WO2019107330A1 - Substrate-liquid treatment device, substrate-liquid treatment method, and recording medium - Google Patents

Substrate-liquid treatment device, substrate-liquid treatment method, and recording medium Download PDF

Info

Publication number
WO2019107330A1
WO2019107330A1 PCT/JP2018/043495 JP2018043495W WO2019107330A1 WO 2019107330 A1 WO2019107330 A1 WO 2019107330A1 JP 2018043495 W JP2018043495 W JP 2018043495W WO 2019107330 A1 WO2019107330 A1 WO 2019107330A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
processing
liquid
detection sensor
temperature
Prior art date
Application number
PCT/JP2018/043495
Other languages
French (fr)
Japanese (ja)
Inventor
一騎 元松
金子 聡
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2019107330A1 publication Critical patent/WO2019107330A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a substrate liquid processing apparatus, a substrate liquid processing method, and a recording medium.
  • a substrate liquid processing apparatus for processing a substrate using a processing liquid such as a cleaning liquid for cleaning the substrate (wafer) or a plating liquid for plating the substrate (for example, Patent Document 1) See 3).
  • a processing liquid such as a cleaning liquid for cleaning the substrate (wafer) or a plating liquid for plating the substrate (for example, Patent Document 1) See 3).
  • a heated processing liquid may be used.
  • the processing liquid In order to perform such liquid processing properly, the processing liquid needs to have a desired temperature suitable for liquid processing on the substrate. Further, in order to perform such liquid processing uniformly over the entire processing surface of the substrate, the processing liquid needs to be uniformly applied over the entire processing surface. However, due to various factors, the processing solution on the substrate may not necessarily have the desired temperature, and the processing solution may not be properly applied over the entire processing surface. In these cases, the liquid processing of the substrate is not properly performed, the substrate becomes defective, and problems occur in the subsequent processing using such a substrate.
  • the present invention has been made in consideration of these points, and is capable of determining the quality of liquid processing using a heated processing liquid for each substrate, substrate liquid processing method, and recording. It aims to provide a medium.
  • One embodiment of the present invention is a substrate liquid processing apparatus that performs liquid processing of a processing surface of a substrate with a processing liquid, and a processing liquid is provided on a substrate holding unit that holds a substrate and the processing surface of a substrate held by the substrate holding unit.
  • a control unit connected to the temperature detection sensor, the control unit including a processing liquid supply unit that supplies the processing solution, a temperature detection sensor that detects the temperature of the processing solution on the processing surface, and the control unit
  • a substrate liquid processing apparatus for acquiring a temperature detected by a temperature detection sensor after a paddle is formed and before liquid processing starts and after liquid processing ends, at least after liquid processing is completed About.
  • Another aspect of the present invention is a substrate liquid processing method for performing liquid processing of a processing surface of a substrate with a processing liquid, wherein the processing liquid is supplied to the processing surface of the substrate held by the substrate holding unit to be on the processing surface. And a step of forming a processing solution paddle, and a step of performing solution processing with the processing solution paddle formed on the processing surface, and after the processing solution paddle is formed on the processing surface.
  • the present invention relates to a substrate liquid processing method in which the temperature of the processing liquid on the processing surface detected by the temperature detection sensor is acquired before the liquid processing starts and after the liquid processing ends, at least after the liquid processing ends. .
  • a program which, when executed by a computer for controlling the operation of a substrate liquid processing apparatus, causes a computer to control the substrate liquid processing apparatus to execute the above substrate liquid processing method. Recording media.
  • the quality of the liquid processing using the heated processing liquid can be determined for each substrate.
  • FIG. 1 is a schematic plan view showing the configuration of the plating apparatus.
  • FIG. 2 is a cross-sectional view showing the configuration of the plating processing unit shown in FIG.
  • FIG. 3 is a flowchart showing the plating process of the substrate in the plating apparatus of FIG.
  • FIG. 1 is a schematic view showing a configuration of a plating processing apparatus as an example of a substrate liquid processing apparatus according to an embodiment of the present invention.
  • the plating processing apparatus is an apparatus that supplies the plating solution L1 (processing liquid) to the substrate W to perform plating processing (liquid processing) on the substrate W.
  • the plating processing apparatus 1 includes a plating processing unit 2 and a control unit 3 that controls the operation of the plating processing unit 2.
  • the plating unit 2 performs various processes on the substrate W (wafer). The various processes which the plating process unit 2 performs are mentioned later.
  • the control unit 3 is, for example, a computer, and includes an operation control unit and a storage unit.
  • the operation control unit is configured of, for example, a CPU (Central Processing Unit), and controls the operation of the plating processing unit 2 by reading and executing a program stored in the storage unit.
  • the storage unit is composed of, for example, a storage device such as a random access memory (RAM), a read only memory (ROM), or a hard disk, and stores a program for controlling various processes executed in the plating processing unit 2.
  • the program may be recorded on a recording medium 31 readable by a computer, or may be installed from the recording medium 31 in a storage unit.
  • Examples of the computer readable recording medium 31 include a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnet optical disk (MO), and a memory card.
  • a program for controlling the plating processing apparatus 1 to execute a plating processing method described later is recorded in the recording medium 31. .
  • FIG. 1 is a schematic plan view showing the configuration of the plating unit 2.
  • the plating processing unit 2 has a loading and unloading station 21 and a processing station 22 provided adjacent to the loading and unloading station 21.
  • the loading / unloading station 21 includes a placement unit 211 and a transport unit 212 provided adjacent to the placement unit 211.
  • carriers C accommodating the plurality of substrates W in a horizontal state are placed.
  • the transport unit 212 includes a transport mechanism 213 and a delivery unit 214.
  • the transport mechanism 213 includes a holding mechanism that holds the substrate W, and is configured to be able to move in the horizontal direction and the vertical direction and to pivot around the vertical axis.
  • the processing station 22 includes a plating processing unit 5.
  • the number of the plating processing units 5 included in the processing station 22 is two or more, but may be one.
  • the plating processing units 5 are arranged on both sides of the transport path 221 extending in a predetermined direction (both sides in the direction orthogonal to the moving direction of the transport mechanism 222 described later).
  • the transport mechanism 222 includes a holding mechanism that holds the substrate W, and is configured to be able to move in the horizontal direction and the vertical direction and to pivot around the vertical axis.
  • the transport mechanism 213 of the loading / unloading station 21 transports the substrate W between the carrier C and the delivery unit 214. Specifically, the transport mechanism 213 takes out the substrate W from the carrier C placed on the placement unit 211 and places the taken-out substrate W on the delivery unit 214. Further, the transport mechanism 213 takes out the substrate W placed on the delivery unit 214 by the transport mechanism 222 of the processing station 22, and stores the substrate W in the carrier C of the placement unit 211.
  • the transport mechanism 222 of the processing station 22 transports the substrate W between the delivery unit 214 and the plating unit 5 and between the plating unit 5 and the delivery unit 214. Specifically, the transport mechanism 222 takes out the substrate W placed on the delivery unit 214 and carries the taken-out substrate W into the plating processing unit 5. Further, the transport mechanism 222 takes out the substrate W from the plating processing unit 5 and places the taken-out substrate W on the delivery unit 214.
  • FIG. 2 is a schematic cross-sectional view showing the configuration of the plating processing unit 5.
  • the plating processing unit 5 performs a liquid process including an electroless plating process.
  • the plating processing unit 5 is disposed on the chamber 51, the substrate holding unit 52 disposed in the chamber 51 and holding the substrate W horizontally, and plating on the upper surface (processing surface Sw) of the substrate W held by the substrate holding unit 52.
  • a plating solution supply unit 53 (treatment solution supply unit) for supplying the solution L1 (treatment solution).
  • the substrate holding unit 52 has a chuck member 521 that vacuum-sucks the lower surface (rear surface) of the substrate W.
  • the substrate holding unit 52 is a so-called vacuum chuck type, but the substrate holding unit 52 is not limited to this, and may be, for example, a mechanical chuck type that holds the outer edge portion of the substrate W by a chuck mechanism or the like.
  • a rotation motor 523 (rotation drive unit) is connected to the substrate holding unit 52 via a rotation shaft 522. When the rotation motor 523 is driven, the substrate holding unit 52 rotates with the substrate W.
  • the rotary motor 523 is supported by a base 524 fixed to the chamber 51.
  • the plating solution supply unit 53 discharges (supplys) the plating solution L1 to the substrate W held by the substrate holding unit 52 (plating solution nozzle 531 (processing solution nozzle)) and plating that supplies the plating solution L1 to the plating solution nozzle 531 And a liquid supply source 532.
  • the plating solution supply source 532 supplies the plating solution nozzle 531 with the plating solution L1 that has been heated or adjusted to a predetermined temperature.
  • the temperature of the plating solution L1 when discharged from the plating solution nozzle 531 is a temperature higher than the ambient temperature around the substrate W, for example, 55 ° C. or more and 75 ° C. or less, more preferably 60 ° C. or more and 70 ° C. or less It is.
  • the plating solution nozzle 531 is held by the nozzle arm 56 so as to be movable.
  • the plating solution L1 is a plating solution for autocatalytic (reduction) electroless plating.
  • the plating solution L1 includes, for example, metal ions such as cobalt (Co) ion, nickel (Ni) ion, tungsten (W) ion, copper (Cu) ion, palladium (Pd) ion, gold (Au) ion, and the like. It contains a reducing agent such as phosphoric acid and dimethylamine borane.
  • the plating solution L1 may contain an additive and the like.
  • Examples of the plating film (metal film) formed by the plating treatment using the plating solution L1 include CoWB, CoB, CoWP, CoWBP, NiWB, NiB, NiWP, NiWBP and the like.
  • the plating processing unit 5 As another processing liquid supply unit, the plating processing unit 5 according to the present embodiment rinses the upper surface of the substrate W with the cleaning liquid supply unit 54 that supplies the cleaning liquid L2 to the upper surface of the substrate W held by the substrate holding unit 52. And a rinse liquid supply unit 55 for supplying the liquid L3.
  • the cleaning solution supply unit 54 has a cleaning solution nozzle 541 for discharging the cleaning solution L2 onto the substrate W held by the substrate holding unit 52, and a cleaning solution supply source 542 for supplying the cleaning solution L2 to the cleaning solution nozzle 541.
  • the cleaning liquid L2 include organic acids such as formic acid, malic acid, succinic acid, citric acid and malonic acid, and hydrofluoric acid (DHF) diluted to a concentration that does not corrode the surface to be plated of the substrate W.
  • An aqueous solution of hydrogen chloride or the like can be used.
  • the cleaning solution nozzle 541 is held by the nozzle arm 56 so as to be movable together with the plating solution nozzle 531.
  • the rinse liquid supply unit 55 has a rinse liquid nozzle 551 that discharges the rinse liquid L3 onto the substrate W held by the substrate holding unit 52, and a rinse liquid supply source 552 that supplies the rinse liquid L3 to the rinse liquid nozzle 551.
  • the rinse solution nozzle 551 is held by the nozzle arm 56 and is movable together with the plating solution nozzle 531 and the cleaning solution nozzle 541.
  • pure water can be used as the rinse liquid L3.
  • a nozzle moving mechanism (not shown) is connected to the nozzle arm 56 holding the plating solution nozzle 531, the cleaning solution nozzle 541, and the rinse solution nozzle 551 described above.
  • the nozzle moving mechanism moves the nozzle arm 56 horizontally and vertically. More specifically, between the discharge position at which the nozzle arm 56 discharges the processing liquid (plating solution L1, cleaning liquid L2 or rinse liquid L3) onto the substrate W by the nozzle moving mechanism, and the retracted position retracted from the discharge position. It is possible to move with.
  • the ejection position is not particularly limited as long as the processing liquid can be supplied to any position on the upper surface of the substrate W. For example, it is preferable to set a position where the processing liquid can be supplied to the center of the substrate W as a discharge position.
  • the discharge position of the nozzle arm 56 may be different depending on when the rinse liquid L3 is supplied.
  • the retracted position is a position in the chamber 51 which does not overlap the substrate W when viewed from above, and is a position separated from the discharge position.
  • a cup 571 is provided around the substrate holding unit 52.
  • the cup 571 is formed in a ring shape when viewed from above, and receives the processing liquid scattered from the substrate W when the substrate W rotates, and guides the processing liquid to a drain duct 581 described later.
  • An atmosphere blocking cover 572 is provided on the outer peripheral side of the cup 571 to suppress the diffusion of the atmosphere around the substrate W into the chamber 51.
  • the atmosphere blocking cover 572 is formed in a cylindrical shape so as to extend in the vertical direction, and the upper end is open. A lid 6 described later can be inserted into the atmosphere blocking cover 572 from above.
  • the substrate W held by the substrate holding unit 52 is covered by the lid 6.
  • the lid 6 has a ceiling 61 and a side wall 62 extending downward from the ceiling 61.
  • the ceiling portion 61 is disposed above the substrate W held by the substrate holding portion 52 when the lid 6 is positioned at a lower position described later, and faces the substrate W at a relatively small distance.
  • the ceiling portion 61 includes a first ceiling plate 611 and a second ceiling plate 612 provided on the first ceiling plate 611.
  • a heater 63 (heating unit) is interposed between the first ceiling plate 611 and the second ceiling plate 612.
  • the first ceiling plate 611 and the second ceiling plate 612 seal the heater 63 so that the heater 63 does not touch the processing solution such as the plating solution L1.
  • a seal ring 613 is provided between the first ceiling plate 611 and the second ceiling plate 612 on the outer peripheral side of the heater 63, and the heater 63 is sealed by the seal ring 613.
  • the first ceiling plate 611 and the second ceiling plate 612 preferably have corrosion resistance to a processing solution such as the plating solution L1, and may be made of, for example, an aluminum alloy.
  • the first ceiling plate 611, the second ceiling plate 612 and the side wall portion 62 may be coated with Teflon (registered trademark).
  • a lid moving mechanism 7 is connected to the lid 6 via a lid arm 71.
  • the lid moving mechanism 7 moves the lid 6 horizontally and vertically. More specifically, the lid moving mechanism 7 has a swing motor 72 for moving the lid 6 in the horizontal direction, and a cylinder 73 (space adjustment unit) for moving the lid 6 in the vertical direction.
  • the swing motor 72 is mounted on a support plate 74 provided so as to be movable in the vertical direction with respect to the cylinder 73.
  • an actuator (not shown) including a motor and a ball screw may be used.
  • the swing motor 72 of the lid moving mechanism 7 moves the lid 6 between an upper position disposed above the substrate W held by the substrate holding unit 52 and a retracted position retracted from the upper position.
  • the upper position is a position facing the substrate W held by the substrate holding unit 52 at a relatively large distance, and is a position overlapping the substrate W when viewed from above.
  • the retracted position is a position in the chamber 51 which does not overlap the substrate W when viewed from above.
  • the cylinder 73 of the lid moving mechanism 7 moves the lid 6 in the vertical direction to adjust the distance between the substrate W on which the plating solution L1 is deposited on the processing surface Sw and the first ceiling plate 611 of the ceiling portion 61. Do. More specifically, the cylinder 73 positions the lid 6 at a lower position (indicated by a solid line in FIG. 2) and at an upper position (indicated by a two-dot chain line in FIG. 2).
  • the first ceiling plate 611 When the lid 6 is disposed at the lower position, the first ceiling plate 611 approaches the substrate W. In this case, it is preferable to set the lower position so that the first ceiling plate 611 does not touch the plating solution L1 on the substrate W in order to prevent the contamination of the plating solution L1 and the generation of air bubbles in the plating solution L1. is there.
  • the upper position is a height position that can prevent the lid 6 from interfering with surrounding structures such as the cup 571 and the atmosphere blocking cover 572 when the lid 6 is pivoted in the horizontal direction. .
  • the heater 63 when the heater 63 is driven and the lid 6 is positioned at the above-described lower position, the plating solution L1 on the substrate W is heated.
  • the side wall portion 62 of the lid 6 extends downward from the peripheral portion of the first ceiling plate 611 of the ceiling portion 61, and when heating the plating solution L1 on the substrate W (ie, the lid 6 is positioned at the lower position) Case) is disposed on the outer peripheral side of the substrate W.
  • the lower end of the side wall portion 62 may be positioned lower than the substrate W.
  • a heater 63 is provided on the ceiling portion 61 of the lid 6.
  • the heater 63 heats the processing solution (preferably, the plating solution L1) on the substrate W when the lid 6 is positioned at the lower position.
  • the heater 63 is interposed between the first ceiling plate 611 and the second ceiling plate 612 of the lid 6, and is sealed as described above, and the heater 63 is treated with the plating solution L1 or the like. It is prevented from touching the liquid.
  • the heater 63 is not particularly limited. For example, a mica heater which is a planar heating element can be suitably used.
  • an inert gas for example, nitrogen (N 2 ) gas
  • the inert gas supply unit 66 includes a gas nozzle 661 that discharges an inert gas to the inside of the lid 6 and an inert gas supply source 662 that supplies the gas nozzle 661 with the inert gas.
  • the gas nozzle 661 is provided on the ceiling portion 61 of the lid 6 and discharges the inert gas toward the substrate W in a state where the lid 6 covers the substrate W.
  • the ceiling portion 61 and the side wall portion 62 of the lid 6 are covered by a lid cover 64.
  • the lid cover 64 is placed on the second ceiling plate 612 of the lid 6 via the support portion 65. That is, on the second ceiling plate 612, a plurality of support portions 65 projecting upward from the upper surface of the second ceiling plate 612 are provided, and the lid cover 64 is placed on the support portions 65.
  • the lid cover 64 is movable together with the lid 6 in the horizontal and vertical directions.
  • the lid cover 64 preferably has higher heat insulation than the ceiling portion 61 and the side wall portion 62 in order to suppress heat in the lid 6 from escaping to the periphery.
  • the lid cover 64 is preferably made of a resin material, and it is more preferable that the resin material has heat resistance.
  • a fan filter unit 59 (gas supply unit) for supplying clean air (gas) around the lid 6 is provided.
  • the fan filter unit 59 supplies air into the chamber 51 (particularly, into the atmosphere blocking cover 572), and the supplied air flows toward an exhaust pipe 81 described later.
  • a downflow in which the air flows downward is formed around the lid 6, and a gas vaporized from the processing solution such as the plating solution L1 flows toward the exhaust pipe 81 by the downflow.
  • the gas vaporized from the processing liquid is prevented from rising and diffusing into the chamber 51.
  • the gas supplied from the fan filter unit 59 described above is exhausted by the exhaust mechanism 8.
  • the exhaust mechanism 8 has two exhaust pipes 81 provided below the cup 571 and an exhaust duct 82 provided below the drain duct 581.
  • the two exhaust pipes 81 penetrate the bottom of the drain duct 581 and communicate with the exhaust duct 82, respectively.
  • the exhaust duct 82 is substantially formed in a semicircular ring shape when viewed from above. In the present embodiment, one exhaust duct 82 is provided below the drain duct 581, and two exhaust pipes 81 communicate with the exhaust duct 82.
  • the above-described plating processing unit 5 that performs the plating process on the processing surface Sw of the substrate W with the plating solution L1 further includes a temperature detection sensor 40 that detects the temperature of the plating solution L1 on the processing surface Sw.
  • the temperature detection sensor 40 is connected to the control unit 3 (see FIG. 1) and sends the detection result to the control unit 3.
  • the specific configuration of the temperature detection sensor 40 is not particularly limited, but a noncontact sensor is used.
  • a noncontact sensor is used.
  • an infrared sensor IR sensor: Infrared Sensor
  • IR sensor Infrared Sensor
  • the temperature detection sensor 40 shown in FIG. 2 is attached to the fan filter unit 59 in the chamber 51, and with respect to the substrate holder 52 above the processing surface Sw of the substrate W (ie, held by the substrate holder 52). With respect to the substrate W to be fixed). By arranging the temperature detection sensor 40 at a position facing the processing surface Sw, the temperature of the plating solution L1 over the entire processing surface Sw can be detected easily and with high accuracy.
  • the temperature detection sensor 40 may be provided so as to be movable with respect to the substrate holding unit 52. Also in this case, when detecting the temperature of the plating solution L1 on the processing surface Sw, the temperature detection sensor 40 is preferably disposed at a position facing the processing surface Sw above the processing surface Sw. For example, the temperature detection sensor 40 is attached to a movable arm (not shown), and the measurement position between the lid 6 positioned at the upper position and the substrate W held by the substrate holder 52 is held by the substrate holder 52 The temperature detection sensor 40 may be disposed at the substrate W being held and the standby position not overlapping in the vertical direction. In the case of the fixed type temperature detection sensor 40 (in particular, an infrared sensor) shown in FIG.
  • the fixed type temperature detection sensor 40 in particular, an infrared sensor
  • the temperature detection sensor is not after the lid 6 (i.e., the heater 63) is retracted from between the temperature detection sensor 40 and the substrate W 40 can not detect the temperature of the plating solution L1 on the processing surface Sw.
  • the temperature detection sensor 40 by making the temperature detection sensor 40 movable, even if the lid 6 (that is, the heater 63) is disposed at a position (for example, an upper position) overlapping the substrate W above the substrate W, the lid 6 and the substrate By moving the temperature detection sensor 40 to a measurement position between W and W, the temperature of the plating solution L1 on the processing surface Sw can be appropriately detected by the temperature detection sensor 40.
  • the control unit 3 can acquire the temperature of the plating solution L1 on the processing surface Sw based on the detection result sent from the temperature detection sensor 40 described above.
  • the control unit 3 according to the present embodiment has a timing “after the paddle of the plating solution L1 is substantially formed on the processing surface Sw and before the substantial plating process starts”, and “the substantial The detection result of the temperature detection sensor 40 is acquired at least at a timing “after the substantial plating process is finished” among the timings “after the plating process is finished”.
  • the plating process of the present embodiment is performed in a state where the plating solution L1 on the processing surface Sw is heated by the heat generated from the heater 63 toward the processing surface Sw of the substrate W as described above. Therefore, in the “substantial plating process” in the present embodiment, the lid 6 is placed at a position overlapping the substrate W held by the substrate holder 52 in a state where the paddle of the plating solution L1 is formed on the treated surface Sw. Are arranged, and the plating solution L1 on the processing surface Sw is heated by the heat from the heater 63, and the heating of the plating solution L1 on the processing surface Sw by the heat from the heater 63 is finished.
  • the control unit 3 is “after the paddles of the plating solution L1 are substantially formed on the treated surface Sw and before the plating solution L1 on the treated surface Sw is heated by the heat from the heater 63”. At least "heating of the plating solution L1 on the processing surface Sw by heat from the heater 63” is performed among the timing and "after the heating of the plating solution L1 on the processing surface Sw by the heat from the heater 63 is finished”. At the timing of “after the end”, the detection result of the temperature detection sensor 40 is acquired. More specifically, the control unit 3 shown in the figure “at a timing after“ the paddle of the plating solution L1 is substantially formed on the processing surface Sw and before the lid 6 is disposed at the lower position ””.
  • the detection result of the temperature detection sensor 40 may be acquired. Further, the control unit 3 shown in FIG. 5 detects the detection result of the temperature detection sensor 40 at the timing “after the lid 6 moves from the upper position toward the retracted position (for example, after the lid 6 is disposed at the retracted position)”. You may get it.
  • the control unit 3 can determine the quality of the plating process for each substrate W by acquiring the detection result of the temperature detection sensor 40 as described above.
  • control unit 3 is based on the detection result of the temperature detection sensor 40 at the timing “after the paddle of the plating solution L1 is substantially formed on the processing surface Sw and before the substantial plating process starts”.
  • the quality of the paddle of the plating solution L1 formed on the processing surface Sw can be determined.
  • the detection result of the temperature detection sensor 40 indicates that the detection temperature is higher than the ambient temperature around the substrate W over the entire processing surface Sw. Also, it indicates that the detected temperature is within the tolerance range over the processing surface Sw.
  • the detection result of the temperature detection sensor 40 shows that the detection temperature is lower than the desired temperature for part or all of the processing surface Sw. It shows that the detected temperature over the surface Sw does not fall within the tolerance range. Therefore, the detection of the temperature detection sensor 40 performed at the timing “after the paddle of the plating solution L1 is substantially formed on the processing surface Sw and before the substantial plating process starts” is substantially plating It is preferably done just before the treatment starts.
  • control unit 3 can determine whether the plating process on the processing surface Sw has been properly performed based on the detection result of the temperature detection sensor 40 at the timing of “after the substantial plating process is finished”. . If the plating process is appropriately performed on the processing surface Sw, the detection result of the temperature detection sensor 40 indicates that the detection temperature is higher than or equal to the desired temperature higher than the ambient temperature around the substrate W over the entire processing surface Sw Assumed temperature), and indicates that the detected temperature is within the tolerance range over the entire processing surface Sw.
  • the detection result of the temperature detection sensor 40 is that the detection temperature deviates from the assumed temperature over the entire processing surface Sw (typically, the detection temperature is assumed (Lower than the temperature), and indicates that the detected temperature over the entire processing surface Sw does not fall within the tolerance range. Therefore, it is preferable that the detection of the temperature detection sensor 40 at the timing “after the substantial plating process is finished” is performed immediately after the substantial plating process is finished.
  • control part 3 may acquire the detection result of the temperature detection sensor 40 continuously, and may acquire it intermittently.
  • control unit 3 may control the temperature detection sensor 40 to cause the temperature detection sensor 40 to continuously execute temperature detection or may intermittently perform temperature detection. Therefore, the temperature detection sensor 40 may perform temperature detection while the substantial plating process is performed, and the control unit 3 may obtain the detection result of the temperature detection sensor 40.
  • the control unit 3 can determine the detection timing of the temperature detection sensor 40 based on, for example, positional information of the lid 6 and positional information of the nozzle arms 56 (i.e., the nozzles 531, 541, 551). Therefore, when the temperature detection by the temperature detection sensor 40 is continuously performed, the control unit 3 detects the detection result acquired from the temperature detection sensor 40 based on the position information of the lid 6, the position information of the nozzle arm 56, etc. The detection timing may be recognized.
  • control unit 3 determines whether the temperature of the plating solution L1 detected by the temperature detection sensor 40 indicates a desired temperature higher than the ambient temperature around the substrate W over the entire processing surface Sw of the substrate W.
  • the quality of the plating process can be determined based on the scale.
  • control unit 3 can determine the quality of the plating process based on whether the temperature detected by the temperature detection sensor 40 is within the range of the tolerance over the entire processing surface Sw.
  • the result of the quality of the plating process determined by the control unit 3 can be used for notification to the user, processing using the substrate W in the subsequent stage, and any other processing.
  • the control unit 3 can display the determination result (for example, an error message) of the quality of the plating process on a display, or can output the determination result by voice (for example, an error sound).
  • the control unit 3 additionally supplies the plating solution L1 having a desired temperature from the plating solution supply unit 53 onto the processing surface Sw to reform the paddle of the plating solution L1.
  • the heat generation temperature of the heater 63 may be adjusted to optimize the plating process.
  • the control unit 3 may store the determination result of the quality of the plating process and the individual substrates W in the storage device in association with each other, and utilize the related information stored in the storage device in the subsequent processing. .
  • the plating method implemented by the plating apparatus 1 includes a plating process on the substrate W.
  • the plating process is performed by the plating unit 5.
  • the operation of the plating processing unit 5 described below is controlled by the control unit 3. During the following processing, clean air is supplied from the fan filter unit 59 into the chamber 51 and flows toward the exhaust pipe 81.
  • the substrate W is carried into the plating processing unit 5, and the substrate W is held horizontally by the substrate holding unit 52 (step S1).
  • step S2 cleaning processing of the substrate W held by the substrate holding unit 52 is performed (step S2).
  • the rotary motor 523 is first driven to rotate the substrate W at a predetermined number of rotations, and then the nozzle arm 56 positioned at the retracted position is moved to the discharge position, and the rotating substrate W is cleaned
  • the cleaning liquid L2 is supplied from the nozzle 541 to clean the surface of the substrate W.
  • the cleaning liquid L2 supplied to the substrate W is discharged to the drain duct 581.
  • a rinse process is performed on the substrate W (step S3).
  • the rinse solution L3 is supplied from the rinse solution nozzle 551 to the rotating substrate W to rinse the surface of the substrate W.
  • the cleaning liquid L2 remaining on the substrate W is washed away.
  • the rinse liquid L3 supplied to the substrate W is discharged to the drain duct 581.
  • a plating solution application step of forming a paddle of the plating solution L1 on the processing surface Sw of the substrate W is performed (step S4).
  • the number of rotations of the substrate W is reduced compared to the number of rotations at the time of the rinse process, and for example, the number of rotations of the substrate W may be 50 to 150 rpm. Thereby, the plating film formed on the substrate W can be made uniform.
  • the amount of deposition of the plating solution L1 may be increased by stopping the rotation of the substrate W.
  • the plating solution L1 is discharged from the plating solution nozzle 531 to the upper surface (that is, the processing surface Sw) of the substrate W.
  • the plating solution L1 remains on the treated surface Sw due to surface tension, and a layer (so-called paddle) of the plating solution L1 is formed. A portion of the plating solution L1 flows out of the processing surface Sw and is discharged through the drain duct 581. After the predetermined amount of plating solution L1 is discharged from the plating solution nozzle 531, the discharge of the plating solution L1 is stopped. Thereafter, the nozzle arm 56 is positioned at the retracted position.
  • a plating solution heat treatment step the plating solution L1 deposited on the substrate W is heated.
  • a process of covering the substrate W with the cover 6 step S5), a process of supplying an inert gas (step S6), and the process of arranging the cover 6 at a lower position
  • a heating step (step S7) of heating and a step (step S8) of retracting the lid 6 from above the substrate W are included.
  • the number of rotations of the substrate W is preferably maintained at the same speed (or the rotation stop) as the plating solution deposition step.
  • step S5 In the step of covering the substrate W with the lid 6 (step S5), first, the swing motor 72 of the lid moving mechanism 7 is driven to horizontally move the lid 6 positioned at the retracted position in the horizontal direction. It is located at the upper position. Subsequently, the cylinder 73 of the lid moving mechanism 7 is driven, and the lid 6 positioned at the upper position is lowered and positioned at the lower position, and the substrate W is covered by the lid 6 and the periphery of the substrate W Space is blocked.
  • an inert gas is discharged from the gas nozzle 661 provided on the ceiling 61 of the lid 6 to the inside of the lid 6 (step S6).
  • the air inside the lid 6 is replaced with the inert gas, and the periphery of the substrate W becomes a low oxygen atmosphere.
  • the inert gas is discharged for a predetermined time, and then the discharge of the inert gas is stopped.
  • the plating solution L1 deposited on the substrate W is heated (step S7).
  • the temperature of the plating solution L1 rises to a temperature at which the component in the plating solution L1 precipitates, the component of the plating solution L1 precipitates on the upper surface of the substrate W to form and grow a plating film.
  • the plating solution L1 is heated and maintained at the deposition temperature for a time necessary to obtain a plating film having a desired thickness.
  • the lid moving mechanism 7 is driven to position the lid 6 at the retracted position (step S8).
  • the plating solution heat treatment process steps S5 to S8 of the substrate W is completed.
  • the substrate W is rinsed (step S9).
  • this rinse process first, the number of rotations of the substrate W is increased more than the number of rotations during the plating process, and the substrate W is rotated at the same number of rotations as the substrate rinsing process (step S3) before the plating process, for example.
  • the rinse liquid nozzle 551 positioned at the retracted position is moved to the discharge position.
  • the rinse solution L3 is supplied from the rinse solution nozzle 551 to the rotating substrate W, the surface of the substrate W is cleaned, and the plating solution L1 remaining on the substrate W is washed away.
  • the substrate W is dried (step S10).
  • the substrate W is rotated at a high speed, and, for example, the number of rotations of the substrate W is increased more than the number of rotations of the substrate rinsing process (step S9).
  • the rinse liquid L3 remaining on the substrate W is shaken off and removed, and the substrate W on which the plating film is formed is obtained.
  • drying of the substrate W may be promoted by blowing an inert gas such as nitrogen (N 2 ) gas onto the substrate W.
  • the substrate W is taken out of the substrate holding unit 52 and carried out of the plating processing unit 5 (step S11).
  • the plating processing method is performed through the above-described series of steps S1 to S11.
  • the plating solution L1 is supplied to the processing surface Sw of the substrate W held by the substrate holding unit 52, and the plating solution is applied onto the processing surface Sw.
  • a step of forming a paddle of L1 (step S4) and a step of performing plating treatment by a paddle of the plating solution L1 (step S5 to step S8) are performed.
  • the control unit 3 “follows that the substantial plating process is started after the paddle of the plating solution L1 is substantially formed on the processing surface Sw (ie after step S4).
  • the timing before (ie, before step S5) "(see symbol" T1 "in FIG.
  • the detection result of the temperature detection sensor 40 is acquired at least at a timing “after the substantial plating process is completed”.
  • the temperature detection by the temperature detection sensor 40 performed at the timing of “after the substantial plating process is completed” is , And after step S8 ("cover retracting step") and before step S9 ("substrate rinse processing step").
  • the temperature detection of the temperature detection sensor 40 and the detection result acquisition of the control unit 3 may be continuously performed while the above-described steps S4 to S9 and other steps are performed.
  • the plating process is performed after the paddle of the plating solution L1 is formed on the treated surface Sw and before the plating process starts and after the plating process ends.
  • the quality of the plating process can be determined for each substrate W by acquiring the temperature detected by the temperature detection sensor 40.
  • the quality of the plating process is simple and high The determination can be made to the accuracy.
  • the temperature detected by the temperature detection sensor 40 is within the range of the tolerance over the entire processing surface Sw, it is possible to easily and accurately determine the quality of the plating process.
  • the temperature detection sensor 40 can be installed in the plating processing unit 5 without complicating the configuration.
  • the temperature detection sensor 40 movably with respect to the substrate holding unit 52, the temperature of the plating solution L1 on the processing surface Sw of the substrate W can be appropriately detected in various device configurations.
  • the temperature detection sensor 40 when detecting the temperature of the plating solution L1 on the processing surface Sw, the temperature of the plating solution L1 across the entire processing surface Sw can be made simply and accurately. It can be detected.
  • the apparatus can be configured relatively inexpensively and easily.
  • the plating processing unit 5 of the present embodiment determines the quality of the plating process by detecting the temperature of the plating solution L1 on the processing surface Sw. Therefore, the present embodiment is particularly effective when the plating solution L1 supplied from the solution supply unit 53 to the substrate W has a temperature higher than the ambient temperature around the substrate W. In the case where the plating process is performed in a state where the plating solution L1 is heated by the heat from the heater 63, the present embodiment is particularly effective.
  • the present invention is not limited to the above embodiment and modification as it is, and at the implementation stage, the constituent elements can be modified and embodied without departing from the scope of the invention. Further, various inventions can be formed by appropriate combinations of a plurality of constituent elements disclosed in the above-described embodiment and modification. Some components may be deleted from all the components shown in the embodiment and the modification. Furthermore, components in different embodiments and variations may be combined as appropriate.
  • the substrate liquid processing apparatus and the substrate liquid processing method according to the present invention are effective for processing liquids other than the plating liquid L1 and liquid processing other than the plating processing.
  • a program that when executed by a computer for controlling the operation of the substrate liquid processing apparatus (plating processing apparatus 1), the computer controls the substrate liquid processing apparatus to execute the above-described substrate liquid processing method.
  • the present invention may be embodied as a recorded recording medium (for example, the recording medium 31 of the control unit 3).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemically Coating (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

[Problem] To provide: a substrate-liquid treatment device which can determine whether or not a liquid treatment using a heated treatment liquid has been successful, for each substrate; a substrate-liquid treatment method; and a recording medium. [Solution] This substrate-liquid treatment device is provided with a substrate-holding part 52 for holding a substrate W, a treatment liquid-supplying part 53 for supplying a treatment liquid L1 to a treatment surface Sw of the substrate W held by the substrate-holding part 52, a temperature detection sensor 40 for detecting the temperature of the treatment liquid L1 on the treatment surface Sw, and a control unit connected to the temperature detection sensor 40. The control unit obtains the temperature detected by the temperature detection sensor 40 at least in a period after the end of a liquid treatment, between the period after the end of a liquid treatment and the period before the start of the liquid treatment but after formation of a puddle of the treatment liquid L1 on the treatment surface Sw.

Description

基板液処理装置、基板液処理方法および記録媒体Substrate liquid processing apparatus, substrate liquid processing method and recording medium
 本発明は、基板液処理装置、基板液処理方法および記録媒体に関する。 The present invention relates to a substrate liquid processing apparatus, a substrate liquid processing method, and a recording medium.
 一般に、基板(ウエハ)を洗浄処理するための洗浄液や、基板をめっき処理するためのめっき液等の処理液を用いて基板を液処理する基板液処理装置が知られている(例えば特許文献1~3参照)。このような基板液処理装置において、加熱された処理液を用いることがある。 Generally, there is known a substrate liquid processing apparatus for processing a substrate using a processing liquid such as a cleaning liquid for cleaning the substrate (wafer) or a plating liquid for plating the substrate (for example, Patent Document 1) See 3). In such a substrate liquid processing apparatus, a heated processing liquid may be used.
 そのような液処理を適切に行うには、基板上において処理液が液処理に適した所望温度を有する必要がある。またそのような液処理を基板の処理面全体にわたって均一に行うには、処理面の全体に処理液が均一に付与されている必要がある。しかしながら様々な要因で、基板上の処理液は必ずしも所望温度を有していないことがあり、また処理面の全体にわたって処理液が適切に付与されていないことがある。これらの場合、基板の液処理が適切に行われず、基板は不良品となり、そのような基板を使った後段の処理においても不具合がもたらされる。 In order to perform such liquid processing properly, the processing liquid needs to have a desired temperature suitable for liquid processing on the substrate. Further, in order to perform such liquid processing uniformly over the entire processing surface of the substrate, the processing liquid needs to be uniformly applied over the entire processing surface. However, due to various factors, the processing solution on the substrate may not necessarily have the desired temperature, and the processing solution may not be properly applied over the entire processing surface. In these cases, the liquid processing of the substrate is not properly performed, the substrate becomes defective, and problems occur in the subsequent processing using such a substrate.
特開平9-17761号公報JP-A-9-17761 特開2004-107747号公報JP 2004-107747 A 特開2012-136783号公報Unexamined-Japanese-Patent No. 2012-136783
 本発明は、このような点を考慮してなされたものであり、加熱された処理液を使った液処理の良否を基板毎に判定することができる基板液処理装置、基板液処理方法および記録媒体を提供することを目的とする。 The present invention has been made in consideration of these points, and is capable of determining the quality of liquid processing using a heated processing liquid for each substrate, substrate liquid processing method, and recording. It aims to provide a medium.
 本発明の一態様は、処理液によって基板の処理面の液処理を行う基板液処理装置であって、基板を保持する基板保持部と、基板保持部により保持された基板の処理面に処理液を供給する処理液供給部と、処理面上の処理液の温度を検出する温度検出センサと、温度検出センサに接続される制御部と、を備え、制御部は、処理面上に処理液のパドルが形成された後であって液処理が始まる前と、液処理が終わった後とのうち、少なくとも液処理が終わった後において、温度検出センサにより検出された温度を取得する基板液処理装置に関する。 One embodiment of the present invention is a substrate liquid processing apparatus that performs liquid processing of a processing surface of a substrate with a processing liquid, and a processing liquid is provided on a substrate holding unit that holds a substrate and the processing surface of a substrate held by the substrate holding unit. And a control unit connected to the temperature detection sensor, the control unit including a processing liquid supply unit that supplies the processing solution, a temperature detection sensor that detects the temperature of the processing solution on the processing surface, and the control unit A substrate liquid processing apparatus for acquiring a temperature detected by a temperature detection sensor after a paddle is formed and before liquid processing starts and after liquid processing ends, at least after liquid processing is completed About.
 本発明の他の態様は、処理液によって基板の処理面の液処理を行う基板液処理方法であって、基板保持部により保持された基板の処理面に処理液を供給して処理面上に処理液のパドルを形成する工程と、処理面上に処理液のパドルが形成された状態で液処理を行う工程と、を備え、処理面上に処理液のパドルが形成された後であって液処理が始まる前と、液処理が終わった後とのうち、少なくとも液処理が終わった後において、温度検出センサにより検出された処理面上の処理液の温度が取得される基板液処理方法に関する。 Another aspect of the present invention is a substrate liquid processing method for performing liquid processing of a processing surface of a substrate with a processing liquid, wherein the processing liquid is supplied to the processing surface of the substrate held by the substrate holding unit to be on the processing surface. And a step of forming a processing solution paddle, and a step of performing solution processing with the processing solution paddle formed on the processing surface, and after the processing solution paddle is formed on the processing surface The present invention relates to a substrate liquid processing method in which the temperature of the processing liquid on the processing surface detected by the temperature detection sensor is acquired before the liquid processing starts and after the liquid processing ends, at least after the liquid processing ends. .
 本発明の他の態様は、基板液処理装置の動作を制御するためのコンピュータにより実行されたときに、コンピュータが基板液処理装置を制御して上記の基板液処理方法を実行させるプログラムが記録された記録媒体に関する。 According to another aspect of the present invention, there is recorded a program which, when executed by a computer for controlling the operation of a substrate liquid processing apparatus, causes a computer to control the substrate liquid processing apparatus to execute the above substrate liquid processing method. Recording media.
 本発明によれば、加熱された処理液を使った液処理の良否を基板毎に判定することができる。 According to the present invention, the quality of the liquid processing using the heated processing liquid can be determined for each substrate.
図1は、めっき処理装置の構成を示す概略平面図である。FIG. 1 is a schematic plan view showing the configuration of the plating apparatus. 図2は、図1に示すめっき処理部の構成を示す断面図である。FIG. 2 is a cross-sectional view showing the configuration of the plating processing unit shown in FIG. 図3は、図1のめっき処理装置における基板のめっき処理を示すフローチャートである。FIG. 3 is a flowchart showing the plating process of the substrate in the plating apparatus of FIG.
 以下、図面を参照して本発明の一の実施の形態について説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.
 まず、図1を参照して、本発明の実施の形態に係る基板液処理装置の構成を説明する。図1は、本発明の実施の形態に係る基板液処理装置の一例としてのめっき処理装置の構成を示す概略図である。ここで、めっき処理装置は、基板Wにめっき液L1(処理液)を供給して基板Wをめっき処理(液処理)する装置である。 First, the configuration of a substrate liquid processing apparatus according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic view showing a configuration of a plating processing apparatus as an example of a substrate liquid processing apparatus according to an embodiment of the present invention. Here, the plating processing apparatus is an apparatus that supplies the plating solution L1 (processing liquid) to the substrate W to perform plating processing (liquid processing) on the substrate W.
 図1に示すように、本発明の実施の形態に係るめっき処理装置1は、めっき処理ユニット2と、めっき処理ユニット2の動作を制御する制御部3と、を備えている。 As shown in FIG. 1, the plating processing apparatus 1 according to the embodiment of the present invention includes a plating processing unit 2 and a control unit 3 that controls the operation of the plating processing unit 2.
 めっき処理ユニット2は、基板W(ウエハ)に対する各種処理を行う。めっき処理ユニット2が行う各種処理については後述する。 The plating unit 2 performs various processes on the substrate W (wafer). The various processes which the plating process unit 2 performs are mentioned later.
 制御部3は、例えばコンピュータであり、動作制御部と記憶部とを有している。動作制御部は、例えばCPU(Central Processing Unit)で構成されており、記憶部に記憶されているプログラムを読み出して実行することにより、めっき処理ユニット2の動作を制御する。記憶部は、例えばRAM(Random Access Memory)、ROM(Read Only Memory)、ハードディスク等の記憶デバイスで構成されており、めっき処理ユニット2において実行される各種処理を制御するプログラムを記憶する。なお、プログラムは、コンピュータにより読み取り可能な記録媒体31に記録されたものであってもよいし、その記録媒体31から記憶部にインストールされたものであってもよい。コンピュータにより読み取り可能な記録媒体31としては、例えば、ハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルディスク(MO)、メモリカード等が挙げられる。記録媒体31には、例えば、めっき処理装置1の動作を制御するためのコンピュータにより実行されたときに、コンピュータがめっき処理装置1を制御して後述するめっき処理方法を実行させるプログラムが記録される。 The control unit 3 is, for example, a computer, and includes an operation control unit and a storage unit. The operation control unit is configured of, for example, a CPU (Central Processing Unit), and controls the operation of the plating processing unit 2 by reading and executing a program stored in the storage unit. The storage unit is composed of, for example, a storage device such as a random access memory (RAM), a read only memory (ROM), or a hard disk, and stores a program for controlling various processes executed in the plating processing unit 2. The program may be recorded on a recording medium 31 readable by a computer, or may be installed from the recording medium 31 in a storage unit. Examples of the computer readable recording medium 31 include a hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnet optical disk (MO), and a memory card. For example, when executed by a computer for controlling the operation of the plating processing apparatus 1, a program for controlling the plating processing apparatus 1 to execute a plating processing method described later is recorded in the recording medium 31. .
 図1を参照して、めっき処理ユニット2の構成を説明する。図1は、めっき処理ユニット2の構成を示す概略平面図である。 The configuration of the plating unit 2 will be described with reference to FIG. FIG. 1 is a schematic plan view showing the configuration of the plating unit 2.
 めっき処理ユニット2は、搬入出ステーション21と、搬入出ステーション21に隣接して設けられた処理ステーション22と、を有している。 The plating processing unit 2 has a loading and unloading station 21 and a processing station 22 provided adjacent to the loading and unloading station 21.
 搬入出ステーション21は、載置部211と、載置部211に隣接して設けられた搬送部212と、を含んでいる。 The loading / unloading station 21 includes a placement unit 211 and a transport unit 212 provided adjacent to the placement unit 211.
 載置部211には、複数枚の基板Wを水平状態で収容する複数の搬送容器(以下「キャリアC」という。)が載置される。 On the placement unit 211, a plurality of transfer containers (hereinafter, referred to as "carriers C") accommodating the plurality of substrates W in a horizontal state are placed.
 搬送部212は、搬送機構213と受渡部214とを含んでいる。搬送機構213は、基板Wを保持する保持機構を含み、水平方向及び鉛直方向への移動並びに鉛直軸を中心とする旋回が可能となるように構成されている。 The transport unit 212 includes a transport mechanism 213 and a delivery unit 214. The transport mechanism 213 includes a holding mechanism that holds the substrate W, and is configured to be able to move in the horizontal direction and the vertical direction and to pivot around the vertical axis.
 処理ステーション22は、めっき処理部5を含んでいる。本実施の形態において、処理ステーション22が有するめっき処理部5の個数は2つ以上であるが、1つであってもよい。めっき処理部5は、所定方向に延在する搬送路221の両側(後述する搬送機構222の移動方向に直交する方向における両側)に配列されている。 The processing station 22 includes a plating processing unit 5. In the present embodiment, the number of the plating processing units 5 included in the processing station 22 is two or more, but may be one. The plating processing units 5 are arranged on both sides of the transport path 221 extending in a predetermined direction (both sides in the direction orthogonal to the moving direction of the transport mechanism 222 described later).
 搬送路221には、搬送機構222が設けられている。搬送機構222は、基板Wを保持する保持機構を含み、水平方向及び鉛直方向への移動並びに鉛直軸を中心とする旋回が可能となるように構成されている。 In the transport path 221, a transport mechanism 222 is provided. The transport mechanism 222 includes a holding mechanism that holds the substrate W, and is configured to be able to move in the horizontal direction and the vertical direction and to pivot around the vertical axis.
 めっき処理ユニット2において、搬入出ステーション21の搬送機構213は、キャリアCと受渡部214との間で基板Wの搬送を行う。具体的には、搬送機構213は、載置部211に載置されたキャリアCから基板Wを取り出し、取り出した基板Wを受渡部214に載置する。また、搬送機構213は、処理ステーション22の搬送機構222により受渡部214に載置された基板Wを取り出し、載置部211のキャリアCへ収容する。 In the plating processing unit 2, the transport mechanism 213 of the loading / unloading station 21 transports the substrate W between the carrier C and the delivery unit 214. Specifically, the transport mechanism 213 takes out the substrate W from the carrier C placed on the placement unit 211 and places the taken-out substrate W on the delivery unit 214. Further, the transport mechanism 213 takes out the substrate W placed on the delivery unit 214 by the transport mechanism 222 of the processing station 22, and stores the substrate W in the carrier C of the placement unit 211.
 めっき処理ユニット2において、処理ステーション22の搬送機構222は、受渡部214とめっき処理部5との間、めっき処理部5と受渡部214との間で基板Wの搬送を行う。具体的には、搬送機構222は、受渡部214に載置された基板Wを取り出し、取り出した基板Wをめっき処理部5へ搬入する。また、搬送機構222は、めっき処理部5から基板Wを取り出し、取り出した基板Wを受渡部214に載置する。 In the plating unit 2, the transport mechanism 222 of the processing station 22 transports the substrate W between the delivery unit 214 and the plating unit 5 and between the plating unit 5 and the delivery unit 214. Specifically, the transport mechanism 222 takes out the substrate W placed on the delivery unit 214 and carries the taken-out substrate W into the plating processing unit 5. Further, the transport mechanism 222 takes out the substrate W from the plating processing unit 5 and places the taken-out substrate W on the delivery unit 214.
 次に図2を参照して、めっき処理部5の構成を説明する。図2は、めっき処理部5の構成を示す概略断面図である。 Next, the configuration of the plating processing unit 5 will be described with reference to FIG. FIG. 2 is a schematic cross-sectional view showing the configuration of the plating processing unit 5.
 めっき処理部5は、無電解めっき処理を含む液処理を行う。このめっき処理部5は、チャンバ51と、チャンバ51内に配置され、基板Wを水平に保持する基板保持部52と、基板保持部52に保持された基板Wの上面(処理面Sw)にめっき液L1(処理液)を供給するめっき液供給部53(処理液供給部)と、を備える。本実施の形態では、基板保持部52は、基板Wの下面(裏面)を真空吸着するチャック部材521を有する。この基板保持部52はいわゆるバキュームチャックタイプであるが、基板保持部52はこれに限られず、例えばチャック機構等によって基板Wの外縁部を把持するメカニカルチャックタイプであってもよい。 The plating processing unit 5 performs a liquid process including an electroless plating process. The plating processing unit 5 is disposed on the chamber 51, the substrate holding unit 52 disposed in the chamber 51 and holding the substrate W horizontally, and plating on the upper surface (processing surface Sw) of the substrate W held by the substrate holding unit 52. And a plating solution supply unit 53 (treatment solution supply unit) for supplying the solution L1 (treatment solution). In the present embodiment, the substrate holding unit 52 has a chuck member 521 that vacuum-sucks the lower surface (rear surface) of the substrate W. The substrate holding unit 52 is a so-called vacuum chuck type, but the substrate holding unit 52 is not limited to this, and may be, for example, a mechanical chuck type that holds the outer edge portion of the substrate W by a chuck mechanism or the like.
 基板保持部52には、回転シャフト522を介して回転モータ523(回転駆動部)が連結されている。回転モータ523が駆動されると、基板保持部52は基板Wとともに回転する。回転モータ523はチャンバ51に固定されたベース524に支持されている。 A rotation motor 523 (rotation drive unit) is connected to the substrate holding unit 52 via a rotation shaft 522. When the rotation motor 523 is driven, the substrate holding unit 52 rotates with the substrate W. The rotary motor 523 is supported by a base 524 fixed to the chamber 51.
 めっき液供給部53は、基板保持部52に保持された基板Wにめっき液L1を吐出(供給)するめっき液ノズル531(処理液ノズル)と、めっき液ノズル531にめっき液L1を供給するめっき液供給源532と、を有する。めっき液供給源532は、所定の温度に加熱ないし温調されためっき液L1をめっき液ノズル531に供給する。めっき液ノズル531から吐出されるときのめっき液L1の温度は、基板Wの周囲の雰囲気温度よりも高い温度であり、例えば55℃以上75℃以下であり、より好ましくは60℃以上70℃以下である。めっき液ノズル531は、ノズルアーム56に保持されて、移動可能に構成されている。 The plating solution supply unit 53 discharges (supplys) the plating solution L1 to the substrate W held by the substrate holding unit 52 (plating solution nozzle 531 (processing solution nozzle)) and plating that supplies the plating solution L1 to the plating solution nozzle 531 And a liquid supply source 532. The plating solution supply source 532 supplies the plating solution nozzle 531 with the plating solution L1 that has been heated or adjusted to a predetermined temperature. The temperature of the plating solution L1 when discharged from the plating solution nozzle 531 is a temperature higher than the ambient temperature around the substrate W, for example, 55 ° C. or more and 75 ° C. or less, more preferably 60 ° C. or more and 70 ° C. or less It is. The plating solution nozzle 531 is held by the nozzle arm 56 so as to be movable.
 めっき液L1は、自己触媒型(還元型)無電解めっき用のめっき液である。めっき液L1は、例えば、コバルト(Co)イオン、ニッケル(Ni)イオン、タングステン(W)イオン、銅(Cu)イオン、パラジウム(Pd)イオン、金(Au)イオン等の金属イオンと、次亜リン酸、ジメチルアミンボラン等の還元剤とを含有する。めっき液L1は、添加剤等を含有していてもよい。めっき液L1を使用しためっき処理により形成されるめっき膜(金属膜)としては、例えば、CoWB、CoB、CoWP、CoWBP、NiWB、NiB、NiWP、NiWBP等が挙げられる。 The plating solution L1 is a plating solution for autocatalytic (reduction) electroless plating. The plating solution L1 includes, for example, metal ions such as cobalt (Co) ion, nickel (Ni) ion, tungsten (W) ion, copper (Cu) ion, palladium (Pd) ion, gold (Au) ion, and the like. It contains a reducing agent such as phosphoric acid and dimethylamine borane. The plating solution L1 may contain an additive and the like. Examples of the plating film (metal film) formed by the plating treatment using the plating solution L1 include CoWB, CoB, CoWP, CoWBP, NiWB, NiB, NiWP, NiWBP and the like.
 本実施の形態によるめっき処理部5は、他の処理液供給部として、基板保持部52に保持された基板Wの上面に洗浄液L2を供給する洗浄液供給部54と、当該基板Wの上面にリンス液L3を供給するリンス液供給部55と、を更に備える。 As another processing liquid supply unit, the plating processing unit 5 according to the present embodiment rinses the upper surface of the substrate W with the cleaning liquid supply unit 54 that supplies the cleaning liquid L2 to the upper surface of the substrate W held by the substrate holding unit 52. And a rinse liquid supply unit 55 for supplying the liquid L3.
 洗浄液供給部54は、基板保持部52に保持された基板Wに洗浄液L2を吐出する洗浄液ノズル541と、洗浄液ノズル541に洗浄液L2を供給する洗浄液供給源542と、を有する。洗浄液L2としては、例えば、ギ酸、リンゴ酸、コハク酸、クエン酸、マロン酸等の有機酸、基板Wの被めっき面を腐食させない程度の濃度に希釈されたフッ化水素酸(DHF)(フッ化水素の水溶液)等を使用することができる。洗浄液ノズル541は、ノズルアーム56に保持されて、めっき液ノズル531とともに移動可能になっている。 The cleaning solution supply unit 54 has a cleaning solution nozzle 541 for discharging the cleaning solution L2 onto the substrate W held by the substrate holding unit 52, and a cleaning solution supply source 542 for supplying the cleaning solution L2 to the cleaning solution nozzle 541. Examples of the cleaning liquid L2 include organic acids such as formic acid, malic acid, succinic acid, citric acid and malonic acid, and hydrofluoric acid (DHF) diluted to a concentration that does not corrode the surface to be plated of the substrate W. An aqueous solution of hydrogen chloride or the like can be used. The cleaning solution nozzle 541 is held by the nozzle arm 56 so as to be movable together with the plating solution nozzle 531.
 リンス液供給部55は、基板保持部52に保持された基板Wにリンス液L3を吐出するリンス液ノズル551と、リンス液ノズル551にリンス液L3を供給するリンス液供給源552と、を有する。このうちリンス液ノズル551は、ノズルアーム56に保持されて、めっき液ノズル531および洗浄液ノズル541とともに移動可能になっている。リンス液L3としては、例えば、純水などを使用することができる。 The rinse liquid supply unit 55 has a rinse liquid nozzle 551 that discharges the rinse liquid L3 onto the substrate W held by the substrate holding unit 52, and a rinse liquid supply source 552 that supplies the rinse liquid L3 to the rinse liquid nozzle 551. . Among these, the rinse solution nozzle 551 is held by the nozzle arm 56 and is movable together with the plating solution nozzle 531 and the cleaning solution nozzle 541. For example, pure water can be used as the rinse liquid L3.
 上述しためっき液ノズル531、洗浄液ノズル541、およびリンス液ノズル551を保持するノズルアーム56に、図示しないノズル移動機構が連結されている。このノズル移動機構は、ノズルアーム56を水平方向および上下方向に移動させる。より具体的には、ノズル移動機構によって、ノズルアーム56は、基板Wに処理液(めっき液L1、洗浄液L2またはリンス液L3)を吐出する吐出位置と、吐出位置から退避した退避位置との間で移動可能になっている。吐出位置は、基板Wの上面のうちの任意の位置に処理液を供給可能であれば特に限られない。例えば、基板Wの中心に処理液を供給可能な位置を吐出位置とすることが好適である。基板Wにめっき液L1を供給する場合、洗浄液L2を供給する場合、リンス液L3を供給する場合とで、ノズルアーム56の吐出位置は異なってもよい。退避位置は、チャンバ51内のうち、上方から見た場合に基板Wに重ならない位置であって、吐出位置から離れた位置である。ノズルアーム56が退避位置に位置づけられている場合、移動する蓋体6がノズルアーム56と干渉することが回避される。 A nozzle moving mechanism (not shown) is connected to the nozzle arm 56 holding the plating solution nozzle 531, the cleaning solution nozzle 541, and the rinse solution nozzle 551 described above. The nozzle moving mechanism moves the nozzle arm 56 horizontally and vertically. More specifically, between the discharge position at which the nozzle arm 56 discharges the processing liquid (plating solution L1, cleaning liquid L2 or rinse liquid L3) onto the substrate W by the nozzle moving mechanism, and the retracted position retracted from the discharge position. It is possible to move with. The ejection position is not particularly limited as long as the processing liquid can be supplied to any position on the upper surface of the substrate W. For example, it is preferable to set a position where the processing liquid can be supplied to the center of the substrate W as a discharge position. When the plating solution L1 is supplied to the substrate W, when the cleaning liquid L2 is supplied, the discharge position of the nozzle arm 56 may be different depending on when the rinse liquid L3 is supplied. The retracted position is a position in the chamber 51 which does not overlap the substrate W when viewed from above, and is a position separated from the discharge position. When the nozzle arm 56 is positioned at the retracted position, interference of the moving lid 6 with the nozzle arm 56 is avoided.
 基板保持部52の周囲には、カップ571が設けられている。このカップ571は、上方から見た場合にリング状に形成されており、基板Wの回転時に、基板Wから飛散した処理液を受け止めて、後述するドレンダクト581に案内する。カップ571の外周側には、雰囲気遮断カバー572が設けられており、基板Wの周囲の雰囲気がチャンバ51内に拡散することを抑制している。この雰囲気遮断カバー572は、上下方向に延びるように円筒状に形成されており、上端が開口している。雰囲気遮断カバー572内に、後述する蓋体6が上方から挿入可能になっている。 A cup 571 is provided around the substrate holding unit 52. The cup 571 is formed in a ring shape when viewed from above, and receives the processing liquid scattered from the substrate W when the substrate W rotates, and guides the processing liquid to a drain duct 581 described later. An atmosphere blocking cover 572 is provided on the outer peripheral side of the cup 571 to suppress the diffusion of the atmosphere around the substrate W into the chamber 51. The atmosphere blocking cover 572 is formed in a cylindrical shape so as to extend in the vertical direction, and the upper end is open. A lid 6 described later can be inserted into the atmosphere blocking cover 572 from above.
 基板保持部52に保持された基板Wは、蓋体6によって覆われる。この蓋体6は、天井部61と、天井部61から下方に延びる側壁部62と、を有する。天井部61は、蓋体6が後述の下方位置に位置づけられた場合に、基板保持部52に保持された基板Wの上方に配置されて、基板Wに対して比較的小さな間隔で対向する。 The substrate W held by the substrate holding unit 52 is covered by the lid 6. The lid 6 has a ceiling 61 and a side wall 62 extending downward from the ceiling 61. The ceiling portion 61 is disposed above the substrate W held by the substrate holding portion 52 when the lid 6 is positioned at a lower position described later, and faces the substrate W at a relatively small distance.
 天井部61は、第1天井板611と、第1天井板611上に設けられた第2天井板612と、を含む。第1天井板611と第2天井板612との間には、ヒータ63(加熱部)が介在する。第1天井板611および第2天井板612は、ヒータ63を密封し、ヒータ63がめっき液L1などの処理液に触れないように構成されている。より具体的には、第1天井板611と第2天井板612との間であってヒータ63の外周側にシールリング613が設けられており、このシールリング613によってヒータ63が密封されている。第1天井板611および第2天井板612は、めっき液L1などの処理液に対する耐腐食性を有することが好適であり、例えば、アルミニウム合金によって形成されていてもよい。更に耐腐食性を高めるために、第1天井板611、第2天井板612および側壁部62は、テフロン(登録商標)でコーティングされていてもよい。 The ceiling portion 61 includes a first ceiling plate 611 and a second ceiling plate 612 provided on the first ceiling plate 611. A heater 63 (heating unit) is interposed between the first ceiling plate 611 and the second ceiling plate 612. The first ceiling plate 611 and the second ceiling plate 612 seal the heater 63 so that the heater 63 does not touch the processing solution such as the plating solution L1. More specifically, a seal ring 613 is provided between the first ceiling plate 611 and the second ceiling plate 612 on the outer peripheral side of the heater 63, and the heater 63 is sealed by the seal ring 613. . The first ceiling plate 611 and the second ceiling plate 612 preferably have corrosion resistance to a processing solution such as the plating solution L1, and may be made of, for example, an aluminum alloy. In order to further enhance the corrosion resistance, the first ceiling plate 611, the second ceiling plate 612 and the side wall portion 62 may be coated with Teflon (registered trademark).
 蓋体6には、蓋体アーム71を介して蓋体移動機構7が連結されている。蓋体移動機構7は、蓋体6を水平方向および上下方向に移動させる。より具体的には、蓋体移動機構7は、蓋体6を水平方向に移動させる旋回モータ72と、蓋体6を上下方向に移動させるシリンダ73(間隔調節部)と、を有する。このうち旋回モータ72は、シリンダ73に対して上下方向に移動可能に設けられた支持プレート74上に取り付けられている。シリンダ73の代替として、モータとボールねじとを含むアクチュエータ(図示せず)を用いてもよい。 A lid moving mechanism 7 is connected to the lid 6 via a lid arm 71. The lid moving mechanism 7 moves the lid 6 horizontally and vertically. More specifically, the lid moving mechanism 7 has a swing motor 72 for moving the lid 6 in the horizontal direction, and a cylinder 73 (space adjustment unit) for moving the lid 6 in the vertical direction. Among them, the swing motor 72 is mounted on a support plate 74 provided so as to be movable in the vertical direction with respect to the cylinder 73. As an alternative to the cylinder 73, an actuator (not shown) including a motor and a ball screw may be used.
 蓋体移動機構7の旋回モータ72は、蓋体6を、基板保持部52に保持された基板Wの上方に配置された上方位置と、上方位置から退避した退避位置との間で移動させる。上方位置は、基板保持部52に保持された基板Wに対して比較的大きな間隔で対向する位置であって、上方から見た場合に基板Wに重なる位置である。退避位置は、チャンバ51内のうち、上方から見た場合に基板Wに重ならない位置である。蓋体6が退避位置に位置づけられている場合、移動するノズルアーム56が蓋体6と干渉することが回避される。旋回モータ72の回転軸線は、上下方向に延びており、蓋体6は、上方位置と退避位置との間で、水平方向に旋回移動可能になっている。 The swing motor 72 of the lid moving mechanism 7 moves the lid 6 between an upper position disposed above the substrate W held by the substrate holding unit 52 and a retracted position retracted from the upper position. The upper position is a position facing the substrate W held by the substrate holding unit 52 at a relatively large distance, and is a position overlapping the substrate W when viewed from above. The retracted position is a position in the chamber 51 which does not overlap the substrate W when viewed from above. When the lid 6 is positioned at the retracted position, interference of the moving nozzle arm 56 with the lid 6 is avoided. The rotation axis of the swing motor 72 extends in the vertical direction, and the lid 6 is horizontally horizontally movable between the upper position and the retracted position.
 蓋体移動機構7のシリンダ73は、蓋体6を上下方向に移動させて、処理面Sw上にめっき液L1が盛られた基板Wと天井部61の第1天井板611との間隔を調節する。より具体的には、シリンダ73は、蓋体6を下方位置(図2において実線で示す位置)と、上方位置(図2において二点鎖線で示す位置)とに位置づける。 The cylinder 73 of the lid moving mechanism 7 moves the lid 6 in the vertical direction to adjust the distance between the substrate W on which the plating solution L1 is deposited on the processing surface Sw and the first ceiling plate 611 of the ceiling portion 61. Do. More specifically, the cylinder 73 positions the lid 6 at a lower position (indicated by a solid line in FIG. 2) and at an upper position (indicated by a two-dot chain line in FIG. 2).
 蓋体6が下方位置に配置される場合、第1天井板611が基板Wに近接する。この場合、めっき液L1の汚損やめっき液L1内での気泡発生を防止するために、第1天井板611が基板W上のめっき液L1に触れないように下方位置を設定することが好適である。 When the lid 6 is disposed at the lower position, the first ceiling plate 611 approaches the substrate W. In this case, it is preferable to set the lower position so that the first ceiling plate 611 does not touch the plating solution L1 on the substrate W in order to prevent the contamination of the plating solution L1 and the generation of air bubbles in the plating solution L1. is there.
 上方位置は、蓋体6を水平方向に旋回移動させる際に、カップ571や、雰囲気遮断カバー572等の周囲の構造物に蓋体6が干渉することを回避可能な高さ位置になっている。 The upper position is a height position that can prevent the lid 6 from interfering with surrounding structures such as the cup 571 and the atmosphere blocking cover 572 when the lid 6 is pivoted in the horizontal direction. .
 本実施の形態では、ヒータ63が駆動されて、上述した下方位置に蓋体6が位置づけられた場合に、基板W上のめっき液L1が加熱されるように構成されている。 In the present embodiment, when the heater 63 is driven and the lid 6 is positioned at the above-described lower position, the plating solution L1 on the substrate W is heated.
 蓋体6の側壁部62は、天井部61の第1天井板611の周縁部から下方に延びており、基板W上のめっき液L1を加熱する際(すなわち下方位置に蓋体6が位置づけられた場合)に基板Wの外周側に配置される。蓋体6が下方位置に位置づけられた場合、側壁部62の下端は、基板Wよりも低い位置に位置づけられてもよい。 The side wall portion 62 of the lid 6 extends downward from the peripheral portion of the first ceiling plate 611 of the ceiling portion 61, and when heating the plating solution L1 on the substrate W (ie, the lid 6 is positioned at the lower position) Case) is disposed on the outer peripheral side of the substrate W. When the lid 6 is positioned at the lower position, the lower end of the side wall portion 62 may be positioned lower than the substrate W.
 蓋体6の天井部61には、ヒータ63が設けられている。ヒータ63は、蓋体6が下方位置に位置づけられた場合に、基板W上の処理液(好適にはめっき液L1)を加熱する。本実施の形態では、ヒータ63は、蓋体6の第1天井板611と第2天井板612との間に介在し、上述したように密封されており、ヒータ63がめっき液L1などの処理液に触れることが防止されている。ヒータ63は、特に限定されず、例えば面状発熱体であるマイカヒータを好適に用いることができる。 A heater 63 is provided on the ceiling portion 61 of the lid 6. The heater 63 heats the processing solution (preferably, the plating solution L1) on the substrate W when the lid 6 is positioned at the lower position. In the present embodiment, the heater 63 is interposed between the first ceiling plate 611 and the second ceiling plate 612 of the lid 6, and is sealed as described above, and the heater 63 is treated with the plating solution L1 or the like. It is prevented from touching the liquid. The heater 63 is not particularly limited. For example, a mica heater which is a planar heating element can be suitably used.
 本実施の形態においては、蓋体6の内側に、不活性ガス供給部66によって不活性ガス(例えば、窒素(N)ガス)が供給される。この不活性ガス供給部66は、蓋体6の内側に不活性ガスを吐出するガスノズル661と、ガスノズル661に不活性ガスを供給する不活性ガス供給源662と、を有する。ガスノズル661は、蓋体6の天井部61に設けられており、蓋体6が基板Wを覆う状態で基板Wに向かって不活性ガスを吐出する。 In the present embodiment, an inert gas (for example, nitrogen (N 2 ) gas) is supplied to the inside of the lid 6 by the inert gas supply unit 66. The inert gas supply unit 66 includes a gas nozzle 661 that discharges an inert gas to the inside of the lid 6 and an inert gas supply source 662 that supplies the gas nozzle 661 with the inert gas. The gas nozzle 661 is provided on the ceiling portion 61 of the lid 6 and discharges the inert gas toward the substrate W in a state where the lid 6 covers the substrate W.
 蓋体6の天井部61および側壁部62は、蓋体カバー64により覆われている。この蓋体カバー64は、蓋体6の第2天井板612上に、支持部65を介して載置されている。すなわち、第2天井板612上に、第2天井板612の上面から上方に突出する複数の支持部65が設けられており、この支持部65に蓋体カバー64が載置されている。蓋体カバー64は、蓋体6とともに水平方向および上下方向に移動可能になっている。また、蓋体カバー64は、蓋体6内の熱が周囲に逃げることを抑制するために、天井部61および側壁部62よりも高い断熱性を有することが好ましい。例えば、蓋体カバー64は、樹脂材料により形成されていることが好適であり、その樹脂材料が耐熱性を有することがより一層好適である。 The ceiling portion 61 and the side wall portion 62 of the lid 6 are covered by a lid cover 64. The lid cover 64 is placed on the second ceiling plate 612 of the lid 6 via the support portion 65. That is, on the second ceiling plate 612, a plurality of support portions 65 projecting upward from the upper surface of the second ceiling plate 612 are provided, and the lid cover 64 is placed on the support portions 65. The lid cover 64 is movable together with the lid 6 in the horizontal and vertical directions. Further, the lid cover 64 preferably has higher heat insulation than the ceiling portion 61 and the side wall portion 62 in order to suppress heat in the lid 6 from escaping to the periphery. For example, the lid cover 64 is preferably made of a resin material, and it is more preferable that the resin material has heat resistance.
 チャンバ51の上部に、蓋体6の周囲に清浄な空気(気体)を供給するファンフィルターユニット59(気体供給部)が設けられている。ファンフィルターユニット59は、チャンバ51内(とりわけ、雰囲気遮断カバー572内)に空気を供給し、供給された空気は、後述する排気管81に向かって流れる。蓋体6の周囲には、この空気が下向きに流れるダウンフローが形成され、めっき液L1などの処理液から気化したガスは、このダウンフローによって排気管81に向かって流れる。このようにして、処理液から気化したガスが上昇してチャンバ51内に拡散することを防止している。 At the upper portion of the chamber 51, a fan filter unit 59 (gas supply unit) for supplying clean air (gas) around the lid 6 is provided. The fan filter unit 59 supplies air into the chamber 51 (particularly, into the atmosphere blocking cover 572), and the supplied air flows toward an exhaust pipe 81 described later. A downflow in which the air flows downward is formed around the lid 6, and a gas vaporized from the processing solution such as the plating solution L1 flows toward the exhaust pipe 81 by the downflow. Thus, the gas vaporized from the processing liquid is prevented from rising and diffusing into the chamber 51.
 上述したファンフィルターユニット59から供給された気体は、排気機構8によって排出されるようになっている。この排気機構8は、カップ571の下方に設けられた2つの排気管81と、ドレンダクト581の下方に設けられた排気ダクト82と、を有する。このうち2つの排気管81は、ドレンダクト581の底部を貫通し、排気ダクト82にそれぞれ連通している。排気ダクト82は、上方から見た場合に実質的に半円リング状に形成されている。本実施の形態では、ドレンダクト581の下方に1つの排気ダクト82が設けられており、この排気ダクト82に2つの排気管81が連通している。 The gas supplied from the fan filter unit 59 described above is exhausted by the exhaust mechanism 8. The exhaust mechanism 8 has two exhaust pipes 81 provided below the cup 571 and an exhaust duct 82 provided below the drain duct 581. The two exhaust pipes 81 penetrate the bottom of the drain duct 581 and communicate with the exhaust duct 82, respectively. The exhaust duct 82 is substantially formed in a semicircular ring shape when viewed from above. In the present embodiment, one exhaust duct 82 is provided below the drain duct 581, and two exhaust pipes 81 communicate with the exhaust duct 82.
 めっき液L1によって基板Wの処理面Swのめっき処理を行う上述のめっき処理部5は、処理面Sw上のめっき液L1の温度を検出する温度検出センサ40を更に備える。温度検出センサ40は制御部3(図1参照)に接続され、検出結果を制御部3に送る。 The above-described plating processing unit 5 that performs the plating process on the processing surface Sw of the substrate W with the plating solution L1 further includes a temperature detection sensor 40 that detects the temperature of the plating solution L1 on the processing surface Sw. The temperature detection sensor 40 is connected to the control unit 3 (see FIG. 1) and sends the detection result to the control unit 3.
 温度検出センサ40の具体的な構成は特に限定されないが、非接触方式のセンサが用いられる。例えば、比較的離れた位置からであっても処理面Sw上のめっき液L1の温度を検出することが可能な赤外線センサ(IRセンサ:Infrared Sensor)を、温度検出センサ40として好適に用いることができる。 The specific configuration of the temperature detection sensor 40 is not particularly limited, but a noncontact sensor is used. For example, an infrared sensor (IR sensor: Infrared Sensor) capable of detecting the temperature of the plating solution L1 on the processing surface Sw even from a relatively distant position is preferably used as the temperature detection sensor 40. it can.
 図2に示す温度検出センサ40は、チャンバ51内においてファンフィルターユニット59に取り付けられており、基板Wの処理面Swよりも上方において、基板保持部52に対して(すなわち基板保持部52により保持される基板Wに対して)固定的に設けられている。温度検出センサ40を処理面Swと向かい合う位置に配置することによって、処理面Swの全体にわたるめっき液L1の温度を簡単かつ高精度に検出することができる。 The temperature detection sensor 40 shown in FIG. 2 is attached to the fan filter unit 59 in the chamber 51, and with respect to the substrate holder 52 above the processing surface Sw of the substrate W (ie, held by the substrate holder 52). With respect to the substrate W to be fixed). By arranging the temperature detection sensor 40 at a position facing the processing surface Sw, the temperature of the plating solution L1 over the entire processing surface Sw can be detected easily and with high accuracy.
 なお温度検出センサ40は基板保持部52に対して移動可能に設けられていてもよい。この場合にも温度検出センサ40は、処理面Sw上のめっき液L1の温度を検出する際には、処理面Swよりも上方において当該処理面Swと向かい合う位置に配置することが好ましい。例えば、図示しない可動アームに温度検出センサ40を取り付けて、上方位置に位置づけられた蓋体6と基板保持部52に保持されている基板Wとの間の計測位置と、基板保持部52に保持されている基板Wと上下方向に関して重ならない待機位置とに、温度検出センサ40を配置可能としてもよい。図2に示す固定式の温度検出センサ40(特に赤外線センサ)の場合、蓋体6(すなわちヒータ63)が温度検出センサ40と当該基板Wとの間から退避した後でなければ、温度検出センサ40は処理面Sw上のめっき液L1の温度を検出することができない。一方、温度検出センサ40を移動可能とすることによって、基板Wの上方において基板Wと重なる位置(例えば上方位置)に蓋体6(すなわちヒータ63)が配置されていても、蓋体6と基板Wとの間の計測位置に温度検出センサ40を移動して配置することにより、処理面Sw上のめっき液L1の温度を温度検出センサ40によって適切に検出することができる。 The temperature detection sensor 40 may be provided so as to be movable with respect to the substrate holding unit 52. Also in this case, when detecting the temperature of the plating solution L1 on the processing surface Sw, the temperature detection sensor 40 is preferably disposed at a position facing the processing surface Sw above the processing surface Sw. For example, the temperature detection sensor 40 is attached to a movable arm (not shown), and the measurement position between the lid 6 positioned at the upper position and the substrate W held by the substrate holder 52 is held by the substrate holder 52 The temperature detection sensor 40 may be disposed at the substrate W being held and the standby position not overlapping in the vertical direction. In the case of the fixed type temperature detection sensor 40 (in particular, an infrared sensor) shown in FIG. 2, the temperature detection sensor is not after the lid 6 (i.e., the heater 63) is retracted from between the temperature detection sensor 40 and the substrate W 40 can not detect the temperature of the plating solution L1 on the processing surface Sw. On the other hand, by making the temperature detection sensor 40 movable, even if the lid 6 (that is, the heater 63) is disposed at a position (for example, an upper position) overlapping the substrate W above the substrate W, the lid 6 and the substrate By moving the temperature detection sensor 40 to a measurement position between W and W, the temperature of the plating solution L1 on the processing surface Sw can be appropriately detected by the temperature detection sensor 40.
 制御部3は、上述の温度検出センサ40から送られてくる検出結果に基づいて、処理面Sw上のめっき液L1の温度を取得することができる。特に本実施形態の制御部3は、「処理面Sw上にめっき液L1のパドルが実質的に形成された後であって、実質的なめっき処理が始まる前」のタイミングと、「実質的なめっき処理が終わった後」のタイミングとのうち、少なくとも「実質的なめっき処理が終わった後」のタイミングにおいて、温度検出センサ40の検出結果を取得する。 The control unit 3 can acquire the temperature of the plating solution L1 on the processing surface Sw based on the detection result sent from the temperature detection sensor 40 described above. In particular, the control unit 3 according to the present embodiment has a timing “after the paddle of the plating solution L1 is substantially formed on the processing surface Sw and before the substantial plating process starts”, and “the substantial The detection result of the temperature detection sensor 40 is acquired at least at a timing “after the substantial plating process is finished” among the timings “after the plating process is finished”.
 本実施形態のめっき処理は、上述のようにヒータ63から基板Wの処理面Swに向かって発せられる熱によって、処理面Sw上のめっき液L1が加熱された状態で行われる。したがって本実施形態における「実質的なめっき処理」は、処理面Sw上にめっき液L1のパドルが形成されている状態で、基板保持部52によって保持されている基板Wと重なる位置に蓋体6が配置され、処理面Sw上のめっき液L1がヒータ63からの熱によって加熱されることで始まり、ヒータ63からの熱による処理面Sw上のめっき液L1の加熱が終了することで終わる。そのため制御部3は、「処理面Sw上にめっき液L1のパドルが実質的に形成された後であって、処理面Sw上のめっき液L1がヒータ63からの熱によって加熱される前」のタイミングと、「ヒータ63からの熱による処理面Sw上のめっき液L1の加熱が終了した後」のタイミングとのうち、少なくとも「ヒータ63からの熱による処理面Sw上のめっき液L1の加熱が終了した後」のタイミングにおいて、温度検出センサ40の検出結果を取得する。より具体的には、図示の制御部3は「処理面Sw上にめっき液L1のパドルが実質的に形成された後であって、蓋体6が下方位置に配置される前」のタイミングにおいて、温度検出センサ40の検出結果を取得してもよい。また図示の制御部3は「蓋体6が上方位置から退避位置に向かって移動した後(例えば蓋体6が退避位置に配置された後)」のタイミングにおいて、温度検出センサ40の検出結果を取得してもよい。 The plating process of the present embodiment is performed in a state where the plating solution L1 on the processing surface Sw is heated by the heat generated from the heater 63 toward the processing surface Sw of the substrate W as described above. Therefore, in the “substantial plating process” in the present embodiment, the lid 6 is placed at a position overlapping the substrate W held by the substrate holder 52 in a state where the paddle of the plating solution L1 is formed on the treated surface Sw. Are arranged, and the plating solution L1 on the processing surface Sw is heated by the heat from the heater 63, and the heating of the plating solution L1 on the processing surface Sw by the heat from the heater 63 is finished. Therefore, the control unit 3 is “after the paddles of the plating solution L1 are substantially formed on the treated surface Sw and before the plating solution L1 on the treated surface Sw is heated by the heat from the heater 63”. At least "heating of the plating solution L1 on the processing surface Sw by heat from the heater 63" is performed among the timing and "after the heating of the plating solution L1 on the processing surface Sw by the heat from the heater 63 is finished". At the timing of “after the end”, the detection result of the temperature detection sensor 40 is acquired. More specifically, the control unit 3 shown in the figure “at a timing after“ the paddle of the plating solution L1 is substantially formed on the processing surface Sw and before the lid 6 is disposed at the lower position ””. The detection result of the temperature detection sensor 40 may be acquired. Further, the control unit 3 shown in FIG. 5 detects the detection result of the temperature detection sensor 40 at the timing “after the lid 6 moves from the upper position toward the retracted position (for example, after the lid 6 is disposed at the retracted position)”. You may get it.
 制御部3は、上述のようにして温度検出センサ40の検出結果を取得することにより、めっき処理の良否を基板W毎に判定することができる。 The control unit 3 can determine the quality of the plating process for each substrate W by acquiring the detection result of the temperature detection sensor 40 as described above.
 例えば、制御部3は「処理面Sw上にめっき液L1のパドルが実質的に形成された後であって、実質的なめっき処理が始まる前」のタイミングにおける温度検出センサ40の検出結果に基づいて、処理面Sw上に形成されためっき液L1のパドルの良否を判定することができる。処理面Sw上においてめっき液L1のパドルが良好に形成されている場合、温度検出センサ40の検出結果は、処理面Swの全体にわたって検出温度が基板Wの周囲の雰囲気温度よりも高い所望温度以上であり、また処理面Swの全体にわたって検出温度が許容誤差の範囲内であることを示す。一方、処理面Sw上においてめっき液L1のパドルが良好に形成されていない場合、温度検出センサ40の検出結果は、処理面Swの一部又は全体において検出温度が所望温度よりも低く、また処理面Swの全体にわたる検出温度が許容誤差の範囲内に収まらないことを示す。したがって「処理面Sw上にめっき液L1のパドルが実質的に形成された後であって、実質的なめっき処理が始まる前」のタイミングで行われる温度検出センサ40の検出は、実質的なめっき処理が始まる直前に行われることが好ましい。 For example, the control unit 3 is based on the detection result of the temperature detection sensor 40 at the timing “after the paddle of the plating solution L1 is substantially formed on the processing surface Sw and before the substantial plating process starts”. Thus, the quality of the paddle of the plating solution L1 formed on the processing surface Sw can be determined. When the paddle of the plating solution L1 is well formed on the processing surface Sw, the detection result of the temperature detection sensor 40 indicates that the detection temperature is higher than the ambient temperature around the substrate W over the entire processing surface Sw. Also, it indicates that the detected temperature is within the tolerance range over the processing surface Sw. On the other hand, when the paddle of the plating solution L1 is not well formed on the processing surface Sw, the detection result of the temperature detection sensor 40 shows that the detection temperature is lower than the desired temperature for part or all of the processing surface Sw. It shows that the detected temperature over the surface Sw does not fall within the tolerance range. Therefore, the detection of the temperature detection sensor 40 performed at the timing “after the paddle of the plating solution L1 is substantially formed on the processing surface Sw and before the substantial plating process starts” is substantially plating It is preferably done just before the treatment starts.
 また制御部3は「実質的なめっき処理が終わった後」のタイミングにおける温度検出センサ40の検出結果に基づいて、処理面Swに対するめっき処理が適切に行われたか否かを判定することができる。処理面Swに対するめっき処理が適切に行われた場合、温度検出センサ40の検出結果は、処理面Swの全体にわたって検出温度が基板Wの周囲の雰囲気温度よりも高い所望温度またはそれに近い温度(すなわち想定温度)であり、また処理面Swの全体にわたって検出温度が許容誤差の範囲内であることを示す。一方、処理面Swに対するめっき処理が適切に行われなかった場合、温度検出センサ40の検出結果は、処理面Swの全体にわたって検出温度が想定温度から外れており(典型的には検出温度が想定温度よりも低く)、また処理面Swの全体にわたる検出温度が許容誤差の範囲内に収まらないことを示す。したがって「実質的なめっき処理が終わった後」のタイミングにおける温度検出センサ40の検出は、実質的なめっき処理が終わった直後に行われることが好ましい。 In addition, the control unit 3 can determine whether the plating process on the processing surface Sw has been properly performed based on the detection result of the temperature detection sensor 40 at the timing of “after the substantial plating process is finished”. . If the plating process is appropriately performed on the processing surface Sw, the detection result of the temperature detection sensor 40 indicates that the detection temperature is higher than or equal to the desired temperature higher than the ambient temperature around the substrate W over the entire processing surface Sw Assumed temperature), and indicates that the detected temperature is within the tolerance range over the entire processing surface Sw. On the other hand, when the plating process is not properly performed on the processing surface Sw, the detection result of the temperature detection sensor 40 is that the detection temperature deviates from the assumed temperature over the entire processing surface Sw (typically, the detection temperature is assumed (Lower than the temperature), and indicates that the detected temperature over the entire processing surface Sw does not fall within the tolerance range. Therefore, it is preferable that the detection of the temperature detection sensor 40 at the timing “after the substantial plating process is finished” is performed immediately after the substantial plating process is finished.
 なお制御部3は、温度検出センサ40の検出結果を連続的に取得してもよいし、断続的に取得してもよい。また制御部3は、温度検出センサ40を制御して、温度検出センサ40に温度検出を連続的に実行させてもよいし、断続的に実行させてもよい。したがって、実質的なめっき処理が行われている間も、温度検出センサ40は温度検出を行ってもよいし、制御部3はその温度検出センサ40の検出結果を取得してもよい。制御部3は、例えば蓋体6の位置情報やノズルアーム56(すなわちノズル531、541、551)の位置情報等に基づいて、温度検出センサ40の検出タイミングを判定することができる。そのため、温度検出センサ40による温度検出が連続的に行われる場合、制御部3は、蓋体6の位置情報やノズルアーム56の位置情報等に基づいて、温度検出センサ40から取得した検出結果の検出タイミングを認定してもよい。 In addition, the control part 3 may acquire the detection result of the temperature detection sensor 40 continuously, and may acquire it intermittently. In addition, the control unit 3 may control the temperature detection sensor 40 to cause the temperature detection sensor 40 to continuously execute temperature detection or may intermittently perform temperature detection. Therefore, the temperature detection sensor 40 may perform temperature detection while the substantial plating process is performed, and the control unit 3 may obtain the detection result of the temperature detection sensor 40. The control unit 3 can determine the detection timing of the temperature detection sensor 40 based on, for example, positional information of the lid 6 and positional information of the nozzle arms 56 (i.e., the nozzles 531, 541, 551). Therefore, when the temperature detection by the temperature detection sensor 40 is continuously performed, the control unit 3 detects the detection result acquired from the temperature detection sensor 40 based on the position information of the lid 6, the position information of the nozzle arm 56, etc. The detection timing may be recognized.
 このように制御部3は、基板Wの処理面Swの全体にわたって、温度検出センサ40により検出されるめっき液L1の温度が、基板Wの周囲の雰囲気温度よりも高い所望温度以上を示すか否かに基づいて、めっき処理の良否を判定することができる。また制御部3は、温度検出センサ40により検出される温度が処理面Swの全体にわたって許容誤差の範囲内か否かに基づいて、めっき処理の良否を判定することができる。 As described above, the control unit 3 determines whether the temperature of the plating solution L1 detected by the temperature detection sensor 40 indicates a desired temperature higher than the ambient temperature around the substrate W over the entire processing surface Sw of the substrate W. The quality of the plating process can be determined based on the scale. In addition, the control unit 3 can determine the quality of the plating process based on whether the temperature detected by the temperature detection sensor 40 is within the range of the tolerance over the entire processing surface Sw.
 制御部3によって判定されためっき処理の良否の結果は、ユーザに対する報知、後段における基板Wを使った処理、及び他の任意の処理に用いることができる。例えば制御部3は、めっき処理の良否の判定結果(例えばエラーメッセージ)をディスプレイに表示したり、当該判定結果を音声(例えばエラー音)により出力したりすることができる。また制御部3は、判定結果がめっき処理の不良を示す場合には、めっき液供給部53から処理面Sw上に所望温度のめっき液L1を追加供給してめっき液L1のパドルを再形成したり、ヒータ63の発熱温度を調整してめっき処理の適正化を行ったりしてもよい。また制御部3は、めっき処理の良否の判定結果と個々の基板Wとを関連づけて記憶デバイスに記憶しておき、後段の処理において、記憶デバイスに記憶されたその関連情報を活用してもよい。 The result of the quality of the plating process determined by the control unit 3 can be used for notification to the user, processing using the substrate W in the subsequent stage, and any other processing. For example, the control unit 3 can display the determination result (for example, an error message) of the quality of the plating process on a display, or can output the determination result by voice (for example, an error sound). In addition, when the determination result indicates that the plating process is defective, the control unit 3 additionally supplies the plating solution L1 having a desired temperature from the plating solution supply unit 53 onto the processing surface Sw to reform the paddle of the plating solution L1. Alternatively, the heat generation temperature of the heater 63 may be adjusted to optimize the plating process. In addition, the control unit 3 may store the determination result of the quality of the plating process and the individual substrates W in the storage device in association with each other, and utilize the related information stored in the storage device in the subsequent processing. .
 次に、このような構成からなる本実施の形態の作用について、図3を用いて説明する。ここでは、基板液処理方法の一例として、めっき処理装置1を用いためっき処理方法について説明する。 Next, the operation of the present embodiment having such a configuration will be described with reference to FIG. Here, a plating processing method using the plating processing apparatus 1 will be described as an example of the substrate liquid processing method.
 めっき処理装置1によって実施されるめっき処理方法は、基板Wに対するめっき処理を含む。めっき処理は、めっき処理部5により実施される。以下に示すめっき処理部5の動作は、制御部3によって制御される。なお、下記の処理が行われている間、ファンフィルターユニット59から清浄な空気がチャンバ51内に供給され、排気管81に向かって流れる。 The plating method implemented by the plating apparatus 1 includes a plating process on the substrate W. The plating process is performed by the plating unit 5. The operation of the plating processing unit 5 described below is controlled by the control unit 3. During the following processing, clean air is supplied from the fan filter unit 59 into the chamber 51 and flows toward the exhaust pipe 81.
 まず、めっき処理部5に基板Wが搬入され、基板Wが基板保持部52によって水平に保持される(ステップS1)。 First, the substrate W is carried into the plating processing unit 5, and the substrate W is held horizontally by the substrate holding unit 52 (step S1).
 次に、基板保持部52に保持された基板Wの洗浄処理が行われる(ステップS2)。この洗浄処理では、まず回転モータ523が駆動されて基板Wが所定の回転数で回転し、続いて、退避位置に位置づけられていたノズルアーム56が吐出位置に移動し、回転する基板Wに洗浄液ノズル541から洗浄液L2が供給されて、基板Wの表面が洗浄される。これにより基板Wに付着した付着物等が基板Wから除去される。基板Wに供給された洗浄液L2はドレンダクト581に排出される。 Next, cleaning processing of the substrate W held by the substrate holding unit 52 is performed (step S2). In this cleaning process, the rotary motor 523 is first driven to rotate the substrate W at a predetermined number of rotations, and then the nozzle arm 56 positioned at the retracted position is moved to the discharge position, and the rotating substrate W is cleaned The cleaning liquid L2 is supplied from the nozzle 541 to clean the surface of the substrate W. As a result, the deposit or the like attached to the substrate W is removed from the substrate W. The cleaning liquid L2 supplied to the substrate W is discharged to the drain duct 581.
 続いて、基板Wのリンス処理が行われる(ステップS3)。このリンス処理では、回転する基板Wにリンス液ノズル551からリンス液L3が供給されて、基板Wの表面がリンス処理される。これにより基板W上に残存する洗浄液L2が洗い流される。基板Wに供給されたリンス液L3はドレンダクト581に排出される。 Subsequently, a rinse process is performed on the substrate W (step S3). In this rinse process, the rinse solution L3 is supplied from the rinse solution nozzle 551 to the rotating substrate W to rinse the surface of the substrate W. Thus, the cleaning liquid L2 remaining on the substrate W is washed away. The rinse liquid L3 supplied to the substrate W is discharged to the drain duct 581.
 次に、基板Wの処理面Sw上にめっき液L1のパドルを形成するめっき液盛り付け工程が行われる(ステップS4)。この工程では、まず、基板Wの回転数がリンス処理時の回転数よりも低減され、例えば基板Wの回転数を50~150rpmにしてもよい。これにより、基板W上に形成されるめっき膜を均一化させることができる。なお、基板Wの回転を停止させて、めっき液L1の盛り付け量を増大してもよい。続いて、めっき液ノズル531から基板Wの上面(すなわち処理面Sw)にめっき液L1が吐出される。このめっき液L1は表面張力によって処理面Swに留まり、めっき液L1の層(いわゆるパドル)が形成される。めっき液L1の一部は、処理面Swから流出してドレンダクト581介して排出される。所定量のめっき液L1がめっき液ノズル531から吐出された後、めっき液L1の吐出が停止される。その後、ノズルアーム56は退避位置に位置づけられる。 Next, a plating solution application step of forming a paddle of the plating solution L1 on the processing surface Sw of the substrate W is performed (step S4). In this step, first, the number of rotations of the substrate W is reduced compared to the number of rotations at the time of the rinse process, and for example, the number of rotations of the substrate W may be 50 to 150 rpm. Thereby, the plating film formed on the substrate W can be made uniform. The amount of deposition of the plating solution L1 may be increased by stopping the rotation of the substrate W. Subsequently, the plating solution L1 is discharged from the plating solution nozzle 531 to the upper surface (that is, the processing surface Sw) of the substrate W. The plating solution L1 remains on the treated surface Sw due to surface tension, and a layer (so-called paddle) of the plating solution L1 is formed. A portion of the plating solution L1 flows out of the processing surface Sw and is discharged through the drain duct 581. After the predetermined amount of plating solution L1 is discharged from the plating solution nozzle 531, the discharge of the plating solution L1 is stopped. Thereafter, the nozzle arm 56 is positioned at the retracted position.
 次に、めっき液加熱処理工程として、基板W上に盛り付けられためっき液L1が加熱される。このめっき液加熱処理工程は、蓋体6が基板Wを覆う工程(ステップS5)と、不活性ガスを供給する工程(ステップS6)と、蓋体6を下方位置に配置してめっき液L1を加熱する加熱工程(ステップS7)と、蓋体6を基板W上から退避する工程(ステップS8)と、を有する。なお、めっき液加熱処理工程においても、基板Wの回転数は、めっき液盛り付け工程と同様の速度(あるいは回転停止)で維持されることが好適である。 Next, as a plating solution heat treatment step, the plating solution L1 deposited on the substrate W is heated. In the plating solution heating process, a process of covering the substrate W with the cover 6 (step S5), a process of supplying an inert gas (step S6), and the process of arranging the cover 6 at a lower position A heating step (step S7) of heating and a step (step S8) of retracting the lid 6 from above the substrate W are included. Also in the plating solution heat treatment step, the number of rotations of the substrate W is preferably maintained at the same speed (or the rotation stop) as the plating solution deposition step.
 蓋体6が基板Wを覆う工程(ステップS5)では、まず、蓋体移動機構7の旋回モータ72が駆動されて、退避位置に位置づけられていた蓋体6が水平方向に旋回移動して、上方位置に位置づけられる。続いて、蓋体移動機構7のシリンダ73が駆動されて、上方位置に位置づけられた蓋体6が下降して下方位置に位置づけられ、基板Wが蓋体6によって覆われて、基板Wの周囲の空間が閉塞化される。 In the step of covering the substrate W with the lid 6 (step S5), first, the swing motor 72 of the lid moving mechanism 7 is driven to horizontally move the lid 6 positioned at the retracted position in the horizontal direction. It is located at the upper position. Subsequently, the cylinder 73 of the lid moving mechanism 7 is driven, and the lid 6 positioned at the upper position is lowered and positioned at the lower position, and the substrate W is covered by the lid 6 and the periphery of the substrate W Space is blocked.
 基板Wが蓋体6によって覆われた後、蓋体6の天井部61に設けられたガスノズル661から蓋体6の内側に不活性ガスが吐き出される(ステップS6)。これにより蓋体6の内側の空気が不活性ガスに置換され、基板Wの周囲が低酸素雰囲気になる。不活性ガスは、所定時間吐出され、その後、不活性ガスの吐出を停止する。 After the substrate W is covered by the lid 6, an inert gas is discharged from the gas nozzle 661 provided on the ceiling 61 of the lid 6 to the inside of the lid 6 (step S6). Thereby, the air inside the lid 6 is replaced with the inert gas, and the periphery of the substrate W becomes a low oxygen atmosphere. The inert gas is discharged for a predetermined time, and then the discharge of the inert gas is stopped.
 次に、基板W上に盛り付けられためっき液L1が加熱される(ステップS7)。めっき液L1の温度が、めっき液L1中の成分が析出する温度まで上昇すると、基板Wの上面にめっき液L1の成分が析出してめっき膜が形成され成長する。この加熱工程では、所望厚さのめっき膜を得るのに必要な時間、めっき液L1は加熱されて析出温度に維持される。 Next, the plating solution L1 deposited on the substrate W is heated (step S7). When the temperature of the plating solution L1 rises to a temperature at which the component in the plating solution L1 precipitates, the component of the plating solution L1 precipitates on the upper surface of the substrate W to form and grow a plating film. In this heating step, the plating solution L1 is heated and maintained at the deposition temperature for a time necessary to obtain a plating film having a desired thickness.
 加熱工程が終了すると、蓋体移動機構7が駆動されて、蓋体6が退避位置に位置づけられる(ステップS8)。このようにして、基板Wのめっき液加熱処理工程(ステップS5~S8)が終了する。 When the heating process is completed, the lid moving mechanism 7 is driven to position the lid 6 at the retracted position (step S8). Thus, the plating solution heat treatment process (steps S5 to S8) of the substrate W is completed.
 次に、基板Wのリンス処理が行われる(ステップS9)。このリンス処理では、まず、基板Wの回転数をめっき処理時の回転数よりも増大させ、例えばめっき処理前の基板リンス処理工程(ステップS3)と同様の回転数で基板Wを回転させる。続いて、退避位置に位置づけられていたリンス液ノズル551が、吐出位置に移動する。次に、回転する基板Wにリンス液ノズル551からリンス液L3が供給されて、基板Wの表面が洗浄され、基板W上に残存するめっき液L1が洗い流される。 Next, the substrate W is rinsed (step S9). In this rinse process, first, the number of rotations of the substrate W is increased more than the number of rotations during the plating process, and the substrate W is rotated at the same number of rotations as the substrate rinsing process (step S3) before the plating process, for example. Subsequently, the rinse liquid nozzle 551 positioned at the retracted position is moved to the discharge position. Next, the rinse solution L3 is supplied from the rinse solution nozzle 551 to the rotating substrate W, the surface of the substrate W is cleaned, and the plating solution L1 remaining on the substrate W is washed away.
 続いて、基板Wの乾燥処理が行われる(ステップS10)。この乾燥処理では、基板Wを高速で回転させ、例えば基板Wの回転数を基板リンス処理工程(ステップS9)の回転数よりも増大させる。これにより基板W上に残存するリンス液L3が振り切られて除去され、めっき膜が形成された基板Wが得られる。この場合、窒素(N)ガスなどの不活性ガスを基板Wに吹き付けて、基板Wの乾燥を促進してもよい。 Subsequently, the substrate W is dried (step S10). In this drying process, the substrate W is rotated at a high speed, and, for example, the number of rotations of the substrate W is increased more than the number of rotations of the substrate rinsing process (step S9). Thereby, the rinse liquid L3 remaining on the substrate W is shaken off and removed, and the substrate W on which the plating film is formed is obtained. In this case, drying of the substrate W may be promoted by blowing an inert gas such as nitrogen (N 2 ) gas onto the substrate W.
 その後、基板Wが基板保持部52から取り出されて、めっき処理部5から搬出される(ステップS11)。 Thereafter, the substrate W is taken out of the substrate holding unit 52 and carried out of the plating processing unit 5 (step S11).
 めっき処理方法は、上述の一連のステップS1~ステップS11を経て行われ、特に、基板保持部52により保持された基板Wの処理面Swにめっき液L1を供給して処理面Sw上にめっき液L1のパドルを形成する工程(ステップS4)と、めっき液L1のパドルによってめっき処理を行う工程(ステップS5~ステップS8)と、が行われる。この一連の流れの中で、制御部3は、「処理面Sw上にめっき液L1のパドルが実質的に形成された後(すなわちステップS4の後)であって、実質的なめっき処理が始まる前(すなわちステップS5の前)」のタイミング(図3の符合「T1」参照)と、「実質的なめっき処理が終わった後(すなわちステップS8の後)」のタイミング(図3の符合「T2」参照)とのうち、少なくとも「実質的なめっき処理が終わった後」のタイミングにおいて、温度検出センサ40の検出結果を取得する。特に、温度検出センサ40の温度検出は処理面Sw上のめっき液L1を検出対象として行われるため、「実質的なめっき処理が終わった後」のタイミングで行われる温度検出センサ40による温度検出は、ステップS8(「蓋体退避工程」)の後であってステップS9(「基板リンス処理工程」)の前に行われる。なお上述のように、温度検出センサ40の温度検出及び制御部3の検出結果取得は、上述のステップS4~ステップS9及び他のステップが行われている間、継続的に行われてもよい。 The plating processing method is performed through the above-described series of steps S1 to S11. In particular, the plating solution L1 is supplied to the processing surface Sw of the substrate W held by the substrate holding unit 52, and the plating solution is applied onto the processing surface Sw. A step of forming a paddle of L1 (step S4) and a step of performing plating treatment by a paddle of the plating solution L1 (step S5 to step S8) are performed. In the series of flow, the control unit 3 “follows that the substantial plating process is started after the paddle of the plating solution L1 is substantially formed on the processing surface Sw (ie after step S4). The timing before (ie, before step S5) "(see symbol" T1 "in FIG. 3) and the timing after" the substantial plating process is completed (ie after step S8) "(symbol" T2 "in FIG. 3) Among them, the detection result of the temperature detection sensor 40 is acquired at least at a timing “after the substantial plating process is completed”. In particular, since the temperature detection of the temperature detection sensor 40 is performed with the plating solution L1 on the processing surface Sw as a detection target, the temperature detection by the temperature detection sensor 40 performed at the timing of “after the substantial plating process is completed” is , And after step S8 ("cover retracting step") and before step S9 ("substrate rinse processing step"). As described above, the temperature detection of the temperature detection sensor 40 and the detection result acquisition of the control unit 3 may be continuously performed while the above-described steps S4 to S9 and other steps are performed.
 以上説明したように本実施の形態では、処理面Sw上にめっき液L1のパドルが形成された後であってめっき処理が始まる前と、めっき処理が終わった後とのうち、少なくともめっき処理が終わった後において、温度検出センサ40により検出された温度を取得することにより、めっき処理の良否を基板W毎に判定することができる。 As described above, in the present embodiment, at least the plating process is performed after the paddle of the plating solution L1 is formed on the treated surface Sw and before the plating process starts and after the plating process ends. After completion, the quality of the plating process can be determined for each substrate W by acquiring the temperature detected by the temperature detection sensor 40.
 特に、処理面Swの全体にわたって、温度検出センサ40により検出される温度が、基板Wの周囲の雰囲気温度よりも高い所望温度以上を示すか否かに基づいて、めっき処理の良否を簡単かつ高精度に判定を行うことができる。同様に、温度検出センサ40により検出される温度が処理面Swの全体にわたって許容誤差の範囲内か否かに基づいて、めっき処理の良否を簡単かつ高精度に判定を行うことができる。 In particular, based on whether or not the temperature detected by the temperature detection sensor 40 indicates a desired temperature higher than the ambient temperature around the substrate W over the entire processing surface Sw, the quality of the plating process is simple and high The determination can be made to the accuracy. Similarly, based on whether or not the temperature detected by the temperature detection sensor 40 is within the range of the tolerance over the entire processing surface Sw, it is possible to easily and accurately determine the quality of the plating process.
 また温度検出センサ40を基板保持部52に対して固定的に設けることによって、構成を複雑にすることなく温度検出センサ40をめっき処理部5に据え付けることができる。一方、温度検出センサ40を基板保持部52に対して移動可能に設けることによって、様々な装置構成において、基板Wの処理面Sw上のめっき液L1の温度を適切に検出することができる。 Further, by fixedly providing the temperature detection sensor 40 with respect to the substrate holding unit 52, the temperature detection sensor 40 can be installed in the plating processing unit 5 without complicating the configuration. On the other hand, by providing the temperature detection sensor 40 movably with respect to the substrate holding unit 52, the temperature of the plating solution L1 on the processing surface Sw of the substrate W can be appropriately detected in various device configurations.
 また処理面Sw上のめっき液L1の温度を検出する際に温度検出センサ40を処理面Swよりも上方に配置することによって、処理面Swの全体にわたるめっき液L1の温度を簡単かつ高精度に検出することができる。特に温度検出センサ40として赤外線センサを用いることによって、比較的安価かつ簡単に装置を構成することができる。 Further, by disposing the temperature detection sensor 40 above the processing surface Sw when detecting the temperature of the plating solution L1 on the processing surface Sw, the temperature of the plating solution L1 across the entire processing surface Sw can be made simply and accurately. It can be detected. In particular, by using an infrared sensor as the temperature detection sensor 40, the apparatus can be configured relatively inexpensively and easily.
 上述のように本実施の形態のめっき処理部5は、処理面Sw上におけるめっき液L1の温度を検出することで、めっき処理の良否を判定する。したがって本実施の形態は、液供給部53から基板Wに供給されるめっき液L1が、基板Wの周囲の雰囲気温度よりも高い温度を有する場合に特に有効である。またヒータ63からの熱によってめっき液L1が加熱された状態でめっき処理が行われる場合に、本実施の形態は特に有効である。 As described above, the plating processing unit 5 of the present embodiment determines the quality of the plating process by detecting the temperature of the plating solution L1 on the processing surface Sw. Therefore, the present embodiment is particularly effective when the plating solution L1 supplied from the solution supply unit 53 to the substrate W has a temperature higher than the ambient temperature around the substrate W. In the case where the plating process is performed in a state where the plating solution L1 is heated by the heat from the heater 63, the present embodiment is particularly effective.
 なお、本発明は上記実施の形態および変形例そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施の形態および変形例に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。実施の形態および変形例に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施の形態および変形例にわたる構成要素を適宜組み合わせてもよい。 The present invention is not limited to the above embodiment and modification as it is, and at the implementation stage, the constituent elements can be modified and embodied without departing from the scope of the invention. Further, various inventions can be formed by appropriate combinations of a plurality of constituent elements disclosed in the above-described embodiment and modification. Some components may be deleted from all the components shown in the embodiment and the modification. Furthermore, components in different embodiments and variations may be combined as appropriate.
 例えば、めっき液L1以外の処理液及びめっき処理以外の液処理に対しても本発明に係る基板液処理装置及び基板液処理方法は有効である。また、基板液処理装置(めっき処理装置1)の動作を制御するためのコンピュータにより実行されたときに、コンピュータが基板液処理装置を制御して上述のような基板液処理方法を実行させるプログラムが記録された記録媒体(例えば制御部3の記録媒体31)として、本発明が具体化されてもよい。 For example, the substrate liquid processing apparatus and the substrate liquid processing method according to the present invention are effective for processing liquids other than the plating liquid L1 and liquid processing other than the plating processing. In addition, there is a program that when executed by a computer for controlling the operation of the substrate liquid processing apparatus (plating processing apparatus 1), the computer controls the substrate liquid processing apparatus to execute the above-described substrate liquid processing method. The present invention may be embodied as a recorded recording medium (for example, the recording medium 31 of the control unit 3).
1     めっき処理装置
3     制御部
31    記録媒体
40    温度検出センサ
52    基板保持部
53    めっき液供給部
L1    めっき液
Sw    処理面
W     基板
Reference Signs List 1 plating processing apparatus 3 control unit 31 recording medium 40 temperature detection sensor 52 substrate holding unit 53 plating solution supply unit L1 plating solution Sw treated surface W substrate

Claims (11)

  1.  処理液によって基板の処理面の液処理を行う基板液処理装置であって、
     前記基板を保持する基板保持部と、
     前記基板保持部により保持された前記基板の前記処理面に前記処理液を供給する処理液供給部と、
     前記処理面上の前記処理液の温度を検出する温度検出センサと、
     前記温度検出センサに接続される制御部と、を備え、
     前記制御部は、前記処理面上に前記処理液のパドルが形成された後であって前記液処理が始まる前と、前記液処理が終わった後とのうち、少なくとも前記液処理が終わった後において、前記温度検出センサにより検出された前記温度を取得する基板液処理装置。
    A substrate liquid processing apparatus that performs liquid processing on a processing surface of a substrate with a processing liquid,
    A substrate holding unit for holding the substrate;
    A processing liquid supply unit that supplies the processing liquid to the processing surface of the substrate held by the substrate holding unit;
    A temperature detection sensor for detecting the temperature of the processing liquid on the processing surface;
    A control unit connected to the temperature detection sensor;
    The control unit is configured to set the processing surface after the paddles of the processing liquid are formed on the processing surface and before the liquid processing starts and after the liquid processing ends, at least after the liquid processing ends. A substrate liquid processing apparatus for acquiring the temperature detected by the temperature detection sensor.
  2.  前記制御部は、前記処理面の全体にわたって、前記温度検出センサにより検出される前記温度が、前記基板の周囲の雰囲気温度よりも高い所望温度以上を示すか否かに基づいて、前記液処理の良否を判定する請求項1に記載の基板液処理装置。 The control unit is configured to perform the liquid processing based on whether the temperature detected by the temperature detection sensor indicates a desired temperature higher than an ambient temperature around the substrate over the entire processing surface. The substrate liquid processing apparatus according to claim 1, wherein the quality is determined.
  3.  前記制御部は、前記温度検出センサにより検出される前記温度が前記処理面の全体にわたって許容誤差の範囲内か否かに基づいて、前記液処理の良否を判定する請求項1又は2に記載の基板液処理装置。 The said control part determines the quality of the said liquid process based on whether the said temperature detected by the said temperature detection sensor is in the range of the tolerance over the whole of the said processing surface. Substrate liquid processing equipment.
  4.  前記温度検出センサは、前記基板保持部に対して固定的に設けられる請求項1~3のいずれか一項に記載の基板液処理装置。 The substrate liquid processing apparatus according to any one of claims 1 to 3, wherein the temperature detection sensor is fixed to the substrate holding unit.
  5.  前記温度検出センサは、前記基板保持部に対して移動可能に設けられる請求項1~4のいずれか一項に記載の基板液処理装置。 The substrate liquid processing apparatus according to any one of claims 1 to 4, wherein the temperature detection sensor is provided movably with respect to the substrate holding unit.
  6.  前記温度検出センサは、前記温度を検出する際、前記処理面よりも上方に位置する請求項1~5のいずれか一項に記載の基板液処理装置。 The substrate liquid processing apparatus according to any one of claims 1 to 5, wherein the temperature detection sensor is positioned above the processing surface when detecting the temperature.
  7.  前記温度検出センサは赤外線センサである請求項1~6のいずれか一項に記載の基板液処理装置。 The substrate liquid processing apparatus according to any one of claims 1 to 6, wherein the temperature detection sensor is an infrared sensor.
  8.  前記処理液供給部は、前記基板の周囲の雰囲気温度よりも高い温度を有する前記処理液を前記処理面に供給する請求項1~7のいずれか一項に記載の基板液処理装置。 The substrate liquid processing apparatus according to any one of claims 1 to 7, wherein the processing liquid supply unit supplies the processing liquid having a temperature higher than the ambient temperature around the substrate to the processing surface.
  9.  熱を発するヒータを更に備え、
     前記液処理は、前記ヒータから発せられる熱によって、前記処理面上の前記処理液が加熱された状態で行われる請求項1~8のいずれか一項に記載の基板液処理装置。
    It is further equipped with a heater that emits heat,
    The substrate liquid processing apparatus according to any one of claims 1 to 8, wherein the liquid processing is performed in a state where the processing liquid on the processing surface is heated by heat generated from the heater.
  10.  処理液によって基板の処理面の液処理を行う基板液処理方法であって、
     基板保持部により保持された前記基板の前記処理面に前記処理液を供給して前記処理面上に前記処理液のパドルを形成する工程と、
     前記処理面上に前記処理液のパドルが形成された状態で前記液処理を行う工程と、を備え、
     前記処理面上に前記処理液のパドルが形成された後であって前記液処理が始まる前と、前記液処理が終わった後とのうち、少なくとも前記液処理が終わった後において、温度検出センサにより検出された前記処理面上の前記処理液の温度が取得される基板液処理方法。
    A substrate liquid processing method for processing a processing surface of a substrate with a processing liquid, comprising:
    Supplying the processing liquid to the processing surface of the substrate held by the substrate holder to form a paddle of the processing liquid on the processing surface;
    Performing the liquid processing in a state where a paddle of the processing liquid is formed on the processing surface,
    A temperature detection sensor at least after the liquid processing is completed, before the liquid processing starts after the paddle of the processing liquid is formed on the processing surface, and after the liquid processing ends. The substrate liquid processing method by which the temperature of the said processing liquid on the said processing surface detected by was acquired.
  11.  基板液処理装置の動作を制御するためのコンピュータにより実行されたときに、前記コンピュータが前記基板液処理装置を制御して請求項10に記載の基板液処理方法を実行させるプログラムが記録された記録媒体。 A computer program recorded on a computer program for controlling the operation of a substrate liquid processing apparatus, wherein the computer controls the substrate liquid processing apparatus to execute the substrate liquid processing method according to claim 10. Medium.
PCT/JP2018/043495 2017-11-28 2018-11-27 Substrate-liquid treatment device, substrate-liquid treatment method, and recording medium WO2019107330A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-228088 2017-11-28
JP2017228088A JP2021028405A (en) 2017-11-28 2017-11-28 Substrate liquid processing apparatus, substrate liquid processing method and recording medium

Publications (1)

Publication Number Publication Date
WO2019107330A1 true WO2019107330A1 (en) 2019-06-06

Family

ID=66665003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043495 WO2019107330A1 (en) 2017-11-28 2018-11-27 Substrate-liquid treatment device, substrate-liquid treatment method, and recording medium

Country Status (3)

Country Link
JP (1) JP2021028405A (en)
TW (1) TW201932642A (en)
WO (1) WO2019107330A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021039432A1 (en) * 2019-08-27 2021-03-04

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04298017A (en) * 1991-03-27 1992-10-21 Dainippon Printing Co Ltd Method and device for stabilizing temperature in developing device or wet etching device
JP2005060792A (en) * 2003-08-18 2005-03-10 Tokyo Electron Ltd Electroless plating apparatus and electroless plating method
JP2015191895A (en) * 2014-03-27 2015-11-02 芝浦メカトロニクス株式会社 Substrate processing device and substrate processing method
JP2017082290A (en) * 2015-10-28 2017-05-18 東京エレクトロン株式会社 Plating treatment apparatus and plating treatment method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04298017A (en) * 1991-03-27 1992-10-21 Dainippon Printing Co Ltd Method and device for stabilizing temperature in developing device or wet etching device
JP2005060792A (en) * 2003-08-18 2005-03-10 Tokyo Electron Ltd Electroless plating apparatus and electroless plating method
JP2015191895A (en) * 2014-03-27 2015-11-02 芝浦メカトロニクス株式会社 Substrate processing device and substrate processing method
JP2017082290A (en) * 2015-10-28 2017-05-18 東京エレクトロン株式会社 Plating treatment apparatus and plating treatment method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021039432A1 (en) * 2019-08-27 2021-03-04
WO2021039432A1 (en) * 2019-08-27 2021-03-04 東京エレクトロン株式会社 Substrate liquid-treatment method, substrate liquid-treatment device, and computer-readable recording medium
JP7297905B2 (en) 2019-08-27 2023-06-26 東京エレクトロン株式会社 SUBSTRATE LIQUID PROCESSING METHOD, SUBSTRATE LIQUID PROCESSING APPARATUS AND COMPUTER-READABLE RECORDING MEDIUM

Also Published As

Publication number Publication date
TW201932642A (en) 2019-08-16
JP2021028405A (en) 2021-02-25

Similar Documents

Publication Publication Date Title
JP6736386B2 (en) Substrate liquid processing apparatus, substrate liquid processing method and recording medium
WO2019107330A1 (en) Substrate-liquid treatment device, substrate-liquid treatment method, and recording medium
JP2023169215A (en) Apparatus and method for processing substrate
US11795546B2 (en) Substrate liquid processing apparatus, substrate liquid processing method and recording medium
US20170121822A1 (en) Plating apparatus, plating method and recording medium
JP7221414B2 (en) SUBSTRATE LIQUID PROCESSING METHOD AND SUBSTRATE LIQUID PROCESSING APPARATUS
WO2019116939A1 (en) Substrate liquid processing apparatus
JP7267470B2 (en) Substrate processing method and substrate processing apparatus
JP7262582B2 (en) Substrate processing method and substrate processing apparatus
JP7090710B2 (en) Substrate liquid treatment equipment and substrate liquid treatment method
WO2022220168A1 (en) Substrate processing method, substrate processing device, and storage medium
WO2019107331A1 (en) Substrate liquid processing device
WO2022168614A1 (en) Plating method and plating device
TWI822821B (en) Substrate processing device and substrate processing method
WO2020100804A1 (en) Substrate liquid processing apparatus and substrate liquid processing method
TW202121520A (en) Substrate liquid-treatment method, substrate liquid-treatment device, and computer-readable recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18882817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP