WO2019109612A1 - 轴系的冷却系统及其控制方法以及风力发电机组 - Google Patents

轴系的冷却系统及其控制方法以及风力发电机组 Download PDF

Info

Publication number
WO2019109612A1
WO2019109612A1 PCT/CN2018/089529 CN2018089529W WO2019109612A1 WO 2019109612 A1 WO2019109612 A1 WO 2019109612A1 CN 2018089529 W CN2018089529 W CN 2018089529W WO 2019109612 A1 WO2019109612 A1 WO 2019109612A1
Authority
WO
WIPO (PCT)
Prior art keywords
air supply
temperature
cooling system
rotating shaft
bearing
Prior art date
Application number
PCT/CN2018/089529
Other languages
English (en)
French (fr)
Inventor
高杨
白洛林
尹冉
方涛
梁坤峰
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Priority to AU2018282297A priority Critical patent/AU2018282297B2/en
Priority to US16/329,490 priority patent/US11261849B2/en
Priority to EP18811124.9A priority patent/EP3514375B1/en
Publication of WO2019109612A1 publication Critical patent/WO2019109612A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/60Cooling or heating of wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings
    • F16C37/007Cooling of bearings of rolling bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/208Heat transfer, e.g. cooling using heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/232Heat transfer, e.g. cooling characterised by the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/60Fluid transfer
    • F05B2260/64Aeration, ventilation, dehumidification or moisture removal of closed spaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/28Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with two or more rows of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/31Wind motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to the field of wind power generation, and in particular to a cooling system for a shafting of a wind power generator, a wind power generator including the cooling system, and a control method of the cooling system.
  • the wind turbines with permanent magnet direct-drive wind turbines mainly include: blades 1, hub 2, and generators. System 3, nacelle 4 and tower 5.
  • the generator subsystem 3 mainly includes a permanent magnet direct drive wind power generator 6, a fixed shaft 7, a rotating shaft 9, and a main bearing.
  • the main bearing comprises a bearing inner ring 10, a bearing roller 8 and a bearing outer ring 11, the bearing inner ring 10 is connected to the rotating shaft 9, and the bearing outer ring 11 is connected to the fixed shaft 7, since the blade 1, the hub 2 and the rotating shaft 9 are connected Together, therefore, the relative movement between the rotating shaft 9 and the fixed shaft 7 can be achieved by the bearing roller 8 of the main bearing under the action of the external wind load. Therefore, the main bearing is one of the core components of the wind turbine, and its life is related to the life of the entire wind turbine. Once it fails, the replacement is very difficult and expensive.
  • the main bearing In order to ensure the operation of the main bearing, the main bearing needs to be lubricated.
  • grease lubrication is usually used for rolling bearings. This is because the grease lubrication device is simpler and the grease is less likely to leak than the lubricating oil lubrication, which is convenient for maintenance and maintenance of the main bearing.
  • wind turbines may be installed in coastal areas, Gobi and grassland areas, and the climatic conditions vary greatly. If the heat generated in the main bearing cannot be effectively dissipated, plus the harsh environment in which the wind turbine is located (such as high temperature environment), the main Bearings may continue to operate at high temperatures, and the life of the grease will decrease rapidly as the temperature increases, thereby causing the lubrication of the grease to fail.
  • the bearing roller 8 Since the bearing roller 8, the bearing inner ring 10 and the bearing outer ring 11 are subjected to external wind loads and bear the weight of the wind turbine itself, a large friction occurs when the bearing inner ring 10 and the bearing outer ring 11 rotate relative to each other. The torque, which in turn causes a large amount of heat inside the main bearing. If the generated heat cannot be dissipated in real time, the main bearing will have a higher temperature, and the higher temperature will cause the viscosity of the grease to decrease, thereby affecting the bearing inner ring 10, the bearing roller 8 and the bearing of the main bearing.
  • the lubricating oil film between the outer rings 11 is established with each other, whereby dry friction may be generated, resulting in a sharp rise in the temperature of the components inside the transmission system, and the working clearance of the main bearing may exceed a reasonable working range due to thermal expansion, and may even occur. Hold the axis" phenomenon. It can be seen that long-term high-temperature operation will lead to severe vicious cycle, and seriously affect the life of the main bearing, resulting in failure of the main bearing, unable to meet the requirements of the wind turbine generator operating life of 20 to 25 years.
  • a cooling system for a shafting of a wind power generator comprising a fixed shaft, a rotating shaft, and a bearing disposed between the fixed shaft and the rotating shaft, the bearing including the bearing An outer ring, a bearing roller and a bearing inner ring, the bearing outer ring is connected to a fixed shaft, the bearing inner ring is connected to the rotating shaft, the cooling system comprises: a cold air supply unit; a rotating shaft air blowing box, a rotating shaft air supply box is mounted on an inner surface of the fixed shaft and has a circular annular box shape, and a plurality of first surfaces of the rotating shaft air blowing box facing the rotating shaft are uniformly distributed in a circumferential direction a blowing port for blowing cold air from the cold air supply unit toward the rotating shaft, wherein each of the plurality of first air blowing ports has a slit shape to form a jet, thereby forming a jet Enhance heat transfer and improve the high cooling effect of the rotating shaft.
  • the cooling system may further include a fixed-axis air supply box installed on an inner surface of the fixed shaft and having a circular annular box shape, and the facing of the fixed-axis air supply box a plurality of second air blowing openings are circumferentially arranged on the surface of the shafting system to blow cold air from the cold air supply unit toward the bearing outer ring, wherein the plurality of second air blowing ports
  • Each of the second air supply openings is in the shape of a slit to form a jet, thereby enhancing heat exchange and improving the high cooling effect of the fixed shaft.
  • the cooling system may further include an annular heat dissipating assembly fixedly mounted on an inner surface of the rotating shaft to facilitate better heat dissipation of the shafting.
  • the annular heat dissipating assembly may include a plurality of heat dissipating units, each of the plurality of heat dissipating units may include a substrate and a heat pipe embedded in the substrate to facilitate mounting the annular heat dissipating assembly more conveniently.
  • the heat pipe may include a first extending portion extending radially inward from the substrate along the rotating shaft, and a second extending from an end of the first extending portion along an axial direction of the rotating shaft An extension portion and a third extension portion extending inward from the end of the second extension portion along a radial direction of the rotation shaft, wherein each of the heat dissipation units may further include a third extension portion Heat sink fins for more efficient heat dissipation.
  • the heat pipe may be a single tube including a curved shape or a plurality of tubes disposed in parallel with each other.
  • the annular heat dissipating component may be mounted on an inner surface of the rotating shaft by a bead, wherein the bead is spliced by a plurality of circular arc segments to support the heat dissipating component by supporting inner surfaces of the plurality of substrates Fixedly mounted on the inner surface of the rotating shaft to securely mount the annular heat dissipating assembly in a simple manner.
  • the cold air supply unit may include a condenser and an air treatment tank installed on a nacelle of the wind power generator, the air treatment tank including: an evaporator, the evaporator passing through the cooling medium pipeline and the condenser Form a circulation loop; inlet air inlet, inhaling outside air.
  • the air treatment tank may further include: a first air outlet communicating with the rotating shaft air blowing box; and a second air outlet communicating with the fixed shaft air blowing box, and at the first air outlet and the second air outlet Fans are provided in the vicinity to adjust the flow rate and flow rate of the blown cold air by adjusting the fan speed.
  • the cooling system may further include an annular fixing bracket for fixing the rotating shaft blowing box, the fixed shaft blowing box, and the air processing box, thereby effectively utilizing the internal space of the shafting.
  • a wind power generator set comprising a cooling system as described above.
  • a control method of a cooling system comprising: determining whether a temperature of a wind turbine generating shaft system is greater than a predetermined temperature threshold; if the temperature is less than Determining a temperature threshold to operate the cooling system in a first mode of operation; if the temperature is greater than the predetermined temperature threshold, causing the cooling system to operate in a second mode of operation, wherein in the first mode of operation
  • the cold air supply unit supplies natural wind. In the second operation mode, the cold air supply unit supplies cold air to reduce energy consumption and improve energy utilization.
  • the bearing outer ring Calculating a temperature difference between the bearing inner ring and the bearing outer ring in the first operation mode, and when the absolute value of the temperature difference is less than the first set temperature value, the bearing outer ring Supplying a first predetermined air volume, and supplying a second predetermined air volume to the rotating shaft; and adjusting an air supply amount of the cold air supply unit when an absolute value of the temperature difference is greater than or equal to the first set temperature value, The amount of wind supplied to one of the inner ring of the bearing and the outer ring of the bearing is increased, and the amount of air supplied to the other of the inner ring of the bearing and the outer ring of the bearing is reduced.
  • the second operation mode calculating an absolute value of a temperature difference between the bearing inner ring and the bearing outer ring, and determining the bearing inner ring when the absolute value is less than the first set temperature value And whether the temperature of any one of the outer rings of the bearing is greater than or equal to a second set temperature value, and if the temperature of any one is greater than or equal to the second set temperature value, the fixed shaft air supply amount and the rotating shaft air supply are simultaneously increased.
