WO2019107060A1 - 照明制御システムおよび照明制御方法 - Google Patents
照明制御システムおよび照明制御方法 Download PDFInfo
- Publication number
- WO2019107060A1 WO2019107060A1 PCT/JP2018/040698 JP2018040698W WO2019107060A1 WO 2019107060 A1 WO2019107060 A1 WO 2019107060A1 JP 2018040698 W JP2018040698 W JP 2018040698W WO 2019107060 A1 WO2019107060 A1 WO 2019107060A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- visible image
- unit
- visible
- brightness
- viewpoint
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
- Y02B20/40—Control techniques providing energy savings, e.g. smart controller or presence detection
Definitions
- the present invention relates to a lighting control system that detects a person's position and a person's orientation from a visible image captured by a camera, and makes the illumination environment of the person's visual field region appropriate.
- a plurality of cameras for capturing images within the field of view of a person from different directions in the illumination space are installed, the luminance distribution within the range captured by the plurality of cameras is measured, and within the images captured by the plurality of cameras Detects the direction of view of the person present, dims the lighting fixture based on the luminance distribution in the image taken of the detected direction of the view of the person, and performs illumination control adapted to the sense of the person who is the occupant of the room (See, for example, Patent Document 1).
- the face of the person in order to detect the direction of view of a person, the face of the person must be detected from the image, and a plurality of cameras are installed in all directions so that the face of the person is captured. I needed to.
- the luminance distribution used for light adjustment control is calculated by selecting an image obtained by capturing the direction of view of a person from among images captured by a plurality of cameras. For this reason, the image captured by the camera is an image with the camera installation position as a viewpoint, and not an image of a field of view seen by a person from a person's point of view.
- the lighting environment created by controlling the lighting equipment based on the luminance distribution created from the image with the camera installation position as a viewpoint is not always comfortable for the person who is in the room .
- the present invention has been made to solve the above problems, and converts the visible image captured by the camera into a visible image that matches the human viewpoint, and calculates the luminance distribution of the visible image after image conversion,
- An object of the present invention is to provide a lighting control system capable of lighting control capable of obtaining a comfortable lighting space for people without having to install a plurality of cameras in all directions by controlling a lighting fixture from this luminance distribution.
- a visible image acquisition unit for acquiring a visible image and a visual field region of a person are input, and the visible image acquisition unit converts the visible image acquired by the visible image acquisition unit into a visible image of a human viewpoint in the visual field region.
- a visible image captured by a visible camera installed on a ceiling or a wall of an indoor space is image converted into an image matching a human viewpoint, and the luminance distribution of the visible image after image conversion is calculated.
- FIG. 1 is a block diagram showing a configuration of a lighting control system according to Embodiment 1 for carrying out the present invention.
- the illumination control system 100 includes a visible image acquisition unit 1, a viewpoint conversion unit 4, a luminance distribution calculation unit 5, and a light adjustment control unit 7.
- a visible camera (not shown) for capturing a visible image of the indoor space is installed at a position where the indoor space can be viewed, for example, a ceiling, a pillar or a wall.
- the visible camera captures an indoor space, and outputs the captured visible image to the visible image acquisition unit 1 together with the imaging time (imaging date and time).
- the visible image acquisition unit 1 outputs the acquired camera viewpoint visible image to the viewpoint conversion unit 4 together with the shooting time.
- the visible image acquired by the visible image acquisition unit 1 is a visible image (hereinafter referred to as a camera viewpoint visible image) having a position at which the visible camera is installed as a viewpoint.
- the visible image output from the viewpoint conversion unit 4 is a visible image obtained by subjecting the camera visible image to a viewpoint conversion (hereinafter referred to as a human viewpoint visible image) such that the shooting viewpoint becomes the human viewpoint from the viewpoint of the camera installation position. It is.
- the viewpoint conversion unit 4 receives a camera viewpoint visible image from the visible image acquisition unit 1 and externally inputs a visual field area of a person who is a room occupant. An area in which a person is looking, that is, an area which falls in the person's view is set as a person's view area.
- the viewpoint conversion unit 4 extracts the visible image of the area corresponding to the visual field of the human among the entire area of the visible visual image of the camera, and the person's view A visual point conversion process is performed from the camera visual point visible image of the area corresponding to the visual field area to the human visual point visible image, and the image is converted. That is, the viewpoint conversion unit 4 converts the camera viewpoint visible image into a human viewpoint visible image in the field of view of a person.
- the viewpoint conversion unit 4 outputs the human viewpoint visible image after image conversion to the luminance distribution calculation unit 5.
- the luminance distribution calculation unit 5 calculates the luminance distribution in the visual field region based on the human viewpoint visible image input from the viewpoint conversion unit 4. Then, the luminance distribution calculation unit 5 calculates the light scattering characteristic (hereinafter referred to as the scattering characteristic) of each partial region constituting the human viewpoint visible image input from the outside and the human viewpoint visible image input from the viewpoint conversion unit 4 The luminance distribution in the visual field area is corrected based on the human's viewpoint direction for each partial area in the inside. The luminance distribution calculation unit 5 outputs the luminance distribution in the view area after the correction to the light adjustment control unit 7.
- the dimming control unit 7 controls the dimming of the lighting apparatus based on the luminance distribution input from the luminance distribution calculating unit 5.
- FIG. 2 is a flow chart for explaining the operation of the lighting control system according to the first embodiment of the present invention.
- the current camera viewpoint visual image is taken by the visible camera.
- the visible image acquisition unit 1 acquires a camera viewpoint visible image captured by a visible camera (step S1).
- a visible camera a wide fisheye visible camera with a lens with a field angle of 180 degrees or more, which is generally called a fisheye lens, is used.
- the angle of view is preferably 180 degrees or more, but may be 180 degrees or less.
- the luminance is calculated to be small because the amount of light in the peripheral region of the acquired image is smaller than that in the central portion. Therefore, it is possible to calculate the luminance distribution more accurately by correcting the shortage.
- the amount of correction depends on the lens of the camera and the characteristics of the light receiving element. Therefore, it is preferable to prepare, for each camera, correction data in which the correction amount for each partial area is described.
- the method of calculating the correction data is as follows. A luminance distribution is created from a fisheye visible image taken with a fisheye visible camera. The measured luminance of the subject shown in the fisheye visible image is measured for each partial area using a luminance meter or a spectral radiance meter used for illumination measurement. The correction data can be calculated from the correction coefficient of the luminance distribution and the measured luminance.
- FIG. 3 is a view showing the relationship between the direction of the person, the work area of the person, and the visual field of the person, which is a part of the camera viewpoint visible image captured by the visible camera installed on the ceiling.
- d1 indicates a person appearing in a camera viewpoint visible image
- a region indicated by d2 indicates a human work area
- a region indicated by d3 indicates a human visual field
- an arrow d4 indicates a person's direction.
- a work area of a person there is, for example, a desk top surface.
- the black circular area of d1 indicates the human head, and the hatched area around the black circular indicates the upper body of the person, mainly the arms.
- the viewpoint conversion unit 4 inputs a visual field of a person from the outside (step S2).
- the position of the person and the direction of the person are estimated based on the arrangement of the desks and chairs installed in the indoor space, and the visual field of the person is estimated in advance based on the position of the person and the direction of the person.
- the position of a person may be detected from a thermal image obtained by photographing the same space with an infrared camera or the like, and the visual field of the person may be estimated based on the information on the position of the person.
- the viewpoint conversion unit 4 extracts a visible image of a region corresponding to the visual field region of a person from the entire region of the camera viewpoint visible image. Then, the viewpoint conversion unit 4 performs viewpoint conversion processing from the camera viewpoint visible image of the area corresponding to the human visual field to the human viewpoint visible image so that the shooting viewpoint becomes the human viewpoint from the viewpoint of the camera installation position. Image conversion is performed (step S3).
- FIG. 4 is a conceptual view of image conversion processing performed by the viewpoint conversion unit 4.
- FIG. 4A is a camera viewpoint visible image in the case where the angle of view is 180 degrees, and is a camera viewpoint visible image captured as a viewpoint of the camera installation position.
- the area indicated by d3 corresponds to the visual field area d3 of the person shown in FIG.
- FIG. 4B is a human viewpoint visible image obtained by performing image conversion on the camera viewpoint visible image so that the shooting viewpoint becomes the human viewpoint from the viewpoint of the camera installation position.
- the visual field area of a person shown by d3 in FIG. 4A corresponds to the entire area in FIG.
- the viewpoint conversion unit 4 cuts out a region corresponding to d3 from the camera viewpoint visible image, and then performs coordinate conversion processing on the cut out image so that the shooting viewpoint is from the camera installation position to the human viewpoint.
- coordinate conversion processing it is possible to perform viewpoint conversion processing from a camera viewpoint visible image of a region corresponding to a human visual field to a human viewpoint visible image.
- a coordinate conversion table may be held in advance for each of a plurality of partial areas constituting a camera viewpoint visible image, and coordinate conversion processing may be performed using the coordinate conversion table. Further, the coordinate conversion processing may be performed by smoothly deforming the center of the visual field area to the peripheral portion so that the visual field area becomes rectangular.
- a sensor capable of acquiring depth information may be installed at the visible camera installation position, and the coordinate conversion table may be created using the depth information.
- the human viewpoint visible image converted by the viewpoint conversion unit 4 is input to the luminance distribution calculation unit 5.
- the luminance distribution calculation unit 5 calculates the luminance distribution in the visual field based on the human viewpoint visible image converted by the viewpoint conversion unit 4 and the scattering characteristics for each partial region constituting the human viewpoint visible image input from the outside. Calculate (step S4).
- FIG. 5 is an explanatory view for explaining the scattering characteristic.
- the first is a uniform diffuse reflection surface which diffuses uniformly in all directions shown in FIG. 5 (a).
- the luminance of the target surface is constant from any direction.
- the second is a mirror surface shown in FIG.
- Light having the same luminance as the light source enters only when the object plane is viewed from the reflection angle direction at the same angle as the incident angle to the object plane, that is, the regular reflection direction. Light does not enter even if you look at the target surface from other directions.
- the third is the scattering surface shown in FIG. 5 (c).
- the scattering surface has properties of both a uniform diffusive reflective surface and a mirror surface, and the specular reflection direction has a high luminance, and the other has an intensity distribution close to the uniform diffusive reflective surface.
- Each pixel of the visible image has values of R (Red), G (Green), and B (Blue) signals.
- a luminance image is generated by calculating the luminance of each pixel from each value of R, G, and B.
- the luminance Y is calculated using equation (1).
- Y 0.257R + 0.504G + 0.098B + 16 (1)
- the average luminance of each partial region of the human-viewpoint visible image may be calculated as the luminance distribution.
- FIG. 6 is an explanatory diagram of a method of correcting the luminance distribution.
- FIG. 6 shows the scattering characteristics of the target surface and the relationship between the visible camera and the human viewpoint.
- the broken arrow in FIG. 6 indicates the intensity distribution of the scattering characteristic.
- the scattering characteristic of the target surface acquired in advance or the scattering characteristic measured and estimated by a visible camera is used.
- the luminance ratio B / A which is the ratio of the luminance A in the visible camera direction and the luminance B in the viewpoint direction, is calculated based on the scattering characteristics, and the luminance ratio is calculated as a correction coefficient.
- the luminance distribution from any arbitrary viewpoint P can be calculated more accurately by multiplying the luminance of each partial region calculated from the human viewpoint visible image.
- the correction coefficient luminance ratio
- the range of obtainable luminance is limited by the exposure setting at the time of capturing.
- the gradation of the R, G, and B values of each pixel is also limited to 256 gradations, etc., a plurality of visible images with different exposures may be photographed and synthesized in order to correctly measure the luminance. is necessary.
- the visible image acquisition unit 1 acquires a plurality of visible images captured with different exposure settings of the visible camera.
- the viewpoint conversion unit 4 performs processing of viewpoint conversion on each visible image.
- the luminance distribution calculating unit 5 performs the calculation of the luminance distribution and the correction based on the scattering characteristic on each visible image subjected to the viewpoint conversion, and adds the luminance distribution after the correction to the luminance in the visual field area.
- the distribution is output to the dimming control unit 7 as a distribution.
- the light adjustment control unit 7 performs light adjustment control of the indoor space so as to obtain an illumination space in which the person feels comfortable in the visual field area of the person based on the luminance distribution calculated by the luminance distribution calculation unit 5.
- the dimming control unit 7 specifies a lighting device to be dimmed among lighting fixtures installed on a ceiling, a wall, a pillar, and the like of the indoor space when performing the light control (step S5). Then, the light adjustment control unit 7 individually adjusts the illuminance of each of the specified lighting fixtures to perform light adjustment control (step S6).
- FIG. 7 is a block diagram showing the configuration of another example of the illumination control system according to Embodiment 1 of the present invention.
- the illumination control system 110 shown in FIG. 7 does not perform light adjustment control based on the luminance distribution of the visual field area, but estimates the brightness of the visual field area based on the luminance distribution of the visual field area The light adjustment control is performed based on the above.
- the brightness estimating unit 6 estimates the brightness of the indoor space based on the brightness distribution in the visual field area input from the brightness distribution calculating unit 5.
- the brightness estimation unit 6 calculates the brightness from the brightness distribution for the brightness of each partial area of the human-viewpoint visible image or the brightness distribution of the entire area of the human-viewpoint visible image.
- the index indicating the brightness includes, for example, an average brightness, an average illuminance, and a feeling of brightness.
- the sense of brightness is an index of brightness in consideration of the influence of the contrast with the peripheral brightness on how the person feels, and a known technique is used to estimate the brightness based on the brightness distribution.
- the brightness estimation unit 6 outputs the estimated brightness to the dimming control unit 7.
- the light adjustment control unit 7 performs light adjustment control of the indoor space so as to obtain an illumination space in which a person feels comfortable in the visual field region of the person based on the brightness calculated by the brightness estimation unit 6.
- the dimming control unit 7 specifies a lighting fixture to be dimmed among lighting fixtures installed on a ceiling, a wall, a pillar, and the like of the indoor space, when performing the lighting control. And the light control control part 7 adjusts light intensity of each specified lighting fixture separately, and performs light control.
- the dimming control unit 7 controls the luminaire existing in the visual field area of the person or in the periphery of the visual field area of the person as a control target. Dimming the luminaire so that the illumination approaches the desired value. Then, in the illumination control system 110, the operation from the acquisition of the visible image in the visible image acquisition unit 1 to the light adjustment control in the light adjustment control unit 7 is performed until the brightness estimated by the brightness estimation unit 6 becomes a desired value. repeat.
- the desired values are, for example, 500 lux in the working area, and 300 lux in the viewing area other than the working area.
- JIS Japanese Industrial Standards
- the visible camera may be a normal visible camera instead of a fisheye visible camera.
- the visible image acquisition unit 1 may combine visible images acquired by a plurality of visible cameras to create a visible image obtained by imaging a wider space.
- a visible image captured and output by a visible camera may be an image after image processing in the camera, and there is a problem that the luminance can not be estimated correctly when the luminance is significantly corrected by the image processing.
- the luminance value of the subject is measured at multiple points using a luminance meter or a spectral radiance meter used for illumination measurement, and the image processing characteristics of the visible camera are estimated to obtain a visible image
- the image processing characteristic may be inversely corrected and output from the visible image acquisition unit 1 using the luminance value measured later.
- the image conversion is performed from the camera viewpoint visible image to the human viewpoint visible image, and the luminance distribution and brightness are estimated based on the human viewpoint visible image. It is possible to estimate the brightness of the indoor space with fewer sensors than using the sensors to estimate the brightness of the indoor space. And, by performing the light adjustment control based on the current brightness, it is possible to obtain the effect of being able to provide a comfortable illumination space for people. Further, also in the case where daylight enters the indoor space, similarly, by dimming the illumination based on the current brightness, an effect of being able to provide the designated illumination environment can be obtained.
- FIG. 8 is a block diagram showing a configuration of a lighting control system according to Embodiment 2 for implementing the present invention.
- the illumination control system 200 includes a visible image acquisition unit 1, a human position / direction detection unit 2, a visual field area estimation unit 3, a viewpoint conversion unit 4, a luminance distribution calculation unit 5, and light control. And a control unit 7.
- the human position / orientation detection unit 2 and the visual field area estimation unit 3 are provided, and the visual field area of a person is estimated from the visible image acquired by the visible image acquisition unit 1.
- the point to be input to the viewpoint conversion unit 4 is different from the first embodiment.
- a visible camera (not shown) for capturing a visible image of the indoor space is installed at a position where the indoor space can be viewed, for example, a ceiling, a pillar, or a wall.
- the visible camera captures an indoor space, and outputs the captured visible image to the visible image acquisition unit 1 along with the imaging time.
- the visible image acquisition unit 1 outputs the acquired camera visual point visible image to the human position / direction detection unit 2 and the viewpoint conversion unit 4 together with the photographing time.
