WO2019106776A1 - Spark device - Google Patents

Spark device Download PDF

Info

Publication number
WO2019106776A1
WO2019106776A1 PCT/JP2017/042956 JP2017042956W WO2019106776A1 WO 2019106776 A1 WO2019106776 A1 WO 2019106776A1 JP 2017042956 W JP2017042956 W JP 2017042956W WO 2019106776 A1 WO2019106776 A1 WO 2019106776A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
conversion device
voltage
conversion
Prior art date
Application number
PCT/JP2017/042956
Other languages
French (fr)
Japanese (ja)
Inventor
中川 光
亮祐 小林
村上 哲
裕一 村本
棚谷 公彦
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019556472A priority Critical patent/JP6811877B2/en
Priority to PCT/JP2017/042956 priority patent/WO2019106776A1/en
Publication of WO2019106776A1 publication Critical patent/WO2019106776A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations

Definitions

  • the present invention relates to an igniter that mainly uses plasma discharge by AC power.
  • Patent Document 1 A general ignition device for an internal combustion engine generates a high voltage by a high voltage power source for insulation breakdown composed of an ignition coil and an igniter to generate a spark discharge between electrodes of a spark plug.
  • the high frequency plasma igniter includes a high frequency alternating current power supply in addition to the high voltage power supply for dielectric breakdown, and immediately after the start of the discharge by the high voltage power supply for dielectric breakdown, between the electrodes of the spark plug in megahertz (hereinafter referred to as MHz) order
  • MHz megahertz
  • the ignition device disclosed in Patent Document 1 includes a high voltage power supply for insulation breakdown and a high frequency AC power supply, and the high frequency AC power supply includes a battery, a full bridge inverter circuit, a high frequency transformer, and an LC resonant circuit.
  • Composed of Patent Document 1 describes that a DC / DC conversion device may be connected between a full bridge inverter of a high frequency AC power supply and a battery.
  • the charging voltage of the output capacitor (also referred to as applied voltage or output voltage may be referred to as “charging in the following description. Voltage is detected, and charging is stopped when the charging voltage of the output capacitor reaches a predetermined threshold, and charging is resumed when the charging voltage of the output capacitor falls below the threshold.
  • the charging voltage of the output capacitor gradually decreases due to power consumption on the load side and natural discharge with the passage of time. As a result, the DC / DC conversion device repeats the voltage conversion operation and the stop to keep the charging voltage of the output capacitor at a predetermined value.
  • the voltage oscillation of the reference potential of the DC / DC conversion device is superimposed on the control signal and the sensor detection value, it is also superimposed on the voltage detection device that detects the charging voltage of the output capacitor of the DC / DC conversion device, Large errors may occur in the detection value of the voltage detection device.
  • the DC / DC conversion device Due to the influence of the error of the detection value of the voltage detection device described above, when the charging voltage of the output capacitor is detected lower than the actual value, the DC / DC conversion device will output more power than necessary to the output capacitor. As a result, the charging voltage of the output capacitor becomes larger than the originally intended value, so that the switching loss and the like of the semiconductor of the DC / DC converter in the ignition device increase, causing an increase in power loss.
  • the present invention has been made to solve the above-mentioned problems in the conventional ignition device, and the DC / DC conversion device outputs a large power more than necessary due to the error of the voltage detection value of the voltage detection means. It is an object of the present invention to provide an igniter capable of preventing the increase in power loss.
  • the igniter according to the invention is An ignition plug including a first electrode and a second electrode facing each other through a gap, for igniting fuel in a combustion chamber of an internal combustion engine; A high voltage power supply that applies a voltage to the spark plug to cause dielectric breakdown in the gap; A high frequency alternating current power supply for applying a high frequency voltage to the spark plug to generate high frequency plasma in the gap; A DC power supply for supplying power to the high voltage power supply and the high frequency AC power supply; A control device that controls the operation of the high voltage power supply and the high frequency alternating current power supply; An igniter having The high frequency alternating current power supply is A DC / AC conversion device which converts DC power into AC power of a predetermined frequency and outputs the converted AC power to the spark plug; A DC / DC conversion device that converts DC power from a DC power supply into DC power having a predetermined voltage value and outputs the converted DC power to the DC / AC conversion device; Equipped with The controller is In a period satisfying at least one of a period in which the capacity
  • the ignition device is An ignition plug including a first electrode and a second electrode facing each other through a gap, for igniting fuel in a combustion chamber of an internal combustion engine; A high voltage power supply that applies a voltage to the spark plug to cause dielectric breakdown in the gap; A high frequency alternating current power supply for applying a high frequency voltage to the spark plug to generate high frequency plasma in the gap; A DC power supply for supplying power to the high voltage power supply and the high frequency AC power supply; A control device that controls the operation of the high voltage power supply and the high frequency alternating current power supply; An igniter having The high frequency alternating current power supply is A DC / AC conversion device which converts DC power into AC power having a predetermined frequency and outputs the converted AC power to the spark plug; A DC / DC conversion device that converts DC power from a DC power supply into DC power having a predetermined voltage value and outputs the converted DC power to the DC / AC conversion device; Equipped with The DC / DC conversion device A power supply capacitor for charging energy of the converted
  • the ignition device including a first electrode and a second electrode facing each other through a gap, for igniting fuel in a combustion chamber of an internal combustion engine; A high voltage power supply that applies a voltage to the spark plug to cause dielectric breakdown in the gap; A high frequency alternating current power supply for applying a high frequency voltage to the spark plug to generate high frequency plasma in the gap; A DC power supply for supplying power to the high voltage power supply and the high frequency AC power supply; A control device that controls the operation of the high voltage power supply and the high frequency alternating current power supply; An igniter having The high frequency alternating current power supply is A DC / AC conversion device which converts DC power into AC power having a predetermined frequency and outputs the converted AC power to the spark plug; A DC / DC conversion device that converts DC power from a DC power supply into DC power having a predetermined voltage value and outputs the converted DC power to the DC / AC conversion device; Equipped with The DC / DC conversion device A power supply capacitor for charging energy of the converted DC
  • the high frequency AC power supply converts DC power into AC power of a predetermined frequency, and outputs the converted AC power to the spark plug from the DC / AC conversion device, and DC power supply And DC / DC conversion device for converting the DC power of the device into DC power having a predetermined voltage value and outputting the converted DC power to the DC / AC conversion device, the control device generating The DC / DC in a period in which at least one of a period in which the capacity discharge current is smaller than a predetermined value and a period in which the DC / AC conversion device does not output the AC power to the spark plug Since the converter is configured to perform control so as to perform the power conversion operation, it is possible that the dielectric breakdown is generated while the DC / DC conversion device performs the power conversion operation.
  • An output AC current of the amount the discharge current and the DC / AC conversion device prevents flow into the reference potential of the DC / DC converter at the same time, it is possible to suppress the detection error of the voltage detecting means. As a result, it is possible to prevent the DC / DC conversion device from outputting an unnecessarily large power due to the influence of the detection error, and to prevent an increase in power loss.
  • the DC / DC conversion device includes a power supply capacitor for charging the energy of the converted direct current power, and a voltage detection unit for detecting a charging voltage of the power supply capacitor.
  • the control device is configured such that, after the high voltage power supply applies a voltage to the spark plug, the high voltage power supply is operated in a period until the capacitive discharge current generated by the dielectric breakdown becomes smaller than a predetermined value. Since the power conversion operation of the DC / DC conversion device is controlled using the detection value of the voltage detection means immediately before applying the voltage to the spark plug, the influence of the detection error caused by the voltage oscillation Thus, it is possible to prevent the DC / DC conversion device from outputting an unnecessarily large power and to prevent an increase in power loss.
  • the DC / DC conversion device comprises: a power supply capacitor for charging the energy of the converted DC power; and voltage detection means for detecting a charging voltage of the power supply capacitor.
  • the control device uses a detection value of the voltage detection means immediately before the DC / AC conversion device outputs a current to a spark plug in a period during which the DC / AC conversion device outputs a current to the spark plug.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which comprises schematic structure of the ignition device which concerns on Embodiment 1 of this invention. BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the ignition device which concerns on Embodiment 1 of this invention. It is a timing chart which shows the general operation sequence of the ignition device concerning Embodiment 1 of this invention. It is a flowchart which shows the operation
  • FIG. 1 is a block diagram showing a schematic configuration of an ignition device according to Embodiment 1 of the present invention.
  • an ignition device 10 includes an ignition plug 1, a high voltage power supply 2, a high frequency AC power supply 3 having a DC / AC conversion device and a DC / DC conversion device 5, a DC power supply 6, and a control device 7. Is equipped.
  • the spark plug 1 is mounted on an internal combustion engine (not shown) and includes a first electrode 1a and a second electrode 1b exposed in a combustion chamber of the internal combustion engine.
  • the first electrode 1a and the second electrode 1b are opposed to each other via a predetermined gap.
  • the igniter 10 generates high frequency plasma in the gap between the first electrode 1 a and the second electrode 1 b of the spark plug 1 according to the ignition command signal output from the control unit 7 every ignition cycle Ti. , Ignites the fuel inside the combustion chamber of the internal combustion engine.
  • the high voltage power supply 2 generates a high voltage for causing a dielectric breakdown in the gap between the first electrode 1 a and the second electrode 1 b of the spark plug 1.
  • the DC / AC conversion device 4 performs a power conversion operation of converting energy as DC power supplied from the DC / DC conversion device 5 into energy as AC power.
  • the AC power output from the DC / AC converter 4 is supplied to the spark plug 1 to generate a high frequency discharge in the gap between the first electrode 1a and the second electrode 1b.
  • the DC / DC conversion device 5 can convert DC power from the DC power supply 6 into DC power having an arbitrary DC voltage value, and more specifically, a predetermined DC voltage value optimum for the device. Power conversion operation to convert into DC power and output to the DC / AC converter 4.
  • the direct current power supply 6 includes a battery or the like mounted on a vehicle, and supplies power to the high voltage power supply 2 and the high frequency alternating current power supply 3.
  • the control device 7 includes an engine control unit or a microcomputer and controls the operations of the high voltage power supply 2 and the high frequency AC power supply 3.
  • the DC / AC conversion device 4 and the DC / DC conversion device 5 have semiconductor switches as switching elements as described later in the circuit configuration.
  • FIG. 2 is a block diagram of the ignition device according to the first embodiment of the present invention, and shows a specific circuit configuration of the ignition device shown in FIG.
  • the igniter 10 has a spark plug 1 having a first electrode 1 a and a second electrode 1 b and a gap between the first electrode 1 a and the second electrode 1 b of the spark plug 1.
  • a high voltage power supply 2 that applies a voltage to cause dielectric breakdown in the gap, and outputs alternating current power having a predetermined frequency to the spark plug 1 to generate a voltage between the first electrode 1a and the second electrode 1b.
  • the high voltage power supply 2 includes a transformer 21, a semiconductor switch 22, and a diode 23.
  • the transformer 21 has a primary winding 21 a whose one end is connected to the positive electrode of the DC power supply 6 and whose other end is connected to one end of the semiconductor switch 22, and one whose other end is connected to the first electrode 1 a of the spark plug 1. And a winding 21b.
  • the diode 23 has an anode connected to one end of the secondary winding 21 b of the transformer 21 and a cathode connected to one end of the primary winding 21 a of the transformer 21.
  • the diode 23 functions as a backflow prevention diode that prevents the power of the DC power supply 6 from being directly applied to the spark plug 1.
  • the other end of the semiconductor switch 22 is connected to the ground level portion GND of the vehicle held at the ground level potential.
  • the transformer 21 and the semiconductor switch 22 constitute a flyback converter, and by controlling the on / off of the semiconductor switch 22, it is possible to boost the DC voltage.
  • the high voltage power supply 2 may be any one that can apply a high voltage to the spark plug 1, and may have a configuration other than the flyback converter shown in FIG. 2.
  • the high frequency AC power supply 3 converts DC power to AC power and outputs it to the spark plug 1, and DC that converts DC voltage to a predetermined voltage value and outputs it to the DC / AC converter 4 And a DC / DC converter 5.
  • the DC / AC conversion device 4 includes a full bridge inverter circuit, a step-up transformer 45, a resonance inductor 46 and a resonance capacitor constituting a resonance circuit, and a current detection means 48.
  • the full bridge inverter circuit is provided with four semiconductor switches 41, 42, 43, 44 that constitute four sides of the bridge circuit.
  • the connection point of the semiconductor switch 41 and the semiconductor switch 43 is connected to the positive output terminal of the DC / DC conversion device 5, and the connection point of the semiconductor switch 42 and the semiconductor switch 44 is on the negative side of the DC / DC conversion device 5. It is connected to the ground level site GND via a terminal.
  • the step-up transformer 45 includes a primary winding 45a and a secondary winding 45b.
  • One end of the primary winding 45a is connected to a series connection point of the semiconductor switch 41 and the semiconductor switch 42 of the full bridge inverter circuit, The other end of the winding 45 a is connected to a series connection point of the semiconductor switch 43 and the semiconductor switch 44.
  • One end of the secondary winding 45 b of the step-up transformer 45 is connected to one end of the resonant inductor 46, and the other end of the secondary winding 45 b is connected to the second electrode 1 b of the spark plug 1.
  • the other end of the resonant inductor 46 is connected to one end of the resonant capacitor 47.
  • the other end of the resonant capacitor 47 is connected to the first electrode 1 a of the spark plug 1.
  • the DC / AC conversion control circuit 49 inputs a gate signal generated based on a command from the control device 7 to the gate terminals of the four semiconductor switches 41, 42, 43, 44 of the full bridge inverter circuit.
  • the on / off operation of the semiconductor switches 41, 42, 43, 44 is controlled.
  • the semiconductor switch 41 and the semiconductor switch 44 are simultaneously turned on and simultaneously turned off.
  • the semiconductor switch 43 and the semiconductor switch 42 are simultaneously turned on and simultaneously turned off.
  • the semiconductor switch 41 and the semiconductor switch 44 are simultaneously turned on, the semiconductor switch 43 and the semiconductor switch 42 are simultaneously turned off.
  • the semiconductor switch 43 and the semiconductor switch 42 are simultaneously turned on, the semiconductor switch 41 and the semiconductor switch 42 are simultaneously turned on.
  • the semiconductor switch 44 is simultaneously turned off.
  • the full bridge inverter circuit is inputted to the connection point between the semiconductor switch 41 and the semiconductor switch 43 by the four semiconductor switches 41, 42, 43, 44 being controlled by the DC / AC conversion control circuit 49 as described above.
  • the DC voltage is converted to an AC voltage and output to the primary winding 45 a of the step-up transformer 45.
  • the DC / AC conversion device 4 only needs to be able to convert a DC voltage to an AC voltage, and may have another configuration other than the full bridge inverter circuit shown in FIG.
  • the boosting transformer 45 is provided to boost the output voltage of the high frequency AC power supply 3.
  • the resonant inductor 46 and the resonant capacitor 47 constitute a resonant circuit, and shapes the output power output from the secondary winding 45 b of the step-up transformer 45 into a sine wave. If the same function as the resonant inductor 46 can be realized using the leakage inductance of the step-up transformer 45, the resonant inductor 46 may not be provided.
  • the current detection means 48 measures the output current of the DC / AC converter 4 and the capacitive discharge current associated with the dielectric breakdown in the gap between the first electrode 1 a and the second electrode 1 b of the spark plug 1.
  • the current detection means 48 is formed of, for example, a current transformer, but may have a function of detecting a current like a shunt resistor.
  • the DC / AC conversion control circuit 49 includes a drive circuit and the like configured by an integrated circuit or a semiconductor switch, and the semiconductor switch of the DC / AC conversion device 4 as described above based on the command signal from the control device 7 41, 42, 43, 44 are driven to control the power conversion operation of the DC / AC converter 4.
  • the DC / DC conversion device 5 includes an inductor 51, a diode 52, a power supply capacitor 54, a semiconductor switch 53, a DC / DC conversion control circuit 56, and a voltage detection unit 55.
  • One end of the inductor 51 is connected to the positive electrode of the DC power supply 6 and the other end is connected to the anode of the diode 52.
  • the cathode of the diode 52 is connected to the positive input terminal of the DC / AC converter 4 There is.
  • One end of the power supply capacitor 54 is connected to the cathode of the diode 52, and the other end is connected to the ground level portion GND.
  • the voltage detection means 55 is provided at the positive output terminal of the DC / DC conversion device 5, and detects the charging voltage V2 of the power supply capacitor 54.
  • the DC / DC conversion control circuit 56 controls the on / off operation of the semiconductor switch 53 based on the detection value of the charging voltage V2 of the power supply capacitor 54 detected by the voltage detection means 55.
  • the DC / DC conversion control circuit 56 is configured by a drive circuit or the like including an integrated circuit or a semiconductor switch, and controls the power conversion operation of the DC / DC conversion device 5 based on a command signal from the control device 7.
  • the inductor 51, the diode 52, and the semiconductor switch 53 constitute a boost chopper circuit.
  • the DC power supply 6 generates, for example, an output voltage of 12 [V] as a vehicle-mounted power supply.
  • the above-described step-up chopper circuit boosts the 12 [V] output voltage of the DC power supply 6 to several tens [V] to several hundreds [V] to charge the power supply capacitor 54.
  • the DC / DC conversion control circuit 56 turns on and off the semiconductor switch 53 when the charging voltage V2 of the power supply capacitor 54 is less than the output voltage command value Vb, and the power supply capacitor 54 is operated by the step-up chopper circuit 50.
  • the charging is performed, and the operation of the semiconductor switch 53 is stopped when the charging voltage V2 of the power supply capacitor 54 is equal to or higher than the output voltage command value Vb, and the charging of the power supply capacitor 54 by the step-up chopper circuit 50 is stopped.
  • the charging voltage V2 of the power supply capacitor 54 decreases when AC power is output from the DC / AC converter 4 to the spark plug 1 mainly by the power conversion operation of the DC / AC converter 4.
  • the DC / AC conversion device 4 does not operate with the charging voltage V2 of the power supply capacitor 54. But it will decline gradually.
  • the semiconductor switch 53 of the DC / DC conversion device 5 repeatedly operates and stops. The charge voltage V2 of the power supply capacitor 54 is maintained at the output voltage command value Vb.
  • the DC / DC conversion device 5 may be any device as long as it can convert the output voltage of the DC power supply 6 into any predetermined voltage, and may have a configuration other than the step-up chopper circuit 50 shown in FIG.
  • the control device 7 controls the operation of the high voltage power supply 2, the DC / AC conversion device 4, and the DC / DC conversion device 5, and detects the current of the target location by the current detection unit 48.
  • the control device 7 outputs an ignition command signal for instructing the timing for igniting the fuel in the combustion chamber of the internal combustion engine for each ignition cycle. Further, the control device 7 controls the timing of outputting the ignition command signal in accordance with the environment and the operating condition of the internal combustion engine so that the combustion occurs at the optimum timing for the internal combustion engine.
  • the ignition command signal may be input to the ignition device 10 from the outside of the control device 7. In this case, the ignition operation is performed according to the externally input ignition command signal.
  • the control device 7 controls the power conversion operation of the DC / DC conversion device 5 by the DC / DC conversion permission signal, and permits the power conversion operation when the DC / DC conversion permission signal is at high level. When the conversion enable signal is at low level, the power conversion operation is inhibited.
  • control device 7 controls the power conversion operation of the DC / AC conversion device 4 by the DC / AC conversion operation period signal, and performs the power conversion operation when the DC / AC conversion operation period signal is high level, When the DC / AC conversion operation period signal is low, the power conversion operation is stopped.
  • the controller 7 is configured of, for example, an engine control unit or a microcomputer.
  • the semiconductor switches 22, 41, 42, 43, 44, 53 used in the high voltage power supply 2, the DC / DC conversion device 5, and the DC / AC conversion device 4 may be semiconductor switches.
  • an IGBT Insulated-Gate Bipolar Transistor
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • FIG. 3 is a timing chart showing a schematic operation sequence of the ignition device in accordance with Embodiment 1 of the present invention, wherein “a” is an ignition command signal, “b” is a drive control signal of semiconductor switch 22, “c”. Is the voltage applied to the spark plug 1, “d” is the DC / AC conversion operation period signal, “e” is the detection value I1 of the current detection means 48, “f” is the DC / DC conversion permission signal, and “g” is DC / DC.
  • the output current of the DC converter 5 and “h” indicate the charging voltage of the power supply capacitor 54, respectively.
  • the horizontal axis of FIG. 3 shows time.
  • FIG. 4 is a flow chart showing an operation sequence of the ignition device in accordance with the first embodiment of the present invention.
  • step S01 the control device 7 of the ignition device 10 determines the content of the operation according to the ignition command signal output for each ignition cycle Ti.
  • the ignition command signal shown in “a” of FIG. 3 is at the high level Hi
  • the ignition device 10 starts a series of ignition operations to generate combustion in the combustion chamber of the internal combustion engine.
  • the ignition command signal shown to "a” of FIG. 3 is low level Lo
  • movement by DC / DC converter 5 is permitted, and DC / DC converter 5 operate
  • the control device 7 switches the DC / DC conversion permission signal shown in “f” to low level Lo according to the ignition command signal shown in "a” in FIG.
  • the power conversion operation of the device 5 is prohibited.
  • This stage corresponds to step S02. Thereby, the switching operation of the semiconductor switch 53 of the DC / DC conversion device 5 is stopped, and the power supply capacitor 54 is not supplied with power.
  • step S03 the control device 7 causes the semiconductor switch 22 in the high voltage power supply 2 to conduct in order to cause the spark plug 1 to generate a high voltage by the high voltage power supply 2.
  • the control device 7 causes the semiconductor switch 22 in the high voltage power supply 2 to conduct in order to cause the spark plug 1 to generate a high voltage by the high voltage power supply 2.
  • current flows through the primary winding 21 a of the transformer 21 of the high voltage power supply 2, and magnetic flux is accumulated in the iron core of the transformer 21.
  • step S04 at timing t2 shown in FIG. 3, the control device 7 shuts off the semiconductor switch 22 of the high voltage power supply 2 in response to the change of the ignition command signal shown at "a" from high level Hi to low level Lo. Do.
  • the timing t2 is a timing at which energy sufficient to apply the dielectric breakdown voltage to the spark plug 1 is accumulated in the iron core of the transformer 21.
  • the time required from the timing t1 to the timing t2 is measured in advance for each operating condition of the internal combustion engine, and recorded in advance in a memory provided inside the control device 7.
  • the semiconductor switch 22 of the high voltage power supply 2 When the semiconductor switch 22 of the high voltage power supply 2 is shut off, the energy of the magnetic flux stored in the transformer 21 is released, and an induced voltage is generated in the secondary winding 21b of the transformer 21. Since the energy of the magnetic flux stored in the transformer 21 is gradually released, the applied voltage V1 of the spark plug 1 shown in "c" of FIG. 3 increases in the direction of negative level with the passage of time from 0 [V]. . Although a negative voltage is applied to the spark plug 1 in the circuit configuration of FIG. 2, the circuit may be configured to apply a positive voltage.
  • the applied voltage V1 of the spark plug 1 shown in “c” of FIG. 3 reaches the dielectric breakdown voltage Va, and the first electrode 1a and the second electrode 1b of the spark plug 1 Breakdown occurs in the air gap between When dielectric breakdown occurs in the gap between the electrodes of the spark plug 1, a large capacity discharge current instantaneously flows through the spark plug 1.
  • the capacitive discharge current flowing to the spark plug 1 is a release of the charge that has been charged in the resonant capacitor 47 connected to the spark plug 1 and the parasitic capacitance in the vicinity of the spark plug 1.
  • the capacitance discharge current flowing to the spark plug 1 increases as the capacitance of the capacitor causing the capacitance discharge current increases. Therefore, in the ignition device 10 according to the first embodiment of the present invention, the resonance capacitor 47 causes the discharge. Capacity discharge current is particularly large.
  • the capacitive discharge current also flows through a path constituted by the spark plug 1, the step-up transformer 45, the resonant inductor 46 and the resonant capacitor 47.
  • the controller 7 takes in the detection value I1 of the current detection means 48 and measures the current value of the capacitive discharge current based on the detection value I1.
  • the control device 7 attenuates the peak value of the detection value I1 of the current detection means 48 to less than the predetermined first predetermined value Ia and the second predetermined value Ib. To judge that.
  • This stage corresponds to step S05.
  • the predetermined first predetermined value Ia is set as a value that causes the voltage detection means 55 to generate a detection error when the current value of the capacitive discharge current is equal to or greater than the first predetermined value Ia.
  • the aforementioned second predetermined value Ib is not detected in the output current of the DC / AC conversion device 4 , And the detection value of the current detection means 48 for detecting the output current of the DC / AC conversion device 4 is set as a value causing a detection error.
  • the second predetermined value Ib is preferably set to 1/2 or less of the output current command value Ic of the DC / AC conversion device 4.
  • FIG. 5 is a flow chart showing an operation sequence of the ignition device in accordance with the first embodiment of the present invention, and shows a flow chart of a detailed operation sequence of step S05 in FIG.
  • the judgment described below is performed using the detection value I1 of the current detection means 48. That is, when the peak value of the detection value I1 of the current detection means 48 becomes equal to or more than the first predetermined value Ia or the second predetermined value Ib after the timing t1 of FIG. Detection of the occurrence of capacitive discharge current due to dielectric breakdown in the gap between the This stage corresponds to step S51A.
  • FIG. 7 is an explanatory diagram for explaining the operation of the ignition device according to the first embodiment of the present invention, showing an example of the capacitive discharge current and explaining the determination based on the flowchart of FIG.
  • the capacitive discharge current is an alternating current, the frequency of which is mainly the resonant frequency of the resonant inductor 46 and the resonant capacitor 47, so it has a cycle of [1 / resonant frequency] and produces positive and negative peak values for each cycle.
  • the control device 7 compares the detection value I1 of the current detection means 48 with a predetermined first predetermined value Ia also after step S51A in FIG.
  • step S53A of FIG. 5 the control device 7 compares the detected value I1 of the capacitive discharge current with a predetermined second predetermined value Ib. Also in this step S53A, as in the cycle T3 shown in FIG. 7, if it can not be detected that the detected value I1 becomes equal to or more than the second predetermined value Ib every one cycle of the capacitive discharge current, the capacitive discharge current is second It is determined that it has fallen below the predetermined value Ib of. In the cycles T1 and T2, the detected value I1 of the capacitive discharge current is equal to or greater than the second predetermined value Ib. At this time, it is determined that the capacitive discharge current is not attenuated to less than the second predetermined value Ib.
  • the order of step S52A and step S53A may be first.
  • FIG. 6 is a flowchart showing an operation sequence of the ignition device in accordance with the first embodiment of the present invention, and shows a flowchart of another detailed operation sequence of step S05 in FIG.
  • step S51B an elapsed time ta from the timing t2 when the ignition command signal shown in “a” of FIG. 3 becomes the low level Lo is measured, and the elapsed time ta is a predetermined time ⁇ t or more. It is determined that the time when it has become timing t4.
  • the predetermined time ⁇ t for example, the time required for the capacitive discharge current to attenuate to less than the first predetermined value Ia and the second predetermined value Ib from the fall of the ignition command signal at the timing t2 is set.
  • any method may be used as long as the same effect as the method described in FIG. 7 is obtained.
  • the capacitive discharge current has a high frequency of MHz order or more
  • voltage oscillation is caused to the reference potential of the high frequency alternating current power supply 3 by parasitic inductance such as wiring. Since the voltage oscillation of the reference potential is superimposed on the voltage value of each part, the voltage oscillation of the reference potential is superimposed also on the signal of the sensor or the like, and an error occurs in the detection value of the sensor or the like.
  • the control device 7 can read the minimum value of the oscillation detection value and detect the charging voltage V2 of the power supply capacitor 54 smaller than it actually is. There is sex. As a result, the DC / DC conversion device 5 supplies a power larger than necessary to the power supply capacitor 54, so the charging voltage V2 of the power supply capacitor 54 becomes larger than the voltage command value Vb. When the charging voltage V2 of the power supply capacitor 54 becomes larger than the originally intended voltage command value Vb, the switching loss of the semiconductor switch of the DC / AC conversion device 4 and the like increase and the power loss increases.
  • the high voltage power supply 2 is operated and the voltage is applied to the spark plug 1 after the power conversion operation of the DC / DC conversion device 5 is stopped.
  • the DC / DC conversion device 5 stops the power conversion operation until the capacity discharge current attenuates to less than the predetermined first predetermined value Ia and the second predetermined value Ib. Therefore, excessive power supply to the power supply capacitor 54 does not occur regardless of the erroneous detection of the voltage detection means 55 due to the inflow of the capacitive discharge current. Therefore, since the error of the detection value of the voltage detection means 55 can be suppressed, the DC / DC conversion device 5 can be prevented from outputting an electric power larger than necessary, and the increase of the power loss of the high frequency AC power supply 3 can be prevented. .
  • the control device 7 sends the DC / AC conversion operation period signal shown in FIG. Output at high level Hi.
  • the DC / AC conversion control circuit 49 converts the energy charged in the power supply capacitor 54 into AC power by the DC / AC converter 4, and supplies the AC power to the spark plug 1.
  • This stage is step S06 in FIG.
  • the delay time td1 is, for example, about 50 [ ⁇ s]. The shorter the delay time td1, the lower the discharge maintaining voltage of the spark plug 1 becomes.
  • the high frequency AC power supply 3 supplies AC power to the spark plug 1 for a time tac1 required for ignition shown in FIG. At this time, since the DC / DC conversion device 5 stops the power conversion operation, the charging voltage V2 of the power supply capacitor 54 shown by “h” in FIG. 3 gradually decreases.
  • the ignition performance using the high frequency plasma generally improves as the output current increases, and the ignition can be performed even in an environment where it is difficult to burn.
  • the control device 7 controls the frequency of the AC power output from the DC / AC conversion device 4 so that the peak value of the detection value I1 of the current detection means 48 approaches the output current command value Ic.
  • the output current of the DC / AC conversion device 4 increases when the resonant frequencies of the resonant inductor 46 and the resonant capacitor 47 and the frequency of the AC power become close to each other, and decrease as they are distant from each other.
  • the current detection means 48 can not accurately detect the output current of the DC / AC conversion device 4, and it becomes difficult to accurately control the output current value of the DC / AC conversion device 4. As a result, power loss may increase due to excessive AC power output, spark plug deterioration may occur, or ignition failure may occur due to insufficient AC power output.
  • high voltage power supply 2 does not output a voltage as shown in FIG. 3, and the second predetermined value of capacitive discharge current as a predetermined allowable predetermined value Since the DC / AC conversion device 4 is controlled to perform the power conversion operation at the timing when it is smaller than the value Ib, the output current of the DC / AC conversion device 4 can be detected accurately. As a result, it is possible to prevent an increase in power loss due to excessive AC power output, deterioration of the spark plug, or occurrence of ignition failure due to insufficient output of AC power.
  • part of the AC power output from the high frequency AC power supply 3 flows into the high frequency AC power supply 3 through the common ground level portion GND of the internal combustion engine. Since the alternating current has a high frequency on the order of MHz, when flowing into the high frequency alternating current power supply 3, voltage oscillation is caused to the reference potential of the high frequency alternating current power supply 3 by parasitic inductance such as wiring. Such voltage oscillation of the reference potential is superimposed on the voltage value of each part, and therefore is superimposed on the signal of the sensor or the like to cause an error in the detected value.
  • the control device 7 When voltage oscillation is superimposed on the detection value of the voltage detection means 55, the control device 7 reads the minimum value of the oscillation detection value and may detect the charging voltage V2 of the power supply capacitor 54 smaller than the actual value. is there. As a result, since the DC / DC conversion device 5 supplies a power larger than necessary to the power supply capacitor 54, the charging voltage V2 becomes larger than the voltage command value Vb. When the charging voltage V2 of the power supply capacitor 54 becomes larger than the originally intended voltage command value Vb, the switching loss of the semiconductor of the DC / AC conversion device 4 and the like increase and the power loss increases.
  • the power conversion operation of the DC / DC conversion device 5 is stopped before the DC / AC conversion device 4 operates. Regardless of the erroneous detection of the voltage detection means 55, excessive power supply to the power supply capacitor 54 does not occur. Therefore, since the error of the detection value of the voltage detection means 55 can be suppressed, the DC / DC conversion device 5 is prevented from outputting an electric power larger than necessary, and the increase of the power loss of the high frequency AC power supply 3 is prevented. be able to.
  • the current supplied from the DC / AC converter 4 to the spark plug 1 is proportional to the charging voltage V2 of the power supply capacitor 54. Therefore, when the voltage detection means 55 detects the charging voltage V2 smaller than the actual value due to an erroneous detection, an electric power larger than necessary is supplied to the electric power supply capacitor 54, and the charging voltage V2 of the electric power supply capacitor 54 is a voltage command As it becomes larger than the value Vb, a large current flows in the spark plug 1 to cause deterioration of the spark plug 1.
  • the voltage detection means 55 detects the charging voltage V2 of the power supply capacitor 54 smaller than the actual value due to an erroneous detection, the necessary power is not supplied to the power supply capacitor 54 and the power supply capacitor 54 The charging voltage V2 becomes smaller than the voltage command value Vb, and the alternating current of the spark plug 1 runs short, causing an ignition failure.
  • the DC / AC conversion device 4 operates when the power conversion operation of the DC / DC conversion device 5 is stopped.
  • the erroneous detection of the means 55 can be prevented, and the charging voltage V2 of the power supply capacitor 54 can be controlled to follow the voltage command value Vb.
  • the current value supplied to the spark plug 1 by the DC / AC conversion device 4 is prevented from becoming excessively large or excessively small, which contributes to the deterioration of the spark plug 1 and the prevention of defective ignition.
  • the control device 7 sets the DC / AC conversion operation period signal shown at "d" in FIG. 3 to low level Lo. Thereby, the DC / AC conversion control circuit 49 stops the power conversion operation of the DC / AC conversion device 4. This stage is step S07 in FIG. As a result, the high frequency plasma generated in the spark plug 1 disappears.
  • step S08 the charging voltage V2 of the power supply capacitor 54 has dropped to a predetermined voltage value Vc.
  • the control device 7 switches the DC / DC conversion permission signal shown in “f” of FIG. 3 to high level Hi, and converts the power of the DC / DC conversion device 5. Allow the action.
  • This stage is step S08 in FIG.
  • FIG. 8 is a flow chart showing an operation sequence of the DC / DC conversion device in the ignition device according to Embodiment 1 of the present invention.
  • the DC / DC conversion device 5 operates according to the flowchart of FIG.
  • the DC / DC conversion control circuit 56 determines the state of the DC / DC conversion permission signal shown in “f” of FIG. 3 and the charging voltage V2 of the power supply capacitor 54 and the DC / DC conversion device. Comparison with the output voltage command value Vb of 5 is performed.
  • step S82 When the DC / DC conversion permission signal is low level Lo or the charging voltage V2 of the power supply capacitor 54 is equal to or higher than the output voltage command value Vb, the DC / DC conversion control circuit 56 stops the semiconductor switch 53 and the power supply capacitor Stop the supply of DC power to 54.
  • step S83 In FIG.
  • the control device 7 permits the power conversion operation by the DC / DC conversion device 5 until the ignition command signal shown in FIG. 3A becomes high level Hi, and the charging voltage V2 of the power supply capacitor 54 is the output voltage command value Control to be maintained at Vb.
  • FIG. 9A is an explanatory view showing a condition when the DC / DC conversion device performs the power conversion operation
  • FIG. 9B is a condition when the DC / DC conversion device performs the power conversion operation and a detection error of the voltage detection means It is an explanatory view showing a relation.
  • “a” is a capacitive discharge current
  • “b” is an output current of the DC / AC converter 4
  • “c” is an operation permitted state of the DC / DC converter 5
  • “d” is a power supply capacitor 54.
  • the charging voltage V2 of “e” indicates the detection value of the voltage detection means 55, respectively.
  • the DC / DC conversion device 5 performs the power conversion operation as needed.
  • the DC / DC conversion device 5 performs the power conversion operation in a period in which the capacity discharge current is smaller than a predetermined value.
  • the DC / DC conversion device 5 performs the power conversion operation in a period in which the DC / AC conversion device 4 does not output AC power to the spark plug.
  • the DC / DC conversion device 5 performs the power conversion operation in a period in which the capacity discharge current is smaller than a predetermined value and in a period in which the DC / AC conversion device 4 does not output AC power to the spark plug 1.
  • the capacitive discharge current indicated by “a” is similarly applied to the gap between the electrodes of the spark plug 1 under any of the above-mentioned condition 1, condition 2, condition 3 and condition 4
  • the value immediately reaches the maximum value at the dielectric breakdown timing where dielectric breakdown occurs, and gradually attenuates while vibrating and becomes smaller than a predetermined value after a predetermined time.
  • the output current of the DC / AC conversion device 4 shown in “b” is constant at a timing slightly delayed from the dielectric breakdown timing in any of the above-mentioned condition 1, condition 2, condition 3 and condition 4 as well. It is illustrated as oscillating at an amplitude and frequency and flowing for a predetermined period of time.
  • the DC / DC conversion device 5 performs the power conversion operation as needed.
  • the predetermined timing ta to the predetermined timing tb The DC / DC conversion device 5 is in the operation permitted state in a predetermined period A1.
  • the DC / DC conversion device 5 performs the power conversion operation in a period in which the capacity discharge current is smaller than a predetermined value, as shown by “c” here.
  • the DC / DC conversion device 5 is in the operation permitted state.
  • a period B1 from the timing tc to the timing td is an operation prohibited section of the DC / DC conversion device 5.
  • the DC / DC conversion device 5 performs the power conversion operation in a period in which the DC / AC conversion device 4 does not output the AC power to the spark plug 1. As shown in “,” the DC / DC conversion device 5 is in the operation permitted state in the period A4 of the timing ta to the timing te and the period A5 of the timing tf to the timing tb. A period B2 from the timing te to the timing tf is an operation prohibited section of the DC / DC conversion device 5.
  • the DC / DC conversion device 5 has a period in which the capacity discharge current is smaller than a predetermined value and a period in which the DC / AC conversion device 4 does not output AC power to the spark plug 1. Is the power conversion operation, and here, as shown in “c”, the DC / DC conversion device 5 is permitted to operate in the period A2 of the timing ta to the timing tc and the period A5 of the timing tf to the timing tb. It becomes a state. A period B3 from the timing tc to the timing tf is an operation prohibited section of the DC / DC conversion device 5.
  • the capacitive discharge current is made in advance.
  • the voltage detected by the voltage detection means 55 is a voltage in a period until it attenuates to a value less than a predetermined value and a period in which the DC / AC conversion device 4 outputs AC power to the spark plug 1. The vibration is superimposed, and an error occurs in the detection value of the voltage detection means 55.
  • step S81 if the DC / DC conversion permission signal shown in “f” of FIG. 3 is the high level Hi, the process proceeds from step S81 to step S82 in FIG. 9B, the charging voltage V2 of the power supply capacitor 54 becomes larger than the output voltage command value Vb of the DC / DC conversion device 5, as indicated by condition 1 in “e” of FIG. 9B.
  • the output voltage V2 of the power supply capacitor 54 becomes larger than necessary, the switching loss and the like of the semiconductor switch of the high frequency AC power supply 3 are increased, and the power loss is increased.
  • the power conversion operation of the DC / DC conversion device 5 is prohibited in a period B1 from the timing tc to the timing td when the capacitance discharge current shown in “a” attenuates to a predetermined value.
  • the power conversion operation of the DC / DC conversion device 5 is stopped. Therefore, the control device 7 controls the power conversion operation of the DC / DC conversion device 5 in a period in which the capacity discharge current is smaller than a predetermined value.
  • the charging voltage V2 of the power supply capacitor 54 is smaller than in the case of Condition 1, switching loss of the semiconductor switch of the high frequency AC power supply 3 is suppressed, and an increase in power loss is suppressed.
  • the power conversion operation of the DC / DC conversion device 5 is inhibited in a period B2 from the timing te to the timing tf when the output current of the DC / AC conversion device 4 shown in "b" flows.
  • the power conversion operation of the / DC conversion device 5 is stopped.
  • power supply operation is performed compared to the case of Condition 2.
  • the charging voltage V2 of the capacitor 54 becomes larger, the switching loss of the semiconductor switch of the high frequency AC power supply 3 becomes larger than that of the condition 2, and the power loss increases.
  • control device 7 performs the power conversion operation of DC / DC conversion device 5 in periods A2 and A5 in which the capacitive discharge current is smaller than the predetermined value and the output current of DC / AC conversion device 4 does not flow. Control to do In this case, the charging voltage V2 of the power supply capacitor 54 does not exceed the output voltage command value Vb, and switching loss and the like of the semiconductor switch of the high frequency AC power supply 3 are suppressed, and an increase in power loss is suppressed.
  • controlling the DC / DC conversion device 5 based on the condition 2 of FIG. 9B is a first basic technology. Specifically, in a period in which the detection value I1 of the current detection means 48 shown in “e” of FIG. 3 is smaller than the first predetermined value Ia, the controller 7 performs DC / DC shown in "f" of FIG. The conversion enable signal is set to high level Hi.
  • controlling the DC / DC conversion device 5 based on the condition 4 of FIG. 9B is a second basic technology. Specifically, in a period in which the detection value I1 of the current detection means 48 shown in “e” of FIG. 3 is smaller than the first predetermined value Ia and the output current of the DC / AC conversion device 4 does not flow, 7 sets the DC / DC conversion permission signal shown in “f” of FIG. 3 to high level Hi.
  • igniter 10 is specifically a first device in which a capacitive discharge current associated with dielectric breakdown is predetermined after high voltage power supply 2 generates a voltage to spark plug 1.
  • the power conversion operation of the DC / DC conversion device 5 is stopped in at least one of a period until it attenuates to the predetermined value Ia and a period in which the DC / AC conversion device 4 outputs AC power to the spark plug 1.
  • control device 7 performs a period in which at least one of a period in which the capacity discharge current is smaller than a predetermined first predetermined value Ia and a period in which DC / AC conversion device 4 does not output AC power is
  • the DC / DC converter 5 is controlled to perform the power conversion operation.
  • the capacitance discharge current due to dielectric breakdown and the output current of the DC / AC conversion device 4 simultaneously flow into the reference potential of the DC / DC conversion device 5 And the detection error in the voltage detection means 55 can be suppressed.
  • the DC / DC conversion device 5 it is possible to prevent the DC / DC conversion device 5 from outputting an unnecessarily large power due to the influence of the detection error, and to prevent an increase in power loss.
  • the power conversion operation of the DC / DC conversion device 5 may be stopped in both the period in which the DC / AC conversion device 4 outputs AC power to the spark plug 1 and the period in which the DC / AC conversion device 4 outputs AC power.
  • FIG. 3 shows a timing chart in this case. That is, control device 7 controls the DC / DC conversion device both in a period in which the capacity discharge current is smaller than a predetermined first predetermined value Ia and in a period in which DC / AC conversion device 4 does not output AC power. 5 controls to perform the power conversion operation.
  • the control device 7 causes the DC / DC conversion device 5 to perform the power conversion operation during a period in which the capacity discharge current is smaller than the predetermined second predetermined value Ib.
  • the DC / AC conversion device 4 is controlled to perform the power conversion operation during the period of stoppage.
  • the capacitive discharge current is superimposed on the output current of the DC / AC conversion device 4 to prevent the current detection unit 48 from becoming undetectable, and the DC / AC conversion device using the detection value I1 of the current detection unit 48 Control of the output current of 4 is possible.
  • the deterioration of the ignition performance may be, for example, deterioration of the fuel efficiency due to the reduction of the flame propagation speed, or increase of harmful substances of the exhaust gas due to the incomplete combustion.
  • Control device 7 has a period in which the capacity discharge current is smaller than predetermined first predetermined value Ia and second predetermined value Ib, and a period in which DC / DC conversion device 5 stops the power conversion operation. , DC / AC converter 4 can be controlled to perform a power conversion operation. As a result, as described above, it is prevented that detection can not be performed due to the capacitive discharge current being superimposed on the output current of the DC / AC conversion device 4, and the DC / AC conversion device 4 using the detection value I1 of the current detection means 48 Control of the output current of the
  • the detection error of the voltage detection means 55 is prevented, and the DC / DC conversion device 5 does not output an excessive or excessively small power, and the charging voltage V2 of the power supply capacitor 54 is larger than the output voltage command value Vb or It can be prevented from becoming too small. Since the output current of the DC / AC converter 4 is proportional to the charging voltage V2 of the power supply capacitor 54, deterioration of the spark plug due to the supply of an excessive current by preventing the detection error of the voltage detection means 55 Also, it is possible to prevent the deterioration of the ignition performance due to the lack of current.
  • the output current to the spark plug 1 of the DC / AC conversion device 4 can be more accurately controlled, and deterioration of the spark plug 1 due to the excessive current being supplied to the spark plug 1, and the spark plug 1 And the deterioration of the ignition performance due to the shortage of the current supplied to the
  • the high voltage power supply 2 applies a voltage to the spark plug while the DC / DC conversion device 5 and the DC / AC conversion device 4 do not perform the power conversion operation.
  • the DC / DC conversion device 5 causes insulation breakdown.
  • a part of the capacitive discharge current can be prevented from flowing into the DC / DC conversion device 5, and the detection error of the voltage detection means 55 can be suppressed.
  • the high voltage power supply 2, the DC / AC conversion device 4, and the DC / DC conversion device 5 are controlled according to the ignition command signal shown in "a" of FIG. Do.
  • the ignition command signal is controlled to ignite at a timing suitable for the environment and operating conditions of the internal combustion engine, and therefore, ignition can be easily performed at an optimal timing by operating the igniter 10 according to the ignition command signal.
  • the ignition device 10 in the period from when the power conversion operation of the DC / AC conversion device 4 is performed until the next ignition command signal is output, The DC / DC conversion device 5 performs the power conversion operation. Thereby, the charging voltage V2 of the power supply capacitor 54 at the timing t1 is maintained substantially at the same level as the command value Vb, so that the applied voltage V1 of the spark plug at the timing t5 can be equal to or higher than the discharge maintaining voltage. It is possible to prevent a decrease in ignition performance due to the inability of the high frequency plasma to be generated in the spark plug 1.
  • an ignition device according to Embodiment 2 of the present invention will be described.
  • the circuit configuration of the ignition device according to the second embodiment of the present invention is the same as that of the first embodiment. Therefore, the same reference numerals are given to the components corresponding to the first embodiment and the description will be omitted.
  • ignition of fuel by discharge plasma is performed even after occurrence of dielectric breakdown. Therefore, discharge plasma can be generated for a long time in the spark plug, and fuel can be ignited even at a later timing after dielectric breakdown, which can contribute to the improvement of the ignition performance.
  • the igniter according to the second embodiment of the present invention by outputting AC power from the high frequency AC power supply 3 for a long time, it is possible to ignite the flame retardant fuel mixture and to accelerate the combustion speed.
  • the capacitance of the power supply capacitor 54 is made sufficiently large to suppress a drop in the charging voltage V2 of the power supply capacitor 54 during high frequency plasma generation, and discharge of the applied voltage V1 of the spark plug 1 is maintained. It is necessary to prevent the voltage from falling below.
  • the power supply capacitor 54 needs to be large, and the igniter becomes large.
  • the DC / AC conversion device 4 of the high frequency alternating current power supply 3 once generates the high frequency plasma for a long time without increasing the capacitance of the power supply capacitor 54 of the ignition device.
  • AC power is intermittently outputted to the spark plug 1 a plurality of times in the ignition cycle Ti.
  • FIG. 10 is a timing chart showing a schematic operation sequence of the ignition device in accordance with Embodiment 2 of the present invention
  • FIG. 11 is a flow chart showing an operation sequence of the ignition device in accordance with Embodiment 2 of the present invention.
  • the operation from timing t1 to t6 in FIG. 10 is similar to the operation from timing t1 to t6 in FIG. 3 described above.
  • the control device 7 stops the power conversion operation of the DC / AC conversion device 4 and permits the power conversion operation of the DC / DC conversion device 5.
  • This stage is step S08 in FIG.
  • the DC / DC conversion device 5 performs the power conversion operation so that the charging voltage V2 of the power supply capacitor 54 becomes equal to or higher than the output voltage command value Vb according to the above-mentioned flow chart of FIG.
  • step S01 of FIG. 11 if the output of the ignition command signal shown in “a” of FIG. 10 is not high level Hi, the controller 7 at timing t7 when only the pause period ts1 has elapsed from timing t6. Outputs the DC / AC conversion operation period signal as high level Hi.
  • the control device 7 sets the DC / DC conversion permission signal indicated by “f” to the low level Lo, and the operation of the DC / DC conversion device 5 Prohibit
  • This stage is step S10 in FIG.
  • the charging voltage V2 of the power supply capacitor 54 indicated by “h” in FIG. 10 may not be equal to or higher than the output voltage command value Vb.
  • a typical pause period ts1 is about 50 [ ⁇ s].
  • the control device 7 performs the power conversion operation by the DC / AC conversion device 4.
  • the DC / AC converter 4 supplies an alternating current to the spark plug 1 to generate high frequency plasma.
  • This stage is step S11 in FIG.
  • the high frequency AC power supply 3 continues to supply AC power to the spark plug 1 for an AC power output period tac2 necessary for ignition.
  • the charging voltage V2 of the power supply capacitor 54 gradually decreases.
  • the control device 7 sets the DC / AC conversion operation period signal indicated by "d" to the low level Lo. Thereby, the DC / AC conversion control circuit 49 stops the power conversion operation of the DC / AC conversion device 4.
  • This stage is step S12 in FIG.
  • a typical AC power output period tac2 is about 50 [ ⁇ s].
  • the ignition device 10 performs the sequence operation from timing t1 to timing t8 shown in FIG. 10 by the ignition command signal shown in "a” of FIG. 10 and the DC / AC conversion shown in “d". It repeats every ignition cycle Ti of the internal combustion engine according to the operation period signal.
  • the predetermined idle period is After being provided, AC power is output to the spark plug 1 again.
  • high-frequency plasma can be generated at a later timing from the occurrence of dielectric breakdown in the gap between the electrodes of the spark plug 1 with less power consumption than in the case where AC power is continuously output without providing a pause period.
  • the enlargement of the power supply capacitor 54 due to the increase in capacity can be prevented.
  • the power conversion operation of the DC / DC conversion device 5 is performed during the idle period of the power conversion operation of the DC / AC conversion device 4.
  • the operation of the / DC conversion device 5 is controlled. Therefore, the AC power output period and the idle period of the DC / AC conversion device 4 may be provided plural times.
  • the timing operation when the AC power output period of the DC / AC conversion device 4 and the idle period are each increased once will be described with reference to FIG.
  • FIG. 12 is another timing chart showing a schematic operation sequence of the ignition device in accordance with Embodiment 2 of the present invention.
  • the operation up to the timing t8 in FIG. 12 is the same as that in FIG.
  • the control device 7 stops the power conversion operation of the DC / AC conversion device 4 and permits the power conversion operation of the DC / DC conversion device 5.
  • This stage is step S08 in FIG.
  • the DC / DC conversion device 5 performs the power conversion operation according to the above-described flowchart of FIG. 8 so that the charging voltage V2 of the power supply capacitor 54 is controlled to be the output voltage command value Vb or more.
  • the control device 7 outputs the DC / AC conversion operation period signal indicated by "d” at the high level Hi at timing t9 when only the pause period ts2 has elapsed from the timing t8.
  • the control device 7 sets the DC / DC conversion permission signal shown in “f” to low level Lo, and the operation of the DC / DC conversion device 5 Ban.
  • This stage is step S10 in FIG.
  • a typical pause period ts2 is about 50 [ ⁇ s].
  • step S10 the operation of the DC / DC conversion device 5 is prohibited, and in step S11, the control device 7 performs the power conversion operation by the DC / AC conversion device 4.
  • the DC / AC converter 4 supplies an alternating current to the spark plug 1 to generate high frequency plasma.
  • the high frequency AC power supply 3 continues to supply AC power to the spark plug 1 for an AC power output period tac3 necessary for ignition.
  • step S12 shown in FIG.
  • a typical AC power output period tac3 is about 50 [ ⁇ s].
  • the control device 7 switches the DC / DC conversion permission signal shown in "f” to high level Hi, and permits the power conversion operation of the DC / DC conversion device 5. Do.
  • This stage is step S08 in FIG.
  • the DC / AC conversion device 4 repeats output and stop of AC power multiple times in one ignition cycle.
  • the AC power output period and the idle period of the DC / AC conversion device 4 may be provided a plurality of times.
  • the AC current is longer in the spark plug 1 for a longer time than when the AC power output period of the DC / AC converter 4 and the idle period are not provided multiple times. It can be output and can contribute to the improvement of the ignition performance.
  • the DC / DC conversion device 5 is prevented from outputting excessive power by controlling the operation and stop of the DC / AC conversion device 4 and the DC / DC conversion device 5.
  • the ignition device according to the third embodiment even when voltage oscillation is superimposed on the detection value of the voltage detection means 55, the voltage immediately before the voltage oscillation is superimposed on the DC / DC conversion control circuit 56.
  • the DC / DC conversion device 5 is prevented from outputting excessive power.
  • the circuit configuration of the ignition device according to the third embodiment of the present invention is the same as that of the first embodiment. Therefore, the same reference numerals are given to the components corresponding to the first embodiment and the description will be omitted.
  • the DC / DC conversion device 5 performs the power conversion operation so that the charging voltage V2 of the power supply capacitor 54 becomes equal to or higher than the output voltage command value Vb according to the above-described flow chart of FIG. That is, when the DC / DC conversion permission signal is at the high level and the charging voltage V2 of the power supply capacitor 54 is smaller than the output voltage command value Vb, the DC / DC conversion control circuit 56 operates the semiconductor switch 53 to The DC power is output to the supply capacitor 54. When the DC / DC conversion permission signal is low or the charging voltage V2 is equal to or higher than the output voltage command value Vb, the DC / DC conversion control circuit 56 stops the semiconductor switch 53 and supplies DC power to the power supply capacitor 54. Stop.
  • FIG. 13 is a flow chart showing an operation sequence of the ignition device in accordance with Embodiment 3 of the present invention
  • FIG. 14 is another timing chart showing a schematic operation sequence of the ignition device in accordance with Embodiment 3 of the present invention.
  • the control device 7 of the ignition device 10 determines the content of the operation of the ignition device 10 according to the ignition command signal output for each ignition cycle Ti shown in “a” of FIG. That is, in step S101 of FIG. 13, it is determined whether the signal level of the ignition signal is high level Hi or not. If it is high level Hi (YES), the fuel of the combustion chamber in the internal combustion engine is ignited as follows. A series of ignition operations to be described are started, and if it is low level Lo, the process returns to step S101.
  • step S101 to step S102 the control device 7 sets the capture stop signal of the voltage detection value shown in “g” in FIG. 14 to high level Hi in response to the fall of the ignition command signal.
  • the DC / DC conversion control circuit 56 is controlled so as to stop the acquisition of the detection value of the voltage detection means 55.
  • the DC / DC conversion control circuit 56 holds the voltage detection value by the voltage detection means 55 at timing t2, and at timing t2 in a period until timing t4 when the acquisition stop signal of the voltage detection value becomes low level Lo.
  • the operation of the DC / DC converter 5 is controlled based on the voltage detection value of
  • step S103 the control device 7 causes the semiconductor switch 22 to conduct at timing t1 in order to cause the spark plug 1 to generate a high voltage by the high voltage power supply 2.
  • current flows through the primary winding 21 a of the transformer 21 and magnetic flux is accumulated in the iron core of the transformer 21.
  • the control device 7 shuts off the semiconductor switch 22 of the high voltage power supply 2 in response to the fall of the ignition command signal.
  • This stage is step S104.
  • the timing t2 is a timing at which energy sufficient to apply the breakdown voltage to the spark plug 1 is accumulated in the iron core of the transformer 21.
  • the output voltage V1 of the spark plug 1 reaches the dielectric breakdown voltage Va, and dielectric breakdown occurs in the gap between the opposing electrodes of the spark plug 1.
  • a large capacity discharge current instantaneously flows between the electrodes of the spark plug 1, that is, the spark plug 1.
  • the capacitive discharge current is a release of the charge stored in the resonant capacitor 47 connected to the spark plug 1 and the parasitic capacitance in the vicinity of the spark plug 1.
  • the capacitive discharge current increases as the capacitance of the causative capacitor increases.
  • the capacitive discharge current caused by the resonant capacitor 47 is particularly large.
  • the capacitive discharge current also flows through a path constituted by the spark plug 1, the step-up transformer 45, the resonant inductor 46 and the resonant capacitor 47.
  • the control device 7 takes in the detection value I1 of the current detection means 48 shown by "e" in FIG. 14, and measures the current value of the capacitive discharge current.
  • the controller 7 determines that the peak value of the detection value I1 of the current detection means 48 is attenuated to less than a first predetermined value Ia.
  • the predetermined first predetermined value Ia is a value that causes the voltage detection means 55 to generate a detection error when the current value of the capacitive discharge current is greater than or equal to the first predetermined value Ia.
  • the control device 7 determines that the peak value of the capacitive discharge current has decreased to less than the first predetermined value Ia, it determines that the output of the high voltage power supply 2 has stopped, and proceeds to the next operation.
  • the control device 7 switches the take-off stop signal of the voltage detection value shown in “g” of FIG.
  • the DC conversion control circuit 56 is controlled to start the acquisition of the detection value of the voltage detection means 55. This stage is step S106 in FIG.
  • the DC / DC conversion control circuit 56 controls the operation of the DC / DC conversion device 5 based on the detection value of the voltage detection means 55.
  • the control device 7 can take in the minimum value of the oscillation detection value and detect the charging voltage V2 of the power supply capacitor 54 smaller than it actually is. There is sex. As a result, the DC / DC conversion device 5 supplies a power larger than necessary to the power supply capacitor 54, so the charging voltage V2 of the power supply capacitor 54 becomes larger than the voltage command value Vb. When the charging voltage V2 of the power supply capacitor 54 becomes larger than the originally intended voltage command value Vb, the switching loss of the semiconductor of the DC / AC conversion device 4 and the like increase and the power loss increases.
  • the DC / DC conversion control circuit 56 functions as the voltage detection means 55 in a period in which voltage oscillation due to the capacitive discharge current is superimposed on the detection value of the voltage detection means 55.
  • the DC / DC conversion device 5 is controlled to stop taking in the detected value, and the DC / DC conversion device 5 in the taking-in stop period uses the detected value just before the high voltage power supply 2 generates the voltage to the spark plug 1. It is controlled to do. That is, the control device 7 continues until the capacitive discharge current caused by the dielectric breakdown generated in the gap between the electrodes of the spark plug 1 is attenuated to a predetermined value after the high voltage power supply 2 generates the voltage in the spark plug 1. In the period (1), the power conversion operation of the DC / DC conversion device 5 is controlled using the detection value of the voltage detection means 55 immediately before the high voltage power supply 2 causes the spark plug 1 to generate a voltage.
  • the power conversion operation of the DC / DC conversion device 5 is not performed based on the detection value of the voltage detection means 55 when the detection error due to voltage oscillation is large, so the DC / DC conversion device caused by the detection error Erroneous output of 5 can be prevented.
  • the control device 7 switches the voltage detection value capture stop signal shown in "g" of FIG.
  • the conversion control circuit 56 controls to stop the acquisition of the detection value of the voltage detection means 55. This stage is step S107.
  • the DC / DC conversion control circuit 56 holds the detected value at the timing t5, and based on the detected value at the timing t5 in a period until the timing t6 when the take-in stop signal of the voltage detected value becomes the low level Lo. The operation of the DC / DC converter 5 is controlled.
  • the DC / AC conversion operation period signal is output at high level Hi.
  • the DC / AC conversion control circuit 49 converts the energy charged in the power supply capacitor 54 into AC power by the DC / AC converter 4, and supplies the AC power to the spark plug 1.
  • This stage is step S108 in FIG.
  • the delay time td1 is, for example, about 50 [ ⁇ s]. The shorter the delay time td1, the lower the discharge maintaining voltage of the spark plug 1 becomes.
  • the high frequency AC power supply 3 supplies AC power to the spark plug 1 for a time tac1 required for ignition. That is, at timing t6 when only the time tac1 necessary for ignition has elapsed from timing t5, the control device 7 sets the DC / AC conversion operation period signal indicated by "d" to the low level Lo. Thereby, the DC / AC conversion control circuit 49 stops the power conversion operation of the DC / AC conversion device 4. This stage is step S109. As a result, the high frequency plasma generated in the spark plug 1 disappears.
  • the control device 7 switches the take-off stop signal of the voltage detection value shown in “g” of FIG. Control to start the acquisition of the detection value of the voltage detection means 55.
  • This stage is step S110.
  • the DC / DC conversion control circuit 56 controls the operation of the DC / DC conversion device 5 based on the detection value of the voltage detection means 55.
  • a part of the AC power output from the high frequency AC power supply 3 flows into the high frequency AC power supply 3 through the common ground level portion GND of the internal combustion engine. Since the alternating current has a high frequency on the order of MHz, when flowing into the reference potential of the high frequency alternating current power supply 3, voltage oscillation is caused to the reference potential of the high frequency alternating current power supply 3 by parasitic inductance such as wiring. Such voltage oscillation of the reference potential is superimposed on the voltage value of each part, and therefore is superimposed on the signal of the sensor or the like to cause an error in the detected value.
  • the control device 7 may take in the minimum value of the oscillation detection value and detect the charging voltage V2 of the power supply capacitor 54 smaller than it actually is. is there. As a result, the DC / DC conversion device 5 supplies a power larger than necessary to the power supply capacitor 54, so the charging voltage V2 of the power supply capacitor 54 becomes larger than the voltage command value Vb.
  • the charging voltage V2 of the power supply capacitor 54 becomes larger than the originally intended voltage command value Vb, the switching loss of the semiconductor of the DC / AC conversion device 4 and the like increase and the power loss increases.
  • the DC / DC conversion control circuit 56 takes in the detection value of the voltage detection means 55 in a period in which AC power is superimposed on the detection value of the voltage detection means 55.
  • the DC / DC conversion device 5 is controlled so as to stop the power supply during the intake stop period so that the power conversion operation is performed using the detection value immediately before the high frequency AC power supply 3 outputs the AC power to the spark plug 1. It is controlled.
  • control device 7 uses the detection value of the voltage detection means 55 immediately before the high frequency AC power supply 3 outputs the AC power to the spark plug 1 in the period when the high frequency AC power supply 3 outputs the AC power to the spark plug 1. , Control the power conversion operation of the DC / DC converter 5.
  • the power conversion operation of the DC / DC conversion device 5 is not performed based on the detection value of the voltage detection means 55 when the detection error due to voltage oscillation is large, so the DC / DC conversion device caused by the detection error Erroneous output of 5 can be prevented.
  • the ignition device repeats the above-described sequence operation for each ignition cycle Ti of the internal combustion engine.
  • a typical ignition cycle Ti is about 10 ms to 100 ms.
  • the ignition device embodies one of the inventions of the following (1) to (16).
  • a spark plug including a first electrode and a second electrode opposed to each other through a gap and igniting fuel in a combustion chamber of an internal combustion engine;
  • a high voltage power supply that applies a voltage to the spark plug to cause dielectric breakdown in the gap;
  • a high frequency alternating current power supply for applying a high frequency voltage to the spark plug to generate high frequency plasma in the gap;
  • a DC power supply for supplying power to the high voltage power supply and the high frequency AC power supply;
  • a control device that controls the operation of the high voltage power supply and the high frequency alternating current power supply;
  • An igniter having The high frequency alternating current power supply is A DC / AC conversion device which converts DC power into AC power of a predetermined frequency and outputs the converted AC power to the spark plug;
  • a DC / DC conversion device that converts DC power from a DC power supply into DC power having a predetermined voltage value and outputs the converted DC power to the DC / AC conversion
  • the DC / DC conversion device is configured to perform a power conversion operation
  • An ignition device characterized by According to the present invention, in a period in which the DC / DC conversion device performs the power conversion operation, the capacitance discharge current due to dielectric breakdown and the alternating current output from the DC / AC conversion device simultaneously become the reference potential of the DC / DC conversion device. Inflow can be prevented, and detection errors of the voltage detection means can be suppressed. As a result, it is possible to prevent the DC / DC conversion device from outputting an unnecessarily large power due to the influence of the detection error, and to prevent an increase in power loss.
  • the present invention is embodied by the first embodiment.
  • the control device performs a power conversion operation in a period in which the capacity discharge current is smaller than a predetermined value and in a period in which the DC / AC conversion device does not output AC power to the spark plug.
  • Control The igniter as described in said (1) characterized by the above-mentioned.
  • both of the capacitive discharge current due to dielectric breakdown and the output current of the DC / AC conversion device flow into the reference potential of the DC / DC conversion device To prevent the detection error of the voltage detection means.
  • the present invention is embodied by the first embodiment.
  • a spark plug including a first electrode and a second electrode opposed to each other through a gap and igniting fuel in a combustion chamber of an internal combustion engine;
  • a high voltage power supply that applies a voltage to the spark plug to cause dielectric breakdown in the gap;
  • a high frequency alternating current power supply for applying a high frequency voltage to the spark plug to generate high frequency plasma in the gap;
  • a DC power supply for supplying power to the high voltage power supply and the high frequency AC power supply;
  • a control device that controls the operation of the high voltage power supply and the high frequency alternating current power supply;
  • An igniter having The high frequency alternating current power supply is A DC / AC conversion device which converts DC power into AC power having a predetermined frequency and outputs the converted AC power to the spark plug;
  • a DC / DC conversion device that converts DC power from a DC power supply into DC power having a predetermined voltage value and outputs the converted DC power to the DC / AC conversion device; Equipped with The DC / DC conversion device
  • a power supply capacitor for charging
  • the present invention is configured to control a power conversion operation of the DC / DC conversion device using a detection value of the voltage detection means immediately before applying.
  • An ignition device characterized by Since the DC / DC conversion device performs the power conversion operation using the detection value before the voltage oscillation is superimposed in the period in which the voltage oscillation is superimposed on the detection value of the voltage detection means, the present invention
  • the DC / DC converter can be prevented from outputting an unnecessarily large amount of power due to the influence of the above, and an increase in power loss can be prevented.
  • the present invention is embodied by the third embodiment.
  • a spark plug including a first electrode and a second electrode opposed to each other through a gap and igniting fuel in a combustion chamber of an internal combustion engine;
  • a high voltage power supply that applies a voltage to the spark plug to cause dielectric breakdown in the gap;
  • a high frequency alternating current power supply for applying a high frequency voltage to the spark plug to generate high frequency plasma in the gap;
  • a DC power supply for supplying power to the high voltage power supply and the high frequency AC power supply;
  • a control device that controls the operation of the high voltage power supply and the high frequency alternating current power supply;
  • An igniter having The high frequency alternating current power supply is A DC / AC conversion device which converts DC power into AC power having a predetermined frequency and outputs the converted AC power to the spark plug;
  • a DC / DC conversion device that converts DC power from a DC power supply into DC power having a predetermined voltage value and outputs the converted DC power to the DC / AC conversion device; Equipped with The DC / DC conversion device
  • a power supply capacitor for charging
  • An ignition device Configured to control the power conversion operation of the device,
  • An ignition device characterized by According to the present invention, in the period in which the voltage oscillation is superimposed on the detection value of the voltage detection means, the voltage oscillation causes the DC / DC conversion device to perform the power conversion operation using the detection value before the voltage oscillation is superimposed.
  • the influence of the detection error can prevent the DC / DC conversion device from outputting an unnecessarily large amount of power, and can prevent an increase in power loss.
  • the present invention is embodied by the third embodiment.
  • the control device The DC / AC conversion device is controlled to perform a power conversion operation in a period in which the capacitive discharge current is smaller than a predetermined value and a period in which the DC / DC conversion device stops the power conversion operation.
  • the igniter as described in said (1) or (2) characterized by the above-mentioned. According to the present invention, it is possible to prevent the capacitive discharge current from being superimposed on the output current of the DC / AC conversion device 4 and to control the output current of the DC / AC conversion device 4 using the detection value I1 of the current detection means 48 It becomes.
  • the output current of the DC / AC conversion device 4 is prevented from flowing into the reference potential of the DC / DC conversion device 5, and the detection error in the voltage detection means 55 Can be suppressed. If the detection error is suppressed, the DC / DC conversion device 5 will not supply excessive or excessive power to the power supply capacitor 54, so that deterioration of the spark plug 1 and ignition failure can be prevented. As a result, an increase in the power loss of the high frequency AC power supply 3 is prevented, and the deterioration of the spark plug 1 and the deterioration of the ignition performance are prevented.
  • the present invention is embodied by the first embodiment.
  • the control device The high voltage power supply applies a voltage to the spark plug in a period in which the DC / DC conversion device does not perform a power conversion operation and in a period in which the DC / AC conversion device does not output AC power to the spark plug.
  • Control to generate the dielectric breakdown An ignition device according to any one of the above (1), (2) and (6), characterized in that According to the present invention, during the power conversion operation of the DC / DC conversion device 5, a part of the capacitive discharge current is prevented from flowing into the reference potential of the DC / DC conversion device 5, and the detection error of the voltage detection means 55 is It can be suppressed.
  • the present invention is embodied by the first embodiment.
  • the control device It is configured to control operations of the high voltage power supply, the DC / DC conversion device, and the DC / AC conversion device based on an ignition command signal instructing a timing of firing the fuel.
  • An ignition device according to any one of the above (1) to (6), characterized in that According to the present invention, the ignition command signal is controlled to ignite at a timing suitable for the environment and operating conditions of the internal combustion engine, and therefore, ignition can be easily performed at the optimum timing by operating the ignition device according to the ignition command signal. can do.
  • the present invention is embodied by the first embodiment.
  • the control device It is configured to control the operation of the high voltage power supply, the DC / DC conversion device, and the DC / AC conversion device based on an ignition command signal instructing a timing to ignite the fuel, and based on the ignition command signal
  • the high voltage power supply is operated to apply a voltage to the spark plug after the DC / DC conversion device stops the power conversion operation.
  • An ignition device according to any one of the above (1), (2) and (5) to (7), characterized in that The present invention is a specific operation when the DC / DC conversion apparatus is stopped and voltage generation by the high voltage power supply is performed based on the ignition command signal, and the above (1), (2), (5) It is an effective control means in order to acquire the effect of the invention as described in to (7).
  • the present invention is embodied by the first embodiment.
  • the DC / AC conversion device A current detection unit that detects an output current of the DC / AC conversion device and a capacitive discharge current generated by the dielectric breakdown;
  • the controller is The power conversion operation of the DC / AC conversion device is controlled based on the detection value of the current detection means.
  • An ignition device according to any one of the above (1) to (8), characterized in that According to the present invention, the detection method of the capacitive discharge current and the output current of the DC / AC converter accompanying the dielectric breakdown, and the specific operation of the power conversion of the DC / AC converter, are the above (1) to (8).
  • the control means is effective to obtain the effects of the invention described in the above.
  • the present invention is embodied by the first embodiment.
  • the control device After detecting the generation of the capacitive discharge current, the DC / AC conversion device performs the power conversion operation after detecting that the peak value for each cycle of the capacitive discharge current is less than a predetermined value.
  • the igniter as described in said (9) characterized by the above-mentioned.
  • the output operation of AC power by the DC / AC conversion device is specifically described after the capacitance discharge current after dielectric breakdown detects attenuation, and the invention according to (9) above. It is an effective control means to obtain an effect.
  • the present invention is embodied by the first embodiment.
  • the control device The DC / AC conversion device is controlled to perform a power conversion operation after a predetermined time has elapsed from the timing when the high voltage power supply performs an operation for outputting a voltage to the spark plug.
  • An ignition device according to any one of the above (1) to (10), characterized in that According to the present invention, the operation of outputting AC power by the DC / AC conversion device is specifically described after the capacity discharge current after the dielectric breakdown is attenuated, and is described in the above (1) to (10).
  • the control means is effective to obtain the effects of the invention.
  • the present invention is embodied by the first embodiment.
  • the control device After stopping the power conversion operation of the DC / AC conversion device, permitting the power conversion operation of the DC / DC conversion device;
  • An ignition device according to any one of the above (1), (2) and (5) to (11), characterized in that According to the present invention, the specific timing of the operation stop of the DC / AC conversion device and the operation permission of the DC / DC conversion device is described, and the above (1), (2), (5) to (11) It is an effective control method in order to acquire the effect of the invention described in 6.).
  • the present invention is embodied by the first embodiment.
  • the control device The DC / AC conversion device is configured to control operations of the high voltage power supply, the DC / DC conversion device, and the DC / AC conversion device based on an ignition command signal instructing a timing to ignite the fuel.
  • the DC / DC conversion device is controlled to perform the power conversion operation in a period from the time when the power conversion operation of is stopped until the next ignition command signal is output,
  • the present invention is embodied by the first embodiment.
  • the control device The operation of the high voltage power supply, the DC / DC conversion device, and the DC / AC conversion device is controlled based on an ignition command signal instructing a timing of ignition of the fuel, and the ignition command signal is output After the DC / AC conversion device stops the power conversion operation and provides a predetermined rest period in a single ignition period from when it is output to when the next ignition command signal is output, the DC / AC converter is again Control the AC converter to perform power conversion operation,
  • An ignition device according to any one of the above (1) to (13), characterized in that According to the present invention, high-frequency plasma can be generated at a later timing from breakdown with less power consumption than when AC power is continuously output without providing a pause period. Can be prevented from becoming larger.
  • the present invention is embodied by the second embodiment.
  • the control device is The ignition device according to (14), wherein the DC / DC conversion device is controlled to perform a power conversion operation during the idle period. According to the present invention, it is not necessary to cover all the power consumption in one ignition cycle of the DC / AC conversion device with only the energy pre-charged in the power supply capacitor, so that the capacity of the power supply capacitor can be increased. It can prevent the accompanying upsizing.
  • the present invention is embodied by the second embodiment.
  • the control device The DC / AC conversion device performs the power conversion operation in the one ignition period, and controls so as to provide the AC power output period for supplying the AC power to the spark plug a plurality of times each and the rest period.
  • the igniter as described in said (14) or (15) characterized by the above-mentioned.
  • the DC / AC conversion device can output AC power to the spark plug for a long time without increasing the capacity of the power supply capacitor, which contributes to the improvement of the ignition performance.
  • the present invention is embodied by the second embodiment.
  • the present invention is not limited to the ignition device according to the above-described first to third embodiments, and the configurations of the first, second, and second embodiments may be combined as appropriate without departing from the spirit of the present invention, It is possible to partially modify the configuration or partially omit the configuration.
  • the invention can be used in the field of ignition devices of internal combustion engines and thus in the field of the automotive industry.

Abstract

In the present invention, control is performed such that a power conversion operation by a DC/DC conversion device 5 is stopped in at least one of: a period from a time when a high-voltage power supply 2 generates voltage for a spark plug 1 to a time when capacitive discharge current due to dielectric breakdown between electrodes of the spark plug 1 is attenuated to a predetermined value; and a period during which a DC/AC conversion device 4 outputs AC power to the spark plug 1.

Description

点火装置Igniter
 この発明は、主に交流電力によるプラズマ放電を利用する点火装置に関するものである。 The present invention relates to an igniter that mainly uses plasma discharge by AC power.
 車両等に搭載される内燃機関の燃費を向上させる手法として、希薄燃料を燃焼させる希薄燃焼方式や、燃料燃焼後の排気を燃焼室内に再循環させる排気再循環方式、あるいは燃焼室を高圧縮比とする方式などが進められている。しかし、いずれの方式も燃料への点火が難しいという課題があり、着火性の向上が要求されている。 As a method to improve the fuel efficiency of an internal combustion engine mounted on a vehicle or the like, a lean combustion method of burning lean fuel, an exhaust gas recirculation method of recirculating exhaust gas after fuel combustion into the combustion chamber, or a high compression ratio of the combustion chamber And other methods are in progress. However, in either method, there is a problem that it is difficult to ignite the fuel, and improvement of the ignitability is required.
 従来、内燃機関の点火装置に於ける燃料への着火性を高める一つの手法として、例えば特許文献1に開示された高周波プラズマ点火装置がある。一般的な内燃機関の点火装置は、点火コイルとイグナイタで構成された絶縁破壊用の高電圧電源によって高電圧を発生させ、点火プラグの電極間に火花放電を発生させるものであるのに対して、高周波プラズマ点火装置は、絶縁破壊用の高電圧電源以外に高周波交流電源を備え、絶縁破壊用の高電圧電源による放電開始直後に点火プラグの電極間にメガヘルツ(以下、MHzと称する)オーダーの高周波電圧を供給して、高温・高圧の高周波プラズマを点火プラグの電極間に継続して発生させることにより、ガス化された燃料への着火性を高めるように構成されている。 Conventionally, as one method for enhancing the ignitability to fuel in an ignition device of an internal combustion engine, for example, there is a high frequency plasma ignition device disclosed in Patent Document 1. A general ignition device for an internal combustion engine generates a high voltage by a high voltage power source for insulation breakdown composed of an ignition coil and an igniter to generate a spark discharge between electrodes of a spark plug. The high frequency plasma igniter includes a high frequency alternating current power supply in addition to the high voltage power supply for dielectric breakdown, and immediately after the start of the discharge by the high voltage power supply for dielectric breakdown, between the electrodes of the spark plug in megahertz (hereinafter referred to as MHz) order By supplying a high frequency voltage and continuously generating a high temperature and high pressure high frequency plasma between the electrodes of the spark plug, the ignitability of the gasified fuel is enhanced.
 特許文献1に開示された点火装置は、絶縁破壊用の高電圧電源と、高周波交流電源を備えており、高周波交流電源は、バッテリと、フルブリッジインバータ回路と、高周波トランスと、LC共振回路と、で構成される。特許文献1には、高周波交流電源のフルブリッジインバータとバッテリの間にDC/DC変換装置を接続してもよい、と記載されている。 The ignition device disclosed in Patent Document 1 includes a high voltage power supply for insulation breakdown and a high frequency AC power supply, and the high frequency AC power supply includes a battery, a full bridge inverter circuit, a high frequency transformer, and an LC resonant circuit. Composed of Patent Document 1 describes that a DC / DC conversion device may be connected between a full bridge inverter of a high frequency AC power supply and a battery.
 周知のように、DC/DC変換装置によりバッテリ電圧を昇圧して出力コンデンサに充電する場合、出力コンデンサの充電電圧(印加電圧若しくは出力電圧とも称されることがあるが、以下の説明では「充電電圧」と称する)を検出しておき、その出力コンデンサの充電電圧が所定の閾値に達したときに充電を停止し、出力コンデンサの充電電圧が前述の閾値を下回ったときに充電を再開するという技術が存在する。出力コンデンサの充電電圧は、負荷側の電力消費や時間経過に伴う自然放電により徐々に低下する。その結果、DC/DC変換装置は電圧変換動作と停止を繰り返し、出力コンデンサの充電電圧を所定の値に保つことになる。 As well known, when the battery voltage is boosted by the DC / DC conversion device to charge the output capacitor, the charging voltage of the output capacitor (also referred to as applied voltage or output voltage may be referred to as “charging in the following description. Voltage is detected, and charging is stopped when the charging voltage of the output capacitor reaches a predetermined threshold, and charging is resumed when the charging voltage of the output capacitor falls below the threshold. Technology exists. The charging voltage of the output capacitor gradually decreases due to power consumption on the load side and natural discharge with the passage of time. As a result, the DC / DC conversion device repeats the voltage conversion operation and the stop to keep the charging voltage of the output capacitor at a predetermined value.
 ここで、特許文献1のように構成された従来の点火装置において、高電圧電源が点火プラグに高電圧を印加し、点火プラグの電極間に絶縁破壊を発生させたとき、点火プラグには瞬間的に大きな容量放電電流が流れる。この容量放電電流は、点火プラグに接続されたLC共振回路のコンデンサ及び点火プラグ近傍の寄生容量に充電された電荷が放出されたものであるため、点火プラグ、高周波トランス、LC共振回路の経路にも流れる。したがって、容量放電電流は高周波トランスを介してフルブリッジインバータ及びDC/DC変換装置にも流入し、インバータを構成する半導体スイッチ等を還流して消費される。 Here, in the conventional ignition device configured as in Patent Document 1, when the high voltage power source applies a high voltage to the spark plug and causes a dielectric breakdown between the electrodes of the spark plug, the spark plug is instantaneous A large capacity discharge current flows. Since this capacitive discharge current is the one in which the charge stored in the capacitor of the LC resonant circuit connected to the spark plug and the parasitic capacitance in the vicinity of the spark plug is released, it is used in the path of the spark plug, high frequency transformer, and LC resonant circuit. It also flows. Therefore, the capacitive discharge current also flows into the full bridge inverter and the DC / DC converter via the high frequency transformer, and is consumed by circulating the semiconductor switches and the like that constitute the inverter.
 また、特許文献1のように構成された従来の点火装置において、フルブリッジインバータから点火プラグに交流電力を出力したとき、その出力された交流電流の一部が内燃機関に接続されている共通接地電位部位である共通GNDに流れ込む。この共通GNDに流れ込む電流は共通GNDを介して、高周波交流電源の基準電位に流れ込み、寄生容量等を介して還流される。 Further, in the conventional ignition device configured as in Patent Document 1, when AC power is output from the full bridge inverter to the spark plug, a common ground in which a part of the output AC current is connected to the internal combustion engine It flows into the common GND which is a potential part. The current flowing into the common GND flows into the reference potential of the high frequency AC power supply through the common GND, and is returned through the parasitic capacitance or the like.
特開2015-86702号公報JP, 2015-86702, A
 前述の従来の点火装置において、容量放電電流や交流電流は、MHzオーダー以上の高い周波数を持つため、DC/DC変換装置の基準電位に流れ込んだ際に配線等の寄生インダクタンスにより電圧振動を引き起こす。特に、容量放電電流と交流電流が同時にDC/DC変換装置の基準電位に流れ込めば、これ等の2つの電流が重畳されることでDC/DC変換装置の基準電位における基準電位の電圧振動が非常に大きくなる。このDC/DC変換装置の基準電位の電圧振動は、制御用の信号やセンサ検出値に重畳されるため、DC/DC変換装置の出力コンデンサの充電電圧を検出する電圧検出装置にも重畳され、その電圧検出装置の検出値に大きな誤差を発生させることがある。 In the above-described conventional igniter, since the capacitive discharge current and the alternating current have a high frequency of MHz order or more, when flowing into the reference potential of the DC / DC conversion device, voltage oscillation is caused by parasitic inductance such as wiring. In particular, if the capacitive discharge current and the alternating current flow simultaneously to the reference potential of the DC / DC conversion device, voltage oscillation of the reference potential at the reference potential of the DC / DC conversion device results by superimposing these two currents. It gets very big. Since the voltage oscillation of the reference potential of the DC / DC conversion device is superimposed on the control signal and the sensor detection value, it is also superimposed on the voltage detection device that detects the charging voltage of the output capacitor of the DC / DC conversion device, Large errors may occur in the detection value of the voltage detection device.
 前述の電圧検出装置の検出値の誤差の影響により、出力コンデンサの充電電圧を実際よりも低く検出した場合、DC/DC変換装置は出力コンデンサに必要以上に大きな電力を出力することになる。その結果、出力コンデンサの充電電圧は本来意図した値よりも大きくなってしまうため、点火装置におけるDC/DC変換装置の半導体のスイッチング損失等が増え、電力損失の増大を引き起こすという課題があった。 Due to the influence of the error of the detection value of the voltage detection device described above, when the charging voltage of the output capacitor is detected lower than the actual value, the DC / DC conversion device will output more power than necessary to the output capacitor. As a result, the charging voltage of the output capacitor becomes larger than the originally intended value, so that the switching loss and the like of the semiconductor of the DC / DC converter in the ignition device increase, causing an increase in power loss.
 この発明は、従来の点火装置における前述のような課題を解決するために為されたものであり、電圧検出手段の電圧検出値の誤差によりDC/DC変換装置が必要以上に大きな電力を出力することを防止し、電力損失の増大を防ぐことができる点火装置を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems in the conventional ignition device, and the DC / DC conversion device outputs a large power more than necessary due to the error of the voltage detection value of the voltage detection means. It is an object of the present invention to provide an igniter capable of preventing the increase in power loss.
 この発明による点火装置は、
 間隙を介して対向する第1の電極と第2の電極とを備え、内燃機関の燃焼室の燃料に点火する点火プラグと、 
 前記点火プラグに電圧を印加して前記間隙に絶縁破壊を生じさせる高電圧電源と、
 前記点火プラグに高周波電圧を印加して前記間隙に高周波プラズマを発生させる高周波交流電源と、
 前記高電圧電源と前記高周波交流電源に電力を供給する直流電源と、
 前記高電圧電源と前記高周波交流電源との動作を制御する制御装置と、
を有する点火装置であって、
 前記高周波交流電源は、
 直流電力を所定の周波数の交流電力に変換し、前記変換した交流電力を前記点火プラグに出力するDC/AC変換装置と、
 直流電源からの直流電力を所定の電圧値を有する直流電力に変換し、前記変換した直流電力を前記DC/AC変換装置に出力するDC/DC変換装置と、
を備え、
 前記制御装置は、
 前記絶縁破壊により発生する容量放電電流が予め定められた値よりも小さい期間と、前記DC/AC変換装置が前記点火プラグに前記交流電力を出力しない期間と、のうちの少なくとも一方を満たす期間において、前記DC/DC変換装置が電力変換動作を行うように制御するように構成されている、
ことを特徴とする。
The igniter according to the invention is
An ignition plug including a first electrode and a second electrode facing each other through a gap, for igniting fuel in a combustion chamber of an internal combustion engine;
A high voltage power supply that applies a voltage to the spark plug to cause dielectric breakdown in the gap;
A high frequency alternating current power supply for applying a high frequency voltage to the spark plug to generate high frequency plasma in the gap;
A DC power supply for supplying power to the high voltage power supply and the high frequency AC power supply;
A control device that controls the operation of the high voltage power supply and the high frequency alternating current power supply;
An igniter having
The high frequency alternating current power supply is
A DC / AC conversion device which converts DC power into AC power of a predetermined frequency and outputs the converted AC power to the spark plug;
A DC / DC conversion device that converts DC power from a DC power supply into DC power having a predetermined voltage value and outputs the converted DC power to the DC / AC conversion device;
Equipped with
The controller is
In a period satisfying at least one of a period in which the capacity discharge current generated by the dielectric breakdown is smaller than a predetermined value, and a period in which the DC / AC conversion device does not output the AC power to the spark plug. The DC / DC conversion device is configured to perform a power conversion operation,
It is characterized by
 また、この発明による点火装置は、
 間隙を介して対向する第1の電極と第2の電極とを備え、内燃機関の燃焼室の燃料に点火する点火プラグと、 
 前記点火プラグに電圧を印加して前記間隙に絶縁破壊を生じさせる高電圧電源と、
 前記点火プラグに高周波電圧を印加して前記間隙に高周波プラズマを発生させる高周波交流電源と、
 前記高電圧電源と前記高周波交流電源に電力を供給する直流電源と、
 前記高電圧電源と前記高周波交流電源との動作を制御する制御装置と、
を有する点火装置であって、
 前記高周波交流電源は、
 直流電力を所定の周波数を有する交流電力に変換し、前記変換した交流電力を前記点火プラグに出力するDC/AC変換装置と、
 直流電源からの直流電力を所定の電圧値を有する直流電力に変換し、前記変換した直流電力を前記DC/AC変換装置に出力するDC/DC変換装置と、
を備え、
 前記DC/DC変換装置は、
 前記変換した前記直流電力のエネルギを充電する電力供給用コンデンサと、
 前記電力供給用コンデンサの充電電圧を検出する電圧検出手段と、
を備え、
 前記制御装置は、
 前記高電圧電源が前記点火プラグに電圧を印加してから、前記絶縁破壊により生じる容量放電電流が予め定められた値よりも小さくなるまでの期間において、前記高電圧電源が前記点火プラグに電圧を印加する直前の前記電圧検出手段の検出値を用いて、前記DC/DC変換装置の電力変換動作を制御するように構成されている、
ことを特徴とする。
Also, the ignition device according to the present invention is
An ignition plug including a first electrode and a second electrode facing each other through a gap, for igniting fuel in a combustion chamber of an internal combustion engine;
A high voltage power supply that applies a voltage to the spark plug to cause dielectric breakdown in the gap;
A high frequency alternating current power supply for applying a high frequency voltage to the spark plug to generate high frequency plasma in the gap;
A DC power supply for supplying power to the high voltage power supply and the high frequency AC power supply;
A control device that controls the operation of the high voltage power supply and the high frequency alternating current power supply;
An igniter having
The high frequency alternating current power supply is
A DC / AC conversion device which converts DC power into AC power having a predetermined frequency and outputs the converted AC power to the spark plug;
A DC / DC conversion device that converts DC power from a DC power supply into DC power having a predetermined voltage value and outputs the converted DC power to the DC / AC conversion device;
Equipped with
The DC / DC conversion device
A power supply capacitor for charging energy of the converted DC power;
Voltage detection means for detecting the charging voltage of the power supply capacitor;
Equipped with
The controller is
After the high voltage power supply applies a voltage to the spark plug, the high voltage power supply supplies a voltage to the spark plug in a period until the capacitive discharge current generated by the dielectric breakdown becomes smaller than a predetermined value. It is configured to control a power conversion operation of the DC / DC conversion device using a detection value of the voltage detection means immediately before applying.
It is characterized by
 さらに、この発明による点火装置は、
 間隙を介して対向する第1の電極と第2の電極とを備え、内燃機関の燃焼室の燃料に点火する点火プラグと、 
 前記点火プラグに電圧を印加して前記間隙に絶縁破壊を生じさせる高電圧電源と、
 前記点火プラグに高周波電圧を印加して前記間隙に高周波プラズマを発生させる高周波交流電源と、
 前記高電圧電源と前記高周波交流電源に電力を供給する直流電源と、
 前記高電圧電源と前記高周波交流電源との動作を制御する制御装置と、
を有する点火装置であって、
 前記高周波交流電源は、
 直流電力を所定の周波数を有する交流電力に変換し、前記変換した交流電力を前記点火プラグに出力するDC/AC変換装置と、
 直流電源からの直流電力を所定の電圧値を有する直流電力に変換し、前記変換した直流電力を前記DC/AC変換装置に出力するDC/DC変換装置と、
を備え、
 前記DC/DC変換装置は、
 前記変換された前記直流電力のエネルギを充電する電力供給用コンデンサと、
 前記電力供給用コンデンサの充電電圧を検出する電圧検出手段と、
を備え、
 前記制御装置は、
 前記DC/AC変換装置が前記点火プラグに電流を出力する期間において、前記DC/AC変換装置が点火プラグに電流を出力する直前の前記電圧検出手段の検出値を用いて、前記DC/DC変換装置の電力変換動作を制御するように構成されている、
ことを特徴とする。
Furthermore, the ignition device according to the present invention
An ignition plug including a first electrode and a second electrode facing each other through a gap, for igniting fuel in a combustion chamber of an internal combustion engine;
A high voltage power supply that applies a voltage to the spark plug to cause dielectric breakdown in the gap;
A high frequency alternating current power supply for applying a high frequency voltage to the spark plug to generate high frequency plasma in the gap;
A DC power supply for supplying power to the high voltage power supply and the high frequency AC power supply;
A control device that controls the operation of the high voltage power supply and the high frequency alternating current power supply;
An igniter having
The high frequency alternating current power supply is
A DC / AC conversion device which converts DC power into AC power having a predetermined frequency and outputs the converted AC power to the spark plug;
A DC / DC conversion device that converts DC power from a DC power supply into DC power having a predetermined voltage value and outputs the converted DC power to the DC / AC conversion device;
Equipped with
The DC / DC conversion device
A power supply capacitor for charging energy of the converted DC power;
Voltage detection means for detecting the charging voltage of the power supply capacitor;
Equipped with
The controller is
In a period in which the DC / AC converter outputs a current to the spark plug, the DC / DC conversion is performed using a detection value of the voltage detection unit immediately before the DC / AC converter outputs a current to the spark plug. Configured to control the power conversion operation of the device,
It is characterized by
 この発明による点火装置によれば、前記高周波交流電源は、直流電力を所定の周波数の交流電力に変換し、前記変換した交流電力を前記点火プラグに出力するDC/AC変換装置と、直流電源からの直流電力を所定の電圧値を有する直流電力に変換し、前記変換した直流電力を前記DC/AC変換装置に出力するDC/DC変換装置とを備え、前記制御装置は、前記絶縁破壊により発生する容量放電電流が予め定められた値よりも小さい期間と、前記DC/AC変換装置が前記点火プラグに前記交流電力を出力しない期間と、のうちの少なくとも一方を満たす期間において、前記DC/DC変換装置が電力変換動作を行うように制御するように構成されているので、DC/DC変換装置が電力変換動作を行う期間において、絶縁破壊による容量放電電流とDC/AC変換装置の出力する交流電流とが、同時にDC/DC変換装置の基準電位に流れ込むことを防ぎ、電圧検出手段の検出誤差を抑制することができる。その結果、検出誤差の影響により、DC/DC変換装置が必要以上に大きい電力を出力することを防止し、電力損失の増大を防ぐことができる。 According to the ignition device of the present invention, the high frequency AC power supply converts DC power into AC power of a predetermined frequency, and outputs the converted AC power to the spark plug from the DC / AC conversion device, and DC power supply And DC / DC conversion device for converting the DC power of the device into DC power having a predetermined voltage value and outputting the converted DC power to the DC / AC conversion device, the control device generating The DC / DC in a period in which at least one of a period in which the capacity discharge current is smaller than a predetermined value and a period in which the DC / AC conversion device does not output the AC power to the spark plug Since the converter is configured to perform control so as to perform the power conversion operation, it is possible that the dielectric breakdown is generated while the DC / DC conversion device performs the power conversion operation. An output AC current of the amount the discharge current and the DC / AC conversion device, prevents flow into the reference potential of the DC / DC converter at the same time, it is possible to suppress the detection error of the voltage detecting means. As a result, it is possible to prevent the DC / DC conversion device from outputting an unnecessarily large power due to the influence of the detection error, and to prevent an increase in power loss.
 また、この発明によれば、前記DC/DC変換装置は、前記変換した前記直流電力のエネルギを充電する電力供給用コンデンサと、前記電力供給用コンデンサの充電電圧を検出する電圧検出手段とを備え、前記制御装置は、前記高電圧電源が前記点火プラグに電圧を印加してから、前記絶縁破壊により生じる容量放電電流が予め定められた値よりも小さくなるまでの期間において、前記高電圧電源が前記点火プラグに電圧を印加する直前の前記電圧検出手段の検出値を用いて、前記DC/DC変換装置の電力変換動作を制御するように構成されているので、電圧振動が引き起こす検出誤差の影響によりDC/DC変換装置が必要以上に大きい電力を出力することを防止し、電力損失の増大を防ぐことができる。 Further, according to the present invention, the DC / DC conversion device includes a power supply capacitor for charging the energy of the converted direct current power, and a voltage detection unit for detecting a charging voltage of the power supply capacitor. The control device is configured such that, after the high voltage power supply applies a voltage to the spark plug, the high voltage power supply is operated in a period until the capacitive discharge current generated by the dielectric breakdown becomes smaller than a predetermined value. Since the power conversion operation of the DC / DC conversion device is controlled using the detection value of the voltage detection means immediately before applying the voltage to the spark plug, the influence of the detection error caused by the voltage oscillation Thus, it is possible to prevent the DC / DC conversion device from outputting an unnecessarily large power and to prevent an increase in power loss.
 さらに、この発明によれば、前記DC/DC変換装置は、前記変換された前記直流電力のエネルギを充電する電力供給用コンデンサと、前記電力供給用コンデンサの充電電圧を検出する電圧検出手段とを備え、前記制御装置は、前記DC/AC変換装置が前記点火プラグに電流を出力する期間において、前記DC/AC変換装置が点火プラグに電流を出力する直前の前記電圧検出手段の検出値を用いて、前記DC/DC変換装置の電力変換動作を制御するように構成されているので、電圧振動が引き起こす検出誤差の影響によりDC/DC変換装置が必要以上に大きい電力を出力することを防止し、電力損失の増大を防ぐことができる。 Further, according to the present invention, the DC / DC conversion device comprises: a power supply capacitor for charging the energy of the converted DC power; and voltage detection means for detecting a charging voltage of the power supply capacitor. The control device uses a detection value of the voltage detection means immediately before the DC / AC conversion device outputs a current to a spark plug in a period during which the DC / AC conversion device outputs a current to the spark plug. , Since the power conversion operation of the DC / DC conversion device is controlled, the DC / DC conversion device is prevented from outputting an unnecessarily large power due to the influence of the detection error caused by the voltage oscillation. Can prevent an increase in power loss.
この発明の実施の形態1に係る点火装置の概略構成を成すブロック図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which comprises schematic structure of the ignition device which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る点火装置の構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the ignition device which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る点火装置の概略動作シーケンスを示すタイミングチャートである。It is a timing chart which shows the general operation sequence of the ignition device concerning Embodiment 1 of this invention. この発明の実施の形態1に係る点火装置の動作シーケンスを示すフローチャートである。It is a flowchart which shows the operation | movement sequence of the ignition device which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る点火装置の動作シーケンスを示すフローチャートで、図4におけるステップS05の詳細動作シーケンスのフローチャートを示している。It is a flowchart which shows the operation | movement sequence of the ignition device which concerns on Embodiment 1 of this invention, and shows the flowchart of the detailed operation sequence of step S05 in FIG. この発明の実施の形態1に係る点火装置の動作シーケンスを示すフローチャートで、図4におけるステップS05の別の詳細動作シーケンスのフローチャートを示している。It is a flowchart which shows the operation | movement sequence of the ignition device which concerns on Embodiment 1 of this invention, and shows the flowchart of another detailed operation sequence of step S05 in FIG. この発明の実施の形態1に係る点火装置の動作を説明する説明図である。It is an explanatory view explaining operation of an ignition device concerning Embodiment 1 of this invention. この発明の実施の形態1に係る点火装置におけるDC/DC変換装置の動作シーケンスを示すフローチャートである。It is a flowchart which shows the operation | movement sequence of the DC / DC conversion apparatus in the ignition device which concerns on Embodiment 1 of this invention. DC/DC変換装置が電力変換動作を行うときの条件を示す説明図である。It is explanatory drawing which shows the conditions when DC / DC conversion apparatus performs electric power conversion operation. DC/DC変換装置が電力変換動作を行うときの条件と電圧検出手段の検出誤差との関係を示す説明図である。It is explanatory drawing which shows the relationship between the conditions when the DC / DC conversion apparatus performs electric power conversion operation, and the detection error of a voltage detection means. この発明の実施の形態2に係る点火装置の概略動作シーケンスを示すタイミングチャートである。It is a timing chart which shows the general operation sequence of the ignition device concerning Embodiment 2 of this invention. この発明の実施の形態2に係る点火装置の動作シーケンスを示すフローチャートである。It is a flowchart which shows the operation | movement sequence of the ignition device which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係る点火装置の概略動作シーケンスを示す別のタイミングチャートである。It is another timing chart which shows the general | schematic operation | movement sequence of the ignition device which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係る点火装置の動作シーケンスを示すフローチャートである。It is a flowchart which shows the operation | movement sequence of the ignition device which concerns on Embodiment 3 of this invention. この発明の実施の形態3に係る点火装置の概略動作シーケンスを示す別のタイミングチャートである。It is another timing chart which shows the general | schematic operation | movement sequence of the ignition device which concerns on Embodiment 3 of this invention.
 以下、この発明の点火装置について、図を参照して詳細に説明する。なお、各図中、同一符号は、同一または相当部分を示すものとする。
実施の形態1.
 先ず、この発明の実施の形態1に係る点火装置について、図を用いて説明する。図1は、この発明の実施の形態1に係る点火装置の概略構成を成すブロック図である。図1において、点火装置10は、点火プラグ1と、高電圧電源2と、DC/AC変換装置とDC/DC変換装置5とを有する高周波交流電源3と、直流電源6と、制御装置7とを備えている。点火プラグ1は、内燃機関(図示せず)に搭載され、内燃機関の燃焼室内に露出される第1の電極1aと第2の電極1bとを備えている。第1の電極1aと第2の電極1bは、所定の間隙を介して対向している。点火装置10は、点火周期Ti毎に制御装置7から出力される点火指令信号に応じて、点火プラグ1の第1の電極1aと第2の電極1bとの間の間隙に高周波プラズマを発生させ、内燃機関の燃焼室の内部の燃料に点火する。
Hereinafter, the ignition device of the present invention will be described in detail with reference to the drawings. In the drawings, the same reference numerals indicate the same or corresponding parts.
Embodiment 1
First, an ignition device according to Embodiment 1 of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a schematic configuration of an ignition device according to Embodiment 1 of the present invention. In FIG. 1, an ignition device 10 includes an ignition plug 1, a high voltage power supply 2, a high frequency AC power supply 3 having a DC / AC conversion device and a DC / DC conversion device 5, a DC power supply 6, and a control device 7. Is equipped. The spark plug 1 is mounted on an internal combustion engine (not shown) and includes a first electrode 1a and a second electrode 1b exposed in a combustion chamber of the internal combustion engine. The first electrode 1a and the second electrode 1b are opposed to each other via a predetermined gap. The igniter 10 generates high frequency plasma in the gap between the first electrode 1 a and the second electrode 1 b of the spark plug 1 according to the ignition command signal output from the control unit 7 every ignition cycle Ti. , Ignites the fuel inside the combustion chamber of the internal combustion engine.
 高電圧電源2は、点火プラグ1の第1の電極1aと第2の電極1bとの間の間隙に絶縁破壊を生じさせるための高電圧を発生させる。DC/AC変換装置4は、DC/DC変換装置5から供給された直流電力としてのエネルギを交流電力としてのエネルギに変換する電力変換動作を行う。DC/AC変換装置4から出力された交流電力は、点火プラグ1に供給され、第1の電極1aと第2の電極1bとの間の間隙に高周波放電を発生させる。DC/DC変換装置5は、直流電源6からの直流電力を任意の直流電圧の値を有する直流電力に変換することが可能であり、具体的にはその装置に最適な所定の直流電圧の値を有する直流電力に変換してDC/AC変換装置4に出力する電力変換動作を行う。 The high voltage power supply 2 generates a high voltage for causing a dielectric breakdown in the gap between the first electrode 1 a and the second electrode 1 b of the spark plug 1. The DC / AC conversion device 4 performs a power conversion operation of converting energy as DC power supplied from the DC / DC conversion device 5 into energy as AC power. The AC power output from the DC / AC converter 4 is supplied to the spark plug 1 to generate a high frequency discharge in the gap between the first electrode 1a and the second electrode 1b. The DC / DC conversion device 5 can convert DC power from the DC power supply 6 into DC power having an arbitrary DC voltage value, and more specifically, a predetermined DC voltage value optimum for the device. Power conversion operation to convert into DC power and output to the DC / AC converter 4.
 直流電源6は、車両に搭載されたバッテリ等からなり、高電圧電源2と高周波交流電源3とに電力を供給する。制御装置7は、エンジンコントロールユニットあるいはマイクロコンピュータ等から構成され、高電圧電源2と高周波交流電源3との動作を制御する。DC/AC変換装置4およびDC/DC変換装置5は、その回路構成において、後述するようにスイッチング素子としての半導体スイッチを具備する。 The direct current power supply 6 includes a battery or the like mounted on a vehicle, and supplies power to the high voltage power supply 2 and the high frequency alternating current power supply 3. The control device 7 includes an engine control unit or a microcomputer and controls the operations of the high voltage power supply 2 and the high frequency AC power supply 3. The DC / AC conversion device 4 and the DC / DC conversion device 5 have semiconductor switches as switching elements as described later in the circuit configuration.
 次に、この発明の実施の形態1に係る点火装置のより具体的な回路構成と動作シーケンスについて説明する。図2は、この発明の実施の形態1による点火装置の構成図であって、図1に示す点火装置の具体的な回路構成を示している。図2において、点火装置10は、第1の電極1aと第2の電極1bとを有する点火プラグ1と、点火プラグ1の第1の電極1aと第2の電極1bとの間の間隙に高電圧を印加してその間隙に絶縁破壊を発生させる高電圧電源2と、所定の周波数を持つ交流電力を点火プラグ1に出力して、第1の電極1aと第2の電極1bとの間の間隙に高周波プラズマを発生させる高周波交流電源3と、高電圧電源2と高周波交流電源3とに電力を供給する直流電源6と、高電圧電源2と高周波交流電源3の動作を制御する制御装置7とを備えている。 Next, a more specific circuit configuration and an operation sequence of the ignition device according to Embodiment 1 of the present invention will be described. FIG. 2 is a block diagram of the ignition device according to the first embodiment of the present invention, and shows a specific circuit configuration of the ignition device shown in FIG. In FIG. 2, the igniter 10 has a spark plug 1 having a first electrode 1 a and a second electrode 1 b and a gap between the first electrode 1 a and the second electrode 1 b of the spark plug 1. A high voltage power supply 2 that applies a voltage to cause dielectric breakdown in the gap, and outputs alternating current power having a predetermined frequency to the spark plug 1 to generate a voltage between the first electrode 1a and the second electrode 1b. A high frequency AC power supply 3 for generating high frequency plasma in a gap, a DC power supply 6 for supplying power to the high voltage power supply 2 and the high frequency AC power supply 3, and a control device 7 for controlling the operation of the high voltage power supply 2 and the high frequency AC power supply 3 And have.
 高電圧電源2は、トランス21と、半導体スイッチ22と、ダイオード23とを備えている。トランス21は、一端が直流電源6の正極に接続され、他端が半導体スイッチ22の一端に接続された1次巻線21aと、一端が点火プラグ1の第1の電極1aに接続された2次巻線21bとを備えている。ダイオード23は、アノードがトランス21の2次巻線21bの一端に接続され、カソードがトランス21の1次巻線21aの一端に接続されている。ダイオード23は、直流電源6の電力が点火プラグ1に直接印加されないようにする逆流防止ダイオードとして機能する。半導体スイッチ22の他端は、グランドレベルの電位に保持されている車両のグランドレベル部位GNDに接続されている。 The high voltage power supply 2 includes a transformer 21, a semiconductor switch 22, and a diode 23. The transformer 21 has a primary winding 21 a whose one end is connected to the positive electrode of the DC power supply 6 and whose other end is connected to one end of the semiconductor switch 22, and one whose other end is connected to the first electrode 1 a of the spark plug 1. And a winding 21b. The diode 23 has an anode connected to one end of the secondary winding 21 b of the transformer 21 and a cathode connected to one end of the primary winding 21 a of the transformer 21. The diode 23 functions as a backflow prevention diode that prevents the power of the DC power supply 6 from being directly applied to the spark plug 1. The other end of the semiconductor switch 22 is connected to the ground level portion GND of the vehicle held at the ground level potential.
 トランス21と半導体スイッチ22とはフライバックコンバータを構成しており、半導体スイッチ22のオン、オフを制御することで、直流電圧を昇圧することが可能である。なお、高電圧電源2は、点火プラグ1に高電圧を印加できるものであればよく、図2に示すフライバックコンバータ以外の構成であってもよい。 The transformer 21 and the semiconductor switch 22 constitute a flyback converter, and by controlling the on / off of the semiconductor switch 22, it is possible to boost the DC voltage. The high voltage power supply 2 may be any one that can apply a high voltage to the spark plug 1, and may have a configuration other than the flyback converter shown in FIG. 2.
 高周波交流電源3は、直流電力を交流電力に変換して点火プラグ1に出力するDC/AC変換装置4と、直流電圧を所定の電圧値に変換してDC/AC変換装置4に出力するDC/DC変換装置5とを備えている。DC/AC変換装置4は、フルブリッジインバータ回路と、昇圧トランス45と、共振回路を構成する共振インダクタ46および共振コンデンサと、電流検出手段48とを備えている。 The high frequency AC power supply 3 converts DC power to AC power and outputs it to the spark plug 1, and DC that converts DC voltage to a predetermined voltage value and outputs it to the DC / AC converter 4 And a DC / DC converter 5. The DC / AC conversion device 4 includes a full bridge inverter circuit, a step-up transformer 45, a resonance inductor 46 and a resonance capacitor constituting a resonance circuit, and a current detection means 48.
 フルブリッジインバータ回路は、ブリッジ回路の4辺を構成する4個の半導体スイッチ41、42、43、44を備えている。半導体スイッチ41と半導体スイッチ43の接続点は、DC/DC変換装置5の正側の出力端子に接続され、半導体スイッチ42と半導体スイッチ44の接続点は、DC/DC変換装置5の負側の端子を介してグランドレベル部位GNDに接続されている。 The full bridge inverter circuit is provided with four semiconductor switches 41, 42, 43, 44 that constitute four sides of the bridge circuit. The connection point of the semiconductor switch 41 and the semiconductor switch 43 is connected to the positive output terminal of the DC / DC conversion device 5, and the connection point of the semiconductor switch 42 and the semiconductor switch 44 is on the negative side of the DC / DC conversion device 5. It is connected to the ground level site GND via a terminal.
 昇圧トランス45は、1次巻線45aと2次巻線45bとを備え、1次巻線45aの一端は、フルブリッジインバータ回路の半導体スイッチ41と半導体スイッチ42の直列接続点に接続され、1次巻線45aの他端は、半導体スイッチ43と半導体スイッチ44の直列接続点に接続されている。昇圧トランス45の2次巻線45bの一端は、共振インダクタ46の一端に接続され、2次巻線45bの他端は、点火プラグ1の第2の電極1bに接続されている。共振インダクタ46の他端は共振コンデンサ47の一端に接続されている。共振コンデンサ47の他端は、点火プラグ1の第1の電極1aに接続されている。 The step-up transformer 45 includes a primary winding 45a and a secondary winding 45b. One end of the primary winding 45a is connected to a series connection point of the semiconductor switch 41 and the semiconductor switch 42 of the full bridge inverter circuit, The other end of the winding 45 a is connected to a series connection point of the semiconductor switch 43 and the semiconductor switch 44. One end of the secondary winding 45 b of the step-up transformer 45 is connected to one end of the resonant inductor 46, and the other end of the secondary winding 45 b is connected to the second electrode 1 b of the spark plug 1. The other end of the resonant inductor 46 is connected to one end of the resonant capacitor 47. The other end of the resonant capacitor 47 is connected to the first electrode 1 a of the spark plug 1.
 DC/AC変換制御回路49は、制御装置7からの指令に基づいて発生したゲート信号を、フルブリッジインバータ回路の4個の半導体スイッチ41、42、43、44のゲート端子に入力し、これらの半導体スイッチ41、42、43、44のオン、オフ動作を制御する。半導体スイッチ41と半導体スイッチ44は、同時にオンされ且つ同時にオフされる。半導体スイッチ43と半導体スイッチ42は、同時にオンされ且つ同時にオフされる。そして、半導体スイッチ41と半導体スイッチ44が同時にオンされているときは、半導体スイッチ43と半導体スイッチ42は同時にオフされ、半導体スイッチ43と半導体スイッチ42が同時にオンされているときは、半導体スイッチ41と半導体スイッチ44は同時にオフされる。 The DC / AC conversion control circuit 49 inputs a gate signal generated based on a command from the control device 7 to the gate terminals of the four semiconductor switches 41, 42, 43, 44 of the full bridge inverter circuit. The on / off operation of the semiconductor switches 41, 42, 43, 44 is controlled. The semiconductor switch 41 and the semiconductor switch 44 are simultaneously turned on and simultaneously turned off. The semiconductor switch 43 and the semiconductor switch 42 are simultaneously turned on and simultaneously turned off. When the semiconductor switch 41 and the semiconductor switch 44 are simultaneously turned on, the semiconductor switch 43 and the semiconductor switch 42 are simultaneously turned off. When the semiconductor switch 43 and the semiconductor switch 42 are simultaneously turned on, the semiconductor switch 41 and the semiconductor switch 42 are simultaneously turned on. The semiconductor switch 44 is simultaneously turned off.
 フルブリッジインバータ回路は、DC/AC変換制御回路49により前述のように4個の半導体スイッチ41、42、43、44が制御されることで、半導体スイッチ41と半導体スイッチ43の接続点に入力された直流電圧を交流電圧に変換し、昇圧トランス45の1次巻線45aに出力する。なお、DC/AC変換装置4は、直流電圧を交流電圧に変換できればよく、図2に示すフルブリッジインバータ回路以外の他の構成であっても良い。 The full bridge inverter circuit is inputted to the connection point between the semiconductor switch 41 and the semiconductor switch 43 by the four semiconductor switches 41, 42, 43, 44 being controlled by the DC / AC conversion control circuit 49 as described above. The DC voltage is converted to an AC voltage and output to the primary winding 45 a of the step-up transformer 45. The DC / AC conversion device 4 only needs to be able to convert a DC voltage to an AC voltage, and may have another configuration other than the full bridge inverter circuit shown in FIG.
 昇圧トランス45は、高周波交流電源3の出力電圧を昇圧するために設けられている。共振インダクタ46と共振コンデンサ47は、共振回路を構成しており、昇圧トランス45の2次巻線45bから出力される出力電力を正弦波に整形する。なお、昇圧トランス45の漏れインダクタンスを用いて共振インダクタ46と同等の機能を実現できる場合、共振インダクタ46を設けなくともよい。 The boosting transformer 45 is provided to boost the output voltage of the high frequency AC power supply 3. The resonant inductor 46 and the resonant capacitor 47 constitute a resonant circuit, and shapes the output power output from the secondary winding 45 b of the step-up transformer 45 into a sine wave. If the same function as the resonant inductor 46 can be realized using the leakage inductance of the step-up transformer 45, the resonant inductor 46 may not be provided.
 電流検出手段48は、DC/AC変換装置4の出力電流と、点火プラグ1の第1の電極1aと第2の電極1bの間の間隙における絶縁破壊に伴う容量放電電流と、を測定する。電流検出手段48は、例えばカレントトランスで構成されているが、シャント抵抗のように電流を検出する機能を有するものであってもよい。DC/AC変換制御回路49は、集積回路あるいは半導体スイッチにより構成された駆動回路等を備えており、制御装置7からの指令信号に基づいて、前述のようにDC/AC変換装置4の半導体スイッチ41、42、43、44を駆動してDC/AC変換装置4の電力変換動作を制御する。 The current detection means 48 measures the output current of the DC / AC converter 4 and the capacitive discharge current associated with the dielectric breakdown in the gap between the first electrode 1 a and the second electrode 1 b of the spark plug 1. The current detection means 48 is formed of, for example, a current transformer, but may have a function of detecting a current like a shunt resistor. The DC / AC conversion control circuit 49 includes a drive circuit and the like configured by an integrated circuit or a semiconductor switch, and the semiconductor switch of the DC / AC conversion device 4 as described above based on the command signal from the control device 7 41, 42, 43, 44 are driven to control the power conversion operation of the DC / AC converter 4.
 DC/DC変換装置5は、インダクタ51と、ダイオード52と、電力供給用コンデンサ54と、半導体スイッチ53と、DC/DC変換制御回路56と、電圧検出手段55を備えている。インダクタ51の一端は、直流電源6の正極に接続され、他端はダイオード52のアノードに接続されている、ダイオード52のカソードは、DC/AC変換装置4の正側の入力端子に接続されている。電力供給用コンデンサ54の一端はダイオード52のカソードに接続され、他端はグランドレベル部位GNDに接続されている。 The DC / DC conversion device 5 includes an inductor 51, a diode 52, a power supply capacitor 54, a semiconductor switch 53, a DC / DC conversion control circuit 56, and a voltage detection unit 55. One end of the inductor 51 is connected to the positive electrode of the DC power supply 6 and the other end is connected to the anode of the diode 52. The cathode of the diode 52 is connected to the positive input terminal of the DC / AC converter 4 There is. One end of the power supply capacitor 54 is connected to the cathode of the diode 52, and the other end is connected to the ground level portion GND.
 半導体スイッチ53の一端は、インダクタ51とダイオード52の直列接続点に接続され、他端はグランドレベル部位GNDに接続されている。電圧検出手段55は、DC/DC変換装置5の正側の出力端子に設けられ、電力供給用コンデンサ54の充電電圧V2を検出する。DC/DC変換制御回路56は、電圧検出手段55が検出した電力供給用コンデンサ54の充電電圧V2の検出値に基づいて、半導体スイッチ53のオン、オフ動作を制御する。DC/DC変換制御回路56は、集積回路あるいは半導体スイッチからなる駆動回路等により構成されており、制御装置7からの指令信号に基づいてDC/DC変換装置5の電力変換動作を制御する。 One end of the semiconductor switch 53 is connected to the series connection point of the inductor 51 and the diode 52, and the other end is connected to the ground level portion GND. The voltage detection means 55 is provided at the positive output terminal of the DC / DC conversion device 5, and detects the charging voltage V2 of the power supply capacitor 54. The DC / DC conversion control circuit 56 controls the on / off operation of the semiconductor switch 53 based on the detection value of the charging voltage V2 of the power supply capacitor 54 detected by the voltage detection means 55. The DC / DC conversion control circuit 56 is configured by a drive circuit or the like including an integrated circuit or a semiconductor switch, and controls the power conversion operation of the DC / DC conversion device 5 based on a command signal from the control device 7.
 インダクタ51と、ダイオード52と、半導体スイッチ53は、昇圧チョッパ回路を構成している。直流電源6は、車載用の電源としての例えば12[V]の出力電圧を発生する。前述の昇圧チョッパ回路は、直流電源6の12[V]の出力電圧を数十[V]~数百[V]程度に昇圧して電力供給用コンデンサ54を充電する。DC/DC変換制御回路56は、電力供給用コンデンサ54の充電電圧V2が出力電圧指令値Vb未満のときに半導体スイッチ53をオン、オフ動作させて、電力供給用コンデンサ54を昇圧チョッパ回路50により充電し、電力供給用コンデンサ54の充電電圧V2が出力電圧指令値Vb以上のときに半導体スイッチ53の動作を停止して、昇圧チョッパ回路50による電力供給用コンデンサ54の充電を停止する。 The inductor 51, the diode 52, and the semiconductor switch 53 constitute a boost chopper circuit. The DC power supply 6 generates, for example, an output voltage of 12 [V] as a vehicle-mounted power supply. The above-described step-up chopper circuit boosts the 12 [V] output voltage of the DC power supply 6 to several tens [V] to several hundreds [V] to charge the power supply capacitor 54. The DC / DC conversion control circuit 56 turns on and off the semiconductor switch 53 when the charging voltage V2 of the power supply capacitor 54 is less than the output voltage command value Vb, and the power supply capacitor 54 is operated by the step-up chopper circuit 50. The charging is performed, and the operation of the semiconductor switch 53 is stopped when the charging voltage V2 of the power supply capacitor 54 is equal to or higher than the output voltage command value Vb, and the charging of the power supply capacitor 54 by the step-up chopper circuit 50 is stopped.
 電力供給用コンデンサ54の充電電圧V2は、主にDC/AC変換装置4の電力変換動作により点火プラグ1にDC/AC変換装置4から交流電力が出力されたときに低下する。しかし、接続された半導体スイッチ53等からも電力供給用コンデンサ54に充電されている電荷が徐々に放電されるため、電力供給用コンデンサ54の充電電圧V2はDC/AC変換装置4が動作しなくても徐々に低下する。しかしながら、点火プラグ1に交流電力を出力していなくとも、電力供給用コンデンサ54の充電電圧V2が出力電圧指令値Vb未満となればDC/DC変換装置5の半導体スイッチ53は動作と停止を繰り返し、電力供給用コンデンサ54の充電電圧V2を出力電圧指令値Vbに維持する。 The charging voltage V2 of the power supply capacitor 54 decreases when AC power is output from the DC / AC converter 4 to the spark plug 1 mainly by the power conversion operation of the DC / AC converter 4. However, since the charge stored in the power supply capacitor 54 is gradually discharged also from the connected semiconductor switch 53 or the like, the DC / AC conversion device 4 does not operate with the charging voltage V2 of the power supply capacitor 54. But it will decline gradually. However, even if AC power is not output to the spark plug 1, if the charging voltage V2 of the power supply capacitor 54 becomes less than the output voltage command value Vb, the semiconductor switch 53 of the DC / DC conversion device 5 repeatedly operates and stops. The charge voltage V2 of the power supply capacitor 54 is maintained at the output voltage command value Vb.
 なお、DC/DC変換装置5は、直流電源6の出力電圧を任意の所定の電圧に変換できるものであればよく、図2に示す昇圧チョッパ回路50以外の構成であってもよい。 The DC / DC conversion device 5 may be any device as long as it can convert the output voltage of the DC power supply 6 into any predetermined voltage, and may have a configuration other than the step-up chopper circuit 50 shown in FIG.
 制御装置7は、高電圧電源2と、DC/AC変換装置4と、DC/DC変換装置5の動作を制御するとともに、電流検出手段48により対象箇所の電流を検出する。制御装置7は、内燃機関の燃焼室内の燃料に点火するタイミングを指示する点火指令信号を、点火周期毎に出力する。また、制御装置7は、内燃機関にとって最適なタイミングで燃焼が発生するように、点火指令信号を出力するタイミングを内燃機関の環境及び運転状況に合わせて制御する。 The control device 7 controls the operation of the high voltage power supply 2, the DC / AC conversion device 4, and the DC / DC conversion device 5, and detects the current of the target location by the current detection unit 48. The control device 7 outputs an ignition command signal for instructing the timing for igniting the fuel in the combustion chamber of the internal combustion engine for each ignition cycle. Further, the control device 7 controls the timing of outputting the ignition command signal in accordance with the environment and the operating condition of the internal combustion engine so that the combustion occurs at the optimum timing for the internal combustion engine.
 なお、点火指令信号は、制御装置7の外部から点火装置10に入力されてもよく、その場合は外部入力された点火指令信号に従って点火動作が実施される。 The ignition command signal may be input to the ignition device 10 from the outside of the control device 7. In this case, the ignition operation is performed according to the externally input ignition command signal.
 制御装置7は、DC/DC変換許可信号によってDC/DC変換装置5の電力変換動作を制御しており、DC/DC変換許可信号がハイレベルのときは電力変換動作を許可し、DC/DC変換許可信号がローレベルのときは電力変換動作を禁止する。 The control device 7 controls the power conversion operation of the DC / DC conversion device 5 by the DC / DC conversion permission signal, and permits the power conversion operation when the DC / DC conversion permission signal is at high level. When the conversion enable signal is at low level, the power conversion operation is inhibited.
 また、制御装置7は、DC/AC変換動作期間信号によってDC/AC変換装置4の電力変換動作を制御しており、DC/AC変換動作期間信号がハイレベルのときは電力変換動作を行い、DC/AC変換動作期間信号がローレベルのときは電力変換動作を停止する。制御装置7は、例えばエンジンコントロールユニットあるいはマイクロコンピュータ等により構成されている。 Further, the control device 7 controls the power conversion operation of the DC / AC conversion device 4 by the DC / AC conversion operation period signal, and performs the power conversion operation when the DC / AC conversion operation period signal is high level, When the DC / AC conversion operation period signal is low, the power conversion operation is stopped. The controller 7 is configured of, for example, an engine control unit or a microcomputer.
 なお、高電圧電源2と、DC/DC変換装置5と、DC/AC変換装置4とに用いられている半導体スイッチ22、41、42、43、44、53は、半導体スイッチであればどのような構成の素子であってもよく、例えばIGBT(Insulated-Gate Bipolar Transistor)やMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)などが前述の半導体スイッチとして使用される。 The semiconductor switches 22, 41, 42, 43, 44, 53 used in the high voltage power supply 2, the DC / DC conversion device 5, and the DC / AC conversion device 4 may be semiconductor switches. For example, an IGBT (Insulated-Gate Bipolar Transistor) or a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) may be used as the semiconductor switch described above.
 次に、以上のように構成されたこの発明の実施の形態1による点火装置10の動作シーケンスについて説明する。図3は、この発明の実施の形態1に係る点火装置の概略動作シーケンスを示すタイミングチャートであって、「a」は点火指令信号、「b」は半導体スイッチ22の駆動制御信号、「c」は点火プラグ1の印加電圧、「d」はDC/AC変換動作期間信号、「e」は電流検出手段48の検出値I1、「f」はDC/DC変換許可信号、「g」はDC/DC変換装置5の出力電流、及び「h」は電力供給用コンデンサ54の充電電圧、をそれぞれ示している。図3の横軸は時間を示す。図4は、この発明の実施の形態1に係る点火装置の動作シーケンスを示すフローチャートである。 Next, an operation sequence of the ignition device 10 according to the first embodiment of the present invention configured as described above will be described. FIG. 3 is a timing chart showing a schematic operation sequence of the ignition device in accordance with Embodiment 1 of the present invention, wherein "a" is an ignition command signal, "b" is a drive control signal of semiconductor switch 22, "c". Is the voltage applied to the spark plug 1, "d" is the DC / AC conversion operation period signal, "e" is the detection value I1 of the current detection means 48, "f" is the DC / DC conversion permission signal, and "g" is DC / DC. The output current of the DC converter 5 and "h" indicate the charging voltage of the power supply capacitor 54, respectively. The horizontal axis of FIG. 3 shows time. FIG. 4 is a flow chart showing an operation sequence of the ignition device in accordance with the first embodiment of the present invention.
 図1から図4において、まず、ステップS01では、点火装置10の制御装置7は、点火周期Ti毎に出力する点火指令信号に応じて、動作の内容を判断する。図3の「a」に示す点火指令信号がハイレベルHiのときは、内燃機関の燃焼室内に燃焼を発生させるために、点火装置10は一連の点火動作を開始する。図3の「a」に示す点火指令信号がローレベルLoのときは、DC/DC変換装置5による電力変換動作を許可し、必要に応じてDC/DC変換装置5が動作する。 In FIGS. 1 to 4, first, at step S01, the control device 7 of the ignition device 10 determines the content of the operation according to the ignition command signal output for each ignition cycle Ti. When the ignition command signal shown in “a” of FIG. 3 is at the high level Hi, the ignition device 10 starts a series of ignition operations to generate combustion in the combustion chamber of the internal combustion engine. When the ignition command signal shown to "a" of FIG. 3 is low level Lo, the power conversion operation | movement by DC / DC converter 5 is permitted, and DC / DC converter 5 operate | moves as needed.
 図3に示すタイミングt1において、制御装置7は、図3の「a」に示す点火指令信号に応じて、「f」に示すDC/DC変換許可信号をローレベルLoに切り替え、DC/DC変換装置5の電力変換動作を禁止する。この段階がステップS02に相当する。これにより、DC/DC変換装置5の半導体スイッチ53のスイッチング動作が停止され、電力供給用コンデンサ54に電力が供給されなくなる。 At timing t1 shown in FIG. 3, the control device 7 switches the DC / DC conversion permission signal shown in "f" to low level Lo according to the ignition command signal shown in "a" in FIG. The power conversion operation of the device 5 is prohibited. This stage corresponds to step S02. Thereby, the switching operation of the semiconductor switch 53 of the DC / DC conversion device 5 is stopped, and the power supply capacitor 54 is not supplied with power.
 その後、ステップS03において、制御装置7は、高電圧電源2により点火プラグ1に高電圧を発生させるために、高電圧電源2における半導体スイッチ22を導通させる。これにより、高電圧電源2のトランス21における1次巻線21aに電流が流れ、トランス21の鉄心に磁束が蓄積される。 Thereafter, in step S03, the control device 7 causes the semiconductor switch 22 in the high voltage power supply 2 to conduct in order to cause the spark plug 1 to generate a high voltage by the high voltage power supply 2. As a result, current flows through the primary winding 21 a of the transformer 21 of the high voltage power supply 2, and magnetic flux is accumulated in the iron core of the transformer 21.
 ステップS04では、制御装置7は、図3に示すタイミングt2において、「a」に示す点火指令信号がハイレベルHiからローレベルLoに変化することに応じて高電圧電源2の半導体スイッチ22を遮断する。このタイミングt2は、トランス21の鉄心に点火プラグ1に絶縁破壊電圧を印加できるだけのエネルギが蓄積されたタイミングである。タイミングt1からタイミングt2までに要する時間は、内燃機関の動作条件ごとに予め測定しておき、制御装置7の内部に設けられたメモリに予め記録しておく。 In step S04, at timing t2 shown in FIG. 3, the control device 7 shuts off the semiconductor switch 22 of the high voltage power supply 2 in response to the change of the ignition command signal shown at "a" from high level Hi to low level Lo. Do. The timing t2 is a timing at which energy sufficient to apply the dielectric breakdown voltage to the spark plug 1 is accumulated in the iron core of the transformer 21. The time required from the timing t1 to the timing t2 is measured in advance for each operating condition of the internal combustion engine, and recorded in advance in a memory provided inside the control device 7.
 高電圧電源2の半導体スイッチ22が遮断されると、トランス21に蓄積されていた磁束のエネルギが放出され、トランス21の2次巻線21bには誘導電圧が発生する。トランス21に蓄積されていた磁束のエネルギは徐々に放出されるため、図3の「c」に示す点火プラグ1の印加電圧V1は、0[V]から時間経過とともに負レベルの方向に増加する。なお、図2の回路構成では点火プラグ1に負電圧が印加されるが、正電圧が印加されるように回路を構成してもよい。 When the semiconductor switch 22 of the high voltage power supply 2 is shut off, the energy of the magnetic flux stored in the transformer 21 is released, and an induced voltage is generated in the secondary winding 21b of the transformer 21. Since the energy of the magnetic flux stored in the transformer 21 is gradually released, the applied voltage V1 of the spark plug 1 shown in "c" of FIG. 3 increases in the direction of negative level with the passage of time from 0 [V]. . Although a negative voltage is applied to the spark plug 1 in the circuit configuration of FIG. 2, the circuit may be configured to apply a positive voltage.
 次に、図3に示すタイミングt3において、図3の「c」に示す点火プラグ1の印加電圧V1が絶縁破壊電圧Vaに達し、点火プラグ1の第1の電極1aと第2の電極1bとの間の空隙に絶縁破壊が発生する。点火プラグ1の電極間の空隙に絶縁破壊が発生すると、点火プラグ1には瞬間的に大きな容量放電電流が流れる。 Next, at timing t3 shown in FIG. 3, the applied voltage V1 of the spark plug 1 shown in “c” of FIG. 3 reaches the dielectric breakdown voltage Va, and the first electrode 1a and the second electrode 1b of the spark plug 1 Breakdown occurs in the air gap between When dielectric breakdown occurs in the gap between the electrodes of the spark plug 1, a large capacity discharge current instantaneously flows through the spark plug 1.
 点火プラグ1に流れる容量放電電流は、点火プラグ1に接続された共振コンデンサ47及び点火プラグ1の近傍の寄生容量に充電されていた電荷が放出されたものである。点火プラグ1に流れる容量放電電流は、その容量放電電流が流れる原因となるコンデンサの静電容量が大きいほど大きくなるため、この発明の実施の形態1に係る点火装置10では、共振コンデンサ47に起因する容量放電電流が特に大きい。この容量放電電流は、点火プラグ1と昇圧トランス45と共振インダクタ46と共振コンデンサ47とで構成される経路にも流れる。 The capacitive discharge current flowing to the spark plug 1 is a release of the charge that has been charged in the resonant capacitor 47 connected to the spark plug 1 and the parasitic capacitance in the vicinity of the spark plug 1. The capacitance discharge current flowing to the spark plug 1 increases as the capacitance of the capacitor causing the capacitance discharge current increases. Therefore, in the ignition device 10 according to the first embodiment of the present invention, the resonance capacitor 47 causes the discharge. Capacity discharge current is particularly large. The capacitive discharge current also flows through a path constituted by the spark plug 1, the step-up transformer 45, the resonant inductor 46 and the resonant capacitor 47.
 その結果、容量放電電流の一部は、昇圧トランス45を介して高周波交流電源3にも流入し、半導体スイッチ41、42、43、44に夫々並列に接続されている並列ダイオードや、電力供給用コンデンサ54等を還流して消費される。制御装置7は、電流検出手段48の検出値I1を取り込み、この検出値I1に基づいて容量放電電流の電流値を測定する。 As a result, a part of the capacitive discharge current also flows into the high frequency AC power supply 3 through the step-up transformer 45, and is connected in parallel to the semiconductor switches 41, 42, 43, 44 in parallel, or for power supply It is consumed by refluxing the condenser 54 and the like. The controller 7 takes in the detection value I1 of the current detection means 48 and measures the current value of the capacitive discharge current based on the detection value I1.
 次に、図3に示すタイミングt4において、制御装置7は、電流検出手段48の検出値I1のピーク値が、予め定められた第1の所定値Ia及び第2の所定値Ib未満に減衰したことを判断する。この段階がステップS05に相当する。予め定められた第1の所定値Iaは、容量放電電流の電流値がその第1の所定値Ia以上のときに、電圧検出手段55が検出誤差を発生させる値として設定されている。 Next, at timing t4 shown in FIG. 3, the control device 7 attenuates the peak value of the detection value I1 of the current detection means 48 to less than the predetermined first predetermined value Ia and the second predetermined value Ib. To judge that. This stage corresponds to step S05. The predetermined first predetermined value Ia is set as a value that causes the voltage detection means 55 to generate a detection error when the current value of the capacitive discharge current is equal to or greater than the first predetermined value Ia.
 前述の予め定められた第2の所定値Ibは、容量放電電流の電流値がその第2の所定値Ib以上のときに、DC/AC変換装置4の出力電流に前述の容量放電電流の一部が重畳し、DC/AC変換装置4の出力電流を検出する電流検出手段48の検出値に検出誤差を生じる値として設定されている。第2の所定値Ibは、DC/AC変換装置4の出力電流指令値Icの1/2以下とすることが望ましい。制御装置7は、容量放電電流のピーク値が第1の所定値Ia及び第2の所定値Ib未満に減衰したことを判断したとき、高電圧電源2の出力が停止したと判断して次の動作に移る。 If the current value of the capacitive discharge current is greater than or equal to the second predetermined value Ib, the aforementioned second predetermined value Ib is not detected in the output current of the DC / AC conversion device 4 , And the detection value of the current detection means 48 for detecting the output current of the DC / AC conversion device 4 is set as a value causing a detection error. The second predetermined value Ib is preferably set to 1/2 or less of the output current command value Ic of the DC / AC conversion device 4. When the controller 7 determines that the peak value of the capacitive discharge current is attenuated to less than the first predetermined value Ia and the second predetermined value Ib, the controller 7 determines that the output of the high voltage power supply 2 has stopped and the next Move to action.
 図5は、この発明の実施の形態1に係る点火装置の動作シーケンスを示すフローチャートであって、図4におけるステップS05の詳細動作シーケンスのフローチャートを示している。図5に示すフローでは、電流検出手段48の検出値I1を用いて以下に述べる判断を行う。すなわち、制御装置7は、図3のタイミングt1以降で電流検出手段48の検出値I1のピーク値が第1の所定値Iaまたは第2の所定値Ib以上になったとき、点火プラグ1の電極間の間隙における絶縁破壊に伴う容量放電電流の発生を検出する。この段階がステップS51Aに相当する。 FIG. 5 is a flow chart showing an operation sequence of the ignition device in accordance with the first embodiment of the present invention, and shows a flow chart of a detailed operation sequence of step S05 in FIG. In the flow shown in FIG. 5, the judgment described below is performed using the detection value I1 of the current detection means 48. That is, when the peak value of the detection value I1 of the current detection means 48 becomes equal to or more than the first predetermined value Ia or the second predetermined value Ib after the timing t1 of FIG. Detection of the occurrence of capacitive discharge current due to dielectric breakdown in the gap between the This stage corresponds to step S51A.
 図7は、この発明の実施の形態1に係る点火装置の動作を説明する説明図であって、容量放電電流の一例を示すとともに、図5のフローチャートに基づく判断について説明したものである。容量放電電流は交流電流であり、その周波数は主に共振インダクタ46と共振コンデンサ47の共振周波数となるため、[1/共振周波数]の周期をもち、その周期毎に正負のピーク値を生じる。図5のステップS52Aにおいて、制御装置7は、図5におけるステップS51Aの後も電流検出手段48の検出値I1を予め定められた第1の所定値Iaと比較する。 FIG. 7 is an explanatory diagram for explaining the operation of the ignition device according to the first embodiment of the present invention, showing an example of the capacitive discharge current and explaining the determination based on the flowchart of FIG. The capacitive discharge current is an alternating current, the frequency of which is mainly the resonant frequency of the resonant inductor 46 and the resonant capacitor 47, so it has a cycle of [1 / resonant frequency] and produces positive and negative peak values for each cycle. In step S52A of FIG. 5, the control device 7 compares the detection value I1 of the current detection means 48 with a predetermined first predetermined value Ia also after step S51A in FIG.
 すなわち、図5におけるステップS52Aにおいて、図7に示すように、電流検出手段48が検出した容量放電電流の検出値I1と第1の所定値Iaとを容量放電電流の1周期毎に比較し、周期T2に示すように、容量放電電流の検出値I1が第1の所定値Ia以上になることを検出できなければ、容量放電電流が第1の所定値Ia未満に減衰したと判断する。図7に示す周期T1では、容量放電電流の検出値I1が第1の所定値Ia以上になっており、このときは、容量放電電流が第1の所定値Ia未満に減衰していないと判断する。 That is, in step S52A in FIG. 5, as shown in FIG. 7, the detected value I1 of the capacitive discharge current detected by the current detecting means 48 is compared with the first predetermined value Ia for each cycle of the capacitive discharge current, As shown in the cycle T2, if it is not detected that the detected value I1 of the capacitive discharge current becomes equal to or greater than the first predetermined value Ia, it is determined that the capacitive discharge current has attenuated to less than the first predetermined value Ia. In period T1 shown in FIG. 7, it is determined that the detected value I1 of the capacitive discharge current is equal to or greater than the first predetermined value Ia, and in this case, the capacitive discharge current is not attenuated to less than the first predetermined value Ia. Do.
 次に、図5のステップS53Aにおいて、制御装置7は、容量放電電流の検出値I1を予め定められた第2の所定値Ibと比較する。このステップS53Aにおいても、図7に示す周期T3のように、容量放電電流の1周期毎に検出値I1が第2の所定値Ib以上になることを検出できなければ、容量放電電流が第2の所定値Ib未満に減衰したと判断する。周期T1、T2では、容量放電電流の検出値I1が第2の所定値Ib以上になっており、このときは、容量放電電流が第2の所定値Ib未満に減衰していないと判断する。なお、ステップS52AとステップS53Aの順序は、どちらを先にしてもよい。 Next, in step S53A of FIG. 5, the control device 7 compares the detected value I1 of the capacitive discharge current with a predetermined second predetermined value Ib. Also in this step S53A, as in the cycle T3 shown in FIG. 7, if it can not be detected that the detected value I1 becomes equal to or more than the second predetermined value Ib every one cycle of the capacitive discharge current, the capacitive discharge current is second It is determined that it has fallen below the predetermined value Ib of. In the cycles T1 and T2, the detected value I1 of the capacitive discharge current is equal to or greater than the second predetermined value Ib. At this time, it is determined that the capacitive discharge current is not attenuated to less than the second predetermined value Ib. The order of step S52A and step S53A may be first.
 図6は、この発明の実施の形態1に係る点火装置の動作シーケンスを示すフローチャートで、図4におけるステップS05の別の詳細動作シーケンスのフローチャートを示している。図6において、ステップS51Bでは、図3の「a」に示す点火指令信号がローレベルLoとなったタイミングt2からの経過時間taを測定し、その経過時間taが予め定められた所定時間Δt以上になった時刻をタイミングt4と判断する。所定時間Δtとしては、例えば、タイミングt2の点火指令信号の立ち下がりから、容量放電電流が第1の所定値Ia及び第2の所定値Ib未満に減衰するまでに要する時間を設定する。 FIG. 6 is a flowchart showing an operation sequence of the ignition device in accordance with the first embodiment of the present invention, and shows a flowchart of another detailed operation sequence of step S05 in FIG. In FIG. 6, in step S51B, an elapsed time ta from the timing t2 when the ignition command signal shown in “a” of FIG. 3 becomes the low level Lo is measured, and the elapsed time ta is a predetermined time Δt or more. It is determined that the time when it has become timing t4. As the predetermined time Δt, for example, the time required for the capacitive discharge current to attenuate to less than the first predetermined value Ia and the second predetermined value Ib from the fall of the ignition command signal at the timing t2 is set.
 なお、点火プラグ1の電極間の間隙における絶縁破壊発生後の容量放電電流のピーク値が、第1の所定値Ia及び第2の所定値Ib未満に減衰したことを判断する手法としては、前述の図7により説明した手法と同様の効果が得られれば、どのような手法であってもよい。 In addition, as a method of determining that the peak value of the capacitive discharge current after occurrence of dielectric breakdown in the gap between the electrodes of the spark plug 1 is attenuated to less than the first predetermined value Ia and the second predetermined value Ib, Any method may be used as long as the same effect as the method described in FIG. 7 is obtained.
 前述の容量放電電流は、MHzオーダー以上の高い周波数を持つため、高周波交流電源3に流れ込んだ際に、配線等の寄生インダクタンスにより高周波交流電源3の基準電位に電圧振動を引き起こす。このような基準電位の電圧振動は、各部の電圧値に重畳するため、センサ等の信号にも基準電位の電圧振動が重畳し、センサ等の検出値に誤差を生じる。 Since the above-mentioned capacitive discharge current has a high frequency of MHz order or more, when flowing into the high frequency alternating current power supply 3, voltage oscillation is caused to the reference potential of the high frequency alternating current power supply 3 by parasitic inductance such as wiring. Since the voltage oscillation of the reference potential is superimposed on the voltage value of each part, the voltage oscillation of the reference potential is superimposed also on the signal of the sensor or the like, and an error occurs in the detection value of the sensor or the like.
 例えば、電圧検出手段55の検出値に電圧振動が重畳したとき、制御装置7は振動する検出値の最小値を読み取り、電力供給用コンデンサ54の充電電圧V2を実際よりも小さく検出してしまう可能性がある。その結果、DC/DC変換装置5は電力供給用コンデンサ54に必要以上に大きい電力を供給してしまうため、電力供給用コンデンサ54の充電電圧V2は電圧指令値Vbよりも大きくなる。電力供給用コンデンサ54の充電電圧V2が本来意図していた電圧指令値Vbよりも大きくなると、DC/AC変換装置4の半導体スイッチのスイッチング損失などが増え、電力損失が増大する。 For example, when voltage oscillation is superimposed on the detection value of the voltage detection means 55, the control device 7 can read the minimum value of the oscillation detection value and detect the charging voltage V2 of the power supply capacitor 54 smaller than it actually is. There is sex. As a result, the DC / DC conversion device 5 supplies a power larger than necessary to the power supply capacitor 54, so the charging voltage V2 of the power supply capacitor 54 becomes larger than the voltage command value Vb. When the charging voltage V2 of the power supply capacitor 54 becomes larger than the originally intended voltage command value Vb, the switching loss of the semiconductor switch of the DC / AC conversion device 4 and the like increase and the power loss increases.
 しかし、この発明の実施の形態1に係る点火装置10では、DC/DC変換装置5の電力変換動作を停止した後に高電圧電源2が動作して点火プラグ1に電圧を印加しており、その後に容量放電電流が予め定められた第1の所定値Ia及び第2の所定値Ib未満に減衰するまでの間、DC/DC変換装置5は電力変換動作を停止している。それゆえ、容量放電電流の流入による電圧検出手段55の誤検出の有無に関わらず、電力供給用コンデンサ54への過大な電力供給が発生しない。したがって、電圧検出手段55の検出値の誤差を抑制できるため、DC/DC変換装置5が必要以上に大きい電力を出力することを防止し、高周波交流電源3の電力損失の増大を防ぐことができる。 However, in the ignition device 10 according to the first embodiment of the present invention, the high voltage power supply 2 is operated and the voltage is applied to the spark plug 1 after the power conversion operation of the DC / DC conversion device 5 is stopped. The DC / DC conversion device 5 stops the power conversion operation until the capacity discharge current attenuates to less than the predetermined first predetermined value Ia and the second predetermined value Ib. Therefore, excessive power supply to the power supply capacitor 54 does not occur regardless of the erroneous detection of the voltage detection means 55 due to the inflow of the capacitive discharge current. Therefore, since the error of the detection value of the voltage detection means 55 can be suppressed, the DC / DC conversion device 5 can be prevented from outputting an electric power larger than necessary, and the increase of the power loss of the high frequency AC power supply 3 can be prevented. .
 図3に示すタイミングt4から予め定められた遅延時間td1を経過した後のタイミングt5において、制御装置7は、DC/AC変換制御回路49に図3のdに示すDC/AC変換動作期間信号をハイレベルHiで出力する。DC/AC変換制御回路49は、電力供給用コンデンサ54に充電されたエネルギをDC/AC変換装置4により交流電力に変換し、点火プラグ1に供給する。この段階が図4におけるステップS06である。これにより、点火プラグ1には高周波プラズマが発生する。ここで、遅延時間td1は、例えば50[μs]程度とする。遅延時間td1は、短いほど点火プラグ1の放電維持電圧が低くなるため、必要がなければ設けなくともよい。 At timing t5 after a predetermined delay time td1 has elapsed from timing t4 shown in FIG. 3, the control device 7 sends the DC / AC conversion operation period signal shown in FIG. Output at high level Hi. The DC / AC conversion control circuit 49 converts the energy charged in the power supply capacitor 54 into AC power by the DC / AC converter 4, and supplies the AC power to the spark plug 1. This stage is step S06 in FIG. As a result, high frequency plasma is generated in the spark plug 1. Here, the delay time td1 is, for example, about 50 [μs]. The shorter the delay time td1, the lower the discharge maintaining voltage of the spark plug 1 becomes.
 高周波交流電源3は、図3に示す点火に必要な時間tac1だけ点火プラグ1に交流電力を供給する。このとき、DC/DC変換装置5は電力変換動作を停止しているため、図3の「h」に示す電力供給用コンデンサ54の充電電圧V2は徐々に低下する。 The high frequency AC power supply 3 supplies AC power to the spark plug 1 for a time tac1 required for ignition shown in FIG. At this time, since the DC / DC conversion device 5 stops the power conversion operation, the charging voltage V2 of the power supply capacitor 54 shown by “h” in FIG. 3 gradually decreases.
 ここで、高周波プラズマを用いた点火装置は、一般的に出力電流が大きいほど点火性能が向上し、燃焼し難い環境下でも着火できるようになる。一方で、高周波プラズマの出力電流が大きくなると、点火装置の損失増大や点火プラグの劣化が発生する。したがって、高周波プラズマを用いた点火装置では、出力電流を適切に制御する必要がある。そこで、制御装置7は、電流検出手段48の検出値I1のピーク値が出力電流指令値Icに近づくように、DC/AC変換装置4の出力する交流電力の周波数を制御する。DC/AC変換装置4の出力電流は、共振インダクタ46と共振コンデンサ47の共振周波数と、交流電力の周波数とが、互いに近い値になれば大きくなり、互いに遠い値になれば小さくなる。 Here, the ignition performance using the high frequency plasma generally improves as the output current increases, and the ignition can be performed even in an environment where it is difficult to burn. On the other hand, when the output current of the high frequency plasma is increased, the loss of the ignition device and the deterioration of the spark plug occur. Therefore, in an igniter using high frequency plasma, it is necessary to control the output current appropriately. Therefore, the control device 7 controls the frequency of the AC power output from the DC / AC conversion device 4 so that the peak value of the detection value I1 of the current detection means 48 approaches the output current command value Ic. The output current of the DC / AC conversion device 4 increases when the resonant frequencies of the resonant inductor 46 and the resonant capacitor 47 and the frequency of the AC power become close to each other, and decrease as they are distant from each other.
 このように、高周波交流電源3が交流電力を出力しているときに、高電圧電源2が高電圧を発生させて点火プラグ1の電極間の間隙に絶縁破壊を生じると、DC/AC変換装置4の出力電流に容量放電電流が重畳される。その結果、電流検出手段48はDC/AC変換装置4の出力電流を正確に検出できなくなり、DC/AC変換装置4の出力電流値を正確に制御することが困難になる。その結果、過大な交流電力出力による電力損失増大及び点火プラグの劣化、あるいは交流電力の出力不足による点火不良が発生する可能性がある。 Thus, when the high voltage power supply 2 generates a high voltage and the insulation breakdown occurs in the gap between the electrodes of the spark plug 1 while the high frequency AC power supply 3 outputs AC power, the DC / AC conversion device The capacitive discharge current is superimposed on the output current of 4. As a result, the current detection means 48 can not accurately detect the output current of the DC / AC conversion device 4, and it becomes difficult to accurately control the output current value of the DC / AC conversion device 4. As a result, power loss may increase due to excessive AC power output, spark plug deterioration may occur, or ignition failure may occur due to insufficient AC power output.
 しかし、この発明の実施の形態1に係る点火装置10では、図3に示すように高電圧電源2が電圧を出力せず、容量放電電流が予め定められた許容所定値としての第2の所定値Ibよりも小さいときのタイミングにおいて、DC/AC変換装置4が電力変換動作をするように制御しているため、DC/AC変換装置4の出力電流を正確に検出することができる。これにより、過大な交流電力出力による電力損失増大及び点火プラグの劣化、あるいは交流電力の出力不足による点火不良の発生を防ぐことが可能である。 However, in ignition device 10 according to the first embodiment of the present invention, high voltage power supply 2 does not output a voltage as shown in FIG. 3, and the second predetermined value of capacitive discharge current as a predetermined allowable predetermined value Since the DC / AC conversion device 4 is controlled to perform the power conversion operation at the timing when it is smaller than the value Ib, the output current of the DC / AC conversion device 4 can be detected accurately. As a result, it is possible to prevent an increase in power loss due to excessive AC power output, deterioration of the spark plug, or occurrence of ignition failure due to insufficient output of AC power.
