020258895A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110220969B (zh) * 2019-06-28 2024-04-12 苏州大学 一种具有高灵敏度的漏磁检测探头
CN113777150B (zh) * 2021-08-09 2023-07-04 华中科技大学 一种基于铁磁性板的缺陷检测方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138134A (ja) * 1984-12-10 1986-06-25 Japanese National Railways<Jnr> 電磁式応力測定器
GB2345147A (en) * 1998-12-21 2000-06-28 Asea Brown Boveri Electric current sensors
CN203673001U (zh) * 2013-10-24 2014-06-25 西安欣东源电气有限公司 一种漏磁场测量型干式电抗器在线监测装置
CN104502444A (zh) * 2014-12-01 2015-04-08 华中科技大学 一种管道缺陷扫查装置
CN107203008A (zh) * 2017-04-20 2017-09-26 武汉地大华睿地学技术有限公司 一种基于瞬变电磁法的金属管道检测系统及方法
CN108292544A (zh) * 2015-09-22 2018-07-17 格伦·奥尔德·尼里姆 线性介质处理系统和使用其进行生产的装置
CN109500655A (zh) * 2017-09-15 2019-03-22 南京美克斯精密机械有限公司 基于漏磁效应的机床三角形轨道缺陷检测探头
CN109932416A (zh) * 2017-12-15 2019-06-25 湘潭宏远电子科技有限公司 一种奥氏体不锈钢管内氧化物无损检测方法及装置
CN110220969A (zh) * 2019-06-28 2019-09-10 苏州大学 一种具有高灵敏度的漏磁检测探头
CN210534066U (zh) * 2019-06-28 2020-05-15 苏州大学 一种具有高灵敏度的漏磁检测探头

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4681770B2 (ja) * 2001-08-07 2011-05-11 マークテック株式会社 渦流探傷試験装置
CN2490583Y (zh) * 2001-08-10 2002-05-08 清华大学 多通道便携式漏磁材料缺陷检测仪
US6975108B2 (en) * 2003-11-13 2005-12-13 Yuli Bilik Methods and devices for eddy current PCB inspection
BG65630B1 (bg) * 2003-12-09 2009-03-31 Чавдар РУМЕНИН Микросензор за магнитно поле
CN101813665B (zh) * 2010-04-08 2012-01-11 北京航空航天大学 一种采用对管连接的电涡流探头
US8779768B2 (en) * 2012-06-12 2014-07-15 The Florida State University Research Foundation, Inc. NMR RF probe coil exhibiting double resonance
CN103063737B (zh) * 2012-12-28 2015-08-19 中国石油集团川庆钻探工程有限公司 连续油管磁法检测方法
CN203159702U (zh) * 2013-04-16 2013-08-28 温州职业技术学院 一种多结构耦合磁场兼容的离子镀装置
CN203658562U (zh) * 2013-12-24 2014-06-18 江苏多维科技有限公司 一种高灵敏度推挽桥式磁传感器
RU2568808C2 (ru) * 2014-04-11 2015-11-20 Открытое акционерное общество "Газпром нефть" Способ и устройство для бесконтактной диагностики технического состояния подземных трубопроводов
CN106352787A (zh) * 2016-10-11 2017-01-25 武汉华宇目检测装备有限公司 一种钢管椭圆度阵列脉冲涡流测量方法与装置
CN109406623B (zh) * 2018-12-30 2023-09-22 北方民族大学 用于检测深裂纹的圆形相切式涡流探头及方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138134A (ja) * 1984-12-10 1986-06-25 Japanese National Railways<Jnr> 電磁式応力測定器
GB2345147A (en) * 1998-12-21 2000-06-28 Asea Brown Boveri Electric current sensors
CN203673001U (zh) * 2013-10-24 2014-06-25 西安欣东源电气有限公司 一种漏磁场测量型干式电抗器在线监测装置
CN104502444A (zh) * 2014-12-01 2015-04-08 华中科技大学 一种管道缺陷扫查装置
CN108292544A (zh) * 2015-09-22 2018-07-17 格伦·奥尔德·尼里姆 线性介质处理系统和使用其进行生产的装置
CN107203008A (zh) * 2017-04-20 2017-09-26 武汉地大华睿地学技术有限公司 一种基于瞬变电磁法的金属管道检测系统及方法
CN109500655A (zh) * 2017-09-15 2019-03-22 南京美克斯精密机械有限公司 基于漏磁效应的机床三角形轨道缺陷检测探头
CN109932416A (zh) * 2017-12-15 2019-06-25 湘潭宏远电子科技有限公司 一种奥氏体不锈钢管内氧化物无损检测方法及装置
CN110220969A (zh) * 2019-06-28 2019-09-10 苏州大学 一种具有高灵敏度的漏磁检测探头
CN210534066U (zh) * 2019-06-28 2020-05-15 苏州大学 一种具有高灵敏度的漏磁检测探头

Also Published As

Publication number Publication date
CN110220969A (zh) 2019-09-10
CN110220969B (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
CN107505388B (zh) 一种柔性磁饱和脉冲涡流检测探头及检测方法
Wang et al. Velocity effect analysis of dynamic magnetization in high speed magnetic flux leakage inspection
Li et al. High sensitivity rotating alternating current field measurement for arbitrary-angle underwater cracks
CN103499404B (zh) 铁磁构件交变应力测量装置及其测量方法
WO2020258895A1 (zh) 一种具有高灵敏度的漏磁检测探头
Li et al. A new micro magnetic bridge probe in magnetic flux leakage for detecting micro-cracks
Ma et al. A method for improving SNR of drill pipe leakage flux testing signals by means of magnetic concentrating effect
CN105203629B (zh) 一种磁性金属构件表面应力集中区及微裂纹的磁探测方法
CN105353030A (zh) 一种基于低频电磁的缺陷检测装置
WO2010111816A1 (zh) 钢丝绳载荷性能无损测评方法
Li et al. Inner circumferential current field testing system with TMR sensor arrays for inner-wall cracks inspection in aluminum tubes
CN111766292A (zh) 一种基于零提离滚动磁化的钢轨漏磁检测装置
Kim et al. Cross‐Sectional Loss Quantification for Main Cable NDE Based on the B‐H Loop Measurement Using a Total Flux Sensor
CN210534066U (zh) 一种具有高灵敏度的漏磁检测探头
CN108508089A (zh) 圆形管道外检测电磁超声探伤换能器结构
CN207908434U (zh) 一种用于管道内检测的多功能复合探头
CN206945607U (zh) 一种电磁无损检测磁场激励发生系统
CN107607623A (zh) 鼠笼式磁致伸缩纵向模态导波检测传感器
CN107356664A (zh) 一种基于低频漏磁的铁磁性材料缺陷检测装置
CN202794485U (zh) 一种无磁钻铤磁场梯度测试装置
Zhang et al. Pulsed magnetic flux leakage sensor systems and applications
Zhang et al. Online Magnetic Flux Leakage Detection System for Sucker Rod Defects Based on LabVIEW Programming.
Krause et al. Variation of the stress dependent magnetic flux leakage signal with defect depth and flux density
Peng et al. A new eddy current sensor composed of three circumferential gradient winding coils
Yang et al. Signal difference-based nondestructive low-frequency electromagnetic testing for ferromagnetic material pipe equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831465

Country of ref document: EP

Kind code of ref document: A1