WO2019105339A1 - 一种可降低内压的超级电容器系统及其制备方法 - Google Patents

一种可降低内压的超级电容器系统及其制备方法 Download PDF

Info

Publication number
WO2019105339A1
WO2019105339A1 PCT/CN2018/117674 CN2018117674W WO2019105339A1 WO 2019105339 A1 WO2019105339 A1 WO 2019105339A1 CN 2018117674 W CN2018117674 W CN 2018117674W WO 2019105339 A1 WO2019105339 A1 WO 2019105339A1
Authority
WO
WIPO (PCT)
Prior art keywords
supercapacitor
battery
internal pressure
micro
system capable
Prior art date
Application number
PCT/CN2018/117674
Other languages
English (en)
French (fr)
Inventor
何凤荣
郭义敏
Original Assignee
东莞东阳光科研发有限公司
东莞市东阳光电容器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞东阳光科研发有限公司, 东莞市东阳光电容器有限公司 filed Critical 东莞东阳光科研发有限公司
Priority to CN201880036463.XA priority Critical patent/CN110770864B/zh
Publication of WO2019105339A1 publication Critical patent/WO2019105339A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to the field of supercapacitors, and in particular to a supercapacitor system capable of reducing internal pressure and a method of fabricating the same.
  • Supercapacitors generate gases during normal use due to thermal evaporation, chemical reactions, and electrochemical reactions. As the gas generated inside the supercapacitor increases, the internal air pressure increases, and eventually the supercapacitor is broken or even exploded, which not only affects the service life of the supercapacitor product, but also makes the supercapacitor product have certain safety during use. Hidden dangers. Existing capacitors are available in a variety of ways and ways to eliminate or reduce gases in the supercapacitor.
  • the patent CN 104916436 A uses an explosion-proof valve on the oil injection hole of the capacitor body to reduce the internal pressure, but in this way, the capacitor is also scrapped after the explosion-proof valve is cracked.
  • a pressure relief explosion-proof valve is provided inwardly at the position of the supercapacitor injection hole to reduce the internal pressure of the product.
  • the supercapacitor cell will be exposed to the outside air, so that the positive and negative electrodes quickly absorb moisture and cause side reactions, causing the supercapacitor capacity value to rapidly drop and the internal resistance value to rise rapidly.
  • the leakage current value increases significantly.
  • a getter such as zirconium, hafnium-nickel alloy, cobalt oxide, calcium oxide and barium-lithium alloy is placed in a cylindrical space of a supercapacitor for absorbing the gas generated in the supercapacitor barrel.
  • the getter releases the absorbed gas into the supercapacitor tube, causing the supercapacitor to be inside. The pressure has increased dramatically.
  • the electric core before the shell is pre-immersed in the organic electrolyte to electrify and aging, thereby discharging the gas generated in the aging stage, thereby reducing the internal pressure of the supercapacitor to some extent, but aging before entering the shell.
  • the core has a limited ability to reduce the internal pressure of the supercapacitor, and will continue to generate gas during subsequent use of the supercapacitor, which also causes an increase in the internal pressure of the supercapacitor.
  • the object of the present invention is to provide a supercapacitor system capable of reducing internal pressure, which can consume the gas generated during the use of the supercapacitor through the micro battery in the supercapacitor system during use. Reduce the internal pressure of the supercapacitor, so that the supercapacitor has the characteristics of long service life, low internal pressure, safety and reliability.
  • the present invention provides a supercapacitor system capable of reducing internal pressure, including a supercapacitor and a microbattery, the supercapacitor being connected to the microbattery in a built-in or docking manner, and the built-in type is a
  • the micro battery is placed inside the supercapacitor; the docking type is to connect the outer casing of the micro battery with the outer casing of the super capacitor through a communication device.
  • the micro battery is selected from the group consisting of a metal-carbon dioxide primary battery, a metal-carbon dioxide secondary battery, a carbon monoxide fuel cell, a hydrogen-oxygen fuel cell, an ethylene fuel cell, a propylene fuel cell, a nickel-hydrogen battery, and a metal-air battery. Or a combination thereof, wherein the metal is selected from any one or a combination of lithium, sodium, potassium, calcium, magnesium, aluminum, and zinc.
  • the number of the micro batteries is one or more.
  • the type of the micro battery is one or a plurality of types.
  • the types of the supercapacitors include electric double layer capacitors, tantalum capacitors, hybrid capacitors, and battery type super capacitors.
  • the super capacitor is a single body or a module.
  • the supercapacitor includes a battery core, a casing, and an electrolyte, wherein the battery cell includes an electrode and a diaphragm.
  • the active material for the electrode is selected from the group consisting of activated carbon, activated carbon fiber, carbon nanotube, graphene, carbon aerogel, carbon nanotube, carbon fiber, carbon-carbon composite material, cerium oxide, iron oxide, nickel oxyhydroxide, and second Any one or combination of manganese oxide, polyaniline, polypyrrole, poly 3,4-ethylenedioxythiophene, lithium iron phosphate, lithium cobaltate, lithium manganate, lithium nickel cobalt manganese oxide, lithium titanate, and graphite .
  • the electrolyte includes an electrolyte and a solvent. More specifically, the electrolyte is Any one of H 2 SO 4 , KOH, Na 2 SO 4 , LiClO 4 , LiBF 4 , and LiPF 6 ; the solvent is propylene carbonate, acetonitrile, ⁇ -butyrolactone, sulfolane, dimethyl sulfoxide, Any one or combination of water, ethanol, isopropanol, propylene glycol.
  • the present invention provides a method of fabricating a supercapacitor system capable of reducing internal pressure, comprising the steps of:
  • the micro-capacitor and the battery core are simultaneously enclosed in the supercapacitor case to obtain a supercapacitor system; or,
  • the cell is enclosed in a supercapacitor case, and the micro cell case is connected to the supercapacitor case through a connector to obtain a supercapacitor system.
  • the micro battery and the battery core can be simultaneously enclosed in the ultracapacitor case, and then the plurality of super capacitors are connected in series and/or in parallel to obtain a super capacitor system.
  • the battery core may be enclosed in the ultracapacitor casing, and then the plurality of supercapacitors may be connected in series and/or in parallel, and then the micro battery case is passed through the connector and each of the supercapacitor casings. Docking to obtain a supercapacitor system.
  • the integration process is carried out in a dry environment.
  • the dry environment is a vacuum glove box or a drying room having a dew point lower than -65 °C.
  • a micro-battery is placed in the supercapacitor case, or the supercapacitor case is connected to the micro-battery case through the connector, and the micro-battery is used to capture and consume the gas generated by the super-capacitor during use, thereby reducing the internal pressure of the supercapacitor. It not only fundamentally solves the problem of drum and blasting of supercapacitors after aging or high temperature load, but also minimizes the capacity attenuation and internal resistance of supercapacitors, and improves the safety and reliability of supercapacitor use. .
  • a supercapacitor system capable of reducing internal pressure is obtained, and the assembled supercapacitor has no drum and pulping phenomenon after 1000 h of high temperature load or 1 million cycles, the capacity attenuation is less than 15%, and the internal resistance is low. At 20%.
  • the supercapacitor is 100
  • the battery core is 110
  • the supercapacitor positive terminal is 111
  • the supercapacitor negative terminal is 112
  • the supercapacitor outer casing is 120
  • the wire is 113
  • the micro battery is 200
  • the connector is 210.
  • the object of the present invention is to provide a supercapacitor system capable of reducing internal pressure, which can consume the gas generated during the use of the supercapacitor through the micro battery in the supercapacitor system during use. Reduce the internal pressure of the supercapacitor, so that the supercapacitor has the characteristics of long service life, low internal pressure, safety and reliability.
  • the present invention provides a supercapacitor system capable of reducing internal pressure, including a supercapacitor and a microbattery, the supercapacitor being connected to the microbattery in a built-in or docking manner, and the built-in type is a
  • the micro battery is placed inside the supercapacitor; the docking type is to connect the outer casing of the micro battery with the outer casing of the super capacitor through a communication device.
  • the micro battery when the connection mode is built-in, the micro battery is placed inside the supercapacitor, and the micro battery is exposed to the supercapacitor cavity, and the working electrode of the micro battery capable of adsorbing the characteristic gas is also exposed to the supercapacitor.
  • the saturated vapor pressure formed by the electrolyte solvent Since the solvent solvent vapor does not satisfy the conditions for the electrochemical reaction of the microbattery, the microbattery does not adsorb the vapor formed by the electrolyte solvent.
  • the electrode and the electrolyte will electrochemically react to generate vapors that can be adsorbed by the microbattery, which are captured by the working electrode of the microbattery exposed to the ultracapacitor casing, and then electrochemical reaction consumption occurs. Drop, to achieve the purpose of reducing the internal pressure of the supercapacitor.
  • the connection mode is the docking type
  • the outer casing of the micro battery and the outer casing of the supercapacitor are connected through the communication device, and the micro battery cavity is connected with the supercapacitor cavity, and the microbattery can be adsorbed.
  • the working electrode of the gas is also exposed to the saturated vapor pressure formed by the solvent of the supercapacitor electrolyte. Since the solvent vapor of the electrolyte does not satisfy the condition of electrochemical reaction of the microbattery, the microbattery does not adsorb the vapor formed by the solvent of the electrolyte.
  • the electrodes and the electrolyte will electrochemically react to generate vapors that can be adsorbed by the microbatteries. These vapors diffuse from the supercapacitors to the microbattery working electrodes through the interconnectors, and the microbattery working electrodes capture these vapors and generate electricity. The chemical reaction is consumed to achieve the purpose of reducing the internal pressure of the supercapacitor.
  • the microbattery may be a fuel microbattery and/or a non-fuel microbattery.
  • the microbattery needs to consume gas during discharge, wherein the fuel microbattery uses the trapped gas as a fuel gas, and is consumed by an oxidation reaction with an oxidation electrode in the fuel microbattery under the action of a catalyst; the non-fuel The microbattery uses the trapped gas as an active material and is consumed by a reduction reaction with a cation in the electrolyte under the action of a catalyst.
  • the microbattery is selected from the group consisting of a metal-carbon dioxide primary battery, a metal-carbon dioxide secondary battery, a carbon monoxide fuel cell, a oxyhydrogen fuel cell, an ethylene fuel cell, a propylene fuel cell, a nickel hydride battery, and a metal. Any one or combination of air batteries.
  • the metal is selected from any one or a combination of lithium, sodium, potassium, calcium, magnesium, aluminum, and zinc.
  • a suitable type of microbattery can be selected depending on the active material of the supercapacitor electrode, the electrolyte system, and the gas composition produced.
  • the gas generated by the supercapacitor is carbon dioxide
  • a lithium-carbon dioxide primary battery, a lithium-carbon dioxide secondary battery, or a sodium-carbon dioxide secondary battery may be selected as the micro battery
  • the gas generated by the supercapacitor is carbon monoxide
  • carbon monoxide may be selected.
  • a fuel cell or the like is used as a micro battery; when the gas generated by the super capacitor is ethylene, an ethylene fuel cell or the like can be selected as the micro battery.
  • the number of the microbatteries is one or more. Specifically, it can be reasonably selected according to the amount of gas generated during the use of the supercapacitor. When a large amount of gas is generated and one micro battery is insufficient to capture all the gases, a plurality of micro batteries can be used at the same time.
  • the types of the microbatteries are one or more. Specifically, it can be reasonably selected according to the kind of gas generated during the use of the supercapacitor. When there are many types of gas generated, and one type of micro battery is insufficient to capture all the gases, most types of micro batteries can be used at the same time.
  • the types of the ultracapacitors include electric double layer capacitors, tantalum capacitors, hybrid capacitors, and battery type super capacitors.
  • the electric double layer capacitor refers to a super capacitor in which an electric double layer is formed between an electrode and an electrolyte interface to store energy.
  • the tantalum capacitor refers to a supercapacitor in which a highly reversible Faraday redox reaction of an electrode and an electrolyte to store energy in a two-dimensional or quasi-two-dimensional space in an electrode surface or a bulk phase.
  • the hybrid capacitor refers to a supercapacitor in which two electrodes are used to store energy by forming an electric double layer with an electrolyte interface, and the other electrode stores energy by a highly reversible Faraday redox reaction with the electrolyte. .
  • the battery type supercapacitor refers to a supercapacitor in which an electric double layer and a highly reversible Faraday redox reaction are combined in either or both electrodes to store energy.
  • the supercapacitors are square and/or circular.
  • the supercapacitor is a single unit or a module.
  • the supercapacitor is a single body, as shown in FIGS. 1 and 3; when the supercapacitor is a module, as shown in FIGS. 2 and 4.
  • the supercapacitors are connected in series and/or in parallel.
  • the supercapacitor has a nominal capacity of 1F-1000000F and a nominal voltage of 2.3V-800V.
  • the ultracapacitor comprises a cell, a housing and an electrolyte, wherein the cell comprises an electrode and a membrane.
  • the electrode active material is selected from the group consisting of activated carbon, activated carbon fiber, carbon nanotube, graphene, carbon aerogel, carbon nanotube, carbon fiber, carbon-carbon composite material, cerium oxide, iron oxide, Nickel oxyhydroxide, manganese dioxide, polyaniline, polypyrrole, and poly 3,4-ethylenedioxythiophene, lithium iron phosphate, lithium cobaltate, lithium manganate, lithium nickel cobalt manganese oxide, lithium titanate, and graphite Any one or a combination thereof.
  • the electrolyte comprises an electrolyte and a solvent.
  • the electrolyte is Any one of H 2 SO 4 , KOH, Na 2 SO 4 , LiClO 4 , LiBF 4 , and LiPF 6 .
  • the solvent is any one or a combination of propylene carbonate, acetonitrile, ⁇ -butyrolactone, sulfolane, dimethyl sulfoxide, water, ethanol, isopropanol, propylene glycol.
  • the electrolyte is The solvent is acetonitrile; in other embodiments, the electrolyte is The solvent is propylene carbonate.
  • the present invention provides a method of fabricating a supercapacitor system capable of reducing internal pressure, comprising the steps of:
  • the micro-capacitor and the battery core are simultaneously enclosed in the supercapacitor case to obtain a supercapacitor system; or,
  • the cell is enclosed in a supercapacitor case, and the micro cell case is connected to the supercapacitor case through a connector to obtain a supercapacitor system.
  • the microcapacitor and the battery core may be simultaneously enclosed in the ultracapacitor case, and then the plurality of supercapacitors are connected in series and/or in parallel to obtain a supercapacitor system.
  • the battery core in the docking integration process, may be enclosed in the ultracapacitor casing, and then the plurality of supercapacitors may be connected in series and/or in parallel, and then the micro battery case is passed through the connector. Each supercapacitor case is docked to obtain a supercapacitor system.
  • the integration process is carried out in a dry environment to prevent the supercapacitor cell or electrolyte from rapidly absorbing moisture or reacting to deterioration after contact with air.
  • the dry environment is a vacuum glove box or a drying room having a dew point below -65 °C.
  • the microbattery when the microbattery is a non-fuel microbattery, it is necessary to charge the non-fuel microbattery to a saturated state. Because non-fuel micro-batteries need to capture the gas generated by the supercapacitor during use during the discharge process, the uncharged non-fuel cell integrated with the supercapacitor will not capture the gas generated by the supercapacitor during use.
  • the supercapacitor system when the microbattery is a fuel microbattery, the supercapacitor system can be obtained by integrating with the cell without pretreatment.
  • step 2) The 20 supercapacitor systems with micro batteries obtained in step 1) were placed in a constant temperature and humidity oven and baked at 70 ° C for 12 h, and each supercapacitor was aged at 2.5 V for 24 h to test each supercapacitor.
  • Initial capacity and DC internal resistance calculate the average value of the initial capacity and DC internal resistance;
  • step 2) The 20 supercapacitor systems with micro batteries obtained in step 1) were placed in a constant temperature and humidity oven and baked at 65 ° C for 12 h, and each supercapacitor was aged at 2.7 V for 24 h to test each supercapacitor.
  • Initial capacity and DC internal resistance calculate the average value of the initial capacity and DC internal resistance;
  • step 2) The 20 sets of supercapacitor system with micro battery obtained in step 1) are placed in a constant temperature and humidity oven and baked in a blast at 65 ° C for 12 h. Each supercapacitor is aged at 24 V for 24 h, and each set of super is tested. The initial capacity of the capacitor and the DC internal resistance, the average of the initial capacity and the DC internal resistance are calculated;
  • step 2) The 20 supercapacitors obtained in step 1) were placed in a constant temperature and humidity oven and baked at 70 ° C for 12 h, and each supercapacitor was aged at 2.5 V for 24 h to test the initial capacity and DC of each supercapacitor. Internal resistance, calculate the average value of the initial capacity and DC internal resistance;
  • a supercapacitor system is obtained by disposing a microbattery in a supercapacitor case or by connecting a supercapacitor through a connector to a microbattery.
  • the micro-battery is used to capture the gas generated during the use of the supercapacitor, so that the obtained supercapacitor system does not start to drum after 1000 h of high temperature load or 1 million cycles, and the capacity decay of the supercapacitor does not exceed 15% of the initial value.
  • the increase in internal resistance does not exceed 20% of the initial value.
  • the supercapacitor assembled by the conventional method is activated after 1000 hours of high temperature load or 1 million cycles, and the capacity of the supercapacitor is attenuated to 26% of the initial value, and the DC internal resistance is increased to the initial value. 34.5%.
  • the supercapacitor system provided by the invention can significantly reduce the internal pressure of the supercapacitor, which not only fundamentally solves the problem of drum and blasting of the supercapacitor after aging or high temperature load, but also minimizes the capacity attenuation of the supercapacitor and The increase in internal resistance improves the safety and reliability of the use of supercapacitors.

Abstract

本发明公开了一种可降低内压的超级电容器系统,包括超级电容器和微型电池,所述超级电容器与所述微型电池的连接方式为内置式或对接式,所述内置式是将所述微型电池置于所述超级电容器内部;所述对接式是将所述微型电池的外壳与所述超级电容器的外壳通过连通器相对接。在使用过程中可以通过设置在超级电容器系统内的微型电池消耗掉产生的气体,从而降低超级电容器内压,使超级电容器具有使用寿命长、内压低、安全可靠等特点。另一方面,本发明提供一种可降低内压的超级电容器系统的制备方法,包括如下步骤:1)提供微型电池;2)电芯前处理;3)集成过程。

Description

一种可降低内压的超级电容器系统及其制备方法 技术领域
本发明涉及超级电容器领域,具体的,涉及一种可降低内压的超级电容器系统及其制备方法。
背景技术
超级电容器在正常的使用过程中,由于热蒸发、化学反应和电化学反应会产生气体。随着超级电容器内部所产生气体的增加,使其内部气压不断增加,最终会引用超级电容器破裂甚至爆炸,不仅影响超级电容器产品的使用寿命,还会使得超级电容器产品在使用过程中存在一定的安全性隐患。现有的电容器通过多种方法和途径,以消除或减少超级电容器内的气体。
如专利CN 104916436 A采用在电容器本体的注油孔上设置防爆阀来降低内部压力,但这种方式在防爆阀开裂后电容器也随之报废。
如专利CN 202134409 U中,在超级电容器注液孔位置向内设置泻压防爆阀来降低产品内部压力。当超级电容器内部的气压增大到一定程度时,气压压力超过压簧的压力而出气泻压,泻压后依旧是密封状态,从而保证超级电容器的长期使用性能,解决了超级电容封装后出现鼓胀、开裂和爆炸的问题。然而,这种方式在泄压防爆阀打开过程中,超级电容器电芯将暴露于外部空气中,以致正负电极快速吸收水分而发生副反应,造成超级电容器容量值迅速下降,内阻值迅速上升,漏电流值显著增大。
如专利CN 101341562 B中,将锆、镧-镍合金、氧化钴、氧化钙以及钡-锂合金等消气剂放置于超级电容器的圆柱形空间内封装,用以吸收超级电容器筒内产生的气体。但这种方式中由于消气剂对气体的吸收与温度密切相关,因此,当超级电容器在较高的温度下使用时,消气剂会将吸收的气体重新释放到超级电容器筒内,造成超级电容器内压急剧增加。
如专利CN 102543481 B中,将入壳前的电芯预先浸渍于有机电解液中通电老化,从而将老化阶段产生的气体排出,在一定程度上降低了超级电容器内部压力,但是入壳前老化电芯对降低超级电容器内部压力的能力有限,且在超级电容器后续使用过程中还会继续产生气体,同样造成超级电容器内部压力增大。
发明内容
本发明的目的是针对现有技术的不足,提供了一种可降低内压的超级电容器系统,在使用过程中可以通过超级电容器系统内的微型电池消耗掉超级电容器使用过程中产生的气体,从而降低超级电容器内压,使超级电容器具有使用寿命长、内压低、安全可靠等特点。
为达到上述目的,本发明采用的技术方案如下:
一方面,本发明提供一种可降低内压的超级电容器系统,包括超级电容器和微型电池,所述超级电容器与所述微型电池的连接方式为内置式或对接式,所述内置式是将所述微型电 池置于所述超级电容器内部;所述对接式是将所述微型电池的外壳与所述超级电容器的外壳通过连通器相对接。
进一步的,所述微型电池选自金属-二氧化碳一次电池、金属-二氧化碳二次电池、一氧化碳燃料电池、氢氧燃料电池、乙烯燃料电池、丙烯燃料电池、镍氢电池和金属-空气电池中的任意一种或其组合,其中,所述金属选自锂、钠、钾、钙、镁、铝和锌中的任意一种或其组合。
进一步的,所述微型电池的数量为一个或多数个。进一步的,所述微型电池的种类为一种或多数种。进一步的,所述超级电容器的种类包括双电层电容器、赝电容器、混合型电容器及电池型超级电容器。
进一步的,所述超级电容器为单体或模组。
进一步的,所述超级电容器包括电芯、外壳和电解液,其中,电芯包括电极和隔膜。
进一步的,所述电极用活性材料选自活性炭、活性炭纤维、炭纳米管、石墨烯、碳气凝胶、碳纳米管、碳纤维、碳碳复合材料、氧化钌、氧化铁、羟基氧化镍、二氧化锰、聚苯胺、聚吡咯、聚3,4-乙烯二氧噻吩、磷酸铁锂、钴酸锂、锰酸锂、镍钴锰酸锂、钛酸锂和石墨中的任意一种或其组合。
进一步的,所述电解液包括电解质和溶剂。更具体的,所述电解质为
Figure PCTCN2018117674-appb-000001
Figure PCTCN2018117674-appb-000002
H 2SO 4、KOH、Na 2SO 4、LiClO 4、LiBF 4、LiPF 6中的任意一种;所述溶剂为碳酸丙烯酯、乙腈、γ-丁内酯、环丁砜、二甲基亚砜、水、乙醇、异丙醇、丙二醇中的任意一种或其组合。
另一方面,本发明提供一种可降低内压的超级电容器系统的制备方法,包括如下步骤:
1)提供微型电池:直接提供燃料微型电池或提供充电至饱和状态的非燃料微型电池;
2)超级电容器电芯前处理:将电芯浸渍于电解液中吸液至饱和状态;
3)集成过程:
内置式集成:将微型电池和电芯同时封入超级电容器壳内,获得超级电容器系统;或者,
对接式集成:将电芯封入超级电容器壳内,再将微型电池外壳通过连通器与超级电容器外壳对接,获得超级电容器系统。
进一步的,在内置式集成过程中,还可以是:将微型电池和电芯同时封入超级电容器壳内,再将多数个超级电容器串联和/或并联,获得超级电容器系统。
进一步的,在对接式集成过程中,还可以是:将电芯封入超级电容器壳内,再将多数个超级电容器串联和/或并联,之后再将微型电池外壳通过连通器与每一个超级电容器外壳对接,获得超级电容器系统。
进一步的,所述集成过程在干燥的环境中进行。
进一步的,所述干燥的环境为真空手套箱或露点低于-65℃的干燥房。
本发明的有益效果在于:
在超级电容器壳内放置微型电池,或者将超级电容器外壳通过连通器与微型电池外壳对接,利用微型电池将超级电容器在使用过程中产生的气体捕获后并反应消耗掉,从而降低了超级电容器内压,不仅从根本上解决了超级电容器经老化或高温负荷后起鼓和爆浆问题,而且在最大程度上减缓了超级电容器的容量衰减及内阻增加,提高了超级电容器使用的安全性及可靠性。采用本发明的技术方案,获得可降低内压的超级电容器系统,组装成的超级电容器经高温负荷1000h或循环100万次后无起鼓和爆浆现象,容量衰减小于15%、内阻增加低于20%。
附图说明
图1内置式超级电容器系统结构
图2内置式超级电容器系统串联结构
图3对接式超级电容器系统结构
图4对接式超级电容器系统并联结构
其中,超级电容器为100,电芯为110,超级电容器正极端子为111,超级电容器负极端子为112,超级电容器外壳为120,导线为113;微型电池为200,连通器为210。
具体实施方式
本发明的目的是针对现有技术的不足,提供了一种可降低内压的超级电容器系统,在使用过程中可以通过超级电容器系统内的微型电池消耗掉超级电容器使用过程中产生的气体,从而降低超级电容器内压,使超级电容器具有使用寿命长、内压低、安全可靠等特点。
一方面,本发明提供一种可降低内压的超级电容器系统,包括超级电容器和微型电池,所述超级电容器与所述微型电池的连接方式为内置式或对接式,所述内置式是将所述微型电池置于所述超级电容器内部;所述对接式是将所述微型电池的外壳与所述超级电容器的外壳通过连通器相对接。
如图1和图2所示,当连接方式为内置式时,微型电池置于超级电容器内部,微型电池暴露于超级电容器腔体中,微型电池中可吸附特征气体的工作电极也暴露于超级电容器电解液溶剂形成的饱和蒸汽压中。由于电解液溶剂蒸汽并不满足微型电池发生电化学反应的条件,因此微型电池不会吸附电解液溶剂形成的蒸汽。随着超级电容器的长期使用,电极与电解液将发生电化学反应,产生微型电池可吸附的蒸汽,这些蒸汽被暴露于超级电容器壳内的微型电池的工作电极捕获到,然后发生电化学反应消耗掉,达到降低超级电容器内压的目的。
如图3和图4所示,当连接方式为对接式时,微型电池的外壳与超级电容器的外壳通过连通器相对接,微型电池腔体与超级电容器腔体相连通,微型电池中可吸附特征气体的工作电极也暴露于超级电容器电解液溶剂形成的饱和蒸汽压中,由于电解液溶剂蒸汽并不满足微型电池发生电化学反应的条件,因此微型电池不会吸附电解液溶剂形成的蒸汽,随着超级电容器的长期使用,电极与电解液将发生电化学反应,产生微型电池可吸附的蒸汽,这些蒸汽通过连通器从超级电容器扩散至微型电池工作电极,微型电池工作电极捕获这些蒸汽并发生电化学反应消耗掉,达到降低超级电容器内压的目的。
本发明提供的超级电容器系统中,所述微型电池可以为燃料微型电池和/或非燃料微型电 池。所述微型电池在放电过程中需要消耗气体,其中,所述燃料微型电池将捕获的气体作为燃料气,在催化剂作用下与燃料微型电池中的氧化电极发生氧化反应而消耗掉;所述非燃料微型电池将捕获的气体作为活性材料,在催化剂作用下与电解液中的阳离子发生还原反应而消耗掉。
根据本发明的一些实施方式,所述微型电池选自金属-二氧化碳一次电池、金属-二氧化碳二次电池、一氧化碳燃料电池、氢氧燃料电池、乙烯燃料电池、丙烯燃料电池、镍氢电池和金属-空气电池中的任意一种或其组合。
根据本发明的一些实施方式,所述金属选自锂、钠、钾、钙、镁、铝和锌中的任意一种或其组合。
在使用时,可以根据超级电容器电极用活性材料、电解液体系及产生的气体成分的不同,选择合适类型的微型电池。如当超级电容器产生的气体为二氧化碳时,可以选择锂-二氧化碳一次电池、锂-二氧化碳二次电池或钠-二氧化碳二次电池等作为微型电池;当超级电容器产生的气体为一氧化碳时,可以选择一氧化碳燃料电池等作为微型电池;当超级电容器产生的气体为乙烯时,可以选择乙烯燃料电池等作为微型电池。
根据本发明的一些实施方式,所述微型电池的数量为一个或多数个。具体的,可以根据超级电容器使用过程中产生的气体的量进行合理选择,当产生气体量多,一个微型电池不足以将所有的气体捕获时,可以同时使用多数个微型电池。
根据本发明的一些实施方式,所述微型电池的种类为一种或多数种。具体的,可以根据超级电容器使用过程中产生的气体的种类进行合理选择,当产生气体的种类多,一种微型电池不足以将所有的气体捕获时,可以同时使用多数种微型电池。
根据本发明的一些实施方式,所述超级电容器的种类包括双电层电容器、赝电容器、混合型电容器及电池型超级电容器。
所述双电层电容器是指在电极与电解液界面间形成双电荷层来储存能量的超级电容器。
所述赝电容器是指在电极表面或体相中的二维或准二维空间上,电极与电解液发生高度可逆的法拉第氧化还原反应来储存能量的超级电容器。
所述混合型电容器是指在两个电极中,一个电极通过与电解液界面间形成双电荷层来储存能量,另一个电极通过与电解液发生高度可逆的法拉第氧化还原反应来储存能量的超级电容器。
所述电池型超级电容器是指在任一电极或两个电极中兼有双电荷层及高度可逆的法拉第氧化还原反应来储存能量的超级电容器。
根据本发明的一些实施方式,所述超级电容器为方形和/或圆形。
根据本发明的一些实施方式,所述超级电容器为单体或模组。当所述超级电容器为单体时,如图1和图3所示;当所述超级电容器为模组时,如图2和图4所示。
根据本发明的一些实施方式,所述超级电容器之间为串联和/或并联。
在一些实施方式中,所述超级电容器额定容量为1F-1000000F,额定电压为2.3V-800V。
根据本发明的一些实施方式,所述超级电容器包括电芯、外壳和电解液,其中,电芯包括电极和隔膜。
根据本发明的一些实施方式,所述电极用活性材料选自活性炭、活性炭纤维、炭纳米管、石墨烯、碳气凝胶、碳纳米管、碳纤维、碳碳复合材料、氧化钌、氧化铁、羟基氧化镍、二氧化锰、聚苯胺、聚吡咯、和聚3,4-乙烯二氧噻吩、磷酸铁锂、钴酸锂、锰酸锂、镍钴锰酸锂、钛酸锂和石墨中的任意一种或其组合。
根据本发明的一些实施方式,所述电解液包括电解质和溶剂。
根据本发明的一些实施方式,所述电解质为
Figure PCTCN2018117674-appb-000003
H 2SO 4、KOH、Na 2SO 4、LiClO 4、LiBF 4、LiPF 6中的任意一种。
根据本发明的一些实施方式,所述溶剂为碳酸丙烯酯、乙腈、γ-丁内酯、环丁砜、二甲基亚砜、水、乙醇、异丙醇、丙二醇中的任意一种或其组合。
在一些实施方式中,所述电解质为
Figure PCTCN2018117674-appb-000004
所述溶剂为乙腈;在另一些实施方式中,所述电解质为
Figure PCTCN2018117674-appb-000005
所述溶剂为碳酸丙烯酯。
另一方面,本发明提供一种可降低内压的超级电容器系统的制备方法,包括如下步骤:
1)提供微型电池:直接提供燃料微型电池或提供充电至饱和状态的非燃料微型电池;
2)超级电容器电芯前处理:将电芯浸渍于电解液中吸液至饱和状态;
3)集成过程:
内置式集成:将微型电池和电芯同时封入超级电容器壳内,获得超级电容器系统;或者,
对接式集成:将电芯封入超级电容器壳内,再将微型电池外壳通过连通器与超级电容器外壳对接,获得超级电容器系统。
根据本发明的一些实施方式,在内置式集成过程中,还可以是:将微型电池和电芯同时封入超级电容器壳内,再将多数个超级电容器串联和/或并联,获得超级电容器系统。
根据本发明的一些实施方式,在对接式集成过程中,还可以是:将电芯封入超级电容器壳内,再将多数个超级电容器串联和/或并联,之后再将微型电池外壳通过连通器与每一个超级电容器外壳对接,获得超级电容器系统。
根据本发明的一些实施方式,所述集成过程在干燥的环境中进行,以免超级电容器电芯或电解液与空气接触后迅速吸收水分或反应变质。
在一些实施方式中,所述干燥的环境为真空手套箱或露点低于-65℃的干燥房。
根据本发明的一些实施方式,当所述微型电池为非燃料微型电池时,需要将非燃料微型电池充电至饱和状态。因非燃料微型电池需要在放电过程中才会捕获超级电容器在使用过程中产生的气体,而未经充电的非燃料电池与超级电容器集成后将无法捕获超级电容器在使用过程中产生的气体。
根据本发明的一些实施方式,当所述微型电池为燃料微型电池时,可以不需要前处理即可与电芯集成获得超级电容器系统。
以下所述的是本发明的优选实施方式,本发明所保护的不限于以下优选实施方式。应当指出,对于本领域的技术人员来说在此发明创造构思的基础上,做出的若干变形和改进,都属于本发明的保护范围,为了进一步描述本发明,下面结合具体实施例来说明。
实施例1
1)将1个微型锂-二氧化碳二次电池充电至饱和状态,将超级电容器电芯浸渍于1M
Figure PCTCN2018117674-appb-000006
与碳酸丙烯酯的电解液中,在露点低于-65℃的干燥房中将充电至饱和状态的微型锂-二氧化碳二次电池、微型一氧化碳燃料电池、微型氢氧燃料电池各1个与饱和浸渍的超级电容器电芯同时封入350F超级电容器壳内,获得2.5V 350F超级电容器系统,按同样的方法组装出2.5V 350F超级电容器系统20个;
2)将步骤1)所得带有微型电池的20个超级电容器系统置于恒温恒湿烘箱中以70℃鼓风烘烤12h,在2.5V下对每一个超级电容器老化24h,测试每一个超级电容器的初始容量及直流内阻,计算初始容量及直流内阻的平均值;
3)随机选取10个步骤2)所得老化后的超级电容器系统,继续置于恒温恒湿烘箱中以70℃鼓风烘烤,在2.5V下对每一个超级电容器恒压通电1000h,观察超级电容器是否发生起鼓,测试恒压通电1000h后每一个超级电容器的容量及直流内阻,计算容量及直流内阻的平均值;另取10个步骤2)所得老化后的超级电容器系统,先对每一个超级电容器以17.5A恒流充电至2.5V,再以17.5A恒流放电至1.25V,并按此充放电条件循环100万次,观察超级电容器是否发生起鼓,测试每一个超级电容器的容量及直流内阻,计算容量及直流内阻的平均值。
测试结果如表1所示。
实施例2
1)将1个微型锂-二氧化碳二次电池充电至饱和状态,将超级电容器电芯浸渍于1M
Figure PCTCN2018117674-appb-000007
与乙腈的电解液中,在露点低于-65℃的干燥房中将充电至饱和状态的微型锂-二氧化碳二次电池与饱和浸渍的超级电容器电芯同时封入3000F超级电容器壳内,获得2.7V 3000F超级电容器系统,按同样的方法组装出2.7V 3000F超级电容器系统20个;
2)将步骤1)所得带有微型电池的20个超级电容器系统置于恒温恒湿烘箱中以65℃鼓风烘烤12h,在2.7V下对每一个超级电容器老化24h,测试每一个超级电容器的初始容量及直流内阻,计算初始容量及直流内阻的平均值;
3)随机选取10个步骤2)所得老化后的超级电容器系统,继续置于恒温恒湿烘箱中以65℃鼓风烘烤,在2.7V下对每一个超级电容器恒压通电1000h,观察超级电容器是否发生起鼓,测试恒压通电1000h后每一个超级电容器的容量及直流内阻,计算容量及直流内阻的平均值;另取10个步骤2)所得老化后的超级电容器系统,先对每一个超级电容器以150A恒流充电至2.7V,再以150A恒流放电至1.35V,并按此充放电条件循环100万次,观察超级电容器是否发生起鼓,测试每一个超级电容器的容量及直流内阻,计算容量及直流内阻的 平均值。
测试结果如表1所示。
实施例3
1)将3个微型锂-二氧化碳二次电池充电至饱和状态,将36个超级电容器电芯浸渍于1M
Figure PCTCN2018117674-appb-000008
与乙腈的电解液中,将36个饱和浸渍的超级电容器电芯分别封入350F超级电容器壳内,然后串联,在干燥的环境中将这3个充电至饱和状态的微型锂-二氧化碳二次电池通过连通器与36个串联的350F超级电容器外壳对接,获得90V 9.6F超级电容器系统,按同样的方法组装出90V 9.6F超级电容器系统20套;
2)将步骤1)所得带有微型电池的20套超级电容器系统置于恒温恒湿烘箱中以65℃鼓风烘烤12h,在90V下对每一套超级电容器老化24h,测试每一套超级电容器的初始容量及直流内阻,计算初始容量及直流内阻的平均值;
3)随机选取10套步骤2)所得老化后的超级电容器系统,继续置于恒温恒湿烘箱中以65℃鼓风烘烤,在90V对每一套超级电容器恒压通电1000h,观察超级电容器是否发生起鼓,测试恒压通电1000h后每一套超级电容器的容量及直流内阻,计算容量及直流内阻的平均值;另取10套步骤2)所得老化后的超级电容器系统,先对每一套超级电容器以0.48A恒流充电至90V,再以0.48A恒流放电至45V,并按此充放电条件循环100万次,观察超级电容器是否发生起鼓,测试每一套超级电容器的容量及直流内阻,计算容量及直流内阻的平均值。
测试结果如表1所示。
对比例1
1)将超级电容器电芯浸渍于1M
Figure PCTCN2018117674-appb-000009
与碳酸丙烯酯的电解液中,在露点低于-65℃的干燥房中,将饱和浸渍的超级电容器电芯封入350F超级电容器壳内,获得2.5V 350F超级电容器,按同样的方法组装出2.5V 350F超级电容器20个;
2)将步骤1)所得的20个超级电容器置于恒温恒湿烘箱中以70℃鼓风烘烤12h,在2.5V下对每一个超级电容器老化24h,测试每一个超级电容器的初始容量及直流内阻,计算初始容量及直流内阻的平均值;
3)随机选取10个步骤2)所得老化后的超级电容器,继续置于恒温恒湿烘箱中以70℃鼓风烘烤,在2.5V下对每一个超级电容器恒压通电1000h,观察超级电容器是否发生起鼓,测试恒压通电1000h后每一个超级电容器的容量及直流内阻,计算容量及直流内阻的平均值;另取10个步骤2)所得老化后的超级电容器,先对每一个超级电容器以17.5A恒流充电至2.5V,再以17.5A恒流放电至1.25V,并按此充放电条件循环100万次,观察超级电容器是否发生起鼓,测试每一个超级电容器的容量及直流内阻,计算容量及直流内阻的平均值。
测试结果如表1所示。
表1 超级电容器电性能测试数据
Figure PCTCN2018117674-appb-000010
根据表1的测试结果,采用在超级电容器壳内设置微型电池,或将超级电容器通过连通器与微型电池相对接,获得超级电容器系统。利用微型电池捕获超级电容器在使用过程中产生的气体,使得获得的超级电容器系统经高温负荷1000h或循环100万次后均未发生起鼓,超级电容器容量衰减均不超过初始值的15%,直流内阻增加均不超过初始值的20%。根据对比例1的测试结果,采用常规方法组装的超级电容器经高温负荷1000小时或循环100万次后均发生起鼓,超级电容器容量衰减为初始值的26%,直流内阻增加为初始值的34.5%。说明本发明提供的超级电容器系统可显著降低超级电容器内压,不仅从根本上解决了超级电容器经老化或高温负荷后起鼓和爆浆问题,而且在最大程度上减缓了超级电容器的容量衰减及内阻增加,提高了超级电容器使用的安全性及可靠性。

Claims (11)

  1. 一种可降低内压的超级电容器系统,其特征在于,包括超级电容器和微型电池,所述超级电容器与所述微型电池的连接方式为内置式或对接式,所述内置式是将所述微型电池置于所述超级电容器内部;所述对接式是将所述微型电池的外壳通过连通器与所述超级电容器的外壳相对接。
  2. 根据权利要求1所述的可降低内压的超级电容器系统,其特征在于,所述微型电池选自金属-二氧化碳一次电池、金属-二氧化碳二次电池、一氧化碳燃料电池、氢氧燃料电池、乙烯燃料电池、丙烯燃料电池、镍氢电池和金属-空气电池中的任意一种或其组合,所述金属选自锂、钠、钾、钙、镁、铝和锌中的任意一种或其组合。
  3. 根据权利要求1或2所述的可降低内压的超级电容器系统,其特征在于,所述微型电池的数量为一个或多数个,所述微型电池的种类为一种或多数种。
  4. 根据权利要求1-3任一项所述的可降低内压的超级电容器系统,其特征在于,所述超级电容器的种类包括双电层电容器、赝电容器、混合型电容器及电池型超级电容器。
  5. 根据权利要求1-4任一项所述的可降低内压的超级电容器系统,其特征在于,所述超级电容器为单体或模组。
  6. 根据权利要求1-5任一项所述的可降低内压的超级电容器系统,其特征在于,所述超级电容器包括电芯、外壳和电解液,所述电芯包括电极和隔膜。
  7. 根据权利要求6所述的可降低内压的超级电容器系统,其特征在于,所述电极用活性材料选自活性炭、活性炭纤维、炭纳米管、石墨烯、碳气凝胶、碳纳米管、碳纤维、碳碳复合材料、氧化钌、氧化铁、羟基氧化镍、二氧化锰、聚苯胺、聚吡咯、聚3,4-乙烯二氧噻吩、磷酸铁锂、钴酸锂、锰酸锂、镍钴锰酸锂、钛酸锂和石墨中的任意一种或其组合。
  8. 根据权利要求6所述的可降低内压的超级电容器系统,其特征在于,所述电解液包括电解质和溶剂,所述电解质为
    Figure PCTCN2018117674-appb-100001
    H 2SO 4、KOH、Na 2SO 4、LiClO 4、LiBF 4、LiPF 6中的任意一种;所述溶剂为碳酸丙烯酯、乙腈、γ-丁内酯、环丁砜、二甲基亚砜、水、乙醇、异丙醇、丙二醇中的任意一种或其组合。
  9. 根据权利要求1所述的可降低内压的超级电容器系统的制备方法,其特征在于,包括如下步骤:
    1)提供微型电池:直接提供燃料微型电池和/或提供充电至饱和状态的非燃料微型电池;
    2)超级电容器电芯前处理:将电芯浸渍于电解液中吸液至饱和状态;
    3)集成过程:
    内置式集成:将微型电池和电芯同时封入超级电容器壳内,获得超级电容器系统;或者,
    对接式集成:将电芯封入超级电容器壳内,再将微型电池外壳通过连通器与超级电容器外壳对接,获得超级电容器系统。
  10. 根据权利要求9所述的可降低内压的超级电容器系统的制备方法,其特征在于,所述内置式集成,还可以是:将微型电池和电芯同时封入超级电容器壳内,再将超级电容器串联和/或并联,获得超级电容器系统;或者,
    所述对接式集成,还可以是:将电芯封入超级电容器壳内,再将超级电容器串联和/或并联,之后再将微型电池外壳与超级电容器外壳通过连通器对接,获得超级电容器系统。
  11. 根据权利要求9或10所述的可降低内压的超级电容器系统的制备方法,其特征在于,所述集成过程在干燥的环境中进行,所述干燥的环境为真空手套箱或露点低于-65℃的干燥房。
PCT/CN2018/117674 2017-11-28 2018-11-27 一种可降低内压的超级电容器系统及其制备方法 WO2019105339A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880036463.XA CN110770864B (zh) 2017-11-28 2018-11-27 一种可降低内压的超级电容器系统及其制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711209681 2017-11-28
CN201711209681.2 2017-11-28

Publications (1)

Publication Number Publication Date
WO2019105339A1 true WO2019105339A1 (zh) 2019-06-06

Family

ID=66663800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117674 WO2019105339A1 (zh) 2017-11-28 2018-11-27 一种可降低内压的超级电容器系统及其制备方法

Country Status (2)

Country Link
CN (1) CN110770864B (zh)
WO (1) WO2019105339A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101313379A (zh) * 2006-01-16 2008-11-26 工程吸气公司 含有吸附有害物质的装置的电解电容器
CN101341562A (zh) * 2005-11-22 2009-01-07 麦斯韦尔技术股份有限公司 超级电容器压力控制系统
CN101826624A (zh) * 2009-03-02 2010-09-08 中永有限公司 无汞碱性钮扣电池
JP2012069404A (ja) * 2010-09-24 2012-04-05 Nissan Motor Co Ltd 電気デバイス及び電気デバイス用ガス抜き装置並びに電気デバイスのガス抜き方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5636634B2 (ja) * 2009-02-25 2014-12-10 トヨタ自動車株式会社 電極板加圧装置
KR101310435B1 (ko) * 2010-12-20 2013-09-24 삼성전기주식회사 에너지 저장 장치용 에어 밸브 및 이를 포함하는 에너지 저장 장치
KR20130023621A (ko) * 2011-08-29 2013-03-08 삼성전기주식회사 에너지 저장장치용 에어밸브 및 이를 포함하는 에너지 저장장치
EP3389065B1 (en) * 2013-08-07 2019-11-20 Ls Mtron Ltd. Ultra capacitor module
CN203787293U (zh) * 2014-03-12 2014-08-20 中国科学院大连化学物理研究所 一种软硬组合封装的储能装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101341562A (zh) * 2005-11-22 2009-01-07 麦斯韦尔技术股份有限公司 超级电容器压力控制系统
CN101313379A (zh) * 2006-01-16 2008-11-26 工程吸气公司 含有吸附有害物质的装置的电解电容器
CN101826624A (zh) * 2009-03-02 2010-09-08 中永有限公司 无汞碱性钮扣电池
JP2012069404A (ja) * 2010-09-24 2012-04-05 Nissan Motor Co Ltd 電気デバイス及び電気デバイス用ガス抜き装置並びに電気デバイスのガス抜き方法

Also Published As

Publication number Publication date
CN110770864A (zh) 2020-02-07
CN110770864B (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
CA2677940C (en) Electrochemical supercapacitor/lead-acid battery hybrid electrical energy storage device
US6466429B1 (en) Electric double layer capacitor
EP1120850A1 (en) Lithium secondary cell and device
US20050002150A1 (en) Positive electrode of an Electric Double Layer capacitor
CN101894681B (zh) 双电层电容器电极片及其双电层电容器的制备方法
EP3352187B1 (en) Electric double layer capacitor
WO2020118880A1 (zh) 一种基于石墨正极和锌负极的混合型超级电容器
JP5855893B2 (ja) 非水系リチウム型蓄電素子の製造方法
JP2007266064A (ja) 電気二重層キャパシタ
KR20150028787A (ko) 전극 보호막 형성제
KR100189808B1 (ko) 권취 극판군
KR101098240B1 (ko) 슈퍼커패시터 셀의 제조방법
WO2019105339A1 (zh) 一种可降低内压的超级电容器系统及其制备方法
JP2000124081A (ja) 電気二重層キャパシタ
KR102410490B1 (ko) 파우치형 전기이중층 커패시터
JP2012064820A (ja) リチウムイオンキャパシタの製造方法
KR101008795B1 (ko) 에너지 저장장치
JP2008166309A (ja) リチウムイオンキャパシタ
CN104157471A (zh) 一种超级电容器用电芯的干燥方法
JP2008041489A (ja) リチウムイオン蓄電素子
WO2014077393A1 (ja) Cnt・不織布合成体キャパシタ
WO2007077906A1 (ja) 非水系キャパシタ及びその製造方法
JPH11121040A (ja) リチウム二次電池
KR102631343B1 (ko) 하이브리드 이온 커패시터 및 이의 제조방법
JP3182167U (ja) コイン型カーボンナノチューブフィルムキャパシタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18884329

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/10/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18884329

Country of ref document: EP

Kind code of ref document: A1