 また、高周波交流電源3が出力する交流電力の一部は、内燃機関の共通のグランドレベル部位GNDを通して高周波交流電源3に流入する。交流電流はMHzオーダーの高い周波数を持つため、高周波交流電源3に流れ込んだ際に、配線等の寄生インダクタンスにより高周波交流電源3の基準電位に電圧振動を引き起こす。このような基準電位の電圧振動は、各部の電圧値に重畳するため、センサ等の信号にも重畳し、検出値に誤差を生じる。 Further, part of the AC power output from the high frequency AC power supply 3 flows into the high frequency AC power supply 3 through the common ground level portion GND of the internal combustion engine. Since the alternating current has a high frequency on the order of MHz, when flowing into the high frequency alternating current power supply 3, voltage oscillation is caused to the reference potential of the high frequency alternating current power supply 3 by parasitic inductance such as wiring. Such voltage oscillation of the reference potential is superimposed on the voltage value of each part, and therefore is superimposed on the signal of the sensor or the like to cause an error in the detected value.
 電圧検出手段55の検出値に電圧振動が重畳したとき、制御装置7は振動する検出値の最小値を読み取り、電力供給用コンデンサ54の充電電圧V2を実際よりも小さく検出してしまう可能性がある。その結果、DC/DC変換装置5は電力供給用コンデンサ54に必要以上に大きい電力を供給してしまうため、充電電圧V2は電圧指令値Vbよりも大きくなる。電力供給用コンデンサ54の充電電圧V2が本来意図していた電圧指令値Vbよりも大きくなると、DC/AC変換装置4の半導体のスイッチング損失などが増え、電力損失が増大する。 When voltage oscillation is superimposed on the detection value of the voltage detection means 55, the control device 7 reads the minimum value of the oscillation detection value and may detect the charging voltage V2 of the power supply capacitor 54 smaller than the actual value. is there. As a result, since the DC / DC conversion device 5 supplies a power larger than necessary to the power supply capacitor 54, the charging voltage V2 becomes larger than the voltage command value Vb. When the charging voltage V2 of the power supply capacitor 54 becomes larger than the originally intended voltage command value Vb, the switching loss of the semiconductor of the DC / AC conversion device 4 and the like increase and the power loss increases.
 しかし、この発明の実施の形態1に係る点火装置10では、DC/AC変換装置4が動作する前にDC/DC変換装置5の電力変換動作を停止しているため、容量放電電流の流入による電圧検出手段55の誤検出の有無に関わらず、電力供給用コンデンサ54への過大な電力供給が発生しない。したがって、電圧検出手段55の検出値の誤差を抑制することができるため、DC/DC変換装置5が必要以上に大きい電力を出力することを防止し、高周波交流電源3の電力損失の増大を防ぐことができる。 However, in the ignition device 10 according to the first embodiment of the present invention, the power conversion operation of the DC / DC conversion device 5 is stopped before the DC / AC conversion device 4 operates. Regardless of the erroneous detection of the voltage detection means 55, excessive power supply to the power supply capacitor 54 does not occur. Therefore, since the error of the detection value of the voltage detection means 55 can be suppressed, the DC / DC conversion device 5 is prevented from outputting an electric power larger than necessary, and the increase of the power loss of the high frequency AC power supply 3 is prevented. be able to.
 また、DC/AC変換装置4から点火プラグ1に供給される電流は、電力供給用コンデンサ54の充電電圧V2に比例する。したがって、電圧検出手段55が誤検出により充電電圧V2を実際よりも小さく検出したときは、必要以上に大きい電力が電力供給用コンデンサ54に供給されて電力供給用コンデンサ54の充電電圧V2が電圧指令値Vbよりも大きくなり、点火プラグ1に大きな電流が流れて点火プラグ1の劣化を引き起こされる。逆に、電圧検出手段55が誤検出により電力供給用コンデンサ54の充電電圧V2を実際よりも小さく検出したときは、必要な電力が電力供給用コンデンサ54に供給されず、電力供給用コンデンサ54の充電電圧V2が電圧指令値Vbよりも小さくなり、点火プラグ1の交流電流が不足して点火不良が引き起こされる。 Further, the current supplied from the DC / AC converter 4 to the spark plug 1 is proportional to the charging voltage V2 of the power supply capacitor 54. Therefore, when the voltage detection means 55 detects the charging voltage V2 smaller than the actual value due to an erroneous detection, an electric power larger than necessary is supplied to the electric power supply capacitor 54, and the charging voltage V2 of the electric power supply capacitor 54 is a voltage command As it becomes larger than the value Vb, a large current flows in the spark plug 1 to cause deterioration of the spark plug 1. Conversely, when the voltage detection means 55 detects the charging voltage V2 of the power supply capacitor 54 smaller than the actual value due to an erroneous detection, the necessary power is not supplied to the power supply capacitor 54 and the power supply capacitor 54 The charging voltage V2 becomes smaller than the voltage command value Vb, and the alternating current of the spark plug 1 runs short, causing an ignition failure.
 しかし、この発明の実施の形態1に係る点火装置10では、前述のようにDC/DC変換装置5の電力変換動作を停止しているときにDC/AC変換装置4が動作するため、電圧検出手段55の誤検出を防ぎ、電力供給用コンデンサ54の充電電圧V2を電圧指令値Vbに追随するように制御することができる。その結果、DC/AC変換装置4が点火プラグ1に供給する電流値が、必要以上に過大になる、あるいは過小になることを防ぎ、点火プラグ1の劣化と点火不良との防止に寄与する。 However, in the ignition device 10 according to the first embodiment of the present invention, as described above, the DC / AC conversion device 4 operates when the power conversion operation of the DC / DC conversion device 5 is stopped. The erroneous detection of the means 55 can be prevented, and the charging voltage V2 of the power supply capacitor 54 can be controlled to follow the voltage command value Vb. As a result, the current value supplied to the spark plug 1 by the DC / AC conversion device 4 is prevented from becoming excessively large or excessively small, which contributes to the deterioration of the spark plug 1 and the prevention of defective ignition.
 図3に示すタイミングt5から点火に必要な時間tac1だけ経過したタイミングt6において、制御装置7は、図3の「d」に示すDC/AC変換動作期間信号をローレベルLoとする。これにより、DC/AC変換制御回路49は、DC/AC変換装置4の電力変換動作を停止する。この段階が図4におけるステップS07である。これにより、点火プラグ1に発生していた高周波プラズマが消滅する。 At timing t6 when only the time tac1 necessary for ignition has elapsed from timing t5 shown in FIG. 3, the control device 7 sets the DC / AC conversion operation period signal shown at "d" in FIG. 3 to low level Lo. Thereby, the DC / AC conversion control circuit 49 stops the power conversion operation of the DC / AC conversion device 4. This stage is step S07 in FIG. As a result, the high frequency plasma generated in the spark plug 1 disappears.
 図3に示すタイミングt6において、電力供給用コンデンサ54の充電電圧V2は、所定の電圧値Vcまで低下している。制御装置7は、DC/AC変換装置4の電力変換動作を停止した後に、図3の「f」に示すDC/DC変換許可信号をハイレベルHiに切り替え、DC/DC変換装置5の電力変換動作を許可する。この段階が図4のステップS08である。 At timing t6 shown in FIG. 3, the charging voltage V2 of the power supply capacitor 54 has dropped to a predetermined voltage value Vc. After stopping the power conversion operation of the DC / AC conversion device 4, the control device 7 switches the DC / DC conversion permission signal shown in “f” of FIG. 3 to high level Hi, and converts the power of the DC / DC conversion device 5. Allow the action. This stage is step S08 in FIG.
 図8は、この発明の実施の形態1に係る点火装置におけるDC/DC変換装置の動作シーケンスを示すフローチャートである。DC/DC変換装置5は、制御装置7に電力変換動作を許可されたとき、図8のフローチャートに従って動作する。図8のステップS81において、DC/DC変換制御回路56は、図3の「f」に示すDC/DC変換許可信号の状態判定と、電力供給用コンデンサ54の充電電圧V2とDC/DC変換装置5の出力電圧指令値Vbとの比較とを行う。図3の「f」に示すDC/DC変換許可信号がハイレベルHiであり、電力供給用コンデンサ54の充電電圧V2が出力電圧指令値Vbよりも小さいとき、DC/DC変換制御回路56は半導体スイッチ53を動作させ、電力供給用コンデンサ54に直流電力を出力する。この段階が図8におけるステップS82である。DC/DC変換許可信号がローレベルLo、あるいは電力供給用コンデンサ54の充電電圧V2が出力電圧指令値Vb以上のとき、DC/DC変換制御回路56は半導体スイッチ53を停止させ、電力供給用コンデンサ54への直流電力の供給を停止する。この段階が図8のステップS83である。 FIG. 8 is a flow chart showing an operation sequence of the DC / DC conversion device in the ignition device according to Embodiment 1 of the present invention. When the controller 7 is permitted to perform the power conversion operation, the DC / DC conversion device 5 operates according to the flowchart of FIG. In step S81 of FIG. 8, the DC / DC conversion control circuit 56 determines the state of the DC / DC conversion permission signal shown in “f” of FIG. 3 and the charging voltage V2 of the power supply capacitor 54 and the DC / DC conversion device. Comparison with the output voltage command value Vb of 5 is performed. When the DC / DC conversion permission signal shown in “f” of FIG. 3 is high level Hi and the charging voltage V2 of the power supply capacitor 54 is smaller than the output voltage command value Vb, the DC / DC conversion control circuit 56 The switch 53 is operated to output DC power to the power supply capacitor 54. This stage is step S82 in FIG. When the DC / DC conversion permission signal is low level Lo or the charging voltage V2 of the power supply capacitor 54 is equal to or higher than the output voltage command value Vb, the DC / DC conversion control circuit 56 stops the semiconductor switch 53 and the power supply capacitor Stop the supply of DC power to 54. This stage is step S83 in FIG.
 制御装置7は、図3のaに示す点火指令信号がハイレベルHiになるまで、DC/DC変換装置5による電力変換動作を許可し、電力供給用コンデンサ54の充電電圧V2が出力電圧指令値Vbに維持されるように制御する。 The control device 7 permits the power conversion operation by the DC / DC conversion device 5 until the ignition command signal shown in FIG. 3A becomes high level Hi, and the charging voltage V2 of the power supply capacitor 54 is the output voltage command value Control to be maintained at Vb.
 実際の点火装置は、電力供給用コンデンサ54と並列に様々な素子が接続されているため、電力供給用コンデンサ54ではそれらの抵抗成分によって徐々に充電電荷が放電され、充電電圧V2が低下する。したがって、DC/DC変換装置5の半導体スイッチ53は動作と停止を繰り返し、電力供給用コンデンサ54の充電電圧V2を維持するように電力を供給する。このシーケンス動作は、内燃機関の点火周期Ti毎に繰り返される。代表的な点火周期Tiは10[ms]~100[ms]程度である。また、DC/AC変換装置4からの出力電流の出力期間Tacは100[μs]程度である。 In an actual igniter, various elements are connected in parallel with the power supply capacitor 54. Therefore, in the power supply capacitor 54, the charge component is gradually discharged by their resistance components, and the charge voltage V2 decreases. Therefore, the semiconductor switch 53 of the DC / DC conversion device 5 repeatedly operates and stops to supply power so as to maintain the charging voltage V2 of the power supply capacitor 54. This sequence operation is repeated for each ignition cycle Ti of the internal combustion engine. A typical ignition cycle Ti is about 10 ms to 100 ms. Further, the output period Tac of the output current from the DC / AC conversion device 4 is about 100 [μs].
 図9Aは、DC/DC変換装置が電力変換動作を行うときの条件を示す説明図、図9Bは、DC/DC変換装置が電力変換動作を行うときの条件と電圧検出手段の検出誤差との関係を示す説明図である。図9Bにおいて、「a」は容量放電電流、「b」はDC/AC変換装置4の出力電流、「c」はDC/DC変換装置5の動作許可状態、「d」は電力供給用コンデンサ54の充電電圧V2、「e」は電圧検出手段55の検出値、をそれぞれ示している。 FIG. 9A is an explanatory view showing a condition when the DC / DC conversion device performs the power conversion operation, and FIG. 9B is a condition when the DC / DC conversion device performs the power conversion operation and a detection error of the voltage detection means It is an explanatory view showing a relation. In FIG. 9B, “a” is a capacitive discharge current, “b” is an output current of the DC / AC converter 4, “c” is an operation permitted state of the DC / DC converter 5, and “d” is a power supply capacitor 54. The charging voltage V2 of “e” indicates the detection value of the voltage detection means 55, respectively.
 図9Aにおいて、条件1では、必要に応じて、DC/DC変換装置5が電力変換動作を行う。条件2では、容量放電電流が予め定められた値よりも小さい期間において、DC/DC変換装置5が電力変換動作を行う。条件3では、DC/AC変換装置4が点火プラグに交流電力を出力しない期間において、DC/DC変換装置5が電力変換動作を行う。条件4では、容量放電電流が予め定められた値よりも小さい期間と、DC/AC変換装置4が点火プラグ1に交流電力を出力しない期間とにおいて、DC/DC変換装置5が電力変換動作を行う。 In FIG. 9A, under condition 1, the DC / DC conversion device 5 performs the power conversion operation as needed. Under the condition 2, the DC / DC conversion device 5 performs the power conversion operation in a period in which the capacity discharge current is smaller than a predetermined value. Under condition 3, the DC / DC conversion device 5 performs the power conversion operation in a period in which the DC / AC conversion device 4 does not output AC power to the spark plug. Under the condition 4, the DC / DC conversion device 5 performs the power conversion operation in a period in which the capacity discharge current is smaller than a predetermined value and in a period in which the DC / AC conversion device 4 does not output AC power to the spark plug 1. Do.
 ここで、図9Bに示すように、「a」に示す容量放電電流は、前述の条件1、条件2、条件3、及び条件4の何れにおいても同様に、点火プラグ1の電極間の間隙に絶縁破壊が発生する絶縁破壊タイミングで直ちに最大値となり、振動しながら次第に減衰して所定時間後に予め定められた値よりも小さくなる。また、「b」に示すDC/AC変換装置4の出力電流は、前述の条件1、条件2、条件3、及び条件4の何れにおいても同様に、絶縁破壊タイミングから若干遅れたタイミングで一定の振幅および周波数で振動して所定期間に流れるものとして図示されている。 Here, as shown in FIG. 9B, the capacitive discharge current indicated by “a” is similarly applied to the gap between the electrodes of the spark plug 1 under any of the above-mentioned condition 1, condition 2, condition 3 and condition 4 The value immediately reaches the maximum value at the dielectric breakdown timing where dielectric breakdown occurs, and gradually attenuates while vibrating and becomes smaller than a predetermined value after a predetermined time. Also, the output current of the DC / AC conversion device 4 shown in “b” is constant at a timing slightly delayed from the dielectric breakdown timing in any of the above-mentioned condition 1, condition 2, condition 3 and condition 4 as well. It is illustrated as oscillating at an amplitude and frequency and flowing for a predetermined period of time.
 条件1では、前述のように、必要に応じてDC/DC変換装置5が電力変換動作を行うものであり、ここでは「c」に示すように、所定のタイミングtaから所定のタイミングtbまでの所定の期間A1で、DC/DC変換装置5は動作許可状態となる。 Under the condition 1, as described above, the DC / DC conversion device 5 performs the power conversion operation as needed. Here, as indicated by “c”, from the predetermined timing ta to the predetermined timing tb The DC / DC conversion device 5 is in the operation permitted state in a predetermined period A1.
 条件2では、前述のように、容量放電電流が予め定められた値よりも小さくなっている期間においてDC/DC変換装置5が電力変換動作を行うものであり、ここでは「c」に示すように、タイミングtaからタイミングtcの期間A2、およびタイミングtdからタイミングtbまでの期間A3で、DC/DC変換装置5は動作許可状態となる。タイミングtcからタイミングtdまでの期間B1は、DC/DC変換装置5の動作禁止区間となる。 Under the condition 2, as described above, the DC / DC conversion device 5 performs the power conversion operation in a period in which the capacity discharge current is smaller than a predetermined value, as shown by “c” here. In the period A2 of the timing ta to the timing tc and the period A3 of the timing td to the timing tb, the DC / DC conversion device 5 is in the operation permitted state. A period B1 from the timing tc to the timing td is an operation prohibited section of the DC / DC conversion device 5.
 条件3では、前述のように、DC/AC変換装置4が点火プラグ1に交流電力を出力しない期間に於いて、DC/DC変換装置5が電力変換動作を行うものであり、ここでは「c」に示すように、タイミングtaからタイミングteの期間A4、およびタイミングtfからタイミングtbまでの期間A5で、DC/DC変換装置5は動作許可状態となる。タイミングteからタイミングtfまでの期間B2は、DC/DC変換装置5の動作禁止区間となる。 Under the condition 3, as described above, the DC / DC conversion device 5 performs the power conversion operation in a period in which the DC / AC conversion device 4 does not output the AC power to the spark plug 1. As shown in “,” the DC / DC conversion device 5 is in the operation permitted state in the period A4 of the timing ta to the timing te and the period A5 of the timing tf to the timing tb. A period B2 from the timing te to the timing tf is an operation prohibited section of the DC / DC conversion device 5.
 条件4では、前述のように、容量放電電流が予め定められた値よりも小さい期間と、DC/AC変換装置4が点火プラグ1に交流電力を出力しない期間とにおいて、DC/DC変換装置5が電力変換動作を行うものであり、ここでは「c」に示すように、タイミングtaからタイミングtcの期間A2、およびタイミングtfからタイミングtbまでの期間A5で、DC/DC変換装置5は動作許可状態となる。タイミングtcからタイミングtfまでの期間B3は、DC/DC変換装置5の動作禁止区間となる。 Under the condition 4, as described above, the DC / DC conversion device 5 has a period in which the capacity discharge current is smaller than a predetermined value and a period in which the DC / AC conversion device 4 does not output AC power to the spark plug 1. Is the power conversion operation, and here, as shown in “c”, the DC / DC conversion device 5 is permitted to operate in the period A2 of the timing ta to the timing tc and the period A5 of the timing tf to the timing tb. It becomes a state. A period B3 from the timing tc to the timing tf is an operation prohibited section of the DC / DC conversion device 5.
 図9Bに示すように、条件1、条件2、条件3、および条件4の何れにおいても、高電圧電源2が点火プラグ1の電極間の間隙に絶縁破壊が発生してから容量放電電流が予め定められた値未満に減衰するまでの期間と、DC/AC変換装置4が点火プラグ1に交流電力を出力する期間とにおいて、「e」に示すように電圧検出手段55の検出値には電圧振動が重畳され、電圧検出手段55の検出値に誤差が生じる。 As shown in FIG. 9B, under any of condition 1, condition 2, condition 3 and condition 4, since the high voltage power supply 2 generates dielectric breakdown in the gap between the electrodes of the spark plug 1, the capacitive discharge current is made in advance. As indicated by “e”, the voltage detected by the voltage detection means 55 is a voltage in a period until it attenuates to a value less than a predetermined value and a period in which the DC / AC conversion device 4 outputs AC power to the spark plug 1. The vibration is superimposed, and an error occurs in the detection value of the voltage detection means 55.
 高電圧電源2が点火プラグ1の電極間の間隙に絶縁破壊が発生してから容量放電電流が予め定められた値未満に減衰するまでの期間と、DC/AC変換装置4が点火プラグ1に交流電力を出力する期間との2つの期間が重なると、それぞれの振動が重畳されるため、「e」に示すように電圧検出手段55の検出誤差はより一層大きくなる。したがって、制御装置7が、電圧振動が重畳した電圧検出手段55の検出値の最小値を読み取った場合、電力供給用コンデンサ54の充電電圧V2が実際にはDC/DC変換装置5の出力電圧指令値Vbであったとしても、電力供給用コンデンサ54のV2が出力電圧指令値Vbよりも小さいと判断してしまう。 The period from when the high voltage power supply 2 generates dielectric breakdown in the gap between the electrodes of the spark plug 1 to the time when the capacity discharge current attenuates to less than a predetermined value, and the DC / AC conversion device 4 When the two periods with the period for outputting the AC power overlap, the respective vibrations are superimposed, so that the detection error of the voltage detection means 55 becomes larger as shown by “e”. Therefore, when the control device 7 reads the minimum value of the detection value of the voltage detection means 55 on which the voltage oscillation is superimposed, the charging voltage V2 of the power supply capacitor 54 is actually the output voltage command of the DC / DC conversion device 5 Even if the value is Vb, it is determined that V2 of the power supply capacitor 54 is smaller than the output voltage command value Vb.
 その結果、図3の「f」に示すDC/DC変換許可信号がハイレベルHiであれば、図8のステップS81からステップS82に移行して、DC/DC変換装置5は電力供給用コンデンサ54に必要以上に大きい電力を出力し、図9Bの「e」における条件1に示すように、電力供給用コンデンサ54の充電電圧V2がDC/DC変換装置5の出力電圧指令値Vbよりも大きくなる可能性がある。このように電力供給用コンデンサ54の出力電圧V2が必要以上に大きくなると、高周波交流電源3の半導体スイッチのスイッチング損失等が増え、電力損失を増大させることになる。 As a result, if the DC / DC conversion permission signal shown in “f” of FIG. 3 is the high level Hi, the process proceeds from step S81 to step S82 in FIG. 9B, the charging voltage V2 of the power supply capacitor 54 becomes larger than the output voltage command value Vb of the DC / DC conversion device 5, as indicated by condition 1 in “e” of FIG. 9B. there is a possibility. As described above, when the output voltage V2 of the power supply capacitor 54 becomes larger than necessary, the switching loss and the like of the semiconductor switch of the high frequency AC power supply 3 are increased, and the power loss is increased.
 図9Bに示す条件2では、「a」に示す容量放電電流が、タイミングtcから予め定められた値に減衰するタイミングtdまでの期間B1において、DC/DC変換装置5の電力変換動作が禁止され、DC/DC変換装置5は電力変換動作が停止する。したがって、制御装置7は、容量放電電流が予め定められた所定値よりも小さい期間において、DC/DC変換装置5の電力変換動作を行うように制御する。この場合、条件1の場合に比べて、電力供給用コンデンサ54の充電電圧V2は、小さくなり、高周波交流電源3の半導体スイッチのスイッチング損失等が抑制され、電力損失の増大が抑制される。 Under the condition 2 shown in FIG. 9B, the power conversion operation of the DC / DC conversion device 5 is prohibited in a period B1 from the timing tc to the timing td when the capacitance discharge current shown in “a” attenuates to a predetermined value. The power conversion operation of the DC / DC conversion device 5 is stopped. Therefore, the control device 7 controls the power conversion operation of the DC / DC conversion device 5 in a period in which the capacity discharge current is smaller than a predetermined value. In this case, the charging voltage V2 of the power supply capacitor 54 is smaller than in the case of Condition 1, switching loss of the semiconductor switch of the high frequency AC power supply 3 is suppressed, and an increase in power loss is suppressed.
 図9Bに示す条件3では、「b」に示すDC/AC変換装置4の出力電流が流れるタイミングteからタイミングtfまでの期間B2において、DC/DC変換装置5の電力変換動作が禁止され、DC/DC変換装置5は電力変換動作が停止する。しかし、期間B2に至るまでの容量放電電流が予め定められた所定値よりも大きい期間において、DC/DC変換装置5の電力変換動作が行われるので、条件2の場合に比べて、電力供給用コンデンサ54の充電電圧V2は大きくなり、条件2に比べて高周波交流電源3の半導体スイッチのスイッチング損失等が大きくなり、電力損失が増大する。 Under condition 3 shown in FIG. 9B, the power conversion operation of the DC / DC conversion device 5 is inhibited in a period B2 from the timing te to the timing tf when the output current of the DC / AC conversion device 4 shown in "b" flows. The power conversion operation of the / DC conversion device 5 is stopped. However, since the power conversion operation of DC / DC conversion device 5 is performed in a period in which the capacitive discharge current up to period B2 is larger than a predetermined value, power supply operation is performed compared to the case of Condition 2. The charging voltage V2 of the capacitor 54 becomes larger, the switching loss of the semiconductor switch of the high frequency AC power supply 3 becomes larger than that of the condition 2, and the power loss increases.
 図9Bに示す条件4では、「a」に示す容量放電電流が、絶縁破壊が発生するタイミングtcからDC/AC変換装置4の出力電流が流れなくなるタイミングtfまでの期間B3において、DC/DC変換装置5の電力変換動作が禁止され、DC/DC変換装置5は電力変換動作が停止する。したがって、制御装置7は、容量放電電流が予め定められた所定値よりも小さく且つDC/AC変換装置4の出力電流が流れていない期間A2、A5において、DC/DC変換装置5の電力変換動作を行うように制御する。この場合、電力供給用コンデンサ54の充電電圧V2は、出力電圧指令値Vbを超えることはなく、高周波交流電源3の半導体スイッチのスイッチング損失等が抑制され、電力損失の増大が抑制される。 Under the condition 4 shown in FIG. 9B, DC / DC conversion is performed in a period B3 from the timing tc when the dielectric breakdown occurs to the timing tf when the output current of the DC / AC conversion device 4 does not flow. The power conversion operation of the device 5 is prohibited, and the DC / DC conversion device 5 stops the power conversion operation. Therefore, control device 7 performs the power conversion operation of DC / DC conversion device 5 in periods A2 and A5 in which the capacitive discharge current is smaller than the predetermined value and the output current of DC / AC conversion device 4 does not flow. Control to do In this case, the charging voltage V2 of the power supply capacitor 54 does not exceed the output voltage command value Vb, and switching loss and the like of the semiconductor switch of the high frequency AC power supply 3 are suppressed, and an increase in power loss is suppressed.
 この発明の実施の形態1による点火装置では、図9Bの条件2に基づいてDC/DC変換装置5を制御することを第1の基礎技術とする。具体的には、図3の「e」に示す電流検出手段48の検出値I1が第1の所定値Iaよりも小さい期間において、制御装置7は、図3の「f」に示すDC/DC変換許可信号をハイレベルHiとする。 In the ignition device according to the first embodiment of the present invention, controlling the DC / DC conversion device 5 based on the condition 2 of FIG. 9B is a first basic technology. Specifically, in a period in which the detection value I1 of the current detection means 48 shown in "e" of FIG. 3 is smaller than the first predetermined value Ia, the controller 7 performs DC / DC shown in "f" of FIG. The conversion enable signal is set to high level Hi.
 これにより、DC/DC変換装置5の電力変換動作時において、容量放電電流がDC/DC変換装置5の基準電位に流入しなくなる、あるいは容量放電電流が微小であるため、電圧検出手段55における検出値の誤差を抑制することができる。その結果、DC/DC変換装置5が必要以上に大きい電力を出力することを防止し、高周波交流電源3の電力損失の増大を防ぐことができる。 Thereby, during the power conversion operation of DC / DC conversion device 5, the capacitive discharge current does not flow into the reference potential of DC / DC conversion device 5, or the capacitive discharge current is minute. It is possible to suppress the error of the value. As a result, it is possible to prevent the DC / DC conversion device 5 from outputting power that is larger than necessary, and to prevent an increase in the power loss of the high frequency AC power supply 3.
 更に、この発明の実施の形態1による点火装置では、図9Bの条件4に基づいてDC/DC変換装置5を制御することを第2の基礎技術とする。具体的には、図3の「e」に示す電流検出手段48の検出値I1が第1の所定値Iaよりも小さく且つDC/AC変換装置4の出力電流が流れていない期間において、制御装置7は、図3の「f」に示すDC/DC変換許可信号をハイレベルHiとする。 Furthermore, in the ignition device according to the first embodiment of the present invention, controlling the DC / DC conversion device 5 based on the condition 4 of FIG. 9B is a second basic technology. Specifically, in a period in which the detection value I1 of the current detection means 48 shown in “e” of FIG. 3 is smaller than the first predetermined value Ia and the output current of the DC / AC conversion device 4 does not flow, 7 sets the DC / DC conversion permission signal shown in “f” of FIG. 3 to high level Hi.
 これにより、DC/DC変換装置5の電力変換動作時において、容量放電電流がDC/DC変換装置5の基準電位に流入しなくなる、あるいは容量放電電流が微小であるため、電圧検出手段55における検出値の誤差を抑制することができる。その結果、DC/DC変換装置5が必要以上に大きい電力を出力することを防止し、高周波交流電源3の電力損失の増大を防ぐことができる。 Thereby, during the power conversion operation of DC / DC conversion device 5, the capacitive discharge current does not flow into the reference potential of DC / DC conversion device 5, or the capacitive discharge current is minute. It is possible to suppress the error of the value. As a result, it is possible to prevent the DC / DC conversion device 5 from outputting power that is larger than necessary, and to prevent an increase in the power loss of the high frequency AC power supply 3.
 すなわち、この発明の実施の形態1による点火装置10は、具体的には、高電圧電源2が点火プラグ1に電圧を発生させてから絶縁破壊に伴う容量放電電流が予め定められた第1の所定値Iaに減衰するまでの期間と、DC/AC変換装置4が点火プラグ1に交流電力を出力する期間との少なくとも一方において、DC/DC変換装置5の電力変換動作を停止する。この場合、制御装置7は、容量放電電流が予め定められた第1の所定値Iaよりも小さい期間と、DC/AC変換装置4が交流電力を出力しない期間との少なくとも一方を満たす期間において、DC/DC変換装置5が電力変換動作を行うように制御する。 Specifically, igniter 10 according to the first embodiment of the present invention is specifically a first device in which a capacitive discharge current associated with dielectric breakdown is predetermined after high voltage power supply 2 generates a voltage to spark plug 1. The power conversion operation of the DC / DC conversion device 5 is stopped in at least one of a period until it attenuates to the predetermined value Ia and a period in which the DC / AC conversion device 4 outputs AC power to the spark plug 1. In this case, control device 7 performs a period in which at least one of a period in which the capacity discharge current is smaller than a predetermined first predetermined value Ia and a period in which DC / AC conversion device 4 does not output AC power is The DC / DC converter 5 is controlled to perform the power conversion operation.
 これにより、DC/DC変換装置5が電力変換動作を行う期間において、絶縁破壊による容量放電電流とDC/AC変換装置4の出力電流とが、同時にDC/DC変換装置5の基準電位に流れ込むことを防ぎ、電圧検出手段55における検出誤差を抑制することができる。その結果、検出誤差の影響により、DC/DC変換装置5が必要以上に大きい電力を出力することを防止し、電力損失の増大を防ぐことができる。 Thus, during the period when the DC / DC conversion device 5 performs the power conversion operation, the capacitance discharge current due to dielectric breakdown and the output current of the DC / AC conversion device 4 simultaneously flow into the reference potential of the DC / DC conversion device 5 And the detection error in the voltage detection means 55 can be suppressed. As a result, it is possible to prevent the DC / DC conversion device 5 from outputting an unnecessarily large power due to the influence of the detection error, and to prevent an increase in power loss.
 また、この発明の実施の形態1に係る点火装置10では、高電圧電源2が点火プラグ1に電圧を発生させてから絶縁破壊に伴う容量放電電流が予め定められた値に減衰するまでの期間と、DC/AC変換装置4が点火プラグ1に交流電力を出力する期間との両方において、DC/DC変換装置5の電力変換動作を停止してもよい。図3は、この場合のタイミングチャートを示している。すなわち、制御装置7は、容量放電電流が予め定められた第1の所定値Iaよりも小さい期間と、DC/AC変換装置4が交流電力を出力しない期間との両方において、DC/DC変換装置5が電力変換動作を行うように制御する。 Further, in the ignition device 10 according to the first embodiment of the present invention, a period from when the high voltage power supply 2 generates the voltage in the spark plug 1 to the time when the capacitive discharge current accompanying the dielectric breakdown attenuates to a predetermined value. The power conversion operation of the DC / DC conversion device 5 may be stopped in both the period in which the DC / AC conversion device 4 outputs AC power to the spark plug 1 and the period in which the DC / AC conversion device 4 outputs AC power. FIG. 3 shows a timing chart in this case. That is, control device 7 controls the DC / DC conversion device both in a period in which the capacity discharge current is smaller than a predetermined first predetermined value Ia and in a period in which DC / AC conversion device 4 does not output AC power. 5 controls to perform the power conversion operation.
 これにより、DC/DC変換装置5が電力変換動作を行う期間において、絶縁破壊による容量放電電流とDC/AC変換装置4の出力電流との両方が、DC/DC変換装置5に流れ込むことを防ぎ、電圧検出手段55の検出誤差をより一層抑制することができる。この結果、検出誤差の影響により、DC/DC変換装置5が必要以上に大きい電力を出力することを防止し、電力損失の増大を防ぐことができる。 This prevents both of the capacitive discharge current due to dielectric breakdown and the output current of the DC / AC conversion device 4 from flowing into the DC / DC conversion device 5 during the power conversion operation of the DC / DC conversion device 5 The detection error of the voltage detection means 55 can be further suppressed. As a result, it is possible to prevent the DC / DC conversion device 5 from outputting power that is larger than necessary due to the influence of the detection error, and to prevent an increase in power loss.
 この発明の実施の形態1に係る点火装置10では、制御装置7は、容量放電電流が予め定められた第2の所定値Ibよりも小さい期間と、DC/DC変換装置5が電力変換動作を停止している期間とにおいて、DC/AC変換装置4が電力変換動作を行うように制御する。これにより、DC/AC変換装置4の出力電流に容量放電電流が重畳することにより、電流検出手段48において検出できなくなることを防ぎ、電流検出手段48の検出値I1を用いたDC/AC変換装置4の出力電流の制御が可能となる。 In the ignition device 10 according to the first embodiment of the present invention, the control device 7 causes the DC / DC conversion device 5 to perform the power conversion operation during a period in which the capacity discharge current is smaller than the predetermined second predetermined value Ib. The DC / AC conversion device 4 is controlled to perform the power conversion operation during the period of stoppage. As a result, the capacitive discharge current is superimposed on the output current of the DC / AC conversion device 4 to prevent the current detection unit 48 from becoming undetectable, and the DC / AC conversion device using the detection value I1 of the current detection unit 48 Control of the output current of 4 is possible.
 その結果、点火プラグ1に過大な電流が供給されることによる点火プラグの劣化、及び電流不足による点火性能の低下を防ぐことができる。ここで、点火性能の低下として、火炎伝播速度の低下による燃費悪化、あるいは不完全燃焼による排出ガスの有害物質の増加等を挙げることができる。 As a result, it is possible to prevent the deterioration of the spark plug due to the supply of an excessive current to the spark plug 1 and the deterioration of the ignition performance due to the shortage of the current. Here, the deterioration of the ignition performance may be, for example, deterioration of the fuel efficiency due to the reduction of the flame propagation speed, or increase of harmful substances of the exhaust gas due to the incomplete combustion.
 制御装置7は、容量放電電流が予め定められた第1の所定値Ia及び第2の所定値Ibよりも小さい期間と、DC/DC変換装置5が電力変換動作を停止している期間とにおいて、DC/AC変換装置4が電力変換動作を行うように制御することができる。これにより、前述のように、DC/AC変換装置4の出力電流に容量放電電流が重畳することにより検出できなくなることを防ぎ、電流検出手段48の検出値I1を用いたDC/AC変換装置4の出力電流の制御が可能となる。 Control device 7 has a period in which the capacity discharge current is smaller than predetermined first predetermined value Ia and second predetermined value Ib, and a period in which DC / DC conversion device 5 stops the power conversion operation. , DC / AC converter 4 can be controlled to perform a power conversion operation. As a result, as described above, it is prevented that detection can not be performed due to the capacitive discharge current being superimposed on the output current of the DC / AC conversion device 4, and the DC / AC conversion device 4 using the detection value I1 of the current detection means 48 Control of the output current of the
 また、電圧検出手段55の検出誤差を防ぎ、DC/DC変換装置5が過大あるいは過小な電力を出力することがなくなり、電力供給用コンデンサ54の充電電圧V2が出力電圧指令値Vbよりも過大あるいは過小になることを防止できる。DC/AC変換装置4の出力電流は、電力供給用コンデンサ54の充電電圧V2に比例するため、電圧検出手段55の検出誤差を防ぐことにより、過大な電流が供給されることによる点火プラグの劣化や電流不足による点火性能の低下を防ぐことができる。従て、DC/AC変換装置4の点火プラグ1への出力電流をより正確に制御することができ、点火プラグ1に過大な電流が供給されることによる点火プラグ1の劣化と、点火プラグ1に供給される電流が不足することによる点火性能の低下とをより一層防ぐことができる。 Further, the detection error of the voltage detection means 55 is prevented, and the DC / DC conversion device 5 does not output an excessive or excessively small power, and the charging voltage V2 of the power supply capacitor 54 is larger than the output voltage command value Vb or It can be prevented from becoming too small. Since the output current of the DC / AC converter 4 is proportional to the charging voltage V2 of the power supply capacitor 54, deterioration of the spark plug due to the supply of an excessive current by preventing the detection error of the voltage detection means 55 Also, it is possible to prevent the deterioration of the ignition performance due to the lack of current. Therefore, the output current to the spark plug 1 of the DC / AC conversion device 4 can be more accurately controlled, and deterioration of the spark plug 1 due to the excessive current being supplied to the spark plug 1, and the spark plug 1 And the deterioration of the ignition performance due to the shortage of the current supplied to the
 この発明の実施の形態1に係る点火装置10では、DC/DC変換装置5とDC/AC変換装置4が電力変換動作を行わない期間において、高電圧電源2が前記点火プラグに電圧を印加して絶縁破壊を発生させる。その結果、DC/DC変換装置5の電力変換動作時において、容量放電電流の一部がDC/DC変換装置5に流入することを防ぎ、電圧検出手段55の検出誤差を抑制できる。加えて、容量放電電流がDC/AC変換装置4の出力電流に重畳することを防ぎ、電流検出手段48の検出値I1を用いたDC/AC変換装置4の出力電流の制御が可能となる。したがって、高周波交流電源3の電力損失の増大を防ぐとともに、点火プラグ1の劣化と点火性能低下の防止に寄与する。 In the ignition device 10 according to Embodiment 1 of the present invention, the high voltage power supply 2 applies a voltage to the spark plug while the DC / DC conversion device 5 and the DC / AC conversion device 4 do not perform the power conversion operation. Cause insulation breakdown. As a result, in the power conversion operation of the DC / DC conversion device 5, a part of the capacitive discharge current can be prevented from flowing into the DC / DC conversion device 5, and the detection error of the voltage detection means 55 can be suppressed. In addition, it is possible to prevent the capacitive discharge current from being superimposed on the output current of the DC / AC conversion device 4 and to control the output current of the DC / AC conversion device 4 using the detection value I1 of the current detection means 48. Therefore, while preventing the increase in the power loss of high frequency alternating current power supply 3, it contributes to the prevention of degradation of ignition plug 1 and ignition performance fall.
 この発明の実施の形態1に係る点火装置10では、図3の「a」に示す点火指令信号に従って、高電圧電源2と、DC/AC変換装置4と、DC/DC変換装置5とを制御する。点火指令信号は、内燃機関の環境や運転状況に適したタイミングに点火するように制御されるため、点火指令信号に従って点火装置10を動作させることにより、容易に最適タイミングで点火することができる。 In the ignition device 10 according to the first embodiment of the present invention, the high voltage power supply 2, the DC / AC conversion device 4, and the DC / DC conversion device 5 are controlled according to the ignition command signal shown in "a" of FIG. Do. The ignition command signal is controlled to ignite at a timing suitable for the environment and operating conditions of the internal combustion engine, and therefore, ignition can be easily performed at an optimal timing by operating the igniter 10 according to the ignition command signal.
 この発明の実施の形態1に係る点火装置10では、図3に示すように、DC/AC変換装置4の電力変換動作が行われてから次の点火指令信号が出力されるまでの期間において、DC/DC変換装置5が電力変換動作を行う。これにより、タイミングt1の電力供給用コンデンサ54の充電電圧V2は、指令値Vbと実質的に同一程度に維持されるため、タイミングt5における点火プラグの印加電圧V1を放電維持電圧以上にするでき、点火プラグ1に高周波プラズマが発生できないことによる点火性能の低下を防ぐことができる。 In the ignition device 10 according to the first embodiment of the present invention, as shown in FIG. 3, in the period from when the power conversion operation of the DC / AC conversion device 4 is performed until the next ignition command signal is output, The DC / DC conversion device 5 performs the power conversion operation. Thereby, the charging voltage V2 of the power supply capacitor 54 at the timing t1 is maintained substantially at the same level as the command value Vb, so that the applied voltage V1 of the spark plug at the timing t5 can be equal to or higher than the discharge maintaining voltage. It is possible to prevent a decrease in ignition performance due to the inability of the high frequency plasma to be generated in the spark plug 1.
実施の形態2.
 次に、この発明の実施の形態2に係る点火装置について説明する。この発明の実施の形態2に係る点火装置の回路構成は、実施の形態1と同一である。したがって、実施の形態1に対応する構成要素と同一符号を付して説明を省略する。この発明の実施の形態2に係る点火装置では、絶縁破壊の発生後でも、放電プラズマによる燃料への着火が行われる。したがって、点火プラグに放電プラズマを長時間発生させ、絶縁破壊からより遅いタイミングでも燃料に着火でき、点火性能の向上に寄与することができる。この発明の実施の形態2の点火装置においては、高周波交流電源3から交流電力を長時間出力することにより、難燃性の燃料混合気への着火や燃焼速度の早期化が可能となる。
Second Embodiment
Next, an ignition device according to Embodiment 2 of the present invention will be described. The circuit configuration of the ignition device according to the second embodiment of the present invention is the same as that of the first embodiment. Therefore, the same reference numerals are given to the components corresponding to the first embodiment and the description will be omitted. In the igniter according to the second embodiment of the present invention, ignition of fuel by discharge plasma is performed even after occurrence of dielectric breakdown. Therefore, discharge plasma can be generated for a long time in the spark plug, and fuel can be ignited even at a later timing after dielectric breakdown, which can contribute to the improvement of the ignition performance. In the igniter according to the second embodiment of the present invention, by outputting AC power from the high frequency AC power supply 3 for a long time, it is possible to ignite the flame retardant fuel mixture and to accelerate the combustion speed.
 一方で、高周波交流電源3から点火プラグ1に交流電力を出力して高周波プラズマを長時間継続するためには、多くのエネルギを消費する。それゆえ、電力供給用コンデンサ54の静電容量を十分に大きくして、高周波プラズマを発生中の電力供給用コンデンサ54の充電電圧V2の低下を抑制し、点火プラグ1の印加電圧V1が放電維持電圧を下回ることを防ぐ必要がある。しかしそのためには、電力供給用コンデンサ54が大きくする必要があり、点火装置が大型化してしまう。 On the other hand, in order to output AC power from the high frequency AC power supply 3 to the spark plug 1 to continue high frequency plasma for a long time, much energy is consumed. Therefore, the capacitance of the power supply capacitor 54 is made sufficiently large to suppress a drop in the charging voltage V2 of the power supply capacitor 54 during high frequency plasma generation, and discharge of the applied voltage V1 of the spark plug 1 is maintained. It is necessary to prevent the voltage from falling below. However, for that purpose, the power supply capacitor 54 needs to be large, and the igniter becomes large.
 この発明の実施の形態2では、点火装置の電力供給用コンデンサ54の静電容量を増やすことなく、高周波プラズマを長時間発生させるために、高周波交流電源3のDC/AC変換装置4が、一度の点火周期Tiにおいて交流電力を複数回間欠的に点火プラグ1に出力する。 In the second embodiment of the present invention, the DC / AC conversion device 4 of the high frequency alternating current power supply 3 once generates the high frequency plasma for a long time without increasing the capacitance of the power supply capacitor 54 of the ignition device. AC power is intermittently outputted to the spark plug 1 a plurality of times in the ignition cycle Ti.
 次に、この発明の実施の形態2による点火装置10の動作シーケンスについて説明する。図10は、この発明の実施の形態2に係る点火装置の概略動作シーケンスを示すタイミングチャート、図11は、この発明の実施の形態2に係る点火装置の動作シーケンスを示すフローチャートである。図10におけるタイミングt1からt6までの動作は、前述の図3におけるタイミングt1からt6までの動作と同様である。 Next, an operation sequence of the ignition device 10 according to the second embodiment of the present invention will be described. FIG. 10 is a timing chart showing a schematic operation sequence of the ignition device in accordance with Embodiment 2 of the present invention, and FIG. 11 is a flow chart showing an operation sequence of the ignition device in accordance with Embodiment 2 of the present invention. The operation from timing t1 to t6 in FIG. 10 is similar to the operation from timing t1 to t6 in FIG. 3 described above.
 図10に示すタイミングt6において、制御装置7は、DC/AC変換装置4の電力変換動作を停止し、DC/DC変換装置5の電力変換動作を許可する。この段階が図11におけるステップS08である。これにより、DC/DC変換装置5は、前述の図8のフローチャートに従って、電力供給用コンデンサ54の充電電圧V2が出力電圧指令値Vb以上になるように電力変換動作を行う。 At timing t6 shown in FIG. 10, the control device 7 stops the power conversion operation of the DC / AC conversion device 4 and permits the power conversion operation of the DC / DC conversion device 5. This stage is step S08 in FIG. Thereby, the DC / DC conversion device 5 performs the power conversion operation so that the charging voltage V2 of the power supply capacitor 54 becomes equal to or higher than the output voltage command value Vb according to the above-mentioned flow chart of FIG.
 その後、図11のステップS01での判定の結果、図10の「a」に示す点火指令信号の出力がハイレベルHiでなければ、タイミングt6から休止期間ts1だけ経過したタイミングt7において、制御装置7はDC/AC変換動作期間信号をハイレベルHiとして出力する。制御装置7は、DC/AC変換動作期間信号のハイレベルHiにすると同時若しくは実質的に同時に、「f」に示すDC/DC変換許可信号をローレベルLoとし、DC/DC変換装置5の動作を禁止する。この段階が図11におけるステップS10である。このとき、図10の「h」に示す電力供給用コンデンサ54の充電電圧V2は、出力電圧指令値Vb以上でなくともよい。代表的な休止期間ts1は50[μs]程度である。 Thereafter, as a result of the determination in step S01 of FIG. 11, if the output of the ignition command signal shown in “a” of FIG. 10 is not high level Hi, the controller 7 at timing t7 when only the pause period ts1 has elapsed from timing t6. Outputs the DC / AC conversion operation period signal as high level Hi. At the same time or substantially simultaneously with the high level Hi of the DC / AC conversion operation period signal, the control device 7 sets the DC / DC conversion permission signal indicated by “f” to the low level Lo, and the operation of the DC / DC conversion device 5 Prohibit This stage is step S10 in FIG. At this time, the charging voltage V2 of the power supply capacitor 54 indicated by “h” in FIG. 10 may not be equal to or higher than the output voltage command value Vb. A typical pause period ts1 is about 50 [μs].
 ステップS10においてDC/DC変換装置5の動作を禁止すると同時若しくは実質的に同時に、制御装置7はDC/AC変換装置4による電力変換動作を行う。これにより、DC/AC変換装置4は点火プラグ1に交流電流を供給して高周波プラズマを発生させる。この段階が図11におけるステップS11である。高周波交流電源3は、点火に必要な交流電力出力期間tac2だけ点火プラグ1に交流電力を供給し続ける。このとき、DC/DC変換装置5は、電力変換動作を停止しているため、電力供給用コンデンサ54の充電電圧V2は徐々に低下する。 At the same time or substantially simultaneously with the inhibition of the operation of the DC / DC conversion device 5 in step S10, the control device 7 performs the power conversion operation by the DC / AC conversion device 4. Thereby, the DC / AC converter 4 supplies an alternating current to the spark plug 1 to generate high frequency plasma. This stage is step S11 in FIG. The high frequency AC power supply 3 continues to supply AC power to the spark plug 1 for an AC power output period tac2 necessary for ignition. At this time, since the DC / DC conversion device 5 stops the power conversion operation, the charging voltage V2 of the power supply capacitor 54 gradually decreases.
 次に、図10に示すように、タイミングt7から交流電力出力期間tac2だけ経過したタイミングt8において、制御装置7は「d」に示すDC/AC変換動作期間信号をローレベルLoとする。これにより、DC/AC変換制御回路49は、DC/AC変換装置4の電力変換動作を停止する。この段階が図11に於けるステップS12である。代表的な交流電力出力期間tac2は、50[μs]程度である。 Next, as shown in FIG. 10, at timing t8 when only the AC power output period tac2 has elapsed from timing t7, the control device 7 sets the DC / AC conversion operation period signal indicated by "d" to the low level Lo. Thereby, the DC / AC conversion control circuit 49 stops the power conversion operation of the DC / AC conversion device 4. This stage is step S12 in FIG. A typical AC power output period tac2 is about 50 [μs].
 次に、DC/AC変換装置4の電力変換動作を停止すると同時若しくは実質的に同時に、制御装置7は、タイミングt8において、「f」に示すDC/DC変換許可信号をハイレベルHiに切り替え、DC/DC変換装置5の電力変換動作を許可する。この段階が図11におけるステップS08である。 Next, at the same time or substantially simultaneously with stopping the power conversion operation of the DC / AC conversion device 4, the control device 7 switches the DC / DC conversion permission signal shown in “f” to high level Hi at timing t8. The power conversion operation of the DC / DC conversion device 5 is permitted. This stage is step S08 in FIG.
 この発明の実施の形態2に係る点火装置10は、図10に示すタイミングt1からタイミングt8までのシーケンス動作を、図10の「a」に示す点火指令信号及び「d」に示すDC/AC変換動作期間信号に従って、内燃機関の点火周期Ti毎に繰り返す。 The ignition device 10 according to the second embodiment of the present invention performs the sequence operation from timing t1 to timing t8 shown in FIG. 10 by the ignition command signal shown in "a" of FIG. 10 and the DC / AC conversion shown in "d". It repeats every ignition cycle Ti of the internal combustion engine according to the operation period signal.
 以上のように、この発明の実施の形態2に係る点火装置10は、一度の点火周期Tiにおいて、高周波交流電源3のDC/AC変換装置4が交流電力を出力した後に、所定の休止期間を設けてから再び点火プラグ1に交流電力を出力する。これにより、休止期間を設けずに交流電力を出力し続ける場合よりも少ない消費電力で、点火プラグ1の電極間の間隙における絶縁破壊の発生からより遅いタイミングに高周波プラズマを発生させることができるため、電力供給用コンデンサ54の大容量化に伴う大型化を防ぐことができる。 As described above, in the ignition device 10 according to the second embodiment of the present invention, after the DC / AC conversion device 4 of the high frequency AC power supply 3 outputs AC power in one ignition cycle Ti, the predetermined idle period is After being provided, AC power is output to the spark plug 1 again. As a result, high-frequency plasma can be generated at a later timing from the occurrence of dielectric breakdown in the gap between the electrodes of the spark plug 1 with less power consumption than in the case where AC power is continuously output without providing a pause period. Thus, the enlargement of the power supply capacitor 54 due to the increase in capacity can be prevented.
 この発明の実施の形態2に係る点火装置10では、DC/AC変換装置4の電力変換動作の休止期間に、DC/DC変換装置5の電力変換動作を行う。これにより、点火周期1回におけるDC/AC変換装置4の消費電力を、電力供給用コンデンサ54に予め充電されたエネルギのみで賄う必要がなくなるため、電力供給用コンデンサ54の大容量化に伴う大型化を防ぐことができる。 In the ignition device 10 according to Embodiment 2 of the present invention, the power conversion operation of the DC / DC conversion device 5 is performed during the idle period of the power conversion operation of the DC / AC conversion device 4. As a result, it is not necessary to cover the power consumption of the DC / AC conversion device 4 in one ignition cycle with only the energy pre-charged in the power supply capacitor 54. Therefore, the large size of the power supply capacitor 54 is increased. Can be prevented.
 また、この発明の実施の形態2に係る点火装置10では、点火指令信号がハイレベルHiになり次の点火周期に移行するまで、DC/AC変換動作期間信号に従ってDC/AC変換装置4とDC/DC変換装置5の動作を制御する。したがって、DC/AC変換装置4の交流電力出力期間と休止期間をそれぞれ複数回設けてもよい。次に、その一例として、DC/AC変換装置4の交流電力出力期間と休止期間をそれぞれ1回ずつ増やした場合のタイミング動作を、図12を用いて説明する。 Further, in the ignition device 10 according to the second embodiment of the present invention, the DC / AC conversion device 4 and the DC according to the DC / AC conversion operation period signal until the ignition command signal becomes high level Hi and shifts to the next ignition cycle. The operation of the / DC conversion device 5 is controlled. Therefore, the AC power output period and the idle period of the DC / AC conversion device 4 may be provided plural times. Next, as an example, the timing operation when the AC power output period of the DC / AC conversion device 4 and the idle period are each increased once will be described with reference to FIG.
 図12は、この発明の実施の形態2に係る点火装置の概略動作シーケンスを示す別のタイミングチャートである。図12におけるタイミングt8までの動作は、図10と同様である。タイミングt8において、制御装置7は、DC/AC変換装置4の電力変換動作を停止し、DC/DC変換装置5の電力変換動作を許可する。この段階が図11におけるステップS08である。これにより、DC/DC変換装置5は、前述の図8のフローチャートに従って電力変換動作を行い、電力供給用コンデンサ54の充電電圧V2が出力電圧指令値Vb以上になるように制御される。 FIG. 12 is another timing chart showing a schematic operation sequence of the ignition device in accordance with Embodiment 2 of the present invention. The operation up to the timing t8 in FIG. 12 is the same as that in FIG. At timing t8, the control device 7 stops the power conversion operation of the DC / AC conversion device 4 and permits the power conversion operation of the DC / DC conversion device 5. This stage is step S08 in FIG. Thus, the DC / DC conversion device 5 performs the power conversion operation according to the above-described flowchart of FIG. 8 so that the charging voltage V2 of the power supply capacitor 54 is controlled to be the output voltage command value Vb or more.
 図12において、タイミングt8から休止期間ts2だけ経過したタイミングt9にて制御装置7は「d」に示すDC/AC変換動作期間信号をハイレベルHiで出力する。制御装置7は、DC/AC変換動作信号のハイレベルHiにすると同時若しくは実質的に同時に、「f」に示すDC/DC変換許可信号をローレベルLoとし、DC/DC変換装置5の動作を禁止する。この段階が図11におけるステップS10である。代表的な休止期間ts2は50[μs]程度である。 In FIG. 12, the control device 7 outputs the DC / AC conversion operation period signal indicated by "d" at the high level Hi at timing t9 when only the pause period ts2 has elapsed from the timing t8. At the same time or substantially simultaneously with the high level Hi of the DC / AC conversion operation signal, the control device 7 sets the DC / DC conversion permission signal shown in “f” to low level Lo, and the operation of the DC / DC conversion device 5 Ban. This stage is step S10 in FIG. A typical pause period ts2 is about 50 [μs].
 ステップS10においてDC/DC変換装置5の動作を禁止するとともに、ステップS11において、制御装置7はDC/AC変換装置4による電力変換動作を行う。これにより、DC/AC変換装置4は点火プラグ1に交流電流を供給して高周波プラズマを発生させる。高周波交流電源3は、点火に必要な交流電力出力期間tac3だけ点火プラグ1に交流電力を供給し続ける。 In step S10, the operation of the DC / DC conversion device 5 is prohibited, and in step S11, the control device 7 performs the power conversion operation by the DC / AC conversion device 4. Thereby, the DC / AC converter 4 supplies an alternating current to the spark plug 1 to generate high frequency plasma. The high frequency AC power supply 3 continues to supply AC power to the spark plug 1 for an AC power output period tac3 necessary for ignition.
 タイミングt9からtac3だけ経過したタイミングt10において、制御装置7は、「d」に示すDC/AC変換動作期間信号をローレベルLoとする。これにより、DC/AC変換制御回路49はDC/AC変換装置4の電力変換動作を停止する。この段階が図11におえるステップS12である。代表的な交流電力出力期間tac3は50[μs]程度である。DC/AC変換装置4の電力変換動作を停止するとともに、制御装置7は、「f」に示すDC/DC変換許可信号をハイレベルHiに切り替え、DC/DC変換装置5の電力変換動作を許可する。この段階が図11に於けるステップS08である。 At timing t10 when only tac3 has elapsed from timing t9, the control device 7 sets the DC / AC conversion operation period signal indicated by "d" to the low level Lo. Thereby, the DC / AC conversion control circuit 49 stops the power conversion operation of the DC / AC conversion device 4. This stage is step S12 shown in FIG. A typical AC power output period tac3 is about 50 [μs]. While stopping the power conversion operation of the DC / AC conversion device 4, the control device 7 switches the DC / DC conversion permission signal shown in "f" to high level Hi, and permits the power conversion operation of the DC / DC conversion device 5. Do. This stage is step S08 in FIG.
 以上述べたこの発明の実施の形態2に係る点火装置の動作シーケンスでは、タイミングt6からt8まで、およびタイミングt8からt10のように、制御装置7の出力するDC/AC変換動作期間信号に応じて、DC/AC変換装置4は一回の点火周期に交流電力の出力と停止をそれぞれ複数回繰り返す。なお、DC/AC変換装置4の交流電力出力期間と休止期間をそれぞれ複数回設けてもよい。 In the operation sequence of the ignition device according to the second embodiment of the present invention described above, according to the DC / AC conversion operation period signal output from the control device 7 as from timing t6 to t8 and timing t8 to t10. The DC / AC conversion device 4 repeats output and stop of AC power multiple times in one ignition cycle. The AC power output period and the idle period of the DC / AC conversion device 4 may be provided a plurality of times.
 その結果、この発明の実施の形態2に係る点火装置では、DC/AC変換装置4の交流電力出力期間と休止期間を複数回設けない場合に比べて、点火プラグ1に交流電流をより長時間出力することができ、点火性能の向上に寄与することができる。 As a result, in the ignition device according to the second embodiment of the present invention, the AC current is longer in the spark plug 1 for a longer time than when the AC power output period of the DC / AC converter 4 and the idle period are not provided multiple times. It can be output and can contribute to the improvement of the ignition performance.
実施の形態3.
 次に、この発明の実施の形態3による点火装置について説明する。前述の実施の形態1では、DC/AC変換装置4とDC/DC変換装置5の動作と停止を制御することにより、DC/DC変換装置5が過大な電力を出力することを防ぐようにしていたが、この実施の形態3に係る点火装置では、電圧検出手段55の検出値に電圧振動が重畳された場合においても、DC/DC変換制御回路56がその電圧振動が重畳される直前の電圧検出値を用いてDC/DC変換装置5を制御することにより、DC/DC変換装置5が過大な電力を出力することを防ぐようにしたものである。
Third Embodiment
Next, an ignition device according to a third embodiment of the present invention will be described. In the first embodiment described above, the DC / DC conversion device 5 is prevented from outputting excessive power by controlling the operation and stop of the DC / AC conversion device 4 and the DC / DC conversion device 5. However, in the ignition device according to the third embodiment, even when voltage oscillation is superimposed on the detection value of the voltage detection means 55, the voltage immediately before the voltage oscillation is superimposed on the DC / DC conversion control circuit 56. By controlling the DC / DC conversion device 5 using the detected value, the DC / DC conversion device 5 is prevented from outputting excessive power.
 この発明の実施の形態3に係る点火装置の回路構成は、実施の形態1と同一である。したがって、実施の形態1に対応する構成要素と同一符号を付して説明を省略する。DC/DC変換装置5は、前述の図8のフローチャートに従って、電力供給用コンデンサ54の充電電圧V2が出力電圧指令値Vb以上になるように電力変換動作を行う。すなわち、DC/DC変換許可信号がハイレベルであり、電力供給用コンデンサ54の充電電圧V2が出力電圧指令値Vbよりも小さいとき、DC/DC変換制御回路56は半導体スイッチ53を動作させ、電力供給用コンデンサ54に直流電力を出力する。DC/DC変換許可信号がローレベル、あるいは充電電圧V2が出力電圧指令値Vb以上のとき、DC/DC変換制御回路56は半導体スイッチ53を停止させ、電力供給用コンデンサ54への直流電力の供給を停止する。 The circuit configuration of the ignition device according to the third embodiment of the present invention is the same as that of the first embodiment. Therefore, the same reference numerals are given to the components corresponding to the first embodiment and the description will be omitted. The DC / DC conversion device 5 performs the power conversion operation so that the charging voltage V2 of the power supply capacitor 54 becomes equal to or higher than the output voltage command value Vb according to the above-described flow chart of FIG. That is, when the DC / DC conversion permission signal is at the high level and the charging voltage V2 of the power supply capacitor 54 is smaller than the output voltage command value Vb, the DC / DC conversion control circuit 56 operates the semiconductor switch 53 to The DC power is output to the supply capacitor 54. When the DC / DC conversion permission signal is low or the charging voltage V2 is equal to or higher than the output voltage command value Vb, the DC / DC conversion control circuit 56 stops the semiconductor switch 53 and supplies DC power to the power supply capacitor 54. Stop.
 電力供給用コンデンサ54には、図2に図示していない様々な素子が並列接続されているため、電力供給用コンデンサ54に充電された電力は常に消費されている。これにより電力供給用コンデンサ54の充電電圧V2は徐々に低下するため、DC/AC変換装置4の電力変換動作により充電エネルギが消費されなくとも、DC/DC変換装置5の半導体スイッチ53は動作と停止を繰り返し、電力供給用コンデンサ54の充電電圧V2が出力電圧指令値Vb以上になるように電力を供給する。 Since various elements not shown in FIG. 2 are connected in parallel to the power supply capacitor 54, the power charged in the power supply capacitor 54 is always consumed. As a result, the charging voltage V2 of the power supply capacitor 54 is gradually reduced, so that the semiconductor switch 53 of the DC / DC conversion device 5 is operated even if the charging energy is not consumed by the power conversion operation of the DC / AC conversion device 4. Stopping is repeated and power is supplied so that the charging voltage V2 of the power supply capacitor 54 becomes equal to or higher than the output voltage command value Vb.
 次に、この発明の実施の形態3による点火装置10の動作シーケンスについて説明する。図13はこの発明の実施の形態3に係る点火装置の動作シーケンスを示すフローチャート、図14は、この発明の実施の形態3に係る点火装置の概略動作シーケンスを示す別のタイミングチャートである。 Next, an operation sequence of the ignition device 10 according to the third embodiment of the present invention will be described. FIG. 13 is a flow chart showing an operation sequence of the ignition device in accordance with Embodiment 3 of the present invention, and FIG. 14 is another timing chart showing a schematic operation sequence of the ignition device in accordance with Embodiment 3 of the present invention.
 図13、図14において、点火装置10の制御装置7は、図14の「a」に示す点火周期Ti毎に出力する点火指令信号に応じて、点火装置10の動作の内容を判断する。即ち図13のステップS101では、点火信号の信号レベルがハイレベルHiか否かを判定し、ハイレベルHiであれば(YES)、内燃機関内の燃焼室の燃料に点火するために、以下に述べる一連の点火動作を開始し、ローレベルLoであればステップS101に戻る。 In FIG. 13 and FIG. 14, the control device 7 of the ignition device 10 determines the content of the operation of the ignition device 10 according to the ignition command signal output for each ignition cycle Ti shown in “a” of FIG. That is, in step S101 of FIG. 13, it is determined whether the signal level of the ignition signal is high level Hi or not. If it is high level Hi (YES), the fuel of the combustion chamber in the internal combustion engine is ignited as follows. A series of ignition operations to be described are started, and if it is low level Lo, the process returns to step S101.
 ステップS101からステップS102に進むと、図13のタイミングt2において、制御装置7は、点火指令信号の立ち下がりに応じて図14の「g」に示す電圧検出値の取込停止信号をハイレベルHiに切り替え、DC/DC変換制御回路56が電圧検出手段55の検出値の取り込みを停止するように制御する。DC/DC変換制御回路56は、タイミングt2における電圧検出手段55による電圧検出値を保持しておき、電圧検出値の取込停止信号がローレベルLoになるタイミングt4までの期間において、タイミングt2での電圧検出値に基づいて、DC/DC変換装置5の動作を制御する。 When the process proceeds from step S101 to step S102, at timing t2 in FIG. 13, the control device 7 sets the capture stop signal of the voltage detection value shown in “g” in FIG. 14 to high level Hi in response to the fall of the ignition command signal. And the DC / DC conversion control circuit 56 is controlled so as to stop the acquisition of the detection value of the voltage detection means 55. The DC / DC conversion control circuit 56 holds the voltage detection value by the voltage detection means 55 at timing t2, and at timing t2 in a period until timing t4 when the acquisition stop signal of the voltage detection value becomes low level Lo. The operation of the DC / DC converter 5 is controlled based on the voltage detection value of
 ステップS103において、制御装置7は、高電圧電源2により点火プラグ1に高電圧を発生させるために、半導体スイッチ22をタイミングt1にて導通させる。これにより、トランス21の1次巻線21aに電流が流れ、トランス21の鉄心に磁束が蓄積される。 In step S103, the control device 7 causes the semiconductor switch 22 to conduct at timing t1 in order to cause the spark plug 1 to generate a high voltage by the high voltage power supply 2. As a result, current flows through the primary winding 21 a of the transformer 21 and magnetic flux is accumulated in the iron core of the transformer 21.
 次に、タイミングt2において、制御装置7は点火指令信号の立ち下がりに応じて高電圧電源2の半導体スイッチ22を遮断する。この段階がステップS104である。このタイミングt2は、トランス21の鉄心において、点火プラグ1に絶縁破壊電圧を印加できるだけのエネルギが蓄積されたタイミングである。 Next, at timing t2, the control device 7 shuts off the semiconductor switch 22 of the high voltage power supply 2 in response to the fall of the ignition command signal. This stage is step S104. The timing t2 is a timing at which energy sufficient to apply the breakdown voltage to the spark plug 1 is accumulated in the iron core of the transformer 21.
 半導体スイッチ22が遮断されると、トランス21に蓄積された磁束のエネルギが放出され、2次巻線21bには誘導電圧が発生する。磁束のエネルギは徐々に放出されるため、「c」に示す点火プラグ1の印加電圧V1は、時間経過とともに負側に増加する。 When the semiconductor switch 22 is shut off, the energy of the magnetic flux stored in the transformer 21 is released, and an induced voltage is generated in the secondary winding 21b. Since the energy of the magnetic flux is gradually released, the applied voltage V1 of the spark plug 1 shown by "c" increases to the negative side with the passage of time.
 タイミングt3において、点火プラグ1の出力電圧V1が絶縁破壊電圧Vaに達し、点火プラグ1の対向電極間の間隙に絶縁破壊が発生する。これにより、点火プラグ1の電極間、つまり点火プラグ1に瞬間的に大きな容量放電電流が流れる。 At timing t3, the output voltage V1 of the spark plug 1 reaches the dielectric breakdown voltage Va, and dielectric breakdown occurs in the gap between the opposing electrodes of the spark plug 1. As a result, a large capacity discharge current instantaneously flows between the electrodes of the spark plug 1, that is, the spark plug 1.
 容量放電電流は、点火プラグ1に接続された共振コンデンサ47及び点火プラグ1の近傍の寄生容量に充電された電荷が放出されたものである。容量放電電流は、原因となるコンデンサの静電容量が大きいほど大きくなる。この発明の点火装置では、共振コンデンサ47に起因する容量放電電流が特に大きい。この容量放電電流は、点火プラグ1と昇圧トランス45と共振インダクタ46と共振コンデンサ47とで構成される経路にも流れる。 The capacitive discharge current is a release of the charge stored in the resonant capacitor 47 connected to the spark plug 1 and the parasitic capacitance in the vicinity of the spark plug 1. The capacitive discharge current increases as the capacitance of the causative capacitor increases. In the ignition device of the present invention, the capacitive discharge current caused by the resonant capacitor 47 is particularly large. The capacitive discharge current also flows through a path constituted by the spark plug 1, the step-up transformer 45, the resonant inductor 46 and the resonant capacitor 47.
 その結果、容量放電電流の一部は昇圧トランス45を介して高周波交流電源3にも流入し、半導体スイッチ41、42、43、44にそれぞれ並列接続された並列ダイオードや電力供給用コンデンサ54等を還流して消費される。制御装置7は、図14の「e」に示す電流検出手段48の検出値I1を取り込み、容量放電電流の電流値を測定する。 As a result, a part of the capacitive discharge current also flows into the high frequency AC power supply 3 through the step-up transformer 45, and parallel diodes connected in parallel to the semiconductor switches 41, 42, 43, 44, the power supply capacitor 54, etc. It is consumed refluxing. The control device 7 takes in the detection value I1 of the current detection means 48 shown by "e" in FIG. 14, and measures the current value of the capacitive discharge current.
 タイミングt4において、制御装置7は電流検出手段48の検出値I1のピーク値が、予め定められた第1の所定値Ia未満に減衰したことを判断する。この段階が図13におけるステップS105である。予め定められた第1の所定値Iaは、容量放電電流の電流値がこの第1の所定値Ia以上のときに、電圧検出手段55において検出誤差を発生させる値とする。制御装置7は、容量放電電流のピーク値が第1の所定値Ia未満に減衰したと判断したとき、高電圧電源2の出力が停止したと判断して次の動作に移る。 At timing t4, the controller 7 determines that the peak value of the detection value I1 of the current detection means 48 is attenuated to less than a first predetermined value Ia. This stage is step S105 in FIG. The predetermined first predetermined value Ia is a value that causes the voltage detection means 55 to generate a detection error when the current value of the capacitive discharge current is greater than or equal to the first predetermined value Ia. When the control device 7 determines that the peak value of the capacitive discharge current has decreased to less than the first predetermined value Ia, it determines that the output of the high voltage power supply 2 has stopped, and proceeds to the next operation.
 制御装置7は、予め定められた第1の所定値Ia未満に減衰したことを判断した後に、図14の「g」に示す電圧検出値の取込停止信号をローレベルLoに切り替え、DC/DC変換制御回路56が電圧検出手段55の検出値の取り込みを開始するように制御する。この段階が図13におけるステップS106である。これにより、DC/DC変換制御回路56は、電圧検出手段55の検出値に基づいて、DC/DC変換装置5の動作を制御するようになる。 After judging that the signal has been attenuated to less than the first predetermined value Ia determined in advance, the control device 7 switches the take-off stop signal of the voltage detection value shown in “g” of FIG. The DC conversion control circuit 56 is controlled to start the acquisition of the detection value of the voltage detection means 55. This stage is step S106 in FIG. As a result, the DC / DC conversion control circuit 56 controls the operation of the DC / DC conversion device 5 based on the detection value of the voltage detection means 55.
 前述の容量放電電流は、MHzオーダー以上の高い周波数を持つため、高周波交流電源3の基準電位に流れ込んだ際に、配線等の寄生インダクタンスにより高周波交流電源3の基準電位に電圧振動を引き起こす。このような基準電位の電圧振動は、各部の電圧値に重畳するため、センサ等の信号にも重畳し、検出値に誤差を生じる。 Since the above-mentioned capacitive discharge current has a high frequency of MHz order or more, when flowing into the reference potential of the high frequency alternating current power supply 3, voltage oscillation is caused to the reference potential of the high frequency alternating current power supply 3 by parasitic inductance such as wiring. Such voltage oscillation of the reference potential is superimposed on the voltage value of each part, and therefore is superimposed on the signal of the sensor or the like to cause an error in the detected value.
 例えば、電圧検出手段55の検出値に電圧振動が重畳したとき、制御装置7は振動する検出値の最小値を取り込み、電力供給用コンデンサ54の充電電圧V2を実際よりも小さく検出してしまう可能性がある。その結果、DC/DC変換装置5は電力供給用コンデンサ54に必要以上に大きい電力を供給してしまうため、電力供給用コンデンサ54の充電電圧V2は電圧指令値Vbよりも大きくなる。電力供給用コンデンサ54の充電電圧V2が本来意図していた電圧指令値Vbよりも大きくなると、DC/AC変換装置4の半導体のスイッチング損失などが増え、電力損失が増大する。 For example, when voltage oscillation is superimposed on the detection value of the voltage detection means 55, the control device 7 can take in the minimum value of the oscillation detection value and detect the charging voltage V2 of the power supply capacitor 54 smaller than it actually is. There is sex. As a result, the DC / DC conversion device 5 supplies a power larger than necessary to the power supply capacitor 54, so the charging voltage V2 of the power supply capacitor 54 becomes larger than the voltage command value Vb. When the charging voltage V2 of the power supply capacitor 54 becomes larger than the originally intended voltage command value Vb, the switching loss of the semiconductor of the DC / AC conversion device 4 and the like increase and the power loss increases.
 しかしながら、この発明の実施の形態3に係る点火装置では、電圧検出手段55の検出値に対して容量放電電流による電圧振動が重畳する期間において、DC/DC変換制御回路56が電圧検出手段55の検出値の取り込みを停止するように制御されており、取り込み停止期間におけるDC/DC変換装置5は、高電圧電源2が点火プラグ1に電圧を発生させる直前の検出値を用いて電力変換動作を行うように制御される。すなわち、制御装置7は、高電圧電源2が点火プラグ1に電圧を発生させてから点火プラグ1の電極間の間隙に発生する絶縁破壊に伴う容量放電電流が予め定められた値に減衰するまでの期間において、高電圧電源2が点火プラグ1に電圧を発生させる直前の電圧検出手段55の検出値を用いて、DC/DC変換装置5の電力変換動作を制御する。 However, in the ignition device according to the third embodiment of the present invention, the DC / DC conversion control circuit 56 functions as the voltage detection means 55 in a period in which voltage oscillation due to the capacitive discharge current is superimposed on the detection value of the voltage detection means 55. The DC / DC conversion device 5 is controlled to stop taking in the detected value, and the DC / DC conversion device 5 in the taking-in stop period uses the detected value just before the high voltage power supply 2 generates the voltage to the spark plug 1. It is controlled to do. That is, the control device 7 continues until the capacitive discharge current caused by the dielectric breakdown generated in the gap between the electrodes of the spark plug 1 is attenuated to a predetermined value after the high voltage power supply 2 generates the voltage in the spark plug 1. In the period (1), the power conversion operation of the DC / DC conversion device 5 is controlled using the detection value of the voltage detection means 55 immediately before the high voltage power supply 2 causes the spark plug 1 to generate a voltage.
 これにより、電圧振動による検出誤差が大きいときの電圧検出手段55の検出値に基づいて、DC/DC変換装置5の電力変換動作を行うことがなくなるため、検出誤差により引き起こされるDC/DC変換装置5の誤出力を防ぐことができる。 As a result, the power conversion operation of the DC / DC conversion device 5 is not performed based on the detection value of the voltage detection means 55 when the detection error due to voltage oscillation is large, so the DC / DC conversion device caused by the detection error Erroneous output of 5 can be prevented.
 タイミングt4から予め定められた遅延時間td1を経過した後のタイミングt5において、制御装置7は、図14の「g」に示す電圧検出値の取込停止信号をハイレベルHiに切り替え、DC/DC変換制御回路56が電圧検出手段55の検出値の取り込みを停止するように制御する。この段階がステップS107である。DC/DC変換制御回路56は、タイミングt5の検出値を保持しておき、電圧検出値の取込停止信号がローレベルLoになるタイミングt6までの期間において、タイミングt5の検出値に基づいて、DC/DC変換装置5の動作を制御する。 At timing t5 after a predetermined delay time td1 has elapsed from timing t4, the control device 7 switches the voltage detection value capture stop signal shown in "g" of FIG. The conversion control circuit 56 controls to stop the acquisition of the detection value of the voltage detection means 55. This stage is step S107. The DC / DC conversion control circuit 56 holds the detected value at the timing t5, and based on the detected value at the timing t5 in a period until the timing t6 when the take-in stop signal of the voltage detected value becomes the low level Lo. The operation of the DC / DC converter 5 is controlled.
 制御装置7は、前述のようにDC/DC変換制御回路56が電圧検出手段55の検出値の取り込みを停止するように制御した後、図14の「d」に示すDC/AC変換制御回路49に、DC/AC変換動作期間信号をハイレベルHiで出力する。DC/AC変換制御回路49は、電力供給用コンデンサ54に充電されたエネルギをDC/AC変換装置4により交流電力に変換し、点火プラグ1に供給する。この段階が図13のステップS108である。これにより、点火プラグ1には高周波プラズマが発生する。ここで、遅延時間td1は、例えば50[μs]程度とする。遅延時間td1は、短いほど点火プラグ1の放電維持電圧が低くなるため、必要がなければ設けなくともよい。 After the control device 7 controls the DC / DC conversion control circuit 56 to stop taking in the detection value of the voltage detection means 55 as described above, the DC / AC conversion control circuit 49 shown in "d" of FIG. The DC / AC conversion operation period signal is output at high level Hi. The DC / AC conversion control circuit 49 converts the energy charged in the power supply capacitor 54 into AC power by the DC / AC converter 4, and supplies the AC power to the spark plug 1. This stage is step S108 in FIG. As a result, high frequency plasma is generated in the spark plug 1. Here, the delay time td1 is, for example, about 50 [μs]. The shorter the delay time td1, the lower the discharge maintaining voltage of the spark plug 1 becomes.
 高周波交流電源3は、点火に必要な時間tac1だけ点火プラグ1に交流電力を供給する。すなわち、タイミングt5から点火に必要な時間tac1だけ経過したタイミングt6において、制御装置7は、「d」に示すDC/AC変換動作期間信号をローレベルLoとする。これにより、DC/AC変換制御回路49は、DC/AC変換装置4の電力変換動作を停止する。この段階がステップS109である。これにより、点火プラグ1に発生していた高周波プラズマが消滅する。 The high frequency AC power supply 3 supplies AC power to the spark plug 1 for a time tac1 required for ignition. That is, at timing t6 when only the time tac1 necessary for ignition has elapsed from timing t5, the control device 7 sets the DC / AC conversion operation period signal indicated by "d" to the low level Lo. Thereby, the DC / AC conversion control circuit 49 stops the power conversion operation of the DC / AC conversion device 4. This stage is step S109. As a result, the high frequency plasma generated in the spark plug 1 disappears.
 制御装置7は、DC/AC変換装置4の電力変換動作を停止した後に、図14の「g」に示す電圧検出値の取込停止信号をローレベルLoに切り替え、DC/DC変換制御回路56が電圧検出手段55の検出値の取り込みを開始するように制御する。この段階がステップS110である。これにより、DC/DC変換制御回路56は、電圧検出手段55の検出値に基づいて、DC/DC変換装置5の動作を制御するようになる。 After stopping the power conversion operation of the DC / AC conversion device 4, the control device 7 switches the take-off stop signal of the voltage detection value shown in “g” of FIG. Control to start the acquisition of the detection value of the voltage detection means 55. This stage is step S110. As a result, the DC / DC conversion control circuit 56 controls the operation of the DC / DC conversion device 5 based on the detection value of the voltage detection means 55.
 高周波交流電源3の出力する交流電力の一部は、内燃機関の共通のグランドレベル部位GNDを通して高周波交流電源3に流入する。交流電流はMHzオーダーの高い周波数を持つため、高周波交流電源3の基準電位に流れ込んだ際に、配線等の寄生インダクタンスにより高周波交流電源3の基準電位に電圧振動を引き起こす。このような基準電位の電圧振動は、各部の電圧値に重畳するため、センサ等の信号にも重畳し、検出値に誤差を生じる。 A part of the AC power output from the high frequency AC power supply 3 flows into the high frequency AC power supply 3 through the common ground level portion GND of the internal combustion engine. Since the alternating current has a high frequency on the order of MHz, when flowing into the reference potential of the high frequency alternating current power supply 3, voltage oscillation is caused to the reference potential of the high frequency alternating current power supply 3 by parasitic inductance such as wiring. Such voltage oscillation of the reference potential is superimposed on the voltage value of each part, and therefore is superimposed on the signal of the sensor or the like to cause an error in the detected value.
 電圧検出手段55の検出値に電圧振動が重畳したとき、制御装置7は振動する検出値の最小値を取り込み、電力供給用コンデンサ54の充電電圧V2を実際よりも小さく検出してしまう可能性がある。その結果、DC/DC変換装置5は電力供給用コンデンサ54に必要以上に大きい電力を供給してしまうため、電力供給用コンデンサ54の充電電圧V2は電圧指令値Vbよりも大きくなる。電力供給用コンデンサ54の充電電圧V2が本来意図していた電圧指令値Vbよりも大きくなると、DC/AC変換装置4の半導体のスイッチング損失などが増え、電力損失が増大する。 When voltage oscillation is superimposed on the detection value of the voltage detection means 55, the control device 7 may take in the minimum value of the oscillation detection value and detect the charging voltage V2 of the power supply capacitor 54 smaller than it actually is. is there. As a result, the DC / DC conversion device 5 supplies a power larger than necessary to the power supply capacitor 54, so the charging voltage V2 of the power supply capacitor 54 becomes larger than the voltage command value Vb. When the charging voltage V2 of the power supply capacitor 54 becomes larger than the originally intended voltage command value Vb, the switching loss of the semiconductor of the DC / AC conversion device 4 and the like increase and the power loss increases.
 しかしながら、この発明の実施の形態3に係る点火装置では、電圧検出手段55の検出値に対して交流電力が重畳する期間において、DC/DC変換制御回路56が電圧検出手段55の検出値の取り込みを停止するように制御されており、取り込み停止期間におけるDC/DC変換装置5は、高周波交流電源3が点火プラグ1に交流電力を出力する直前の検出値を用いて電力変換動作を行うように制御される。 However, in the ignition device according to the third embodiment of the present invention, the DC / DC conversion control circuit 56 takes in the detection value of the voltage detection means 55 in a period in which AC power is superimposed on the detection value of the voltage detection means 55. The DC / DC conversion device 5 is controlled so as to stop the power supply during the intake stop period so that the power conversion operation is performed using the detection value immediately before the high frequency AC power supply 3 outputs the AC power to the spark plug 1. It is controlled.
 すなわち、制御装置7は、高周波交流電源3が点火プラグ1に交流電力を出力する期間において、高周波交流電源3が点火プラグ1に交流電力を出力する直前の電圧検出手段55の検出値を用いて、DC/DC変換装置5の電力変換動作を制御する。これにより、電圧振動による検出誤差が大きいときの電圧検出手段55の検出値に基づいて、DC/DC変換装置5の電力変換動作を行うことがなくなるため、検出誤差により引き起こされるDC/DC変換装置5の誤出力を防ぐことができる。 That is, the control device 7 uses the detection value of the voltage detection means 55 immediately before the high frequency AC power supply 3 outputs the AC power to the spark plug 1 in the period when the high frequency AC power supply 3 outputs the AC power to the spark plug 1. , Control the power conversion operation of the DC / DC converter 5. As a result, the power conversion operation of the DC / DC conversion device 5 is not performed based on the detection value of the voltage detection means 55 when the detection error due to voltage oscillation is large, so the DC / DC conversion device caused by the detection error Erroneous output of 5 can be prevented.
 この発明の実施の形態3による点火装置は、以上述べたシーケンス動作を内燃機関の点火周期Ti毎に繰り返す。代表的な点火周期Tiは10[ms]~100[ms]程度である。 The ignition device according to the third embodiment of the present invention repeats the above-described sequence operation for each ignition cycle Ti of the internal combustion engine. A typical ignition cycle Ti is about 10 ms to 100 ms.
 以上述べたこの発明の各実施の形態に係る点火装置は、以下の(1)から(16)の発明のうちの何れかの発明を具体化したものである。
(1)間隙を介して対向する第1の電極と第2の電極とを備え、内燃機関の燃焼室の燃料に点火する点火プラグと、 
 前記点火プラグに電圧を印加して前記間隙に絶縁破壊を生じさせる高電圧電源と、
 前記点火プラグに高周波電圧を印加して前記間隙に高周波プラズマを発生させる高周波交流電源と、
 前記高電圧電源と前記高周波交流電源に電力を供給する直流電源と、
 前記高電圧電源と前記高周波交流電源との動作を制御する制御装置と、
を有する点火装置であって、
 前記高周波交流電源は、
 直流電力を所定の周波数の交流電力に変換し、前記変換した交流電力を前記点火プラグに出力するDC/AC変換装置と、
 直流電源からの直流電力を所定の電圧値を有する直流電力に変換し、前記変換した直流電力を前記DC/AC変換装置に出力するDC/DC変換装置と、
を備え、
 前記制御装置は、
 前記絶縁破壊により発生する容量放電電流が予め定められた値よりも小さい期間と、前記DC/AC変換装置が前記点火プラグに前記交流電力を出力しない期間と、のうちの少なくとも一方を満たす期間において、前記DC/DC変換装置が電力変換動作を行うように制御するように構成されている、
ことを特徴とする点火装置。
 この発明によれば、DC/DC変換装置が電力変換動作を行う期間において、絶縁破壊による容量放電電流とDC/AC変換装置の出力する交流電流とが、同時にDC/DC変換装置の基準電位に流れ込むことを防ぎ、電圧検出手段の検出誤差を抑制することができる。その結果、検出誤差の影響により、DC/DC変換装置が必要以上に大きい電力を出力することを防止し、電力損失の増大を防ぐことができる。
 この発明は、実施の形態1により具体化されている。
The ignition device according to each of the embodiments of the present invention described above embodies one of the inventions of the following (1) to (16).
(1) A spark plug including a first electrode and a second electrode opposed to each other through a gap and igniting fuel in a combustion chamber of an internal combustion engine;
A high voltage power supply that applies a voltage to the spark plug to cause dielectric breakdown in the gap;
A high frequency alternating current power supply for applying a high frequency voltage to the spark plug to generate high frequency plasma in the gap;
A DC power supply for supplying power to the high voltage power supply and the high frequency AC power supply;
A control device that controls the operation of the high voltage power supply and the high frequency alternating current power supply;
An igniter having
The high frequency alternating current power supply is
A DC / AC conversion device which converts DC power into AC power of a predetermined frequency and outputs the converted AC power to the spark plug;
A DC / DC conversion device that converts DC power from a DC power supply into DC power having a predetermined voltage value and outputs the converted DC power to the DC / AC conversion device;
Equipped with
The controller is
In a period satisfying at least one of a period in which the capacity discharge current generated by the dielectric breakdown is smaller than a predetermined value, and a period in which the DC / AC conversion device does not output the AC power to the spark plug. The DC / DC conversion device is configured to perform a power conversion operation,
An ignition device characterized by
According to the present invention, in a period in which the DC / DC conversion device performs the power conversion operation, the capacitance discharge current due to dielectric breakdown and the alternating current output from the DC / AC conversion device simultaneously become the reference potential of the DC / DC conversion device. Inflow can be prevented, and detection errors of the voltage detection means can be suppressed. As a result, it is possible to prevent the DC / DC conversion device from outputting an unnecessarily large power due to the influence of the detection error, and to prevent an increase in power loss.
The present invention is embodied by the first embodiment.
(2)前記制御装置は、
 前記容量放電電流が予め定められた値よりも小さい期間と、前記DC/AC変換装置が前記点火プラグに交流電力を出力しない期間とにおいて、前記DC/DC変換装置が電力変換動作を行うように制御する、
ことを特徴とする上記(1)に記載の点火装置。
 この発明によれば、DC/DC変換装置が電力変換動作を行う期間において、絶縁破壊による容量放電電流とDC/AC変換装置の出力電流との両方が、DC/DC変換装置の基準電位に流れ込むことを防ぎ、電圧検出手段の検出誤差をより一層抑制することができる。その結果、検出誤差の影響により、DC/DC変換装置が必要以上に大きい電力を出力することを防止し、電力損失の増大を防ぐことができる。
 この発明は、実施の形態1により具体化されている。
(2) The control device
The DC / DC conversion device performs a power conversion operation in a period in which the capacity discharge current is smaller than a predetermined value and in a period in which the DC / AC conversion device does not output AC power to the spark plug. Control,
The igniter as described in said (1) characterized by the above-mentioned.
According to the present invention, in a period in which the DC / DC conversion device performs the power conversion operation, both of the capacitive discharge current due to dielectric breakdown and the output current of the DC / AC conversion device flow into the reference potential of the DC / DC conversion device To prevent the detection error of the voltage detection means. As a result, it is possible to prevent the DC / DC conversion device from outputting an unnecessarily large power due to the influence of the detection error, and to prevent an increase in power loss.
The present invention is embodied by the first embodiment.
(3)間隙を介して対向する第1の電極と第2の電極とを備え、内燃機関の燃焼室の燃料に点火する点火プラグと、 
 前記点火プラグに電圧を印加して前記間隙に絶縁破壊を生じさせる高電圧電源と、
 前記点火プラグに高周波電圧を印加して前記間隙に高周波プラズマを発生させる高周波交流電源と、
 前記高電圧電源と前記高周波交流電源に電力を供給する直流電源と、
 前記高電圧電源と前記高周波交流電源との動作を制御する制御装置と、
を有する点火装置であって、
 前記高周波交流電源は、
 直流電力を所定の周波数を有する交流電力に変換し、前記変換した交流電力を前記点火プラグに出力するDC/AC変換装置と、
 直流電源からの直流電力を所定の電圧値を有する直流電力に変換し、前記変換した直流電力を前記DC/AC変換装置に出力するDC/DC変換装置と、
を備え、
 前記DC/DC変換装置は、
 前記変換した前記直流電力のエネルギを充電する電力供給用コンデンサと、
 前記電力供給用コンデンサの充電電圧を検出する電圧検出手段と、
を備え、
 前記制御装置は、
 前記高電圧電源が前記点火プラグに電圧を印加してから、前記絶縁破壊により生じる容量放電電流が予め定められた値よりも小さくなるまでの期間において、前記高電圧電源が前記点火プラグに電圧を印加する直前の前記電圧検出手段の検出値を用いて、前記DC/DC変換装置の電力変換動作を制御するように構成されている、
ことを特徴とする点火装置。
 この発明は、電圧検出手段の検出値に電圧振動が重畳する期間において、電圧振動が重畳する前の検出値を用いてDC/DC変換装置が電力変換動作を行うため、電圧振動が引き起こす検出誤差の影響によりDC/DC変換装置が必要以上に大きい電力を出力することを防止し、電力損失の増大を防ぐことができる。
 この発明は、実施の形態3により具体化されている。
(3) A spark plug including a first electrode and a second electrode opposed to each other through a gap and igniting fuel in a combustion chamber of an internal combustion engine;
A high voltage power supply that applies a voltage to the spark plug to cause dielectric breakdown in the gap;
A high frequency alternating current power supply for applying a high frequency voltage to the spark plug to generate high frequency plasma in the gap;
A DC power supply for supplying power to the high voltage power supply and the high frequency AC power supply;
A control device that controls the operation of the high voltage power supply and the high frequency alternating current power supply;
An igniter having
The high frequency alternating current power supply is
A DC / AC conversion device which converts DC power into AC power having a predetermined frequency and outputs the converted AC power to the spark plug;
A DC / DC conversion device that converts DC power from a DC power supply into DC power having a predetermined voltage value and outputs the converted DC power to the DC / AC conversion device;
Equipped with
The DC / DC conversion device
A power supply capacitor for charging energy of the converted DC power;
Voltage detection means for detecting the charging voltage of the power supply capacitor;
Equipped with
The controller is
After the high voltage power supply applies a voltage to the spark plug, the high voltage power supply supplies a voltage to the spark plug in a period until the capacitive discharge current generated by the dielectric breakdown becomes smaller than a predetermined value. It is configured to control a power conversion operation of the DC / DC conversion device using a detection value of the voltage detection means immediately before applying.
An ignition device characterized by
Since the DC / DC conversion device performs the power conversion operation using the detection value before the voltage oscillation is superimposed in the period in which the voltage oscillation is superimposed on the detection value of the voltage detection means, the present invention Thus, the DC / DC converter can be prevented from outputting an unnecessarily large amount of power due to the influence of the above, and an increase in power loss can be prevented.
The present invention is embodied by the third embodiment.
(4)間隙を介して対向する第1の電極と第2の電極とを備え、内燃機関の燃焼室の燃料に点火する点火プラグと、 
 前記点火プラグに電圧を印加して前記間隙に絶縁破壊を生じさせる高電圧電源と、
 前記点火プラグに高周波電圧を印加して前記間隙に高周波プラズマを発生させる高周波交流電源と、
 前記高電圧電源と前記高周波交流電源に電力を供給する直流電源と、
 前記高電圧電源と前記高周波交流電源との動作を制御する制御装置と、
を有する点火装置であって、
 前記高周波交流電源は、
 直流電力を所定の周波数を有する交流電力に変換し、前記変換した交流電力を前記点火プラグに出力するDC/AC変換装置と、
 直流電源からの直流電力を所定の電圧値を有する直流電力に変換し、前記変換した直流電力を前記DC/AC変換装置に出力するDC/DC変換装置と、
を備え、
 前記DC/DC変換装置は、
 前記変換された前記直流電力のエネルギを充電する電力供給用コンデンサと、
 前記電力供給用コンデンサの充電電圧を検出する電圧検出手段と、
を備え、
 前記制御装置は、
 前記DC/AC変換装置が前記点火プラグに電流を出力する期間において、前記DC/AC変換装置が点火プラグに電流を出力する直前の前記電圧検出手段の検出値を用いて、前記DC/DC変換装置の電力変換動作を制御するように構成されている、
ことを特徴とする点火装置。
 この発明によれば、電圧検出手段の検出値に電圧振動が重畳する期間において、電圧振動が重畳する前の検出値を用いてDC/DC変換装置が電力変換動作を行うため、電圧振動が引き起こす検出誤差の影響によりDC/DC変換装置が必要以上に大きい電力を出力することを防止し、電力損失の増大を防ぐことができる。
 この発明は、実施の形態3により具体化されている。
(4) A spark plug including a first electrode and a second electrode opposed to each other through a gap and igniting fuel in a combustion chamber of an internal combustion engine;
A high voltage power supply that applies a voltage to the spark plug to cause dielectric breakdown in the gap;
A high frequency alternating current power supply for applying a high frequency voltage to the spark plug to generate high frequency plasma in the gap;
A DC power supply for supplying power to the high voltage power supply and the high frequency AC power supply;
A control device that controls the operation of the high voltage power supply and the high frequency alternating current power supply;
An igniter having
The high frequency alternating current power supply is
A DC / AC conversion device which converts DC power into AC power having a predetermined frequency and outputs the converted AC power to the spark plug;
A DC / DC conversion device that converts DC power from a DC power supply into DC power having a predetermined voltage value and outputs the converted DC power to the DC / AC conversion device;
Equipped with
The DC / DC conversion device
A power supply capacitor for charging energy of the converted DC power;
Voltage detection means for detecting the charging voltage of the power supply capacitor;
Equipped with
The controller is
In a period in which the DC / AC converter outputs a current to the spark plug, the DC / DC conversion is performed using a detection value of the voltage detection unit immediately before the DC / AC converter outputs a current to the spark plug. Configured to control the power conversion operation of the device,
An ignition device characterized by
According to the present invention, in the period in which the voltage oscillation is superimposed on the detection value of the voltage detection means, the voltage oscillation causes the DC / DC conversion device to perform the power conversion operation using the detection value before the voltage oscillation is superimposed. The influence of the detection error can prevent the DC / DC conversion device from outputting an unnecessarily large amount of power, and can prevent an increase in power loss.
The present invention is embodied by the third embodiment.
(5)前記制御装置は、
 前記容量放電電流が予め定められた値よりも小さい期間と、前記DC/DC変換装置が電力変換動作を停止する期間とにおいて、前記DC/AC変換装置が電力変換動作を行うように制御する、
ことを特徴とする上記(1)または(2)に記載の点火装置。
この発明によれば、容量放電電流がDC/AC変換装置4の出力電流に重畳することを防ぎ、電流検出手段48の検出値I1を用いたDC/AC変換装置4の出力電流の制御が可能となる。加えて、DC/DC変換装置5の電力変換動作時において、DC/AC変換装置4の出力電流が、DC/DC変換装置5の基準電位に流入することを防ぎ、電圧検出手段55における検出誤差を抑制することができる。検出誤差を抑制すれば、DC/DC変換装置5が過大あるいは過小な電力を電力供給用コンデンサ54に供給することがなくなり、点火プラグ1の劣化と点火不良とが防止できる。その結果、高周波交流電源3の電力損失の増大を防ぐとともに、点火プラグ1の劣化と点火性能低下の防止に寄与する。
 この発明は、実施の形態1により具体化されている。
(5) The control device
The DC / AC conversion device is controlled to perform a power conversion operation in a period in which the capacitive discharge current is smaller than a predetermined value and a period in which the DC / DC conversion device stops the power conversion operation.
The igniter as described in said (1) or (2) characterized by the above-mentioned.
According to the present invention, it is possible to prevent the capacitive discharge current from being superimposed on the output current of the DC / AC conversion device 4 and to control the output current of the DC / AC conversion device 4 using the detection value I1 of the current detection means 48 It becomes. In addition, in the power conversion operation of the DC / DC conversion device 5, the output current of the DC / AC conversion device 4 is prevented from flowing into the reference potential of the DC / DC conversion device 5, and the detection error in the voltage detection means 55 Can be suppressed. If the detection error is suppressed, the DC / DC conversion device 5 will not supply excessive or excessive power to the power supply capacitor 54, so that deterioration of the spark plug 1 and ignition failure can be prevented. As a result, an increase in the power loss of the high frequency AC power supply 3 is prevented, and the deterioration of the spark plug 1 and the deterioration of the ignition performance are prevented.
The present invention is embodied by the first embodiment.
(6)前記制御装置は、
 前記DC/DC変換装置が電力変換動作を行わない期間と、前記DC/AC変換装置が前記点火プラグに交流電力を出力しない期間とにおいて、前記高電圧電源が前記点火プラグに電圧を印加して前記絶縁破壊を発生させるように制御する、
ことを特徴とする上記(1)(2)、(6)のうちの何れか一つに記載の点火装置。
 この発明によれば、DC/DC変換装置5の電力変換動作時において、容量放電電流の一部がDC/DC変換装置5の基準電位に流入することを防ぎ、電圧検出手段55の検出誤差を抑制できる。加えて、容量放電電流がDC/AC変換装置4の出力電流に重畳することを防ぎ、電流検出手段48の検出値I1を用いたDC/AC変換装置4の出力電流の制御が可能となる。したがって、高周波交流電源3の電力損失の増大を防ぐとともに、点火プラグ1の劣化と点火性能低下の防止に寄与する。
 この発明は、実施の形態1により具体化されている。
(6) The control device
The high voltage power supply applies a voltage to the spark plug in a period in which the DC / DC conversion device does not perform a power conversion operation and in a period in which the DC / AC conversion device does not output AC power to the spark plug. Control to generate the dielectric breakdown,
An ignition device according to any one of the above (1), (2) and (6), characterized in that
According to the present invention, during the power conversion operation of the DC / DC conversion device 5, a part of the capacitive discharge current is prevented from flowing into the reference potential of the DC / DC conversion device 5, and the detection error of the voltage detection means 55 is It can be suppressed. In addition, it is possible to prevent the capacitive discharge current from being superimposed on the output current of the DC / AC conversion device 4 and to control the output current of the DC / AC conversion device 4 using the detection value I1 of the current detection means 48. Therefore, while preventing the increase in the power loss of high frequency alternating current power supply 3, it contributes to the prevention of degradation of ignition plug 1 and ignition performance fall.
The present invention is embodied by the first embodiment.
(7)前記制御装置は、
 前記燃料に点火するタイミングを指示する点火指令信号に基づいて、前記高電圧電源と前記DC/DC変換装置と前記DC/AC変換装置の動作を制御するように構成されている、
ことを特徴とする上記(1)から(6)のうちの何れか一つに記載の点火装置。
 この発明によれば、点火指令信号は、内燃機関の環境や運転状況に適したタイミングに点火するように制御されるため、点火指令信号に従って点火装置を動作させることにより、容易に最適タイミングで点火することができる。
 この発明は、実施の形態1により具体化されている。
(7) The control device
It is configured to control operations of the high voltage power supply, the DC / DC conversion device, and the DC / AC conversion device based on an ignition command signal instructing a timing of firing the fuel.
An ignition device according to any one of the above (1) to (6), characterized in that
According to the present invention, the ignition command signal is controlled to ignite at a timing suitable for the environment and operating conditions of the internal combustion engine, and therefore, ignition can be easily performed at the optimum timing by operating the ignition device according to the ignition command signal. can do.
The present invention is embodied by the first embodiment.
(8)前記制御装置は、
 前記燃料に点火するタイミングを指示する点火指令信号に基づいて、前記高電圧電源と前記DC/DC変換装置と前記DC/AC変換装置の動作を制御するように構成され、前記点火指令信号に基づいて、前記DC/DC変換装置が電力変換動作を停止した後に、前記高電圧電源を動作させて前記点火プラグに電圧を印加する、
ことを特徴とする上記(1)、(2)、(5)から(7)のうちの何れか一つに記載の点火装置。
 この発明は、DC/DC変換装置の停止と、高電圧電源による電圧発生を、点火指令信号に基づいて実施する際の具体的な動作であり、上記(1)、(2)、(5)から(7)に記載の発明の効果を得るために有効な制御手段である。
 この発明は、実施の形態1により具体化されている。
(8) The control device
It is configured to control the operation of the high voltage power supply, the DC / DC conversion device, and the DC / AC conversion device based on an ignition command signal instructing a timing to ignite the fuel, and based on the ignition command signal The high voltage power supply is operated to apply a voltage to the spark plug after the DC / DC conversion device stops the power conversion operation.
An ignition device according to any one of the above (1), (2) and (5) to (7), characterized in that
The present invention is a specific operation when the DC / DC conversion apparatus is stopped and voltage generation by the high voltage power supply is performed based on the ignition command signal, and the above (1), (2), (5) It is an effective control means in order to acquire the effect of the invention as described in to (7).
The present invention is embodied by the first embodiment.
(9)前記DC/AC変換装置は、
 前記DC/AC変換装置の出力電流、及び前記絶縁破壊により生じる容量放電電流を検出する電流検出手段を備え、
 前記制御装置は、
 前記電流検出手段の検出値に基づいて、前記DC/AC変換装置の電力変換動作を制御する、
ことを特徴とする上記(1)から(8)のうちの何れか一つに記載の点火装置。
 この発明によれば、絶縁破壊に伴う容量放電電流とDC/AC変換装置の出力電流の検出手法と、DC/AC変換装置の電力変換の具体的動作であり、上記(1)から(8)に記載の発明の効果を得るために有効な制御手段である。
 この発明は、実施の形態1により具体化されている。
(9) The DC / AC conversion device
A current detection unit that detects an output current of the DC / AC conversion device and a capacitive discharge current generated by the dielectric breakdown;
The controller is
The power conversion operation of the DC / AC conversion device is controlled based on the detection value of the current detection means.
An ignition device according to any one of the above (1) to (8), characterized in that
According to the present invention, the detection method of the capacitive discharge current and the output current of the DC / AC converter accompanying the dielectric breakdown, and the specific operation of the power conversion of the DC / AC converter, are the above (1) to (8). The control means is effective to obtain the effects of the invention described in the above.
The present invention is embodied by the first embodiment.
(10)前記制御装置は、
 前記容量放電電流の発生を検出した後において、前記容量放電電流の1周期毎のピーク値が予め定められた値未満になることを検出した後に、前記DC/AC変換装置が電力変換動作を行うように制御する、
ことを特徴とする上記(9)に記載の点火装置。
 この発明によれば、絶縁破壊後の容量放電電流が減衰を検出した後に、DC/AC変換装置による交流電力の出力動作を具体的に記載したものであり、上記(9)に記載の発明の効果を得るために有効な制御手段である。
 この発明は、実施の形態1により具体化されている。
(10) The control device
After detecting the generation of the capacitive discharge current, the DC / AC conversion device performs the power conversion operation after detecting that the peak value for each cycle of the capacitive discharge current is less than a predetermined value. To control,
The igniter as described in said (9) characterized by the above-mentioned.
According to the present invention, the output operation of AC power by the DC / AC conversion device is specifically described after the capacitance discharge current after dielectric breakdown detects attenuation, and the invention according to (9) above. It is an effective control means to obtain an effect.
The present invention is embodied by the first embodiment.
(11)前記制御装置は、
 前記高電圧電源が点火プラグに電圧を出力するための動作を実施したタイミングから、予め定められた時間が経過した後に、前記DC/AC変換装置が電力変換動作を行うように制御する、
ことを特徴とする上記(1)から(10)のうちの何れか一つに記載の点火装置。
 この発明によれば、絶縁破壊後の容量放電電流が減衰した後に、DC/AC変換装置による交流電力を出力する動作を具体的に記載したものであり、上記(1)から(10)に記載の発明の効果を得るために有効な制御手段である。
 この発明は、実施の形態1により具体化されている。
(11) The control device
The DC / AC conversion device is controlled to perform a power conversion operation after a predetermined time has elapsed from the timing when the high voltage power supply performs an operation for outputting a voltage to the spark plug.
An ignition device according to any one of the above (1) to (10), characterized in that
According to the present invention, the operation of outputting AC power by the DC / AC conversion device is specifically described after the capacity discharge current after the dielectric breakdown is attenuated, and is described in the above (1) to (10). The control means is effective to obtain the effects of the invention.
The present invention is embodied by the first embodiment.
(12)前記制御装置は、
 前記DC/AC変換装置の電力変換動作を停止した後に、前記DC/DC変換装置の電力変換動作を許可する、
ことを特徴とする上記(1)、(2)、(5)から(11)のうちの何れか一つに記載の点火装置。
 この発明によれば、DC/AC変換装置の動作停止とDC/DC変換装置の動作許可の具体的なタイミングを記載したものであり、上記(1)、(2)、(5)から(11)に記載の発明の効果を得るために有効な制御方法である。
 この発明は、実施の形態1により具体化されている。
(12) The control device
After stopping the power conversion operation of the DC / AC conversion device, permitting the power conversion operation of the DC / DC conversion device;
An ignition device according to any one of the above (1), (2) and (5) to (11), characterized in that
According to the present invention, the specific timing of the operation stop of the DC / AC conversion device and the operation permission of the DC / DC conversion device is described, and the above (1), (2), (5) to (11) It is an effective control method in order to acquire the effect of the invention described in 6.).
The present invention is embodied by the first embodiment.
(13)前記制御装置は、
 前記燃料に点火するタイミングを指示する点火指令信号に基づいて、前記高電圧電源と前記DC/DC変換装置と前記DC/AC変換装置の動作を制御するように構成され、前記DC/AC変換装置の電力変換動作を停止してから次の点火指令信号が出力されるまでの期間において、前記DC/DC変換装置が電力変換動作を行うように制御する、
ことを特徴とする上記(1)、(2)、(5)から(12)のうちの何れか一つに記載の点火装置。
 この発明によれば、点火タイミングにおいて、電力供給用コンデンサの充電電圧が出力電圧指令値に維持されるため、交流電力出力中の点火プラグの印加電圧が放電維持電圧以上に保たれ、高周波プラズマが発生できないことによる点火性能の低下を防ぐことができる。
 この発明は、実施の形態1により具体化されている。
(13) The control device
The DC / AC conversion device is configured to control operations of the high voltage power supply, the DC / DC conversion device, and the DC / AC conversion device based on an ignition command signal instructing a timing to ignite the fuel. The DC / DC conversion device is controlled to perform the power conversion operation in a period from the time when the power conversion operation of is stopped until the next ignition command signal is output,
An ignition device according to any one of the above (1), (2) and (5) to (12), characterized in that
According to the present invention, at the ignition timing, the charging voltage of the power supply capacitor is maintained at the output voltage command value, so that the applied voltage of the spark plug in the AC power output is maintained at the discharge maintenance voltage or more. It is possible to prevent the decrease in the ignition performance due to the inability to occur.
The present invention is embodied by the first embodiment.
(14)前記制御装置は、
 前記燃料に点火するタイミングを指示する点火指令信号に基づいて、前記高電圧電源と前記DC/DC変換装置と前記DC/AC変換装置の動作を制御するように構成され、前記点火指令信号が出力されてから次の点火指令信号が出力されるまでの1回の点火期間において、前記DC/AC変換装置が電力変換動作を停止してから所定の休止期間を設けた後に、再度、前記DC/AC変換装置が電力変換動作を行うように制御する、
ことを特徴とする上記(1)から(13)のうちの何れか一つに記載の点火装置。
 この発明によれば、休止期間を設けずに交流電力を出力し続ける場合よりも少ない消費電力で、絶縁破壊からより遅いタイミングに高周波プラズマを発生させることができるため、電力供給用コンデンサの大容量化に伴う大型化を防ぐことができる。
 この発明は、実施の形態2により具体化されている。
(14) The control device
The operation of the high voltage power supply, the DC / DC conversion device, and the DC / AC conversion device is controlled based on an ignition command signal instructing a timing of ignition of the fuel, and the ignition command signal is output After the DC / AC conversion device stops the power conversion operation and provides a predetermined rest period in a single ignition period from when it is output to when the next ignition command signal is output, the DC / AC converter is again Control the AC converter to perform power conversion operation,
An ignition device according to any one of the above (1) to (13), characterized in that
According to the present invention, high-frequency plasma can be generated at a later timing from breakdown with less power consumption than when AC power is continuously output without providing a pause period. Can be prevented from becoming larger.
The present invention is embodied by the second embodiment.
(15)前記制御装置は、
 前記DC/DC変換装置が前記休止期間に電力変換動作を行うように制御することを特徴とする上記(14)に記載の点火装置。
 この発明によれば、DC/AC変換装置の点火周期1回におけるすべての消費電力を、電力供給用コンデンサに予め充電されたエネルギのみで賄う必要がなくなるため、電力供給用コンデンサの大容量化に伴う大型化を防ぐことができる。
 この発明は、実施の形態2により具体化されている。
(15) The control device is
The ignition device according to (14), wherein the DC / DC conversion device is controlled to perform a power conversion operation during the idle period.
According to the present invention, it is not necessary to cover all the power consumption in one ignition cycle of the DC / AC conversion device with only the energy pre-charged in the power supply capacitor, so that the capacity of the power supply capacitor can be increased. It can prevent the accompanying upsizing.
The present invention is embodied by the second embodiment.
(16)前記制御装置は、
 前記1回の点火期間において、前記DC/AC変換装置が電力変換動作を行って前記点火プラグに交流電力を供給する交流電力出力期間と、前記休止期間とを、それぞれ複数回設けるように制御することを特徴とする上記(14)または(15)に記載の点火装置。
 この発明によれば、電力供給用コンデンサの容量を増加させることなく、DC/AC変換装置が点火プラグに交流電力をより長時間出力することができ、点火性能の向上に寄与する。
 この発明は、実施の形態2により具体化されている。
(16) The control device
The DC / AC conversion device performs the power conversion operation in the one ignition period, and controls so as to provide the AC power output period for supplying the AC power to the spark plug a plurality of times each and the rest period. The igniter as described in said (14) or (15) characterized by the above-mentioned.
According to the present invention, the DC / AC conversion device can output AC power to the spark plug for a long time without increasing the capacity of the power supply capacitor, which contributes to the improvement of the ignition performance.
The present invention is embodied by the second embodiment.
 尚、この発明は前述の実施の形態1から3による点火装置に限定されるものではなく、この発明の趣旨を逸脱しない範囲において、実施の形態1、2、及び2の構成を適宜組み合わせたり、その構成に一部変形を加えたり、構成を一部省略することが可能である。 The present invention is not limited to the ignition device according to the above-described first to third embodiments, and the configurations of the first, second, and second embodiments may be combined as appropriate without departing from the spirit of the present invention, It is possible to partially modify the configuration or partially omit the configuration.
 この発明は、内燃機関の点火装置の分野、ひいては自動車産業の分野に利用することができる。 The invention can be used in the field of ignition devices of internal combustion engines and thus in the field of the automotive industry.
1 点火プラグ、1a 第1の電極、1b 第2の電極、2 高電圧電源、3 高周波交流電源、4 DC/AC変換装置、5 DC/DC変換装置、6 直流電源、7 制御装置、10 点火装置、21 トランス、21a トランスの1次巻線、21b トランスの2次巻線、22 半導体スイッチ、23 ダイオード、41、42、43、44 半導体スイッチ、45 昇圧トランス、45a 昇圧トランスの1次巻線、45b 昇圧トランスの2次巻線、46 共振インダクタ、47 共振コンデンサ、48 電流検出手段、49 DC/AC変換制御回路、50 昇圧チョッパ回路、51 インダクタ、52 ダイオード、53 半導体スイッチ、54 電力供給用コンデンサ、55 電圧検出手段、56 DC/DC変換制御回路、GND グランドレベル部位 DESCRIPTION OF SYMBOLS 1 spark plug, 1a 1st electrode, 1b 2nd electrode, 2 high voltage power supply, 3 high frequency alternating current power supply, 4 DC / AC conversion apparatus, 5 DC / DC conversion apparatus, 6 direct current power supply, 7 control apparatus, 10 ignition Device, 21 transformer, 21a transformer primary winding, 21b transformer secondary winding, 22 semiconductor switch, 23 diode, 41, 42, 43, 44 semiconductor switch, 45 step-up transformer, 45a step-up transformer primary winding , 45b step-up transformer secondary winding, 46 resonant inductor, 47 resonant capacitor, 48 current detection means, 49 DC / AC conversion control circuit, 50 boost chopper circuit, 51 inductor, 52 diode, 53 semiconductor switch, 54 for power supply Capacitor, 55 voltage detection means, 56 DC / DC conversion control circuit , GND ground level site

Claims (16)

  1.  間隙を介して対向する第1の電極と第2の電極とを備え、内燃機関の燃焼室の燃料に点火する点火プラグと、 
     前記点火プラグに電圧を印加して前記間隙に絶縁破壊を生じさせる高電圧電源と、
     前記点火プラグに高周波電圧を印加して前記間隙に高周波プラズマを発生させる高周波交流電源と、
     前記高電圧電源と前記高周波交流電源に電力を供給する直流電源と、
     前記高電圧電源と前記高周波交流電源との動作を制御する制御装置と、
    を有する点火装置であって、
     前記高周波交流電源は、
     直流電力を所定の周波数の交流電力に変換し、前記変換した交流電力を前記点火プラグに出力するDC/AC変換装置と、
     直流電源からの直流電力を所定の電圧値を有する直流電力に変換し、前記変換した直流電力を前記DC/AC変換装置に出力するDC/DC変換装置と、
    を備え、
     前記制御装置は、
     前記絶縁破壊により発生する容量放電電流が予め定められた値よりも小さい期間と、前記DC/AC変換装置が前記点火プラグに前記交流電力を出力しない期間と、のうちの少なくとも一方を満たす期間において、前記DC/DC変換装置が電力変換動作を行うように制御するように構成されている、
    ことを特徴とする点火装置。
    An ignition plug including a first electrode and a second electrode facing each other through a gap, for igniting fuel in a combustion chamber of an internal combustion engine;
    A high voltage power supply that applies a voltage to the spark plug to cause dielectric breakdown in the gap;
    A high frequency alternating current power supply for applying a high frequency voltage to the spark plug to generate high frequency plasma in the gap;
    A DC power supply for supplying power to the high voltage power supply and the high frequency AC power supply;
    A control device that controls the operation of the high voltage power supply and the high frequency alternating current power supply;
    An igniter having
    The high frequency alternating current power supply is
    A DC / AC conversion device which converts DC power into AC power of a predetermined frequency and outputs the converted AC power to the spark plug;
    A DC / DC conversion device that converts DC power from a DC power supply into DC power having a predetermined voltage value and outputs the converted DC power to the DC / AC conversion device;
    Equipped with
    The controller is
    In a period satisfying at least one of a period in which the capacity discharge current generated by the dielectric breakdown is smaller than a predetermined value, and a period in which the DC / AC conversion device does not output the AC power to the spark plug. The DC / DC conversion device is configured to perform a power conversion operation,
    An ignition device characterized by
  2.  前記制御装置は、
     前記容量放電電流が予め定められた値よりも小さい期間と、前記DC/AC変換装置が前記点火プラグに交流電力を出力しない期間とにおいて、前記DC/DC変換装置が電力変換動作を行うように制御する、
    ことを特徴とする請求項1に記載の点火装置。
    The controller is
    The DC / DC conversion device performs a power conversion operation in a period in which the capacity discharge current is smaller than a predetermined value and in a period in which the DC / AC conversion device does not output AC power to the spark plug. Control,
    The igniter as claimed in claim 1,
  3.  間隙を介して対向する第1の電極と第2の電極とを備え、内燃機関の燃焼室の燃料に点火する点火プラグと、 
     前記点火プラグに電圧を印加して前記間隙に絶縁破壊を生じさせる高電圧電源と、
     前記点火プラグに高周波電圧を印加して前記間隙に高周波プラズマを発生させる高周波交流電源と、
     前記高電圧電源と前記高周波交流電源に電力を供給する直流電源と、
     前記高電圧電源と前記高周波交流電源との動作を制御する制御装置と、
    を有する点火装置であって、
     前記高周波交流電源は、
     直流電力を所定の周波数を有する交流電力に変換し、前記変換した交流電力を前記点火プラグに出力するDC/AC変換装置と、
     直流電源からの直流電力を所定の電圧値を有する直流電力に変換し、前記変換した直流電力を前記DC/AC変換装置に出力するDC/DC変換装置と、
    を備え、
     前記DC/DC変換装置は、
     前記変換した前記直流電力のエネルギを充電する電力供給用コンデンサと、
     前記電力供給用コンデンサの充電電圧を検出する電圧検出手段と、
    を備え、
     前記制御装置は、
     前記高電圧電源が前記点火プラグに電圧を印加してから、前記絶縁破壊により生じる容量放電電流が予め定められた値よりも小さくなるまでの期間において、前記高電圧電源が前記点火プラグに電圧を印加する直前の前記電圧検出手段の検出値を用いて、前記DC/DC変換装置の電力変換動作を制御するように構成されている、
    ことを特徴とする点火装置。
    An ignition plug including a first electrode and a second electrode facing each other through a gap, for igniting fuel in a combustion chamber of an internal combustion engine;
    A high voltage power supply that applies a voltage to the spark plug to cause dielectric breakdown in the gap;
    A high frequency alternating current power supply for applying a high frequency voltage to the spark plug to generate high frequency plasma in the gap;
    A DC power supply for supplying power to the high voltage power supply and the high frequency AC power supply;
    A control device that controls the operation of the high voltage power supply and the high frequency alternating current power supply;
    An igniter having
    The high frequency alternating current power supply is
    A DC / AC conversion device which converts DC power into AC power having a predetermined frequency and outputs the converted AC power to the spark plug;
    A DC / DC conversion device that converts DC power from a DC power supply into DC power having a predetermined voltage value and outputs the converted DC power to the DC / AC conversion device;
    Equipped with
    The DC / DC conversion device
    A power supply capacitor for charging energy of the converted DC power;
    Voltage detection means for detecting the charging voltage of the power supply capacitor;
    Equipped with
    The controller is
    After the high voltage power supply applies a voltage to the spark plug, the high voltage power supply supplies a voltage to the spark plug in a period until the capacitive discharge current generated by the dielectric breakdown becomes smaller than a predetermined value. It is configured to control a power conversion operation of the DC / DC conversion device using a detection value of the voltage detection means immediately before applying.
    An ignition device characterized by
  4.  間隙を介して対向する第1の電極と第2の電極とを備え、内燃機関の燃焼室の燃料に点火する点火プラグと、 
     前記点火プラグに電圧を印加して前記間隙に絶縁破壊を生じさせる高電圧電源と、
     前記点火プラグに高周波電圧を印加して前記間隙に高周波プラズマを発生させる高周波交流電源と、
     前記高電圧電源と前記高周波交流電源に電力を供給する直流電源と、
     前記高電圧電源と前記高周波交流電源との動作を制御する制御装置と、
    を有する点火装置であって、
     前記高周波交流電源は、
     直流電力を所定の周波数を有する交流電力に変換し、前記変換した交流電力を前記点火プラグに出力するDC/AC変換装置と、
     直流電源からの直流電力を所定の電圧値を有する直流電力に変換し、前記変換した直流電力を前記DC/AC変換装置に出力するDC/DC変換装置と、
    を備え、
     前記DC/DC変換装置は、
     前記変換された前記直流電力のエネルギを充電する電力供給用コンデンサと、
     前記電力供給用コンデンサの充電電圧を検出する電圧検出手段と、
    を備え、
     前記制御装置は、
     前記DC/AC変換装置が前記点火プラグに電流を出力する期間において、前記DC/AC変換装置が点火プラグに電流を出力する直前の前記電圧検出手段の検出値を用いて、前記DC/DC変換装置の電力変換動作を制御するように構成されている、
    ことを特徴とする点火装置。
    An ignition plug including a first electrode and a second electrode facing each other through a gap, for igniting fuel in a combustion chamber of an internal combustion engine;
    A high voltage power supply that applies a voltage to the spark plug to cause dielectric breakdown in the gap;
    A high frequency alternating current power supply for applying a high frequency voltage to the spark plug to generate high frequency plasma in the gap;
    A DC power supply for supplying power to the high voltage power supply and the high frequency AC power supply;
    A control device that controls the operation of the high voltage power supply and the high frequency alternating current power supply;
    An igniter having
    The high frequency alternating current power supply is
    A DC / AC conversion device which converts DC power into AC power having a predetermined frequency and outputs the converted AC power to the spark plug;
    A DC / DC conversion device that converts DC power from a DC power supply into DC power having a predetermined voltage value and outputs the converted DC power to the DC / AC conversion device;
    Equipped with
    The DC / DC conversion device
    A power supply capacitor for charging energy of the converted DC power;
    Voltage detection means for detecting the charging voltage of the power supply capacitor;
    Equipped with
    The controller is
    In a period in which the DC / AC converter outputs a current to the spark plug, the DC / DC conversion is performed using a detection value of the voltage detection unit immediately before the DC / AC converter outputs a current to the spark plug. Configured to control the power conversion operation of the device,
    An ignition device characterized by
  5.  前記制御装置は、
     前記容量放電電流が予め定められた値よりも小さい期間と、前記DC/DC変換装置が電力変換動作を停止する期間とにおいて、前記DC/AC変換装置が電力変換動作を行うように制御する、
    ことを特徴とする請求項1または2に記載の点火装置。
    The controller is
    The DC / AC conversion device is controlled to perform a power conversion operation in a period in which the capacitive discharge current is smaller than a predetermined value and a period in which the DC / DC conversion device stops the power conversion operation.
    The igniter according to claim 1 or 2, characterized in that:
  6.  前記制御装置は、
     前記DC/DC変換装置が電力変換動作を行わない期間と、前記DC/AC変換装置が前記点火プラグに交流電力を出力しない期間とにおいて、前記高電圧電源が前記点火プラグに電圧を印加して前記絶縁破壊を発生させるように制御する、
    ことを特徴とする請求項1、2、5のうちの何れか一項に記載の点火装置。
    The controller is
    The high voltage power supply applies a voltage to the spark plug in a period in which the DC / DC conversion device does not perform a power conversion operation and in a period in which the DC / AC conversion device does not output AC power to the spark plug. Control to generate the dielectric breakdown,
    The ignition device according to any one of claims 1, 2, and 5, characterized in that.
  7.  前記制御装置は、
     前記燃料に点火するタイミングを指示する点火指令信号に基づいて、前記高電圧電源と前記DC/DC変換装置と前記DC/AC変換装置の動作を制御するように構成されている、
    ことを特徴とする請求項1から6のうちの何れか一項に記載の点火装置。
    The controller is
    It is configured to control operations of the high voltage power supply, the DC / DC conversion device, and the DC / AC conversion device based on an ignition command signal instructing a timing of firing the fuel.
    The ignition device according to any one of claims 1 to 6, characterized in that.
  8.  前記制御装置は、
     前記燃料に点火するタイミングを指示する点火指令信号に基づいて、前記高電圧電源と前記DC/DC変換装置と前記DC/AC変換装置の動作を制御するように構成され、前記点火指令信号に基づいて、前記DC/DC変換装置が電力変換動作を停止した後に、前記高電圧電源を動作させて前記点火プラグに電圧を印加する、
    ことを特徴とする請求項1、2、5から7のうちの何れか一項に記載の点火装置。
    The controller is
    It is configured to control the operation of the high voltage power supply, the DC / DC conversion device, and the DC / AC conversion device based on an ignition command signal instructing a timing to ignite the fuel, and based on the ignition command signal The high voltage power supply is operated to apply a voltage to the spark plug after the DC / DC conversion device stops the power conversion operation.
    The ignition device according to any one of claims 1, 2, 5 to 7, characterized in that.
  9.  前記DC/AC変換装置は、
     前記DC/AC変換装置の出力電流、及び前記絶縁破壊により生じる容量放電電流を検出する電流検出手段を備え、
     前記制御装置は、
     前記電流検出手段の検出値に基づいて、前記DC/AC変換装置の電力変換動作を制御する、
    ことを特徴とする請求項1から8のうちの何れか一項に記載の点火装置。
    The DC / AC conversion device
    A current detection unit that detects an output current of the DC / AC conversion device and a capacitive discharge current generated by the dielectric breakdown;
    The controller is
    The power conversion operation of the DC / AC conversion device is controlled based on the detection value of the current detection means.
    9. An igniter as claimed in any one of the preceding claims, characterized in that.
  10.  前記制御装置は、
     前記容量放電電流の発生を検出した後において、前記容量放電電流の1周期毎のピーク値が予め定められた値未満になることを検出した後に、前記DC/AC変換装置が電力変換動作を行うように制御する、
    ことを特徴とする請求項9に記載の点火装置。
    The controller is
    After detecting the generation of the capacitive discharge current, the DC / AC conversion device performs the power conversion operation after detecting that the peak value for each cycle of the capacitive discharge current is less than a predetermined value. To control,
    The ignition device according to claim 9, characterized in that.
  11.  前記制御装置は、
     前記高電圧電源が点火プラグに電圧を出力するための動作を実施したタイミングから、予め定められた時間が経過した後に、前記DC/AC変換装置が電力変換動作を行うように制御する、
    ことを特徴とする請求項1から10のうちの何れか一項に記載の点火装置。
    The controller is
    The DC / AC conversion device is controlled to perform a power conversion operation after a predetermined time has elapsed from the timing when the high voltage power supply performs an operation for outputting a voltage to the spark plug.
    The ignition device according to any one of claims 1 to 10, characterized in that.
  12.  前記制御装置は、
     前記DC/AC変換装置の電力変換動作を停止した後に、前記DC/DC変換装置の電力変換動作を許可する、
    ことを特徴とする請求項1、2、5から11のうちの何れか一項に記載の点火装置。
    The controller is
    After stopping the power conversion operation of the DC / AC conversion device, permitting the power conversion operation of the DC / DC conversion device;
    The igniter according to any one of claims 1, 2, 5 to 11, characterized in that.
  13.  前記制御装置は、
     前記燃料に点火するタイミングを指示する点火指令信号に基づいて、前記高電圧電源と前記DC/DC変換装置と前記DC/AC変換装置の動作を制御するように構成され、前記DC/AC変換装置の電力変換動作を停止してから次の点火指令信号が出力されるまでの期間において、前記DC/DC変換装置が電力変換動作を行うように制御する、
    ことを特徴とする請求項1、2、5から12のうちの何れか一項に記載の点火装置。
    The controller is
    The DC / AC conversion device is configured to control operations of the high voltage power supply, the DC / DC conversion device, and the DC / AC conversion device based on an ignition command signal instructing a timing to ignite the fuel. The DC / DC conversion device is controlled to perform the power conversion operation in a period from the time when the power conversion operation of is stopped until the next ignition command signal is output,
    The igniter as claimed in any one of claims 1, 2, 5 to 12, characterized in that.
  14.  前記制御装置は、
     前記燃料に点火するタイミングを指示する点火指令信号に基づいて、前記高電圧電源と前記DC/DC変換装置と前記DC/AC変換装置の動作を制御するように構成され、前記点火指令信号が出力されてから次の点火指令信号が出力されるまでの1回の点火期間において、前記DC/AC変換装置が電力変換動作を停止してから所定の休止期間を設けた後に、再度、前記DC/AC変換装置が電力変換動作を行うように制御する、
    ことを特徴とする請求項1から13のうちの何れか一項に記載の点火装置。
    The controller is
    The operation of the high voltage power supply, the DC / DC conversion device, and the DC / AC conversion device is controlled based on an ignition command signal instructing a timing of ignition of the fuel, and the ignition command signal is output After the DC / AC conversion device stops the power conversion operation and provides a predetermined rest period in a single ignition period from when it is output to when the next ignition command signal is output, the DC / AC converter is again Control the AC converter to perform power conversion operation,
    The igniter according to any one of claims 1 to 13, characterized in that.
  15.  前記制御装置は、
     前記DC/DC変換装置が前記休止期間に電力変換動作を行うように制御することを特徴とする請求項14に記載の点火装置。
    The controller is
    The ignition device according to claim 14, wherein the DC / DC conversion device is controlled to perform a power conversion operation during the idle period.
  16.  前記制御装置は、
     前記1回の点火期間において、前記DC/AC変換装置が電力変換動作を行って前記点火プラグに交流電力を供給する交流電力出力期間と、前記休止期間とを、それぞれ複数回設けるように制御することを特徴とする請求項14または15に記載の点火装置。
    The controller is
    The DC / AC conversion device performs the power conversion operation in the one ignition period, and controls so as to provide the AC power output period for supplying the AC power to the spark plug a plurality of times each and the rest period. The igniter as claimed in claim 14 or 15, characterized in that:
PCT/JP2017/042956 2017-11-30 2017-11-30 Spark device WO2019106776A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019556472A JP6811877B2 (en) 2017-11-30 2017-11-30 Ignition system
PCT/JP2017/042956 WO2019106776A1 (en) 2017-11-30 2017-11-30 Spark device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/042956 WO2019106776A1 (en) 2017-11-30 2017-11-30 Spark device

Publications (1)

Publication Number Publication Date
WO2019106776A1 true WO2019106776A1 (en) 2019-06-06

Family

ID=66664444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042956 WO2019106776A1 (en) 2017-11-30 2017-11-30 Spark device

Country Status (2)

Country Link
JP (1) JP6811877B2 (en)
WO (1) WO2019106776A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002336A (en) * 2006-06-22 2008-01-10 Denso Corp Ignition device for internal combustion engine
WO2014196469A1 (en) * 2013-06-04 2014-12-11 三菱電機株式会社 Ignition device of spark-ignition internal combustion engine
JP2016108989A (en) * 2014-12-04 2016-06-20 三菱電機株式会社 Ignition device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002336A (en) * 2006-06-22 2008-01-10 Denso Corp Ignition device for internal combustion engine
WO2014196469A1 (en) * 2013-06-04 2014-12-11 三菱電機株式会社 Ignition device of spark-ignition internal combustion engine
JP2016108989A (en) * 2014-12-04 2016-06-20 三菱電機株式会社 Ignition device

Also Published As

Publication number Publication date
JPWO2019106776A1 (en) 2020-10-22
JP6811877B2 (en) 2021-01-13

Similar Documents

Publication Publication Date Title
US7944678B2 (en) Low voltage power supply for spark igniter and flame sense
US9035564B1 (en) High-frequency discharge ignition apparatus
KR20180029059A (en) Electronic ignition system for internal combustion engine and driving method thereof
US8922127B2 (en) High-frequency discharge ignition coil apparatus and high-frequency discharge ignition apparatus
JP5496297B2 (en) Ignition device for internal combustion engine
JP6773004B2 (en) Ignition system for internal combustion engine
JP5253144B2 (en) Ignition device for internal combustion engine
WO2019106776A1 (en) Spark device
US9546637B2 (en) Ignition apparatus
JP6824194B2 (en) Electronic ignition system for internal combustion engine and control method of the electronic ignition system
US9957945B2 (en) Method for controlling a corona ignition device
JP2015200255A (en) ignition control device
JP6297899B2 (en) Ignition device
JP2014211148A (en) Ignition system
JP5340431B2 (en) Ignition device
JP6125139B1 (en) Internal combustion engine ignition device
KR20180029196A (en) Electronic ignition system for internal combustion engine and control method for said electronic ignition system
JP5681425B2 (en) Spark ignition method for internal combustion engine
WO2017115511A1 (en) Internal combustion engine ignition device
US9982650B2 (en) Ignition apparatus and ignition control method
JP2010101212A (en) Ignition device for internal combustion engine
WO2019225018A1 (en) Ignition device for internal combustion engine
JP5601642B2 (en) Ignition device for internal combustion engine
JP5750813B2 (en) Ignition device for internal combustion engine
JP2011220293A (en) Plasma type ignition device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933326

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019556472

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17933326

Country of ref document: EP

Kind code of ref document: A1