- the person position / direction detection unit 2 receives the camera viewpoint visible image from the visible image acquisition unit 1 and detects the position of the person present in the indoor space and the direction of the person from the camera viewpoint visible image.
- the visual field area estimation unit 3 selects the visual field area of the person based on the camera viewpoint visible image input from the human position / direction detection unit 2, the position of the person detected by the human position / direction detection unit 2 and the direction of the person. It estimates and outputs the visual field area in the camera visual point visible image to the visual point conversion unit 4.
- the viewpoint conversion unit 4 receives a camera viewpoint visible image from the visible image acquisition unit 1 and receives a visual field region of a person who is an occupant from the visual field region estimation unit 3.
- the viewpoint conversion unit 4 extracts the visible image of the area corresponding to the visual field of the human among the entire area of the visible visual image of the camera, and the person's view A visual point conversion process is performed from the camera visual point visible image of the area corresponding to the visual field area to the human visual point visible image, and the image is converted. That is, the viewpoint conversion unit 4 converts the camera viewpoint visible image into a human viewpoint visible image in the field of view of a person.
- the viewpoint conversion unit 4 outputs the human viewpoint visible image after image conversion to the luminance distribution calculation unit 5.
- the luminance distribution calculation unit 5 calculates the luminance distribution in the visual field region based on the human visual point visible image input from the visual point conversion unit 4, and the scattering characteristics for each partial region constituting the human visual point visual image input from the outside The luminance distribution in the visual field area is corrected based on the visual point direction of each partial area in the human visual point visible image input from the visual point conversion unit 4.
- the luminance distribution calculation unit 5 outputs the luminance distribution in the view area after the correction to the light adjustment control unit 7.
- the dimming control unit 7 controls the dimming of the lighting apparatus based on the luminance distribution input from the luminance distribution calculating unit 5.
- the current camera viewpoint visual image is taken by the visible camera.
- the visible image acquisition unit 1 acquires a camera viewpoint visible image captured by a visible camera.
- the camera viewpoint visible image is input to the human position / direction detection unit 2.
- the person position / direction detection unit 2 detects a person based on the camera viewpoint visible image.
- the method of detecting a person from an image uses a known technique. For example, it is possible to detect a person from an image by holding pattern images of human shapes as a database and performing pattern matching.
- the visible camera is installed at a position where it can look at the indoor space, even if a person appears in the visible image, there are not many cases where it appears in a resolution that can recognize the person's face.
- the shape of the upper body of the head and the body viewed from a high position of a column or wall (a position higher than the height of a person) or a ceiling is used as a pattern image.
- the person position / direction detection unit 2 detects the coordinates of one point included in the area where the detected person is shown as the position of the person.
- the coordinates of the center of the head are detected as the position of a person.
- a visible camera a wide fisheye visible camera with a lens with a field angle of 180 degrees or more, which is generally called a fisheye lens, is used.
- the angle of view is preferably 180 degrees or more, but may be 180 degrees or less.
- the person position / direction detection unit 2 detects the direction of the person.
- the person d1 captured in the camera viewpoint visible image, the person's work area d2, the person's field of view d3, and the person's direction d4 are as shown in FIG.
- the person position / direction detection unit 2 detects the direction d4 of the person using this.
- the orientation of the person is represented by a vector from the coordinates of the position of the person.
- the visual field area estimation unit 3 receives the position and orientation of the person detected by the human position / direction detection unit 2 and the camera viewpoint visible image input from the visible image acquisition unit 1 to the human position / direction detection unit 2 Be done.
- the visual field area estimation unit 3 estimates the visual field area of a person shown by d3 in FIG. 3 from the camera viewpoint visual image.
- An area in which a person is looking that is, an area which falls in the person's view is set as a person's view area.
- the visual field region of a person is a region of about 180 degrees in the horizontal direction centering on d4 which is the direction in which the person is facing.
- the visual field of the person is included in the visual field as shown in the camera visual point in the direction in which the person is facing from the position of the person, unless there is an obstacle such as a partition or shelf at a height that obstructs the person's visual field.
- the image conversion may be performed such that the visual field area becomes semicircular when the position of the person is the viewpoint.
- the visual field area of a person estimated by the visual field area estimation unit 3 is input to the viewpoint conversion unit 4.
- the visual field area input to the visual point conversion unit 4 is an area corresponding to the visual field area of a person in the camera visual point visible image.
- the viewpoint conversion unit 4 first extracts a visible image of a region corresponding to the visual field region of a person from the entire region of the camera viewpoint visible image acquired by the visible image acquisition unit 1. Next, the camera visual point visible image of the area corresponding to the human visual field area is converted to the human visual point visible image so that the photographing visual point becomes the human visual point from the visual point of the camera installation position.
- the d3 shown in FIG. 3 described in the first embodiment indicates the visual field area of the person estimated by the visual field area estimation unit 3.
- the viewpoint conversion unit 4 cuts out a region corresponding to d3 from the camera viewpoint visible image, and then performs coordinate conversion processing on the cut out image so that the shooting viewpoint is from the camera installation position to the human viewpoint.
- coordinate conversion processing it is possible to perform viewpoint conversion processing from a camera viewpoint visible image of a region corresponding to a human visual field to a human viewpoint visible image.
- a coordinate conversion table may be held in advance for each of a plurality of partial areas constituting a camera viewpoint visible image, and coordinate conversion processing may be performed using the coordinate conversion table. Further, the coordinate conversion processing may be performed by smoothly deforming the center of the visual field area to the peripheral portion so that the visual field area becomes rectangular.
- a sensor capable of acquiring depth information may be installed at the visible camera installation position, and the coordinate conversion table may be created using the depth information.
- the human viewpoint visible image converted by the viewpoint conversion unit 4 is input to the luminance distribution calculation unit 5.
- the luminance distribution calculation unit 5 calculates the luminance distribution in the visual field region from the human viewpoint visible image which is image-converted by the viewpoint conversion unit 4. Specifically, each pixel of the visible image has the value of each signal of R, G, and B, and a luminance image is generated by calculating the luminance of each pixel from each value of R, G, and B.
- the luminance distribution calculation unit 5 calculates the luminance distribution in the visual field based on the human viewpoint visible image converted by the viewpoint conversion unit 4 and the scattering characteristics for each partial region constituting the human viewpoint visible image input from the outside. calculate.
- the method of calculating the luminance distribution is the same as the contents described in the first embodiment.
- the luminance distribution calculation unit 5 outputs the luminance distribution in the visual field area to the dimming control unit 7.
- the light adjustment control unit 7 performs light adjustment control of the indoor space so as to obtain an illumination space in which the person feels comfortable in the visual field area of the person based on the luminance distribution calculated by the luminance distribution calculation unit 5.
- the dimming control unit 7 specifies a lighting fixture to be dimmed among lighting fixtures installed on a ceiling, a wall, a pillar, and the like of the indoor space, when performing the lighting control. And the light control control part 7 adjusts light intensity of each identified lighting fixture separately, and performs light control.
- FIG. 9 is a block diagram showing the configuration of another example of the illumination control system according to Embodiment 2 of the present invention.
- the illumination control system 210 shown in FIG. 9 light adjustment control is not performed based on the luminance distribution of the visual field region, but the brightness of the visual field region is estimated based on the luminance distribution of the visual field region.
- the light adjustment control is performed based on the above.
- the brightness estimating unit 6 estimates the brightness of the indoor space based on the brightness distribution in the visual field area input from the brightness distribution calculating unit 5.
- the brightness estimation unit 6 calculates the brightness from the brightness distribution for the brightness of each partial area of the human-viewpoint visible image or the brightness distribution of the entire area of the human-viewpoint visible image.
- the index indicating the brightness includes, for example, an average brightness, an average illuminance, and a feeling of brightness.
- the sense of brightness is an index of brightness in consideration of the influence of the contrast with the peripheral brightness on how the person feels, and a known technique is used to estimate the brightness based on the brightness distribution.
- the brightness estimation unit 6 outputs the estimated brightness to the dimming control unit 7.
- the light adjustment control unit 7 performs light adjustment control of the indoor space so as to obtain an illumination space in which a person feels comfortable in the visual field region of the person based on the brightness calculated by the brightness estimation unit 6.
- the dimming control unit 7 specifies a lighting fixture to be dimmed among lighting fixtures installed on a ceiling, a wall, a pillar, and the like of the indoor space, when performing the lighting control. And the light control control part 7 adjusts light intensity of each specified lighting fixture separately, and performs light control.
- the dimming control unit 7 controls the luminaire existing in the visual field area of the person or in the periphery of the visual field area of the person as a control target. Dimming the luminaire so that the illumination approaches the desired value. Then, in the illumination control system 210, the operation from acquisition of the visible image in the visible image acquisition unit 1 to light adjustment control in the light adjustment control unit 7 until the brightness estimated by the brightness estimation unit 6 becomes a desired value. repeat.
- the desired values are, for example, 500 lux in the working area, and 300 lux in the viewing area other than the working area.
- the work area can be specified, such as a desk surface of an office, it is possible to provide a lighting environment that meets the JIS illuminance standard with the lighting control system of the present invention.
- the visible camera may be a normal visible camera instead of a fisheye visible camera.
- the visible image acquisition unit 1 may combine visible images acquired by a plurality of visible cameras to create a visible image obtained by imaging a wider space.
- the visible image captured by the visible camera and output may be an image after image processing in the camera, and when the luminance is significantly corrected by the image processing, there is a problem that the luminance can not be estimated correctly.
- the luminance value of the subject is measured at multiple points using a luminance meter or a spectral radiance meter used for illumination measurement, and the image processing characteristics of the visible camera are estimated to obtain a visible image
- the image processing characteristic may be inversely corrected and output from the visible image acquisition unit 1 using the luminance value measured later.
- the image conversion from the camera viewpoint visible image to the human viewpoint visible image is performed, and the luminance distribution and brightness are estimated based on the human viewpoint visible image. It is possible to estimate the brightness of the indoor space with fewer sensors than using the sensors to estimate the brightness of the indoor space. And, by performing the light adjustment control based on the current brightness, it is possible to obtain the effect of being able to provide a comfortable illumination space for people. Further, also in the case where daylight enters the indoor space, similarly, by dimming the illumination based on the current brightness, an effect of being able to provide the designated illumination environment can be obtained.
- the visual field area of the person can be estimated.
- the brightness distribution and brightness are estimated after the image of the visible camera installation position viewpoint is converted to the image of the human viewpoint, the brightness felt by the person can be estimated more accurately, and the room is occupied in the indoor space.
- the effect of providing a desired illumination environment can be obtained by dimming the illumination based on the brightness felt by the person currently in the room.
- FIG. 10 is a block diagram showing a configuration of a lighting control system according to Embodiment 3 for carrying out the present invention.
- the illumination control system 300 includes a visible image acquisition unit 1, a human position / direction detection unit 2a, a visual field area estimation unit 3, a viewpoint conversion unit 4, a luminance distribution calculation unit 5, and light control.
- a unit 7, an image storage unit 8, a scattering characteristic estimation unit 9, and a second viewpoint conversion unit 14 are provided.
- the second embodiment differs from the second embodiment in that an image storage unit 8, a scattering characteristic estimation unit 9, and a second viewpoint conversion unit 14 are provided.
- a visible camera (not shown) for capturing a visible image of the indoor space is installed at a position where the indoor space can be viewed, for example, a ceiling, a pillar or a wall.
- the visible camera captures an indoor space, and outputs the captured visible image to the visible image acquisition unit 1 along with the imaging time.
- the visible image acquiring unit 1 outputs the acquired camera visual point visible image to the human position / orientation detecting unit 2a, the viewpoint converting unit 4, the image storage unit 8, and the scattering characteristic estimating unit 9 together with the photographing time.
- the image storage unit 8 stores the camera viewpoint visible image acquired by the visible image acquisition unit 1 and the shooting time of the camera viewpoint visible image.
- the image storage unit 8 outputs the camera viewpoint visible image at the photographing time specified by the human position / direction detection unit 2a to the human position / direction detection unit 2a. Further, the image storage unit 8 outputs the camera viewpoint visible image at the photographing time specified by the scattering characteristic estimation unit 9 to the scattering characteristic estimation unit 9.
- the person position / direction detection unit 2a is a position of a person who is in the room, from the camera viewpoint visible image acquired by the visible image acquisition unit 1 and the camera viewpoint visible image stored in the image storage unit 8. Detect the direction of the person.
- the camera viewpoint visual image acquired by the visible image acquisition unit 1, the position of the person who is the room occupant, and the direction of the person are output to the visual field area estimation unit 3.
- the visual field area estimation unit 3 is based on the camera viewpoint visible image input from the person position / direction detection unit 2a and the position and orientation of the person in the camera viewpoint visible image detected by the person position / direction detection unit 2a.
- the visual field area of a person is estimated, and the visual field area in the camera visual point visible image is output to the visual point conversion unit 4.
- the viewpoint conversion unit 4 receives a camera viewpoint visible image from the visible image acquisition unit 1 and receives a visual field region of a person who is an occupant from the visual field region estimation unit 3.
- the viewpoint conversion unit 4 extracts the visible image of the area corresponding to the visual field of the human among the entire area of the visible visual image of the camera, and the person's view A visual point conversion process is performed from the camera visual point visible image of the area corresponding to the visual field area to the human visual point visible image, and the image is converted. That is, the viewpoint conversion unit 4 converts the camera viewpoint visible image into a human viewpoint visible image in the field of view of a person.
- the viewpoint conversion unit 4 outputs the human viewpoint visible image after image conversion to the luminance distribution calculation unit 5.
- the scattering characteristic estimation unit 9 extracts a plurality of camera viewpoint visible images different in photographing time from the camera viewpoint visible image acquired by the visible image acquisition unit 1 and the camera viewpoint visible image stored in the image storage unit 8 The scattering characteristic is estimated for each of a plurality of partial areas constituting the camera viewpoint visible image acquired by the visible image acquisition unit 1. Then, the scattering characteristic subjected to the viewpoint conversion process from the camera viewpoint visible image to the human viewpoint visible image in the second viewpoint conversion unit 14 is output to the luminance distribution calculation unit 5.
- the luminance distribution calculating unit 5 calculates the luminance distribution in the visual field region based on the human visual point visible image input from the visual point converting unit 4, and forms the human visual point visible image input from the second visual point converting unit 14
- the luminance distribution in the visual field area is corrected based on the scattering characteristic for each area and the visual point direction for each partial area in the human visual point visible image input from the visual point conversion unit 4.
- the luminance distribution in the visual field area after correction is output to the dimming control unit 7.
- the dimming control unit 7 controls the dimming of the lighting apparatus based on the luminance distribution input from the luminance distribution calculating unit 5.
- a visible image acquisition unit 1 having the same reference numeral as that of the second embodiment, a visual field area estimation unit 3, a viewpoint conversion unit 4, a luminance distribution calculation unit 5, and light control
- the unit 7 performs the same operation as that of the second embodiment, and thus the description thereof is omitted in the present embodiment.
- the current camera viewpoint visual image is taken by the visible camera.
- the visible image acquisition unit 1 acquires a camera viewpoint visible image captured by a visible camera.
- the camera viewpoint visible image acquired by the visible image acquisition unit 1 is input to the image storage unit 8 along with the photographing time.
- the image storage unit 8 stores the camera viewpoint visible image and the shooting time.
- the image storage unit 8 receives an output request for the camera viewpoint visible image at the shooting time specified by the person position / direction detection unit 2a from the person position / direction detection unit 2a
- the image storage unit 8 receives the camera viewpoint visible image at the corresponding shooting time. Output to the position / orientation detection unit 2a.
- the image storage unit 8 When the image storage unit 8 receives an output request for the camera viewpoint visible image at the shooting time specified by the scattering characteristic estimation unit 9 from the scattering characteristic estimation unit 9, the image storage unit 8 scatters the camera viewpoint visible image at the corresponding shooting time. Output to the estimation unit 9.
- the human position / direction detection unit 2a detects the position and the position of a person who is present in the room based on the camera visual point visible image acquired by the visible image acquisition unit 1 and the camera visual point visual image stored in the image storage unit 8. To detect the direction of The human position / direction detection unit 2a requests the image storage unit 8 to output a camera viewpoint visible image whose photographing time is several minutes to several tens of minutes before the photographing time acquired by the visible image acquisition unit 1.
- the human position / orientation detection unit 2a calculates a difference value between two camera viewpoint visible images. An area where the difference value is larger than the peripheral pixels is detected as a person, and the coordinates of one point in the area are taken as the position of the person.
- the method of detecting the direction of the person uses the same method as the method of detection performed by the person position / direction detection unit 2 according to the second embodiment. Further, as a method of estimating the visual field area, the same method as the estimation method performed by the visual field area estimation unit 3 of the second embodiment is used.
- the scattering characteristic estimation unit 9 estimates scattering characteristics of the projected subject for each of the partial regions constituting the camera viewpoint visible image, using a plurality of camera viewpoint visible images different in photographing time.
- the scattering characteristic estimation unit 9 requests the image storage unit 8 to output a camera viewpoint visible image at shooting times at which the position of the light source is different.
- the photographing time at which the position of the light source is different is, for example, a time every constant time from the sunrise time to the sunset time when the light source is daylight.
- it is the lighting time of the lighting fixture from which the angle of the light which hits a to-be-photographed object differs.
- the scattering characteristic can be more accurately estimated if the number of camera viewpoint visible images is large.
- FIG. 11 is an explanatory view illustrating scattering characteristics in different target planes.
- the estimation method of the scattering characteristic will be described with reference to FIG.
- Each figure of FIG. 11 has shown the brightness
- the dashed arrows in the figure represent the intensity distribution of the scattering characteristic.
- (A1), (a2), (a3), (b1), (b2), (b3), (c1), (c2), (c3) in FIG. 11 are respectively the same object plane.
- the target planes in (a1), (a2) and (a3) in FIG. 11 do not depend on the position of the light source, and the luminance entering the visible camera is constant. At this time, the scattering characteristic of the target surface is estimated to be a uniform diffuse reflection surface.
- the object plane in (b1), (b2) and (b3) in FIG. 11 has light entering the visible camera only in the case of (b2). At this time, the scattering characteristic of the target surface is estimated to be a mirror surface that reflects light only in a specific direction, and is stored in the scattering characteristic estimation unit 9 as a scattering characteristic along with the direction of regular reflection.
- the target surfaces in (c1), (c2) and (c3) in FIG. 11 have different luminances captured by the visible camera depending on the position of the light source.
- the target surface is estimated to be a scattering surface, and the reflection characteristics of the target surface (the direction in which light is reflected and the intensity distribution of the reflected light) are generated based on the incident direction of the light source and the acquired luminance of the visible camera. It is stored in the scattering characteristic estimation unit 9 as a scattering characteristic.
- the scattering characteristic estimation unit 9 may output the scattering characteristic to the brightness distribution calculating unit 5 by using the entire area of the camera viewpoint visible image as the uniform diffuse reflection surface without estimating the scattering characteristic.
- the scattering characteristic estimation unit 9 Since the scattering characteristic is determined by the material of the object, the scattering characteristic estimation unit 9 does not change the scattering characteristic when the article installed in the indoor space photographed by the visible camera does not change. Therefore, the scattering characteristic estimation unit 9 temporarily estimates the scattering characteristics of the entire area of the camera viewpoint visible image, and accumulates the scattering characteristics so that the camera viewpoint image is scattered every time the visible image acquisition unit 1 is input. There is no need to estimate the characteristics.
- the correction coefficient luminance ratio
- the scattering characteristic estimation unit 9 estimates the scattering characteristic for each partial region with respect to the whole region of the camera viewpoint visible image
- the present invention is not limited to this.
- the scattering properties may be estimated only for However, in this case, it is necessary to estimate the scattering characteristic each time the camera viewpoint visible image is input from the visible image acquisition unit 1.
- the scattering characteristic estimated by the scattering characteristic estimating unit 9 is subjected to viewpoint conversion processing from the camera viewpoint visible image to the human viewpoint visible image by the second viewpoint converting unit 14, and is output to the luminance distribution calculating unit 5.
- the viewpoint conversion process in the second viewpoint conversion unit 14 is the same as that of the viewpoint conversion unit 4.
- the scattering characteristic estimation unit 9 generates a database of light distribution and luminous flux of the lighting fixtures installed in a plurality of places in the indoor space, and instructs the light adjustment control unit 7 to individually turn on the lighting fixtures.
- the intensity of light reflected from each lighting fixture and the target surface is acquired.
- the scattering characteristic estimation unit 9 estimates the angle of incidence on the target surface and the emission angle from the positional relationship between the lighting fixture, the target surface, and the visible image acquisition unit 1 and estimates the scattering characteristics as shown in FIG. It can also be done.
- the target surface is, for example, a desk surface.
- the luminance distribution calculating unit 5 is based on the human viewpoint visible image input from the viewpoint converting unit 4 and the scattering characteristics for each partial region constituting the human viewpoint visible image input from the scattering characteristic estimating unit 9 in the visual field region.
- the luminance distribution is calculated and output to the dimming control unit 7.
- the dimming control unit 7 controls the dimming of the lighting apparatus based on the luminance distribution input from the luminance distribution calculating unit 5.
- FIG. 12 is a block diagram showing the configuration of another example of the illumination control system according to Embodiment 3 of the present invention.
- the illumination control system 310 shown in FIG. 12 does not perform light adjustment control based on the luminance distribution of the visual field area, but estimates the brightness of the visual field area based on the luminance distribution of the visual field area.
- the light adjustment control is performed based on the above.
- a brightness estimation unit 6 is added, and the scattering characteristic estimation unit 9 is changed to the scattering characteristic / reflectance estimation unit 19.
- the scattering characteristic / reflectance estimation unit 19 has a plurality of camera viewpoint visible images different in photographing time from the camera viewpoint visible image acquired by the visible image acquisition unit 1 and the camera viewpoint visible image stored in the image storage unit 8. Are extracted, and the scattering characteristics and the reflectance are estimated for each of a plurality of partial areas constituting the camera viewpoint visible image acquired by the visible image acquisition unit 1. Then, the second viewpoint conversion unit 14 performs viewpoint conversion processing from the camera viewpoint visible image to the human viewpoint visible image with respect to the scattering characteristic, and outputs the scattering characteristic subjected to the viewpoint conversion processing to the luminance distribution calculation unit 5. Further, the second viewpoint conversion unit 14 performs viewpoint conversion processing from the camera viewpoint visible image to the human viewpoint visible image with respect to the reflectance, and outputs the reflectance subjected to the viewpoint conversion processing to the brightness estimation unit 6.
- the brightness estimating unit 6 estimates the brightness of the indoor space based on the brightness distribution in the visual field area input from the brightness distribution calculating unit 5.
- the brightness estimation unit 6 calculates the brightness from the brightness distribution for the brightness of each partial area of the human-viewpoint visible image or the brightness distribution of the entire area of the human-viewpoint visible image.
- the index indicating the brightness includes, for example, an average brightness, an average illuminance, and a feeling of brightness.
- the sense of brightness is an index of brightness in consideration of the influence of the contrast with the peripheral brightness on how the person feels, and a known technique is used to estimate the brightness based on the brightness distribution.
- the brightness estimation unit 6 outputs the estimated brightness to the dimming control unit 7.
- the light adjustment control unit 7 performs light adjustment control of the indoor space so as to obtain an illumination space in which a person feels comfortable in the visual field region of the person based on the brightness calculated by the brightness estimation unit 6.
- the dimming control unit 7 specifies a lighting fixture to be dimmed among lighting fixtures installed on a ceiling, a wall, a pillar, and the like of the indoor space, when performing the lighting control. And the light control control part 7 adjusts light intensity of each identified lighting fixture separately, and performs light control.
- the visual field area of a person is estimated by the human position / direction detection unit 2a and the visual field area estimation unit 3.
- the person in the room is from the outside.
- the visual field area of a certain person may be input.
- the image storage unit 8 that accumulates visible images since the image storage unit 8 that accumulates visible images is provided, scattering characteristics for each partial area are obtained using a plurality of camera viewpoint visible images at different photographing times. It becomes possible to estimate. For this reason, it is necessary to measure the scattering characteristics of each partial area of the indoor space in advance and hold it as a database, or to measure the scattering characteristics again every time the equipment such as a desk or shelf installed in the indoor space changes. The effect of being lost is obtained.
- the scattering characteristic / reflectance estimation unit 19 generates a database of light distribution and luminous flux of lighting fixtures installed in a plurality of places in the indoor space, and then instructs the light adjustment control unit 7 to individually identify each lighting fixture. By lighting, the intensity of light reflected from each lighting fixture and the target surface is acquired. Then, the scattering characteristic / reflectance estimating unit 19 estimates the angle of incidence on the object plane and the emission angle from the positional relationship between the lighting apparatus, the object plane, and the visible image acquiring unit 1 and the scattering characteristic as shown in FIG. Can be estimated. As a result, it is possible to obtain the effect that it is not necessary to measure in advance the scattering characteristics and the reflectance for each partial region of the space and to hold it as a database. Furthermore, it becomes possible to perform correction efficiently by estimating the scattering characteristics and the reflectance in a time zone where there are no people, such as midnight.
- an effect is obtained that the position of the person or the direction of the person can be detected more accurately by using a plurality of visible images.
- FIG. 13 is a block diagram showing a configuration of a lighting control system according to Embodiment 4 for carrying out the present invention.
- the illumination control system 400 includes a visible image acquisition unit 1, a viewpoint change unit 24, a luminance distribution calculation unit 5 a, a brightness estimation unit 6 a, a light adjustment control unit 7, and an image storage unit 8. And a reflectance estimation unit 29.
- This embodiment is different from the viewpoint conversion unit 4 in that the brightness estimation unit 6a is provided, and the human position / direction detection unit 2a, the visual field area estimation unit 3 and the second viewpoint changing unit 24 are not provided.
- the third embodiment differs from the third embodiment in that the viewpoint changing unit 24 is replaced with the reflectance estimation unit 29 instead of the scattering characteristic 9.
- a visible camera (not shown) for capturing a visible image of the indoor space is installed at a position where the indoor space can be viewed, for example, a ceiling, a pillar or a wall.
- the visible camera captures an indoor space, and outputs the captured visible image to the visible image acquisition unit 1 along with the imaging time.
- the visible image acquiring unit 1 sends the acquired camera visual point visible image to the viewpoint changing unit 24 and the image storage unit 8 together with the photographing time.
- the image storage unit 8 stores the camera viewpoint visible image acquired by the visible image acquisition unit 1 and the shooting time of the camera viewpoint visible image.
- the image storage unit 8 outputs the camera viewpoint visible image at the photographing time specified by the reflectance estimation unit 29 to the reflectance estimation unit 29.
- the viewpoint changing unit 24 receives a camera viewpoint visible image from the visible image acquisition unit 1 and externally inputs a work area in the camera viewpoint visible image.
- the viewpoint changing unit 24 extracts a visible image of a region (a region corresponding to d2 in FIG. 3) in the externally input camera viewpoint visible image from the camera viewpoint visible image acquired by the visible image acquisition unit 1. Do.
- This visible image is an image obtained by cutting out an image of a region corresponding to a work region in the visual field of a person from the camera viewpoint visible image (hereinafter referred to as a work region visible image).
- the viewpoint changing unit 24 outputs the extracted work area visible image to the luminance distribution calculating unit 5a.
- the luminance distribution calculating unit 5a calculates the luminance distribution in the working area based on the working area visible image input from the viewpoint changing unit 24, and outputs the calculated luminance distribution to the brightness estimating unit 6a.
- the reflectance estimation unit 29 extracts a plurality of camera viewpoint visible images different in photographing time from the camera viewpoint visible image acquired by the visible image acquisition unit 1 and the camera viewpoint visible image stored in the image storage unit 8. The reflectance is estimated for each of a plurality of partial areas constituting the camera viewpoint visible image acquired by the visible image acquisition unit 1.
- the brightness estimation unit 6a is based on the brightness distribution in the work area input from the brightness distribution calculation unit 5a and the reflectance for each partial region constituting the camera viewpoint visible image input from the reflectance estimation unit 29.
- the brightness of the indoor space is estimated, and the estimated brightness is output to the dimming control unit 7.
- the dimming control unit 7 controls the dimming of the lighting apparatus based on the brightness input from the brightness estimation unit 6a.
- the visible image acquisition unit 1 having the same reference numerals as in the third embodiment, the light control control unit 7, and the image storage unit 8 have the same operations as in the third embodiment.
- the description is omitted.
- the viewpoint changing unit 24 in the present embodiment does not perform the viewpoint conversion processing as in the viewpoint conversion unit 4 in the third embodiment, and performs only the extraction processing of the work area input from the outside.
- the luminance distribution calculating unit 5a in the present embodiment differs from the luminance distribution calculating unit 5 in the third embodiment in that no scattering characteristic is input. Therefore, the luminance distribution calculating unit 5a calculates the luminance distribution from the work area visible image input from the viewpoint changing unit 24 in the same manner as the calculation method performed by the luminance distribution calculating unit 5 in the third embodiment. Correction processing of the luminance distribution by the scattering characteristic is not performed.
- the reflectance estimation unit 29 estimates not the scattering characteristic but the reflectance for each partial region in the camera viewpoint visible image.
- the reflectance is the light reception luminance of the visible camera with respect to the luminance of the light source.
- the light reception luminance of the visible camera is the luminance of each pixel value of the camera viewpoint visible image acquired by the visible image acquisition unit 1, and is calculated using the same method as the calculation method performed by the luminance distribution calculator 5a.
- the luminance of the light source needs to be separately measured by providing a luminance sensor for measuring the luminance of the light source, and this measurement value is used for calculating the reflectance as the luminance of the light source.
- the calculated reflectance of the camera viewpoint visible image is input to the brightness estimation unit 6a.
- the brightness estimating unit 6a estimates the illuminance as the brightness from the brightness distribution calculated by the brightness distribution calculating unit 5a and the reflectance estimated by the reflectance estimating unit 29.
- the reflectance output from the reflectance estimation unit 29 is the reflectance of the entire area of the camera viewpoint visible image
- the luminance distribution input from the luminance distribution calculation unit 5a is an area of the camera viewpoint visible image that corresponds to the work area.
- the target area is different. Therefore, when calculating the illuminance in the brightness estimation unit 6a, it is necessary to make the target area the same. Therefore, after extracting the area
- the illuminance calculated by the brightness estimation unit 6 a is input to the light adjustment control unit 7.
- the light adjustment control unit 7 controls the light adjustment of the lighting apparatus so that the illuminance calculated by the brightness estimation unit 6 becomes a desired value so that the illumination space that the person feels comfortable in the visual field region of the person can be obtained.
- the dimming control unit 7 specifies a lighting fixture to be dimmed among lighting fixtures installed on a ceiling, a wall, a pillar, and the like of the indoor space, when performing the lighting control. And the light control control part 7 adjusts light intensity of each specified lighting fixture separately, and performs light control.
- the work area input to the viewpoint changing unit 24 may be a work area of a person who is present, for example, an area of a work desk.
- the lighting control system according to the present embodiment has an effect that the desk surface can be made into a desired lighting environment.
- There is an illuminance standard defined by the JIS standard regardless of how the occupant feels the brightness, and if the average illuminance is the brightness estimated from the luminance distribution by the brightness estimating unit 6a, the desk surface is illuminated with the illuminance standard or higher.
- the illumination control system includes the image storage unit 8 that accumulates visible images, the reflectance for each partial area is estimated using a plurality of camera viewpoint visible images at different photographing times. It will be possible to For this reason, it is necessary to measure in advance the reflectance of each partial area of the indoor space and store it as a database, or to measure the reflectance again every time the equipment such as a desk or shelf installed in the indoor space changes. The effect of being lost is obtained.
- FIG. 14 is a block diagram showing the configuration of a lighting control system according to a fifth embodiment of the present invention.
- the illumination control system 500 includes a visible image acquisition unit 1, a human position / direction detection unit 2a, a visual field area estimation unit 3a, a viewpoint conversion unit 4, a luminance distribution calculation unit 5, and brightness.
- An estimation unit 6a, a light adjustment control unit 7, an image storage unit 8, a scattering characteristic / reflectance estimation unit 19, and a partition position estimation unit 10 are provided.
- the point of including the partition position estimation unit 10 is different from another example of the third embodiment.
- a visible camera (not shown) for capturing a visible image of the indoor space is installed at a position where the indoor space can be viewed, for example, a ceiling, a pillar or a wall.
- the visible camera captures an indoor space, and outputs the captured visible image to the visible image acquisition unit 1 along with the imaging time.
- the visible image acquisition unit 1 sets the acquired camera viewpoint visible image together with the photographing time to the human position / direction detection unit 2a, the viewpoint conversion unit 4, the image storage unit 8, the scattering characteristic / reflectance estimation unit 19, and the partition position estimation unit 10 Output to
- the image storage unit 8 stores the camera viewpoint visible image acquired by the visible image acquisition unit 1 and the shooting time of the camera viewpoint visible image.
- the image storage unit 8 outputs the camera viewpoint visible image at the photographing time specified by the human position / direction detection unit 2 to the human position / direction detection unit 2a. Further, the image storage unit 8 outputs the camera viewpoint visible image at the photographing time specified by the scattering characteristic / reflectance estimating unit 19 to the scattering characteristic / reflectance estimating unit 19. Further, the image storage unit 8 outputs the camera viewpoint visible image at the shooting time specified by the partition position estimation unit 10 to the partition position estimation unit 10.
- the person position / direction detection unit 2a is a position of a person who is in the room, from the camera viewpoint visible image acquired by the visible image acquisition unit 1 and the camera viewpoint visible image stored in the image storage unit 8. Detect the direction of the person.
- the camera viewpoint visible image acquired by the visible image acquiring unit 1, the position of the person who is the person in the room, and the direction of the person are output to the visual field area estimating unit 3a.
- the partition position estimation unit 10 extracts a plurality of camera viewpoint visible images different in photographing time from the camera viewpoint visible image acquired by the visible image acquisition unit 1 and the camera viewpoint visible image stored in the image storage unit 8 The position of the partition arranged in the room is estimated based on a plurality of camera viewpoint visual images different in photographing time, and the estimated position is output to the visual field area estimation unit 3a.
- the visual field area estimation unit 3a estimates the position and orientation of the person in the camera viewpoint visible image input from the person position and orientation detection unit 2a, the camera viewpoint visible image detected by the position and orientation detection unit 2a, and the partition position estimation The visual field area of a person is estimated based on the position of the partition input from the unit 10, and the visual field area in the camera visual point visible image is output to the visual point conversion unit 4.
- the viewpoint conversion unit 4 receives a camera viewpoint visible image from the visible image acquisition unit 1 and receives a visual field region of a person who is an occupant from the visual field region estimation unit 3.
- the viewpoint conversion unit 4 extracts the visible image of the area corresponding to the visual field of the human among the entire area of the visible visual image of the camera, and the person's visual point so that the shooting visual point becomes the human visual point from the viewpoint of the camera installation position.
- a visual point conversion process is performed from the camera visual point visible image of the area corresponding to the visual field area to the human visual point visible image, and the image is converted. That is, the viewpoint conversion unit 4 converts the camera viewpoint visible image into a human viewpoint visible image in the field of view of a person.
- the viewpoint conversion unit 4 outputs the human viewpoint visible image after image conversion to the luminance distribution calculation unit 5.
- the scattering characteristic / reflectance estimation unit 19 has a plurality of camera viewpoint visible images different in photographing time from the camera viewpoint visible image acquired by the visible image acquisition unit 1 and the camera viewpoint visible image stored in the image storage unit 8. Are extracted, and the scattering characteristics and the reflectance are estimated for each of a plurality of partial areas constituting the camera viewpoint visible image acquired by the visible image acquisition unit 1. Then, the second viewpoint conversion unit 14 performs viewpoint conversion processing from the camera viewpoint visible image to the human viewpoint visible image with respect to the scattering characteristic, and outputs the scattering characteristic subjected to the viewpoint conversion processing to the luminance distribution calculation unit 5. Further, the second viewpoint conversion unit 14 performs viewpoint conversion processing from the camera viewpoint visible image to the human viewpoint visible image with respect to the reflectance, and outputs the reflectance subjected to the viewpoint conversion processing to the brightness estimation unit 6a.
- the luminance distribution calculating unit 5 calculates the luminance distribution in the visual field region based on the human visual point visible image input from the visual point converting unit 4, and forms the human visual point visible image input from the second visual point converting unit 14
- the luminance distribution in the visual field area is corrected based on the scattering characteristic for each area and the visual point direction for each partial area in the human visual point visible image input from the visual point conversion unit 4.
- the luminance distribution in the view area after correction is output to the brightness estimation unit 6a.
- the brightness estimation unit 6 a is a space based on the luminance distribution in the visual field region input from the luminance distribution calculation unit 5 and the reflectance for each partial region in the human viewpoint visible image input from the second viewpoint conversion unit 14. And the estimated brightness is output to the dimming control unit 7.
- the dimming control unit 7 controls the dimming of the lighting apparatus based on the brightness input from the brightness estimation unit 6a.
- the light adjustment control unit 7 controls the light adjustment of the lighting apparatus based on the luminance distribution input from the luminance distribution calculation unit 5.
- FIG. 16 is a flowchart for explaining the operation of the illumination control system according to the fifth embodiment of the present invention.
- the current camera viewpoint visible image is captured by the visible camera.
- the visible image acquisition unit 1 acquires a camera viewpoint visible image captured by a visible camera.
- the present camera viewpoint visible image is input from the visible image acquisition unit 1 to the partition position estimation unit 10 (step S11).
- the partition position estimation unit 10 performs the processing from step S12 to step S15.
- step S12 The edge of each image is extracted using the current camera viewpoint visible image and the camera viewpoint visible image of another day at the same time (step S12).
- step S13 it is determined whether or not the position of the partition has been changed.
- the difference value between the edges of the two images exceeds a predetermined threshold, the object captured by the visible camera has moved significantly, that is, the layout of the indoor space is changed, and it is determined that the position of the partition has changed.
- the process proceeds to step S14.
- the edge difference value is equal to or less than the predetermined threshold value, it is determined that the partition position has not been changed, and the process proceeds to step S16.
- step S14 The position of the partition in the camera viewpoint visible image is estimated.
- the method of estimating the position of the partition will be described later.
- the position of the partition estimated in step S14 is stored (step S15), and the process proceeds to step S16.
- the scattering characteristic / reflectance estimating unit 19 performs the processing from step S16 to step S19.
- the difference of the camera viewpoint visible image for each partial area captured in another time zone on the same day as the current camera viewpoint visible image is calculated (step S16).
- the tendency of the difference of the camera viewpoint visible image for each partial area calculated in step S16 is observed, and it is determined whether there is a change in the scattering characteristic and the reflectance (step S17). If the difference is extremely large only in a specific region, the process proceeds to step S18, where it is estimated that the scattering characteristics and the reflectance have been changed (step S18), and the estimated scattering characteristics and the reflectance are stored (step S19). .
- step S17 If it is determined in step S17 that there is no change in the scattering characteristics and the reflectance, the process proceeds to step S20. Note that the change in the scattering characteristics and the reflectance is determined using the difference value of the camera visible image As described above, as in step S13, the determination may be made using the difference value of the edge.
- the person position / direction detection unit 2a detects the position of the person and the direction of the person from the camera viewpoint visible image at the current time and the camera viewpoint visible image several minutes or several minutes earlier (step S20).
- the visual field area estimation unit 3a estimates the visual field area of a person (step S21). If the position of the partition is within the visual field of a person, the visual field is corrected according to the height of the partition.
- the partition is higher than the line of sight of the person, the other side of the partition is not visible to the person, so the person's field of view separates the partition and the other side of the person's position is the person's field of view Exclude from Even if the partition is lower than the line of sight of the person, the area on the opposite side of the position of the person across the partition in the visual field of the person may look differently between the camera viewpoint and the human viewpoint. An index of authenticity may be newly provided, and the authenticity of the same area may be set according to the height of the partition.
- the viewpoint conversion unit 4 extracts the visible image of the area corresponding to the visual field of the human among the entire area of the visible visual image of the camera, and makes the photographing viewpoint be the human viewpoint from the viewpoint of the camera installation position.
- a viewpoint conversion process is performed on the camera viewpoint visible image of the region corresponding to the visual field region to a human viewpoint visible image, and the image is converted (step S22).
- the luminance distribution calculation unit 5 calculates the luminance distribution in the visual field area based on the human viewpoint visible image and the scattering characteristic (step S23).
- the brightness estimating unit 6a estimates the brightness based on the brightness distribution and the reflectance in the viewing area (step S24). The reflectance is used to calculate the illuminance as the brightness.
- the dimming control unit 7 specifies a lighting device to be dimmed (step S25), and finally controls dimming of the lighting device (step S26).
- FIG. 17 is an explanatory diagram for explaining the operation of the partition position estimation unit 10 in the lighting control system according to Embodiment 5 of the present invention.
- the partition position detection method will be described using (a1) and (a2) of FIG. (A1) and (a2) in FIG. 17 show how light is applied to the same partition from different angles. If there is a partition, the position of the light source will cause shadows around the partition. In a visible image captured by a visible camera, a shadow is projected at a lower intensity than the surroundings, and the direction of the shadow changes according to the position of the light source. Use this to estimate the position of the partition.
- the partition height estimation method will be described using (b1) and (b2) in FIG. (B1) and (b2) in FIG. 17 show that the partitions having different heights are illuminated from the same direction. After estimating the position of the partition, attention is paid to one visible image, and the height degree of the partition is estimated from the ratio of the shadow length.
- the target for which the partition position estimation unit 10 estimates the position is not limited to the partition, but may be anything as long as it is an object such as a shelf or a display that blocks the field of view of a person.
- the partition position estimation unit 10 once estimates the partition positions of the entire area of the camera visual point visible image and stores it, the partition position every time the camera visual point image is input from the visible image acquisition unit 1 There is no need to estimate
- the position of the partition is obtained using the change in luminance for each partial area from a plurality of visible images. Since it is possible to estimate the human visual field region more accurately, it is possible to specify a region other than the human visual field, and it is possible to control to turn off unnecessary illumination.
Landscapes
- Circuit Arrangement For Electric Light Sources In General (AREA)
Abstract
可視画像を取得する可視画像取得部(1)と、人の視野領域が入力され、可視画像取得部(1)が取得した可視画像を人の視野領域における人視点の可視画像に画像変換する視点変換部(4)と、視点変換部(4)が画像変換した人視点の可視画像に基づいて人の視野領域の輝度分布を算出する輝度分布算出部(5)と、輝度分布算出部(5)が算出した人の視野領域の輝度分布に基づいて照明器具の調光を制御する調光制御部(7)とを備える。
Description
本発明は、カメラで撮影した可視画像から人の位置と人の向きとを検出し、人の視野領域の照明環境を適切にする照明制御システムに関する。
複数の人が利用する室内空間において、照明環境を最適にするため、従来は、照度センサで測定した室内の照度や、カメラで撮影した室内空間の画像から算出した輝度分布に基づいて、照明器具の調光を制御していた。
例えば、照明空間内で互いに異なる方向から人の視野内の画像を撮像する複数のカメラを設置し、複数のカメラが撮像した範囲内の輝度分布を測定し、複数のカメラが撮像した画像内に存在する人の視野方向を検出し、検出された人の視野方向を撮像した画像内の輝度分布に基づいて照明器具を調光制御し、在室者である人の感覚に適合した照明制御を行っていた(例えば、特許文献1参照)。
しかしながら、上述した特許文献1に記載の技術では、人の視野方向を検知するために画像から人の顔を検出しなければならず、人の顔が映るようにあらゆる方向に複数のカメラを設置する必要があった。また、調光制御に使用する輝度分布は、複数のカメラにより撮像された画像のうち、人の視野方向を撮像した画像を選択して算出している。このため、カメラで撮像された画像はカメラ設置位置を視点とした画像であり、人の視点から人が見ている視野の画像ではないので、人の視野領域の照明環境を正確にセンシングすることができず、カメラ設置位置を視点とした画像から作成された輝度分布に基づいて照明器具を制御して作られた照明環境は、在室者である人にとって必ずしも快適ではないという問題があった。
この発明は、上記の問題を解消するためになされたもので、カメラで撮影した可視画像を人の視点に合わせた可視画像に画像変換し、画像変換後の可視画像の輝度分布を算出し、この輝度分布から照明器具を制御することによって、あらゆる方向に複数のカメラを設置する必要がなく、人にとって快適な照明空間が得られる照明制御ができる照明制御システムを提供することを目的とする。
この発明に係る照明制御システムは、可視画像を取得する可視画像取得部と、人の視野領域が入力され、可視画像取得部が取得した可視画像を視野領域における人視点の可視画像に画像変換する視点変換部と、人視点の可視画像に基づいて視野領域の輝度分布を算出する輝度分布算出部と、輝度分布に基づいて照明器具の調光を制御する調光制御部とを備えたことを特徴とする。
本発明によれば、室内空間の天井または壁面に設置された可視カメラで撮影した可視画像を人の視点に合わせた画像に画像変換し、画像変換後の可視画像の輝度分布を算出し、この輝度分布から照明器具を制御するため、あらゆる方向に複数のカメラを設置する必要がなく、人にとって快適な照明空間が得られる照明制御ができる。
実施の形態1.
図1は、本発明を実施するための実施の形態1に係る照明制御システムの構成を示すブロック図である。本実施の形態に係る照明制御システム100は、可視画像取得部1と、視点変換部4と、輝度分布算出部5と、調光制御部7とを備えている。
図1は、本発明を実施するための実施の形態1に係る照明制御システムの構成を示すブロック図である。本実施の形態に係る照明制御システム100は、可視画像取得部1と、視点変換部4と、輝度分布算出部5と、調光制御部7とを備えている。
まず、本実施の形態に係る照明制御システムの構成について説明する。室内空間を俯瞰できる位置、例えば、天井、柱、または壁に室内空間の可視画像を撮影する可視カメラ(図示しない)を設置する。可視カメラは、室内空間を撮影し、撮影した可視画像を撮影時刻(撮影日時)とともに可視画像取得部1に出力する。可視画像取得部1は、取得したカメラ視点可視画像を撮影時刻とともに視点変換部4へ出力する。可視画像取得部1が取得する可視画像は、可視カメラが設置される位置を視点とした可視画像(以下、カメラ視点可視画像と称す)である。また、視点変換部4が出力する可視画像は、撮影視点がカメラ設置位置の視点から人の視点になるように、カメラ視点可視画像を視点変換した可視画像(以下、人視点可視画像と称す)である。
視点変換部4は、可視画像取得部1からカメラ視点可視画像を入力し、外部から在室者である人の視野領域を入力する。人が見ている領域、つまり人の視野に入る領域を人の視野領域とする。視点変換部4は、カメラ視点可視画像の全領域のうち人の視野領域に相当する領域の可視画像を抽出するとともに、撮影視点がカメラ設置位置の視点から人の視点になるように、人の視野領域に相当する領域のカメラ視点可視画像から人視点可視画像へ視点変換処理を施し、画像変換する。つまり、視点変換部4は、カメラ視点可視画像を人の視野領域における人視点可視画像に画像変換する。視点変換部4は、画像変換後の人視点可視画像を輝度分布算出部5に出力する。
輝度分布算出部5は、視点変換部4から入力された人視点可視画像に基づいて視野領域内の輝度分布を算出する。そして、輝度分布算出部5は、外部から入力された人視点可視画像を構成する部分領域毎の光の散乱特性(以下、散乱特性と称す)と視点変換部4から入力された人視点可視画像内の部分領域毎の人の視点方向とに基づいて視野領域内の輝度分布を補正する。輝度分布算出部5は、補正後の視野領域内の輝度分布を調光制御部7へ出力する。調光制御部7は、輝度分布算出部5から入力された輝度分布に基づいて照明器具の調光を制御する。
次に、動作について説明する。図2は、本発明の実施の形態1に係る照明制御システムの動作を説明するフローチャートである。可視カメラによって現在のカメラ視点可視画像が撮影される。可視画像取得部1は、可視カメラによって撮影されたカメラ視点可視画像を取得する(ステップS1)。可視カメラには、一般的に魚眼レンズといわれる画角180度以上のレンズを搭載した画角の広い魚眼可視カメラを用いる。ただし、広範囲領域の画像情報を取得するために画角は180度以上あることが好ましいが、180度以下でもかまわない。
魚眼可視カメラを用いた場合、取得画像の周辺領域は中央部に比べて光量が不足するため、輝度が小さく算出される。そのため、不足分を補正した方がより正確に輝度分布を算出することが可能である。補正量は、カメラのレンズと受光素子の特性とに依存する。このため、部分領域毎の補正量が記載された補正データをカメラ毎に準備しておくと良い。補正データの算出方法は次のとおりである。魚眼可視カメラで撮影した魚眼可視画像から輝度分布を作成する。照明測定用に使用される輝度計または分光放射輝度計を用いて、魚眼可視画像に映し出された被写体の実測輝度を部分領域毎に測定する。補正データは、輝度分布と実測輝度との補正係数から算出することができる。
図3は、人の向きと人の作業領域と人の視野領域との関係を示す図であり、天井に設置した可視カメラが撮影するカメラ視点可視画像の一部である。図3において、d1はカメラ視点可視画像に映った人を示し、d2で示す領域は人の作業領域、d3で示す領域は人の視野領域を示し、d4の矢印は人の向きを示す。人の作業領域としては、例えば、机上面などがある。d1の黒い円形の領域は人の頭を示し、黒い円形の周辺のハッチングした領域が人の上半身、おもに腕を示す。
次に、視点変換部4は、外部より人の視野領域を入力する(ステップS2)。例えば、室内空間に設置される机や椅子などの配置に基づいて人の位置と人の向きとを推定し、人の位置と人の向きとに基づいて人の視野領域を予め推定しておいてもよい。また、同じ空間を赤外線カメラなどで撮影した熱画像から人の位置を検出し、人の位置の情報に基づいて人の視野領域を推定してもよい。
次に、視点変換部4は、カメラ視点可視画像の全領域のうち人の視野領域に相当する領域の可視画像を抽出する。そして、視点変換部4は、撮影視点がカメラ設置位置の視点から人の視点になるように、人の視野領域に相当する領域のカメラ視点可視画像から人視点可視画像へ視点変換処理を施し、画像変換する(ステップS3)。
図4は、視点変換部4が行う画像変換処理の概念図である。図4(a)は、画角180度の場合のカメラ視点可視画像であり、撮影視点をカメラ設置位置の視点として撮影したカメラ視点可視画像である。図4(a)において、d3で示す領域が図3で示した人の視野領域d3に対応する。図4(b)は、撮影視点がカメラ設置位置の視点から人の視点になるようにカメラ視点可視画像を画像変換した人視点可視画像である。図4(a)のd3で示す人の視野領域が、図4(b)の全領域に相当する。視点変換部4は、カメラ視点可視画像からd3に相当する領域を切り出し、その後、撮影視点がカメラ設置位置から人の視点になるように、切り出した画像に座標変換処理を施す。座標変換処理によって、人の視野領域に相当する領域のカメラ視点可視画像から人視点可視画像へ視点変換処理を施すことができる。
カメラ視点可視画像を構成する複数の部分領域毎に座標変換テーブルを予め保持しておき、座標変換テーブルを用いて座標変換処理は施しても良い。また、視野領域が矩形になるように視野領域の中心から周辺部にかけて滑らかに変形させて座標変換処理は施しても良い。なお、可視カメラ設置位置に奥行き情報を取得できるセンサを設置し、奥行き情報を用いて座標変換テーブルを作成してもよい。
視点変換部4で画像変換された人視点可視画像は、輝度分布算出部5に入力される。輝度分布算出部5は、視点変換部4で画像変換された人視点可視画像と外部から入力される人視点可視画像を構成する部分領域毎の散乱特性とに基づいて視野領域内の輝度分布を算出する(ステップS4)。
ここで、散乱特性について説明する。図5は、散乱特性を説明する説明図である。散乱特性には対象面(反射面)の特性に対応して三つの主要なタイプがある。一つ目は、図5(a)に示す全方向に均等に拡散する均等拡散反射面である。いずれの方向から見ても対象面の輝度は一定である。二つ目は、図5(b)に示す鏡面である。対象面への入射角と同じ角度の反射角方向、すなわち、正反射方向から対象面を見た場合のみ光源と同じ輝度の光が入る。それ以外の方向から対象面を見ても光は入らない。三つ目は、図5(c)に示す散乱面である。散乱面は均等拡散反射面と鏡面の両方の性質を持ち、正反射方向は輝度が高く、それ以外は均等拡散反射面に近い強度分布になる。
次に、輝度分布を算出について説明する。可視画像の各画素はR(Red)、G(Green)、B(Blue)の各信号の値を有している。まず、R、G、Bの各値から各画素の輝度を算出した輝度画像を生成する。輝度Yは、式(1)を用いて算出する。
Y=0.257R+0.504G+0.098B+16 ・・・(1)
なお、人視点可視画像の部分領域毎の平均輝度を算出して輝度分布としてもよい。
Y=0.257R+0.504G+0.098B+16 ・・・(1)
なお、人視点可視画像の部分領域毎の平均輝度を算出して輝度分布としてもよい。
続いて、散乱特性に基づき輝度を補正する。図6は、輝度分布の補正方法の説明図である。図6では、対象面の散乱特性と可視カメラと人の視点との関係を示している。図6の破線矢印は散乱特性の強度分布を示す。予め取得している対象面の散乱特性、または可視カメラにより測定し、推定した散乱特性を用いる。任意の視点Pからの輝度分布に変換する場合、散乱特性に基づいて可視カメラ方向の輝度Aと視点方向の輝度Bとの比率である輝度比率B/Aを算出し、補正係数として輝度比率を人視点可視画像から算出した部分領域毎の輝度に乗じることにより、より正確な任意の視点Pからの輝度分布を算出することができる。なお、カメラ視点可視画像の全領域を均等拡散反射として、輝度分布算出部5に散乱特性を出力する際は、補正係数(輝度比率)が1となる。
可視カメラで撮影できる画像は、撮影時の露出の設定により、取得可能な輝度の範囲が限定される。また、各画素のR、G、B値の階調も256階調などに限定されているため、輝度を正しく測定するためには、露出の異なる可視画像を複数枚撮影し、合成することが必要である。この場合、可視画像取得部1は、可視カメラが異なる露出設定で撮影した複数枚の可視画像を取得する。視点変換部4は、各可視画像に対して視点変換の処理を施す。そして、輝度分布算出部5は、視点変換された各可視画像に対して輝度分布の算出と、散乱特性による補正とを施し、補正後の各輝度分布を足し合わせたものを視野領域内の輝度分布として調光制御部7へ出力する。
調光制御部7は、輝度分布算出部5で算出された輝度分布に基づいて人の視野領域において人が快適と感じる照明空間が得られるように、室内空間の調光制御を行う。調光制御部7は、調光制御を行うにあたり、室内空間の天井、壁、柱などに設置された照明器具のうち調光する照明器具を特定する(ステップS5)。そして、調光制御部7は、特定された各照明器具の照度を個別に調整して、調光制御を行う(ステップS6)。
図7は、本発明の実施の形態1に係る照明制御システムの別の例の構成を示すブロック図である。図7に示す照明制御システム110では、視野領域の輝度分布に基づいて調光制御を行うのではなく、視野領域の輝度分布に基づいて視野領域の明るさを推定し、視野領域の明るさに基づいて調光制御を行う構成となっている。
図7において、明るさ推定部6は、輝度分布算出部5から入力された視野領域内の輝度分布に基づいて、室内空間の明るさを推定する。明るさ推定部6では、輝度分布から明るさを人視点可視画像の部分領域毎の輝度または人視点可視画像の全領域の輝度分布に対して算出する。明るさを示す指標は、例えば、平均輝度、平均照度、明るさ感などがある。明るさ感は、周辺輝度との対比が人の感じ方に及ぼす影響を考慮した明るさの指標であり、輝度分布に基づいて明るさを推定する方法は公知の技術を用いる。明るさ推定部6は、推定した明るさを調光制御部7に出力する。
調光制御部7は、明るさ推定部6で算出された明るさに基づいて人の視野領域において人が快適と感じる照明空間が得られるように、室内空間の調光制御を行う。調光制御部7は、調光制御を行うにあたり、室内空間の天井、壁、柱などに設置された照明器具のうち調光する照明器具を特定する。そして、調光制御部7は、特定された各照明器具の照度を個別に調整して、調光制御を行う
例えば、調光制御部7は、平均照度を用いて明るさを制御する場合には、人の視野領域に存在する、または、人の視野領域の周辺に存在する照明器具を制御対象とし、平均照度が所望の値に近づくように照明器具を調光する。そして、照明制御システム110において、明るさ推定部6が推定する明るさが所望の値になるまで、可視画像取得部1における可視画像の取得から調光制御部7における調光制御までの動作を繰り返す。所望の値は、例えば、作業領域が500ルクス、作業領域以外の視野領域が300ルクスなどである。作業領域がオフィスの机上面など、特定できる場合、JIS(Japanese Industrial Standards)照度基準を満たす照明環境を本発明の照明制御システムで提供することが可能である。
なお、可視カメラは魚眼可視カメラでなく、通常の可視カメラでもよい。また、可視画像取得部1は複数台の可視カメラで取得した可視画像を合成し、より広い空間を撮像した可視画像を作成してもよい。
また、可視カメラが撮影し出力する可視画像はカメラ内で画像処理された後の画像であることがあり、画像処理により輝度を著しく補正した場合には、正しく輝度を推定できないという問題がある。可視カメラを設置する前に、照明測定用に使用される輝度計あるいは分光放射輝度計を用いて被写体の輝度値を複数ポイントで測定し、可視カメラの画像処理特性を推定して、可視画像取得後に測定した輝度値を用いて、画像処理特性を逆補正して可視画像取得部1から出力してもよい。
このように構成された本実施の形態に係る照明制御システムでは、カメラ視点可視画像から人視点可視画像へ画像変換し、この人視点可視画像に基づいて輝度分布や明るさを推定するため、照度センサを用いて室内空間の明るさを推定するよりも、少ないセンサで室内空間の明るさを推定できる。そして、現在の明るさに基づいて調光制御を行うことで、人にとって快適な照明空間を提供できるという効果が得られる。また、昼光が室内空間内に入射した場合に関しても、同様に現在の明るさに基づき照明を調光することで、指定した照明環境を提供できるという効果が得られる。
実施の形態2.
図8は、本発明を実施するための実施の形態2に係る照明制御システムの構成を示すブロック図である。本実施の形態に係る照明制御システム200は、可視画像取得部1と、人位置・向き検出部2と、視野領域推定部3と、視点変換部4と、輝度分布算出部5と、調光制御部7とを備えている。本実施の形態では、人位置・向き検出部2と、視野領域推定部3とを備え、可視画像取得部1が取得する可視画像から人の視野領域を推定し、推定した人の視野領域を視点変換部4へ入力する点が実施の形態1と異なる。
図8は、本発明を実施するための実施の形態2に係る照明制御システムの構成を示すブロック図である。本実施の形態に係る照明制御システム200は、可視画像取得部1と、人位置・向き検出部2と、視野領域推定部3と、視点変換部4と、輝度分布算出部5と、調光制御部7とを備えている。本実施の形態では、人位置・向き検出部2と、視野領域推定部3とを備え、可視画像取得部1が取得する可視画像から人の視野領域を推定し、推定した人の視野領域を視点変換部4へ入力する点が実施の形態1と異なる。
まず、本実施の形態に係る照明制御システムの構成について説明する。実施の形態1と同様に、室内空間を俯瞰できる位置、例えば、天井、柱、または壁に室内空間の可視画像を撮影する可視カメラ(図示しない)を設置する。可視カメラは、室内空間を撮影し、撮影した可視画像を撮影時刻とともに可視画像取得部1に出力する。可視画像取得部1は、取得したカメラ視点可視画像を撮影時刻とともに人位置・向き検出部2と視点変換部4とへ出力する。
人位置・向き検出部2は、可視画像取得部1からカメラ視点可視画像が入力され、カメラ視点可視画像から、室内空間に在室している人の位置と人の向きとを検出する。
視野領域推定部3は、人位置・向き検出部2から入力されたカメラ視点可視画像と、人位置・向き検出部2が検出した人の位置と人の向きとに基づいて人の視野領域を推定し、カメラ視点可視画像における視野領域を視点変換部4へ出力する。
視点変換部4は、可視画像取得部1からカメラ視点可視画像を入力し、視野領域推定部3から在室者である人の視野領域を入力する。視点変換部4は、カメラ視点可視画像の全領域のうち人の視野領域に相当する領域の可視画像を抽出するとともに、撮影視点がカメラ設置位置の視点から人の視点になるように、人の視野領域に相当する領域のカメラ視点可視画像から人視点可視画像へ視点変換処理を施し、画像変換する。つまり、視点変換部4は、カメラ視点可視画像を人の視野領域における人視点可視画像に画像変換する。視点変換部4は、画像変換後の人視点可視画像を輝度分布算出部5に出力する。
輝度分布算出部5は、視点変換部4から入力された人視点可視画像に基づいて視野領域内の輝度分布を算出し、外部から入力された人視点可視画像を構成する部分領域毎の散乱特性と視点変換部4から入力された人視点可視画像内の部分領域毎の視点方向とに基づいて視野領域内の輝度分布を補正する。輝度分布算出部5は、補正後の視野領域内の輝度分布を調光制御部7へ出力する。調光制御部7は、輝度分布算出部5から入力された輝度分布に基づいて照明器具の調光を制御する。
次に、動作について説明する。可視カメラによって現在のカメラ視点可視画像が撮影される。可視画像取得部1は、可視カメラによって撮影されたカメラ視点可視画像を取得する。まず、カメラ視点可視画像は人位置・向き検出部2に入力される。人位置・向き検出部2は、カメラ視点可視画像に基づいて人を検出する。画像から人を検出する方法は公知の技術を用いる。例えば、人の形状のパターン画像をデータベースとして保持しておき、パターンマッチングすることで画像から人を検出することは可能である。ただし、可視カメラは室内空間を俯瞰できる位置に設置されているため、可視画像に人が映っていても、その人の顔が認識できる解像度で映っている場合は少ない。そのため、頭と体の上半身を柱もしくは壁の高い位置(人の身長よりも高い位置)または天井から見た場合の形状をパターン画像として使用する。人位置・向き検出部2は、カメラ視点可視画像から人を検出されると、検出した人が映っている領域に含まれる一点の座標を人の位置として検出する。例えば、頭の中心の座標を人の位置として検出する。可視カメラには、一般的に魚眼レンズといわれる画角180度以上のレンズを搭載した画角の広い魚眼可視カメラを用いる。ただし、広範囲領域の画像情報を取得するために画角は180度以上あることが好ましいが、180度以下でもかまわない。
続いて、人位置・向き検出部2で人の向きを検出する。カメラ視点可視画像に映った人d1、人の作業領域d2、人の視野領域d3、人の向きd4については図3に示したとおりである。人は手を使って作業をするとき、頭より前に腕があるため、頭と腕の位置関係より人の向きを特定できる。これを利用して人位置・向き検出部2は人の向きであるd4を検出する。人の向きは、人の位置の座標からのベクトルで表現する。人位置・向き検出部2で検出された人の位置と人の向きと、可視画像取得部1から人位置・向き検出部2に入力されたカメラ視点可視画像とが視野領域推定部3に入力される。
視野領域推定部3は、カメラ視点可視画像から図3のd3に示す人の視野領域を推定する。人が見ている領域、つまり人の視野に入る領域を人の視野領域とする。人の視野領域は、人が向いている方向であるd4を中心とした水平方向に約180度の領域である。人の視野領域は、人の視界を遮る高さのパーティションや棚などの障害物がない限り、人の位置から人が向いている方向のカメラ視点可視画像に映っている領域が視野領域に含まれる。また、カメラ視点可視画像における人の位置によっては、人の位置を視点とした場合に視野領域が半円状になるような画像変換を施してもよい。
視野領域推定部3で推定された人の視野領域は、視点変換部4に入力される。視点変換部4に入力される視野領域は、カメラ視点可視画像における人の視野領域に相当する領域である。視点変換部4では、まず、可視画像取得部1が取得したカメラ視点可視画像の全領域のうち人の視野領域に相当する領域の可視画像を抽出する。次に、撮影視点がカメラ設置位置の視点から人の視点になるように、人の視野領域に相当する領域のカメラ視点可視画像から人視点可視画像へ画像変換する。
実施の形態1において説明した図3に示したd3が、視野領域推定部3が推定した人の視野領域を示す。視点変換部4は、カメラ視点可視画像からd3に相当する領域を切り出し、その後、撮影視点がカメラ設置位置から人の視点になるように、切り出した画像に座標変換処理を施す。座標変換処理によって、人の視野領域に相当する領域のカメラ視点可視画像から人視点可視画像へ視点変換処理を施すことができる。
カメラ視点可視画像を構成する複数の部分領域毎に座標変換テーブルを予め保持しておき、座標変換テーブルを用いて座標変換処理は施しても良い。また、視野領域が矩形になるように視野領域の中心から周辺部にかけて滑らかに変形させて座標変換処理は施しても良い。なお、可視カメラ設置位置に奥行き情報を取得できるセンサを設置し、奥行き情報を用いて座標変換テーブルを作成してもよい。
視点変換部4で画像変換された人視点可視画像は、輝度分布算出部5に入力される。輝度分布算出部5は、視点変換部4で画像変換された人視点可視画像から視野領域内の輝度分布を算出する。具体的には、可視画像の各画素はR、G、Bの各信号の値を有し、R、G、Bの各値から各画素の輝度を算出した輝度画像を生成する。
輝度分布算出部5は、視点変換部4で画像変換された人視点可視画像と外部から入力される人視点可視画像を構成する部分領域毎の散乱特性とに基づいて視野領域内の輝度分布を算出する。輝度分布の算出方法については、実施の形態1で説明した内容と同じである。輝度分布算出部5は、視野領域内の輝度分布を調光制御部7へ出力する。
調光制御部7は、輝度分布算出部5で算出された輝度分布に基づいて人の視野領域において人が快適と感じる照明空間が得られるように、室内空間の調光制御を行う。調光制御部7は、調光制御を行うにあたり、室内空間の天井、壁、柱などに設置された照明器具のうち調光する照明器具を特定する。そして、調光制御部7は、特定された各照明器具の照度を個別に調整して、調光制御を行う。
図9は、本発明の実施の形態2に係る照明制御システムの別の例の構成を示すブロック図である。図9に示す照明制御システム210では、視野領域の輝度分布に基づいて調光制御を行うのではなく、視野領域の輝度分布に基づいて視野領域の明るさを推定し、視野領域の明るさに基づいて調光制御を行う構成となっている。
図9において、明るさ推定部6は、輝度分布算出部5から入力された視野領域内の輝度分布に基づいて、室内空間の明るさを推定する。明るさ推定部6では、輝度分布から明るさを人視点可視画像の部分領域毎の輝度または人視点可視画像の全領域の輝度分布に対して算出する。明るさを示す指標は、例えば、平均輝度、平均照度、明るさ感などがある。明るさ感は、周辺輝度との対比が人の感じ方に及ぼす影響を考慮した明るさの指標であり、輝度分布に基づいて明るさを推定する方法は公知の技術を用いる。この場合、異なる露出設定で撮影された複数の輝度分布が必要になるため、可視カメラで可視画像を撮影する際に、撮影時の露出を変えておくとよい。明るさ推定部6は、推定した明るさを調光制御部7に出力する。
調光制御部7は、明るさ推定部6で算出された明るさに基づいて人の視野領域において人が快適と感じる照明空間が得られるように、室内空間の調光制御を行う。調光制御部7は、調光制御を行うにあたり、室内空間の天井、壁、柱などに設置された照明器具のうち調光する照明器具を特定する。そして、調光制御部7は、特定された各照明器具の照度を個別に調整して、調光制御を行う
例えば、調光制御部7は、平均照度を用いて明るさを制御する場合には、人の視野領域に存在する、または、人の視野領域の周辺に存在する照明器具を制御対象とし、平均照度が所望の値に近づくように照明器具を調光する。そして、照明制御システム210において、明るさ推定部6が推定する明るさが所望の値になるまで、可視画像取得部1における可視画像の取得から調光制御部7における調光制御までの動作を繰り返す。所望の値は、例えば、作業領域が500ルクス、作業領域以外の視野領域が300ルクスなどである。作業領域がオフィスの机上面など、特定できる場合、JIS照度基準を満たす照明環境を本発明の照明制御システムで提供することが可能である。
なお、可視カメラは魚眼可視カメラでなく、通常の可視カメラでもよい。また、可視画像取得部1は複数台の可視カメラで取得した可視画像を合成し、より広い空間を撮像した可視画像を作成してもよい。
また、可視カメラが撮影し、出力する可視画像はカメラ内で画像処理された後の画像であることがあり、画像処理により輝度を著しく補正した場合には、正しく輝度を推定できないという問題がある。可視カメラを設置する前に、照明測定用に使用される輝度計あるいは分光放射輝度計を用いて被写体の輝度値を複数ポイントで測定し、可視カメラの画像処理特性を推定して、可視画像取得後に測定した輝度値を用いて、画像処理特性を逆補正して可視画像取得部1から出力してもよい。
このように構成された本実施の形態に係る照明制御システムでは、カメラ視点可視画像から人視点可視画像に画像変換し、この人視点可視画像に基づいて輝度分布や明るさを推定するため、照度センサを用いて室内空間の明るさを推定するよりも、少ないセンサで室内空間の明るさを推定できる。そして、現在の明るさに基づいて調光制御を行うことで、人にとって快適な照明空間を提供できるという効果が得られる。また、昼光が室内空間内に入射した場合に関しても、同様に現在の明るさに基づき照明を調光することで、指定した照明環境を提供できるという効果が得られる。
また、可視画像から人の位置と人の向きとを検出するため、人の視野領域が推定できる。また、可視カメラ設置位置視点の画像を人視点の画像に変換してから輝度分布や明るさを推定するため、人が感じている明るさをより正確に推定できるとともに、室内空間に在室している人が感じる明るさに基づいて調光制御を行うことで、人にとって快適な照明空間を提供できるという効果が得られる。また、昼光が室内空間内に入射した場合に関しても、現在在室している人が感じる明るさに基づいて照明を調光することで、所望の照明環境を提供できるという効果が得られる。
実施の形態3.
図10は、本発明を実施するための実施の形態3に係る照明制御システムの構成を示すブロック図である。本実施の形態に係る照明制御システム300は、可視画像取得部1と、人位置・向き検出部2aと、視野領域推定部3、視点変換部4と、輝度分布算出部5と、調光制御部7と、画像蓄積部8と、散乱特性推定部9と、第二視点変換部14とを備えている。画像蓄積部8と散乱特性推定部9と第二視点変換部14とを備える点が実施の形態2と異なる。
図10は、本発明を実施するための実施の形態3に係る照明制御システムの構成を示すブロック図である。本実施の形態に係る照明制御システム300は、可視画像取得部1と、人位置・向き検出部2aと、視野領域推定部3、視点変換部4と、輝度分布算出部5と、調光制御部7と、画像蓄積部8と、散乱特性推定部9と、第二視点変換部14とを備えている。画像蓄積部8と散乱特性推定部9と第二視点変換部14とを備える点が実施の形態2と異なる。
まず、本実施の形態に係る照明制御システムの構成について説明する。室内空間を俯瞰できる位置、例えば、天井、柱、または壁に室内空間の可視画像を撮影する可視カメラ(図示しない)を設置する。可視カメラは、室内空間を撮影し、撮影した可視画像を撮影時刻とともに可視画像取得部1に出力する。可視画像取得部1は、取得したカメラ視点可視画像を撮影時刻とともに人位置・向き検出部2aと視点変換部4と画像蓄積部8と散乱特性推定部9とへ出力する。
画像蓄積部8は、可視画像取得部1が取得したカメラ視点可視画像とそのカメラ視点可視画像の撮影時刻とを蓄積する。画像蓄積部8は、人位置・向き検出部2aが指定した撮影時刻のカメラ視点可視画像を人位置・向き検出部2aへ出力する。また、画像蓄積部8は、散乱特性推定部9が指定した撮影時刻のカメラ視点可視画像を散乱特性推定部9へ出力する。
人位置・向き検出部2aは、可視画像取得部1が取得したカメラ視点可視画像と、画像蓄積部8に蓄積されたカメラ視点可視画像とから、室内空間に在室している人の位置と人の向きとを検出する。可視画像取得部1が取得したカメラ視点可視画像と、在室者である人の位置と人の向きとを視野領域推定部3へ出力する。
視野領域推定部3は、人位置・向き検出部2aから入力されたカメラ視点可視画像と、人位置・向き検出部2aが検出したカメラ視点可視画像における人の位置と人の向きとに基づいて人の視野領域を推定し、カメラ視点可視画像における視野領域を視点変換部4へ出力する。
視点変換部4は、可視画像取得部1からカメラ視点可視画像を入力し、視野領域推定部3から在室者である人の視野領域を入力する。視点変換部4は、カメラ視点可視画像の全領域のうち人の視野領域に相当する領域の可視画像を抽出するとともに、撮影視点がカメラ設置位置の視点から人の視点になるように、人の視野領域に相当する領域のカメラ視点可視画像から人視点可視画像へ視点変換処理を施し、画像変換する。つまり、視点変換部4は、カメラ視点可視画像を人の視野領域における人視点可視画像に画像変換する。視点変換部4は、画像変換後の人視点可視画像を輝度分布算出部5に出力する。
散乱特性推定部9は、可視画像取得部1が取得したカメラ視点可視画像と、画像蓄積部8に蓄積されたカメラ視点可視画像との中から撮影時刻が異なる複数のカメラ視点可視画像を抽出し、可視画像取得部1が取得したカメラ視点可視画像を構成する複数の部分領域毎に散乱特性を推定する。そして、第二視点変換部14にてカメラ視点可視画像から人視点可視画像へ視点変換処理を施した散乱特性を、輝度分布算出部5へ出力する。
輝度分布算出部5は、視点変換部4から入力された人視点可視画像に基づいて視野領域内の輝度分布を算出し、第二視点変換部14から入力された人視点可視画像を構成する部分領域毎の散乱特性と視点変換部4から入力された人視点可視画像内の部分領域毎の視点方向とに基づいて視野領域内の輝度分布を補正する。補正後の視野領域内の輝度分布を調光制御部7へ出力する。調光制御部7は、輝度分布算出部5から入力された輝度分布に基づいて照明器具の調光を制御する。
次に、動作について説明する。本実施の形態における構成要素のうち、実施の形態2と同じ符号を付した可視画像取得部1と、視野領域推定部3と、視点変換部4と、輝度分布算出部5と、調光制御部7は、それぞれ実施の形態2と同様の動作をするため、本実施の形態では説明を省略する。
可視カメラによって現在のカメラ視点可視画像が撮影される。可視画像取得部1は、可視カメラによって撮影されたカメラ視点可視画像を取得する。可視画像取得部1が取得したカメラ視点可視画像は撮影時刻とともに画像蓄積部8に入力される。画像蓄積部8は、カメラ視点可視画像と撮影時刻とを蓄積する。画像蓄積部8は、人位置・向き検出部2aから、人位置・向き検出部2aが指定した撮影時刻のカメラ視点可視画像の出力要求を受けた場合、該当する撮影時刻のカメラ視点可視画像を位置・向き検出部2aへ出力する。また、画像蓄積部8は、散乱特性推定部9から、散乱特性推定部9が指定した撮影時刻のカメラ視点可視画像の出力要求を受けた場合、該当する撮影時刻のカメラ視点可視画像を散乱特性推定部9へ出力する。
人位置・向き検出部2aは、可視画像取得部1が取得したカメラ視点可視画像と、画像蓄積部8に蓄積されたカメラ視点可視画像とに基づいて、在室している人の位置と人の向きとを検出する。人位置・向き検出部2aは、画像蓄積部8に対して、可視画像取得部1が取得した撮影時刻より数分ないし数十分前が撮影時刻であるカメラ視点可視画像の出力を要求する。人位置・向き検出部2aは、2枚のカメラ視点可視画像の差分値を算出する。差分値が周辺画素より大きい領域を人として検出し、その領域内の一点の座標を人の位置とする。人の向きの検出方法は、実施の形態2の人位置・向き検出部2が行う検出方法と同様の方法を用いる。また、視野領域を推定方法についても、実施の形態2の視野領域推定部3が行う推定方法と同様の方法を用いる。
散乱特性推定部9は、撮影時刻が異なる複数枚のカメラ視点可視画像を用いて、カメラ視点可視画像を構成する部分領域毎に、映し出された被写体の散乱特性を推定する。まず、散乱特性推定部9は、画像蓄積部8に対して光源の位置が異なる撮影時刻のカメラ視点可視画像の出力を要求する。光源の位置が異なる撮影時刻とは、例えば、光源を昼光とする場合には、日の出時刻から日没時刻までの一定時間毎の時刻である。また、室内に設置された照明器具を光源とする場合には、被写体に当たる光の角度が異なる照明器具の点灯時刻である。なお、カメラ視点可視画像の枚数は多い方がより正確に散乱特性を推定することが可能である。
図11に異なる対象面における散乱特性を説明する説明図を示す。図11を用いて、散乱特性の推定方法を説明する。図11の各図は、対象面で反射した光源からの光を可視カメラで撮影した場合、可視カメラに入る光の輝度を示している。図の破線矢印は散乱特性の強度分布を表す。図11の(a1)と(a2)と(a3)、(b1)と(b2)と(b3)、(c1)と(c2)と(c3)はそれぞれ、同じ対象面である。
図11の(a1)と(a2)と(a3)の対象面は、光源の位置に依存せず、可視カメラに入る輝度は一定である。このとき、対象面の散乱特性は均等拡散反射面であると推定する。図11の(b1)と(b2)と(b3)の対象面は、(b2)の場合のみ可視カメラに光が入る。このとき、対象面の散乱特性は、ある特定の方向のみに光を反射する鏡面であると推定し、正反射する方向とともに散乱特性として散乱特性推定部9内に記憶する。図11の(c1)と(c2)と(c3)の対象面は、光源の位置により、可視カメラが捕らえる輝度が異なる。このとき、対象面は散乱面と推定し、光源の入射方向と可視カメラの取得される輝度に基づいて、対象面の反射特性(光を反射する方向と反射光の強度分布)を生成し、散乱特性として散乱特性推定部9内に記憶する。
なお、散乱特性推定部9は、散乱特性を推定せずに、カメラ視点可視画像の全領域を均等拡散反射面として、輝度分布算出部5に散乱特性を出力しても良い。
なお、散乱特性は物体の材質により決定されるものであるため、散乱特性推定部9は、可視カメラが撮影する室内空間に設置された物品が変化しない場合には、散乱特性は変化しない。そのため、散乱特性推定部9は、一旦、カメラ視点可視画像の全領域の散乱特性を推定し、これを蓄積しておくことによって、可視画像取得部1からカメラ視点画像が入力される度に散乱特性を推定する必要はない。なお、カメラ視点可視画像の全領域を均等拡散反射として、輝度分布算出部5に散乱特性を出力する際は、補正係数(輝度比率)が1となる。
なお、散乱特性推定部9は、カメラ視点可視画像の全領域について、部分領域毎に散乱特性を推定しているが、これに限らず、視野領域推定部3より視野領域を取得し、視野領域についてのみ散乱特性を推定してもよい。ただし、この場合、可視画像取得部1からカメラ視点可視画像が入力される度に毎回散乱特性を推定する必要がある。散乱特性推定部9で推定した散乱特性は、第二視点変換部14にてカメラ視点可視画像から人視点可視画像へ視点変換処理を施して、輝度分布算出部5へ出力される。第二視点変換部14における視点変換処理については、視点変換部4と同じである。
また、散乱特性推定部9は、室内空間に複数箇所に設置された照明器具の配光、光束量をデータベース化した上で、調光制御部7に指令して各照明器具を個別点灯させることにより、各照明器具と対象面から反射した光の強度を取得する。そして、散乱特性推定部9は、照明器具、対象面、および可視画像取得部1の位置関係から、対象面に入射する角度および出射角度を推定し、図6に示すような散乱特性を推定することもできる。その際には、照明器具から出射される光束量の精度を高めるため、光センサを配置しているとさらに好ましい。ここで、対象面は例えば机上面である。
輝度分布算出部5は、視点変換部4から入力された人視点可視画像と散乱特性推定部9から入力された人視点可視画像を構成する部分領域毎の散乱特性とに基づいて視野領域内の輝度分布を算出し、調光制御部7へ出力する。調光制御部7は、輝度分布算出部5から入力された輝度分布に基づいて照明器具の調光を制御する。
図12は、本発明の実施の形態3に係る照明制御システムの別の例の構成を示すブロック図である。図12に示す照明制御システム310では、視野領域の輝度分布に基づいて調光制御を行うのではなく、視野領域の輝度分布に基づいて視野領域の明るさを推定し、視野領域の明るさに基づいて調光制御を行う構成となっている。明るさ推定部6を追加し、散乱特性推定部9を散乱特性・反射率推定部19を変更する構成となっている。
散乱特性・反射率推定部19は、可視画像取得部1が取得したカメラ視点可視画像と、画像蓄積部8に蓄積されたカメラ視点可視画像との中から撮影時刻が異なる複数のカメラ視点可視画像を抽出し、可視画像取得部1が取得したカメラ視点可視画像を構成する複数の部分領域毎に散乱特性および反射率を推定する。そして、第二視点変換部14は、散乱特性に対してカメラ視点可視画像から人視点可視画像へ視点変換処理を施し、視点変換処理を施した散乱特性を輝度分布算出部5へ出力する。また、第二視点変換部14は、反射率に対してカメラ視点可視画像から人視点可視画像へ視点変換処理を施し、視点変換処理を施した反射率を明るさ推定部6へ出力する。
図12において、明るさ推定部6は、輝度分布算出部5から入力された視野領域内の輝度分布に基づいて、室内空間の明るさを推定する。明るさ推定部6では、輝度分布から明るさを人視点可視画像の部分領域毎の輝度または人視点可視画像の全領域の輝度分布に対して算出する。明るさを示す指標は、例えば、平均輝度、平均照度、明るさ感などがある。明るさ感は、周辺輝度との対比が人の感じ方に及ぼす影響を考慮した明るさの指標であり、輝度分布に基づいて明るさを推定する方法は公知の技術を用いる。明るさ推定部6は、推定した明るさを調光制御部7に出力する。
調光制御部7は、明るさ推定部6で算出された明るさに基づいて人の視野領域において人が快適と感じる照明空間が得られるように、室内空間の調光制御を行う。調光制御部7は、調光制御を行うにあたり、室内空間の天井、壁、柱などに設置された照明器具のうち調光する照明器具を特定する。そして、調光制御部7は、特定された各照明器具の照度を個別に調整して、調光制御を行う。
なお、本実施の形態においては、人位置・向き検出部2aと視野領域推定部3とによって、人の視野領域を推定しているが、実施の形態1と同様に、外部から在室者である人の視野領域を入力してもよい。
このように構成された実施の形態に係る照明制御システムでは、可視画像を蓄積する画像蓄積部8を備えるため、撮影時刻が異なる複数枚のカメラ視点可視画像を用いて部分領域毎の散乱特性を推定することが可能になる。このため、予め室内空間の部分領域毎の散乱特性を計測しデータベースとして保持したり、室内空間に設置される机、棚等の備品が変更になる度に散乱特性を計測し直したりする必要がなくなるという効果が得られる。
また、散乱特性・反射率推定部19は、室内空間に複数箇所に設置された照明器具の配光、光束量をデータベース化した上で、調光制御部7に指令して各照明器具を個別点灯させることにより、各照明器具と対象面から反射した光の強度を取得する。そして、散乱特性・反射率推定部19は、照明器具、対象面、および可視画像取得部1の位置関係から、対象面に入射する角度および出射角度を推定し、図6に示すような散乱特性を推定することができる。この結果、予め空間の部分領域毎の散乱特性と反射率を計測しデータベースとして保持する必要がなくなる効果が得られる。さらに、深夜等の人が居ない時間帯に散乱特性と反射率とを推定することにより、効率的に補正を行うことが可能となる。
また、実施の形態に係る照明制御システムでは、複数枚の可視画像を用いて人の位置または人の向きをより正確に検出できるという効果が得られる。
実施の形態4.
図13は、本発明を実施するための実施の形態4に係る照明制御システムの構成を示すブロック図である。本実施の形態に係る照明制御システム400は、可視画像取得部1と、視点変更部24と、輝度分布算出部5aと、明るさ推定部6aと、調光制御部7と、画像蓄積部8と、反射率推定部29とを備えている。本実施の形態は、明るさ推定部6aを備えた点、人位置・向き検出部2aと視野領域推定部3と第二視点変更部24とを備えない点が、視点変換部4の代わりに視点変更部24に置き換え、散乱特性9の代わりに反射率推定部29に置き換えた点が実施の形態3と異なる。
図13は、本発明を実施するための実施の形態4に係る照明制御システムの構成を示すブロック図である。本実施の形態に係る照明制御システム400は、可視画像取得部1と、視点変更部24と、輝度分布算出部5aと、明るさ推定部6aと、調光制御部7と、画像蓄積部8と、反射率推定部29とを備えている。本実施の形態は、明るさ推定部6aを備えた点、人位置・向き検出部2aと視野領域推定部3と第二視点変更部24とを備えない点が、視点変換部4の代わりに視点変更部24に置き換え、散乱特性9の代わりに反射率推定部29に置き換えた点が実施の形態3と異なる。
まず、本実施の形態に係る照明制御システムの構成について説明する。室内空間を俯瞰できる位置、例えば、天井、柱、または壁に室内空間の可視画像を撮影する可視カメラ(図示しない)を設置する。可視カメラは、室内空間を撮影し、撮影した可視画像を撮影時刻とともに可視画像取得部1に出力する。可視画像取得部1は、取得したカメラ視点可視画像を撮影時刻とともに視点変更部24と画像蓄積部8とに送る。画像蓄積部8は、可視画像取得部1が取得したカメラ視点可視画像とそのカメラ視点可視画像の撮影時刻とを蓄積する。画像蓄積部8は、反射率推定部29が指定した撮影時刻のカメラ視点可視画像を反射率推定部29に出力する。
視点変更部24は、可視画像取得部1からカメラ視点可視画像を入力し、カメラ視点可視画像における作業領域を外部入力する。視点変更部24は、可視画像取得部1が取得したカメラ視点可視画像から、外部入力されたカメラ視点可視画像における作業領域に相当する領域(図3のd2に対応する領域)の可視画像を抽出する。この可視画像は、カメラ視点可視画像から人の視野内の作業領域に対応する領域の画像を切り出した画像(以下、作業領域可視画像と称す)である。視点変更部24は抽出後の作業領域可視画像を輝度分布算出部5aに出力する。
輝度分布算出部5aは、視点変更部24から入力された作業領域可視画像に基づいて作業領域内の輝度分布を算出し、算出した輝度分布を明るさ推定部6aに出力する。
反射率推定部29は、可視画像取得部1が取得したカメラ視点可視画像と、画像蓄積部8に蓄積されたカメラ視点可視画像との中から撮影時刻が異なる複数のカメラ視点可視画像を抽出し、可視画像取得部1が取得したカメラ視点可視画像を構成する複数の部分領域毎に反射率を推定する。
明るさ推定部6aは、輝度分布算出部5aから入力された作業領域内の輝度分布と、反射率推定部29から入力されたカメラ視点可視画像を構成する部分領域毎の反射率とに基づいて、室内空間の明るさを推定し、推定した明るさを調光制御部7に出力する。調光制御部7は、明るさ推定部6aから入力された明るさに基づいて照明器具の調光を制御する。
次に、動作について説明する。本実施の形態における構成要素のうち、実施の形態3と同じ符号を付した可視画像取得部1と、調光制御部7と、画像蓄積部8とは、それぞれ実施の形態3と同様の動作をするため、本実施の形態では説明を省略する。本実施の形態における視点変更部24は、実施の形態3における視点変換部4のように、視点変換処理は行わず、外部から入力された作業領域の抽出処理のみを実施する。
本実施の形態における輝度分布算出部5aは、散乱特性が入力されない点が実施の形態3における輝度分布算出部5と異なる。このため、輝度分布算出部5aは、実施の形態3における輝度分布算出部5が行う算出方法と同様の方法で、視点変更部24から入力された作業領域可視画像から輝度分布を算出するが、散乱特性による輝度分布の補正処理は行わない。
反射率推定部29は、散乱特性ではなく、カメラ視点可視画像内の部分領域毎の反射率を推定する。反射率は、光源の輝度に対する可視カメラの受光輝度である。可視カメラの受光輝度は、可視画像取得部1が取得したカメラ視点可視画像の各画素値の輝度であり、輝度分布算出部5aが行う算出方法と同様の方法を用いて算出する。一方、光源の輝度は、光源の輝度を測定する輝度センサを別途設けて測定する必要があり、この測定値を光源の輝度として反射率の算出に使用する。算出されたカメラ視点可視画像の反射率は明るさ推定部6aに入力される。
明るさ推定部6aは、輝度分布算出部5aで算出された輝度分布と反射率推定部29で推定された反射率から、明るさとしての照度を推定する。反射率推定部29から出力される反射率はカメラ視点可視画像の全領域の反射率であり、輝度分布算出部5aから入力される輝度分布はカメラ視点可視画像のうち作業領域に相当する領域のカメラ視点可視画像であるため、対象領域が異なる。このため、明るさ推定部6aにおいて照度を算出する際は、対象領域を同じにする必要がある。したがって、反射率推定部29から出力されたカメラ視点可視画像の反射率分布から作業領域に相当する領域を抽出してから、照度を算出する。照度Eは、反射率をρ、輝度をLとして、式(2)を用いて算出できる。
E=π/ρ×L ・・・(2)
E=π/ρ×L ・・・(2)
明るさ推定部6aで算出された照度は調光制御部7に入力される。調光制御部7は、人の視野領域において人が快適と感じる照明空間が得られるように、明るさ推定部6で算出された照度が所望の値になるよう照明器具の調光を制御する。調光制御部7は、調光制御を行うにあたり、室内空間の天井、壁、柱などに設置された照明器具のうち調光する照明器具を特定する。そして、調光制御部7は、特定された各照明器具の照度を個別に調整して、調光制御を行う
なお、視点変更部24に入力される作業領域は、在室している人の作業領域、例えば、作業机の領域であってもよい。この場合、本実施の形態に係る照明制御システムによって、机上面を所望の照明環境に出来るという効果が得られる。在室者の明るさの感じ方に関わらず、JIS規格で定められた照度基準があり、明るさ推定部6aで輝度分布から推定する明るさを平均照度すると、机上面を照度基準以上の照明環境に保つ照明制御システムを提供できる。
このように構成された実施の形態に係る照明制御システムでは、可視画像を蓄積する画像蓄積部8を備えるため、撮影時刻が異なる複数枚のカメラ視点可視画像を用いて部分領域毎反射率を推定することが可能になる。このため、予め室内空間の部分領域毎の反射率を計測しデータベースとして保持したり、室内空間に設置される机、棚等の備品が変更になる度に反射率を計測し直したりする必要がなくなるという効果が得られる。
実施の形態5.
図14は、この発明を実施するための実施の形態5に係る照明制御システムの構成を示すブロック図である。本実施の形態に係る照明制御システム500は、可視画像取得部1と、人位置・向き検出部2aと、視野領域推定部3aと、視点変換部4と、輝度分布算出部5と、明るさ推定部6aと、調光制御部7と、画像蓄積部8と、散乱特性・反射率推定部19と、パーティション位置推定部10とを備えている。パーティション位置推定部10を備える点が実施の形態3の別の例と異なる。
図14は、この発明を実施するための実施の形態5に係る照明制御システムの構成を示すブロック図である。本実施の形態に係る照明制御システム500は、可視画像取得部1と、人位置・向き検出部2aと、視野領域推定部3aと、視点変換部4と、輝度分布算出部5と、明るさ推定部6aと、調光制御部7と、画像蓄積部8と、散乱特性・反射率推定部19と、パーティション位置推定部10とを備えている。パーティション位置推定部10を備える点が実施の形態3の別の例と異なる。
まず、本実施の形態に係る照明制御システムの構成について説明する。室内空間を俯瞰できる位置、例えば、天井、柱、または壁に室内空間の可視画像を撮影する可視カメラ(図示しない)を設置する。可視カメラは、室内空間を撮影し、撮影した可視画像を撮影時刻とともに可視画像取得部1に出力する。可視画像取得部1は、取得したカメラ視点可視画像を撮影時刻とともに人位置・向き検出部2aと視点変換部4と画像蓄積部8と散乱特性・反射率推定部19とパーティション位置推定部10とへ出力する。
画像蓄積部8は、可視画像取得部1が取得したカメラ視点可視画像とそのカメラ視点可視画像の撮影時刻とを蓄積する。画像蓄積部8は、人位置・向き検出部2が指定した撮影時刻のカメラ視点可視画像を人位置・向き検出部2aへ出力する。また、画像蓄積部8は、散乱特性・反射率推定部19が指定した撮影時刻のカメラ視点可視画像を散乱特性・反射率推定部19へ出力する。また、画像蓄積部8は、パーティション位置推定部10が指定した撮影時刻のカメラ視点可視画像をパーティション位置推定部10へ出力する。
人位置・向き検出部2aは、可視画像取得部1が取得したカメラ視点可視画像と、画像蓄積部8に蓄積されたカメラ視点可視画像とから、室内空間に在室している人の位置と人の向きとを検出する。可視画像取得部1が取得したカメラ視点可視画像と、在室者である人の位置と人の向きとを視野領域推定部3aへ出力する。
パーティション位置推定部10は、可視画像取得部1が取得したカメラ視点可視画像と、画像蓄積部8に蓄積されたカメラ視点可視画像との中から撮影時刻が異なる複数のカメラ視点可視画像を抽出し、撮影時刻が異なる複数のカメラ視点可視画像に基づいて室内に配置されるパーティションの位置を推定し、視野領域推定部3aに出力する。
視野領域推定部3aは、人位置・向き検出部2aから入力されたカメラ視点可視画像と、位置・向き検出部2aが検出したカメラ視点可視画像における人の位置と人の向きと、パーティション位置推定部10から入力されたパーティションの位置とに基づいて人の視野領域を推定し、カメラ視点可視画像における視野領域を視点変換部4へ出力する。
視点変換部4は、可視画像取得部1からカメラ視点可視画像を入力し、視野領域推定部3から在室者である人の視野領域を入力する。視点変換部4は、カメラ視点可視画像の全領域のうち人の視野領域に相当する領域の可視画像を抽出するとともに、撮影視点がカメラ設置位置の視点から人の視点になるように、人の視野領域に相当する領域のカメラ視点可視画像から人視点可視画像へ視点変換処理を施し、画像変換する。つまり、視点変換部4は、カメラ視点可視画像を人の視野領域における人視点可視画像に画像変換する。視点変換部4は、画像変換後の人視点可視画像を輝度分布算出部5に出力する。
散乱特性・反射率推定部19は、可視画像取得部1が取得したカメラ視点可視画像と、画像蓄積部8に蓄積されたカメラ視点可視画像との中から撮影時刻が異なる複数のカメラ視点可視画像を抽出し、可視画像取得部1が取得したカメラ視点可視画像を構成する複数の部分領域毎に散乱特性および反射率を推定する。そして、第二視点変換部14は、散乱特性に対してカメラ視点可視画像から人視点可視画像へ視点変換処理を施し、視点変換処理を施した散乱特性を輝度分布算出部5へ出力する。また、第二視点変換部14は、反射率に対してカメラ視点可視画像から人視点可視画像へ視点変換処理を施し、視点変換処理を施した反射率を明るさ推定部6aへ出力する。
輝度分布算出部5は、視点変換部4から入力された人視点可視画像に基づいて視野領域内の輝度分布を算出し、第二視点変換部14から入力された人視点可視画像を構成する部分領域毎の散乱特性と視点変換部4から入力された人視点可視画像内の部分領域毎の視点方向とに基づいて視野領域内の輝度分布を補正する。補正後の視野領域内の輝度分布を明るさ推定部6aへ出力する。
明るさ推定部6aは、輝度分布算出部5から入力された視野領域内の輝度分布と、第二視点変換部14から入力された人視点可視画像における部分領域毎の反射率とに基づいて空間の明るさを推定し、推定した明るさを調光制御部7に出力する。調光制御部7は、明るさ推定部6aから入力された明るさに基づいて照明器具の調光を制御する。
なお、図15に示す照明制御システム510のように、明るさ推定部6aを使用せず、輝度分布算出部5で算出された視野領域内の輝度分布を調光制御部7に出力してもよい。この場合、調光制御部7は、輝度分布算出部5から入力された輝度分布に基づいて照明器具の調光を制御する。
次に、動作について説明する。図16は、本発明の実施の形態5に係る照明制御システムの動作を説明するフローチャートである。まず、可視カメラによって現在のカメラ視点可視画像が撮影される。可視画像取得部1は、可視カメラによって撮影されたカメラ視点可視画像を取得する。可視画像取得部1から現在のカメラ視点可視画像が、パーティション位置推定部10に入力される(ステップS11)。パーティション位置推定部10では、ステップS12からステップS15までの処理が行われる。
現在のカメラ視点可視画像と別日同時刻のカメラ視点可視画像とを用いて、各画像のエッジを抽出する(ステップS12)。次に、パーティションの位置に変更があったか否かを判断する(ステップS13)。2つの画像のエッジの差分値が所定の閾値を上回った場合、可視カメラが撮影した物体が大きく移動した、すなわち、室内空間のレイアウトが変更され、パーティションの位置に変更があったと判断して、ステップS14に進む。一方、エッジの差分値が所定の閾値以下であった場合、パーティションの位置に変更はなかったと判断してステップS16に進む。
カメラ視点可視画像におけるパーティションの位置を推定する(ステップS14)。パーティションの位置の推定方法については、後で説明する。ステップS14で推定したパーティションの位置を保存し(ステップS15)、ステップS16に進む。
散乱特性・反射率推定部19では、ステップS16からステップS19までの処理が行われる。現在のカメラ視点可視画像と同日の別時間帯に撮影された部分領域毎のカメラ視点可視画像の差分を算出する(ステップS16)。そして、ステップS16で算出した部分領域毎のカメラ視点可視画像の差分の傾向を見て、散乱特性と反射率とに変更があるか否かを判定する(ステップS17)。特定の領域だけ極端に差分が大きい場合に、ステップS18に進み、散乱特性と反射率とに変更があったと推定し(ステップS18)、推定した散乱特性と反射率とを保存する(ステップS19)。ステップS17で散乱特性と反射率とに変更がないと判定した場合には、ステップS20に進む、なお、散乱特性と反射率との変更は、カメラ可視画像の差分値を用いて判定する例を説明したが、ステップS13と同様にエッジの差分値を用いて判定してもいい。
人位置・向き検出部2aでは、現時刻のカメラ視点可視画像と数分または数十分前のカメラ視点可視画像とから、人の位置と人の向きとを検出する(ステップS20)。視野領域推定部3aでは、人の視野領域を推定する(ステップS21)。なお、パーティションの位置が人の視野領域内にある場合には、パーティションの高さに応じて、視野領域を補正する。例えば、パーティションが人の目線より高いと推定される場合には、パーティションの向こう側は人から見えないため、人の視野領域のうち、パーティションを隔てて人の位置の反対側は人の視野領域から除外する。パーティションが人の目線より低い場合であっても、人の視野領域のうち、パーティションを隔てて人の位置の反対側の領域は、カメラ視点と人視点とで見え方が異なることがあるため、信憑性の指標を新たに設け、同領域の信憑性をパーティションの高さに応じて設定してもよい。
視点変換部4では、カメラ視点可視画像の全領域のうち人の視野領域に相当する領域の可視画像を抽出するとともに、撮影視点がカメラ設置位置の視点から人の視点になるように、人の視野領域に相当する領域のカメラ視点可視画像から人視点可視画像へ視点変換処理を施し、画像変換する(ステップS22)。輝度分布算出部5では、人視点可視画像と散乱特性とに基づいて視野領域内の輝度分布を算出する(ステップS23)。明るさ推定部6aでは、視野領域内の輝度分布と反射率とに基づいて明るさを推定する(ステップS24)。反射率は明るさとして照度を算出する際に用いる。調光制御部7では、調光する照明器具を特定し(ステップS25)、最後に照明器具の調光を制御する(ステップS26)。
図17は、本発明の実施の形態5に係る照明制御システムにおけるパーティション位置推定部10の動作を説明する説明図である。図17の(a1)と(a2)を用いて、パーティションの位置検出方法を説明する。図17の(a1)と(a2)は同一のパーティションに異なる角度から光が当たった様子を示している。パーティションがある場合、光源の位置によりパーティション周辺に影が出来る。可視カメラが撮影した可視画像において、影は周辺より低輝度に映し出され、光源の位置によって影の向きが変化する。これを利用してパーティションの位置を推定する。
また、図17の(b1)と(b2)を用いて、パーティションの高さ推定方法を説明する。図17の(b1)と(b2)は、高さの異なるパーティションに同じ方向から光が当たった様子を表している。パーティションの位置を推定した後、一つの可視画像に着目し、影の長さの比率からパーティションの高さ度合を推定する。なお、パーティション位置推定部10が位置を推定する対象は、パーティションに限らず、棚やディスプレイなど、人の視野を遮る物であれば何でもよい。
なお、可視カメラが撮影する空間のレイアウトに変更がない場合、パーティションの位置も変化しない。このため、パーティション位置推定部10は、一度カメラ視点可視画像の全領域のパーティション位置を推定し、これを蓄積しておけば、可視画像取得部1からカメラ視点画像が入力される度にパーティション位置を推定する必要はない。
このように構成された実施の形態に係る照明制御システムでは、照度環境は天候や照明器具、レイアウトの影響で変化するが、複数枚の可視画像から部分領域毎の輝度変化を用いてパーティションの位置が推定可能であり、人の視野領域をより正確に推定できるため、人の視野ではない領域も特定でき、不要な照明を消灯する制御ができるという効果が得られる。
1 可視画像取得部、2,2a 人位置・向き検出部、3,3a 視野領域推定部、4 視点変換部、5,5a 輝度分布算出部、6,6a 明るさ推定部、7 調光制御部、8 画像蓄積部、9 散乱特性推定部、10 パーティション位置推定部、14 第二視点変換部、19 散乱特性・反射率推定部、24 視点変更部、29 反射率推定部、100,110,200,210,300,310,400,500、510 照明制御システム。
Claims (13)
- 可視画像を取得する可視画像取得部と、
人の視野領域が入力され、前記可視画像取得部が取得した前記可視画像を前記視野領域における人視点の可視画像に画像変換する視点変換部と、
前記人視点の可視画像に基づいて前記視野領域の輝度分布を算出する輝度分布算出部と、
前記輝度分布に基づいて照明器具の調光を制御する調光制御部とを備えることを特徴とする照明制御システム。 - 前記輝度分布に基づいて前記視野領域の明るさを推定する明るさ推定部を備え、
前記調光制御部は、前記輝度分布に基づいて推定された前記視野領域の明るさに基づいて前記照明器具の調光を制御することを特徴とする請求項1に記載の照明制御システム。 - 前記可視画像取得部が取得した前記可視画像を撮影時刻と共に蓄積する画像蓄積部と、
前記可視画像取得部が取得した前記可視画像と前記画像蓄積部に蓄積された前記可視画像との中から前記撮影時刻が異なる複数の前記可視画像を抽出し、前記撮影時刻が異なる複数の前記可視画像に基づいて前記可視画像取得部が取得した前記可視画像を構成する複数の部分領域毎に散乱特性および反射率を推定する散乱特性・反射率推定部とを備え、
前記輝度分布算出部は、前記散乱特性に基づいて前記輝度分布を補正し、
前記明るさ推定部は、前記補正された輝度分布と前記反射率とに基づいて前記視野領域の明るさを推定することを特徴とする請求項2に記載の照明制御システム。 - 前記可視画像取得部が取得した前記可視画像を撮影時刻と共に蓄積する画像蓄積部と、
前記可視画像取得部が取得した前記可視画像と前記画像蓄積部に蓄積された前記可視画像との中から前記撮影時刻が異なる複数の前記可視画像を抽出し、前記撮影時刻が異なる複数の前記可視画像に基づいて前記可視画像取得部が取得した前記可視画像を構成する複数の部分領域毎に散乱特性を推定する散乱特性推定部と備え、
前記輝度分布算出部は、前記散乱特性に基づいて前記輝度分布を補正することを特徴とする請求項1に記載の照明制御システム。 - 前記可視画像取得部が取得した前記可視画像が入力され、当該可視画像から人の位置と人の向きとを検出する人位置・向き検出部と、
前記人位置・向き検出部が検出した前記人の位置と前記人の向きとに基づいて前記視野領域を推定し、当該視野領域を前記視点変換部へ出力する視野領域推定部とを備えることを特徴とする請求項1に記載の照明制御システム。 - 前記輝度分布に基づいて前記視野領域の明るさを推定する明るさ推定部を備え、
前記調光制御部は、前記輝度分布に基づいて推定された前記視野領域の明るさに基づいて前記照明器具の調光を制御することを特徴とする請求項5に記載の照明制御システム。 - 前記可視画像取得部が取得した前記可視画像を撮影時刻と共に蓄積する画像蓄積部と、
前記可視画像取得部が取得した前記可視画像と前記画像蓄積部に蓄積された前記可視画像との中から前記撮影時刻が異なる複数の前記可視画像を抽出し、前記撮影時刻が異なる複数の前記可視画像に基づいて前記可視画像取得部が取得した前記可視画像を構成する複数の部分領域毎に散乱特性および反射率を推定する散乱特性・反射率推定部とを備え、
前記輝度分布算出部は、前記散乱特性に基づいて前記輝度分布を補正し、
前記明るさ推定部は、前記補正された輝度分布と前記反射率とに基づいて前記視野領域の明るさを推定することを特徴とする請求項6に記載の照明制御システム。 - 前記可視画像取得部が取得した前記可視画像を撮影時刻と共に蓄積する画像蓄積部と、
前記可視画像取得部が取得した前記可視画像と前記画像蓄積部に蓄積された前記可視画像との中から前記撮影時刻が異なる複数の前記可視画像を抽出し、前記撮影時刻が異なる複数の前記可視画像に基づいて前記可視画像取得部が取得した前記可視画像を構成する複数の部分領域毎に散乱特性を推定する散乱特性推定部と備え、
前記輝度分布算出部は、前記散乱特性に基づいて前記輝度分布を補正することを特徴とする請求項5に記載の照明制御システム。 - 前記可視画像取得部が取得した前記可視画像を撮影時刻と共に蓄積する画像蓄積部と、
前記可視画像取得部が取得した前記可視画像と前記画像蓄積部に蓄積された前記可視画像との中から前記撮影時刻が異なる複数の前記可視画像を抽出し、前記撮影時刻が異なる複数の前記可視画像に基づいて前記可視画像取得部が取得した前記可視画像を構成する複数の部分領域毎に散乱特性を推定する散乱特性推定部と、
前記撮影時刻が異なる複数の前記可視画像に基づいて室内に配置されるパーティションの位置を推定するパーティション位置推定部とを備え、
前記視野領域推定部は、前記人の位置と前記人の向きと前記パーティションの位置とに基づいて前記視野領域を推定し、当該視野領域を前記視点変換部へ出力し、
前記輝度分布算出部は、前記散乱特性に基づいて前記輝度分布を補正することを特徴とする請求項5に記載の照明制御システム。 - 前記可視画像取得部が取得した前記可視画像を撮影時刻と共に蓄積する画像蓄積部と、
前記可視画像取得部が取得した前記可視画像と前記画像蓄積部に蓄積された前記可視画像との中から前記撮影時刻が異なる複数の前記可視画像を抽出し、前記撮影時刻が異なる複数の前記可視画像に基づいて前記可視画像取得部が取得した前記可視画像を構成する複数の部分領域毎に散乱特性および反射率を推定する散乱特性・反射率推定部と、
前記撮影時刻が異なる複数の前記可視画像に基づいて室内に配置されるパーティションの位置を推定するパーティション位置推定部と、
前記輝度分布に基づいて前記視野領域の明るさを推定する明るさ推定部をと備え、
前記視野領域推定部は、前記人の位置と前記人の向きと前記パーティションの位置とに基づいて前記視野領域を推定し、当該視野領域を前記視点変換部へ出力し、
前記輝度分布算出部は、前記散乱特性に基づいて前記輝度分布を補正し、
前記明るさ推定部は、前記補正された輝度分布と前記反射率とに基づいて前記視野領域の明るさを推定することを特徴とする請求項5に記載の照明制御システム。 - 前記人位置・向き検出部は、前記可視画像取得部が取得した前記可視画像と前記画像蓄積部に蓄積された前記可視画像との中から前記撮影時刻が異なる複数の前記可視画像を抽出し、前記撮影時刻が異なる複数の前記可視画像に基づいて前記人の位置と前記人の向きとを検出することを特徴とする請求項7から請求項10のいずれか1項に記載の照明制御システム。
- 可視画像を取得する可視画像取得部と、
作業領域が入力され、前記可視画像取得部が取得した前記可視画像から前記作業領域に対応する領域の可視画像を抽出する視点変更部と、
前記作業領域に対応する領域の可視画像に基づいて前記作業領域の輝度分布を算出する輝度分布算出部と、
前記可視画像取得部が取得した前記可視画像を撮影時刻と共に蓄積する画像蓄積部と、
前記可視画像取得部が取得した前記可視画像と前記画像蓄積部に蓄積された前記可視画像との中から前記撮影時刻が異なる複数の前記可視画像を抽出し、前記撮影時刻が異なる複数の前記可視画像に基づいて前記可視画像取得部が取得した前記可視画像を構成する複数の部分領域毎に反射率を推定する反射率推定部と、
前記輝度分布算出部が算出した前記作業領域の輝度分布と前記反射率とに基づいて前記作業領域の明るさを推定する明るさ推定部と、
前記作業領域の明るさに基づいて照明器具の調光を制御する調光制御部とを備えることを特徴とする照明制御システム。 - 可視画像を取得する可視画像取得ステップと、
人の視野領域が入力され、前記可視画像取得ステップで取得した前記可視画像を前記視野領域における人視点の可視画像に画像変換する視点変換ステップと、
前記人視点の可視画像に基づいて前記視野領域の輝度分布を算出する輝度分布算出ステップと、
前記輝度分布に基づいて照明器具の調光を制御する調光制御ステップとを備えることを特徴とする照明制御方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019557086A JP6863475B2 (ja) | 2017-11-30 | 2018-11-01 | 照明制御システムおよび照明制御方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017230330 | 2017-11-30 | ||
JP2017-230330 | 2017-11-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019107060A1 true WO2019107060A1 (ja) | 2019-06-06 |
Family
ID=66664853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/040698 WO2019107060A1 (ja) | 2017-11-30 | 2018-11-01 | 照明制御システムおよび照明制御方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6863475B2 (ja) |
WO (1) | WO2019107060A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111970495A (zh) * | 2020-08-21 | 2020-11-20 | 湖南工学院 | 远程灯光自动控制系统 |
WO2021008741A1 (en) * | 2019-07-12 | 2021-01-21 | Brainlit Ab | A light exposure monitoring system |
US10962410B2 (en) | 2019-07-12 | 2021-03-30 | Brainlit Ab | Light exposure monitoring system |
WO2023093946A1 (de) * | 2021-11-25 | 2023-06-01 | Continental Automotive Technologies GmbH | Anzeigeeinheit in einem fahrzeug |
WO2024166150A1 (ja) * | 2023-02-06 | 2024-08-15 | 三菱電機株式会社 | 空間評価装置、空間評価システム、空間評価方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114165907A (zh) * | 2021-10-27 | 2022-03-11 | 珠海视熙科技有限公司 | 一种桌面设备控制方法、装置以及存储介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006146760A (ja) * | 2004-11-24 | 2006-06-08 | Aisin Seiki Co Ltd | 画像変換方法及び画像変換装置 |
JP2014007123A (ja) * | 2012-06-27 | 2014-01-16 | Panasonic Corp | 照明システム |
JP2014127291A (ja) * | 2012-12-26 | 2014-07-07 | Mitsubishi Electric Corp | 照度算出装置、照明制御装置および照明制御方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2012157573A1 (ja) * | 2011-05-13 | 2014-07-31 | 株式会社東芝 | エネルギー管理システム |
-
2018
- 2018-11-01 WO PCT/JP2018/040698 patent/WO2019107060A1/ja active Application Filing
- 2018-11-01 JP JP2019557086A patent/JP6863475B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006146760A (ja) * | 2004-11-24 | 2006-06-08 | Aisin Seiki Co Ltd | 画像変換方法及び画像変換装置 |
JP2014007123A (ja) * | 2012-06-27 | 2014-01-16 | Panasonic Corp | 照明システム |
JP2014127291A (ja) * | 2012-12-26 | 2014-07-07 | Mitsubishi Electric Corp | 照度算出装置、照明制御装置および照明制御方法 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021008741A1 (en) * | 2019-07-12 | 2021-01-21 | Brainlit Ab | A light exposure monitoring system |
US10962410B2 (en) | 2019-07-12 | 2021-03-30 | Brainlit Ab | Light exposure monitoring system |
CN114041326A (zh) * | 2019-07-12 | 2022-02-11 | 布莱茵力特有限公司 | 光暴露监测系统 |
US11467029B2 (en) | 2019-07-12 | 2022-10-11 | Brainlit Ab | Light exposure monitoring system |
CN111970495A (zh) * | 2020-08-21 | 2020-11-20 | 湖南工学院 | 远程灯光自动控制系统 |
WO2023093946A1 (de) * | 2021-11-25 | 2023-06-01 | Continental Automotive Technologies GmbH | Anzeigeeinheit in einem fahrzeug |
WO2024166150A1 (ja) * | 2023-02-06 | 2024-08-15 | 三菱電機株式会社 | 空間評価装置、空間評価システム、空間評価方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6863475B2 (ja) | 2021-04-21 |
JPWO2019107060A1 (ja) | 2020-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019107060A1 (ja) | 照明制御システムおよび照明制御方法 | |
US9613433B2 (en) | Method of characterizing a light source and a mobile device | |
JP5850600B2 (ja) | 目標配光に基づく照明システムの制御方法 | |
Jakubiec et al. | Accurate measurement of daylit interior scenes using high dynamic range photography | |
WO2013136822A1 (ja) | 情報処理装置、画像センサ装置及びプログラム | |
US20160350967A1 (en) | Dynamic adjustments for augmented, mixed and virtual reality presentations | |
Borisuit et al. | Visual discomfort and glare rating assessment of integrated daylighting and electric lighting systems using HDR imaging techniques | |
US20130231905A1 (en) | Lighting environment evaluation method and lighting environment evaluation apparatus | |
JP2010009874A (ja) | 照明制御システム | |
US10419688B2 (en) | Illuminating a scene whose image is about to be taken | |
US20240087148A1 (en) | Method of Characterizing a Surface Texture and Texture Characterization Tool | |
JP6593753B2 (ja) | 照度取得装置、照明制御システムおよびプログラム | |
Inanici et al. | The virtual lighting laboratory: Per-pixel luminance data analysis | |
Inanici | Per-pixel lighting data analysis | |
JP2016171040A (ja) | 照明装置及びそれを備えた照明システム | |
JP2024030668A (ja) | 照明システムおよび撮影システム | |
JP6862114B2 (ja) | 処理装置、処理システム、撮像装置、処理方法、プログラム、および記録媒体 | |
JP2015087200A (ja) | 照度検出器および照度検出器を備えたタスク照明装置 | |
JP6709954B2 (ja) | 照明制御システム | |
US20240062510A1 (en) | Apparatus and method for determining the lighting characteristics of a lighting fixture | |
WO2024043037A1 (ja) | 照度推定方法、照明制御方法、照度推定プログラム、制御装置、及び照明制御システム | |
JP4821598B2 (ja) | 屋内照明設計方法、および照明制御システム | |
WO2024043036A1 (ja) | 推定方法、照明制御方法、推定プログラム、制御装置、及び照明制御システム | |
JP2009254479A (ja) | 光環境評価方法および光環境評価システム | |
CN108332720A (zh) | 光学测距系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18884291 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019557086 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18884291 Country of ref document: EP Kind code of ref document: A1 |