WO2019109451A1 - 光源系统及光源系统的自动调节方法以及投影设备 - Google Patents

光源系统及光源系统的自动调节方法以及投影设备 Download PDF

Info

Publication number
WO2019109451A1
WO2019109451A1 PCT/CN2018/071452 CN2018071452W WO2019109451A1 WO 2019109451 A1 WO2019109451 A1 WO 2019109451A1 CN 2018071452 W CN2018071452 W CN 2018071452W WO 2019109451 A1 WO2019109451 A1 WO 2019109451A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser
source system
light source
brightness
Prior art date
Application number
PCT/CN2018/071452
Other languages
English (en)
French (fr)
Inventor
郭祖强
杨炳柯
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2019109451A1 publication Critical patent/WO2019109451A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • the present invention relates to the field of optics, and in particular to a light source system having an automatic adjustment function, an automatic adjustment method thereof, and a projection apparatus.
  • the invention relates to the field of optical technology, in particular to the field of display and illumination technology.
  • the excitation light source and the wavelength conversion device are two kinds of light-emitting elements whose emitted light constitutes respective primary colors of the projection light source.
  • a blue laser light is used as the B primary color light excitation light, and is excited to a wavelength conversion device to generate green and red received laser light as R, G primary color light.
  • R, G primary color light green and red received laser light
  • the efficiency of the red phosphor is low, it is difficult to satisfy the requirement of high brightness and good color with red fluorescence as the R-based color light: when the brightness is increased, the red color will be orange, and the color purity is required. The brightness is insufficient.
  • a combination of red laser and red fluorescence is generally employed as the R primary light.
  • the change of the operating power of the light-emitting element itself or the change of the surrounding environment will cause the operating temperature to change, thereby changing the output spectrum of the light-emitting element, for example, the peak wavelength drift of the laser and the stimulated emission of the phosphor. Fluorescence spectrum changes. In this way, the spectrum and color of the output light will change, affecting the display and illumination effects. For the scheme of using red laser and red fluorescent mixing as the R primary light, the influence of temperature change on the output light is more obvious.
  • the invention provides a light source system, an automatic adjusting method thereof and a projection device, which can ensure the stability of the output light color and brightness, ensure the display effect, and have a good user experience.
  • a technical solution adopted by the present invention is to provide a light source system, including:
  • a laser for emitting excitation light comprising at least one first laser emitting a first excitation light and at least one second laser emitting a second excitation light;
  • the second excitation light emitted by the second laser generates a first received laser light and a second received laser light as G primary color light through the wavelength conversion device, and transmits a part of the second excitation light to form B primary color light,
  • the first excitation light and the first laser light are mixed according to the principle of metamerism to form R primary color light;
  • a detecting device configured to detect brightness and color coordinates of the first laser received
  • the control module adjusts the brightness and color coordinates of the first excitation light according to the change of the brightness and color coordinates of the first received laser light, so that the brightness and color coordinates of the R primary color light are maintained stable.
  • the detecting device is a brightness detecting device for directly detecting brightness and color coordinates of the first received laser light.
  • the detecting device is a temperature detecting device for detecting a temperature on the wavelength converting device, determining a brightness of the first excitation light and a color coordinate according to the temperature change, and the control module is configured according to the brightness of the first excitation light.
  • the trend of the color and color coordinates maintains the brightness and color coordinates of the R primary light to remain stable.
  • the first laser is a red laser
  • the first excitation light is a red laser
  • the second laser is a blue laser
  • the second excitation light is a blue laser
  • the wavelength conversion device comprises a color wheel coated with at least two kinds of phosphors, and the blue laser light excites red fluorescence and green fluorescence through the wavelength conversion device, and the G primary color light is green fluorescence.
  • the color wheel is coated with a red phosphor and a green phosphor which are sequentially irradiated with excitation light, and the blue laser excites red fluorescence and green fluorescence through the color wheel timing.
  • the control module controls to increase the operating current of the red laser and/or control to lower the temperature of the light source system; when the brightness of the first excitation light rises, When the color coordinates are shifted toward the long wavelength direction, the control module controls to reduce the operating current of the red laser and/or control to increase the temperature of the light source system.
  • the color wheel is coated with a yellow phosphor and a green phosphor which are sequentially irradiated with excitation light, and the blue laser excites yellow fluorescence and green fluorescence through the color wheel timing, and the wavelength conversion device further includes A modified sheet disposed on a yellow fluorescent light path, the yellow fluorescent light forming red fluorescence through the modified sheet.
  • the control module controls to reduce the operating current of the red laser and/or control to lower the temperature of the light source system; when the brightness of the first excitation light decreases, the color When the coordinates are shifted toward the short-wave direction, the control module controls to increase the operating current of the red laser and/or control to increase the temperature of the light source system.
  • the light source system further comprises a heat sink that receives the control signal of the control module and adjusts the temperature of the light source system.
  • the temperature detecting means comprises a temperature sensor disposed on any one or more of the red laser, the second laser or the wavelength conversion device.
  • the light source system includes a mirror disposed on an optical path of the R primary light, the B primary light, and the G primary light, and changing an optical path to form an output light, the brightness detecting device setting the After the mirror, it is used to detect a part of the R primary light, the B primary light, and the G primary light transmitted through the mirror.
  • the light source system further includes a beam splitter disposed on the optical paths of the first laser and the second laser, and the second excitation light and the first excitation light are concentrated to the On the wavelength conversion device.
  • the light source system further includes a positive lens for adjusting an optical path, a collecting lens and an output lens, the positive lens being disposed between the beam splitter and the wavelength conversion device, the collecting lens and the output A lens is disposed on a side of the wavelength conversion device remote from the laser.
  • the present invention also provides a technical solution of providing a projection apparatus including the light source system as described above.
  • the present invention further provides a technical solution for providing an automatic adjustment method of a light source system, which adopts the light source system as described above, and includes the following steps:
  • the control module detects the brightness and color coordinates of the first laser received
  • the control module controls the temperature of the light source system and/or the operating current of the red laser to maintain the brightness and color coordinates of the R primary light by using the metachromism principle according to a preset setting.
  • the red fluorescence is excited by the excitation light emitted by the second laser to excite the red phosphor.
  • the control module controls the operating current of the red laser to be raised and/or Control reduces the temperature of the light source system; conversely, the control module controls to reduce the operating current of the red laser and/or control to increase the temperature of the light source system.
  • the red fluorescence is formed by the yellow fluorescent light formed by the excitation light of the second laser excited by the red phosphor
  • the control module controls the red color when the brightness of the first laser is increased and the color coordinate is shifted to the long wavelength direction.
  • the operating current and/or control of the laser reduces the temperature of the light source system; conversely, the control module controls the operating current of the red laser and/or controls to increase the temperature of the light source system.
  • the control module stores in advance a data table of luminance and color coordinates of the red fluorescent light corresponding to the R primary light corresponding to different luminance and color coordinates, and current and temperature of the first laser, the control module according to the light source system
  • the temperature measurement value, the luminance measurement value of the R primary color light, and the color coordinate of the R primary color light, the content in the lookup data table determines the theoretical value of the current and temperature of the first laser, and adjusts the current and the light source of the first laser correspondingly.
  • the temperature of the system is a data table of luminance and color coordinates of the red fluorescent light corresponding to the R primary light corresponding to different luminance and color coordinates, and current and temperature of the first laser, the control module according to the light source system
  • the invention has the beneficial effects that the present invention provides an automatic adjustment method of a light source system and a light source system, and a projection device.
  • the control module of the light source system changes according to the brightness and color coordinates of the first laser received by the laser.
  • the brightness and color coordinates of the first excitation light are adjusted to keep the brightness and color coordinates of the R primary color light stable, so that the output of the light source system is stable, the display effect of the projection device is ensured, and the user experience is good.
  • FIG. 1 is a schematic structural view of a light source system of the present invention
  • FIG. 2 is a spectrum diagram of green and red fluorescence generated by a blue laser excitation phosphor of a light source system of the present invention
  • Figure 3 is a spectrum diagram of the spectrum shown in Figure 2 after mixing a red laser
  • Figure 4 is a spectrum diagram of the spectrum shown in Figure 3 after the temperature rises
  • Figure 5 is a spectrum of the spectrum shown in Figure 4 after adjustment.
  • the invention provides a light source system with automatic adjustment function for maintaining output light stability, an automatic adjustment method thereof and a projection device using the same, which are described below in conjunction with specific embodiments:
  • the light source system of the present invention comprises a laser 1, a wavelength conversion device 2, a detection device, a mirror 5, and a control module.
  • the laser 1 is used to emit excitation light, specifically including a first laser 11 and a second laser 12.
  • the first laser 11 is used to emit the first excitation light.
  • the first laser 11 is a red laser
  • the first excitation light is a red laser
  • the second laser 12 emits a second excitation light, specifically in the embodiment.
  • it is a blue laser that emits a blue laser.
  • the first laser 11 and the second laser 12 are each provided.
  • the number and type of lasers are not limited thereto, and may be plural or have other types of lasers, and may be implemented.
  • the detecting device includes a temperature detecting device 3 and a brightness detecting device 4.
  • the temperature detecting device 3 includes temperature sensors disposed on any one or more of the first laser 11, the second laser 12, or the wavelength conversion device 2 for detecting temperature changes of respective portions of the light source system.
  • the light source system further includes a beam splitter 6 disposed on the optical path of the first laser 11 and the second laser 12, the red laser light emitted from the first laser 11 is reflected by the beam splitter 6; the second laser 12, specifically the blue in the present embodiment
  • the blue laser light emitted from the color laser is transmitted through the beam splitter 6, and the optical paths of the blue laser and the red laser light after passing through the beam splitter 6 are superimposed and concentrated on the wavelength conversion device 2.
  • the wavelength conversion device 2 is specifically a color wheel coated with at least two kinds of phosphors in the embodiment. Specifically, in the embodiment, the wavelength conversion device 2 is coated with a yellow phosphor and a green phosphor, and in the working state, the color The wheel rotates at a constant rate and the two phosphors are illuminated by excitation light. The blue laser passes through the color wheel to generate yellow and green fluorescence and transmits a portion of the blue laser.
  • the wavelength conversion device 2 further includes a modified sheet disposed on the yellow fluorescent light path, the yellow fluorescent light forming a red fluorescent light through the modified sheet.
  • the blue laser continuously emits a blue laser, and the timing excites red and green fluorescence, and transmits a part of the blue laser.
  • green fluorescence is used as the G-based color light
  • the transmitted blue laser light is used as the B-based color light.
  • the first laser 11 emits a red laser only when the wavelength conversion device 2 emits red fluorescence. At this time, the red fluorescence is mixed with the red laser to obtain R primary light.
  • a positive lens 7 for adjusting the concentrated light of the optical path is further disposed between the wavelength conversion device 2 and the beam splitter 6. Further, after the wavelength conversion device 2, a collecting lens 8 and an output lens 9 for adjusting the optical path are further provided. After the excitation light passes through the wavelength conversion device 2, it is collected by the collecting lens 8 and the output lens 9 onto the mirror 5 and reflected by the mirror 5 to form a light. A part of the light transmitted by the emitted light when passing through the mirror 5 enters the brightness detecting device 4, and the reflectance of the actual mirror is about 99%, where the 1% transmitted light enters the brightness detecting device 4 to perform the brightness and illuminance of the output light. Measurement, that is, the realization of the light combination detection can be realized.
  • the light source system can sequentially emit R, G, and B primary colors.
  • the deflection mirror sequentially reflects the three primary colors into the sensor to obtain the brightness and spectrum of each primary light.
  • the external environment changes or the operating current of the laser changes, its operating temperature will inevitably change, causing spectral drift.
  • the temperature of the color wheel also changes as the intensity of the blue laser changes.
  • the control module In order to ensure the emission of light, especially the luminance of the R primary light formed by the mixing of the red fluorescent light and the red laser light and the color coordinate of the spectrum are stabilized, the control module generally adjusts the first excitation light according to the change of the brightness and color coordinates of the first received laser light. Brightness and color coordinates are such that the luminance and color coordinates of the R primary light remain stable.
  • the first method for detecting the brightness and color coordinates of the laser may be directly measured by the brightness detecting device 3, or the temperature of the light source system may be detected by the temperature detecting device, and the brightness and color coordinate of the first excitation light may be determined according to the temperature change. trend.
  • the control module receives the results of the brightness detecting device 4 and the temperature detecting device 3, and adjusts the operating current of the first laser 11 or controls the temperature of the light source system according to the principle of metamerism.
  • the control module can be a micro processing unit or a single chip microcomputer.
  • the light source system further includes a heat sink that receives the control signal of the control module and adjusts the temperature of the light source system.
  • other temperature-regulating devices that can be adjusted, either a one-way controlled temperature adjustment device or a two-way temperature adjustment device, can be implemented.
  • the control module detects the brightness and color coordinates of the first laser received
  • the control module controls the temperature of the light source system and/or the operating current of the red laser to maintain the brightness and color coordinates of the R primary light by using the metachromism principle according to a preset setting.
  • the first method for detecting the brightness and color coordinates of the laser may be directly measured by the brightness detecting device 3, or the temperature of the light source system may be detected by the temperature detecting device, and the brightness and color coordinate of the first excitation light may be determined according to the temperature change. trend.
  • the control module controls to reduce the operation of the red laser.
  • Current and/or control reduces the temperature of the light source system; when the temperature detecting device detects a temperature drop of the light source system and/or the brightness detecting device detects a decrease in the brightness of the first received laser light, the color coordinate shifts to the short-wave direction to cause a color shift In the yellow hour, the control module controls to increase the operating current of the red laser.
  • adjusting the operating current of the red laser and adjusting the temperature of the light source system can be performed simultaneously or only one of the adjustments can be achieved.
  • the temperature adjustment of the light source system preferably, the temperature of the red laser is used as the adjustment standard, because the operating temperature of the red laser affects the spectral shift of the red laser, which is a major factor affecting the light stability of the R primary color.
  • FIG. 2 in the present embodiment, the blue laser excitation yellow phosphor and the green phosphor generate a spectrum of red fluorescence and green fluorescence
  • FIG. 3 is a spectrum after mixing the red laser.
  • R 1 , (x 1 , y 1 ) represent the luminance and color coordinates of the red fluorescence
  • R 2 , (x 2 , y 2 ) represent the luminance and color coordinates of the red laser
  • R 0 , (x 0 , y 0 ) represent R
  • the brightness and color coordinates of the base color design values are:
  • R 0 R 1 +R 2
  • the luminance and color coordinates of the R primary light are R' 0 (x' 0 , y' 0 ), at this time:
  • the operating current of the red laser is reduced or the heat dissipation of the heat sink is controlled to reduce the temperature of the light source system.
  • the homochromatic principle is used to correct the stability of the R primary light by the correction of the red laser.
  • various working states of the light source system can be tested at the time of design, and obtained in each working state: in order to maintain the combined light of the red fluorescent light and the red laser light to a predetermined brightness.
  • color coordinates the corresponding relationship between the brightness and color coordinates of the red fluorescence and the operating current and temperature of the red laser.
  • a data table for the luminance and color coordinates of the red fluorescence corresponding to the R primary light at different luminance and color coordinates and the current and temperature of the red laser are stored in the control module. As shown in the following table:
  • the control module retrieves the content in the lookup data table according to the temperature measurement value of the light source system, the brightness measurement value of the R primary color light, and the color coordinate of the R primary color light to determine the operating current of the first laser 11 and The theoretical value of the temperature, and correspondingly adjusting the operating current and temperature of the first laser 11, can complete the automatic adjustment of the light source system. In this way, the speed and efficiency of the automatic adjustment of the light source system can be further improved, and the reliability of the adjustment can be improved.
  • the present embodiment is exemplified by a combination of a red laser and a red fluorescent R primary light, and the present invention is not limited.
  • the light source system and the automatic detection method of the present invention can be applied to the principle of metamerism.
  • a combination of laser and fluorescence of any color can be employed in the solution of the present invention.
  • the present embodiment is an improvement based on the first embodiment, which is substantially the same as the first embodiment, except that in the present embodiment, the R fluorescence used in the R primary light is emitted by the second laser.
  • the excitation light excites the formation of a red phosphor.
  • the red fluorescence is directly generated by the excitation light to excite the red fluorescence, when the ambient temperature changes or the operating temperature rises, the spectrum as a whole shifts toward the short-wave direction when the temperature rises, so the brightness thereof is lowered and the color is yellowish.
  • the control module controls the operating current of the raised red laser and/or controls to lower the temperature of the light source system; when the temperature sensing device 3 detects a temperature drop of the light source system and/or the brightness detecting device 4 detects the brightness of the first received laser light The rising color coordinate is shifted to the long wave direction to cause the color to be reddish, and the control module controls to reduce the operating current of the red laser.
  • the principle is to maintain the stability of the brightness and color coordinates of the R primary light by adjusting the working current and the system temperature of the laser according to the metamerism.
  • the specific The adjustment methods are slightly different. The specific adjustment methods can be summarized as follows:
  • the invention has the beneficial effects that the present invention provides an automatic adjustment method of a light source system and a light source system, and a projection device.
  • the control module of the light source system changes according to the brightness and color coordinates of the first laser received by the laser.
  • the brightness and color coordinates of the first excitation light are adjusted to keep the brightness and color coordinates of the R primary color light stable, so that the output of the light source system is stable, the display effect of the projection device is ensured, and the user experience is good.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)

Abstract

一种光源系统,包括第一激光器(11)、第二激光器(12)、波长转换装置(2)、检测装置(3,4)和控制模块。第二激光器(12)发出的第二激发光经过波长转换装置(2)时序产生第一受激光和G基色的第二受激光,并透射部分第二激发光形成B基色光。第一激发光与第一受激光混合形成R基色光。检测装置(3,4)检测第一受激光的亮度和色坐标。控制模块根据第一受激光的亮度和色坐标的变化来调节第一激发光的亮度和色坐标,使得R基色光的亮度和色坐标维持稳定,使得光源系统的输出稳定,保证投影设备的显示效果。

Description

光源系统及光源系统的自动调节方法以及投影设备 技术领域
本发明涉及光学领域,尤其是涉及一种具有自动调节功能的光源系统及其自动调节方法以及投影设备。
背景技术
本发明涉及光学技术领域,特别是显示、照明技术领域。在很多投影光源中,激发光源和波长转换装置是两种发光元件,它们的出射光构成了投影光源的各个基色光。例如,用蓝激光作为B基色光激发光,激发到波长转换装置上,产生绿色和红色的受激光,作为R、G基色光。然而,在现有技术中,由于红色荧光粉效率偏低,以红色荧光作为R基色光很难满足亮度高、颜色性又好的要求:提高亮度则红光颜色会偏橙色,要求颜色纯度好则亮度不足。在对R基色光的亮度和颜色都要求较高的光源中,通常采用红激光和红荧光混合作为R基色光的方案。
在光源的工作过程中,发光元件自身工作功率的改变,或者是周围环境改变,都会导致其工作温度变化,从而使得发光元件的输出光谱改变,例如:激光器峰值波长漂移、荧光粉受激发射的荧光光谱变化。这样,输出光的光谱和颜色就会随之改变,影响显示和照明的效果。对于采用红激光和红荧光混合作为R基色光的方案,温度变化对输出光的影响更为明显。
因此,有必要针对这种光源进行改进,提供一种具有自动调节功能,维持输出光稳定的光源系统及自动调节方法以及投影设备以解决上述问题。
发明内容
本发明提供一种光源系统及其自动调节方法以及投影设备,可以保 证输出光线颜色和亮度的稳定,保证显示效果,具有良好的用户体验。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种光源系统,包括:
激光器,用于发出激发光,所述激光器包括至少一个发出第一激发光的第一激光器和至少一个发出第二激发光的第二激光器;
波长转换装置,所述第二激光器发出的第二激发光经所述波长转换装置时序产生第一受激光和作为G基色光的第二受激光,并透射一部分第二激发光形成B基色光,所述第一激发光与所述第一受激光根据同色异谱原理混合形成R基色光;
检测装置,用于检测所述第一受激光的亮度和色坐标;
控制模块,根据第一受激光的亮度和色坐标的变化来调节第一激发光的亮度和色坐标,以使得R基色光的亮度和色坐标维持稳定。
优选的,所述检测装置为亮度检测装置,用于直接检测所述第一受激光的亮度和色坐标。
优选的,所述检测装置为温度检测装置,用于检测波长转换装置上的温度,根据温度变化判断第一激发光的亮度和色坐标的变化趋势,所述控制模块根据第一激发光的亮度和色坐标的变化趋势维持R基色光的亮度和色坐标维持稳定。
优选的,所述第一激光器为红光激光器,第一激发光为红激光;所述第二激光器为蓝色激光器,第二激发光为蓝激光。
优选的,所述波长转换装置包括涂覆有至少两种荧光粉的色轮,所述蓝激光经所述波长转换装置时序激发出红荧光和绿荧光,所述G基色光为绿荧光。
优选的,所述色轮上涂覆有时序经过激发光照射的红荧光粉和绿荧光粉,所述蓝激光经所述色轮时序激发出红荧光和绿荧光。
优选的,当第一激发光的亮度下降,色坐标向短波方向偏移时,控制模块控制升高红色激光器的工作电流和/或控制降低光源系统的温度;当第一激发光的亮度上升,色坐标向长波方向偏移时,控制模块控制降低红色激光器的工作电流和/或控制提高光源系统的温度。
优选的,所述色轮上涂覆有时序经过激发光照射的黄荧光粉和绿荧光粉,所述蓝激光经所述色轮时序激发出黄荧光和绿荧光,所述波长转换装置进一步包括设置在黄荧光光路上的修饰片,所述黄荧光经所述修饰片形成红荧光。
优选的,当第一激发光的亮度上升,色坐标向长波方向偏移时,控制模块控制降低红色激光器的工作电流和/或控制降低光源系统的温度;当第一激发光的亮度下降,色坐标向短波方向偏移导致时,控制模块控制提高红色激光器的工作电流和/或控制提高光源系统的温度。
优选的,所述光源系统还包括接收控制模块的控制信号并调节光源系统的温度的散热装置。
优选的,所述温度检测装置包括设置在所述红色激光器、所述第二激光器或所述波长转换装置中的任意一个或多个上的温度传感器。
优选的,所述光源系统包括设置在所述R基色光、所述B基色光和所述G基色光的光路上,并改变光路走向形成输出光的反射镜,所述亮度检测装置设置所述反射镜后,用于检测经过反射镜后透射过的一部分R基色光、B基色光和G基色光。
优选的,所述光源系统还包括设置在所述第一激光器和所述第二激光器光路上的分光片,所述第二激发光和所述第一激发光经所述分光片汇聚到所述波长转换装置上。
优选的,所述光源系统还包括用于调整光路的正透镜、收集透镜和输出透镜,所述正透镜设置在所述分光片与所述波长转换装置之间,所述收集透镜和所述输出透镜设置在所述波长转换装置远离所述激光器的一侧。
为解决上述技术问题,本发明还提供一个技术方案是:提供一种投影设备,包括如上所述的光源系统。
为解决上述技术问题,本发明还提供一个技术方案是:提供一种光源系统的自动调节方法,采用如上所述的光源系统,包括如下步骤:
控制模块检测第一受激光的亮度和色坐标;
控制模块根据预先设定,利用同色异谱原理控制调节光源系统的温 度和/或红色激光器的工作电流以维持R基色光的亮度和色坐标稳定。
优选的,红荧光由第二激光器发出的激发光激发红色荧光粉形成,当第一受激光的亮度下降、色坐标向短波方向偏移时,控制模块控制升高红色激光器的工作电流和/或控制降低光源系统的温度;反之,控制模块控制降低红色激光器的工作电流和/或控制提高光源系统的温度。
优选的,红荧光由第二激光器发出的激发光激发红色荧光粉形成的黄荧光经修饰片形成,当第一受激光的亮度升高、色坐标向长波方向偏移时,控制模块控制降低红色激光器的工作电流和/或控制降低光源系统的温度;反之,控制模块控制升高红色激光器的工作电流和/或控制提高光源系的统温度。
优选的,所述控制模块内预先存储设置有不同亮度和色坐标下的R基色光对应的红荧光的亮度和色坐标以及第一激光器的电流和温度的数据表,所述控制模块根据光源系统的温度测量值、R基色光的亮度测量值和R基色光的色坐标,查找数据表中的内容确定第一激光器的电流和温度的理论值,并对应调节所述第一激光器的电流和光源系统的温度。
本发明的有益效果是:区别于现有技术的情况,本发明提供一种光源系统和光源系统的自动调节方法以及投影设备,光源系统的控制模块根据第一受激光的亮度和色坐标的变化来调节第一激发光的亮度和色坐标,以使得R基色光的亮度和色坐标维持稳定,使得光源系统的输出稳定,保证投影设备的显示效果,具有良好的用户体验。
附图说明
图1是本发明光源系统的结构示意图;
图2是本发明光源系统蓝激光激发荧光粉产生绿色和红色荧光的光谱图;
图3是图2所示的光谱混合了红激光后的光谱图;
图4是图3所示的光谱在温度上升后的光谱图;
图5是图4所示的光谱在经过调节后的光谱图。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。本发明提供一种具有自动调节功能,维持输出光稳定的光源系统及其自动调节方法以及使用该光源系统的投影设备,下面结合具体实施例进行说明:
实施例一
请参阅图1,本发明的光源系统包括激光器1、波长转换装置2、检测装置、反射镜5、控制模块。
激光器1用于发出激发光,具体包括第一激光器11和第二激光器12。第一激光器11用于发出第一激发光,具体在本实施方式中,第一激光器11为红色激光器,第一激发光为红激光,第二激光器12发出第二激发光,具体在本实施方式中,为蓝色激光器,发出蓝激光。在本实施方式中,第一激光器11和第二激光器12各有一个,事实上,激光器的数量和种类并不限于此,也可以具有多个,或者具有其他类型的激光器,也是可以实施的。
检测装置包括温度检测装置3和亮度检测装置4。温度检测装置3包括设置在第一激光器11、第二激光器12或波长转换装置2中的任意一个或多个上的温度传感器,分别用于检测光源系统各个部位的温度变化。
光源系统还包括设置在第一激光器11和第二激光器12的光路上的分光片6,第一激光器11发出的红激光经分光片6反射;第二激光器12,具体在本实施方式中的蓝色激光器发出的蓝激光经分光片6透射,经过分光片6后的蓝激光和红激光的光路重合,并汇聚到波长转换装置2上。
波长转换装置2具体在本实施方式为涂覆有至少两种荧光粉的色轮,具体在本实施方式中,波长转换装置2涂覆有黄荧光粉和绿荧光粉,在工作状态下,色轮以恒定速率旋转,两种荧光粉时序经过激发光照射。蓝激光经过色轮后生成黄荧光和绿荧光,并透射一部分蓝激光。波长转 换装置2进一步包括设置在黄荧光光路上的修饰片,所述黄荧光经修饰片形成红荧光。
具体在使用过程中,蓝色激光器持续的发出蓝激光,时序的激发出红荧光和绿荧光,并透射一部分的蓝激光。其中绿荧光作为G基色光,透射的蓝激光作为B基色光。第一激光器11仅在波长转换装置2发出红荧光的时候发出红激光,此时,红荧光与红激光混合,获得R基色光。
在波长转换装置2和分光片6之间进一步设置有用于调节光路汇聚光线的的正透镜7。进一步的,在波长转换装置2后进一步设置有用于调节光路的收集透镜8和输出透镜9。激发光经波长转换装置2后经收集透镜8和输出透镜9汇聚到反射镜5上并经反射镜5的反射形成出射光。出射光在经反射镜5时透射的一部分光线进入亮度检测装置4,实际反射镜的反射率约99%,此处利用那1%的透射光进入亮度检测装置4对输出光的亮度和照度进行测量,即可以实现实现合光检测。
在正常工作时,光源系统可以时序的发出R、G、B三基色光,在进行颜色亮度校正时,偏转反射镜将三基色光依次反射进传感器,得到各基色光的亮度和光谱。当外界环境变化或激光器的工作电流变化时,其工作温度不可避免的会改变,从而引起光谱的漂移。同时,色轮的温度也会随着蓝激光的强度变化而改变。
为了保证出射光,尤其是由红荧光和红激光混合形成的R基色光的亮度和光谱的色坐标稳定,控制模块通常根据第一受激光的亮度和色坐标的变化来调节第一激发光的亮度和色坐标,以使得R基色光的亮度和色坐标维持稳定。
其中第一受激光的亮度和色坐标的检测方式可以采用亮度检测装置3进行直接测量,也可以通过温度检测装置检测光源系统的温度,根据温度变化判断第一激发光的亮度和色坐标的变化趋势。
控制模块通过接收亮度检测装置4和温度检测装置3的结果,并根据同色异谱的原理调节第一激光器11的工作电流或控制调节光源系统的温度。其中控制模块可以为微处理单元或单片机。进一步的,光源系统还包括接收控制模块的控制信号并调节光源系统的温度的散热装置。 在可选择的其他实施方式中,也可以为可调控的其他温度调节装置,既可以为单向控制的温度调节装置,也可以为双向的温度调节装置,均是可以实施的。
本实施方式的光源系统的自动调节方式包括如下步骤:
控制模块检测第一受激光的亮度和色坐标;
控制模块根据预先设定,利用同色异谱原理控制调节光源系统的温度和/或红色激光器的工作电流以维持R基色光的亮度和色坐标稳定。
其中第一受激光的亮度和色坐标的检测方式可以采用亮度检测装置3进行直接测量,也可以通过温度检测装置检测光源系统的温度,根据温度变化判断第一激发光的亮度和色坐标的变化趋势。
当温度检测装置检测到光源系统的温度上升和/或所述亮度检测装置检测到第一受激光的亮度上升,色坐标向长波方向偏移导致颜色偏红时,控制模块控制降低红色激光器的工作电流和/或控制降低光源系统的温度;当温度检测装置检测到光源系统的温度下降和/或所述亮度检测装置检测到第一受激光的亮度下降,色坐标向短波方向偏移导致颜色偏黄时,控制模块控制提高红色激光器的工作电流。
需要说明的是,调节红色激光器的工作电流和调节光源系统的温度既可以同时进行,也可以只进行其中一种调节,均是可以达到调节目的的。其中光源系统的温度调节,优选的,以红色激光器的温度作为调节标准,这是因为红色激光器的工作温度影响红激光的光谱偏移,是影响R基色光稳定性的主要因素。
下面结合附图,对具体的调节原理进行说明:
如图2所示,为本实施方式中蓝激光激发黄色荧光粉和绿色荧光粉产生红荧光和绿荧光的光谱图,图3是混合了红激光后的光谱图。R 1、(x 1,y 1)表示红荧光的亮度和色坐标,R 2、(x 2,y 2)表示红激光的亮度和色坐标,R 0、(x 0,y 0)表示R基色光设计值的亮度和色坐标,则有:
R 0=R 1+R 2
Figure PCTCN2018071452-appb-000001
Figure PCTCN2018071452-appb-000002
如图4所示,当外界环境变化或激光器的工作电流变化导致工作温度上升时,红荧光的光谱往长波方向偏移,偏移后的红荧光的亮度和色坐标为R 1、(x′ 1,y′ 1),则有:
R′ 1>R 1
x′ 1>x 1
y′ 1<y 1
此时的R基色光的亮度和色坐标为R′ 0(x′ 0,y′ 0),此时:
R′ 0>R 0
x′ 0>x 0
y′ 0<y 0
为了保持R基色光的稳定性,使得R基色光的亮度和色坐标维持在设计值,使得调节过后的R基色光满足R′ 0=R 0,x′ 0=x 0,y′ 0=y 0,则应当调节红激光的亮度和色坐标,满足:
R′ 2<R 2
x′ 2<x 2
y′ 2>y 2
具体在本实施方式中,采用降低红色激光器的工作电流或控制散热装置散热降低光源系统的温度实现。如图5所示,为经调节后的光谱图,利用同色异谱原理,经过红激光的修正,实现R基色光的稳定性。
根据上述的调节原理,进一步的,在实际应用中,可以在设计时对光源系统的各个工作状态进行测试,得到在各个工作状态下:为了将红荧光和红激光的合光维持为预定的亮度和色坐标,红荧光的亮度和色坐标与红激光的工作电流和温度的对应关系。形成不同亮度和色坐标下的R基色光对应的红荧光的亮度和色坐标以及红色激光器的电流和温度的 数据表储存在控制模块内。如下表所示:
Figure PCTCN2018071452-appb-000003
表1
在光源系统进行自动调节时,控制模块根据光源系统的温度测量值、R基色光的亮度测量值和R基色光的色坐标,调取查找数据表中的内容确定第一激光器11的工作电流和温度的理论值,并对应调节所述第一激光器11的工作电流和温度,即可以完成光源系统的自动调节。这样,可以进一步提高光源系统自动调节的速度和效率,并提高调节的可靠性。
需要说明的是,本实施方式以红激光和红荧光组合R基色光为例进行说明,并不是对本发明进行限定,事实上,本发明的光源系统和自动检测方法可以用于同色异谱原理的任意颜色的激光和荧光的组合方式,均是可以采用本发明的方案的。
实施例二
本实施方式是在第一种实施方式的基础上进行的改进,其与第一种实施方式大致相同,区别在于,在本实施方式中,R基色光中采用的R荧光由第二激光器发出的激发光激发红色荧光粉形成。
由于红荧光为激发光激发红色荧光直接产生,因此在周围环境变化或工作温度上升时,温度升高时其光谱整体会向短波方向偏移,因此其亮度会降低且颜色会偏黄。
在本实施方式中,当温度检测装置检测3到光源系统的温度上升和/或所述亮度检测装置4检测到第一受激光的亮度下降,色坐标向短波方向偏移导致颜色偏黄时,控制模块控制升高红色激光器的工作电流和/ 或控制降低光源系统的温度;当温度传感装置3检测到光源系统的温度下降和/或所述亮度检测装置4检测到第一受激光的亮度上升色坐标向长波方向偏移导致颜色偏红,控制模块控制降低红色激光器的工作电流。
上述两种实施方式,其原理均是根据同色异谱通过对激光器的工作电流和系统温度进行调节维持R基色光的亮度和色坐标的稳定,根据组成R基色光的红荧光的来源不同,具体的调节方法略有区别,具体的调节方法可归纳为下表:
Figure PCTCN2018071452-appb-000004
表2
本发明的有益效果是:区别于现有技术的情况,本发明提供一种光源系统和光源系统的自动调节方法以及投影设备,光源系统的控制模块根据第一受激光的亮度和色坐标的变化来调节第一激发光的亮度和色坐标,以使得R基色光的亮度和色坐标维持稳定,使得光源系统的输出稳定,保证投影设备的显示效果,具有良好的用户体验。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种光源系统,其特征在于,包括:
    激光器,用于发出激发光,所述激光器包括至少一个发出第一激发光的第一激光器和至少一个发出第二激发光的第二激光器;
    波长转换装置,所述第二激光器发出的第二激发光经所述波长转换装置时序产生第一受激光和作为G基色光的第二受激光,并透射一部分第二激发光形成B基色光,所述第一激发光与所述第一受激光根据同色异谱原理混合形成R基色光;
    检测装置,用于检测所述第一受激光的亮度和色坐标;
    控制模块,根据第一受激光的亮度和色坐标的变化来调节第一激发光的亮度和色坐标,以使得R基色光的亮度和色坐标维持稳定。
  2. 根据权利要求1所述的光源系统,其特征在于,所述检测装置为用于直接检测所述第一受激光的亮度和色坐标的亮度检测装置或用于检测波长转换装置上的温度,根据温度变化判断第一激发光的亮度和色坐标的变化趋势,维持R基色光的亮度和色坐标维持稳定的温度检测装置。
  3. 根据权利要求1所述的光源系统,其特征在于,所述第一激光器为红光激光器,第一激发光为红激光;所述第二激光器为蓝色激光器,第二激发光为蓝激光,所述波长转换装置包括涂覆有至少两种荧光粉的色轮,所述蓝激光经所述波长转换装置时序激发出红荧光和绿荧光,所述G基色光为绿荧光。
  4. 根据权利要求3所述的光源系统,其特征在于,所述色轮上涂覆有时序经过激发光照射的红荧光粉和绿荧光粉,所述蓝激光经所述色轮时序激发出红荧光和绿荧光,当第一激发光的亮度下降,色坐标向短波方向偏移时,控制模块控制升高红色激光器的工作电流和/或控制降低光源系统的温度;当第一激发光的亮度上升,色坐标向长波方向偏移时,控制模块控制降低红色激光器的工作电流和/或控制提高光源系统的温度。
  5. 根据权利要求3所述的光源系统,其特征在于,所述色轮上涂覆有时序经过激发光照射的黄荧光粉和绿荧光粉,所述蓝激光经所述色轮时序激发出黄荧光和绿荧光,所述波长转换装置进一步包括设置在黄荧光光路上的修饰片,所述黄荧光经所述修饰片形成红荧光,当第一激发光的亮度上升,色坐标向长波方向偏移时,控制模块控制降低红色激光器的工作电流和/或控制降低光源系统的温度;当第一激发光的亮度下降,色坐标向短波方向偏移导致时,控制模块控制提高红色激光器的工作电流和/或控制提高光源系统的温度。
  6. 根据权利要求1所述的光源系统,其特征在于,所述光源系统还包括接收控制模块的控制信号并调节光源系统的温度的散热装置,所述温度检测装置包括设置在所述第一激光器、所述第二激光器或所述波长转换装置中的任意一个或多个上的温度传感器。
  7. 根据权利要求2所述的光源系统,其特征在于,所述光源系统包括设置在所述R基色光、所述B基色光和所述G基色光的光路上,并改变光路走向形成输出光的反射镜,所述亮度检测装置设置所述反射镜后,用于检测经过反射镜后透射过的一部分R基色光、B基色光和G基色光,所述光源系统还包括设置在所述第一激光器和所述第二激光器光路上的分光片,所述第二激发光和所述第一激发光经所述分光片汇聚到所述波长转换装置上,所述光源系统还包括用于调整光路的正透镜、收集透镜和输出透镜,所述正透镜设置在所述分光片与所述波长转换装置之间,所述收集透镜和所述输出透镜设置在所述波长转换装置远离所述激光器的一侧。
  8. 一种投影设备,其特征在于,包括如权利要求1到7任意一项所述的光源系统。
  9. 一种光源系统的自动调节方法,其特征在于,采用如权利要求1到7任意一项所述的光源系统,其特征在于,包括如下步骤:
    控制模块检测第一受激光的亮度和色坐标;
    控制模块根据预先设定,利用同色异谱原理控制调节光源系统的温度和/或红色激光器的工作电流以维持R基色光的亮度和色坐标稳定,具 体调解方法为:
    红荧光由第二激光器发出的激发光激发红色荧光粉形成时,当第一受激光的亮度下降、色坐标向短波方向偏移时,控制模块控制升高红色激光器的工作电流和/或控制降低光源系统的温度;反之,控制模块控制降低红色激光器的工作电流和/或控制提高光源系统的温度;
    红荧光由第二激光器发出的激发光激发红色荧光粉形成的黄荧光经修饰片形成时,当第一受激光的亮度升高、色坐标向长波方向偏移时,控制模块控制降低红色激光器的工作电流和/或控制降低光源系统的温度;反之,控制模块控制升高红色激光器的工作电流和/或控制提高光源系的统温度。
  10. 根据权利要求9所述的光源系统的自动调节方法,其特征在于,所述控制模块内预先存储设置有不同亮度和色坐标下的R基色光对应的红荧光的亮度和色坐标以及第一激光器的电流和温度的数据表,所述控制模块根据光源系统的温度测量值、R基色光的亮度测量值和R基色光的色坐标,查找数据表中的内容确定第一激光器的电流和温度的理论值,并对应调节所述第一激光器的电流和光源系统的温度。
PCT/CN2018/071452 2017-12-05 2018-01-04 光源系统及光源系统的自动调节方法以及投影设备 WO2019109451A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711268608.2 2017-12-05
CN201711268608.2A CN109870872B (zh) 2017-12-05 2017-12-05 光源系统及光源系统的自动调节方法以及投影设备

Publications (1)

Publication Number Publication Date
WO2019109451A1 true WO2019109451A1 (zh) 2019-06-13

Family

ID=66750042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071452 WO2019109451A1 (zh) 2017-12-05 2018-01-04 光源系统及光源系统的自动调节方法以及投影设备

Country Status (2)

Country Link
CN (1) CN109870872B (zh)
WO (1) WO2019109451A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112859498A (zh) * 2019-11-28 2021-05-28 中强光电股份有限公司 照明装置、投影系统及其操作方法
CN114613253A (zh) * 2020-12-09 2022-06-10 成都极米科技股份有限公司 一种光学系统及显示设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114253058A (zh) * 2020-09-21 2022-03-29 青岛海信激光显示股份有限公司 激光投影设备、激光投影设备散热方法和散热装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103425441A (zh) * 2012-05-17 2013-12-04 中国长城计算机深圳股份有限公司 一种电脑及其显示调试系统
CN104914656A (zh) * 2012-08-06 2015-09-16 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
CN105676577A (zh) * 2016-03-07 2016-06-15 海信集团有限公司 光源装置和激光投影显示设备
CN106154715A (zh) * 2015-04-09 2016-11-23 深圳市光峰光电技术有限公司 拼接显示装置和拼接显示控制方法
CN106200229A (zh) * 2015-05-04 2016-12-07 深圳市绎立锐光科技开发有限公司 拼接显示装置和拼接显示控制方法
CN106950786A (zh) * 2016-01-07 2017-07-14 深圳市光峰光电技术有限公司 光源模组及其光源控制方法、投影系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7638744B2 (en) * 2007-12-27 2009-12-29 Industrial Technology Research Institute System and method for stabilizing wavelength of LED radiation in backlight module
CN101217840B (zh) * 2007-12-29 2011-05-25 友达光电股份有限公司 发光二极管光源系统的色彩控制方法
CN102072766B (zh) * 2010-12-14 2012-12-26 广东威创视讯科技股份有限公司 一种检测投影机灯泡亮度的衰减幅度的装置及其方法
CN102252982A (zh) * 2011-04-29 2011-11-23 安徽皖仪科技股份有限公司 一种用于激光气体分析仪的波长漂移补偿方法
CN103813580B (zh) * 2012-11-09 2015-11-25 深圳市光峰光电技术有限公司 光源的出射光色坐标的调整方法及调整装置
CN204595412U (zh) * 2014-12-08 2015-08-26 深圳市光峰光电技术有限公司 发光装置和投影系统
CN105547456B (zh) * 2015-12-24 2018-05-25 华北电力大学 一种ps-fbg超声检测系统的互相关温度补偿法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103425441A (zh) * 2012-05-17 2013-12-04 中国长城计算机深圳股份有限公司 一种电脑及其显示调试系统
CN104914656A (zh) * 2012-08-06 2015-09-16 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
CN106154715A (zh) * 2015-04-09 2016-11-23 深圳市光峰光电技术有限公司 拼接显示装置和拼接显示控制方法
CN106200229A (zh) * 2015-05-04 2016-12-07 深圳市绎立锐光科技开发有限公司 拼接显示装置和拼接显示控制方法
CN106950786A (zh) * 2016-01-07 2017-07-14 深圳市光峰光电技术有限公司 光源模组及其光源控制方法、投影系统
CN105676577A (zh) * 2016-03-07 2016-06-15 海信集团有限公司 光源装置和激光投影显示设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112859498A (zh) * 2019-11-28 2021-05-28 中强光电股份有限公司 照明装置、投影系统及其操作方法
US11442346B2 (en) 2019-11-28 2022-09-13 Coretronic Corporation Illumination device, projection system and operation methods thereof
CN114613253A (zh) * 2020-12-09 2022-06-10 成都极米科技股份有限公司 一种光学系统及显示设备
CN114613253B (zh) * 2020-12-09 2024-01-23 极米科技股份有限公司 一种光学系统及显示设备

Also Published As

Publication number Publication date
CN109870872B (zh) 2021-02-26
CN109870872A (zh) 2019-06-11

Similar Documents

Publication Publication Date Title
EP2506573B1 (en) Projection display apparatus and projection display method
JP5676595B2 (ja) 投写型表示装置および投写表示方法
TWI445448B (zh) 彩色經控制之照明裝置
US20230328857A1 (en) Solid state lighting systems and associated methods of operation and manufacture
JP4417784B2 (ja) 発光装置及び表示装置
KR20090051262A (ko) 광 생성 방법, 백색광 생성 및 방출 장치, 그의 사용 및 dlp 또는 lcd 패널
JP2012248545A (ja) 較正機能付きled光モジュール
WO2019109451A1 (zh) 光源系统及光源系统的自动调节方法以及投影设备
JP2005340809A (ja) 発光装置、発光システムおよびその制御方法
JP5995292B2 (ja) 投写型表示装置および投写表示方法
JP2005164710A (ja) 画像表示装置
JP2015138045A (ja) 光源装置、及び画像表示装置
JP2014035386A (ja) 画像表示装置及び光源制御方法
JP2008262032A (ja) 液晶表示装置
TWI397192B (zh) 白色發光二極體
JP2007156211A (ja) 映像表示装置
US10798348B2 (en) Light source apparatus, projection type display device and light source control method
JP6731784B2 (ja) 光源装置および映像表示装置
JP4715244B2 (ja) 投写装置
JP2018147815A (ja) 光源駆動装置および液晶表示装置
JP2012018118A (ja) 測色装置、及び測色方法
JP2018195487A (ja) 光源装置および画像表示装置
TWI763418B (zh) 光源系統、顯示裝置及光照度調節方法
JP6028440B2 (ja) 画像表示装置及び光源制御方法
JP2019113651A (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18885137

Country of ref document: EP

Kind code of ref document: A1