WO2019107346A1 - スロットアンテナ - Google Patents

スロットアンテナ Download PDF

Info

Publication number
WO2019107346A1
WO2019107346A1 PCT/JP2018/043538 JP2018043538W WO2019107346A1 WO 2019107346 A1 WO2019107346 A1 WO 2019107346A1 JP 2018043538 W JP2018043538 W JP 2018043538W WO 2019107346 A1 WO2019107346 A1 WO 2019107346A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot antenna
conductor
slot
resonator
antenna according
Prior art date
Application number
PCT/JP2018/043538
Other languages
English (en)
French (fr)
Inventor
幸一郎 ▲高▼橋
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2019557233A priority Critical patent/JP7147782B2/ja
Publication of WO2019107346A1 publication Critical patent/WO2019107346A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/18Resonant slot antennas the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas

Definitions

  • the present invention relates to a slot antenna.
  • the above-described slot antenna has a structure in which a pin is inserted into the antenna body to be integrated. Therefore, there is a possibility that the length of the pin in the antenna main body part may be deviated due to assembly variation when inserting the pin. As described above, when the lengths of the pins in the antenna body deviate, it is difficult to obtain good impedance matching in a desired frequency band.
  • the present disclosure provides a slot antenna that can obtain good impedance matching in a desired frequency band.
  • the direction in which the coaxial inner conductor extends in the space is the Z axis direction, the direction toward the Z axis direction at the tip of the coaxial inner conductor is the Z axis negative direction, and the direction from the tip to the Z axis
  • the coaxial inner conductor is connected to the conductor wall viewed from the outside of the resonator as viewed from the Z-axis negative direction side,
  • a slot antenna in which at least one slot is formed in the conductor wall viewed from the outside of the resonator as viewed from a direction different from the Z-axis direction.
  • good impedance matching can be obtained in a desired frequency band.
  • a slot antenna it is a figure showing an example of the relation between distance DL and return loss S11.
  • a slot antenna it is a figure showing an example of the relation between distance WL and return loss S11.
  • In a slot antenna it is a figure showing an example of the relation between distance HL and return loss S11.
  • a slot antenna it is a figure showing an example of the relation between slot length SL and return loss S11.
  • a slot antenna In a slot antenna, it is a figure showing an example of the relation between slot width SW and return loss S11. In a slot antenna, it is a figure showing an example of the relation between CGL / HL and return loss S11. It is a figure which shows an example of the simulation value of the return loss characteristic of a slot antenna. It is a figure which shows an example of the simulation value of the directivity of a slot antenna. It is a sectional view showing an example of a form which carried a slot antenna in vehicles.
  • the X-axis direction, the Y-axis direction, and the Z-axis direction indicate a direction parallel to the X-axis, a direction parallel to the Y-axis, and a direction parallel to the Z-axis, respectively.
  • the X-axis direction, the Y-axis direction, and the Z-axis direction are orthogonal to one another.
  • FIG. 1 is a perspective view showing an example of the configuration of the slot antenna in the first embodiment.
  • FIG. 2 is a cross-sectional view showing an example of the configuration of the slot antenna in the first embodiment.
  • the slot antenna 1 includes a resonator 10 and a coaxial line 20.
  • the resonator 10 is a box-shaped cavity resonator having a space 17 formed inside the conductor wall, and resonates at a predetermined frequency determined by the shape of the space 17.
  • the shape of the resonator 10 and the space 17 is a square pole, more specifically, a rectangular parallelepiped.
  • the coaxial line 20 is connected to the resonator 10.
  • the resonator 10 is connected to one end of the coaxial line 20, and a communication device (not shown) is connected to the other end of the coaxial line 20.
  • a coaxial cable etc. are mentioned as a specific example of the coaxial line 20.
  • the coaxial line 20 has a coaxial inner conductor 21 and a coaxial outer conductor 22 covering a part of the coaxial inner conductor 21.
  • the coaxial outer conductor 22 covers a part of the coaxial inner conductor 21.
  • An insulator 23 exists between the coaxial outer conductor 22 and the coaxial inner conductor 21, and the insulator 23 insulates the coaxial outer conductor 22 from the coaxial inner conductor 21.
  • the insulator 23 covers around a part of the coaxial inner conductor 21, and the coaxial outer conductor 22 covers around the insulator 23. Examples of the insulator 23 include polyethylene.
  • Cover 24 represents a portion where coaxial outer conductor 22 covers coaxial inner conductor 21 in space 17, and exposed portion 25 is a portion where coaxial inner conductor 21 is exposed from coaxial outer conductor 22 in space 17. Represent.
  • the direction in which the coaxial line 20 extends in the space 17 is taken as the Z-axis direction
  • the direction from the coaxial outer conductor 22 toward the tip portion 26 of the coaxial inner conductor 21 is taken as the Z-axis negative direction.
  • the direction from the portion 26 to the coaxial outer conductor 22 in the Z-axis direction is taken as a Z-axis positive direction.
  • the direction in which the coaxial inner conductor 21 extends in the space 17 is taken as the Z-axis direction
  • the direction toward the Z-axis direction at the tip portion 26 of the coaxial inner conductor 21 is taken as the Z-axis negative direction
  • the direction from Z to the Z-axis direction is taken as the Z-axis positive direction.
  • the coaxial outer conductor 22 is conductively connected to the conductor wall (upper surface conductor wall 15 in the form of FIGS. 1 and 2) viewed from the outside of the resonator 10 as viewed from the Z-axis positive direction side.
  • the coaxial inner conductor 21 is not connected to the conductor wall viewed from the outside of the resonator 10 as viewed from the Z-axis positive direction side.
  • the coaxial line 20 penetrates the upper surface conductor wall 15, and the coaxial outer conductor 22 is in contact with the upper surface conductor wall 15 at the through hole.
  • the coaxial inner conductor 21 is conductively connected to the conductor wall (the lower surface conductor wall 16 in the form of FIGS.
  • the coaxial inner conductor 21 is in contact with the lower conductor wall 16 at its tip 26.
  • At least one slot is formed in the conductor wall viewed from the outside of the resonator 10 as viewed from a direction different from the Z-axis direction.
  • one slot 30 is formed in the front conductor wall 11 viewed from the viewpoint from the Y-axis negative direction side.
  • the slot antenna 1 having such a configuration can emit radio waves of a predetermined frequency determined by the shape of the space 17 from the slot 30.
  • the slot antenna 1 can also transmit and receive radio waves polarized in the width direction of the slot 30 (direction of the slot width SW).
  • the slot width SW represents the length of the slot 30 in the short direction.
  • the slot antenna 1 has a structure in which the coaxial inner conductor 21 is connected to the conductor wall (the lower surface conductor wall 16 in FIGS. 1 and 2) viewed from the outside from the resonator 10 from the Z axis negative direction side.
  • the length HL of the coaxial line 20 in the space 17 is determined by the dimensions of the conductor wall forming the space 17. For example, when the length HL of the coaxial line 20 deviates, the impedance matching of the slot antenna 1 deviates from a desired frequency band.
  • the coaxial line 20 can be inserted into the resonator 10 and the tip portion 26 can be brought into contact with the conductor wall to fix the length HL, it is easy to realize impedance matching in accordance with a desired frequency band. . In this manner, good impedance matching can be obtained in a desired frequency band with little influence of assembly variations. Further, since the conductor wall defining the boundary of the space 17 can be manufactured with a dimensional error smaller than that of the coaxial line 20, the dimensional error of the length HL can be easily reduced, and the impedance matching does not easily occur.
  • the tip end portion 26 may be supported by a hole, a boss, or the like formed in the lower surface conductor wall 16 so that the length HL does not shift.
  • the resonator 10 has two pairs of side surface conductor walls facing each other to sandwich the coaxial line 20 in the direction orthogonal to the Z-axis direction, so that good impedance matching can be obtained in a desired frequency band. More specifically, the resonator 10 opposes a pair of side surface conductor walls facing each other to sandwich the coaxial line 20 in the space 17 in the Y-axis direction and sandwiches the coaxial line 20 in the space 17 in the X-axis direction. And a pair of side conductor walls. In the embodiment of FIGS.
  • the resonator 10 is opposed in the X axis direction to the pair of side surface conductor walls (the front conductor wall 11 and the back conductor wall 12) opposed in the Y axis direction and parallel to the Z axis direction. And a pair of side surface conductor walls (right surface conductor wall 13 and left surface conductor wall 14) parallel to the axial direction.
  • the slot antenna 1 shows an example in which one linear slot 30 is formed only on the front conductor wall 11 among the six conductor walls. Further, the longitudinal direction of the slot 30 (the direction of the slot length SL) extends in the X-axis direction orthogonal to the Z-axis direction.
  • each distance (size) of the slot antenna 1 when the wavelength of the radio wave received by the slot antenna 1 is ⁇
  • the wavelength reduction ratio at the wavelength ⁇ is k in the peripheral medium of the slot antenna 1 (slot 30)
  • the preferred range of The wavelength shortening rate of air is 1.
  • the distance DL is 0.467 ⁇ k ⁇ ⁇ or more and 0.571 ⁇ k ⁇ ⁇ or less
  • good impedance matching can be obtained at the frequency of the radio wave having the wavelength ⁇ (the operating frequency of the slot antenna 1).
  • the distance DL is more preferably 0.476 ⁇ k ⁇ ⁇ or more and 0.558 ⁇ k ⁇ ⁇ or less.
  • the distance DL represents the distance between a pair of side conductor walls (the front conductor wall 11 and the back conductor wall 12 in FIG. 1 and FIG. 2) facing each other to sandwich the coaxial line 20 in the direction orthogonal to the Z axis direction.
  • the peripheral medium when the range of the distance DL and the distance WL and the length HL described later are set as the predetermined range means a medium in the space 17.
  • the portion of the space 17 is a dielectric other than air (for example, the dielectric 18 described later)
  • the wavelength shortening rate k ( ⁇ 1) of the dielectric is used.
  • the distance WL is preferably 0.712 ⁇ k ⁇ ⁇ or more and 1.143 ⁇ k ⁇ ⁇ or less, since good impedance matching can be obtained at the frequency of the radio wave having the wavelength ⁇ (the operating frequency of the slot antenna 1).
  • the distance WL is more preferably 0.742 ⁇ k ⁇ ⁇ or more and 1.061 ⁇ k ⁇ ⁇ or less.
  • the distance WL represents the distance between a pair of side surface conductor walls (the right surface conductor wall 13 and the left surface conductor wall 14 in FIG. 1 and FIG. 2) opposed to sandwich the coaxial line 20 in the direction orthogonal to the Z axis direction.
  • the length HL is preferably 0.099 ⁇ k ⁇ ⁇ or more and 0.192 ⁇ k ⁇ ⁇ or less, since good impedance matching can be obtained at the frequency of the radio wave having the wavelength ⁇ (the operating frequency of the slot antenna 1).
  • the distance HL is more preferably 0.108 ⁇ k ⁇ ⁇ or more and 0.180 ⁇ k ⁇ ⁇ or less.
  • the length HL represents the length of the coaxial line 20 in the space 17 (the length from the connection portion 28 to the tip portion 26).
  • the connection portion 28 is a portion where the coaxial outer conductor 22 is connected to the conductor wall.
  • the tip portion 26 is a connection portion where the coaxial inner conductor 21 is connected to the conductor wall.
  • the length HL represents the length by which the coaxial inner conductor 21 extends in the space 17.
  • the slot length SL is preferably 0.475 ⁇ k ⁇ ⁇ or more and 0.507 ⁇ k ⁇ ⁇ or less, since good impedance matching can be obtained at the frequency of the radio wave having the wavelength ⁇ (the operating frequency of the slot antenna 1).
  • the slot length SL is more preferably 0.478 ⁇ k ⁇ ⁇ or more and 0.503 ⁇ k ⁇ ⁇ or less.
  • the peripheral medium when the range of the slot length SL and the slot width SW described later are within the predetermined range covers the outer surface of the slot, among the outer surfaces of the conductor walls forming the resonator, as described later. Medium (eg, covering dielectric 19). For example, when the medium is a coated dielectric 19 other than air, the wavelength reduction rate k ( ⁇ 1) of the coated dielectric is used.
  • the slot width SW is preferably 0.002 ⁇ k ⁇ ⁇ or more and 0.192 ⁇ k ⁇ ⁇ or less, since good impedance matching can be obtained at the frequency of the radio wave having the wavelength ⁇ (the operating frequency of the slot antenna 1).
  • the slot width SW is more preferably 0.003 ⁇ k ⁇ ⁇ or more and 0.180 ⁇ k ⁇ ⁇ or less.
  • CGL / HL is preferably 0.000 or more and 0.964 or less, since good impedance matching can be obtained at the frequency of the radio wave having the wavelength ⁇ (the operating frequency of the slot antenna 1). Further, CGL / HL is more preferably 0.166 or more and 0.935 or less.
  • CGL is the length of the covering 24 (from the connection 28 to the covering end 27).
  • HL is the sum of CGL and CSL.
  • CSL is the length of the exposed portion 25 (from the covering end 27 to the tip 26).
  • the case where CGL / HL is 0.000 indicates the case where CGL is zero, and specifically, it represents a mode in which the coaxial outer conductor 22 is connected to the conductor wall but does not exist in the space 17.
  • the wavelength ⁇ is included in a predetermined frequency band including, for example, 5.9 GHz.
  • the predetermined frequency band including 5.9 GHz is, for example, a band (from 5.770 GHz to 5.925 GHz) used in ITS (Intelligent Transport Systems: Intelligent Road Transportation System), such as inter-vehicle communication and road-vehicle communication. Used for
  • FIG. 3 is a diagram showing an example of the configuration of the slot antenna in the first to fifth embodiments, and shows a variation of the configuration of the slot antenna. Descriptions of configurations and effects similar to those of the first embodiment will be omitted or simplified by using the above description.
  • the shape of the resonator is not limited to a square pole like the slot antenna 1, but may be another pole shape such as a square pole or a cylinder.
  • it may be a hexagonal prism such as the slot antenna 2 or may be a polyhedron such as the slot antenna 3.
  • the shape of the resonator may be dome-like or hemispherical as in the slot antenna 4, or may be oval or spindle-like as the slot antenna 5.
  • the shape of the resonator may be a pyramid such as a triangular pyramid or a quadrangular pyramid, or may be a sphere. In the case where the shape of the resonator is a pyramid, the connection 28 where the coaxial outer conductor 22 of the coaxial line 20 is connected to the resonator is located, for example, at the apex of the pyramid.
  • At least one of a conductor wall viewed from outside the resonator as viewed from the positive Z-axis direction and a conductor wall viewed from outside the resonator as viewed from the negative Z-axis side is a plane orthogonal to the Z-axis direction It is preferable to have a part. Thereby, good impedance matching can be obtained in a desired frequency band.
  • the conductor wall seen from the outside of the resonator seen from the positive Z-axis direction and the conductor wall seen from the outside of the resonator seen from the negative Z-axis Both have a flat portion orthogonal to the Z-axis direction.
  • the conductor wall viewed from the outside of the resonator viewed from the Z-axis negative direction side has a flat portion orthogonal to the Z-axis direction.
  • the shape of the outer edge of the conductor wall seen from the outside of the resonator viewed from the positive Z-axis direction is a rectangle forming the outer edge of the top conductor wall 15, and the Z axis from the outside of the resonator
  • the shape of the outer edge of the conductor wall visible from the viewpoint of the negative direction is a rectangle that forms the outer edge of the lower surface conductor wall 16.
  • the coaxial line 20 preferably passes from the outside of the resonator from the center of gravity of the outer edge shape of the conductor wall viewed from the viewpoint of the Z-axis direction. Thereby, good impedance matching can be obtained in a desired frequency band.
  • the coaxial line 20 passes through the center of gravity of the top conductor wall 15 as shown in FIG. 1.
  • the connection portion 28 is located at the center of gravity of the upper surface conductor wall 15.
  • the coaxial line 20 passes through the center of gravity O of the rectangular parallelepiped resonator 10.
  • the center of gravity O is located in the space 17 in the resonator 10.
  • FIG. 4 is a cross-sectional view showing an example of the configuration of the slot antenna in the sixth embodiment. Descriptions of configurations and effects similar to those of the above-described embodiment are omitted or simplified by incorporating the above-described descriptions.
  • the dielectric 18 is filled in the space 17.
  • FIG. 5 is a cross-sectional view showing an example of the configuration of the slot antenna in the seventh embodiment. Descriptions of configurations and effects similar to those of the above-described embodiment are omitted or simplified by incorporating the above-described descriptions.
  • the slot antenna 7 of FIG. 5 includes a dielectric (coating dielectric 19) that covers at least a part of the outer surface of the conductor wall forming the resonator. In the case of this configuration, the wavelength shortening effect makes it possible to miniaturize the resonator and hence to miniaturize the slot antenna.
  • the slot antenna 7 when the slot antenna 7 is provided with the covering dielectric 19 covering the entire outer surface of the conductor wall forming the resonator, the wavelength shortening effect can further miniaturize the resonator, and hence the slot antenna can be further miniaturized.
  • the size (size of the hole) of the slot 30 can be reduced.
  • miniaturizing the slot 30, for example the entry of foreign matter from the slot 30 into the space 17 can be suppressed.
  • the plurality of slots can be easily disposed on the conductor wall of a limited area, and the degree of freedom in design is improved.
  • FIG. 6 is a cross-sectional view showing an example of the configuration of a slot antenna according to the eighth embodiment. Descriptions of configurations and effects similar to those of the above-described embodiment are omitted or simplified by incorporating the above-described descriptions.
  • the dielectric 18 is filled instead of the space 17, and at least a part of the outer surface of the conductor wall forming the resonator is covered with the covering dielectric 19.
  • the wavelength shortening effect makes it possible to miniaturize the resonator and hence to miniaturize the slot antenna. More specifically, since the dielectric 18 (k ⁇ 1) and the covering dielectric 19 (k ⁇ 1) can reduce the size of the slot antenna 8 itself by the conductor wall, the size of the slot 30 can be reduced.
  • the relative dielectric constant ⁇ r of the dielectric 18 or the covering dielectric 19 is advantageously 2.0 or more and 20.0 or less in terms of downsizing of the resonator and the slot antenna.
  • the relative dielectric constant ⁇ r is about 2.0 for a fluorine-based resin such as polytetrafluoroethylene (PTFE), 2.0 to 6.0 for an ABS resin, and 6.0 to 8.0 for a glass. These materials can also be applied.
  • materials with high relative dielectric constants (5.0 to 20.0) can also be used.
  • FIG. 7A and 7B are drawings showing an example of the configuration of a slot antenna provided with a cylindrical resonator according to the ninth embodiment.
  • FIG. 7A and FIG. 7B respectively show a perspective view and a side view of the slot antenna 9 provided with the cylindrical resonator 10.
  • the slot antenna 9 shown in FIG. 7A is circular in the viewpoint from the Z-axis positive direction side from the outside of the resonator 10, and three slots in the viewpoint from the side surface (the normal direction to the plane parallel to the Z-axis).
  • 30 and side conductor wall 31 That is, three slots 30 are formed in the side surface conductor wall 31.
  • the number of slots 30 formed in the side surface conductor wall 31 may be one, two, four or more.
  • the slot width SW is equal to the height (the distance in the Z-axis direction) of the side surface conductor wall 31, whereby a reduction in height can be realized.
  • the slot length SL corresponds to the length of an arc from the viewpoint from the Z-axis positive direction side.
  • the slot length SL of the slot antenna 9 is 0.150 ⁇ k ⁇ ⁇ or more and 0.850 ⁇ k, where ⁇ is the wavelength of a radio wave to be received, and k is the wavelength shortening rate at the wavelength ⁇ in the peripheral medium of the slot antenna 9 It may be less than ⁇ ⁇ .
  • the slot length SL of the slot antenna 9 is preferably 0.180 ⁇ k ⁇ ⁇ or more and 0.820 ⁇ k ⁇ ⁇ or less, and more preferably 0.250 ⁇ k ⁇ ⁇ or more and 0.750 ⁇ k ⁇ ⁇ or less.
  • antenna gain with high uniformity can be easily obtained over 360 ° in the XY plane with respect to the Z axis, and in particular, circumferentially in the viewpoint from the Z axis direction.
  • Three or more slots 30 may be evenly arranged along the same.
  • one slot 30 is formed in side conductor wall 31 along an arc of every 120 ° around Z axis from the viewpoint of the Z axis direction. .
  • the number of slots can also be increased, and more uniform over 360 ° in the XY plane with respect to the Z-axis. It becomes easy to obtain high antenna gain.
  • the number of slots 30 of the slot antenna 9 can be determined as appropriate depending on the size of the slot antenna 9 and the desired antenna gain condition.
  • the slot antenna 9 may have CGL / HL of 0.000 to 0.964, preferably 0.000 to 0.900, more preferably 0.000 to 0.750, and 0. 000 is particularly preferred. If CGL / HL is a value close to 0.000, the coaxial outer conductor 22 for blocking the magnetic field generated by the coaxial inner conductor 21 is reduced, so that the basic mode state can be easily obtained in the space inside the conductor wall. The size of the slot antenna 9 can be reduced. In particular, if CGL / HL is 0.000, it is easy to obtain the basic mode state. CGL / HL can be appropriately adjusted in relation to the desired return loss in the slot antenna and miniaturization.
  • the space 17 of the slot antenna 9 is filled with the dielectric 18, and the dielectric (covering dielectric 19) covering the outer surface of the conductor wall is provided. Or you may have a form provided with both of these.
  • FIG. 8 is a diagram showing an example of simulation values and measured values of return loss characteristics of the slot antenna, and shows the case of the slot antenna 1 (FIGS. 1 and 2).
  • Microwave Studio registered trademark
  • CST Microwave Studio
  • the vertical axis in FIG. 8 represents the return loss S11 of the slot antenna 1.
  • Each dimension of slot antenna 1 used for measurement of Drawing 8 and Drawing 9 mentioned below was designed by a value shown in Table 1, and the peripheral medium of slot antenna 1 was air.
  • a good impedance matching can be obtained in a frequency band (5.970 GHz to 5.925 GHz) including 5.9 GHz.
  • FIG. 9 is a diagram showing an example of simulation values and actual measurement values of the directivity of the slot antenna.
  • FIG. 9 shows the antenna gain of the slot antenna 1 in the XY plane when the frequency is 5.890 GHz, with the slot antenna 1 arranged so that the coaxial line 20 extending in the Z-axis direction passes through the origin. .
  • the unit of antenna gain is [dBi].
  • Fr, LH, Rr, and RH described in FIG. 9 respectively represent the front conductor wall 11 side where the slot 30 is formed, the right surface conductor wall 13 side, the rear surface conductor wall 12 side, and the left surface conductor wall 14 side. According to FIG. 9, it can be seen that radio waves are particularly radiated to the Fr side and the Rr side.
  • the right column of Table 1 represents the normalized numerical value by the wavelength ⁇ .
  • FIG. 10 is a diagram showing an example of the relationship between the distance DL and the return loss S11 in the slot antenna 1.
  • the dimensions of each part of the slot antenna 1 at the time of measurement in FIG. 10 were the numerical values described in Table 1 except for the distance DL.
  • S11 ⁇ 8 dB is obtained if the distance DL is 0.467 ⁇ ⁇ or more and 0.571 ⁇ ⁇ or less. can get.
  • S11 ⁇ 10 dB is obtained, so that a better impedance matching can be obtained at the wavelength ⁇ .
  • FIG. 11 is a diagram showing an example of the relationship between the distance WL and the return loss S11 in the slot antenna 1.
  • the dimensions of each part of the slot antenna 1 at the time of measurement of FIG. 11 were the numerical values described in Table 1 except for the distance WL.
  • S11 ⁇ 8 dB when the distance WL is 0.712 ⁇ ⁇ or more and 1.143 ⁇ ⁇ or less. can get.
  • S11 ⁇ 10 dB is obtained, so that better impedance matching can be obtained at the wavelength ⁇ .
  • FIG. 12 is a diagram showing an example of the relationship between the distance HL and the return loss S11 in the slot antenna 1.
  • the dimensions of each part of the slot antenna 1 at the time of the measurement of FIG. 12 were the numerical values described in Table 1 except for the distance HL.
  • S11 ⁇ 8 dB is obtained when the distance WL is 0.099 ⁇ or more and 0.192 ⁇ ⁇ or less, so that good impedance matching can be obtained at the wavelength ⁇ .
  • S11 ⁇ 10 dB is obtained, so that a better impedance matching can be obtained at the wavelength ⁇ .
  • FIG. 13 is a diagram showing an example of the relationship between the slot length SL and the return loss S11 in the slot antenna 1.
  • the dimensions of each part of the slot antenna 1 at the time of measurement in FIG. 13 were the numerical values described in Table 1 except for the slot length SL.
  • S11 ⁇ 8 dB is obtained if the slot length SL is 0.475 ⁇ or more and 0.507 ⁇ ⁇ or less, so good impedance matching can be obtained at the wavelength ⁇ .
  • Be When the slot length SL is 0.478 ⁇ ⁇ or more and 0.503 ⁇ ⁇ or less, S11 ⁇ 10 dB is obtained, so that a better impedance matching can be obtained at the wavelength ⁇ .
  • FIG. 14 is a diagram showing an example of the relationship between the slot width SW and the return loss S11 in the slot antenna 1.
  • the dimensions of each part of the slot antenna 1 at the time of measurement in FIG. 14 were the numerical values described in Table 1 except for the slot width SW.
  • S11 ⁇ 8 dB is obtained when the slot width SW is 0.002 ⁇ or more and 0.192 ⁇ ⁇ or less, so good impedance matching is obtained at the wavelength ⁇ .
  • Be When the slot width SW is 0.003 ⁇ ⁇ or more and 0.180 ⁇ ⁇ or less, S11 ⁇ 10 dB is obtained, so that a better impedance matching can be obtained at the wavelength ⁇ .
  • FIG. 15 is a diagram showing an example of the relationship between CGL / HL and return loss S11 in slot antenna 1.
  • the dimensions of each part of the slot antenna 1 at the time of the measurement of FIG. 15 were the numerical values described in Table 1 except for CGL, CSL and CGL / HL.
  • S11 ⁇ 8 dB is obtained when CGL / HL is 0.000 or more and 0.964 or less, so that good impedance matching can be obtained at the wavelength ⁇ .
  • CGL / HL is 0.166 or more and 0.935 or less
  • S11 ⁇ 10 dB is obtained, so that a better impedance matching can be obtained at the wavelength ⁇ .
  • FIG. 16 is a diagram showing simulation values of return loss characteristics of the slot antenna 9, and the conditions of the simulation are the same as those of the slot antenna 1.
  • the radius of the circle of the upper surface conductor wall 15 and the lower surface conductor wall 16 is 9.0 mm and the length of each arc of the side surface conductor wall 31 is 3.0 mm from the viewpoint of the Z-axis positive direction. Further, the height of the side conductor wall 31 was 4.5 mm, and the three slots 30 were evenly arranged along the circumference.
  • Each slot has a slot width SW of 4.5 mm and a slot length SL of 15.8 mm.
  • good impedance matching can be obtained in a frequency band (5.970 GHz to 5.925 GHz) including 5.9 GHz.
  • FIG. 17 is a diagram showing an example of simulation values of the directivity of the slot antenna.
  • FIG. 17 shows the antenna gain of the slot antenna 9 in the XY plane when the frequency is 5.890 GHz in a state where the slot antenna 9 is disposed such that the coaxial line 20 extending in the Z-axis direction passes through the origin. .
  • the unit of the antenna gain is [dBi], and the numerical value outside the circle indicates the angle (unit: [°]). According to FIG. 17, it can be seen that a predetermined radio wave is emitted in any direction of the XY plane.
  • FIG. 18 is a cross-sectional view showing an example of a form in which a slot antenna is mounted on a vehicle, and shows a cross-section in a plane perpendicular to the vehicle width direction.
  • the window glass 70 for a vehicle is attached to the window frame of the vehicle 80 at an angle ⁇ with respect to the horizontal plane 90.
  • the angle ⁇ is an angle greater than 0 ° and less than or equal to 90 ° (e.g., 30 °).
  • the slot antenna 1 is used for the vehicle 80 and attached to the window glass 70 of the vehicle 80 directly or indirectly.
  • the window glass 70 may be a front glass or a rear glass.
  • the slot 30 emits radio waves in the 5.9 GHz band.
  • the slot antenna 1 is preferably mounted on the vehicle 80 such that the longitudinal direction of the slot 30 is parallel to the horizontal plane 90.
  • the slot antenna 1 can transmit and receive radio waves of vertically polarized waves of 5.9 GHz band used in the ITS system with high sensitivity.
  • slot antennas such as slot antenna 2 can also be used in the vehicle, as shown in FIG.
  • the coaxial inner conductor 21 may penetrate the conductor wall viewed from the outside of the resonator 10 as viewed from the Z-axis negative direction side.
  • slot antenna 10 resonator 11 to 16 conductor wall 17 space 18 dielectric 19 coated dielectric 20 coaxial line 21 coaxial inner conductor 22 coaxial outer conductor 23 insulator 24 coated portion 25 exposed portion 26 tip portion 27 coated end portion 28 Connection part 30 Slot 31 Side conductor wall 70 Window glass 80 Vehicle 90 Horizontal surface

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

導体壁に囲まれる空間を有する共振器と、前記共振器に接続される同軸線路とを備え、前記同軸線路は、同軸内導体を有し、前記同軸内導体が前記空間の中で延在する方向をZ軸方向とし、前記同軸内導体の先端部にZ軸方向に向かう方向をZ軸負方向とし、前記先端部からZ軸方向に向かう方向をZ軸正方向とするとき、前記共振器の外からZ軸負方向側からの視点で見える前記導体壁に前記同軸内導体が接続され、前記共振器の外からZ軸方向とは異なる方向からの視点で見える前記導体壁に少なくとも一つのスロットが形成される、スロットアンテナ。

Description

スロットアンテナ
 本発明は、スロットアンテナに関する。
 従来、水平面内において無指向性を有するアンテナとして、複数のスロットが形成される側面部を有する円柱形のアンテナ本体部と、その側面部が、アンテナ本体部の底面部を貫通するピンを取り囲み、該ピンが、底面部とは絶縁された構成のスロットアンテナが知られている(例えば、特許文献1参照)。
特開2004-140448号公報
 ところが、上述のスロットアンテナは、アンテナ本体部にピンを挿し込んで一体化させる構造である。そのため、ピンを挿し込む時の組み付けばらつき等によって、アンテナ本体部内のピンの長さがずれるおそれがある。このように、アンテナ本体部内のピンの長さがずれると、所望の周波数帯域で良好なインピーダンスマッチングを得にくくなる。
 そこで、本開示は、所望の周波数帯域で良好なインピーダンスマッチングを得られるスロットアンテナを提供する。
 本開示は、
 導体壁に囲まれる空間を有する共振器と、
 前記共振器に接続される同軸線路とを備え、
 前記同軸線路は、同軸内導体を有し、
 前記同軸内導体が前記空間の中で延在する方向をZ軸方向とし、前記同軸内導体の先端部にZ軸方向に向かう方向をZ軸負方向とし、前記先端部からZ軸方向に向かう方向をZ軸正方向とするとき、
 前記共振器の外からZ軸負方向側からの視点で見える前記導体壁に前記同軸内導体が接続され、
 前記共振器の外からZ軸方向とは異なる方向からの視点で見える前記導体壁に少なくとも一つのスロットが形成される、スロットアンテナを提供する。
 本開示のスロットアンテナによれば、所望の周波数帯域で良好なインピーダンスマッチングを得られる。
第1の実施形態におけるスロットアンテナの構成の一例を示す斜視図である。 第1の実施形態におけるスロットアンテナの構成の一例を示す断面図である。 第1~第5の実施形態におけるスロットアンテナの構成の一例を示す図である。 第6の実施形態におけるスロットアンテナの構成の一例を示す断面図である。 第7の実施形態におけるスロットアンテナの構成の一例を示す断面図である。 第8の実施形態におけるスロットアンテナの構成の一例を示す断面図である。 第9の実施形態におけるスロットアンテナの構成の一例を示す斜視図である。 第9の実施形態におけるスロットアンテナの構成の一例を示す側面図である。 スロットアンテナのリターンロス特性のシミュレーション値と実測値の一例を示す図である。 スロットアンテナの指向性のシミュレーション値と実測値の一例を示す図である。 スロットアンテナにおいて、距離DLとリターンロスS11との関係の一例を示す図である。 スロットアンテナにおいて、距離WLとリターンロスS11との関係の一例を示す図である。 スロットアンテナにおいて、距離HLとリターンロスS11との関係の一例を示す図である。 スロットアンテナにおいて、スロット長SLとリターンロスS11との関係の一例を示す図である。 スロットアンテナにおいて、スロット幅SWとリターンロスS11との関係の一例を示す図である。 スロットアンテナにおいて、CGL/HLとリターンロスS11との関係の一例を示す図である。 スロットアンテナのリターンロス特性のシミュレーション値の一例を示す図である。 スロットアンテナの指向性のシミュレーション値の一例を示す図である。 スロットアンテナを車両に搭載した形態の一例を示す断面図である。
 以下、図面を参照して、本発明を実施するための形態の説明を行う。なお、各形態において、平行、直角、直交、水平、垂直、上下、左右などの方向には、本発明の効果を損なわない程度のずれが許容される。また、以下の説明において、X軸方向、Y軸方向、Z軸方向は、それぞれ、X軸に平行な方向、Y軸に平行な方向、Z軸に平行な方向を表す。X軸方向とY軸方向とZ軸方向は、互いに直交する。
 図1は、第1の実施形態におけるスロットアンテナの構成の一例を示す斜視図である。図2は、第1の実施形態におけるスロットアンテナの構成の一例を示す断面図である。スロットアンテナ1は、共振器10と、同軸線路20とを備える。
 共振器10は、導体壁の内側に形成される空間17を有する箱型の空洞共振器(cavity resonator)であり、空間17の形状によって決まる所定の周波数で共振する。図1,2の形態では、共振器10及び空間17の形状は、四角柱であり、より具体的には、直方体である。
 同軸線路20は、共振器10に接続される。同軸線路20の一端には、共振器10が接続され、同軸線路20の他端には、不図示の通信装置が接続される。同軸線路20の具体例として、同軸ケーブルなどが挙げられる。
 同軸線路20は、同軸内導体21と、同軸内導体21の一部を被覆する同軸外導体22とを有する。同軸外導体22は、同軸内導体21の一部の周りを被覆する。同軸外導体22と同軸内導体21との間には絶縁体23が存在し、絶縁体23は、同軸外導体22と同軸内導体21とを絶縁する。絶縁体23は、同軸内導体21の一部の周りを被覆し、同軸外導体22は、絶縁体23の周りを被覆する。絶縁体23の具体例として、ポリエチレンなどが挙げられる。被覆部24は、同軸外導体22が空間17の中で同軸内導体21を被覆する部分を表し、露出部25は、同軸内導体21が空間17の中で同軸外導体22から露出する部分を表す。
 ここで、同軸線路20が空間17の中で延在する方向をZ軸方向とし、同軸外導体22から同軸内導体21の先端部26にZ軸方向に向かう方向をZ軸負方向とし、先端部26から同軸外導体22にZ軸方向に向かう方向をZ軸正方向とする。別の視点では、同軸内導体21が空間17の中で延在する方向をZ軸方向とし、同軸内導体21の先端部26にZ軸方向に向かう方向をZ軸負方向とし、先端部26からZ軸方向に向かう方向をZ軸正方向とする。
 同軸外導体22は、共振器10の外からZ軸正方向側からの視点で見える導体壁(図1,2の形態では、上面導体壁15)に導通可能に接続されている。同軸内導体21は、共振器10の外からZ軸正方向側からの視点で見える導体壁には接続されていない。図1,2の形態では、同軸線路20は、上面導体壁15を貫通し、同軸外導体22は、その貫通孔で上面導体壁15に接触している。一方、同軸内導体21は、共振器10の外からZ軸負方向側からの視点で見える導体壁(図1,2の形態では、下面導体壁16)に導通可能に接続されている。同軸外導体22は、共振器10の外からZ軸負方向側からの視点で見える導体壁には接続されていない。図1,2の形態では、同軸内導体21は、その先端部26で下面導体壁16に接触している。
 また、少なくとも一つのスロットが、共振器10の外からZ軸方向とは異なる方向からの視点で見える導体壁に形成されている。図1,2の形態では、一つのスロット30が、Y軸負方向側からの視点で見える正面導体壁11に形成されている。
 このような構成を有するスロットアンテナ1は、空間17の形状によって決まる所定の周波数の電波をスロット30から放射できる。また、スロットアンテナ1は、スロット30の幅方向(スロット幅SWの方向)に偏波した電波を送受できる。なお、スロット幅SWは、スロット30の短手方向の長さを表す。
 また、スロットアンテナ1は、共振器10の外からZ軸負方向側からの視点で見える導体壁(図1,2では、下面導体壁16)に同軸内導体21が接続される構造を有するので、空間17内の同軸線路20の長さHLは、空間17を形成する導体壁の寸法で確定する。例えば、同軸線路20の長さHLがずれると、スロットアンテナ1のインピーダンスマッチングが所望の周波数帯域からずれてしまう。しかしながら、本実施形態では、同軸線路20を共振器10に挿し込んで先端部26が導体壁に接触させて、長さHLを固定できるので、所望の周波数帯域に合わせたインピーダンスマッチングを実現しやすい。このように、組み付けのばらつきの影響をほとんど受けずに、所望の周波数帯域で良好なインピーダンスマッチングを得られる。また、空間17の境界を画定する導体壁は、同軸線路20よりも小さな寸法誤差で製造可能であるので、長さHLの寸法誤差を容易に小さくでき、インピーダンスマッチングのずれが生じにくい。また、先端部26は、長さHLがずれないように、下面導体壁16に形成される穴やボスなどによって支持されてもよい。
 共振器10は、Z軸方向に直交する方向で同軸線路20を挟むように対向する二対の側面導体壁を有すると、所望の周波数帯域で良好なインピーダンスマッチングを得られる点で好ましい。より詳細には、共振器10は、Y軸方向で同軸線路20を空間17内で挟むように対向する一対の側面導体壁と、X軸方向で同軸線路20を空間17内で挟むように対向する一対の側面導体壁とを有する。図1,2の形態では、共振器10は、Y軸方向で対向しZ軸方向に平行な一対の側面導体壁(正面導体壁11、背面導体壁12)と、X軸方向で対向しZ軸方向に平行な一対の側面導体壁(右面導体壁13、左面導体壁14)とを有する。
 図1,2の形態では、スロットアンテナ1は、直線状の一つのスロット30が、6面の導体壁のうち正面導体壁11のみに形成される例を示す。また、スロット30の長手方向(スロット長SLの方向)は、Z軸方向と直交するX軸方向に延在する。
 ここで、スロットアンテナ1が受信する電波の波長をλとし、スロットアンテナ1(スロット30)の周辺媒質において、波長λにおける波長短縮率をkとしたときの、スロットアンテナ1の各距離(寸法)の好適範囲について説明する。なお、空気の波長短縮率は1である。このとき、距離DLは、0.467×k×λ以上0.571×k×λ以下であると、波長λを有する電波の周波数(スロットアンテナ1の動作周波数)で良好なインピーダンスマッチングが得られ好ましい。また、距離DLは、0.476×k×λ以上0.558×k×λ以下がより好ましい。距離DLは、Z軸方向に直交する方向で同軸線路20を挟むように対向する一対の側面導体壁(図1,2では、正面導体壁11、背面導体壁12)の間の距離を表す。なお、距離DLの範囲、また、後述する距離WL及び長さHLを所定の範囲とするときの周辺媒質とは、空間17の部分における媒質を意味する。例えば、空間17の部分が、空気以外の誘電体(例えば、後述する誘電体18)である場合、波長短縮率には、該誘電体の波長短縮率k(<1)を用いる。
 距離WLは、0.712×k×λ以上1.143×k×λ以下であると、波長λを有する電波の周波数(スロットアンテナ1の動作周波数)で良好なインピーダンスマッチングを得られ好ましい。また、距離WLは、0.742×k×λ以上1.061×k×λ以下がより好ましい。距離WLは、Z軸方向に直交する方向で同軸線路20を挟むように対向する一対の側面導体壁(図1,2では、右面導体壁13、左面導体壁14)の間の距離を表す。
 長さHLは、0.099×k×λ以上0.192×k×λ以下であると、波長λを有する電波の周波数(スロットアンテナ1の動作周波数)で良好なインピーダンスマッチングを得られ好ましい。また、距離HLは、0.108×k×λ以上0.180×k×λ以下がより好ましい。長さHLは、空間17内の同軸線路20の長さ(接続部28から先端部26までの長さ)を表す。接続部28は、同軸外導体22が導体壁に接続される部分である。先端部26は、同軸内導体21が導体壁に接続される接続部である。言い換えれば、長さHLは、同軸内導体21が空間17の中で延在する長さを表す。
 スロット長SLは、0.475×k×λ以上0.507×k×λ以下であると、波長λを有する電波の周波数(スロットアンテナ1の動作周波数)で良好なインピーダンスマッチングを得られ好ましい。また、スロット長SLは、0.478×k×λ以上0.503×k×λ以下がより好ましい。なお、スロット長SLの範囲、また、後述するスロット幅SWを所定の範囲とするときの周辺媒質とは、後述するように、共振器を形成する導体壁の外面のうちとくにスロットの周辺を被覆する媒質(例えば、被覆誘電体19)を意味する。例えば、該媒質が、空気以外の被覆誘電体19である場合、波長短縮率には、該被覆誘電体の波長短縮率k(<1)を用いる。
 スロット幅SWは、0.002×k×λ以上0.192×k×λ以下であると、波長λを有する電波の周波数(スロットアンテナ1の動作周波数)で良好なインピーダンスマッチングを得られ好ましい。また、スロット幅SWは、0.003×k×λ以上0.180×k×λ以下がより好ましい。
 CGL/HLは、0.000以上0.964以下であると、波長λを有する電波の周波数(スロットアンテナ1の動作周波数)で良好なインピーダンスマッチングを得られ好ましい。また、CGL/HLは、0.166以上0.935以下がより好ましい。CGLは、被覆部24(接続部28から被覆終端部27まで)の長さである。HLは、CGLとCSLとの和である。CSLは、露出部25(被覆終端部27から先端部26まで)の長さである。CGL/HLが0.000の場合とは、CGLが零の場合を示し、具体的には、同軸外導体22が導体壁に接続されているが空間17内には存在しない形態を表す。
 波長λは、例えば、5.9GHzを含む所定の周波数帯に含まれる。5.9GHzを含む所定の周波数帯は、例えば、ITS(Intelligent Transport Systems:高度道路交通システム)で使用される帯域(5.770GHz以上5.925GHz以下)であり、車車間通信や路車間通信などに使用される。
 図3は、第1~第5の実施形態におけるスロットアンテナの構成の一例を示す図であり、スロットアンテナの構成のバリエーションを示す。第1の実施形態と同様の構成及び効果についての説明は、上述の説明を援用することで省略又は簡略する。
 図3に示されるように、共振器の形状は、スロットアンテナ1のような四角柱に限られず、角柱や円柱などの他の柱形状でもよい。例えば、スロットアンテナ2のような六角柱でもよいし、スロットアンテナ3のような多面体でもよい。また、共振器の形状は、スロットアンテナ4のようなドーム状や半球状などでもよいし、スロットアンテナ5のような卵状や紡錘状などでもよい。また、特に図示しないが、共振器の形状は、三角錐や四角錘などの錐体でも、球体でもよい。共振器の形状が錐体の場合、同軸線路20の同軸外導体22が共振器に接続される接続部28は、例えば、錐体の頂点部に位置する。
 共振器の外からZ軸正方向側からの視点で見える導体壁と前記共振器の外からZ軸負方向側からの視点で見える導体壁とのうち少なくとも一方は、Z軸方向と直交する平面部を有することが好ましい。これにより、所望の周波数帯域で良好なインピーダンスマッチングを得られる。例えば図3において、スロットアンテナ1,2,3の場合、共振器の外からZ軸正方向側からの視点で見える導体壁と共振器の外からZ軸負方向側からの視点で見える導体壁との両方が、Z軸方向と直交する平面部を有する。スロットアンテナ4の場合や共振器の形状が錐体の場合、共振器の外からZ軸負方向側からの視点で見える導体壁が、Z軸方向と直交する平面部を有する。
 また、例えば図3のスロットアンテナ1~5のように、共振器の外からZ軸正方向側からの視点で見える導体壁の外縁の形状と、共振器の外からZ軸負方向側からの視点で見える導体壁の外縁の形状とは、同じであることが好ましい。これにより、所望の周波数帯域で良好なインピーダンスマッチングを得られる。スロットアンテナ1の場合、共振器の外からZ軸正方向側からの視点で見える導体壁の外縁の形状とは、上面導体壁15の外縁を形成する長方形であり、共振器の外からZ軸負方向側からの視点で見える導体壁の外縁の形状とは、下面導体壁16の外縁を形成する長方形である。
 また、例えば図3のスロットアンテナ1~5のように、同軸線路20は、共振器の外からZ軸方向の視点で見える導体壁の外縁形状の重心を通ることが好ましい。これにより、所望の周波数帯域で良好なインピーダンスマッチングを得られる。例えばスロットアンテナ1の場合、同軸線路20は、図1に示されるように、上面導体壁15の重心を通る。接続部28は、上面導体壁15の重心に位置する。また、図1に示されるように、同軸線路20は、直方体の共振器10の重心Oを通る。重心Oは、共振器10内の空間17に位置する。
 図4は、第6の実施形態におけるスロットアンテナの構成の一例を示す断面図である。上述の実施形態と同様の構成及び効果についての説明は、上述の説明を援用することで省略又は簡略する。図4のスロットアンテナ6は、誘電体18が空間17に充填されている。この構成の場合、波長短縮効果によって、共振器を小型化でき、ひいてはスロットアンテナを小型化できる。即ち、上述の説明において、波長短縮率kが空気(=1)よりも小さい媒質(k<1)を用いることで、スロットアンテナを小型化できる。より具体的に、誘電体18(k<1)が空間17に充填されている場合、とくに、スロットアンテナ6そのものを小型化できる。さらに、スロット30の大きさも小さくできる。
 図5は、第7の実施形態におけるスロットアンテナの構成の一例を示す断面図である。上述の実施形態と同様の構成及び効果についての説明は、上述の説明を援用することで省略又は簡略する。図5のスロットアンテナ7は、共振器を形成する導体壁の外面の少なくとも一部を被覆する誘電体(被覆誘電体19)を備えている。この構成の場合、波長短縮効果によって、共振器を小型化でき、ひいてはスロットアンテナを小型化できる。また、スロットアンテナ7は、共振器を形成する導体壁の外面の全部を被覆する被覆誘電体19を備えていると、波長短縮効果によって、共振器を更に小型化でき、ひいてはスロットアンテナをさらに小型化できる。即ち、上述の説明において、波長短縮率kが空気(=1)よりも小さい媒質(k<1)を用いることで、スロットアンテナを小型化できる。より具体的に、被覆誘電体19(k<1)が導体壁の外面を被覆する場合、とくに、スロット30の大きさを小さくできる。さらに、スロットアンテナ7そのものも小型化できる。
 上述のように、スロットアンテナ7は、被覆誘電体19がスロット30の周辺を被覆するように形成されていると、スロット30のサイズ(孔の大きさ)を小さくできる効果がある。スロット30の小型化により、例えば、スロット30から空間17への異物の混入を抑制できる。また、小型化された複数のスロット30を設ける場合、限られた面積の導体壁に複数のスロットを配置しやすくなり、設計の自由度が向上する。
 図6は、第8の実施形態におけるスロットアンテナの構成の一例を示す断面図である。上述の実施形態と同様の構成及び効果についての説明は、上述の説明を援用することで省略又は簡略する。図6のスロットアンテナ8は、空間17の代わりに誘電体18が充填され、且つ、共振器を形成する導体壁の外面の少なくとも一部が被覆誘電体19により被覆されている。この構成の場合、波長短縮効果によって、共振器を小型化でき、ひいてはスロットアンテナを小型化できる。より具体的に、誘電体18(k<1)と被覆誘電体19(k<1)が導体壁により、スロットアンテナ8そのものを小型化できるとともに、スロット30の大きさを小さくできる。
 誘電体18又は被覆誘電体19の比誘電率εは、2.0以上20.0以下であると、共振器及びスロットアンテナの小型化の点で有利である。例えば、比誘電率εは、ポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂では、2.0程度、ABS樹脂では2.0~6.0、ガラスでは6.0~8.0であり、これらの材料も適用できる。さらに、高い比誘電率(5.0~20.0)の材料も使用できる。
 図7A,7Bは、第9の実施形態における円柱状の共振器を備えるスロットアンテナの構成の一例を示す図面である。具体的に、図7A、図7Bは、それぞれ、円柱状の共振器10を備えるスロットアンテナ9の斜視図、側面図を示す。なお、上述の実施形態と同様の構成及び効果についての説明は、上述の説明を援用することで省略又は簡略する。図7Aのスロットアンテナ9は、共振器10の外からのZ軸正方向側からの視点で、円形であり、側面(Z軸に平行な面に対する法線方向)からの視点で、3つのスロット30および側面導体壁31を有する。つまり、3つのスロット30が側面導体壁31に形成されている。なお、側面導体壁31に形成されるスロット30の個数は、1,2又は4以上でもよい。
 図7Aのスロットアンテナ9は、スロット幅SWが、側面導体壁31の高さ(Z軸方向の距離)と等しく、これにより、低背化が実現できる。また、円柱状の共振器10を備えるスロットアンテナ9の場合、スロット長SLは、Z軸正方向側からの視点による円弧の長さに相当する。スロットアンテナ9のスロット長SLは、受信する電波の波長をλ、スロットアンテナ9の周辺媒質において、波長λにおける波長短縮率をkとするとき、0.150×k×λ以上0.850×k×λ以下であればよい。また、スロットアンテナ9のスロット長SLは、0.180×k×λ以上0.820×k×λ以下が好ましく、0.250×k×λ以上0.750×k×λ以下がより好ましい。
 また、スロット30は、3以上の数があれば、Z軸を基準にXY平面内で360°にわたって均一性の高いアンテナ利得が得られやすく、とくに、Z軸方向からの視点で、円周に沿って、3以上のスロット30が均等に配置されるとよい。例えば、スロットアンテナ9が、3つのスロット30を有する場合、Z軸方向からの視点で、Z軸を中心に120°毎の円弧に沿って、1つのスロット30が側面導体壁31に形成される。さらに、スロットアンテナ9は、Z軸方向からの視点における円が大きくなると、円周が長くなるので、スロットの数も増加でき、Z軸を基準にXY平面内で360°にわたって、より均一性の高いアンテナ利得が得られやすくなる。スロットアンテナ9のスロット30の数は、スロットアンテナ9の大きさと所望のアンテナ利得の条件により、適宜、決定できる。
 なお、スロットアンテナ9は、CGL/HLが、0.000以上0.964以下であればよく、0.000以上0.900以下が好ましく、0.000以上0.750以下がより好ましく、0.000がとくに好ましい。なお、CGL/HLが、0.000に近い値であれば、同軸内導体21によって発生する磁界を遮る同軸外導体22が減少するため、導体壁内部の空間内に基本モード状態を得やすくなり、スロットアンテナ9を小型化する効果を奏する。とくに、CGL/HLが、0.000であれば基本モード状態を得やすい。なお、CGL/HLは、スロットアンテナにおける所望のリターンロスと小型化との関係で、適宜、調整できる。
 また、本実施形態は、前述の実施形態と同様に、スロットアンテナ9の空間17に誘電体18を充填した形態や、導体壁の外面を被覆する誘電体(被覆誘電体19)を備えた形態や、これらの両方を備えた形態を有してもよい。例えば、本実施形態におけるスロットアンテナ9は、図7Aに示すような円柱状の共振器10と、共振器10を形成する導体壁の少なくとも一部を被覆する不図示の誘電体(被覆誘電体19)とを備えてもよい。即ち、上述の説明において、波長短縮率kが空気(=1)よりも小さい媒質(k<1)を用いることで、スロットアンテナ9を小型化でき、スロット30の大きさを小さくできる。
 図8は、スロットアンテナのリターンロス特性のシミュレーション値と実測値の一例を示す図であり、スロットアンテナ1(図1,2)の場合を示す。具体的に、電磁界シミュレーションとして、Microwave Studio(登録商標)(CST社)を使用した。図8の縦軸は、スロットアンテナ1のリターンロスS11を表す。なお、図8および後述する図9の測定に用いた、スロットアンテナ1の各寸法は、表1に示す値で設計し、スロットアンテナ1の周辺媒質は空気とした。図8に示すように、スロットアンテナ1によれば、5.9GHzを含む周波数帯(5.770GHz以上5.925GHz以下)で良好なインピーダンスマッチングを得られる。
 図9は、スロットアンテナの指向性のシミュレーション値と実測値の一例を示す図である。図9は、Z軸方向に延在する同軸線路20が原点を通るようにスロットアンテナ1を配置した状態において、周波数が5.890GHzのときにおけるXY平面内でのスロットアンテナ1のアンテナ利得を表す。なお、図9において、アンテナ利得の単位は[dBi]である。図9中に記載のFr、LH、Rr、RHは、それぞれ、スロット30が形成される正面導体壁11側、右面導体壁13側、背面導体壁12側、左面導体壁14側を表す。図9によれば、特に、Fr側及びRr側に電波が放射されていることがわかる。
Figure JPOXMLDOC01-appb-T000001
 
表1の右欄は、波長λによる規格化された数値を表す。
 図10は、スロットアンテナ1において、距離DLとリターンロスS11との関係の一例を示す図である。図10の測定時におけるスロットアンテナ1の各部の寸法は、距離DLを除いて、表1に記載する数値とした。スロットアンテナ1が受信する電波の波長をλとするとき、距離DLが0.467×λ以上0.571×λ以下であると、S11<-8dBとなるので、波長λで良好なインピーダンスマッチングを得られる。距離DLが0.476×λ以上0.558×λ以下であると、S11<-10dBとなるので、波長λでより良好なインピーダンスマッチングを得られる。
 図11は、スロットアンテナ1において、距離WLとリターンロスS11との関係の一例を示す図である。図11の測定時におけるスロットアンテナ1の各部の寸法は、距離WLを除いて、表1に記載する数値とした。スロットアンテナ1が受信する電波の波長をλとするとき、距離WLが0.712×λ以上1.143×λ以下であると、S11<-8dBとなるので、波長λで良好なインピーダンスマッチングを得られる。距離WLが0.742×λ以上1.061×λ以下であると、S11<-10dBとなるので、波長λでより良好なインピーダンスマッチングを得られる。
 図12は、スロットアンテナ1において、距離HLとリターンロスS11との関係の一例を示す図である。図12の測定時におけるスロットアンテナ1の各部の寸法は、距離HLを除いて、表1に記載する数値とした。スロットアンテナ1が受信する電波の波長をλとするとき、距離WLが0.099λ以上0.192×λ以下であると、S11<-8dBとなるので、波長λで良好なインピーダンスマッチングを得られる。距離HLが0.108×λ以上0.180×λ以下であると、S11<-10dBとなるので、波長λでより良好なインピーダンスマッチングを得られる。
 図13は、スロットアンテナ1において、スロット長SLとリターンロスS11との関係の一例を示す図である。図13の測定時におけるスロットアンテナ1の各部の寸法は、スロット長SLを除いて、表1に記載する数値とした。スロットアンテナ1が受信する電波の波長をλとするとき、スロット長SLが0.475λ以上0.507×λ以下であると、S11<-8dBとなるので、波長λで良好なインピーダンスマッチングを得られる。スロット長SLが0.478×λ以上0.503×λ以下であると、S11<-10dBとなるので、波長λでより良好なインピーダンスマッチングを得られる。
 図14は、スロットアンテナ1において、スロット幅SWとリターンロスS11との関係の一例を示す図である。図14の測定時におけるスロットアンテナ1の各部の寸法は、スロット幅SWを除いて、表1に記載する数値とした。スロットアンテナ1が受信する電波の波長をλとするとき、スロット幅SWが0.002λ以上0.192×λ以下であると、S11<-8dBとなるので、波長λで良好なインピーダンスマッチングを得られる。スロット幅SWが0.003×λ以上0.180×λ以下であると、S11<-10dBとなるので、波長λでより良好なインピーダンスマッチングを得られる。
 図15は、スロットアンテナ1において、CGL/HLとリターンロスS11との関係の一例を示す図である。図15の測定時におけるスロットアンテナ1の各部の寸法は、CGL、CSL及びCGL/HLを除いて、表1に記載する数値とした。スロットアンテナ1が受信する電波の波長をλとするとき、CGL/HLが0.000以上0.964以下であると、S11<-8dBとなるので、波長λで良好なインピーダンスマッチングを得られる。CGL/HLが0.166以上0.935以下であると、S11<-10dBとなるので、波長λでより良好なインピーダンスマッチングを得られる。
 図16は、スロットアンテナ9におけるリターンロス特性のシミュレーション値を示す図であり、シミュレーションの条件はスロットアンテナ1の場合と同様である。スロットアンテナ9は、Z軸正方向からの視点で、上面導体壁15および下面導体壁16の円の半径が9.0mmとし、側面導体壁31の各円弧の長さを3.0mmとした。また、側面導体壁31の高さを4.5mmとし、3つのスロット30を円周に沿って均等に配置した。各スロットは、スロット幅SWが4.5mmであり、スロット長SLが15.8mmである。図16に示すように、スロットアンテナ9によれば、5.9GHzを含む周波数帯(5.770GHz以上5.925GHz以下)で良好なインピーダンスマッチングを得られる。
 図17は、スロットアンテナの指向性のシミュレーション値の一例を示す図である。図17は、Z軸方向に延在する同軸線路20が原点を通るようにスロットアンテナ9を配置した状態において、周波数が5.890GHzのときにおけるXY平面内でのスロットアンテナ9のアンテナ利得を表す。なお、図17において、アンテナ利得の単位は[dBi]であり、円の外側の数値は、角度(単位:[°])を示す。図17によれば、XY平面のいずれの方向にも所定の電波が放射されていることがわかる。
 図18は、スロットアンテナを車両に搭載した形態の一例を示す断面図であり、車幅方向に直角な平面での断面を示す。車両用の窓ガラス70は、水平面90に対して角度θで車両80の窓枠に取り付けられている。角度θは、0°よりも大きく90°以下の角度(例えば、30°)である。スロットアンテナ1は、車両80に使用され、車両80の窓ガラス70に直接又は間接的に取り付けられる。窓ガラス70は、フロントガラスでもよいし、リアガラスでもよい。例えば、スロット30は5.9GHz帯の電波を放射する。
 スロットアンテナ1は、スロット30の長手方向が水平面90に平行になるように、車両80に搭載されると好ましい。これにより、スロットアンテナ1は、ITSシステムで使用される5.9GHz帯の垂直偏波の電波を感度良く送受できる。
 スロットアンテナ2等の他のスロットアンテナも、図18に示されるように、車両で使用可能である。
 以上、スロットアンテナを実施形態により説明したが、本発明は上記の実施形態に限定されるものではない。他の実施形態の一部又は全部との組み合わせや置換などの種々の変形及び改良が、本発明の範囲内で可能である。
 例えば、同軸内導体21は、共振器10の外からZ軸負方向側からの視点で見える導体壁を貫通してもよい。
 本国際出願は、2017年11月30日に出願した日本国特許出願第2017-230313号に基づく優先権を主張するものであり、日本国特許出願第2017-230313号の全内容を本国際出願に援用する。
1~9 スロットアンテナ
10 共振器
11~16 導体壁
17 空間
18 誘電体
19 被覆誘電体
20 同軸線路
21 同軸内導体
22 同軸外導体
23 絶縁体
24 被覆部
25 露出部
26 先端部
27 被覆終端部
28 接続部
30 スロット
31 側面導体壁
70 窓ガラス
80 車両
90 水平面

Claims (22)

  1.  導体壁に囲まれる空間を有する共振器と、
     前記共振器に接続される同軸線路とを備え、
     前記同軸線路は、同軸内導体を有し、
     前記同軸内導体が前記空間の中で延在する方向をZ軸方向とし、前記同軸内導体の先端部にZ軸方向に向かう方向をZ軸負方向とし、前記先端部からZ軸方向に向かう方向をZ軸正方向とするとき、
     前記共振器の外からZ軸負方向側からの視点で見える前記導体壁に前記同軸内導体が接続され、
     前記共振器の外からZ軸方向とは異なる方向からの視点で見える前記導体壁に少なくとも一つのスロットが形成される、スロットアンテナ。
  2.  前記共振器は、Z軸方向に平行な側面導体壁を有し、
     前記スロットは、前記側面導体壁に形成される、請求項1に記載のスロットアンテナ。
  3.  前記共振器の外からZ軸正方向側からの視点で見える導体壁と前記共振器の外からZ軸負方向側からの視点で見える導体壁とのうち少なくとも一方は、Z軸方向と直交する平面部を有する、請求項1又は2に記載のスロットアンテナ。
  4.  前記共振器の外からZ軸正方向側からの視点で見える導体壁の外縁の形状と、前記共振器の外からZ軸負方向側からの視点で見える導体壁の外縁の形状とは、同じである、請求項1から3のいずれか一項に記載のスロットアンテナ。
  5.  前記共振器の形状は、角柱である、請求項1から4のいずれか一項に記載のスロットアンテナ。
  6.  前記共振器の形状は、四角柱である、請求項5に記載のスロットアンテナ。
  7.  前記共振器は、Z軸方向に直交する方向で前記同軸線路を挟むように対向する一対の側面導体壁を有し、
     一つの前記スロットが、前記一対の側面導体壁のうち片側の側面導体壁のみに形成され、
     受信する電波の波長をλとし、前記スロットの周辺媒質の前記波長λに対する波長短縮率をkとするとき、
     前記一対の側面導体壁の間の距離は、0.467×k×λ以上0.571×k×λ以下である、請求項6に記載のスロットアンテナ。
  8.  前記共振器の形状は、円柱である、請求項1から4のいずれか一項に記載のスロットアンテナ。
  9.  前記スロットのスロット長は、Z軸方向側からの視点で見える円弧に沿った長さであって、
     受信する電波の波長をλとし、前記スロットの周辺媒質の前記波長λに対する波長短縮率をkとするとき、
     前記スロット長は、0.150×k×λ以上0.850×k×λ以下である、請求項8に記載のスロットアンテナ。
  10.  前記スロットは、3以上の数を有する、請求項9に記載のスロットアンテナ。
  11.  前記同軸線路は、前記同軸内導体と、前記同軸内導体の一部を被覆する同軸外導体とを有し、
     前記共振器の外からZ軸正方向側からの視点で見える前記導体壁に前記同軸外導体が接続される、請求項1から10のいずれか一項に記載のスロットアンテナ。
  12.  前記同軸外導体が前記導体壁に接続される接続部から、前記同軸内導体が前記導体壁に接続される接続部までの長さをHLとし、前記同軸外導体が前記空間の中で前記同軸内導体を被覆する部分の長さをCGLとするとき、
     CGL/HLは、0.000以上0.964以下である、請求項11に記載のスロットアンテナ。
  13.  前記同軸外導体は、前記空間の中で前記同軸内導体を被覆する、請求項11に記載のスロットアンテナ。
  14.  前記同軸内導体は、前記共振器の外からZ軸方向の視点で見える導体壁の外縁形状の重心を通る、請求項1から13のいずれか一項に記載のスロットアンテナ。
  15.  前記空間は、誘電体によって充填されている、請求項1から14のいずれか一項に記載のスロットアンテナ。
  16.  前記誘電体は、比誘電率が、2.0以上20.0以下である、請求項15に記載のスロットアンテナ。
  17.  前記導体壁の外面の少なくとも一部を被覆する被覆誘電体を備える、請求項1から16のいずれか一項に記載のスロットアンテナ。
  18.  前記導体壁の外面の全部を被覆する被覆誘電体を有する、請求項1から16のいずれか一項に記載のスロットアンテナ。
  19.  前記被覆誘電体は、前記スロットの周辺を被覆する、請求項17又は18に記載のスロットアンテナ。
  20.  前記被覆誘電体は、比誘電率が、2.0以上20.0以下である、請求項17から19のいずれか一項に記載のスロットアンテナ。
  21.  前記同軸内導体が前記空間の中で延在する長さをHLとし、受信する電波の波長をλとするとき、
     HLは、0.099×λ以上0.192×λ以下である、請求項1から20のいずれか一項に記載のスロットアンテナ。
  22.  車両に使用され、前記スロットは5.9GHz帯の電波を放射する、請求項1から21のいずれか一項に記載のスロットアンテナ。
PCT/JP2018/043538 2017-11-30 2018-11-27 スロットアンテナ WO2019107346A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019557233A JP7147782B2 (ja) 2017-11-30 2018-11-27 スロットアンテナ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-230313 2017-11-30
JP2017230313 2017-11-30

Publications (1)

Publication Number Publication Date
WO2019107346A1 true WO2019107346A1 (ja) 2019-06-06

Family

ID=66663955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043538 WO2019107346A1 (ja) 2017-11-30 2018-11-27 スロットアンテナ

Country Status (2)

Country Link
JP (1) JP7147782B2 (ja)
WO (1) WO2019107346A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4999146U (ja) * 1972-12-18 1974-08-27
JPH02174405A (ja) * 1988-12-27 1990-07-05 Toyota Central Res & Dev Lab Inc 移動体用アンテナ
JPH04225605A (ja) * 1990-12-27 1992-08-14 Nissan Motor Co Ltd 自動車用後付け平板アンテナ
JPH0522024A (ja) * 1991-07-16 1993-01-29 Nissan Motor Co Ltd 平面アンテナ
JPH05136627A (ja) * 1991-08-02 1993-06-01 Fujitsu Ten Ltd 移動体用アンテナ
JPH0823225A (ja) * 1994-07-11 1996-01-23 N T T Ido Tsushinmo Kk アンテナ
US6646618B2 (en) * 2001-04-10 2003-11-11 Hrl Laboratories, Llc Low-profile slot antenna for vehicular communications and methods of making and designing same
JP2004140448A (ja) * 2002-10-15 2004-05-13 Taise:Kk スロットアンテナ
US20080136723A1 (en) * 2006-12-08 2008-06-12 X-Ether, Inc. Slot antenna
JP2012197561A (ja) * 2011-03-18 2012-10-18 Panasonic Corp 金属板材を巻付けた部材

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107002A (ja) * 1988-10-17 1990-04-19 Hitachi Ltd 同軸空胴共振器形電力合成器
JP2003273605A (ja) * 2002-03-14 2003-09-26 Ube Ind Ltd 導波管型フィルタ
JP4317791B2 (ja) * 2004-06-25 2009-08-19 株式会社国際電気通信基礎技術研究所 アレーアンテナ
JP4710085B2 (ja) * 2005-11-02 2011-06-29 株式会社国際電気通信基礎技術研究所 変換器、その設計方法、およびその変換器を備えたアンテナ装置
JP6206243B2 (ja) * 2014-02-21 2017-10-04 株式会社Soken 集合アンテナ装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4999146U (ja) * 1972-12-18 1974-08-27
JPH02174405A (ja) * 1988-12-27 1990-07-05 Toyota Central Res & Dev Lab Inc 移動体用アンテナ
JPH04225605A (ja) * 1990-12-27 1992-08-14 Nissan Motor Co Ltd 自動車用後付け平板アンテナ
JPH0522024A (ja) * 1991-07-16 1993-01-29 Nissan Motor Co Ltd 平面アンテナ
JPH05136627A (ja) * 1991-08-02 1993-06-01 Fujitsu Ten Ltd 移動体用アンテナ
JPH0823225A (ja) * 1994-07-11 1996-01-23 N T T Ido Tsushinmo Kk アンテナ
US6646618B2 (en) * 2001-04-10 2003-11-11 Hrl Laboratories, Llc Low-profile slot antenna for vehicular communications and methods of making and designing same
JP2004140448A (ja) * 2002-10-15 2004-05-13 Taise:Kk スロットアンテナ
US20080136723A1 (en) * 2006-12-08 2008-06-12 X-Ether, Inc. Slot antenna
JP2012197561A (ja) * 2011-03-18 2012-10-18 Panasonic Corp 金属板材を巻付けた部材

Also Published As

Publication number Publication date
JP7147782B2 (ja) 2022-10-05
JPWO2019107346A1 (ja) 2020-10-22

Similar Documents

Publication Publication Date Title
CN106410379B (zh) 一种天线
US7499001B2 (en) Dielectric antenna device
KR100756810B1 (ko) 슬롯이 형성된 실린더형 안테나
JP5102941B2 (ja) 広帯域アンテナ
US20150303576A1 (en) Miniaturized Patch Antenna
US20060038723A1 (en) Antenna device
WO2007149746A2 (en) Multi-beam antenna with shared dielectric lens
JP2008028734A (ja) 表面実装型アンテナ及びそれを搭載した通信機器
JP2007043582A (ja) 平面広帯域アンテナ
US20220407217A1 (en) Antenna apparatus and electronic device
JP2020065251A (ja) 導波路と同軸ケーブルとの接続構造
JP5104131B2 (ja) 無線装置および無線装置が備えるアンテナ
US20130194147A1 (en) Antenna device
US11152691B2 (en) Dual broadband antenna system for vehicles
KR20050056871A (ko) 평면 안테나
CN110867644B (zh) 一种双频段多极化共口径同轴波导缝隙天线
WO2019107346A1 (ja) スロットアンテナ
US6621463B1 (en) Integrated feed broadband dual polarized antenna
US20030020668A1 (en) Broadband polling structure
JPH08191211A (ja) アンテナ
CN114335986A (zh) 一种低剖面超宽带端射天线
KR102431624B1 (ko) 소형 다이폴 안테나
EP0402005B1 (en) Flush mount antenna
JP6338401B2 (ja) 逆l型アンテナ
JP4389857B2 (ja) モード変換器、およびこれを備えたマイクロ波装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882487

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019557233

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18882487

Country of ref document: EP

Kind code of ref document: A1