  • the first predetermined air volume and the second predetermined air volume remain unchanged; when the absolute value is greater than or equal to the first set temperature value Determining whether the temperature of the inner ring of the bearing is greater than the temperature of the outer ring of the bearing, and if the temperature of the inner ring of the bearing is higher than the temperature of the outer ring of the bearing, determining whether the temperature of the outer ring of the bearing is greater than or equal to a set temperature value, if the temperature of the outer ring of the bearing is greater than or equal to the second set temperature value, simultaneously increase the fixed shaft air supply amount and the rotating shaft air supply amount; if the bearing outer ring temperature is less than The second set temperature a value of increasing the amount of air supplied by the rotating shaft and reducing the amount of air supplied by the fixed shaft; if the temperature of the inner ring of the bearing is less than or equal to the temperature of the outer ring of the bearing, determining whether the temperature of the inner ring of the bearing is
  • the predetermined temperature threshold may be 35 ° C
  • the first set temperature value may be 5 ° C
  • the second set temperature value may be 60 ° C.
  • the cooling system according to the invention is added according to its spatial layout after the wind turbine design is completed, enabling reliable installation and operation of the cooling system without affecting the operation of other components within the wind turbine.
  • the cooling system according to the present invention can effectively and specifically dissipate the shafting system through the combination of the refrigeration system and the annular heat dissipating component, and ensure that the temperature of the shafting of the wind power generator set is within a reasonable working range.
  • the cooling system according to the present invention respectively has a blower box for the inner ring of the bearing and the outer ring of the bearing, so that the inner and outer rings can be synchronously cooled, and the temperature difference between the inner and outer rings is ensured, thereby ensuring the working clearance of the bearing.
  • the air supply port of the blower box according to the present invention can generate a jet effect, thereby enhancing heat exchange and obtaining a better cooling effect.
  • a specific temperature difference control logic is proposed for the external external temperature and the operating characteristics of the wind turbine generator set to cause heat generation inside the main bearing, thereby ensuring the clearance of the main bearing and ensuring the clearance of the main bearing. The safety of work.
  • Figure 1 is a schematic structural view of a wind power generator set
  • Figure 2 is a cross-sectional view of a portion A of Figure 1;
  • FIG. 3 is a partially cutaway exploded structural view of a wind power generator including a cooling system in accordance with an embodiment of the present invention
  • FIG. 4 is a partial structural schematic view of a cooling system in accordance with an embodiment of the present invention.
  • Figure 5 is a schematic view showing the internal structure of an air treatment tank according to an embodiment of the present invention.
  • Figure 6 is a flow chart showing the amount of blown air for controlling the fixed shaft blower and the rotating shaft blower according to an embodiment of the present invention.
  • the present invention is not limited thereto, and the cooling system according to the exemplary embodiment may also be applied to other shaftings of the wind turbine.
  • the description about the direction is based on the shape of the main bearing, for example, descriptions such as “inside”, “outside”, and “inner surface” and “inner surface” are based on the radial direction of the main bearing, specifically The face that is close to the central axis of the main bearing and faces the central axis is “inside” or “inner surface”, and vice versa “outside” or “outer surface”.
  • FIG. 3 is a partially cutaway exploded structural view of a wind power generator including a cooling system in accordance with an embodiment of the present invention
  • FIG. 4 is a partial structural schematic view of a cooling system in accordance with an embodiment of the present invention
  • FIG. 5 is an implementation in accordance with the present invention.
  • a cooling system includes: a cold air supply unit; a rotary shaft air supply box 19 mounted on an inner surface of the fixed shaft 7 and having a circular ring shape.
  • a plurality of first air blowing ports 19a are uniformly distributed in the circumferential direction on the surface of the rotating shaft air supply casing 19 facing the rotating shaft 9, so that cold air from the cold air supply unit is blown toward the rotating shaft 9.
  • Each of the plurality of first air blowing ports 19a has a slit shape to form a jet.
  • the reason why the jet is formed is that when the fluid flows from a relatively large space (the rotating shaft blower 19) to a small space (the slit-shaped first air supply port 19a), the airflow speed increases, and the airflow pressure increases, thereby making Air is ejected from a large space at a high speed, thereby increasing the heat transfer coefficient of forced convection to more effectively cool the rotating shaft 9, thereby cooling the bearing inner ring 10.
  • the cooling system also includes a fixed shaft blower box 16.
  • the fixed shaft blower box 16 can also be mounted on the inner surface of the fixed shaft 7 and has a circular annular box shape. Similar to the rotating shaft air supply box 19, a plurality of second air blowing ports 16a are uniformly distributed in the circumferential direction on the surface of the fixed shaft air blowing box 16 facing the main bearing, so that cold air from the cold air supply unit is blown outside the bearing Circle 11.
  • Each of the plurality of second air blowing ports 16a has a slit shape to form a jet.
  • blowing to the bearing outer ring 11 and the rotating shaft 9 as referred to herein does not mean to be very accurately blown to the bearing outer ring 11 and the rotating shaft 9, but may be blown to or adjacent to the bearing outer ring 11
  • the components for example, the bearing roller 8) and the vicinity of the rotating shaft 9.
  • the structure of the blower box is not limited thereto, and the fixed shaft blower box 16 and the rotating shaft blower box 19 may also be formed as an integral structure, that is, the fixed shaft blower box 16 and the rotating shaft blower box 19 may be integrally formed.
  • the shape of the circular ring body is divided into two air passages respectively facing the different areas by the partition plate to blow cold air to the vicinity of the bearing outer ring 11 and the rotating shaft 9 in the form of jets, respectively.
  • the rotating shaft air blowing box 19 may be mounted on the fixed-axis air blowing box 16.
  • the inner surface is indirectly mounted on the inner surface of the fixed shaft 7 by the fixed-axis blower box 16, so that the inner space of the main bearing can be utilized more effectively.
  • An annular heat dissipating component 15 can be mounted on the inner surface.
  • the cooling system can also include an annular heat sink assembly 15.
  • the annular heat sink assembly 15 can include a plurality of heat sink units, each heat sink unit including a substrate 22 and a heat pipe 20 embedded in the substrate 22.
  • the heat pipe 20 includes a first extending portion extending inward from the substrate 22 in the radial direction of the rotating shaft 9, a second extending portion extending from the end of the first extending portion along the axial direction of the rotating shaft 9, and extending from the second a third extending portion of the end portion of the rotating shaft 9 extending inwardly along the radial direction of the rotating shaft 9, each of the heat dissipating units further comprising a heat dissipating fin 21 interposed on the third extending portion, the heat dissipating fin 21 along the rotating shaft 9
  • the radial direction is disposed on the inner side of the substrate 22 to achieve efficient heat dissipation through a reasonable layout in a limited space.
  • the heat pipe 20 has a certain boiling point cooling medium. Through the heat conduction of the substrate 22, the bottom of the heat pipe 20 (the portion closer to the rotating shaft 9 than the other portions of the heat pipe 20) absorbs heat, and the internal cooling medium evaporates into a gaseous state, a gaseous state. The cooling medium starts to cool down under the heat dissipation of the heat dissipating fins 21, and the gaseous state condenses into a liquid state, and returns to the bottom of the heat pipe again by capillary action, thereby realizing a heat transfer cycle to cool the rotating shaft 9.
  • the heat pipe 20 includes a plurality of tubes disposed in parallel with each other is illustrated in FIG. 4, but the structure of the heat pipe 20 is not limited thereto, and the heat pipe 20 may be a single pipe or a plurality of pipes including a curved shape formed in a zigzag shape. .
  • the heat transferred to the rotating shaft 9 is sequentially transmitted to the substrate 22, the heat pipe 20, and the heat dissipating fins 21, and the heat radiating fins 21 are dissipated by the cold air blown by the blower box, thereby further Reduce the temperature of the main bearing.
  • the structure of the annular heat dissipation assembly 15 according to the present invention is not limited thereto, and for example, the annular heat dissipation assembly 15 may include only the heat dissipation substrate 22 and the heat pipe 20 embedded in the heat dissipation substrate 22.
  • the rotating shaft 9 is a large member, it is not allowed to punch the inner surface of the rotating shaft 9 to mount the substrate 22 in view of performance such as strength and fatigue, so that bonding with high thermal conductivity and high bonding strength can be employed.
  • the agent fixes the plurality of substrates 22.
  • the mounting manner of the substrate 22 is not limited thereto, and an auxiliary mounting device may be employed as necessary.
  • Embodiments of the present invention illustrate the use of bead 18 as an auxiliary mounting device for the annular heat sink assembly 15.
  • the bead 18 may be spliced from a plurality of arc segments, and the outer surface of the bead 18 has a size corresponding to the size of the inner surface of the plurality of substrates 22 of the annular heat dissipating component 15 to support the inner surface of the plurality of substrates 22
  • the annular heat dissipating assembly 15 is fixedly mounted on the inner surface of the rotating shaft 9, i.e., the plurality of circular arc segments are spliced into the entire circumference of the bead to fix the annular heat dissipating assembly 15 by generating a tension against the center of the circle.
  • the manner of mounting the annular heat dissipating assembly 15 is not limited to the above, as long as any structure capable of fixedly mounting the annular heat dissipating assembly 15 on the inner surface of the rotating shaft 9 is possible.
  • the cold air supply unit may include a condenser 12 and an air treatment tank 14, which may be mounted on the nacelle 4 of the wind turbine, and the air treatment tank 14 includes an air inlet for taking in outside air. 14a, and further includes an evaporator 23 disposed in the air treatment tank 14, and the evaporator 23 may form a circulation loop with the condenser 12 through the cooling medium line 13 to cool the inhaled outside air.
  • the condenser 12 is preferably mounted on top of the nacelle 4 to vent heat generated inside the wind turbine to the outside and to avoid additional temperature rise to the interior.
  • a cooling medium is disposed in the refrigeration system constituted by the condenser 12 and the evaporator 23, and the cooling medium evaporates into a gaseous state in the evaporator 23, taking away heat of the air in the air treatment tank 14, and the gaseous cooling medium flows to the condenser. 12.
  • Condensation in the condenser 12 becomes a liquid state and heat is released, and then the liquid cooling medium flows again into the evaporator 23 in the air treatment tank 14, and thus circulates.
  • the phase change of the cooling medium in the evaporator 23 cools the air in the air treatment tank 14, and the cooled air can flow into the fixed shaft blower 16 and the rotary shaft blower 19 in the manner as described above.
  • the air treatment box 14 further includes a first air outlet and a second air outlet.
  • the first air outlet can communicate with the rotating shaft air supply box 19 through the moving shaft air supply assembly 25, and the second air outlet can pass the fixed shaft air supply assembly.
  • 24 is connected to the fixed shaft air supply box 16 and is respectively provided with a fan in the vicinity of the first air outlet and the second air outlet (for example, the moving shaft air supply assembly 25 and the fixed shaft air supply unit 24), thereby being adjustable
  • the wind speed of the fan regulates the flow rate and flow rate of the blown cold air.
  • a flow meter may be provided on the downstream side of the fan to detect the amount of cold air being blown.
  • temperature sensors may be respectively disposed on the bearing outer ring 11 and the bearing inner ring 10 to sense the temperature of the bearing outer ring 11 and the bearing inner ring 10, and according to the sensed temperature of the bearing outer ring 11 and the bearing inner ring 10 To determine the amount of air blown into the fixed shaft air supply box 16 and the rotating shaft air supply box 19, that is, to blow more cold air to a portion having a high temperature, and to blow less cold air at a portion having a low temperature, thereby Sexually and effectively dissipate heat from the main bearing. This will be described in detail below.
  • the cooling system according to the embodiment further includes an annular fixing bracket 17 for fixing the rotating shaft blowing box 19 and the fixed shaft blowing box 16, and the annular fixing bracket 17 may have a shape of a ladder which is wound in an annular shape and can utilize its own sheet
  • the pressing force is fixed to the inner surface of the fixed shaft 7, and the outer side surfaces of the fixed shaft blowing box 16 and the rotating shaft blowing box 19 may have a shape corresponding to the annular fixing bracket 17, and are passed through a fastening member (not shown).
  • the air treatment tank 14 can also be fixed to the fixed shaft 7 by means of an annular fixing bracket 17.
  • the rotating shaft air supply box 19, the fixed shaft air supply box 16 and the air processing box 14 may be fixed by the same annular fixing bracket 17 having a long axial length, or may be fixed by a single annular fixing bracket 17, respectively, according to the fixed shaft 7
  • the air treatment box 14 can be placed at a higher position of the fixed shaft 7, so that the idle space of the shaft hole can be fully utilized without occupying the shaft hole maintenance space by additionally adding equipment.
  • the cooling system according to the embodiment is forced convection heat exchange by means of consuming work, which is bound to increase the power consumption of the unit itself. Accordingly, the present invention provides a method of controlling a cooling system to reduce energy consumption and increase energy utilization.
  • the air temperature for dissipating the main bearing does not necessarily need to be very low, so it can be combined with the external natural wind and cooling system.
  • the resulting cooling air is used to control the temperature of the main bearing.
  • the cooling system may not operate, the cooling capacity is 0, and the external natural wind is directly cooled to the main bearing; when the external ambient temperature T is greater than the second temperature threshold At T2 (T>T2), the air introduced into the air treatment tank 14 is cooled using a cooling system, at which time the cooling capacity of the cooling system is M2; when the ambient temperature T is greater than or equal to the first temperature threshold T1 and less than or equal to When the temperature threshold T2 (T1 ⁇ T ⁇ T2), the cooling system is used to control a certain proportion of the cooling capacity and partially introduce the external natural wind. At this time, the cooling capacity of the cooling system is M1, where M1 ⁇ M2. Additionally, the first temperature threshold may be 30 °C and the second temperature threshold may be 35 °C.
  • the temperature of the main bearing is usually related to the external ambient temperature. Normally, the temperature of the main bearing is not lower than the external ambient temperature, so the main bearing can be cooled by the cooling system based only on the temperature of the main bearing.
  • the predetermined temperature threshold may be 35 ° C. If the measured temperature is less than the predetermined temperature threshold, the cooling system is operated in the first mode of operation; if the measured temperature is greater than the predetermined temperature threshold, the cooling system is operated in the second mode of operation. In the first mode of operation, the cold air supply unit may only supply natural wind, and in the second mode of operation, the cold air supply unit may only supply cold air. In addition, bearing clearance is critical to the operational reliability of the main bearing, and temperature is an important factor affecting the operation of the main bearing.
  • both the inner ring 10 and the outer ring 11 of the bearing should be taken into consideration to cool them simultaneously.
  • the first predetermined air volume may be supplied to the fixed shaft air supply box 16 and the second predetermined air volume may be supplied to the rotating shaft air supply box 19, wherein the second predetermined air volume delivered to the rotating shaft air supply box 19 may be greater than The first predetermined air volume delivered by the fixed shaft blower box 16.
  • a temperature sensor may be separately disposed on the bearing inner ring 10 and the bearing outer ring 11 to sense the temperature of the bearing inner ring 10 and the bearing outer ring 11.
  • FIG. 6 shows a flow chart for controlling the amount of blown air of the fixed shaft blower 16 and the rotary shaft blower 19 according to an embodiment of the present invention. This control method will be described in detail below with reference to FIG.
  • the control method of FIG. 6 is performed for the second operation mode, because in the first operation mode, the temperature of the main bearing and the ambient temperature are relatively low, and only the temperature of the two needs to be judged. Whether the difference is large. For example, it is determined whether the absolute value
  • the temperature t1 of the bearing inner ring 10 and the temperature t2 of the bearing outer ring 11 can be respectively measured by the temperature sensor.
  • the first set temperature value a for example, the first set temperature value may be 5 ° C.
  • the second set temperature value b may be 60 ° C. If the temperature of any one of them is greater than or equal to the second set temperature value b, the fixed shaft air supply amount and the rotary shaft air supply amount are simultaneously increased; if the temperature of any one of the two is not greater than or equal to the second set temperature value b, then the first predetermined air volume and the second predetermined air volume may remain unchanged.
  • the temperature t1 of the bearing inner ring 10 is higher than the temperature t2 of the bearing outer ring 11, it is judged whether or not the temperature t2 of the bearing outer ring 11 having a low temperature is greater than or equal to the second set temperature value b. If the temperature t2 is greater than or equal to the second set temperature value b, it indicates that the temperature t1 of the bearing inner ring 10 and the temperature t2 of the bearing outer ring 11 have exceeded the second set temperature value b, thereby simultaneously increasing the fixed shaft air supply.
  • the air supply amount simultaneously reduces the air supply amount of the bearing outer ring 11 (i.e., increases the amount of air supplied to the rotating shaft, and reduces the amount of air supplied by the fixed shaft).
  • the temperature t1 of the bearing inner ring 10 is not greater than the temperature t2 of the bearing outer ring 11, it is also judged whether or not the temperature t1 of the bearing inner ring 10 having a low temperature is equal to or greater than the second set temperature value b. Similar to the above judgment process, if the temperature t1 of the bearing inner ring 10 is greater than or equal to the second set temperature value b, the fixed shaft air supply amount and the rotary shaft air supply amount are simultaneously increased; if the temperature t1 of the bearing inner ring 10 is smaller than When the second set temperature value b is set, the amount of fixed shaft air supply can be increased, and the amount of air supplied from the rotating shaft can be reduced.
  • the cooling system according to the invention is added according to its spatial layout after the wind turbine design is completed, enabling reliable installation and operation of the cooling system without affecting the operation of other components within the wind turbine.
  • the cooling system according to the present invention can effectively and specifically dissipate heat from the main bearing through the combination of the refrigeration system and the annular heat dissipating assembly, and ensure that the temperature of the main bearing of the wind power generator is within a reasonable working range.
  • the cooling system according to the present invention respectively has a blower box for the inner ring of the bearing and the outer ring of the bearing, so that the inner and outer rings can be synchronously cooled, and the temperature difference between the inner and outer rings is ensured, thereby ensuring the working clearance.
  • the air blowing port of the blower box according to the present invention can generate a jet effect, thereby enhancing heat exchange and obtaining a better cooling effect.
  • the heat generation inside the main bearing is caused by the external environment temperature and the operating characteristics of the fan itself, and a specific temperature difference control logic is proposed, thereby ensuring the clearance of the main bearing and ensuring the work. Safety.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

一种轴系的冷却系统及其控制方法以及风力发电机组,所述冷却系统包括:冷空气供应单元;转动轴送风箱(19),安装在定轴(7)的内表面上并具有圆环形箱体形状,转动轴送风箱(19)的面对转动轴(9)的表面上沿圆周方向均布多个第一送风口(19a),以使来自冷空气供应单元的冷空气吹向转动轴(9),多个第一送风口(19a)中的每个第一送风口(19a)为狭缝形状,以形成射流。该冷却系统在不影响风力发电机组内其他部件运行的情况下实现冷却系统的可靠安装和运行,并且能够有效地且有针对性地对轴系进行有效地散热,保证风力发电机组的轴系的温度处于合理的工作范围内。

Description

轴系的冷却系统及其控制方法以及风力发电机组 技术领域
本发明涉及风力发电领域,特别涉及一种用于风力发电机组的轴系的冷却系统、包括该冷却系统的风力发电机组以及该冷却系统的控制方法。
背景技术
风力发电机组大多采用永磁直驱风力发电机,如图1(风力发电机组的结构示意图)所示,具有永磁直驱风力发电机的风力发电机组主要包括:叶片1、轮毂2、发电机子系统3、机舱4和塔架5。如图2(图1的A部分的截面图)所示,发电机子系统3主要包括:永磁直驱风力发电机6、定轴7、转动轴9和主轴承。主轴承包括轴承内圈10、轴承滚子8和轴承外圈11,轴承内圈10连接到转动轴9,轴承外圈11连接到定轴7,由于叶片1、轮毂2与转动轴9连接在一起,因此,在外部风载的作用下,通过主轴承的轴承滚子8,可实现转动轴9与定轴7之间的相对运动。因此主轴承是风力发电机的核心部件之一,其寿命关系到整台风力发电机组的寿命,其一旦失效,更换非常困难,并且费用昂贵。
为确保主轴承的工作,需要对主轴承进行润滑,目前主轴承的润滑方式主要有两种:润滑脂润滑和润滑油润滑。对于滚动轴承而言,通常采取润滑脂润滑,这是因为与润滑油润滑相比,润滑脂润滑装置更加简单且润滑脂不易泄漏,便于主轴承的维护和保养等。
然而,风力发电机组可能安装于沿海、戈壁和草原地区,各地气候条件差异很大,如果主轴承内产生的热不能有效地散发,外加风力发电机组所处的恶劣环境(如高温环境),主轴承可能持续在高温下工作,润滑脂的寿命会随着温度升高而迅速降低,由此导致润滑脂的润滑作用失效。
由于轴承滚子8、轴承内圈10和轴承外圈11受到外界风载作用并承受风力发电机组自身的重量,因此在轴承内圈10和轴承外圈11相对旋转时,会产生较大的摩擦力矩,进而导致主轴承内部产生大量的热。若不能实时地将产生的热散发出去,会导致主轴承具有较高的温度,而较高的温度会导致 润滑脂的粘度下降,进而影响主轴承的轴承内圈10、轴承滚子8和轴承外圈11彼此之间的润滑油膜建立,由此可能产生干摩擦,导致传动系统内部的零部件的温度急剧上升,主轴承的工作游隙会因热膨胀而超出合理的工作范围,甚至可能发生“抱轴”现象。由此可知,长时间的高温运行会导致严重的恶性循环,并严重影响主轴承的寿命,导致主轴承失效,无法满足风力发电机组整机运行寿命20~25年的要求。
实际上,不仅主轴承,其他轴系中的轴承也存在上述问题。轴承众多的失效形式归根结底都是因“热”而产生的,而且,随着风力发电机组发电功率的逐步增大,散热问题不仅影响润滑脂的寿命,也对风力发电机组的其他部件造成威胁(如,内部部件可能因高温而熔化),因此受到越来越多的关注。
发明内容
本发明的目的是提供一种用于风力发电机组的轴系的冷却系统,以有效地散发轴系的热。
根据本发明的一方面,提供一种用于风力发电机组的轴系的冷却系统,所述轴系包括定轴、转动轴以及设置在定轴和转动轴之间的轴承,所述轴承包括轴承外圈、轴承滚子和轴承内圈,所述轴承外圈连接到定轴,所述轴承内圈连接到转动轴,所述冷却系统包括:冷空气供应单元;转动轴送风箱,所述转动轴送风箱安装在所述定轴的内表面上并具有圆环形箱体形状,所述转动轴送风箱的面对所述转动轴的表面上沿圆周方向均布多个第一送风口,以使来自所述冷空气供应单元的冷空气吹向所述转动轴,其中,所述多个第一送风口中的每个第一送风口为狭缝形状,以形成射流,从而增强换热,提高转动轴的高冷却效果。
所述冷却系统还可包括定轴送风箱,所述定轴送风箱安装在所述定轴的内表面上并具有圆环形箱体形状,所述定轴送风箱的面对所述轴系的表面上沿圆周方向均布多个第二送风口,以使来自所述冷空气供应单元的冷空气吹向所述轴承外圈,其中,所述多个第二送风口中的每个第二送风口为狭缝形状,以形成射流,从而增强换热,提高定轴的高冷却效果。
所述冷却系统还可包括固定地安装在所述转动轴的内表面上的环形散热组件,以便于对轴系进行更好地散热。
所述环形散热组件可包括多个散热单元,所述多个散热单元中的每个散 热单元可包括基板及嵌在所述基板中的热管,以便于更方便地安装所述环形散热组件。
所述热管可包括从所述基板沿着所述转动轴的径向向内延伸的第一延伸部分、从所述第一延伸部分的端部沿着所述转动轴的轴向延伸的第二延伸部分和从所述第二延伸部分的端部沿着所述转动轴的径向向内延伸的第三延伸部分,其中,每个散热单元还可包括插设在所述第三延伸部分上的散热翅片,以实现更有效的散热。
所述热管可以为包括弯曲形成的单个管或者彼此平行地设置的多个管。
所述环形散热组件可通过压条安装在所述转动轴的内表面上,其中,所述压条由多个圆弧段拼接而成以通过支撑所述多个基板的内表面而将所述散热组件固定地安装在所述转动轴的内表面上,以按照简单的方式稳固地安装所述环形散热组件。
所述冷空气供应单元可包括冷凝器和空气处理箱,所述冷凝器安装在风力发电机组的机舱上,所述空气处理箱包括:蒸发器,蒸发器通过冷却介质管路与所述冷凝器形成循环回路;入风口,吸入外部空气。
所述空气处理箱还可包括:第一出风口,与所述转动轴送风箱连通;第二出风口,与所述定轴送风箱连通,并在第一出风口和第二出风口附近分别设置有风扇,从而可通过调节风扇的风速来调节吹送的冷空气的流速和流量。
所述冷却系统还可包括用于固定所述转动轴送风箱、所述定轴送风箱和所述空气处理箱的环形固定支架,从而有效地利用轴系的内部空间。
根据本发明的另一方面,提供一种风力发电机组,所述风力发电机组包括如上所述的冷却系统。
根据本发明的又一方面,提供一种如上所述的冷却系统的控制方法,所述控制方法包括:确定风力发电机组运行时轴系的温度是否大于预定温度阈值;如果所述温度小于所述预定温度阈值,则使所述冷却系统在第一操作模式下运行;如果所述温度大于所述预定温度阈值,则使所述冷却系统在第二操作模式下运行,其中,在第一操作模式下,冷空气供应单元供应自然风,在第二操作模式下,冷空气供应单元供应冷空气,以降低能耗,提升能源的利用率。
在所述第一操作模式下,计算所述轴承内圈和所述轴承外圈之间的温度差,当所述温度差的绝对值小于第一设定温度值时,向所述轴承外圈供应第 一预定风量,并向所述转动轴供应第二预定风量;当所述温度差的绝对值大于或等于所述第一设定温度值时,则调节冷空气供应单元的送风量,使得供应给所述轴承内圈和所述轴承外圈中温度高的一个的风量增大,供应给所述轴承内圈和所述轴承外圈中温度低的另一个的风量减小。
在所述第二操作模式下,计算所述轴承内圈和所述轴承外圈之间的温度差的绝对值,当所述绝对值小于第一设定温度值时,判断所述轴承内圈和所述轴承外圈中的任意一个的温度是否大于等于第二设定温度值,如果任意一个的温度大于等于第二设定温度值,则同时增大定轴送风量和转动轴送风量;如果任意一个的温度都不大于等于第二设定温度值,则所述第一预定风量和第二预定风量保持不变;当所述绝对值大于等于所述第一设定温度值时,判断所述轴承内圈的温度是否大于所述轴承外圈的温度,如果所述轴承内圈的温度比所述轴承外圈的温度高,则判断所述轴承外圈的温度是否大于等于第一设定温度值,如果所述轴承外圈的温度大于等于所述第二设定温度值,则同时增大定轴送风量和转动轴送风量;如果所述轴承外圈的温度小于所述第二设定温度值,则增大转动轴送风量并减少定轴送风量;如果所述轴承内圈的温度小于等于所述轴承外圈的温度,则判断所述轴承内圈的温度是否大于等于所述第二设定温度值,如果所述轴承内圈的温度大于等于所述第二设定温度值,则同时增大定轴送风量和转动轴送风量;如果所述轴承内圈的温度小于所述第二设定温度值,则增大定轴送风量并减少转动轴送风量。
所述预定温度阈值可为35℃,所述第一设定温度值可为5℃,所述第二设定温度值可为60℃。
根据本发明的冷却系统是在风力发电机组设计完成后根据其空间布局添加的,在不影响风力发电机组内其他部件运行的情况下实现冷却系统的可靠安装和运行。
根据本发明的冷却系统通过制冷系统与环形散热组件的结合,能够有效地且有针对性地对轴系进行散热,保证风力发电机组的轴系的温度处于合理的工作范围内。
根据本发明的冷却系统针对轴承内圈和轴承外圈分别对应有送风箱,从而可以保证内外圈同步冷却,保证了内外圈的温差,从而确保了轴承工作游隙。
根据本发明的送风箱的送风口可以产生射流效果,从而增强换热,获得 更好的冷却效果。
根据本发明的控制冷却系统的方法,针对外部不同环境温度、风力机发电机组自身的运行特性导致主轴承内部的发热,提出了针对性的温差控制逻辑,从而保证了主轴承的游隙,确保了工作的安全。
附图说明
图1是风力发电机组的结构示意图;
图2是图1的A部分的截面图;
图3是包括根据本发明的实施例的冷却系统的风力发电机组的局部剖切分解结构示意图;
图4是根据本发明的实施例的冷却系统的局部结构示意图;
图5是根据本发明的实施例的空气处理箱的内部结构示意图;
图6示出了根据本发明的实施例的控制定轴送风箱和转动轴送风箱的送风量的流程图。
附图标号说明:
1-叶片;2-轮毂;3-发电机子系统;4-机舱;5-塔架;6-永磁直驱风力发电机;7-定轴;8-轴承滚子;9-转动轴;10-轴承内圈;11-轴承外圈;12-冷凝器;13-冷却介质管路;14-空气处理箱;14a-入风口;15-环形散热组件;16-定轴送风箱;16a-第二送风口;17-环形固定支架;18-压条;19-转动轴送风箱;19a-第一送风口;20-热管;21-散热翅片;22-基板;23-蒸发器;24-定轴送风组件;25-转动轴送风组件。
具体实施方式
以下结合附图对本发明的实施例做具体描述。
在下文中,将以风力发电机组的主轴承作为冷却对象进行描述,但应注意的是,本发明不限于此,根据示例性实施例的冷却系统还可应用于风力发电机组的其他轴系。另外,关于方向的描述均是以主轴承的形状作为基准,例如,诸如“内侧”、“外侧”以及“内表面”和“内表面”等的描述是基于主轴承的径向方向,具体地,距离主轴承的中心轴线近的且面向中心轴线的面为“内侧”或“内表面”,反之为“外侧”或“外表面”。
图3是包括根据本发明的实施例的冷却系统的风力发电机组的局部剖切 分解结构示意图;图4是根据本发明的实施例的冷却系统的局部结构示意图;图5是根据本发明的实施例的空气处理箱的内部结构示意图。
如图3至图5所示,根据本发明的实施例的冷却系统包括:冷空气供应单元;转动轴送风箱19,安装在定轴7的内表面上并具有圆环形箱体形状,转动轴送风箱19的面对转动轴9的表面上沿圆周方向均布多个第一送风口19a,以使来自冷空气供应单元的冷空气吹向转动轴9。多个第一送风口19a中的每个第一送风口19a为狭缝形状,以形成射流。形成射流的原因在于:当流体从相对大的空间(转动轴送风箱19)流向小的空间(呈狭缝形状的第一送风口19a)时,气流速度上升,气流压力增大,进而使空气从大的空间以高速喷射出,从而提高强制对流的换热系数,以更有效地对转动轴9进行冷却,进而冷却轴承内圈10。
此外,冷却系统还包括定轴送风箱16。定轴送风箱16也可安装在定轴7的内表面上并具有圆环形箱体形状。与转动轴送风箱19相似,定轴送风箱16的面对主轴承的表面上沿圆周方向均布多个第二送风口16a,以使来自冷空气供应单元的冷空气吹向轴承外圈11。多个第二送风口16a中的每个第二送风口16a为狭缝形状,以形成射流。
应注意的是,这里所指的吹送到轴承外圈11及转动轴9并非指非常精确地吹送到轴承外圈11及转动轴9,而是可吹送到轴承外圈11附近或与之相邻的部件(例如,轴承滚子8)以及转动轴9的附近。
通过使冷空气以射流的形式流出定轴送风箱16和转动轴送风箱19,从而增强换热,提高冷却效果。
然而,送风箱的结构不限于此,定轴送风箱16和转动轴送风箱19也可形成为一体的结构,即,定轴送风箱16和转动轴送风箱19可整体形成为圆环形箱体形状,并用利用隔板将箱体分成分别面对不同区域的两个风道,以分别以射流形式将冷空气吹送到轴承外圈11和转动轴9的附近。
另外,虽然上面描述了定轴送风箱16和转动轴送风箱19均安装在定轴7的内表面上的情况,但转动轴送风箱19也可安装在定轴送风箱16的内表面上,以通过定轴送风箱16间接地安装在定轴7的内表面上,从而可更有效地利用主轴承的内部空间。
由于轴承滚子8与轴承内圈10和轴承外圈11的摩擦产生的热沿径向传递到轴承内圈10,进而传递到转动轴9,因此为便于更好地散热,在转动轴 9的内表面上可安装环形散热组件15。
如图4所示,冷却系统还可包括环形散热组件15。为便于环形散热组件15的安装,环形散热组件15可包括多个散热单元,每个散热单元包括基板22及嵌在基板22中的热管20。热管20包括从基板22沿着转动轴9的径向向内延伸的第一延伸部分、从第一延伸部分的端部沿着转动轴9的轴向延伸的第二延伸部分和从第二延伸部分的端部沿着转动轴9的径向向内延伸的第三延伸部分,每个散热单元还包括插设在第三延伸部分上的散热翅片21,散热翅片21沿转动轴9的径向方向设置在基板22的内侧,以在有限的空间内通过合理布局实现有效的散热。
热管20内具有一定沸点的冷却介质,通过基板22的导热,热管20的底部(与热管20的其他部分相比,更接近转动轴9的部分)吸收热量,内部冷却介质蒸发变为气态,气态的冷却介质在散热翅片21散热作用下开始降温,气态凝结为液态,通过毛细作用再次返回热管底部,从而实现传热循环来对转动轴9进行冷却。
另外,图4中示出了热管20包括彼此平行地设置的多个管的情况,但热管20的结构不限于此,热管20还可以是包括按照之字形弯曲而形成的单个管或多个管。
通过设置环形散热组件15,传递到转动轴9的热会依次传递至基板22、热管20和散热翅片21,在由送风箱吹送的冷空气的作用下,使散热翅片21散热,进而降低主轴承的温度。
然而,根据本发明的环形散热组件15的结构不限于此,例如,环形散热组件15可仅包括散热基板22和嵌在散热基板22中的热管20。
另外,由于转动轴9为大部件,鉴于强度、疲劳等性能的考虑,不允许在转动轴9的内表面进行打孔来安装基板22,因此可采用高导热性、高粘结强度的粘结剂对多个基板22进行固定。但基板22的安装方式不限于此,必要时,也可采用辅助安装装置。
本发明的实施例示出了以压条18作为环形散热组件15的辅助安装装置的情况。压条18可由多个圆弧段拼接而成,并且压条18的外表面的尺寸与环形散热组件15的多个基板22的内表面的尺寸相对应,以通过支撑多个基板22的内表面而将环形散热组件15固定地安装在转动轴9的内表面上,即,多个圆弧段拼接成整个圆周的压条通过产生背向圆心的张力来固定环形散热 组件15。
然而,安装环形散热组件15的方式不限于以上方式,只要能够将环形散热组件15固定地安装在转动轴9的内表面上的任何结构均是可行的。
如图3所示,根据实施例的冷空气供应单元可包括冷凝器12和空气处理箱14,冷凝器12可安装在风力发电机组的机舱4上,空气处理箱14包括吸入外部空气的入风口14a,并且还包括设置在空气处理箱14中的蒸发器23,蒸发器23可通过冷却介质管路13与冷凝器12形成循环回路,以对吸入的外部空气进行冷却。
冷凝器12优选地安装在机舱4的顶部,以便将风力发电机组内部产生的热排放到外部,并且避免对内部带来额外的温升。在冷凝器12和蒸发器23构成的制冷系统中设置有冷却介质,冷却介质在蒸发器23中蒸发变为气态,带走空气处理箱14中的空气的热量,气态的冷却介质流至冷凝器12,在冷凝器12中冷凝变为液态并放出热量,然后液态的冷却介质再次流入空气处理箱14内的蒸发器23,如此循环。冷却介质在蒸发器23中的相变使空气处理箱14中的空气冷却,冷却后的空气可按照如上所述的方式流入定轴送风箱16和转动轴送风箱19中。
另外,空气处理箱14还包括第一出风口和第二出风口,第一出风口可通过动轴送风组件25与转动轴送风箱19连通,第二出风口可通过定轴送风组件24与定轴送风箱16连通,并可在第一出风口和第二出风口附近(例如,动轴送风组件25和定轴送风组件24中)分别设置有风扇,从而可通过调节风扇的风速来调节吹送的冷空气的流速和流量。此外,风扇的下游侧还可设置有流量计,以检测所吹送的冷空气的量。
此外,可在轴承外圈11和轴承内圈10上分别设置温度传感器,以感测轴承外圈11和轴承内圈10的温度,并根据感测的轴承外圈11和轴承内圈10的温度来确定吹送到定轴送风箱16和转动轴送风箱19中的风量,即,对温度高的部位吹送较多的冷空气,温度低的部位则吹送较少的冷空气,从而有针对性且有效地对主轴承进行散热。在下文中将对此进行详细介绍。
根据实施例的冷却系统还包括用于固定转动轴送风箱19和定轴送风箱16的环形固定支架17,环形固定支架17可具有绕成圆环状的梯子形状并可利用自身的张紧力固定在定轴7的内表面上,定轴送风箱16和转动轴送风箱19的外侧表面可具有与环形固定支架17相对应的形状,并通过紧固构件(未 示出)安装到环形固定支架17。
空气处理箱14也可通过环形固定支架17固定在定轴7上。转动轴送风箱19、定轴送风箱16和空气处理箱14可通过沿轴向长度较长的同一个环形固定支架17固定,也可分别通过单个环形固定支架17固定,根据定轴7内的空间以及实际需要进行设置即可。通过利用环形固定支架17可以将空气处理箱14置于定轴7的较高位置处,从而充分地利用轴孔的闲置空间,不会因为额外增加设备而占用轴孔维护空间。
根据实施例的冷却系统是通过消耗功的方式进行的强制对流换热,势必会增加机组自身的耗电量。因此,本发明提供一种控制冷却系统的方法,以降低能耗,提升能源的利用率。
由于一年四季风力发电机组所处的外部环境不同,只有夏季时节外部环境的温度较高,并且对主轴承进行散热的空气温度并不一定需要很低,因此可以结合外部自然风与冷却系统所产生的冷却空气来实现主轴承温度的控制。当外界环境温度T小于第一温度阈值T1(T<T1)时,冷却系统可以不工作,制冷量为0,引入外部自然风直接对主轴承进行冷却;当外界环境温度T大于第二温度阈值T2(T>T2)时,使用冷却系统对引入到空气处理箱14中的空气进行冷却,此时冷却系统的制冷量为M2;当外界环境温度T大于等于第一温度阈值T1且小于等于第二温度阈值T2(T1≤T≤T2)时,使用冷却系统控制一定比例的制冷量并部分地引入外部自然风,此时冷却系统的制冷量为M1,其中,M1<M2。另外,第一温度阈值可以为30℃,第二温度阈值可以为35℃。
主轴承的温度通常与外部环境温度相关,通常情况下,主轴承的温度不会低于外部环境温度,因此可仅基于主轴承的温度通过冷却系统对主轴承进行冷却。
具体地,可通过设置在主轴承上的温度传感器确定风力发电机组运行时主轴承的温度是否大于预定温度阈值(所述预定温度阈值可为35℃)。如果测得的温度小于预定温度阈值,则使冷却系统在第一操作模式下运行;如果测得的温度大于预定温度阈值,则使冷却系统在第二操作模式下运行。在第一操作模式下,冷空气供应单元可仅供应自然风,在第二操作模式下,冷空气供应单元可仅供应冷空气。另外,轴承游隙对于主轴承的运行可靠性至关重要,而温度是影响主轴承运行的重要因素,因此在进行主轴承降温时要兼 顾轴承内圈10和轴承外圈11,使它们同时降温,从而保证温差,以确保轴承游隙。为此,无论是第一操作模式还是第二操作模式,均需要对定轴送风箱16和转动轴送风箱19所吹送的风量进行控制。在初始状态下,可以向定轴送风箱16供应第一预定风量并向转动轴送风箱19供应第二预定风量,其中,向转动轴送风箱19输送的第二预定风量可大于向定轴送风箱16输送的第一预定风量。
可在轴承内圈10和轴承外圈11上分别设置温度传感器,以感测轴承内圈10和轴承外圈11的温度。
图6示出了根据本发明的实施例的控制定轴送风箱16和转动轴送风箱19的送风量的流程图。下面参照图6对该控制方法进行详细的描述。
在此应注意的是,图6的控制方法是针对第二操作模式进行的,这是因为在第一操作模式下,主轴承的温度和外界环境温度都比较低,仅需要判断二者的温度差是否较大。例如,判断二者的温度差的绝对值|△t|是否大于第一设定温度值,如果是,则说明二者温差较大,在这种情况下,由于二者只是温差大,每个的温度均不高,因此只需调节冷空气供应单元的送风量,使得供应给轴承内圈10和轴承外圈11中温度高的一个的风量增大,供应给另一个的风量减小即可;如果为否,则保持供应的第一预定风量和第二预定风量不变。因此,下面将参照图6对第二操作模式进行描述。
如上所述,可通过温度传感器分别测量轴承内圈10的温度t1和轴承外圈11的温度t2。
然后,根据温度传感器感测的温度,计算轴承内圈10和轴承外圈11之间的温度差△t的绝对值|△t|。
接下来,判断|△t|是否大于等于第一设定温度值a(例如,所述第一设定温度值可为5℃)。
当|△t|小于第一设定温度值a时,判断轴承内圈10的温度t1和轴承外圈11的温度t2中的任意一个的温度是否大于或等于第二设定温度值b(例如,所述第二设定温度值b可为60℃)。如果其中任何一个的温度大于或等于第二设定温度值b,则同时增大定轴送风量和转动轴送风量;如果其中任何一个的温度都不大于或等于第二设定温度值b,则所述第一预定风量和第二预定风量可保持不变。
当|△t|大于或等于第一设定温度值a时,进一步判断轴承内圈10的温 度t1是否大于轴承外圈11的温度t2。
如果轴承内圈10的温度t1比轴承外圈11的温度t2高,则判断二者中温度低的轴承外圈11的温度t2是否大于或等于第二设定温度值b。如果温度t2大于或等于第二设定温度值b,则说明轴承内圈10的温度t1和轴承外圈11的温度t2都已超过第二设定温度值b,因此同时增大定轴送风量和转动轴送风量;如果二者中温度低的轴承外圈11的温度t2小于第二设定温度值b,则在二者温差较大的情况下,可增大轴承内圈10的送风量同时减少轴承外圈11的送风量(即,增大转动轴送风量,减少定轴送风量)。
如果轴承内圈10的温度t1不大于轴承外圈11的温度t2,则同样判断二者中温度低的轴承内圈10的温度t1是否大于等于第二设定温度值b。与上述判断过程相似,如果轴承内圈10的温度t1大于或等于第二设定温度值b,则同时增大定轴送风量和转动轴送风量;如果轴承内圈10的温度t1小于第二设定温度值b,则可增大定轴送风量,减少转动轴送风量。
根据本发明的冷却系统是在风力发电机组设计完成后根据其空间布局添加的,在不影响风力发电机组内其他部件运行的情况下实现冷却系统的可靠安装和运行。
根据本发明的冷却系统通过制冷系统与环形散热组件的结合,能够有效地且有针对性地对主轴承进行散热,保证风力发电机组的主轴承的温度处于合理的工作范围内。
根据本发明的冷却系统针对轴承内圈和轴承外圈分别对应有送风箱,从而可以保证内外圈同步冷却,保证了内外圈的温差,从而确保了工作游隙。
根据本发明的送风箱的送风口可以产生射流效果,从而增强换热,获得更好的冷却效果。
根据本发明的控制冷却系统的方法,针对外部不同环境温度、风机自身的运行特性导致主轴承内部的发热,提出了针对性的温差控制逻辑,从而保证了主轴承的游隙,确保了工作的安全。
虽然上面已经详细描述了本发明的示例性实施例,但本领域技术人员应该理解,在不脱离本发明的原理和精神的情况下,可对本发明的实施例做出各种修改和变型。但是应当理解,在本领域技术人员看来,这些修改和变型仍将落入权利要求所限定的本发明的范围内。

Claims (15)

  1. 一种用于风力发电机组的轴系的冷却系统,所述轴系包括定轴(7)、转动轴(9)以及设置在所述定轴(7)和转动轴(9)之间的轴承,所述轴承包括轴承外圈(11)、轴承滚子(8)和轴承内圈(10),所述轴承外圈(11)连接到定轴(7),所述轴承内圈(10)连接到转动轴(9),其特征在于,所述冷却系统包括:
    冷空气供应单元;
    转动轴送风箱(19),所述转动轴送风箱(19)安装在所述定轴(7)的内表面上并具有圆环形箱体形状,所述转动轴送风箱(19)的面对所述转动轴(9)的表面上沿圆周方向均布多个第一送风口(19a),以使来自所述冷空气供应单元的冷空气吹向所述转动轴(9),
    其中,所述多个第一送风口(19a)中的每个第一送风口(19a)为狭缝形状,以形成射流。
  2. 如权利要求1所述的冷却系统,其特征在于,所述冷却系统还包括:
    定轴送风箱(16),所述定轴送风箱(16)安装在所述定轴(7)的内表面上并具有圆环形箱体形状,所述定轴送风箱(16)的面对所述轴系的表面上沿圆周方向均布多个第二送风口(16a),以使来自所述冷空气供应单元的冷空气吹向所述轴承外圈(11),
    其中,所述多个第二送风口(16a)中的每个第二送风口(16a)为狭缝形状,以形成射流。
  3. 如权利要求2所述的冷却系统,其特征在于,所述冷却系统还包括固定地安装在所述转动轴(9)的内表面上的环形散热组件(15)。
  4. 如权利要求3所述的冷却系统,其特征在于,所述环形散热组件(15)包括多个散热单元,所述多个散热单元中的每个散热单元包括基板(22)及嵌在所述基板(22)中的热管(20)。
  5. 如权利要求4所述的冷却系统,其特征在于,所述热管(20)包括从所述基板(22)沿着所述转动轴(9)的径向向内延伸的第一延伸部分、从所述第一延伸部分的端部沿着所述转动轴(9)的轴向延伸的第二延伸部分和从所述第二延伸部分的端部沿着所述转动轴(9)的径向向内延伸的第三延伸部分,其中,每个散热单元还包括插设在所述第三延伸部分上的散热翅片(21)。
  6. 如权利要求5所述的冷却系统,其特征在于,所述热管(20)为包括弯曲形成的单个管或者彼此平行地设置的多个管。
  7. 如权利要求4至6中任一项所述的冷却系统,其特征在于,所述环形散热组件通过压条(18)安装在所述转动轴(9)的内表面上,
    其中,所述压条(18)由多个圆弧段拼接而成以通过支撑所述多个基板(22)的内表面而将所述环形散热组件(15)固定地安装在所述转动轴(9)的内表面上。
  8. 如权利要求2至6中任一项所述的冷却系统,其特征在于,所述冷空气供应单元包括:
    冷凝器(12),所述冷凝器(12)安装在风力发电机组的机舱(4)上;
    空气处理箱(14),所述空气处理箱(14)包括:蒸发器(23),所述蒸发器(23)通过冷却介质管路(13)与所述冷凝器(12)形成循环回路;入风口(14a),吸入外部空气。
  9. 如权利要求8所述的冷却系统,其特征在于,所述空气处理箱(14)还包括:第一出风口,与所述转动轴送风箱(19)连通;第二出风口,与所述定轴送风箱(16)连通,并在第一出风口和第二出风口附近分别设置有风扇。
  10. 如权利要求8所述的冷却系统,其特征在于,所述冷却系统还包括用于固定所述转动轴送风箱(19)、所述定轴送风箱(16)和所述空气处理箱(14)的环形固定支架(17)。
  11. 一种风力发电机组,其特征在于,所述风力发电机组包括如权利要求1至10中任一项所述的冷却系统。
  12. 一种如权利要求1所述的冷却系统的控制方法,其特征在于,所述控制方法包括:
    确定风力发电机组运行时轴系的温度是否大于预定温度阈值;
    如果所述温度小于所述预定温度阈值,则使所述冷却系统在第一操作模式下运行;
    如果所述温度大于所述预定温度阈值,则使所述冷却系统在第二操作模式下运行,
    其中,在第一操作模式下,冷空气供应单元供应自然风,在第二操作模式下,所述冷空气供应单元供应冷空气。
  13. 如权利要求12所述的控制方法,其特征在于,所述冷却系统还包括定轴送风箱(16),安装在所述定轴(7)的内表面上并具有圆环形箱体形状,所述定轴送风箱(16)的面对所述轴系的表面上沿圆周方向均布多个第二送风口(16a),以使来自所述冷空气供应单元的冷空气吹向所述轴承外圈(11),所述多个第二送风口(16a)中的每个第二送风口(16a)为狭缝形状,以形成射流,
    其中,在所述第一操作模式下,计算所述轴承内圈(10)和所述轴承外圈(11)之间的温度差(△t),
    当所述温度差(△t)的绝对值(|△t|)小于第一设定温度值(a)时,向所述轴承外圈(11)供应第一预定风量,并向所述转动轴(9)供应第二预定风量;
    当所述温度差(△t)的绝对值(|△t|)大于或等于所述第一设定温度值
    (a)时,则调节冷空气供应单元的送风量,使得供应给所述轴承内圈(10)和所述轴承外圈(11)中温度高的一个的风量增大,供应给所述轴承内圈(10)和所述轴承外圈(11)中温度低的另一个的风量减小。
  14. 如权利要求13所述的控制方法,其特征在于,在所述第二操作模式下,计算所述轴承内圈(10)和所述轴承外圈(11)之间的温度差(△t)的绝对值(|△t|),
    当所述绝对值(|△t|)小于第一设定温度值(a)时,判断所述轴承内圈(10)和所述轴承外圈(11)中的任意一个的温度是否大于或等于第二设定温度值(b),如果任意一个的温度大于或等于所述第二设定温度值(b),则同时增大定轴送风量和转动轴送风量;如果任意一个的温度都不大于或等于所述第二设定温度值(b),则所述第一预定风量和第二预定风量保持不变;
    当所述绝对值(|△t|)大于或等于所述第一设定温度值(a)时,判断所述轴承内圈(10)的温度(t1)是否大于所述轴承外圈(11)的温度(t2),
    如果所述轴承内圈(10)的温度(t1)比所述轴承外圈(11)的温度(t2)高,则判断所述轴承外圈(11)的温度(t2)是否大于或等于第二设定温度值(b),如果所述轴承外圈(11)的温度(t2)大于或等于所述第二设定温度值(b),则同时增大定轴送风量和转动轴送风量;如果所述轴承外圈(11)的温度(t2)小于所述第二设定温度值(b),则增大转动轴送风量并减少定轴送风量;
    如果所述轴承内圈(10)的温度(t1)小于或等于所述轴承外圈(11)的温度(t2),则判断所述轴承内圈(10)的温度(t1)是否大于或等于所述第二设定温度值(b),如果所述轴承内圈(10)的温度(t1)大于或等于所述第二设定温度值(b),则同时增大定轴送风量和转动轴送风量;如果所述轴承内圈(10)的温度(t1)小于所述第二设定温度值(b),则增大定轴送风量并减少转动轴送风量。
  15. 如权利要求14所述的控制方法,其特征在于,所述预定温度阈值为35℃,所述第一设定温度值(a)为5℃,所述第二设定温度值(b)为60℃。
PCT/CN2018/089529 2017-12-06 2018-06-01 轴系的冷却系统及其控制方法以及风力发电机组 WO2019109612A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2018282297A AU2018282297B2 (en) 2017-12-06 2018-06-01 Cooling system for shafting and control method thereof, and wind turbine
US16/329,490 US11261849B2 (en) 2017-12-06 2018-06-01 Cooling system for shafting and control method thereof, and wind turbine
EP18811124.9A EP3514375B1 (en) 2017-12-06 2018-06-01 Shafting cooling system and method for controlling same, and wind power generator set

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711278833.4A CN108019324B (zh) 2017-12-06 2017-12-06 轴系的冷却系统及其控制方法以及风力发电机组
CN201711278833.4 2017-12-06

Publications (1)

Publication Number Publication Date
WO2019109612A1 true WO2019109612A1 (zh) 2019-06-13

Family

ID=62078570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089529 WO2019109612A1 (zh) 2017-12-06 2018-06-01 轴系的冷却系统及其控制方法以及风力发电机组

Country Status (5)

Country Link
US (1) US11261849B2 (zh)
EP (1) EP3514375B1 (zh)
CN (1) CN108019324B (zh)
AU (1) AU2018282297B2 (zh)
WO (1) WO2019109612A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108019324B (zh) 2017-12-06 2019-07-09 北京金风科创风电设备有限公司 轴系的冷却系统及其控制方法以及风力发电机组
CN109139396B (zh) * 2018-08-07 2020-05-08 北京金风科创风电设备有限公司 风力发电机组冷却系统及冷却方法及风力发电机
EP3680481B1 (en) 2019-01-10 2024-09-25 Siemens Gamesa Renewable Energy A/S Inclined heat exchanger for a wind turbine
CN109826764B (zh) * 2019-03-13 2020-07-28 浙江大学 轴承冷却装置及包括其的风力发电机
JP7206141B2 (ja) * 2019-03-25 2023-01-17 Ntn株式会社 軸受装置
CN109958591B (zh) * 2019-04-25 2020-10-23 浙江大学 风力发电机轴承的空气冷却装置及包括其的风力发电机
CN111122159B (zh) * 2020-01-10 2022-06-14 上海大学 一种空心轴式高铁轴承试验台试验头
CN114593025B (zh) * 2022-03-17 2022-08-26 安徽中安绿能股份有限公司 风力发电机组的轴系的冷却系统及风力发电机组
CN114683512B (zh) * 2022-03-30 2023-09-01 江苏思可达塑业有限公司 一种增强聚丙烯材料生产用冷却装置及冷却方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157340A (ja) * 2006-12-22 2008-07-10 Ntn Corp 転がり軸受
CN102713273A (zh) * 2010-01-11 2012-10-03 西门子公司 具有冷却系统的直接驱动式风力涡轮机
CN103299095A (zh) * 2010-10-21 2013-09-11 Imo控股有限责任公司 带有用于一体化地冷却和/或加热的设备的装置以及用于一体化地加热或冷却的方法
CN203272484U (zh) * 2013-04-10 2013-11-06 河北大唐国际王滩发电有限责任公司 一种空气预热器轴承外部风冷装置
CN104121287A (zh) * 2013-04-26 2014-10-29 西门子公司 控制滑动轴承的间隙的装置
CN104295454A (zh) * 2013-07-19 2015-01-21 西门子公司 用于风力涡轮机的轴承
US20150211572A1 (en) * 2012-08-06 2015-07-30 Willic S.A.R.L. Control method, program and system for controlling the bearing preload of a wind turbine and wind turbine comprising such control system
CN108019324A (zh) * 2017-12-06 2018-05-11 北京金风科创风电设备有限公司 轴系的冷却系统及其控制方法以及风力发电机组

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20081122A1 (it) * 2008-06-19 2009-12-20 Rolic Invest Sarl Generatore eolico provvisto di un impianto di raffreddamento
ITMI20110376A1 (it) * 2011-03-10 2012-09-11 Wilic Sarl Aerogeneratore raffreddato a fluido
US20120133152A1 (en) * 2011-11-29 2012-05-31 Robert Gregory Wagoner Systems and methods for cooling electrical components of wind turbines
DE202013012054U1 (de) * 2012-04-13 2015-02-23 Eolotec Gmbh Lageranordnung einer Windkraftanlage
EP2806542B1 (en) 2013-05-22 2016-09-14 Siemens Aktiengesellschaft Airflow control arrangement
CN205207057U (zh) * 2015-12-10 2016-05-04 北京金风科创风电设备有限公司 风力发电机组冷却系统及风力发电机组
EP3236065A1 (en) * 2016-04-19 2017-10-25 Siemens Aktiengesellschaft Wind turbine and method for guiding cooling air to an electric machine
CN205714607U (zh) * 2016-07-01 2016-11-23 河北工业大学 一种环绕式风力发电机冷却系统
DE102016125218A1 (de) * 2016-12-21 2018-06-21 Wobben Properties Gmbh Statorträger für einen Stator eines Windenergieanlagengenerators, sowie Stator, Generator und Windenergieanlage mit selbigem
CN107044390B (zh) * 2017-05-12 2023-10-13 北京金风科创风电设备有限公司 风力发电机组及其冷却控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157340A (ja) * 2006-12-22 2008-07-10 Ntn Corp 転がり軸受
CN102713273A (zh) * 2010-01-11 2012-10-03 西门子公司 具有冷却系统的直接驱动式风力涡轮机
CN103299095A (zh) * 2010-10-21 2013-09-11 Imo控股有限责任公司 带有用于一体化地冷却和/或加热的设备的装置以及用于一体化地加热或冷却的方法
US20150211572A1 (en) * 2012-08-06 2015-07-30 Willic S.A.R.L. Control method, program and system for controlling the bearing preload of a wind turbine and wind turbine comprising such control system
CN203272484U (zh) * 2013-04-10 2013-11-06 河北大唐国际王滩发电有限责任公司 一种空气预热器轴承外部风冷装置
CN104121287A (zh) * 2013-04-26 2014-10-29 西门子公司 控制滑动轴承的间隙的装置
CN104295454A (zh) * 2013-07-19 2015-01-21 西门子公司 用于风力涡轮机的轴承
CN108019324A (zh) * 2017-12-06 2018-05-11 北京金风科创风电设备有限公司 轴系的冷却系统及其控制方法以及风力发电机组

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3514375A4 *

Also Published As

Publication number Publication date
CN108019324A (zh) 2018-05-11
CN108019324B (zh) 2019-07-09
EP3514375B1 (en) 2022-08-17
AU2018282297B2 (en) 2020-03-05
US20190285059A1 (en) 2019-09-19
EP3514375A1 (en) 2019-07-24
EP3514375A4 (en) 2019-11-20
US11261849B2 (en) 2022-03-01
AU2018282297A1 (en) 2019-06-20

Similar Documents

Publication Publication Date Title
WO2019109612A1 (zh) 轴系的冷却系统及其控制方法以及风力发电机组
JP4796039B2 (ja) 風力発電装置
JP6124508B2 (ja) 熱制御システムを備えた直接駆動風車、軸受アセンブリ、及び、直接駆動風車の温度を制御する方法
CN108050023B (zh) 用于风力发电机组的轴系的冷却系统及风力发电机组
US9803694B2 (en) Direct drive wind turbine with a cooling system
JP2012082821A (ja) タービンコンパートメント通気のためのシステム及び方法
ITMI20100170A1 (it) Impianto e metodo di raffreddamento di un generatore elettrico di un aerogeneratore, e aerogeneratore comprendente tale impianto di raffreddamento
CN205277723U (zh) 风力发电机组及其主轴承冷却系统
CN207526655U (zh) 用于风力发电机的轴系的冷却系统及风力发电机组
CN107842472B (zh) 用于风力发电机的轴系的冷却系统及风力发电机组
TWI598506B (zh) Wind power equipment
US20120111532A1 (en) Cooling-arrangement
CN117212085A (zh) 一种风力发电机用轴承结构
CN116867249A (zh) 散热方法及其相关设备
CN110905741B (zh) 一种风力发电机组主轴承和轮毂的冷却和加热系统
CN211230726U (zh) 风力发电机冷却系统及包括其的风力发电机
CN107477012A (zh) 一种新型高温引风机
CN113623152A (zh) 风力发电机的散热系统及风力发电机
CN114696537A (zh) 用于风力发电机组的冷却系统及风力发电机组
CN211230725U (zh) 冷却装置及包括其的风力发电机
CN110318958B (zh) 直驱发电机主轴承机构的冷却系统及直驱发电机
CN109826764B (zh) 轴承冷却装置及包括其的风力发电机
CN117928277A (zh) 一种锅炉蒸汽冷却塔及其控制方法
JP2012012978A (ja) 風力発電装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018811124

Country of ref document: EP

Effective date: 20190111

ENP Entry into the national phase

Ref document number: 2018811124

Country of ref document: EP

Effective date: 20190111

ENP Entry into the national phase

Ref document number: 2018282297

Country of ref document: AU

Date of ref document: 20180601

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE