WO2019105066A1 - 处理路由的方法和装置、以及数据传输的方法和装置 - Google Patents

处理路由的方法和装置、以及数据传输的方法和装置 Download PDF

Info

Publication number
WO2019105066A1
WO2019105066A1 PCT/CN2018/100443 CN2018100443W WO2019105066A1 WO 2019105066 A1 WO2019105066 A1 WO 2019105066A1 CN 2018100443 W CN2018100443 W CN 2018100443W WO 2019105066 A1 WO2019105066 A1 WO 2019105066A1
Authority
WO
WIPO (PCT)
Prior art keywords
srv6
sid
path
vpn
packet
Prior art date
Application number
PCT/CN2018/100443
Other languages
English (en)
French (fr)
Inventor
王海波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18883637.3A priority Critical patent/EP3713162A4/en
Publication of WO2019105066A1 publication Critical patent/WO2019105066A1/zh
Priority to US16/887,991 priority patent/US11533249B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4604LAN interconnection over a backbone network, e.g. Internet, Frame Relay
    • H04L12/462LAN interconnection over a bridge based backbone
    • H04L12/4625Single bridge functionality, e.g. connection of two networks over a single bridge
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4641Virtual LANs, VLANs, e.g. virtual private networks [VPN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4641Virtual LANs, VLANs, e.g. virtual private networks [VPN]
    • H04L12/4675Dynamic sharing of VLAN information amongst network nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • H04L45/03Topology update or discovery by updating link state protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • H04L45/04Interdomain routing, e.g. hierarchical routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/34Source routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/02Network architectures or network communication protocols for network security for separating internal from external traffic, e.g. firewalls
    • H04L63/0272Virtual private networks

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method and apparatus for processing a route, and a method and apparatus for data transmission.
  • a user edge (PE) device in a virtual private network (VPN) is connected to a Provider Edge (PE) device through a multi-homing device.
  • the CE device is connected to multiple PEs at the same time.
  • the other CE devices have multiple paths to the CE device.
  • the source CE device sends a packet to the PE device connected to the source CE device.
  • the PE device connected to the source CE device can reach the destination CE.
  • a path of the transmitted packet is determined in multiple paths of the device, and the packet is transmitted through the path.
  • BFD Bidirectional Forwarding Detection
  • each PE device in the VPN accesses multiple CE devices.
  • Each PE device establishes a path with multiple other PE devices on the network.
  • the PEs that establish paths with each other need to be deployed with BFD. Therefore, the number of BFDs that can be set up between each PE device can reach the number of paths established between the PEs and other PEs.
  • Each PE device needs to deploy more BFDs and consumes too many resources.
  • the present application provides a method and device for processing a route, and a method and a device for transmitting data, which can effectively reduce the number of BFDs configured on each PE.
  • the present application provides a method for processing a route, which is used to carry an Internet Protocol Version 6 Segment Routing-based Virtual Private Network (SRV6-based VPN).
  • the network includes a first CE device, a second CE device, an ingress PE device, N egress PE devices, at least one carrier (Provider, P) device, and the first CE.
  • the device is connected to the ingress PE device, and the second CE device is connected to the N egress PE devices.
  • the ingress PE device is connected to the N egress PE devices through the at least one P device.
  • the first CE device and the second CE device belong to the same VPN
  • the N egress PE devices include a first PE device and a second PE device
  • the first PE device is configured with the first sixth edition Internet protocol.
  • the Internet Protocol Version 6 Segment Routing (SRv6) VPN segment identifier (SID) is used to identify the VPN to which the second CE device belongs or the A PE is connected to the outbound interface of the second CE device
  • the second PE device is configured with a second SRv6 VPN SID and a third SRv6 VPN SID
  • the second SRv6 VPN SID and the third SRv6 VPN SID are used to identify the The VPN to which the second CE device belongs or the second PE device is connected to the outbound interface of the second CE device, where N is an integer greater than or equal to 2.
  • the method includes: the first PE device receives a first VPN route sent by the second PE device, where the first VPN route includes the second SRv6 VPN SID and the third SRv6 VPN SID; Determining, by the first PE device, that the second SRv6 VPN SID is the same as the first SRv6 VPN SID; the first PE device establishing, according to the third SRv6 VPN SID in the first VPN route, from the first a second path from the PE device to the second PE device, where the second path is used by the first PE when the first path directly connected to the first PE device and the second CE device fails The device is configured to forward the packet to the second CE device.
  • the second SRv6 VPN SID is the same as the first SRv6 VPN SID, so the path to the first SRv6 VPN SID includes two paths to the first PE device and the second PE device, respectively. Therefore, when the packet sent by the first CE device to the second CE device is transmitted, if the fifth path of the first PE is faulty, the sixth path to the second PE device may be determined, and then the packet may be switched to the first path. The six paths are transmitted to the second PE device, so that the second PE device can send the message to the second CE device. When the first CE device sends a packet to the second CE device, the PE device may not detect whether the PE device is faulty in the path but not during the packet transmission process.
  • the device When the PE device is faulty, the device sends a packet to the PE device with the same SRv6 VPN SID as the PE device. Therefore, the device does not need to deploy BFD to detect faults.
  • the BFD is not required to detect faults between the PEs and the PEs. This reduces the number of BFDs deployed on the PEs, reduces the resources of the PEs occupied by the BFDs, and reduces the fault detection when the PEs determine the path. Time, increase the speed of path switching.
  • the second PE device is configured with a third SRv6 VPN SID that is different from the first SRv6 VPN SID, and the first PE device can establish a second path by using the third SRv6 VPN SID in the first VPN route.
  • the packet transmitted by the first PE device to the second CE device can be switched to the second path when the path of the first PE device directly connected to the second CE device is faulty, thereby implementing fast path switching and enabling the packet to be forwarded. It can be transmitted to the second CE device, thus achieving multi-homing protection.
  • the method further includes: the first PE device sends a second VPN route to the second PE device, where the second VPN route carries The first SRv6 VPN SID and the fourth SRv6 VPN SID, where the fourth SRv6 VPN SID is used to identify the VPN to which the second CE device belongs or the first PE device to connect to the second CE device An outbound interface, where the fourth SRv6 VPN SID is used by the second PE device to establish a third path from the second PE device to the first PE device, where the third path is in the second PE When the fourth path that is directly connected to the second CE device is faulty, the second PE device is configured to transmit a packet to the second CE device, where the fourth SRv6 VPN SID is the first The SRv6 VPN SID is different, and the first SRv6 VPN SID is the same as the second SRv6 VPN SID saved by the second PE device.
  • the first PE device is configured with the fourth SRv6 VPN SID
  • the second PE device can establish the second path by using the fourth SRv6 VPN SID, so that the packet sent by the second PE device to the second CE device is
  • the packet can be switched to the third path for fast path switching, so that the packet can be transmitted to the second CE device, thereby implementing multi-homing protection.
  • the first VPN route is carried in a Multi-Protocol Border Gateway Protocol
  • the BGP-Prefix-SID attribute field includes the SRV6-VPN SID type length value (type-length-value, TLV).
  • the SRv6-VPN SID TLV field includes a type (type, T) field, a length (length, L) field, and a value (value, V) field, the V field is used to carry the third SRv6 VPN SID.
  • the method further includes: the first PE device receives a first packet, the first packet The packet sent by the first CE device to the second CE device, the outer destination address of the first packet encapsulation is the first SRv6 VPN SID; the first PE device determines the The first path is faulty. The first PE device determines to forward the first packet by using the second path according to the first SRv6 VPN SID and the third SRv6 VPN SID.
  • the packet when the path of the first PE device is transmitted to the second CE device, the packet can be switched to the second path when the path directly connected to the first PE device and the second CE device is faulty.
  • the path is switched so that the message can be transmitted to the second CE device, thereby implementing multi-homing protection.
  • the present application provides a data transmission method, which is used in a network that carries an SRv6-based VPN service, where the network includes a first CE device, a second CE device, an ingress PE device, and N egress PEs.
  • the at least one P device, the first CE device is connected to the ingress PE device, the second CE device is connected to the N egress PE devices, and the ingress PE device passes the at least one P device Communicating with the N egress PE devices, the first CE device and the second CE device are in the same VPN, and the N egress PE devices include a first PE device and a second PE device,
  • the first PE device is configured with a first SRv6 VPN SID, where the first SRv6 VPN SID is used to identify the VPN to which the second CE device belongs or the outbound interface of the first PE device to the second CE device,
  • the second PE device configures the second SRv6 VPN SID and the third SRv6 VPN SID, and the second SRv6 VPN SID and the third SRv6 VPN SID are used to identify the VPN or the second PE device to which the second CE device belongs.
  • the method includes: the first PE device receives a first packet, where the first packet is a packet sent by the first CE device to the second CE device, where the first packet is encapsulated The outer destination address is the first SRv6 VPN SID; the first PE device determines, according to the first SRv6 VPN SID, a first path for forwarding the first packet, where the first path is the a path directly connected between the first PE device and the second CE device; the first PE device determines that the first path is faulty, and the first PE device is configured according to the first SRv6 VPN SID and the saved The third SRv6 VPN SID sent by the second PE device determines to forward the first packet by using the second path, where the first PE device connects to the second PE device by using the second path; The first PE device forwards the first packet to the second CE by using the
  • the second SRv6 VPN SID is the same as the first SRv6 VPN SID, so the path to the first SRv6 VPN SID includes two paths to the first PE device and the second PE device, respectively. Therefore, when the packet sent by the first CE device to the second CE device is transmitted, if the fifth path of the first PE is faulty, the sixth path to the second PE device may be determined, and then the packet may be switched to the first path. The six paths are transmitted to the second PE device, so that the second PE device can send the message to the second CE device. When the first CE device sends a packet to the second CE device, the PE device may not detect whether the PE device is faulty in the path but not during the packet transmission process.
  • the device When the PE device is faulty, the device sends a packet to the PE device with the same SRv6 VPN SID as the PE device. Therefore, the device does not need to deploy BFD to detect faults.
  • the BFD is not required to detect faults between the PEs and the PEs. This reduces the number of BFDs deployed on the PEs, reduces the resources of the PEs occupied by the BFDs, and reduces the fault detection when the PEs determine the path. Time, increase the speed of path switching.
  • the first PE device transmits the first packet to the second CE device, and when the path directly connected between the first PE device and the second CE device is faulty, the first PE device is configured according to the first SRv6 VPN SID and The saved third SRv6 VPN SID sent by the second PE device determines that the first packet is switched to the second path by using the second path, so that fast path switching is performed, so that the packet can be transmitted to the second CE equipment, thus achieving multi-homing protection.
  • the method before the first PE receives the first packet, the method further includes: the first PE device receiving the second PE a first VPN route sent by the device, the first VPN route includes the second SRv6 VPN SID and the third SRv6 VPN SID; the first PE device determines the second SRv6 VPN SID and the first The SRv6 VPN SID is the same; the first PE device establishes the second path according to the third SRv6 VPN SID.
  • the present application provides a method for processing a route, where the method is used in a network that carries an SRv6-based VPN service, where the network includes a first CE device, a second CE device, an ingress PE device, and N egress PEs.
  • the at least one P device, the first CE device is connected to the ingress PE device, the second CE device is connected to the N egress PE devices, and the ingress PE device passes the at least one P device Communicating with the N egress PE devices, the first CE device and the second CE device are in the same VPN, and the N egress PE devices include a first PE device and a second PE device,
  • the first PE device is configured with a first SRv6 VPN SID, where the first SRv6 VPN SID is used to identify the VPN to which the second CE device belongs or the outbound interface of the first PE to the second CE device, where the The second PE device configures the second SRv6 VPN SID, where the second SRv6 VPN SID is used to identify the VPN to which the second CE device belongs or the second PE device to connect to the outbound interface of the second CE device, where the An SRv6 VPN SID is associated with the second SRv6 VPN SID
  • the at least one P device includes a first P device, the first P device is
  • the method includes: the first P device receives a first route sent by the first PE device, where the first route includes a network segment to which the first SRv6 VPN SID belongs; and the first P device receives a a second route sent by the second PE device, where the second route includes a network segment to which the second SRv6 VPN SID belongs; the first P device establishes a secondary network according to the network segment to which the first SRv6 VPN SID belongs a fifth path from the first P device to the first PE device, where the fifth path is used by the first P device to forward a message to the second CE device; The network segment to which the second SRv6 VPN SID belongs establishes a sixth path from the first P device to the second PE device, where the sixth path is used when the fifth path fails.
  • a P device is configured to forward a message to the second CE device.
  • the second SRv6 VPN SID is the same as the first SRv6 VPN SID, so the path of the first P device to the first SRv6 VPN SID includes two paths to the first PE device and the second PE device, respectively. Therefore, when the first P device transmits the packet sent by the first CE device to the second CE device, if the fifth path to the first PE fails, the first P device can determine the sixth path to the second PE device. Then, the packet is switched to the sixth path and transmitted to the second PE device, so that the second PE device can send the packet to the second CE device. When the first CE device sends a packet to the second CE device, the PE device may not detect whether the PE device is faulty in the path but not during the packet transmission process.
  • the device When the PE device is faulty, the device sends a packet to the PE device with the same SRv6 VPN SID as the PE device. Therefore, the device does not need to deploy BFD to detect faults.
  • the BFD is not required to detect faults between the PEs and the PEs. This reduces the number of BFDs deployed on the PEs, reduces the resources of the PEs occupied by the BFDs, and reduces the fault detection when the PEs determine the path. Time, increase the speed of path switching.
  • the method further includes: the first P device receiving the first packet, where the first packet is the first CE device a packet sent by the second CE device, where the outer address of the first packet is the first SRv6 VPN SID; the first P device determines that the fifth path is faulty; the first P The device determines, according to the first SRv6 VPN SID, that the first packet is forwarded by using the sixth path.
  • the present application provides a data transmission method, where the method is used in a network that carries an SRv6-based VPN service, where the network includes a first CE device, a second CE device, an ingress PE device, and N egress PEs.
  • the at least one P device, the first CE device is connected to the ingress PE device, the second CE device is connected to the N egress PE devices, and the ingress PE device passes the at least one P device Communicating with the N egress PE devices, the first CE device and the second CE device are in the same VPN, and the N egress PE devices include a first PE device and a second PE device,
  • the first PE device is configured with a first SRv6 VPN SID, where the first SRv6 VPN SID is used to identify the VPN to which the second CE device belongs or the outbound interface of the first PE to the second CE device, where the The second PE device configures the second SRv6 VPN SID, where the second SRv6 VPN SID is used to identify the VPN to which the second CE device belongs or the second PE device to connect to the outbound interface of the second CE device, where the An SRv6 VPN SID is associated with the second SRv6 VPN SID
  • the at least one P device includes a first P device, the first P device is
  • the method includes: the first P device receives a first packet, where the first packet is a packet sent by the first CE device to the second CE device, and the first packet is encapsulated.
  • the outer destination address is the first SRv6 VPN SID; the first P device determines, according to the first SRv6 VPN SID, a fifth path for transmitting the first packet, where the first P device passes the The fifth path is connected to the first PE device; the first P device determines that the fifth path is faulty, and the first P device determines to forward the first path by using the sixth path according to the first SRv6 VPN SID.
  • a packet the first P device is connected to the second PE by using the sixth path, and the first P device forwards the first packet to the second CE device by using the sixth path.
  • the second SRv6 VPN SID is the same as the first SRv6 VPN SID, so the path of the first P device to the first SRv6 VPN SID includes two paths to the first PE device and the second PE device, respectively. Therefore, when the first P device transmits the packet sent by the first CE device to the second CE device, if the fifth path to the first PE fails, the first P device can determine the sixth path to the second PE device. Then, the packet is switched to the sixth path and transmitted to the second PE device, so that the second PE device can send the packet to the second CE device. When the first CE device sends a packet to the second CE device, the PE device may not detect whether the PE device is faulty in the path but not during the packet transmission process.
  • the device When the PE device is faulty, the device sends a packet to the PE device with the same SRv6 VPN SID as the PE device. Therefore, the device does not need to deploy BFD to detect faults.
  • the BFD is not required to detect faults between the PEs and the PEs. This reduces the number of BFDs deployed on the PEs, reduces the resources of the PEs occupied by the BFDs, and reduces the fault detection when the PEs determine the path. Time, increase the speed of path switching.
  • the method before the first P device receives the first packet, the method further includes: the first P device receiving the first a first route sent by the PE device, where the first route includes a network segment to which the first SRv6 VPN SID belongs; the first P device receives a second route sent by the second PE device, and the second route The network segment to which the second SRv6 VPN SID belongs is included; the first P device establishes the fifth path according to the network segment to which the first SRv6 VPN SID belongs; the first P device is configured according to the second SRv6 The network segment to which the VPN SID belongs establishes the sixth path, where the sixth path is used by the first P device to forward the packet to the second CE device when the fifth path is faulty.
  • the present application provides a PE device, which is used as a first PE device in a network that carries an SRv6-based VPN service, where the network includes a first CE device, a second CE device, and an ingress PE device.
  • the N egress PE devices, the at least one P device, the first CE device is connected to the ingress PE device, and the second CE device is connected to the N egress PE devices, and the ingress PE device passes through the device.
  • the at least one P device is in communication with the N egress PE devices, and the first CE device and the second CE device are in the same VPN, and the N egress PE devices include the first PE device and a second PE device, the first PE device is configured with a first SRv6 VPN SID, the first SRv6 VPN SID is used to identify a VPN to which the second CE device belongs, or the first PE is connected to the second CE device
  • the outbound interface the second PE device is configured with the second SRv6 VPN SID and the third SRv6 VPN SID, and the second SRv6 VPN SID and the third SRv6 VPN SID are both used to identify the VPN to which the second CE device belongs or Connecting the second PE device to the second CE device Port, wherein, N is an integer greater than or equal to 2.
  • the first PE device includes:
  • a receiving unit configured to receive a first VPN route sent by the second PE device, where the first VPN route includes the second SRv6 VPN SID and the third SRv6 VPN SID;
  • a processing unit configured to determine that the second SRv6 VPN SID is the same as the first SRv6 VPN SID
  • the processing unit is further configured to establish a second path from the first PE device to the second PE device according to the third SRv6 VPN SID in the first VPN route, where the second path is When the first path directly connected to the first PE device and the second CE device is faulty, the first PE device is used to forward the packet to the second CE device.
  • the method further includes:
  • a sending unit configured to send a second VPN route to the second PE device, where the second VPN route carries the first SRv6 VPN SID and the fourth SRv6 VPN SID, where the fourth SRv6 VPN SID is used
  • the fourth SRv6 VPN SID is used by the second PE device to establish an egress from the VPN to which the second CE device belongs or the first PE device is connected to the egress interface of the second CE device. a second path from the second PE device to the first PE device, where the third path is faulty when the fourth path directly connected to the second PE device and the second CE device fails.
  • the device is configured to transmit a packet to the second CE device, where the fourth SRv6 VPN SID is different from the first SRv6 VPN SID, and the first SRv6 VPN SID is saved by the second PE device.
  • the two SRv6 VPN SIDs are the same.
  • the first VPN route is carried in a BGP-Prefix-SID attribute field of the MP-BGP message
  • the BGP-Prefix-SID attribute field includes an SRv6-VPN SID TLV field
  • the SRv6-VPN SID TLV field includes a T field, an L field, and a V field, where the V field is used to carry the third SRv6 VPN SID.
  • the receiving unit is further configured to receive a first packet, where the first packet is a packet sent by the first CE device to the second CE device, where the outer address of the first packet is the first SRv6 VPN SID;
  • the processing unit is further configured to determine that the first path is faulty
  • the processing unit is further configured to determine, according to the first SRv6 VPN SID and the third SRv6 VPN SID, that the first packet is forwarded by using the second path.
  • the present application provides a PE device, which is used as a first PE device in a network that carries an SRv6-based VPN service, where the network includes a first CE device, a second CE device, and an ingress PE device.
  • the N egress PE devices, the at least one P device, the first CE device is connected to the ingress PE device, and the second CE device is connected to the N egress PE devices, and the ingress PE device passes through the device.
  • the at least one P device is in communication with the N egress PE devices, and the first CE device and the second CE device are in the same VPN, and the N egress PE devices include the first PE device and a second PE device, the first PE device is configured with a first SRv6 VPN SID, where the first SRv6 VPN SID is used to identify a VPN to which the second CE device belongs or the first PE device is connected to the second CE
  • the outbound interface of the device the second PE device is configured with the second SRv6 VPN SID and the third SRv6 VPN SID, and the second SRv6 VPN SID and the third SRv6 VPN SID are used to identify the VPN to which the second CE device belongs.
  • the second PE device is connected to the second CE device An interface, said first and said second SRv6 VPN SID SRv6 VPN SID same, wherein, N is an integer greater than or equal to 2, the first PE device comprising:
  • a receiving unit configured to receive a first packet, where the first packet is a packet sent by the first CE device to the second CE device, and an outer destination address of the first packet is The first SRv6 VPN SID;
  • a processing unit configured to determine, according to the first SRv6 VPN SID, a first path for forwarding the first packet, where the first path is directly connected by the first PE device and the second CE device path;
  • the processing unit is further configured to determine that the first path is faulty, and the first PE device is configured according to the first SRv6 VPN SID and the saved third SRv6 VPN SID sent by the second PE device. Determining that the first packet is forwarded by using the second path, where the first PE device connects to the second PE device by using the second path;
  • a sending unit configured to forward the first packet to the second CE by using the second path.
  • the receiving unit is further configured to receive a first VPN route that is sent by the second PE device, where the first VPN route includes the second SRv6 VPN SID and the third SRv6 VPN SID;
  • the processing unit is further configured to: when the second SRv6 VPN SID is the same as the first SRv6 VPN SID, establish the second path according to the third SRv6 VPN SID.
  • the present application provides a P device, which is used as a first P device, in a network that carries an SRv6-based VPN service, where the network includes a first CE device, a second CE device, and an ingress PE device.
  • the N egress PE devices, the at least one P device, the first CE device is connected to the ingress PE device, and the second CE device is connected to the N egress PE devices, and the ingress PE device passes through the device.
  • the at least one P device is in communication with the N egress PE devices, where the first CE device and the second CE device belong to the same VPN, and the N egress PE devices include the first PE device and the second a PE device, the first PE device is configured with a first SRv6 VPN SID, and the first SRv6 VPN SID is used to identify a VPN to which the second CE device belongs or the first PE connects to the second CE device.
  • the second PE device configures the second SRv6 VPN SID, and the second SRv6 VPN SID is used to identify the VPN to which the second CE device belongs or the second PE device to connect to the second CE device.
  • the first SRv6 VPN SID and the second SRv6 VPN The SID is the same, the at least one P device includes the first P device, the first P device is a neighbor node of the first PE device, and the first PE device is a next step of the first P device Jump, where N is an integer greater than or equal to 2, the first P device includes:
  • a receiving unit configured to receive a first route sent by the first PE device, where the first route includes a network segment to which the first SRv6 VPN SID belongs;
  • the receiving unit is further configured to receive a second route that is sent by the second PE device, where the second route includes a network segment to which the second SRv6 VPN SID belongs;
  • a processing unit configured to establish, according to the network segment to which the first SRv6 VPN SID belongs, a fifth path from the first P device to the first PE device, where the fifth path is used by the first P device Transmitting a message to the second CE device;
  • the processing unit is further configured to establish, according to the network segment to which the second SRv6 VPN SID belongs, a sixth path from the first P device to the second PE device, where the sixth path is used in the When the five paths fail, the first P device is used to forward the packet to the second CE device.
  • the receiving unit is further configured to receive a first packet, where the first packet is the first CE device to the second CE
  • the destination address of the first packet encapsulated by the device is the first SRv6 VPN SID;
  • the processing unit is further configured to: when the fifth path is faulty, determine, according to the first SRv6 VPN SID, that the first packet is forwarded by using the sixth path.
  • the present application provides a P device, which is used as a first P device in a network that carries an SRv6-based VPN service, where the network includes a first CE device, a second CE device, and an ingress PE device.
  • the N egress PE devices, the at least one P device, the first CE device is connected to the ingress PE device, and the second CE device is connected to the N egress PE devices, and the ingress PE device passes through the device.
  • the at least one P device is in communication with the N egress PE devices, where the first CE device and the second CE device belong to the same VPN, and the N egress PE devices include the first PE device and the second a PE device, the first PE device is configured with a first SRv6 VPN SID, and the first SRv6 VPN SID is used to identify a VPN to which the second CE device belongs or the first PE connects to the second CE device.
  • the second PE device configures the second SRv6 VPN SID, and the second SRv6 VPN SID is used to identify the VPN to which the second CE device belongs or the second PE device to connect to the second CE device.
  • the first SRv6 VPN SID and the second SRv6 VPN The SID is the same, the at least one P device includes the first P device, the first P device is a neighbor node of the first PE device, and the first PE device is a next step of the first P device Jump, where N is an integer greater than or equal to 2, the first P device includes:
  • a receiving unit configured to receive a first packet, where the first packet is a packet sent by the first CE device to the second CE device, and an outer destination address of the first packet is The first SRv6 VPN SID;
  • a processing unit configured to determine, according to the first SRv6 VPN SID, a fifth path for transmitting the first packet, where the first P device connects to the first PE device by using the fifth path;
  • the processing unit is further configured to determine that the fifth path is faulty, and the first P device determines, according to the first SRv6 VPN SID, that the first packet is forwarded by using a sixth path, where the first P device is Connecting the second PE through the sixth path;
  • a sending unit configured to forward the first packet to the second CE device by using the sixth path.
  • the receiving unit is further configured to receive a first route that is sent by the first PE device, where the first route includes the first SRv6 VPN The network segment to which the SID belongs;
  • the receiving unit is further configured to receive a second route that is sent by the second PE device, where the second route includes a network segment to which the second SRv6 VPN SID belongs;
  • the processing unit is further configured to establish the fifth path according to the network segment to which the first SRv6 VPN SID belongs, and establish the sixth path according to the network segment to which the second SRv6 VPN SID belongs, the sixth The path is used by the first P device to forward a message to the second CE device when the fifth path fails.
  • the ninth aspect provides a communication system, comprising the PE device according to any one of the fifth aspect or the fifth aspect, and the implementation of any one of the seventh aspect or the seventh aspect The P device described.
  • the present application provides a communication system, comprising the PE device according to any one of the fifth aspect or the fifth aspect, and the implementation of any one of the eighth aspect or the eighth aspect The P device described.
  • the present application provides a communication system, comprising the PE device according to any one of the sixth aspect or the sixth aspect, and any one of the seventh aspect or the seventh aspect The P device described in the embodiment.
  • the present application provides a communication system, comprising the PE device according to any one of the sixth aspect or the sixth aspect, and any one of the eighth aspect or the eighth aspect The P device described in the embodiment.
  • the application provides a carrier edge PE device, including: a processor, a memory, and a communication interface;
  • the memory, the communication interface is coupled to the processor
  • the memory is for storing computer program code, the computer program code comprising instructions, when the processor executes the instruction, the PE device is configured to perform any of the embodiments of the first aspect or the first aspect The method of processing routing.
  • the application provides a carrier edge PE device, including: a processor, a memory, and a communication interface;
  • the memory, the communication interface is coupled to the processor
  • the memory is for storing computer program code, the computer program code comprising instructions, when the processor executes the instruction, the PE device is configured to perform any one of the second aspect or the second aspect The method of data transmission described.
  • the application provides an operator P device, including: a processor, a memory, and a communication interface;
  • the memory, the communication interface is coupled to the processor
  • the memory is for storing computer program code, the computer program code comprising instructions, when the processor executes the instruction, the P device is configured to perform any one of the third aspect or the third aspect The method of processing routing.
  • the application provides an operator P device, including: a processor, a memory, and a communication interface;
  • the memory, the communication interface is coupled to the processor
  • the memory is for storing computer program code, the computer program code comprising instructions, when the processor executes the instruction, the P device is configured to perform any one of the fourth aspect or the fourth aspect The method of data transmission described.
  • the present application provides a computer readable storage medium, wherein the computer readable storage medium stores instructions that, when executed on a computer, cause the computer to perform the first aspect Or the method of processing a route as described in any one of the first aspects.
  • the application provides a computer readable storage medium, wherein the computer readable storage medium stores instructions, when the instructions are run on a computer, causing the computer to perform the second aspect Or the method of data transmission according to any of the embodiments of the second aspect.
  • the present application provides a computer readable storage medium, wherein the computer readable storage medium stores instructions, when the instructions are run on a computer, causing the computer to perform the third aspect Or the method of processing a route as described in any one of the third aspects.
  • the present application provides a computer readable storage medium, wherein the computer readable storage medium stores instructions, when the instructions are run on a computer, causing the computer to perform the fourth aspect Or the method of data transmission according to any one of the fourth aspects.
  • FIG. 1 is a schematic diagram of a network architecture of an SRv6 according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a network architecture for carrying an SRv6-based VPN service according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a method for processing a route according to an embodiment of the invention.
  • FIG. 4 is a schematic flowchart of a method for data transmission according to an embodiment of the invention.
  • FIG. 5 is a schematic flowchart of a method for processing a route according to another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of fields in a BGP-Prefix-SID attribute according to another embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of a method for data transmission according to another embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of a PE device according to an embodiment of the invention.
  • FIG. 9 is a schematic block diagram of still another PE device according to an embodiment of the invention.
  • FIG. 10 is a schematic block diagram of a PE device according to another embodiment of the present invention.
  • FIG. 11 is a schematic block diagram of a P device according to an embodiment of the invention.
  • FIG. 12 is a schematic block diagram of a P device according to another embodiment of the present invention.
  • FIG. 13 is a schematic block diagram of a PE device according to another embodiment of the present invention.
  • FIG. 14 is a schematic block diagram of a PE device according to another embodiment of the present invention.
  • FIG. 15 is a schematic block diagram of a P device according to another embodiment of the present invention.
  • FIG. 16 is a schematic block diagram of a P device according to another embodiment of the present invention.
  • SRv6-based VPN technology involved in this application can be found in the Internet Engineering Task Force (IETF) draft "BGP Signaling of Ipv6-Segment-Routing-based VPN networks draft-dawra-idr-srv6- The description of vpn-02.txt", the contents of this draft are incorporated and incorporated by reference in its entirety.
  • IETF Internet Engineering Task Force
  • the source host is connected to the source PE.
  • the source PE is connected to the destination PE through node 1 and node 2.
  • the destination PE is connected to the destination host.
  • the SRv6 network is a network architecture consisting of segment routing (SR) tunnel encapsulation technology based on the Internet Protocol Version 6, IPv6 network.
  • the SR tunneling technology is a tunnel encapsulation technology based on the Interior Gateway Protocol (IGP) extension.
  • IGP Interior Gateway Protocol
  • the segment is substantially a segment identifier used to identify the corresponding route, for example, an IPv6 address for identifying a link or a next hop, and Routing is a route, and thus can be defined as a Segment of Routing, which is simply called Segment. Routing (SR).
  • SR Segment routing
  • the implementation mode of the SR includes, but is not limited to, a Segment Routing Traffic Engineering (SR-TE) mode and a Segment Routing Best Effort (SR-BE) mode.
  • SR-TE Segment Routing Traffic Engineering
  • SR-BE Segment Routing Best Effort
  • a network constructed based on the SR-BE tunnel technology marks the service forwarding path by setting an outer tunnel address and an inner tunnel address.
  • the outer tunnel address may be, for example, an IPv6 address of the tunnel destination node device
  • the inner tunnel address may be an IPv6 address of the tunnel source node device.
  • the packet encapsulation path based on the SR-BE tunnel can be used to control the packet forwarding path to the destination node device.
  • the configuration related to the intermediate path and the path switching can be simplified, and only the outer tunnel address indicating the source node device to the destination node device can be configured.
  • Multi-homing protection based on SR-BE technology is widely used.
  • the source PE is the SR tunnel source node
  • the destination PE is the SR tunnel destination node.
  • the source PE, node 1, node 2, and destination PE form a data transmission SR tunnel.
  • the source PE connects to the source host through interface 1.
  • the destination PE is connected to the destination host.
  • the IP address of the source PE is A
  • the IP address of the destination PE is B.
  • the source PE When the source PE receives a packet from the source host to the destination host, the source PE searches for the VPN routing forwarding table associated with interface 1.
  • the virtual routing forwarding (VRF) routing table determines the tunnel information associated with the route, and encapsulates the packet.
  • the source encapsulates the source host address and the destination host address of the packet.
  • the outer layer encapsulates the IPv6 packet header.
  • the destination address of the outer layer encapsulated in the header is the IP address of the destination PE of the tunnel.
  • the source address of the inner layer of the IPv6 packet header is the IPv6 address A of the source PE of the tunnel.
  • the packet is forwarded to the destination host based on the outer-layer destination address in the IPv6 packet header.
  • the destination PE is the destination PE. After the destination PE removes the IPv6 packet header, the destination PE sends the packet to the destination host.
  • the SR-TE tunnel-based network is an SR tunnel encapsulation technology that strictly constrains the forwarding path. That is, between the source PE and the destination PE, each node through which the forwarding path passes is strictly constrained.
  • the source PE is the SR tunnel source node
  • the destination PE is the SR tunnel destination node device
  • the source PE, node 1, node 2, and destination PE are the SR tunnels that transmit data.
  • the source PE passes the interface 1 and the source.
  • the host is connected, and the destination PE is connected to the destination host.
  • the IP address of the source PE is A
  • the IP address of the destination PE is B.
  • the tunnel information associated with the route encapsulates the packet based on the tunnel information.
  • the inner layer of the packet encapsulates the source host address and the destination host address.
  • the outer layer encapsulates the SR tunnel to specify the address of the passing node. That is, the tunnel information specifies the path through node 1 and node 2 to the destination PE.
  • the addresses of the node 1, the node 2, and the destination PE are encapsulated in order, thereby determining the transmission path of the message.
  • the IPv6 packet header is encapsulated on the outermost side of the packet.
  • the outer destination address encapsulated in the IPv6 packet header is the address of the next hop node (the address of node 1) that the source PE transmits the packet through the SR tunnel.
  • the inner source address of the header is the IPv6 address A of the source PE of the tunnel.
  • the node 1 receives the packet sent by the source PE, specifies the address of the next hop through the address of the node encapsulated by the packet, and determines the next hop node (node 2) according to the longest matching principle, and then modifies the packet.
  • the outer destination address of the outermost IPv6 packet header is the address of the next hop node of node 1 (the address of node 2), and the packet is sent to node 2.
  • the node 2 specifies the address of the next hop through the address of the node encapsulated by the packet, and determines the next hop node (the destination PE) according to the longest matching principle.
  • the node 2 is based on the SR tunnel. Specifying the address of the passing node can also be used to determine that it is the penultimate hop node of the SR tunnel. Then, the SR tunnel encapsulated by the packet is removed to specify the address of the passing node, and the outer destination address of the outermost IPv6 packet header is modified. For the destination PE, the packet is sent to the destination PE to complete the process of forwarding the packet in the SR tunnel. After the destination PE removes the IPv6 header of the packet, the destination PE sends the packet to the destination host.
  • the possible SRv6-based VPN network is exemplarily described below in conjunction with the network scenario shown in FIG. 2. It will be understood by those skilled in the art that the exemplary description in FIG. 2 is only for the dual-homing scenario, and should not be construed as limiting the present application.
  • the CE device can be connected to three or more egress PE devices. This application is not described here.
  • PE1 and PE2 belong to the egress PE.
  • PE3 and PE4 belong to the ingress PE.
  • PE3 is connected to PE1 through P1
  • PE3 is connected to PE2 through P1 and P2
  • PE4 is connected to PE2 through P2
  • PE4 is connected to PE1 through P2 and P1.
  • CE1 is dual-homed to PE3 and PE4, and CE2 is dual-connected to PE1 and PE2.
  • CE1 and CE2 belong to the same VPN. It should be noted that, in this application, the ingress PE device and the source PE device are frequently used alternately, and the egress PE device and the destination PE device are often used alternately.
  • the SRv6 VPN SID configured on PE1 is identified by IPv6 address A and IPv6 address B configured on PE2.
  • Address A is used to identify the VPN to which CE2 belongs in PE1, or to identify the outbound interface of PE1 to CE2.
  • Address B is used to identify the VPN to which CE2 belongs in PE2, or to identify the outbound interface of PE2 to CE2. Different from address B.
  • CE1 When CE1 sends a packet to CE2, CE1 first sends the packet sent to CE2 to PE3.
  • PE3 can forward the packet sent by CE1 to CE2 through the tunnel technology such as SR-BE.
  • the tunnel technology such as SR-BE.
  • PE3 determines to transmit the packets sent by CE1 through P1 and PE1.
  • the outer destination address of the outermost IPv6 packet header of the packet is the address A.
  • P1 determines the next hop node according to the outer destination address in the outermost IPv6 packet header of the packet. If the PE1 is faulty, the packet cannot be transmitted between P1 and PE1. Therefore, P1 needs to switch the packet to the path where PE4 is located to transmit the packet.
  • P1 modifies the outer destination address of the packet encapsulation to address B.
  • the PE4 After receiving the packet, the PE4 searches for the corresponding VRF table according to the address B, and finds the VPN identified by the address B. However, because the VPN identified by the address B is different from the VPN identified by the address A of the PE3 device, the PE4 cannot determine the packet. If the correct transmission path is generated, the PE4 cannot continue to transmit packets, so that the packets cannot be transmitted to CE2, and the multi-homing protection cannot take effect.
  • the PE3 needs to detect whether the outbound PE device of the path is faulty, that is, the PE3 determines that the PE1 is faulty after transmitting the packet sent by CE1 through P1 and PE1. . If PE1 is faulty, PE3 needs to perform path switching and switch packets to other paths for transmission. This prevents packets from being transmitted to CE2 due to PE1 faults.
  • PE3 determines whether PE1 is faulty through BFD between PE1 and PE1. If PE1 is faulty, you need to perform path switching.
  • the process of transmitting the packet between the CE1 and the CE2 is as follows:
  • the PE3 needs to configure the BFD between the PEs to detect whether the path is faulty, so as to ensure that the packet can be transmitted normally.
  • the BFD session is required to be configured between each PE device and other PE devices.
  • the BFD session can be quickly detected. As a result, more BFDs are deployed on each PE device.
  • the interface-based BFD is configured on the neighboring devices to detect whether the link between the neighboring devices is faulty.
  • the PE1 determines that the packet sent by the CE1 is transmitted through the P1, the BFD between the PE3 and the P1 is faulty. Therefore, PE3 needs to perform two-layer fault detection when determining the path of the packet sent by CE1.
  • One layer is fault detection between PE3 and P1, and the other layer is fault detection between PE3 and PE1.
  • fault detection between PE3 and P1 is usually performed preferentially. When there is no fault between PE3 and P1, fault detection between PE3 and PE1 is performed to ensure the accuracy of path fault detection. Therefore, PE3 needs to consume two layers of fault detection and switching paths during the entire process of path switching.
  • fault detection between PE3 and P1 it is generally required to detect 3 cycles to determine whether the link is faulty. Each cycle requires 10 milliseconds (ms), and the fault detection between PE3 and P1 usually takes 30 ms.
  • the period of fault detection between PE3 and PE1 is greater than the period of fault detection between PE3 and P1, that is, it needs to be at least 30 ms.
  • three cycles are required for detection.
  • PE3 and PE1 are required.
  • Inter-fault detection requires at least 90ms. In combination with the above process, combined with the time of the switching path, PE3 needs at least 100 ms to determine the fault and complete the path switching process.
  • the embodiment of the present invention provides a method, which can be applied to the network scenario shown in FIG. 2, for implementing multi-homing protection in a network carrying an SRv6-based VPN service, and effectively reducing PE device deployment.
  • the method and apparatus provided by the embodiments of the present invention may be used in a network that carries an SRv6-based VPN service.
  • the network may include, but is not limited to, the following devices: a PE device, a P device, and a CE device.
  • the PE device and the P device are devices in the carrier network that provides the SRv6-based VPN service
  • the CE device is the device in the customer network to which the SRv6-based VPN service is applied.
  • the PE device can be divided into an ingress PE device and an egress PE device according to the direction of data transmission.
  • the ingress PE device is an ingress PE device on the public network.
  • the source CE device is connected according to the data transmission direction.
  • PE device It is a source PE device; a PE device is connected to a destination CE device (or a sink CE), so it can also be called a destination PE or a sink PE.
  • the distinction between the incoming PE device and the outgoing PE device is related to the direction of data transmission.
  • the PE device can be connected to the PE device through at least one P device. When the CE device is connected to the PE device, multiple PEs can be connected.
  • the CE device may include the first CE device and the second CE device, where the first CE device and the second CE device belong to the same VPN.
  • the data transmission direction is that the first CE device transmits data to the second CE device, the first CE device is connected to the ingress PE device, the second CE device is connected to the N egress PE devices, and the ingress PE device passes at least one P device and the N device.
  • Egress PE device communication connection The first e-PE device includes the first PE device and the second PE device, and the at least one P device includes the first P device, the first P device is the neighboring node of the first PE device, and the first PE device is the first P device. Next hop.
  • N is an integer greater than or equal to 2.
  • the network carrying the SRv6-based VPN service can access multiple services, for example, a Layer 3 VPN (L3VPN) service, and an Ethernet Virtual Private Network (EVPN) virtual label dedicated line service (Virtual). Private Wire Service (VPWS) service, EVPN Virtual Private Lan Service (VPLS) and so on.
  • L3VPN Layer 3 VPN
  • EVPN Ethernet Virtual Private Network
  • VPWS Private Wire Service
  • VPLS EVPN Virtual Private Lan Service
  • the PE device can be configured with one or more SRv6 VPN SIDs.
  • Each SRv6 VPN SID is used to identify the VPN to which a CE device connected to the PE device belongs, or to identify the PE.
  • the device is connected to the outbound interface of the CE.
  • PE1 is configured with the first SRv6 VPN SID, which is used to identify the VPN to which CE2 belongs or the outgoing interface of PE1 to CE2
  • PE2 is configured with the second SRv6 VPN SID, which is used to identify the VPN to which CE2 belongs or PE2 is connected to the outbound interface of CE2.
  • the SRv6 VPN SID configured on the PE device can be used as the IPv6 address of the PE device.
  • the SRv6 VPN SID can be used as the IPv6 address of the PE to transmit packets.
  • the related expression of the "SRv6 VPN SID configured by the PE device” or the related expression of the "SRv6 VPN SID in the PE device” means that the SRv6 VPN SID is stored in the PE device.
  • the PE device in the present application may be, for example, a router or a Layer 3 switch or a Packet Transport Network (PTN) device.
  • the CE device may be a router or a Layer 3 switch or a host or a PTN device, which is not specifically limited in this application. .
  • the SRv6 VPN SID includes the SID segment and the index.
  • the SID segment indicates the IPv6 network segment address.
  • the index is equivalent to the secondary allocation of the address in the IPv6 network segment.
  • the SID segment of the PE1 configuration is 101::(64). If the index is 1001, you can find that an SRv6 VPN SID of PE1 is 101::1001.
  • a PE device can be configured with multiple indexes. The index can be based on the service settings of the access. For example, the index can be configured according to the VRF, the VPN instance, or the VPWS service instance. The different indexes can be combined with the SID segment to make each service configuration different. SRv6 VPN SID.
  • each device needs to exchange routing information.
  • the routing exchange between the P device and other devices can exchange routing information through the public network routing, for example, Interior Gateway Protocol (IGP), and reason protocol (for example, Intermediate System to Intermediate System (Intermediate System-to -Intermediate System (IS-IS) protocol or Open Shortest Path First (OSPF) or Border Gateway Protocol (BGP), and propagates in the network based on, for example, the shortest path algorithm topology information.
  • IGP Interior Gateway Protocol
  • reason protocol for example, Intermediate System to Intermediate System (Intermediate System-to -Intermediate System (IS-IS) protocol or Open Shortest Path First (OSPF) or Border Gateway Protocol (BGP)
  • the SR tunnel can be exchanged between the CE device and the PE device directly connected to it, for example, by static routes or by establishing a neighbor relationship to advertise routes.
  • MP-BGP sessions can be established between PE devices.
  • the message is used to exchange the respective VPN routes.
  • the PE device directly connected to the CE device establishes a virtual routing forwarding (VRF) for the CE device to store the routing information of the corresponding CE device.
  • VRF virtual routing forwarding
  • the description can be made between CE1 and the directly connected PE3.
  • the neighbor relationship is established through the Border Gateway Protocol (BGP) session.
  • the CE1 advertises the routing information of CE1 to the directly connected PE3 through the BGP message, so that PE3 can learn the routing information of CE1.
  • PE3 can establish MP between PE1 and PE1.
  • - BGP session exchanges VPN routes and distributes and advertises VPN labels to each other.
  • PE3 advertises the VPN routing information to PE1, and advertises the VPN routing information to PE2 through the MP-BGP session established with PE2, so that PE1 and PE2 learn PE3.
  • PE1 and CE2 can also establish adjacencies through MP-BGP, so that CE2 can learn the routing information of PE3.
  • PE2 and CE2 can establish adjacencies, so that CE2 learns
  • the routing information advertised by each device includes its own IP address or Media Access Control (MAC) address, so that the device that learns the routing information can determine the path to the device according to the foregoing address.
  • the source IP address in the routing information of the PE device can be the SRv6 VPN SID configured on the PE device.
  • At least two PEs in the PE device that are connected to the CE device are configured with two SRv6 VPN SIDs, and the configured SRv6 VPN SIDs are used to identify the CE.
  • the VPN or PE device is connected to the outbound interface of the CE device.
  • the first PE device is configured with the first SRv6 VPN SID
  • the first SRv6 VPN SID is used to identify the VPN to which the second CE belongs or the outbound interface of the first PE to the second CE
  • the second PE is configured with the second SRv6 VPN SID.
  • the second SRv6 VPN SID is used to identify the outbound interface of the VPN to which the second CE belongs or the second PE to connect to the second CE.
  • the first SRv6 VPN SID is the same as the second SRv6 VPN SID.
  • the SID segment of the first SRv6 VPN SID of the PE1 is 101::(64), and the index is 1001, and the first SRv6 VPN SID of the PE1 is 101::1001.
  • PE1 also configures the SID segment of the fourth SRv6 VPN SID to be 555::(64), and in combination with the index 1001 configured for the first SRv6 VPN SID, the fourth SRv6 VPN SID is 555::1001.
  • the first SRv6 VPN SID configured on the PE1 is the same as the second SRv6 VPN SID configured on the PE2.
  • the SID segment of the second SRv6 VPN SID is set to 101:: (64) and the index is 1001.
  • the second SRv6 VPN SID of the PE2 is configured. Is 101::1001.
  • PE2 also configures the SID segment of the third SRv6 VPN SID to be 666::(64).
  • the third SRv6 VPN SID of the PE2 is 666::1001.
  • the P1 determines the next hop node according to the first SRv6 VPN SID encapsulated in the packet. Therefore, after the PE3 determines that the packet is transmitted through the path 1, the packet is transmitted to the P1. Even if the PE1 corresponding to the first SRv6 VPN SID is faulty, packets cannot be transmitted between P1 and PE1. P1 can also determine the path to PE2 based on the first SRv6 VPN SID to transmit packets. Therefore, P1 can pass the path to PE2. The packet is transmitted to PE2, and PE2 transmits the packet to CE2 to ensure normal transmission of the packet.
  • the second SRv6 VPN SID is the same as the first SRv6 VPN SID, so the path that the other device reaches the first SRv6 VPN SID includes the path to the first PE device and the second PE device. Therefore, when the path of the first CE device is sent to the second CE device, if the path to the first PE device is faulty, the path to the second PE device may be determined according to the first SRv6 VPN SID encapsulated in the packet. The packet can be transmitted to the path of the second PE device, so that the second PE device can send the packet to the second CE device.
  • the ingress PE may not detect whether the PE in the path is faulty during the process of determining the transmission path of the packet, but detects that the PE is faulty during the packet transmission.
  • the packet is transmitted to the PE of the PE that is the same as the SRv6 VPN SID of the PE, the device can transmit the packet. Therefore, the BFD is not required to detect faults. The number of BFDs deployed in the device reduces the resources that the BFD occupies.
  • the BFD is not required to detect faults between the PEs in the path.
  • the path switching process only needs one layer of fault detection, that is, fault detection between P1 and PE1, thereby reducing PE device determination.
  • the time of fault detection in the path can reduce the time required to complete the path switching, improve the speed of path switching, and improve the performance of path switching.
  • P1 when detecting faults between P1 and PE1, it usually takes 30ms, and then combines the time of the switching path.
  • P1 can save at least 50ms in determining the fault and completing the path switching process compared with the above two-layer fault detection mode, thereby improving path switching.
  • the speed of the path improves the performance of the path switching.
  • An embodiment of the present invention provides a method for processing a route, which is used in the control layer of the network that carries the SRv6-based VPN service, and can be specifically used in the control layer of the network architecture shown in FIG. 2, as shown in FIG.
  • the method includes the following steps.
  • the first P device receives the first route sent by the first PE device.
  • the first route includes a network segment to which the first SRv6 VPN SID belongs.
  • the network segment that carries the SRv6-based VPN service is used, so the network segment to which the SRv6 VPN SID belongs is an IPv6 network segment.
  • the SRv6 VPN SID includes the SID segment and the index.
  • the SID segment indicates the IPv6 network segment address. Therefore, the network segment to which the first SRv6 VPN SID belongs is the SID segment of the first PE device configured with the first SRv6 VPN SID.
  • Routing information needs to be exchanged between devices to determine the path to each other.
  • the routing exchange between the P device and other devices can exchange routing information through the public network routing. Therefore, the first P device receives the routing route sent by the other device, including the address of the corresponding device, for example, the first route sent by the first PE device to the first P device, where the first route includes the first route of the first PE device. Network segment to which the SRv6 VPN SID belongs.
  • the first P device receives the first route that is sent by the first PE device and includes the network segment to which the first SRv6 VPN SID belongs.
  • the first P device receives a second route sent by the second PE device.
  • the second route includes a network segment to which the second SRv6 VPN SID belongs.
  • the first P device may also receive the second route that is sent by the second PE device and includes the network segment to which the second SRv6 VPN SID belongs.
  • the first P device establishes a fifth path from the first P device to the first PE device according to the network segment to which the first SRv6 VPN SID belongs.
  • the first P device After receiving the first route sent by the first PE device, the first P device determines the network segment to which the first SRv6 VPN SID belongs from the first route, and may establish the first P from the network segment to which the first SRv6 VPN SID belongs.
  • the fifth path of the device to the first PE device When the packet is transmitted to the second CE by the first P device, the packet is determined by the fifth path based on the outer address of the packet and the network segment to which the first SRv6 VPN SID belongs.
  • the first PE is forwarded to the second CE.
  • the first P device establishes a sixth path from the first P device to the second PE device according to the network segment to which the second SRv6 VPN SID belongs.
  • the first P device After receiving the second route sent by the second PE device, the first P device determines the network segment to which the second SRv6 VPN SID belongs from the second route, and may establish the first P from the network segment to which the second SRv6 VPN SID belongs.
  • the sixth path of the device to the second PE device When the packet is transmitted to the second CE by the first P device, the packet is transmitted to the second PE through the sixth path, so that the second PE forwards the packet to the second CE.
  • the first SRv6 VPN SID is the same as the second SRv6 VPN SID, and the network segment to which the first SRv6 VPN SID belongs and the network segment to which the second SRv6 VPN SID belongs are also the same, so the fifth P device is established.
  • the path of the first P device is the same as that of the network segment.
  • the data forwarding layer of the first P device can forward the packets with the destination address being the first SRv6 VPN SID.
  • the layer sends a path to the forwarding layer to forward the packet to the data forwarding layer of the first P device according to the path sent by the control plane.
  • the sixth path is used as the backup path, that is, the first P device forwards the packet to the sixth path and forwards the packet to the second CE device.
  • the first P device receives the route sent by the first PE device and the second PE device, and the other P devices receive the route sent by the first PE device and the second PE device by using the same principle, and A corresponding path for transmitting a packet is established, and the first PE device and the second PE device also send a VPN route to other PE devices (such as the ingress PE device), and the specific VPN route may also be carried by the MP-BGP message.
  • the second PE device may send the first VPN route to the PE device, where the first VPN route includes the second SRv6 VPN SID; the first PE device may send the second VPN route to the ingress PE device, where the second VPN route includes An SRv6 VPN SID.
  • the PE device After receiving the first VPN route and the second VPN route, the PE device establishes a path to the first PE device according to the first SRv6 VPN SID, and establishes a path to the second PE device according to the second SRv6 VPN SID.
  • the first SRv6 VPN SID and the second SRv6 VPN SID are the same. Therefore, when the forwarding destination address is the first SRv6 VPN SID packet, the data forwarding plane of the ingress PE device can forward the packet to the PE device. The level will send a path to the forwarding layer.
  • the first CE device can implement multi-homing protection in the process of transmitting the first packet to the second CE device, so that the first packet is transmitted to the second CE device.
  • an embodiment of the present invention provides a data transmission method, which is used in the data forwarding layer of the foregoing SRv6-based VPN, and can be specifically used in the data forwarding layer of the network architecture shown in FIG. 2, as shown in FIG.
  • the method includes the following steps.
  • the first P device receives the first packet.
  • the first packet is a packet sent by the first CE device to the second CE device, and the outer destination address encapsulated in the first packet is the first SRv6 VPN SID.
  • the data forwarding layer is used to forward packets transmitted between two CEs.
  • the first CE device sends the first packet to the second CE device as an example.
  • the first CE device sends the first packet to the PE device (such as PE3 in Figure 2).
  • the first packet includes the source CE address and the destination CE address, and the source CE address is the first.
  • the address of the CE device and the destination CE address are the addresses of the second CE device.
  • the control plane can determine the path for transmitting the first packet according to the destination CE address and the VRF of the corresponding CE device, and forward the determined path to the data forwarding device. Level.
  • the data forwarding layer of the inbound PE device may encapsulate the first packet according to the determined path and the tunneling technology such as the SR-BE, and forward the encapsulated first packet.
  • the PE device determines that the PE device is the first PE device in the path of transmitting the first packet, and the address is the first SRv6 VPN SID, and the first packet is transmitted to the first P device, so When a P device receives the first packet, the outer destination address encapsulated in the first packet is the first SRv6 VPN SID.
  • the first P device determines, according to the outer destination address of the first packet, that the first packet needs to be sent to the device whose address is the first SRv6 VPN SID. Therefore, the first P device may determine, according to the first SRv6 VPN SID, a path for transmitting the first packet.
  • the first P device determines, according to the first SRv6 VPN SID, a fifth path for transmitting the first packet.
  • the fifth path is a path where the first P device reaches the first PE.
  • the first device After the first device receives the first route sent by the first PE device, the first device establishes a fifth path to the first PE device by using the network segment to which the first SRv6 VPN SID belongs, in this step, according to the first report.
  • the outer destination address of the text that is, the first SRv6 VPN SID, can determine the fifth path for transmitting the first packet according to the longest matching principle.
  • the network segment to which the first SRv6 VPN SID belongs and the network segment to which the second SRv6 VPN SID belongs are also the same. Therefore, the path of the first device to the first SRv6 VPN SID is two, one is the fifth path of the first P device to the first PE device, and the other is the sixth path of the first P device to the second PE device. . Since the first PE device is the next hop of the first P device, the first P device usually preferentially transmits the first packet through the fifth path. Therefore, in the embodiment of the present invention, the first P device determines, according to the destination address of the first packet, that the first P device reaches the fifth path of the first PE device, to transmit the first packet.
  • the first P device determines that the fifth path is faulty, and the first P device determines, according to the first SRv6 VPN SID, that the first packet is forwarded by using the sixth path.
  • the first P device connects the second PE through the sixth path.
  • the neighbors need to detect faults when transmitting data.
  • BFD is configured on the neighboring devices to perform fast path fault detection. After the first P device determines that the first P device reaches the fifth path of the first PE according to the first SRv6 VPN SID, and the next hop is the first PE device, the first P device may be configured according to the first PE device. BFD detects whether the fifth path is faulty. If the first P device detects the fifth path, the first P device needs to perform the path switching, that is, the first path to the second PE device is determined according to the first SRv6 VPN SID and the longest matching principle to transmit the first packet. .
  • the path fault detection may be performed on the path that the first P device reaches the next hop to ensure the first report.
  • the text can be transmitted to the next hop normally.
  • the first P device forwards the first packet to the second CE device by using the sixth path.
  • the first P device After the first P device determines that the first packet is transmitted through the sixth path, the first P device switches the first packet to the sixth path for transmission.
  • the first P device can determine the outbound interface connected to the next hop according to the sixth path, and then forward the encapsulated first packet by using the outbound interface connected to the next hop.
  • the second SRv6 VPN SID is the same as the first SRv6 VPN SID, and the second SRv6 VPN SID is the same as the VPN identified by the first SRv6 VPN SID.
  • the second SRv6 VPN SID is the same as the first SRv6 VPN SID, so the path of the first P device to the first SRv6 VPN SID includes two paths respectively reaching the first PE device and the second PE device. Therefore, when transmitting the packet sent by the first CE device to the second CE device, if the fifth path of the first P device fails to reach the first PE, the first P device may determine the sixth path to the second PE device. Then, the packet is switched to the sixth path and transmitted to the second PE device, so that the second PE device can send the packet to the second CE device.
  • the PE device may not detect whether the PE device is faulty in the path but not during the packet transmission process.
  • the device sends a packet to the PE device that is the same as the SRv6 VPN SID of the PE device. Therefore, the device does not need to deploy BFD to detect the fault.
  • the fault is that the BFD is not required to be detected between the PEs and the PEs. This reduces the number of BFDs deployed on the PEs, reduces the resources of the PEs occupied by the BFDs, and reduces the fault detection when the PEs determine the path. Time to increase the speed of path switching.
  • the second SRv6 VPN SID is the same as the first SRv6 VPN SID, and the network segment to which the first SRv6 VPN SID belongs and the network segment to which the second SRv6 VPN SID belongs are also the same, and are transmitted by the first CE device.
  • the packet of the second CE device is sent to the second CE device, if the fifth path of the first P device fails, the first P device can determine the sixth path to the second PE device, so that the second PE device sends the packet. Send to the second CE device.
  • the first P device sends the first packet to the first PE device if the fifth path of the first P device is not faulty.
  • the first PE device determines to transmit the first packet to the second CE device
  • the first path directly connected between the first PE device and the second CE device is forwarded to forward the first packet, and the first PE device further forwards the first packet. It is required to detect whether the first path directly connected between the first PE device and the second CE device is faulty. If the first path is faulty, the path switching is performed, that is, the first packet is switched to the second CE through the second PE device. The second path of the device is transmitted.
  • the first PE device cannot implement the path switching of the first packet because the second SRv6 VPN SID is the same as the first SRv6 VPN SID. Therefore, the multi-homing path protection cannot be implemented.
  • At least two PE devices in the PE device that are connected to the CE device are respectively configured to escape the SRv6 VPN SID, and at least two PE devices are respectively configured with different escape SRv6 VPN SIDs, at least two The escape SRv6 VPN SID configured on the PE device is also used to identify the outbound interface of the CE or the PE device to which the CE device belongs.
  • the at least two PE devices can establish a path through the escape SRv6 VPN SID.
  • the first PE device is configured with the first SRv6 VPN SID and the fourth SRv6 VPN SID, and the first SRv6 VPN SID and the fourth SRv6 VPN SID are both used to identify the VPN to which the second CE belongs or the first PE to connect to the second CE.
  • Outlet interface The second PE configures the second SRv6 VPN SID and the third SRv6 VPN SID, and the second SRv6 VPN SID and the third SRv6 VPN SID are used to identify the outbound interface of the VPN to which the second CE belongs or the second PE to connect to the second CE.
  • the third SRv6 VPN SID and the fourth SRv6 VPN SID are the escape SRv6 VPN SID, the first SRv6 VPN SID is the same as the second SRv6 VPN SID, the first SRv6 VPN SID is different from the fourth SRv6 VPN SID, and the fourth SRv6 VPN SID is the same.
  • the third SRv6 VPN SID is different, and the third SRv6 VPN SID is different from the second SRv6 VPN SID.
  • the first PE device and the second PE device send a route to the first P device.
  • the escaped SRv6 configured by the first PE device and the second PE device respectively The VPN SID, so the route to be sent also carries the network segment to which the respective SRv6 VPN SID belongs.
  • the first route sent by the first PE device includes the network segment to which the first SRv6 VPN SID belongs and the network segment to which the fourth SRv6 VPN SID belongs. After receiving the first route, the first P device respectively belongs to the first SRv6 VPN SID.
  • the network segment and the network segment to which the fourth SRv6 VPN SID belongs establish a path with the first PE device.
  • the second route sent by the second PE device includes the network segment to which the second SRv6 VPN SID belongs and the network segment to which the third SRv6 VPN SID belongs.
  • the first P device respectively belongs to the second SRv6 VPN SID.
  • the network segment and the network segment to which the third SRv6 VPN SID belongs establish a path with the second PE device.
  • the VPN route sent between the PE devices is different, and the following is the first PE device and the second.
  • the process of sending VPN routes between PEs is described as an example.
  • An embodiment of the present invention provides a method for processing a route, which is used in the control layer of the network that carries the SRv6-based VPN service, and can be specifically used in the control layer of the network architecture shown in FIG. 2, as shown in FIG.
  • the method includes the following steps.
  • the first PE device receives the first VPN route sent by the second PE device.
  • the first VPN route includes a second SRv6 VPN SID and a third SRv6 VPN SID.
  • the routing information is exchanged between the PEs at the control plane. That is, the first PE device advertises its own VPN route to the second PE device, and the second PE device also goes to the first.
  • the PE device publishes its own VPN route. Each PE device usually sends its own VPN route to the other party through MP-BGP messages. Each PE device advertises a VPN route that includes its own SRv6 VPN SID.
  • the first PE device and the second PE device are devices that are connected to the second CE device.
  • the second PE device and the second PE device are configured with two SRv6 VPN SIDs.
  • the first PE device is configured with the first SRv6 VPN SID and the fourth SRv6 VPN SID, and the first SRv6 VPN SID and the fourth SRv6 VPN SID are both used to identify the VPN to which the second CE device belongs or the first PE device to connect to the second CE device. Outlet interface.
  • the second PE device configures the second SRv6 VPN SID and the third SRv6 VPN SID, and the second SRv6 VPN SID and the third SRv6 VPN SID are both used to identify the VPN to which the second CE device belongs or the second PE device to connect to the second CE device. Outlet interface.
  • the third SRv6 VPN SID and the fourth SRv6 VPN SID are escape SRv6 VPN SIDs.
  • the first SRv6 VPN SID is the same as the second SRv6 VPN SID
  • the fourth SRv6 VPN SID is different from the third SRv6 VPN SID
  • the fourth SRv6 VPN SID is different from the first SRv6 VPN SID
  • the second SRv6 VPN SID is the third SRv6 VPN.
  • the SID is different.
  • the VPN route When the first PE device issues a VPN route, the VPN route includes the first SRv6 VPN SID and the fourth SRv6 VPN SID.
  • the VPN route When the second PE device issues a VPN route, the VPN route includes a second SRv6 VPN SID and a third SRv6 VPN SID.
  • the first VPN route may be carried in the BGP-Prefix-SID attribute field of the MP-BGP message.
  • the BGP-Prefix-SID attribute field includes the SRv6-VPN SID TLV field.
  • the SRv6-VPN SID TLV field includes a T field, an L field, a V field, and a reserved field.
  • the specific structure can be as shown in FIG. 6.
  • the T field is used to indicate the type of the SRv6-VPN SID;
  • the L field is used to indicate the total length of the V field, which is usually 16 bytes;
  • the V field carries the specific SRv6-VPN SID information;
  • the reserved field is sent in the MP.
  • the BGP message should be padded with 0 and can be ignored when receiving MP-BGP messages, usually 8 bytes.
  • the function of the T field can be equivalent to the function of a VPN MPLS label attribute in the route including the Multi-Protocol Label Switching (MPLS) label, and can also be equivalent to one.
  • MPLS Multi-Protocol Label Switching
  • the first VPN route includes the second SRv6 VPN SID and the third SRv6 VPN SID. Therefore, the BGP-Prefix-SID attribute field needs to extend a new field on the basis of carrying the second SRv6 VPN SID. Carry the third SRv6 VPN SID.
  • a TLV field may be extended to carry the third SRv6 VPN SID.
  • the type T field in the TLV field is used to indicate the type of the third SRv6 VPN SID. Specifically, it can be used to indicate that the third SRv6 VPN SID is an escape SRv6 VPN SID, and is used to indicate that between the first PE and the second CE.
  • the first PE device is instructed to forward the packet through the path between the first PE device and the second PE device, and the third PE device is configured with the third SRv6 VPN SID; the TLV
  • the length L field in the field is used to identify the length of the third SRv6 VPN SID, the value V field in the TLV field.
  • the third SRv6 VPN SID when the third SRv6 VPN SID is carried in the BGP-Prefix-SID attribute field, different types can be set for the second SRv6 VPN SID and the third SRv6 VPN SID. For example, set the Type of the second SRv6 VPN SID to 1, and set the Type of the third SRv6 VPN SID to 2.
  • the first PE device may identify the Type of the SRv6 VPN SID according to different TLV fields in the BGP-Prefix-SID attribute field, and further distinguish the second SRv6 VPN SID from the third SRv6 VPN SID.
  • the third SRv6 VPN SID may be carried by the NLRI field of the MP-BGP message.
  • MP_REACH_NLRI can be understood as NLRI multi-protocol extended attribute information, which includes three parts: address family information domain, next hop information domain, and network layer reachability information (NLRI) domain.
  • the address family information field includes an address family identifier field (2 bytes) and a sub-address family identifier field (1 byte).
  • the Address Family Identifier (AFI) is used to identify the network layer protocol. For example, AFI takes 1 to indicate IPv4, and AFI takes 2 to indicate IPv6.
  • the SAFI identifies the type of the sub-address family. For example, SAFI takes 1 for unicast; SAFI takes 2 for multicast; SAFI takes 128 for VPN.
  • the AFI value is 1, and the SAFI value is 1, indicating that the NLRI field carries an IPv4 unicast route; the AFI value is 1, and the SAFI value is 128 indicates the BGP-VPNv4 route carried in the NLRI field; the AFI value is 1.
  • the SAFI value of 4 indicates the BGP label route carried in the NLRI field.
  • the BGP synchronization address family can be understood as an extended sub-address family in the IPv4 or IPv6 address family of the existing BGP protocol. That is, the AFI value can be 1 or 2.
  • the value of SAFI can be determined according to standards set by the Internet Engineering Task Force (IETF).
  • the next hop information field includes an address length field (1 byte) of the next hop and an address field (variable length) of the next hop.
  • the address length field of the next hop is used to identify the length of the address field of the next hop, and the length of the address field of the next hop is determined by the length identified by the address length field of the next hop.
  • a 1-byte reserved field is left between the next hop information field and the NLRI field.
  • the NLRI field includes the NLRI field.
  • the NLRI field may include, for example, a TLV field (variable length).
  • the TLV field may include a T field, an L field, and a V field.
  • the T field is used to indicate the type of the third SRv6 VPN SID to be carried;
  • the L field is used to indicate the total length of the third SRv6 VPN SID carried, which is usually 16 bytes; and
  • the V field carries the third SRv6 VPN SID.
  • third SRv6 VPN SID can also be carried in other manners, which is not repeatedly described herein.
  • the first PE device determines that the second SRv6 VPN SID is the same as the first SRv6 VPN SID.
  • At least two PEs in the PE device that are connected to the CE device are configured with the same SRv6 VPN SID, which is used to identify the outbound interface of the PE device to which the VPN or PE device to which the CE belongs is connected to the CE device. Therefore, after receiving the first VPN route of the second PE device, the first PE device can determine that the second SRv6 VPN SID in the first VPN route is the same as the first SRv6 VPN SID of the first PE device, so the first PE device can It is determined that the second PE device is also connected to the second CE device, and then the second CE device is determined to be connected to the first PE device and the second PE device.
  • the first PE device establishes a second path from the first PE device to the second PE device according to the third SRv6 VPN SID in the first VPN route.
  • the second path is used by the first PE device to forward the packet to the second CE device when the first path of the first PE device is directly connected to the second CE device.
  • the first PE device needs to establish a third SRv6 VPN SID between the second PE device and the second PE device.
  • the second PE device establishes a path with the first PE device through the fourth SRv6 VPN SID of the first PE device, so that data transmission can be performed between the first PE device and the second PE device.
  • the first PE device After determining that the second SRv6 VPN SID is the same as the first SRv6 VPN SID, the first PE device establishes a second path from the first PE device to the second PE device according to the third SRv6 VPN SID in the first VPN route. Therefore, when the first PE device sends a packet to the second CE device, if the first path directly connected to the first PE device and the second CE device fails, the first PE device can switch the packet to the second. The path is transmitted, so that the second PE device transmits the packet to the second CE device.
  • the second PE device is configured with a third SRv6 VPN SID that is different from the second SRv6 VPN SID, and the first PE device can establish the second path by using the third SRv6 VPN SID, so that the first PE device is configured.
  • the packet transmitted to the second CE device can be switched to the second path when the path of the direct connection between the first PE device and the second CE device is faulty, so that fast path switching can be performed, so that the packet can be transmitted to the first packet.
  • Two CE devices thus achieving multi-homing protection.
  • the first PE device can generate fast reroute (FRR) information by combining the third SRv6 VPN SID and the route sent by the second CE device in the first VPN route, and the first PE device transmits the packet process.
  • FRR fast reroute
  • the embodiment of the present invention may further include: the first PE device sending the second VPN route to the second PE device.
  • the second VPN route carries the first SRv6 VPN SID and the fourth SRv6 VPN SID.
  • the fourth SRv6 VPN SID is used to identify the VPN to which the second CE device belongs or the outbound interface of the first PE to the second CE, and the fourth SRv6 VPN SID is used by the second PE device to establish the second PE device to the first PE device.
  • the third path when the fourth path of the second PE device directly connected to the second CE device fails, is used by the second PE device to transmit the packet to the second CE device, and the fourth SRv6 VPN SID is The first SRv6 VPN SID is the same, and the first SRv6 VPN SID is the same as the second SRv6 VPN SID saved by the second PE device.
  • the first PE device also needs to send a VPN route, that is, a second VPN route, to the second PE device.
  • the second VPN route includes a first SRv6 VPN SID and a fourth SRv6 VPN SID configured by the first PE device.
  • the second VPN route may be sent to the second PE device in the manner of being carried by the MP-BGP message, and the manner of the second VPN route being carried is the same as that of the first VPN route, and is not described here.
  • the second PE device may determine that the first SRv6 VPN SID is the same as the second SRv6 VPN SID, and then the first PE device may also be connected to the second CE, and then the second CE device may be determined. It is connected to the first PE device and the second PE device. Therefore, the second PE device can establish a third path from the second PE device to the first PE device by using the fourth SRv6 VPN SID. Therefore, when the second PE device sends a packet to the second CE device, if the fourth path directly connected between the second PE device and the second CE device fails, the second PE device can switch the packet to the third device. The path is transmitted, so that the first PE device transmits the packet to the second CE device, thereby implementing fast path switching.
  • the first PE device and the second PE device also need to send VPN routes to other PE devices, such as the ingress PE device.
  • the first PE device sends the VPN route to the other PE device.
  • the VPN route sent by the first PE device to the other PE device is the second VPN route, including the first SRv6 VPN SID and the fourth SRv6 VPN SID.
  • the other PE device can compare the first SRv6 VPN SID with the SRv6 VPN SID configured by itself to determine whether the two are the same. If the same, the path between the first PE device and the first PE device is established through the fourth SRv6 VPN SID; if not, the path between the first PE device and the first PE device is established through the first SRv6 VPN SID.
  • the second VPN route sent by the first PE device to the other PE device may also be sent to other PE devices in the manner carried by the MP-BGP message.
  • the other PE device determines that the first SRv6 VPN SID is different from the SRv6 VPN SID configured by itself, the path between the first PE device and the first PE device may be established through the fourth SRv6 VPN SID, but the other PE devices are in the same manner.
  • the first SRv6 VPN SID is used as the address of the first PE device, and the path between the first PE device and the first PE device is established through the first SRv6 VPN SID, and the fourth SRv6 is not used.
  • the VPN SID establishes a path with the first PE device for transmission.
  • each device can also advertise routes through the public network, so that the P device can exchange routing information with other devices.
  • each device by controlling the process of exchanging routing information in a layer, each device can establish a path for transmitting data between each other, thereby performing data transmission.
  • at least two PE devices in the PE device that are connected to the CE device are respectively configured to escape the SRv6 VPN SID, and at least two PE devices can establish a path by using the escape SRv6 VPN SID, and the multi-homing path can be implemented. protection.
  • the following describes the process of sending the first packet to the second CE device by using the first PE device as an example.
  • a further embodiment of the present invention provides a data transmission method, which is used in the data forwarding layer of the network based on the SRv6-based VPN, and can be specifically used in the data forwarding layer of the network architecture shown in FIG. 2, as shown in FIG. 7.
  • the method includes the following steps.
  • the first PE device receives the first packet.
  • the first packet is a packet sent by the first CE device to the second CE device.
  • the first CE device sends the first packet to the PE device.
  • the first packet includes the source CE address and the destination CE address, and the source CE address is the address of the first CE device.
  • the address is the address of the second CE device.
  • the PE device determines the path for transmitting the first packet according to the destination CE address and the VRF of the corresponding CE device.
  • the inbound PE device sends the first packet to the first PE device through the first P device, and the first PE device receives the first packet, and the outer destination address encapsulated in the first packet is the first SRv6 VPN SID.
  • the first PE device determines, according to the first SRv6 VPN SID, the first path for forwarding the first packet.
  • the first path is a path directly connected between the first PE device and the second CE device.
  • the first PE device may query the corresponding VRF table according to the first SRv6 VPN SID encapsulated in the first packet, so as to determine the VPN identified by the first SRv6 VPN SID or connected to the second CE device.
  • the outbound interface can further determine a first path for sending the first packet to the second CE device.
  • the first PE device is directly connected to the second CE device. Therefore, the first PE device determines that the first packet is directly transmitted by using the first PE device and the second CE device to transmit the first packet. Therefore, after receiving the first packet, the first PE device can determine the first path that the first PE device directly connects to the second CE device.
  • the first PE device determines that the first path is faulty, and the first PE device determines to forward the first packet by using the second path according to the first SRv6 VPN SID and the saved third SRv6 VPN SID sent by the second PE device.
  • the first PE device is connected to the second PE device by using the second path.
  • the first path is determined by the first PE device, the first path is also detected to be faulty, so that the first path fails to be transmitted to the second CE device.
  • the path of the first PE device to the second CE device further includes a second path that is established from the first PE device based on the third SRv6 VPN SID of the second PE device and is connected to the second PE device, so the first PE device can The first packet is switched to the second path from the first PE device to the second PE device, and the first packet is forwarded to the second CE device by the second PE device.
  • the first PE device forwards the first packet to the second CE by using the second path.
  • the next hop is determined to be the second PE device, and the address of the next hop is the third SRv6 VPN SID of the second PE device. Therefore, the outer address of the first packet is modified to be the third SRv6 VPN SID, and the encapsulated first packet is sent to the second PE by using the outbound interface connected to the second PE.
  • the second PE device decapsulates the first packet, and then sends the first packet to the second CE device.
  • the first PE device establishes a second path to the second PE device by using the third SRv6 VPN SID, and the packet transmitted by the first PE device to the second CE device is in the first PE device and the first PE device.
  • the packet can be switched to the second path to implement fast path switching and multi-homing path protection, so that the packet can be transmitted to the second CE device.
  • FIG. 8 is a schematic block diagram of a PE device 500 according to an embodiment of the invention.
  • the PE device 500 is used as the first PE device in the network that carries the SRv6-based VPN service, and the network includes the first CE device, the second CE device, the ingress PE device, the N egress PE devices, and at least one P device.
  • the first CE device is connected to the ingress PE device, and the second CE device is connected to the N egress PE devices, and the ingress PE device passes the at least one P device and the N egress PEs.
  • the first communication device is connected to the first CE device and the second CE device, and the first PE device includes the first PE device and the second PE device, and the first PE device is configured.
  • the first SRv6 VPN SID, the first SRv6 VPN SID is used to identify the VPN to which the second CE device belongs or the outbound interface of the first PE to the second CE device, and the second PE device configuration
  • the second SRv6 VPN SID and the third SRv6 VPN SID are both used to identify the VPN to which the second CE device belongs or the second PE device to connect to the second CE Outbound interface of the device, where N is an integer greater than or equal to 2.
  • the PE device 500 can include:
  • the receiving unit 501 is configured to receive the first VPN route sent by the second PE device, where the first VPN route includes the second SRv6 VPN SID and the third SRv6 VPN SID;
  • the processing unit 502 is configured to determine that the second SRv6 VPN SID is the same as the first SRv6 VPN SID;
  • the processing unit 502 is further configured to establish a second path from the first PE device to the second PE device according to the third SRv6 VPN SID in the first VPN route, where the second When the first path of the first PE device and the second CE device is faulty, the first PE device is used by the first PE device to forward the packet to the second CE device.
  • the second SRv6 VPN SID is the same as the first SRv6 VPN SID, so the path to the first SRv6 VPN SID includes two paths to the PE device 500 and the second PE device respectively. Therefore, when the packet sent by the first CE device to the second CE device is transmitted, if the fifth path of the PE device 500 is faulty, the sixth path to the second PE device can be determined, and then the packet can be switched to the first path. The six paths are transmitted to the second PE device, so that the second PE device can send the message to the second CE device. When the first CE device sends a packet to the second CE device, the PE device may not detect whether the PE device is faulty in the path but not during the packet transmission process.
  • the device When the PE device is faulty, the device sends a packet to the PE device with the same SRv6 VPN SID as the PE device. Therefore, the device does not need to deploy BFD to detect faults.
  • the BFD is not required to detect faults between the PEs and the PEs. This reduces the number of BFDs deployed on the PEs, reduces the resources of the PEs occupied by the BFDs, and reduces the fault detection when the PEs determine the path. Time, increase the speed of path switching.
  • the second PE device is configured with a third SRv6 VPN SID that is different from the first SRv6 VPN SID, and the PE device 500 can establish the second path by using the third SRv6 VPN SID in the first VPN route, so that the PE device 500 transmits the
  • the packet of the second CE device can be switched to the second path when the path of the direct connection between the PE device 500 and the second CE device is faulty, so that fast path switching can be performed, so that the packet can be transmitted to the second CE device. , thus achieving multi-homing protection.
  • FIG. 9 is a schematic block diagram of still another PE device 500 according to an embodiment of the invention.
  • the PE device 500 may further include:
  • the sending unit 503 is configured to send a second VPN route to the second PE device, where the second VPN route carries the first SRv6 VPN SID and the fourth SRv6 VPN SID, where the fourth SRv6 VPN SID An outbound interface for identifying the VPN to which the second CE device belongs or the first PE device connecting to the second CE device, where the fourth SRv6 VPN SID is used by the second PE device to establish a third path from the second PE device to the first PE device, where the third path is faulty when the fourth path directly connected to the second PE device and the second CE device fails
  • the PE device is configured to transmit a packet to the second CE device, where the fourth SRv6 VPN SID is different from the first SRv6 VPN SID, and the first SRv6 VPN SID and the second PE device save the The second SRv6 VPN SID is the same.
  • the first VPN route is carried in the BGP-Prefix-SID attribute field of the MP-BGP message
  • the BGP-Prefix-SID attribute field includes an SRv6-VPN SID TLV field
  • the SRv6-VPN SID TLV The field includes a T field, an L field, and a V field, where the V field is used to carry the third SRv6 VPN SID.
  • the receiving unit 501 is further configured to receive a first packet, where the first packet is a packet sent by the first CE device to the second CE device, the first packet
  • the outer destination address of the encapsulation is the first SRv6 VPN SID;
  • the processing unit 502 is further configured to determine that the first path is faulty
  • the processing unit 502 is further configured to determine, according to the first SRv6 VPN SID and the third SRv6 VPN SID, that the first packet is forwarded by using the second path.
  • the PE device 500 may correspond to an execution subject in a method of processing a route according to an embodiment of the present invention, and the above-described and other operations and/or functions of respective modules in the PE device 500 respectively implement FIG.
  • the corresponding processes of the respective methods performed by the first PE device in the illustrated embodiment are not described herein for brevity.
  • FIG. 10 is a schematic block diagram of a PE device 600 according to another embodiment of the present invention.
  • the PE device 600 is used as the first PE device in the network that carries the SRv6-based VPN service, and the network includes the first CE device, the second CE device, the ingress PE device, the N egress PE devices, and at least one P device.
  • the first CE device is connected to the ingress PE device, and the second CE device is connected to the N egress PE devices, and the ingress PE device passes the at least one P device and the N egress PEs.
  • the first communication device is connected to the first CE device and the second CE device, and the first PE device includes the first PE device and the second PE device, and the first PE device is configured.
  • the first SRv6 VPN SID, the first SRv6 VPN SID is used to identify the VPN to which the second CE device belongs or the outbound interface of the first PE device to the second CE device, and the second PE device configuration
  • the second SRv6 VPN SID and the third SRv6 VPN SID, the second SRv6 VPN SID and the third SRv6 VPN SID are both used to identify the VPN to which the second CE device belongs or the second PE device to connect to the second Outbound interface of the CE device, the first SRv6 VPN SID and the Same SID second SRv6 VPN, where, N is an integer greater than or equal to 2.
  • the PE device 600 can include:
  • the receiving unit 601 is configured to receive a first packet, where the first packet is a packet sent by the first CE device to the second CE device, and an outer destination address of the first packet is The first SRv6 VPN SID;
  • the processing unit 602 is configured to determine, according to the first SRv6 VPN SID, a first path for forwarding the first packet, where the first path is that the first PE device is directly connected to the second CE device. path of;
  • the processing unit 602 is further configured to determine that the first path is faulty, and the first PE device is configured according to the first SRv6 VPN SID and the saved third SRv6 VPN SID sent by the second PE device. Determining, by the second path, forwarding the first packet, where the first PE device connects to the second PE device by using the second path;
  • the sending unit 603 is configured to forward the first packet to the second CE by using the second path.
  • the second SRv6 VPN SID is the same as the first SRv6 VPN SID, so the path to the first SRv6 VPN SID includes two paths to the PE device 600 and the second PE device respectively. Therefore, when the packet sent by the first CE device to the second CE device is transmitted, if the fifth path of the PE device 600 is faulty, the sixth path to the second PE device can be determined, and then the packet can be switched to the first path. The six paths are transmitted to the second PE device, so that the second PE device can send the message to the second CE device. When the first CE device sends a packet to the second CE device, the PE device may not detect whether the PE device is faulty in the path but not during the packet transmission process.
  • the device When the PE device is faulty, the device sends a packet to the PE device with the same SRv6 VPN SID as the PE device. Therefore, the device does not need to deploy BFD to detect faults.
  • the BFD is not required to detect faults between the PEs and the PEs. This reduces the number of BFDs deployed on the PEs, reduces the resources of the PEs occupied by the BFDs, and reduces the fault detection when the PEs determine the path. Time, increase the speed of path switching.
  • the PE device 600 transmits the first packet to the second CE device, and the packet can be switched to the second path when the path directly connected between the PE device 600 and the second CE device is faulty, thereby implementing fast path switching.
  • the text can be transmitted to the second CE device, thereby implementing multi-homing protection.
  • the receiving unit 601 is further configured to receive the first VPN route sent by the second PE device, where the first VPN route includes the second SRv6 VPN SID and the third SRv6 VPN SID ;
  • the processing unit 602 is further configured to: when the second SRv6 VPN SID is the same as the first SRv6 VPN SID, establish the second path according to the third SRv6 VPN SID.
  • the PE device 600 may correspond to an execution body in a method of data transmission according to an embodiment of the present invention, and the above and other operations and/or functions of respective modules in the PE device 600 respectively implement FIG. 4
  • the corresponding processes of the respective methods performed by the first PE device in the illustrated embodiment are not described herein for brevity.
  • FIG. 11 is a schematic block diagram of a P device 700 according to an embodiment of the invention.
  • the P device 700 is used as the first P device in the network that carries the SRv6-based VPN service, and the network includes the first CE device, the second CE device, the ingress PE device, the N egress PE devices, and at least one P device.
  • the first CE device is connected to the ingress PE device, and the second CE device is connected to the N egress PE devices, and the ingress PE device passes the at least one P device and the N egress PEs.
  • the first CE device and the second CE device are in the same VPN, and the first e-PE device includes the first PE device and the second PE device, where the first PE device is configured first.
  • An SRv6 VPN SID where the first SRv6 VPN SID is used to identify the VPN to which the second CE device belongs or the outbound interface of the first PE to the second CE device, and the second PE device configures the The second SRv6 VPN SID, the second SRv6 VPN SID is used to identify the VPN to which the second CE device belongs or the outbound interface of the second PE device to the second CE device, the first SRv6 VPN SID and the The second SRv6 VPN SID is the same, and the at least one P device includes The first P device is a neighboring node of the first PE device, and the first PE device is a next hop of the first P device, where N is greater than or equal to 2. Integer.
  • the P device 700 can include:
  • the receiving unit 701 is configured to receive the first route sent by the first PE device, where the first route includes a network segment to which the first SRv6 VPN SID belongs;
  • the receiving unit 701 is further configured to receive a second route that is sent by the second PE device, where the second route includes a network segment to which the second SRv6 VPN SID belongs;
  • the processing unit 702 is configured to establish, according to the network segment to which the first SRv6 VPN SID belongs, a fifth path from the first P device to the first PE device, where the fifth path is used by the first P device Used to forward a message to the second CE device;
  • the processing unit 702 is further configured to establish, according to the network segment to which the second SRv6 VPN SID belongs, a sixth path from the first P device to the second PE device, where the sixth path is used in the When the fifth path is faulty, the first P device is used to forward the packet to the second CE device.
  • the second SRv6 VPN SID is the same as the first SRv6 VPN SID, and the network segment to which the second SRv6 VPN SID belongs and the network segment to which the first SRv6 VPN SID belongs are also the same, so the P device 700 reaches the first SRv6 VPN.
  • the path of the SID includes two paths to the first PE device and the second PE device, respectively. Therefore, when the P device 700 transmits the packet sent by the first CE device to the second CE device, if the fifth path to the first PE fails, the P device 700 can determine the sixth path to the second PE device, and then The packet is switched to the sixth path and transmitted to the second PE device, so that the second PE device can send the packet to the second CE device.
  • the PE device may not detect whether the PE device is faulty in the path but not during the packet transmission process.
  • the device sends a packet to the PE device with the same SRv6 VPN SID as the PE device. Therefore, the device does not need to deploy BFD to detect faults.
  • the BFD is not required to detect faults between the PEs and the PEs. This reduces the number of BFDs deployed on the PEs, reduces the resources of the PEs occupied by the BFDs, and reduces the fault detection when the PEs determine the path. Time, increase the speed of path switching.
  • the receiving unit 701 is further configured to receive a first packet, where the first packet is a packet sent by the first CE device to the second CE device, the first packet
  • the outer destination address of the encapsulation is the first SRv6 VPN SID;
  • the processing unit 702 is further configured to: when the fifth path is faulty, determine, according to the first SRv6 VPN SID, that the first packet is forwarded by using the sixth path.
  • the P device 700 may correspond to an execution subject in a method of processing a route according to an embodiment of the present invention, and the above-described and other operations and/or functions of respective modules in the P device 700 respectively implement FIG.
  • the corresponding processes of the respective methods performed by the first P device in the illustrated embodiment are not described herein for brevity.
  • FIG. 12 is a schematic block diagram of a P device 800 according to another embodiment of the present invention.
  • the P device 800 is used as the first P device in the network that carries the SRv6-based VPN service, and the SRv6-based VPN includes the first user edge CE device, the second CE device, the ingress PE device, and the N egress PE devices. At least one P device, the first CE device is connected to the ingress PE device, and the second CE device is connected to the N egress PE devices, and the ingress PE device passes the at least one P device.
  • the N egress PE devices are connected to each other, and the first CE device and the second CE device are in the same VPN, and the N egress PE devices include a first PE device and a second PE device, where the a PE device is configured with a first SRv6 VPN SID, where the first SRv6 VPN SID is used to identify the VPN to which the second CE device belongs or the outbound interface of the first PE to the second CE device, and the second The PE device configures the second SRv6 VPN SID, where the second SRv6 VPN SID is used to identify the VPN to which the second CE device belongs or the outbound interface of the second PE device to the second CE device, the first The SRv6 VPN SID is the same as the second SRv6 VPN SID.
  • At least one P device includes the first P device, the first P device is a neighbor node of the first PE device, and the first PE device is a next hop of the first P device, where, Is an integer greater than or equal to 2.
  • the P device 800 can include:
  • the receiving unit 801 is configured to receive the first packet, where the first packet is a packet sent by the first CE device to the second CE device, and an outer destination address of the first packet is encapsulated.
  • the first packet is a packet sent by the first CE device to the second CE device, and an outer destination address of the first packet is encapsulated.
  • the processing unit 802 is configured to determine, according to the first SRv6 VPN SID, a fifth path for transmitting the first packet, where the first P device connects to the first PE device by using the fifth path;
  • the processing unit 802 is further configured to determine that the fifth path is faulty, and the first P device determines, according to the first SRv6 VPN SID, that the first packet is forwarded by using a sixth path, where the first P The device connects the second PE through the sixth path;
  • the sending unit 803 is configured to forward the first packet to the second CE device by using the sixth path.
  • the second SRv6 VPN SID is the same as the first SRv6 VPN SID. Therefore, the path that the P device 800 reaches the first SRv6 VPN SID includes two paths respectively reaching the first PE device and the second PE device. Therefore, when the P device 800 transmits the packet sent by the first CE device to the second CE device, if the fifth path of the first PE fails, the P device 800 can determine the sixth path to the second PE device, and then The packet is switched to the sixth path and transmitted to the second PE device, so that the second PE device can send the packet to the second CE device. When the first CE device sends a packet to the second CE device, the PE device may not detect whether the PE device is faulty in the path but not during the packet transmission process.
  • the device When the PE device is faulty, the device sends a packet to the PE device with the same SRv6 VPN SID as the PE device. Therefore, the device does not need to deploy BFD to detect faults.
  • the BFD is not required to detect faults between the PEs and the PEs. This reduces the number of BFDs deployed on the PEs, reduces the resources of the PEs occupied by the BFDs, and reduces the fault detection when the PEs determine the path. Time, increase the speed of path switching.
  • the receiving unit 801 is further configured to receive the first route sent by the first PE device, where the first route includes a network segment to which the first SRv6 VPN SID belongs;
  • the receiving unit 801 is further configured to receive a second route that is sent by the second PE device, where the second route includes a network segment to which the second SRv6 VPN SID belongs;
  • the processing unit 802 is further configured to establish the fifth path according to the network segment to which the first SRv6 VPN SID belongs, and establish the sixth path according to the network segment to which the second SRv6 VPN SID belongs, where the The six paths are used by the first P device to forward the message to the second CE device when the fifth path fails.
  • the P device 800 may correspond to an execution subject in a method of data transmission according to an embodiment of the present invention, and the above and other operations and/or functions of respective modules in the P device 800 respectively implement FIG.
  • the corresponding processes of the respective methods performed by the first PE device in the illustrated embodiment are not described herein for brevity.
  • FIG. 13 is a schematic structural diagram of another PE device 900 according to an embodiment of the present invention. As shown in FIG. 13, the PE device 900 includes a processor 901, a memory 902, and a communication interface 903.
  • the processor 901 may be a central processing unit (CPU), a network processor (NP), or a combination of a CPU and an NP.
  • the processor 301 may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL), or any combination thereof.
  • Memory 902 can be a standalone device or integrated into processor 901.
  • the memory 902 may include a volatile memory such as a random-access memory (RAM); the memory may also include a non-volatile memory such as a flash memory.
  • RAM random-access memory
  • HDD hard disk drive
  • SSD solid-state drive
  • the communication interface 903 is used to communicate with an external device, and the communication interface 903 can be a wireless interface or a wired interface.
  • the wireless interface may be a cellular mobile network interface, a wireless local area network interface, or the like.
  • the wired interface can be an Ethernet interface, such as an optical interface or an electrical interface.
  • the PE device 900 can also include a bus 904 for connecting the processor 901, the memory 902, and the communication interface 903 such that the processor 901, the memory 902, and the communication interface 903 communicate with one another via the bus 904.
  • the bus 904 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 13, but it does not mean that there is only one bus or one type of bus.
  • the PE device 900 is configured to implement the corresponding process performed by the first PE device in the method for processing the route shown in FIG. 3 of the embodiment of the present invention. For brevity, details are not described herein again.
  • the memory 902 can also be used to store program instructions, and the processor 901 invokes program instructions stored in the memory 902 to perform one or more of the steps of the method of FIG. 3, or alternative embodiments thereof.
  • the processor 901 is configured to perform all operations of the processing unit 502 of the PE device 500 described in FIG. 8 or FIG. 9, and the communication interface 903 can be used to execute the receiving unit of the PE device 500 described in FIG. 8 or FIG. 501 and all operations of the transmitting unit 503 shown in FIG.
  • FIG. 14 is a schematic structural diagram of still another PE device 1000 according to an embodiment of the present invention.
  • the PE device 1000 includes a processor 1001, a memory 1002, and a communication interface 1003.
  • the processor 1001 may be a CPU, a network processor or a combination of a CPU and an NP.
  • the processor 1001 may further include a hardware chip.
  • the above hardware chip may be an ASIC, a PLD, or a combination thereof.
  • the above PLD may be a CPLD, an FPGA, a general array logic or any combination thereof.
  • the memory 1002 may be a stand-alone device or may be integrated in the processor 1001.
  • the memory 1002 may include volatile memory, such as RAM; the memory may also include non-volatile memory, such as flash memory, hard disk or solid state hard disk; the memory 1002 may also include a combination of the above types of memory.
  • the communication interface 1003 is for communicating with an external device, and the communication interface 1003 may be a wireless interface or a wired interface.
  • the wireless interface may be a cellular mobile network interface, a wireless local area network interface, or the like.
  • the wired interface can be an Ethernet interface, such as an optical interface or an electrical interface.
  • the PE device 1000 may further include a bus 1004 for connecting the processor 1001, the memory 1002, and the communication interface 1003 such that the processor 1001, the memory 1002, and the communication interface 1003 communicate with each other through the bus 1004.
  • the bus 1004 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 14, but it does not mean that there is only one bus or one type of bus.
  • the PE device 1000 is used to implement the corresponding process performed by the first PE device in the data transmission method shown in FIG. 4 of the embodiment of the present invention. For brevity, details are not described herein again.
  • the memory 1002 can also be used to store program instructions, and the processor 1001 can invoke one or more of the steps shown in FIG. 4, or an alternative embodiment thereof, by calling the program instructions stored in the memory 1002.
  • the processor 1001 is configured to perform all operations of the processing unit 602 of the PE device 600 illustrated in FIG. 10, and the communication interface 1003 may be used to perform the receiving unit 601 and the sending unit 603 of the PE device 600 illustrated in FIG. All operations.
  • FIG. 15 is a schematic structural diagram of another P device 1100 according to an embodiment of the present invention. As shown in FIG. 15, the P device 1100 includes a processor 1101, a memory 1102, and a communication interface 1103.
  • the processor 1101 may be a CPU, a network processor or a combination of a CPU and an NP.
  • the processor 1001 may further include a hardware chip.
  • the above hardware chip may be an ASIC, a PLD, or a combination thereof.
  • the above PLD may be a CPLD, an FPGA, a GAL, or any combination thereof.
  • the memory 1102 can be a stand-alone device or can be integrated in the processor 1101.
  • Memory 1102 can include volatile memory, such as RAM; memory can also include non-volatile memory, such as flash memory, hard disk or solid state disk; and memory 1102 can also include a combination of the above-described types of memory.
  • the communication interface 1103 is for communicating with an external device, and the communication interface 1103 can be a wireless interface or a wired interface.
  • the wireless interface may be a cellular mobile network interface, a wireless local area network interface, or the like.
  • the wired interface can be an Ethernet interface, such as an optical interface or an electrical interface.
  • the P device 1100 may further include a bus 1104 for connecting the processor 1101, the memory 1102, and the communication interface 1103, so that the processor 1101, the memory 1102, and the communication interface 1103 communicate with each other through the bus 1104.
  • the bus 1104 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 15, but it does not mean that there is only one bus or one type of bus.
  • the P device 1100 is configured to implement the corresponding process performed by the first P device in the method for processing the route shown in FIG. 5 in the embodiment of the present invention. For brevity, details are not described herein again.
  • the memory 1102 can also be used to store program instructions, and the processor 1101 invokes program instructions stored in the memory 1102 to perform one or more of the steps of the method shown in FIG. 5, or an alternative embodiment thereof.
  • the processor 1101 is configured to perform all operations of the processing unit 702 of the P device 700 described in FIG. 11, and the communication interface 1103 can be used to perform all operations of the receiving unit 701 of the P device 700 described in FIG.
  • FIG. 16 is a schematic structural diagram of another P device 1200 according to an embodiment of the present invention. As shown in FIG. 16, the P device 1200 includes a processor 1201, a memory 1202, and a communication interface 1203.
  • the processor 1201 may be a CPU, a network processor or a combination of a CPU and an NP.
  • the processor 1001 may further include a hardware chip.
  • the above hardware chip may be an ASIC, a PLD, or a combination thereof.
  • the PLD may be a CPLD, a field programmable gate array FPGA, a general array logic, or any combination thereof.
  • the memory 1202 may be a stand-alone device or may be integrated in the processor 1101.
  • Memory 1102 can include volatile memory, such as random access memory RAM; memory can also include non-volatile memory, such as flash memory, hard disk or solid state disk; and memory 1202 can also include a combination of the above-described types of memory.
  • the communication interface 1203 is for communicating with an external device, and the communication interface 1203 may be a wireless interface or a wired interface.
  • the wireless interface may be a cellular mobile network interface, a wireless local area network interface, or the like.
  • the wired interface can be an Ethernet interface, such as an optical interface or an electrical interface.
  • the P device 1200 can also include a bus 1204 for connecting the processor 1201, the memory 1202, and the communication interface 1203 to cause the processor 1201, the memory 1202, and the communication interface 1203 to communicate with one another via the bus 1204.
  • the bus 1204 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 16, but it does not mean that there is only one bus or one type of bus.
  • the P device 1200 is configured to implement the corresponding process performed by the first P device in the method for processing the route shown in FIG. 7 in the embodiment of the present invention. For brevity, details are not described herein again.
  • the memory 1202 can also be used to store program instructions, the processor 1201 invoking the program instructions stored in the memory 1202, can perform one or more of the steps shown in FIG. 7, or an alternative embodiment thereof.
  • the processor 1201 is configured to perform all operations of the processing unit 802 of the P device 800 described in FIG. 12, and the communication interface 1203 may be used to perform the receiving unit 801 and the transmitting unit 803 of the P device 800 described in FIG. All operations.
  • the embodiment of the present invention further provides a communication system, including the PE device 500 as described in FIG. 8 or 9, and the P device 700 as shown in FIG.
  • the embodiment of the present invention further provides another communication system, including the PE device 500 as described in FIG. 8 or 9, and the P device 700 as shown in FIG.
  • Another embodiment of the present invention further provides a communication system, including the PE device 600 as described in FIG. 10 and the P device 800 as described in FIG.
  • the embodiment of the present invention further provides another communication system, including the PE device 600 as described in FIG. 10 and the P device 800 as shown in FIG.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (eg, a solid state hard disk), or the like.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.

Abstract

本申请公开了一种处理路由的方法和装置、以及数据传输的方法和装置。该处理路由的方法用在承载SRv6-based VPN业务的网络,其中,第一CE设备与第二CE设备属于同一个VPN,出PE设备中包括第一PE设备和第二PE设备,方法包括:第一PE设备接收第二PE设备发送的包括第二SRv6 VPN SID和第三SRv6 VPN SID的VPN路由;确定第二SRv6 VPN SID与第一SRv6 VPN SID相同;根据第三SRv6 VPN SID建立第二路径,该第二路径在第一PE设备与第二CE设备直接连接的第一路径发生故障时,被第一PE设备用于向第二CE设备转发报文。能够有效减少各PE上配置BFD的数量。

Description

处理路由的方法和装置、以及数据传输的方法和装置
本申请要求于2017年12月01日提交中国专利局、申请号为CN201711258440.7、申请名称为“处理路由的方法和装置、以及数据传输的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种处理路由的方法和装置、以及数据传输的方法和装置。
背景技术
目前,虚拟专用网(Virtual Private Network,VPN)中用户边缘(Customer Edge,CE)设备通过多归连接运营商边缘(Provider Edge,PE)设备为一种普遍的组网形式。这种场景中,CE设备同时与多个PE连接,其他CE设备到达此CE设备会有多条路径。数据传输过程中,在源CE设备向目的CE设备发送报文时,源CE设备向与其连接的PE设备发送传输给目的CE设备的报文,与源CE设备连接的PE设备可以从到达目的CE设备的多条路径中确定传输报文的一条路径,并通过此路径传输报文。
数据传输过程中,为了避免因报文传输路径中与目的CE设备连接的PE设备故障而导致报文无法传输给目的CE设备,与源CE设备连接的PE设备和与目的CE设备连接的PE设备之间通常会配置双向转发检测(Bidirectional Forwarding Detection,BFD)。在与源CE设备连接的PE设备确定到达目的CE设备的路径时,可以根据其与路径中与目的CE连接的PE之间的BFD检测路径中与目的CE设备连接的PE设备是否故障。如果检测出路径中与目的CE设备连接的PE设备故障,则与源CE设备连接的PE设备将报文倒换至其他到达目的CE设备的路径来传输,从而保证报文能够传输至目的CE设备。
但是,VPN中各PE设备均会接入多个CE设备,每个PE设备会与网络中多个其他PE设备建立路径。为了保证每条路径均能快速的检测故障,彼此之间建立路径的PE设备均需要部署BFD,所以每个PE设备部署BFD的数量能够达到其与其他PE设备之间建立路径的数量,从而导致每个PE设备均需要部署较多的BFD,占用其过多的资源。
发明内容
本申请提供了一种处理路由的方法及装置、数据传输的方法及装置,能够有效减少各PE上配置BFD的数量。
第一方面,本申请提供了一种处理路由的方法,该方法用在承载基于第六版互联网协议段路由的虚拟专用网络(Internet Protocol Version 6 Segment Routing-based Virtual Private Network,SRv6-based VPN)业务的网络中,该网络包括第一CE设备, 第二CE设备,入(ingress)PE设备,N个出(egress)PE设备,至少一个运营商(Provider,P)设备,所述第一CE设备与所述ingress PE设备连接,所述第二CE设备多归连接所述N个egress PE设备,所述ingress PE设备通过所述至少一个P设备与所述N个egress PE设备通信连接,所述第一CE设备与所述第二CE设备属于同一个VPN,所述N个egress PE设备中包括第一PE设备和第二PE设备,所述第一PE设备配置第一第六版互联网协议段路由(Internet Protocol Version 6 Segment Routing,SRv6)VPN段标识(Segment Identifer,SID),所述第一SRv6 VPN SID用于标识所述第二CE设备所属的VPN或所述第一PE连接所述第二CE设备的出接口,所述第二PE设备配置第二SRv6 VPN SID和第三SRv6 VPN SID,所述第二SRv6 VPN SID和第三SRv6 VPN SID均用于标识所述第二CE设备所属的VPN或所述第二PE设备连接所述第二CE设备的出接口,其中,N为大于或等于2的整数。所述方法包括:所述第一PE设备接收所述第二PE设备发送的第一VPN路由,所述第一VPN路由包括所述第二SRv6 VPN SID和所述第三SRv6 VPN SID;所述第一PE设备确定所述第二SRv6 VPN SID与所述第一SRv6 VPN SID相同;所述第一PE设备根据所述第一VPN路由中的所述第三SRv6 VPN SID建立从所述第一PE设备到所述第二PE设备的第二路径,其中,该第二路径在所述第一PE设备与所述第二CE设备直接连接的第一路径发生故障时,被所述第一PE设备用于向所述第二CE设备转发报文。
本申请中,第二SRv6 VPN SID与第一SRv6 VPN SID相同,所以到达第一SRv6 VPN SID的路径包括分别到达第一PE设备和第二PE设备的两条路径。所以在传输第一CE设备发送给第二CE设备的报文时,如果到达第一PE的第五路径故障,可以确定出到达第二PE设备的第六路径,进而可以将报文倒换至第六路径传输给第二PE设备,从而可以使第二PE设备将报文发送给第二CE设备。如此在第一CE设备向第二CE设备发送报文时,入PE设备在确定传报文输路径过程中,可以不检测路径中出PE设备是否故障,而是在报文传输过程中检测到出PE设备故障时,再通过到达与出PE设备的SRv6 VPN SID相同的PE设备的路径来传输报文,从而实现快速路径倒换,所以建立路径的各PE设备之间不需要部署BFD来检测故障,即入PE设备和出PE设备之间不需要部署BFD来检测故障,从而减少了PE设备中部署BFD的数量,降低了BFD占用PE设备的资源,并减少了PE设备确定路径时故障检测的时间,提高路径倒换的速度。并且本申请中,第二PE设备配置了与第一SRv6 VPN SID不相同的第三SRv6 VPN SID,可以使第一PE设备通过第一VPN路由中第三SRv6 VPN SID来建立第二路径,使第一PE设备传输给第二CE设备的报文在第一PE设备与第二CE设备直接连接的路径故障时可以将报文倒换至第二路径传输,从而实现快速的路径倒换,使报文可以传输给第二CE设备,从而实现了多归保护。
结合第一方面,在第一方面的第一种实施方式中,所述方法还包括:所述第一PE设备向所述第二PE设备发送第二VPN路由,所述第二VPN路由中携带所述第一SRv6 VPN SID和第四SRv6 VPN SID,其中,所述第四SRv6 VPN SID用于标识所述第二CE设备所属的VPN或所述第一PE设备连接所述第二CE设备的出接口,所述第四SRv6 VPN SID被所述第二PE设备用于建立从所述第二PE设备到所述第一PE设备的第三路径,所述第三路径在所述第二PE设备与所述第二CE设备直接连接的第四路径 发生故障时,被所述第二PE设备用于向所述第二CE设备传输报文,所述第四SRv6 VPN SID与所述第一SRv6 VPN SID不同,所述第一SRv6 VPN SID与所述第二PE设备保存的所述第二SRv6 VPN SID相同。
本实施方式中,第一PE设备配置了第四SRv6 VPN SID,可以使第二PE设备通过第四SRv6 VPN SID来建立第二路径,使第二PE设备传输给第二CE设备的报文在第二PE设备与第二CE设备直接连接的路径故障时可以将报文倒换至第三路径传输,从而实现快速的路径倒换,使报文可以传输给第二CE设备,从而实现了多归保护。
结合第一方面或第一方面的任一种实施方式,在第一方面的第二种实施方式中,所述第一VPN路由被携带在多协议扩展-边界网关协议(Multi-Protocol Border Gateway Protocol,MP-BGP)消息的边界网关协议-前缀-段标识(BGP-Prefix-SID)属性字段中,该BGP-Prefix-SID属性字段包括SRv6-VPN SID类型长度值(type-length-value,TLV)字段,该SRv6-VPN SID TLV字段包括类型(type,T)字段,长度(length,L)字段和值(value,V)字段,该V字段用于携带所述第三SRv6 VPN SID。
结合第一方面或第一方面的任一种实施方式,在第一方面的第二种实施方式中,所述方法还包括:所述第一PE设备接收第一报文,所述第一报文为所述第一CE设备向所述第二CE设备发送的报文,所述第一报文封装的外层目的地址为所述第一SRv6 VPN SID;所述第一PE设备确定所述第一路径故障;所述第一PE设备根据所述第一SRv6 VPN SID和所述第三SRv6 VPN SID,确定通过所述第二路径转发所述第一报文。
本实施方式中,第一PE设备向第二CE设备传输的报文时,在第一PE设备与第二CE设备直接连接的路径故障时可以将报文倒换至第二路径传输,从而实现快速的路径倒换,使报文可以传输给第二CE设备,从而实现了多归保护。
第二方面,本申请提供了一种数据传输的方法,该方法用在承载SRv6-based VPN业务的网络中,该网络包括第一CE设备,第二CE设备,ingress PE设备,N个egress PE设备,至少一个P设备,所述第一CE设备与所述ingress PE设备连接,所述第二CE设备多归连接所述N个egress PE设备,所述ingress PE设备通过所述至少一个P设备与所述N个egress PE设备通信连接,所述第一CE设备与所述第二CE设备属于同一个VPN,所述N个egress PE设备中包括第一PE设备和第二PE设备,所述第一PE设备配置第一SRv6 VPN SID,所述第一SRv6 VPN SID用于标识所述第二CE设备所属的VPN或所述第一PE设备连接所述第二CE设备的出接口,所述第二PE设备配置第二SRv6 VPN SID和第三SRv6 VPN SID,所述第二SRv6 VPN SID和第三SRv6 VPN SID均用于标识所述第二CE设备所属的VPN或所述第二PE设备连接所述第二CE设备的出接口,所述第一SRv6 VPN SID与所述第二SRv6 VPN SID相同,其中,N为大于或等于2的整数。所述方法包括:所述第一PE设备接收第一报文,所述第一报文为所述第一CE设备向所述第二CE设备发送的报文,所述第一报文封装的外层目的地址为所述第一SRv6 VPN SID;所述第一PE设备根据所述第一SRv6 VPN SID确定转发所述第一报文的第一路径,其中,所述第一路径为所述第一PE设备与所述第二CE设备直接连接的路径;所述第一PE设备确定所述第一路径发生故障,所述第一PE设备根据所述第一SRv6 VPN SID以及保存的所述第二PE设备发送的所述第三 SRv6 VPN SID,确定通过第二路径转发所述第一报文,其中,所述第一PE设备通过所述第二路径连接所述第二PE设备;所述第一PE设备通过所述第二路径向所述第二CE转发所述第一报文。
本申请中,第二SRv6 VPN SID与第一SRv6 VPN SID相同,所以到达第一SRv6 VPN SID的路径包括分别到达第一PE设备和第二PE设备的两条路径。所以在传输第一CE设备发送给第二CE设备的报文时,如果到达第一PE的第五路径故障,可以确定出到达第二PE设备的第六路径,进而可以将报文倒换至第六路径传输给第二PE设备,从而可以使第二PE设备将报文发送给第二CE设备。如此在第一CE设备向第二CE设备发送报文时,入PE设备在确定传报文输路径过程中,可以不检测路径中出PE设备是否故障,而是在报文传输过程中检测到出PE设备故障时,再通过到达与出PE设备的SRv6 VPN SID相同的PE设备的路径来传输报文,从而实现快速路径倒换,所以建立路径的各PE设备之间不需要部署BFD来检测故障,即入PE设备和出PE设备之间不需要部署BFD来检测故障,从而减少了PE设备中部署BFD的数量,降低了BFD占用PE设备的资源,并减少了PE设备确定路径时故障检测的时间,提高路径倒换的速度。并且本申请中,第一PE设备向第二CE设备传输第一报文,在第一PE设备与第二CE设备直接连接的路径故障时,第一PE设备根据所述第一SRv6 VPN SID以及保存的所述第二PE设备发送的所述第三SRv6 VPN SID确定通过第二路径,将第一报文倒换至第二路径传输,从而实现快速的路径倒换,使报文可以传输给第二CE设备,从而实现了多归保护。
结合第二方面,在第二方面的第一种实施方式中,在所述第一PE接收所述第一报文之前,所述方法还包括:所述第一PE设备接收所述第二PE设备发送的第一VPN路由,所述第一VPN路由包括所述第二SRv6 VPN SID和所述第三SRv6 VPN SID;所述第一PE设备确定所述第二SRv6 VPN SID与所述第一SRv6 VPN SID相同;所述第一PE设备根据所述第三SRv6 VPN SID建立所述第二路径。
第三方面,本申请提供了一种处理路由的方法,该方法用在承载SRv6-based VPN业务的网络中,该网络包括第一CE设备,第二CE设备,ingress PE设备,N个egress PE设备,至少一个P设备,所述第一CE设备与所述ingress PE设备连接,所述第二CE设备多归连接所述N个egress PE设备,所述ingress PE设备通过所述至少一个P设备与所述N个egress PE设备通信连接,所述第一CE设备与所述第二CE设备属于同一个VPN,所述N个egress PE设备中包括第一PE设备和第二PE设备,所述第一PE设备配置第一SRv6 VPN SID,所述第一SRv6 VPN SID用于标识所述第二CE设备所属的VPN或所述第一PE连接所述第二CE设备的出接口,所述第二PE设备配置所述第二SRv6 VPN SID,所述第二SRv6 VPN SID用于标识第二CE设备所属的VPN或所述第二PE设备连接所述第二CE设备的出接口,所述第一SRv6 VPN SID与所述第二SRv6 VPN SID相同,所述至少一个P设备包括第一P设备,所述第一P设备为所述第一PE设备的邻居节点,所述第一PE设备为所述第一P设备的下一跳,其中,N为大于或等于2的整数。所述方法包括:所述第一P设备接收所述第一PE设备发送的第一路由,所述第一路由包括所述第一SRv6 VPN SID所属的网段;所述第一P 设备接收所述第二PE设备发送的第二路由,所述第二路由包括所述第二SRv6 VPN SID所属的网段;所述第一P设备根据所述第一SRv6 VPN SID所属的网段建立从所述第一P设备到所述第一PE设备的第五路径,所述第五路径被所述第一P设备用于向所述第二CE设备转发报文;所述第一P设备根据所述第二SRv6 VPN SID所属的网段建立从所述第一P设备到所述第二PE设备的第六路径,该第六路径用于在所述第五路径发生故障时,被所述第一P设备用于向所述第二CE设备转发报文。
本申请中,第二SRv6 VPN SID与第一SRv6 VPN SID相同,所以第一P设备到达第一SRv6 VPN SID的路径包括分别到达第一PE设备和第二PE设备的两条路径。所以第一P设备在传输第一CE设备发送给第二CE设备的报文时,如果到达第一PE的第五路径故障,第一P设备可以确定出到达第二PE设备的第六路径,进而可以将报文倒换至第六路径传输给第二PE设备,从而可以使第二PE设备将报文发送给第二CE设备。如此在第一CE设备向第二CE设备发送报文时,入PE设备在确定传报文输路径过程中,可以不检测路径中出PE设备是否故障,而是在报文传输过程中检测到出PE设备故障时,再通过到达与出PE设备的SRv6 VPN SID相同的PE设备的路径来传输报文,从而实现快速路径倒换,所以建立路径的各PE设备之间不需要部署BFD来检测故障,即入PE设备和出PE设备之间不需要部署BFD来检测故障,从而减少了PE设备中部署BFD的数量,降低了BFD占用PE设备的资源,并减少了PE设备确定路径时故障检测的时间,提高路径倒换的速度。
结合第三方面,在第三方面的第一种实施方式中,所述方法还包括:所述第一P设备接收第一报文,所述第一报文为所述第一CE设备向所述第二CE设备发送的报文,所述第一报文封装的外层目的地址为所述第一SRv6 VPN SID;所述第一P设备确定所述第五路径故障;所述第一P设备根据所述第一SRv6 VPN SID,确定通过所述第六路径转发所述第一报文。
第四方面,本申请提供了一种数据传输的方法,该方法用在承载SRv6-based VPN业务的网络中,该网络包括第一CE设备,第二CE设备,ingress PE设备,N个egress PE设备,至少一个P设备,所述第一CE设备与所述ingress PE设备连接,所述第二CE设备多归连接所述N个egress PE设备,所述ingress PE设备通过所述至少一个P设备与所述N个egress PE设备通信连接,所述第一CE设备与所述第二CE设备属于同一个VPN,所述N个egress PE设备中包括第一PE设备和第二PE设备,所述第一PE设备配置第一SRv6 VPN SID,所述第一SRv6 VPN SID用于标识所述第二CE设备所属的VPN或所述第一PE连接所述第二CE设备的出接口,所述第二PE设备配置所述第二SRv6 VPN SID,所述第二SRv6 VPN SID用于标识第二CE设备所属的VPN或所述第二PE设备连接所述第二CE设备的出接口,所述第一SRv6 VPN SID与所述第二SRv6 VPN SID相同,所述至少一个P设备包括第一P设备,所述第一P设备为所述第一PE设备的邻居节点,所述第一PE设备为所述第一P设备的下一跳,其中,N为大于或等于2的整数。所述方法包括:所述第一P设备接收到第一报文,所述第一报文为所述第一CE设备向所述第二CE设备发送的报文,所述第一报文封装的外层目的地址为所述第一SRv6 VPN SID;所述第一P设备根据所述第一SRv6 VPN SID确 定传输所述第一报文的第五路径,所述第一P设备通过所述第五路径连接所述第一PE设备;所述第一P设备确定所述第五路径出现故障,所述第一P设备根据所述第一SRv6 VPN SID确定通过第六路径转发所述第一报文,所述第一P设备通过所述第六路径连接所述第二PE;所述第一P设备通过所述第六路径向所述第二CE设备转发所述第一报文。
本申请中,第二SRv6 VPN SID与第一SRv6 VPN SID相同,所以第一P设备到达第一SRv6 VPN SID的路径包括分别到达第一PE设备和第二PE设备的两条路径。所以第一P设备在传输第一CE设备发送给第二CE设备的报文时,如果到达第一PE的第五路径故障,第一P设备可以确定出到达第二PE设备的第六路径,进而可以将报文倒换至第六路径传输给第二PE设备,从而可以使第二PE设备将报文发送给第二CE设备。如此在第一CE设备向第二CE设备发送报文时,入PE设备在确定传报文输路径过程中,可以不检测路径中出PE设备是否故障,而是在报文传输过程中检测到出PE设备故障时,再通过到达与出PE设备的SRv6 VPN SID相同的PE设备的路径来传输报文,从而实现快速路径倒换,所以建立路径的各PE设备之间不需要部署BFD来检测故障,即入PE设备和出PE设备之间不需要部署BFD来检测故障,从而减少了PE设备中部署BFD的数量,降低了BFD占用PE设备的资源,并减少了PE设备确定路径时故障检测的时间,提高路径倒换的速度。
结合第四方面,在第四方面的第一种实施方式中,在所述第一P设备接收所述第一报文之前,所述方法还包括:所述第一P设备接收所述第一PE设备发送的第一路由,所述第一路由包括所述第一SRv6 VPN SID所属的网段;所述第一P设备接收所述第二PE设备发送的第二路由,所述第二路由包括所述第二SRv6 VPN SID所属的网段;所述第一P设备根据所述第一SRv6 VPN SID所属的网段建立所述第五路径;所述第一P设备根据所述第二SRv6 VPN SID所属的网段建立所述第六路径,该第六路径用于在所述第五路径发生故障时,被所述第一P设备用于向所述第二CE设备转发报文。
第五方面,本申请提供了一种PE设备,该PE设备作为第一PE设备,用在承载SRv6-based VPN业务的网络中,该网络包括第一CE设备,第二CE设备,ingress PE设备,N个egress PE设备,至少一个P设备,所述第一CE设备与所述ingress PE设备连接,所述第二CE设备多归连接所述N个egress PE设备,所述ingress PE设备通过所述至少一个P设备与所述N个egress PE设备通信连接,所述第一CE设备与所述第二CE设备属于同一个VPN,所述N个egress PE设备中包括所述第一PE设备和第二PE设备,所述第一PE设备配置第一SRv6 VPN SID,所述第一SRv6 VPN SID用于标识所述第二CE设备所属的VPN或所述第一PE连接所述第二CE设备的出接口,所述第二PE设备配置第二SRv6 VPN SID和第三SRv6 VPN SID,所述第二SRv6 VPN SID和第三SRv6 VPN SID均用于标识所述第二CE设备所属的VPN或所述第二PE设备连接所述第二CE设备的出接口,其中,N为大于或等于2的整数。所述第一PE设备包括:
接收单元,用于接收所述第二PE设备发送的第一VPN路由,所述第一VPN路由 包括所述第二SRv6 VPN SID和所述第三SRv6 VPN SID;
处理单元,用于确定所述第二SRv6 VPN SID与所述第一SRv6 VPN SID相同;
所述处理单元,还用于根据所述第一VPN路由中的所述第三SRv6 VPN SID建立从所述第一PE设备到所述第二PE设备的第二路径,其中,该第二路径在所述第一PE设备与所述第二CE设备直接连接的第一路径发生故障时,被所述第一PE设备用于向所述第二CE设备转发报文。
结合第五方面,在第五方面的第一种实施方式中,还包括:
发送单元,用于向所述第二PE设备发送第二VPN路由,所述第二VPN路由中携带所述第一SRv6 VPN SID和第四SRv6 VPN SID,其中,所述第四SRv6 VPN SID用于标识所述第二CE设备所属的VPN或所述第一PE设备连接所述第二CE设备的出接口,所述第四SRv6 VPN SID被所述第二PE设备用于建立从所述第二PE设备到所述第一PE设备的第三路径,所述第三路径在所述第二PE设备与所述第二CE设备直接连接的第四路径发生故障时,被所述第二PE设备用于向所述第二CE设备传输报文,所述第四SRv6 VPN SID与所述第一SRv6 VPN SID不同,所述第一SRv6 VPN SID与所述第二PE设备保存的所述第二SRv6 VPN SID相同。
结合第五方面或第五方面的任一种实施方式,在第五方面的第二种实施方式中,所述第一VPN路由被携带在MP-BGP消息的BGP-Prefix-SID属性字段中,该BGP-Prefix-SID属性字段包括SRv6-VPN SID TLV字段,该SRv6-VPN SID TLV字段包括T字段,L字段和V字段,该V字段用于携带所述第三SRv6 VPN SID。
结合第五方面或第五方面的任一种实施方式,在第五方面的第三种实施方式中,所述接收单元,还用于接收第一报文,所述第一报文为所述第一CE设备向所述第二CE设备发送的报文,所述第一报文封装的外层目的地址为所述第一SRv6 VPN SID;
所述处理单元,还用于确定所述第一路径故障;
所述处理单元,还用于根据所述第一SRv6 VPN SID和所述第三SRv6 VPN SID,确定通过所述第二路径转发所述第一报文。
第六方面,本申请提供了一种PE设备,该PE设备作为第一PE设备,用在承载SRv6-based VPN业务的网络中,该网络包括第一CE设备,第二CE设备,ingress PE设备,N个egress PE设备,至少一个P设备,所述第一CE设备与所述ingress PE设备连接,所述第二CE设备多归连接所述N个egress PE设备,所述ingress PE设备通过所述至少一个P设备与所述N个egress PE设备通信连接,所述第一CE设备与所述第二CE设备属于同一个VPN,所述N个egress PE设备中包括所述第一PE设备和第二PE设备,所述第一PE设备配置第一SRv6 VPN SID,所述第一SRv6 VPN SID用于标识所述第二CE设备所属的VPN或所述第一PE设备连接所述第二CE设备的出接口,所述第二PE设备配置第二SRv6 VPN SID和第三SRv6 VPN SID,所述第二SRv6 VPN SID和第三SRv6 VPN SID均用于标识所述第二CE设备所属的VPN或所述第二PE设备连接所述第二CE设备的出接口,所述第一SRv6 VPN SID与所述第二SRv6  VPN SID相同,其中,N为大于或等于2的整数,所述第一PE设备包括:
接收单元,用于接收第一报文,所述第一报文为所述第一CE设备向所述第二CE设备发送的报文,所述第一报文封装的外层目的地址为所述第一SRv6 VPN SID;
处理单元,用于根据所述第一SRv6 VPN SID确定转发所述第一报文的第一路径,其中,所述第一路径为所述第一PE设备与所述第二CE设备直接连接的路径;
所述处理单元,还用于确定所述第一路径发生故障,所述第一PE设备根据所述第一SRv6 VPN SID以及保存的所述第二PE设备发送的所述第三SRv6 VPN SID,确定通过第二路径转发所述第一报文,其中,所述第一PE设备通过所述第二路径连接所述第二PE设备;
发送单元,用于通过所述第二路径向所述第二CE转发所述第一报文。
结合第六方面,在第六方面的第一种实施方式中,所述接收单元,还用于接收所述第二PE设备发送的第一VPN路由,所述第一VPN路由包括所述第二SRv6 VPN SID和所述第三SRv6 VPN SID;
所述处理单元,还用于确定所述第二SRv6 VPN SID与所述第一SRv6 VPN SID相同时,根据所述第三SRv6 VPN SID建立所述第二路径。
第七方面,本申请提供了一种P设备,该P设备作为第一P设备,用在承载SRv6-based VPN业务的网络中,该网络包括第一CE设备,第二CE设备,ingress PE设备,N个egress PE设备,至少一个P设备,所述第一CE设备与所述ingress PE设备连接,所述第二CE设备多归连接所述N个egress PE设备,所述ingress PE设备通过所述至少一个P设备与所述N个egress PE设备通信连接,所述第一CE设备与所述第二CE设备属于同一个VPN,所述N个egress PE设备中包括第一PE设备和第二PE设备,所述第一PE设备配置第一SRv6 VPN SID,所述第一SRv6 VPN SID用于标识所述第二CE设备所属的VPN或所述第一PE连接所述第二CE设备的出接口,所述第二PE设备配置所述第二SRv6 VPN SID,所述第二SRv6 VPN SID用于标识第二CE设备所属的VPN或所述第二PE设备连接所述第二CE设备的出接口,所述第一SRv6 VPN SID与所述第二SRv6 VPN SID相同,所述至少一个P设备包括所述第一P设备,所述第一P设备为所述第一PE设备的邻居节点,所述第一PE设备为所述第一P设备的下一跳,其中,N为大于或等于2的整数,所述第一P设备包括:
接收单元,用于接收所述第一PE设备发送的第一路由,所述第一路由包括所述第一SRv6 VPN SID所属的网段;
所述接收单元,还用于接收所述第二PE设备发送的第二路由,所述第二路由包括所述第二SRv6 VPN SID所属的网段;
处理单元,用于根据所述第一SRv6 VPN SID所属的网段建立从所述第一P设备到所述第一PE设备的第五路径,所述第五路径被所述第一P设备用于向所述第二CE设备转发报文;
所述处理单元,还用于根据所述第二SRv6 VPN SID所属的网段建立从所述第一P 设备到所述第二PE设备的第六路径,该第六路径用于在所述第五路径发生故障时,被所述第一P设备用于向所述第二CE设备转发报文。
结合第七方面,在第七方面的第一种实施方式中,所述接收单元,还用于接收第一报文,所述第一报文为所述第一CE设备向所述第二CE设备发送的报文,所述第一报文封装的外层目的地址为所述第一SRv6 VPN SID;
所述处理单元,还用于在所述第五路径故障时,根据所述第一SRv6 VPN SID,确定通过所述第六路径转发所述第一报文。
第八方面,本申请提供了一种P设备,该P设备作为第一P设备,用在承载SRv6-based VPN业务的网络中,该网络包括第一CE设备,第二CE设备,ingress PE设备,N个egress PE设备,至少一个P设备,所述第一CE设备与所述ingress PE设备连接,所述第二CE设备多归连接所述N个egress PE设备,所述ingress PE设备通过所述至少一个P设备与所述N个egress PE设备通信连接,所述第一CE设备与所述第二CE设备属于同一个VPN,所述N个egress PE设备中包括第一PE设备和第二PE设备,所述第一PE设备配置第一SRv6 VPN SID,所述第一SRv6 VPN SID用于标识所述第二CE设备所属的VPN或所述第一PE连接所述第二CE设备的出接口,所述第二PE设备配置所述第二SRv6 VPN SID,所述第二SRv6 VPN SID用于标识第二CE设备所属的VPN或所述第二PE设备连接所述第二CE设备的出接口,所述第一SRv6 VPN SID与所述第二SRv6 VPN SID相同,所述至少一个P设备包括所述第一P设备,所述第一P设备为所述第一PE设备的邻居节点,所述第一PE设备为所述第一P设备的下一跳,其中,N为大于或等于2的整数,所述第一P设备包括:
接收单元,用于接收到第一报文,所述第一报文为所述第一CE设备向所述第二CE设备发送的报文,所述第一报文封装的外层目的地址为所述第一SRv6 VPN SID;
处理单元,用于根据所述第一SRv6 VPN SID确定传输所述第一报文的第五路径,所述第一P设备通过所述第五路径连接所述第一PE设备;
所述处理单元,还用于确定所述第五路径出现故障,所述第一P设备根据所述第一SRv6 VPN SID确定通过第六路径转发所述第一报文,所述第一P设备通过所述第六路径连接所述第二PE;
发送单元,用于通过所述第六路径向所述第二CE设备转发所述第一报文。
结合第八方面,在第八方面的第一种实施方式中,所述接收单元,还用于接收所述第一PE设备发送的第一路由,所述第一路由包括所述第一SRv6 VPN SID所属的网段;
所述接收单元,还用于接收所述第二PE设备发送的第二路由,所述第二路由包括所述第二SRv6 VPN SID所属的网段;
所述处理单元,还用于根据所述第一SRv6 VPN SID所属的网段建立所述第五路径,以及根据所述第二SRv6 VPN SID所属的网段建立所述第六路径,该第六路径用于在所述第五路径发生故障时,被所述第一P设备用于向所述第二CE设备转发报文。
第九方面,本申请提供了一种通信系统,该通信系统包括如第五方面或第五方面的任一种实施方式所述的PE设备和如第七方面或第七方面的任一种实施方式所述的P设备。
第十方面,本申请提供了一种通信系统,该通信系统包括如第五方面或第五方面的任一种实施方式所述的PE设备和如第八方面或第八方面的任一种实施方式所述的P设备。
第十一方面,本申请提供了一种通信系统,该通信系统包括如第六方面或第六方面的任一种实施方式所述的PE设备和如第七方面或第七方面的任一种实施方式所述的P设备。
第十二方面,本申请提供了一种通信系统,该通信系统包括如第六方面或第六方面的任一种实施方式所述的PE设备和如第八方面或第八方面的任一种实施方式所述的P设备。
第十三方面,本申请提供了一种运营商边缘PE设备,包括:处理器、存储器和通信接口;
所述存储器、所述通信接口与所述处理器耦合;
所述存储器用于存储计算机程序代码,所述计算机程序代码包括指令,当所述处理器执行所述指令时,所述PE设备用于执行如第一方面或第一方面的任一种实施方式所述的处理路由的方法。
第十四方面,本申请提供了一种运营商边缘PE设备,包括:处理器、存储器和通信接口;
所述存储器、所述通信接口与所述处理器耦合;
所述存储器用于存储计算机程序代码,所述计算机程序代码包括指令,当所述处理器执行所述指令时,所述PE设备用于执行如第二方面或第二方面的任一种实施方式所述的数据传输的方法。
第十五方面,本申请提供了一种运营商P设备,包括:处理器、存储器和通信接口;
所述存储器、所述通信接口与所述处理器耦合;
所述存储器用于存储计算机程序代码,所述计算机程序代码包括指令,当所述处理器执行所述指令时,所述P设备用于执行如第三方面或第三方面的任一种实施方式所述的处理路由的方法。
第十六方面,本申请提供了一种运营商P设备,包括:处理器、存储器和通信接口;
所述存储器、所述通信接口与所述处理器耦合;
所述存储器用于存储计算机程序代码,所述计算机程序代码包括指令,当所述处 理器执行所述指令时,所述P设备用于执行如第四方面或第四方面的任一种实施方式所述的数据传输的方法。
第十七方面,本申请提供了一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得计算机执行如第一方面或第一方面的任一种实施方式所述的处理路由的方法。
第十八方面,本申请提供了一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得计算机执行如第二方面或第二方面的任一种实施方式所述的数据传输的方法。
第十九方面,本申请提供了一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得计算机执行如第三方面或第三方面的任一种实施方式所述的处理路由的方法。
第二十方面,本申请提供了一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得计算机执行如第四方面或第四方面的任一种实施方式所述的数据传输的方法。
附图说明
图1是根据本发明实施例提供的一种SRv6的网络架构示意图;
图2是根据本发明实施例提供的一种用于承载SRv6-based VPN业务的网络架构示意图;
图3是根据本发明一实施例提供的一种处理路由的方法的示意性流程图;
图4是根据本发明一实施例提供的一种数据传输的方法的示意性流程图;
图5是根据本发明又一实施例提供的一种处理路由的方法的示意性流程图;
图6是根据本发明又一实施例提供的BGP-Prefix-SID属性中字段的示意图;
图7是根据本发明又一实施例提供的一种数据传输的方法的示意性流程图;
图8是根据本发明一实施例提供的一种PE设备的示意性框图;
图9是根据本发明一实施例提供的又一种PE设备的示意性框图;
图10是根据本发明又一实施例提供的一种PE设备的示意性框图;
图11是根据本发明一实施例提供的一种P设备的示意性框图;
图12是根据本发明又一实施例提供的一种P设备的示意性框图;
图13是根据本发明另一实施例提供的一种PE设备的示意性框图;
图14是根据本发明再一实施例提供的一种PE设备的示意性框图;
图15是根据本发明另一实施例提供的一种P设备的示意性框图;
图16是根据本发明再一实施例提供的一种P设备的示意性框图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
本申请所涉及的SRv6-based VPN技术可以参见因特网工程任务组(英文:Internet  Engineering Task Force,缩写:IETF)草案“BGP Signaling of Ipv6-Segment-Routing-based VPN networks draft-dawra-idr-srv6-vpn-02.txt”,的说明,该草案中的内容以全文引用的方式并入并申请中。
除非有相反的说明,本申请实施例提及“第一”,“第二”,“第三”,“第四”,“第五”以及“第六”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序。
下面结合图1所示的网络场景对本申请实施例中所涉及到的第六版互联网协议段路由(Internet Protocol Version 6 Segment Routing,SRv6)技术进行示例性介绍,应理解,图1所示的场景,不用理解为本申请的限制。如图1所示,源主机与源PE连接,源PE通过节点1和节点2与目的PE连接,目的PE与目的主机连接。
SRv6网络是在第六版互联网协议(Internet Protocol Version 6,IPv6)网络基础上采用段路由(Segment Routing,SR)隧道封装技术所构成的网络架构。在SRv6网络中,SR隧道技术,是基于内部网关协议(Interior Gateway Protocol,IGP)扩展实现的一种隧道封装技术。其中,段(Segment)实质上是用于标识对应路由的一个片段标识,例如可以是用于标识链路或者下一跳的IPv6地址,Routing表示路由,因此可以定义为Segment of Routing,简称为Segment Routing(SR)。SR的实施模式包括但不限于段路由流量工程(Segment Routing Traffic Engineering,SR-TE)模式和段路由尽力转发(Segment Routing Best Effort,SR-BE)模式等。基于SR-BE隧道技术构建的网络,通过设置外层隧道地址和内层隧道地址来标记业务转发路径。其中,外层隧道地址例如可以是隧道目的节点设备的IPv6地址,内层隧道地址可以是隧道源节点设备的IPv6地址。在源节点设备处,给报文封装基于SR-BE隧道的外层隧道地址即可以控制到达目的节点设备的报文转发路径。有鉴于此,在基于SR-BE隧道技术配置多归保护时,可以简化掉与中间路径和路径切换相关的配置,仅配置指示源节点设备到目的节点设备的外层隧道地址即可,因此,基于SR-BE技术配置多归保护被广泛使用。以图1为例,源PE为SR隧道源节点设备,目的PE为SR隧道目的节点设备,源PE、节点1、节点2和目的PE组成数据传输SR隧道,源PE通过接口1与源主机连接,目的PE与目的主机连接。源PE的IPV6地址为A,目的PE的IPV6地址为B,则当源PE从接口1接收到源主机发送给目的主机的一个报文时,源PE查找与接口1关联的VPN路由转发表(Virtual Routing Forwarding,VRF)路由表,确定路由关联的隧道信息,对该报文进行封装,报文的内层封装源主机地址和目的主机地址,报文的外层封装IPv6报文头,IPv6报文头中封装的外层目的地址为隧道的目的PE的IPV6地址B,IPv6报文头中内层源地址为隧道的源PE的IPv6地址A。基于IPv6报文头中的外层目的地址指导报文转发,至SR隧道的最后一跳,即目的PE,目的PE将报文的IPv6报文头去掉后,将报文发送给目的主机。
基于SR-TE隧道的网络,是一种严格约束转发路径的SR隧道封装技术,即在源PE和目的PE之间,严格约束转发路径所经过的每一个节点。以图1为例,源PE为SR隧道源节点设备,目的PE为SR隧道目的节点设备,源PE、节点1、节点2和目的PE的组成传输数据的SR隧道,源PE通过接口1与源主机连接,目的PE与目的主机连接。源PE的IPV6地址为A,目的PE的IPV6地址为B,则当源PE从接口1 接收到源主机发送给目的主机的一个报文时,源PE查找与接口1关联的VRF路由表,确定路由关联的隧道信息,基于隧道信息对该报文进行封装。报文的内层封装源主机地址和目的主机地址,之后在报文外层封装SR隧道指定通过节点的地址,即隧道信息指定通过节点1和节点2到目的PE的路径,则报文由内到外依次封装节点1、节点2和目的PE的地址,由此来确定报文的传输路径。然后,在报文的最外侧封装IPv6报文头,IPv6报文头中封装的外层目的地址为源PE通过SR隧道传输报文的下一跳节点的地址(节点1的地址),IPv6报文头中内层源地址为隧道的源PE的IPv6地址A。节点1接收到源PE发送的报文,通过报文封装的SR隧道指定通过节点的地址确定下一跳的地址,并根据最长匹配原则确定出下一跳节点(节点2),然后修改报文最外层的IPv6报文头中外层目的地址为节点1的下一跳节点的地址(节点2的地址),并将报文向节点2发送。节点2接收报文后,通过报文封装的SR隧道指定通过节点的地址确定下一跳的地址,并根据最长匹配原则确定出下一跳节点(目的PE),此时节点2根据SR隧道指定通过节点的地址还可以确定其为SR隧道的倒数第二跳节点,则其去掉报文封装的SR隧道指定通过节点的地址,并修改报文最外层的IPv6报文头中外层目的地址为目的PE的地址,将报文向目的PE发送,从而完成报文在SR隧道转发的过程。目的PE将报文的IPv6报文头去掉后,将报文发送给目的主机。
下面结合图2所示的网络场景对可能的SRv6-based VPN网络进行示例性介绍。本领域技术人员可以理解,图2中仅以双归场景进行示例性介绍,不应理解为对本申请的限制。例如,CE设备也可以多归连接到三个或更多个egress PE设备上,本申请不再赘述。
如图2所示,PE1和PE2属于egress PE设备,PE3和PE4属于ingress PE设备。PE3通过P1与PE1连接,PE3通过P1和P2与PE2连接,PE4通过P2与PE2连接,PE4通过P2和P1与PE1连接。CE1双归连接PE3和PE4,CE2双归连接PE1和PE2。CE1和CE2属于同一个VPN。需要说明的是,本申请中,ingress PE设备和源PE设备经常交替使用,egress PE设备和目的PE设备经常交替使用。
PE1上配置的SRv6 VPN SID用IPv6地址A来标识,PE2上配置的IPv6地址B来表示。其中,地址A用于标识PE1中CE2所属的VPN,或者用于标识PE1连接CE2的出接口,地址B用于标识PE2中CE2所属的VPN,或者用于标识PE2连接CE2的出接口,地址A和地址B不同。
CE1向CE2发送报文时,CE1首先将向CE2发送的报文发送给PE3,PE3可以通过SR-BE等隧道技术转发CE1发送报文至CE2。在图2所示网络场景中,假设PE3确定通过P1和PE1传输CE1发送的报文。由于报文在传输到P1后,报文最外层IPv6报文头中外层目的地址为地址A,P1根据报文最外层IPv6报文头中外层目的地址来确定下一跳节点,所以如果PE1故障,P1和PE1之间无法传输报文,所以P1需要将报文倒换到PE4所在的路径上来传输报文,即P1将报文封装的外层目的地址修改为地址B。PE4接收到报文后,根据地址B查找对应的VRF表,查找出地址B所标识的VPN,但是,因为地址B所标识的VPN与PE3设备中地址A所标识的VPN不同,因此PE4无法确定出正确的传输路径,将会导致PE4无法继续传输报文,从而使报文无法传输给CE2,造成多归保护无法生效。
所以为了保证报文能够传输至CE2,PE3在确定传输报文的路径时还需要检测路径的出PE设备是否故障,即PE3确定通过P1和PE1传输CE1发送的报文后,需要检测PE1是否故障。如果PE1故障,PE3则需要进行路径倒换,将报文倒换至其他路径来传输,以避免发生因PE1故障而导致报文无法传输至CE2的情况。
目前,PE设备之间故障检测通常通过配置的BFD来完成,即PE3通过配置的与PE1之间的BFD来判断PE1是否有故障。如果PE1故障,则需要进行路径倒换。
由上述CE1与CE2之间报文传输的过程可知,PE3在确定传输CE1发送报文的路径时,需要通过配置PE之间的BFD来检测路径是否故障,以便于保证报文能够正常传输。这样每个PE设备与其他PE设备之间建立路径后均需要部署BFD,才能实现故障的快速检测,这就导致每个PE设备中会部署较多的BFD,从而导致占用PE过多的资源。
并且图2所示的网络场景中,邻居设备之间还需要配置基于接口的BFD,可以用来检测邻居设备之间的链路是否故障。PE3确定通过P1传输CE1发送的报文后,会通过与P1之间配置的BFD来检测PE3与P1之间的链路是否故障。所以,PE3在确定传输CE1发送的报文的路径时需要进行两层的故障检测,一层为PE3与P1之间的故障检测,另一层为PE3和PE1之间的故障检测。并且,通常优先进行PE3与P1之间的故障检测,在PE3与P1之间无故障时再进行PE3和PE1之间的故障检测,以保证路径故障检测的准确性。所以PE3在完成路径倒换的整个过程需要消耗两层的故障检测和倒换路径的时间。
例如,通常PE3和P1之间故障检测时,一般需要进行检测3个周期来确定链路是否故障,每个周期需要10毫秒(ms),则PE3和P1之间故障检测通常需要30ms。而PE3与PE1之间故障检测时,PE3与PE1之间故障检测的周期要大于PE3和P1之间故障检测的周期,即需要至少为30ms,一般需要进行检测3个周期,则PE3和PE1之间故障检测至少需要90ms。综合上述过程,再结合倒换路径的时间,PE3在确定故障并完成路径倒换过程至少需要100ms。
有鉴于此,本发明实施例提出一种方法,例如可以应用于图2所示的网络场景中,用于在承载SRv6-based VPN业务的网络中实现多归保护的同时,有效降低PE设备部署BFD的数量。
本发明实施例提供的方法和装置可以用于承载SRv6-based VPN业务的网络中。该网络可以包括但不限于以下设备:PE设备、P设备和CE设备。PE设备和P设备为提供SRv6-based VPN服务的运营商网络中的设备,CE设备为应用该SRv6-based VPN服务的客户网络中的设备。PE设备根据数据传输的方向可以分为入(ingress)PE设备和出(egress)PE设备,入PE设备为公网的一个入口PE设备,按照数据传输方向,连接源CE设备,因此也可以称之为源PE设备;出PE连接目的CE设备(或称之为宿CE),所以也可称之为目的PE或者宿PE。入PE设备和出PE设备的区分与数据传输的方向相关。入PE设备和出PE设备之间可以通过至少一个P设备连接,CE设备与PE设备连接时,可以通过多归连接多个PE。
具体的,CE设备可以包括第一CE设备和第二CE设备,第一CE设备和第二CE设备属于同一个VPN。假设数据传输方向为第一CE设备向第二CE设备传输数据, 第一CE设备与ingress PE设备连接,第二CE设备多归连接N个egress PE设备,ingress PE设备通过至少一个P设备与N个egress PE设备通信连接。N个egress PE设备中包括第一PE设备和第二PE设备,至少一个P设备包括第一P设备,第一P设备为第一PE设备的邻居节点,第一PE设备为第一P设备的下一跳。其中,N为大于或等于2的整数。
本发明实施例中,承载SRv6-based VPN业务的网络可以接入多种业务,例如,三层VPN(L3VPN)业务,以太网虚拟专用网络(Ethernet Virtual Private Network,EVPN)虚拟标签专线服务(Virtual Private Wire Service,VPWS)业务,EVPN虚拟专用局域网业务(Virtual Private Lan Service,VPLS)等等。
在承载SRv6-based VPN业务的网络中,PE设备可以配置一个或多个SRv6 VPN SID,每个SRv6 VPN SID用于标识与该PE设备连接的一个CE设备所属的VPN,或者用于标识该PE设备连接该CE设备的出接口。例如,在图2所示网络架构中,PE1配置第一SRv6 VPN SID,用于标识CE2所属的VPN或者PE1连接CE2的出接口,PE2配置第二SRv6 VPN SID,用于标识CE2所属的VPN或者PE2连接CE2的出接口。同时,PE设备中配置的SRv6 VPN SID可以作为PE设备的IPv6地址,在传输报文时,可以以SRv6 VPN SID作为对应PE的IPv6地址来进行报文的传输。
需要说明的是,本申请实施例中,“PE设备配置的SRv6 VPN SID”的相关表述或“PE设备中的SRv6 VPN SID”的相关表述是指PE设备中保存有SRv6 VPN SID。本申请中的PE设备例如可以是路由器或三层交换机或分组传送网(Packet Transport Network,PTN)设备,CE设备例如可以是路由器或三层交换机或主机或PTN设备,本申请对此不作具体限定。
SRv6 VPN SID包括SID段和索引两部分,SID段表示IPv6网段地址,索引相当于IPv6网段内地址二次分配的值,例如,PE1配置SID段为101::(64),配置的一个索引为1001,则可以得出PE1的一个SRv6 VPN SID为101::1001。PE设备中可以配置多个索引,索引可以基于接入的业务设置,例如,可以根据VRF、VPN实例、或VPWS业务实例等等配置索引,不同的索引结合SID段即可以使每个业务配置不同的SRv6 VPN SID。
在承载SRv6-based VPN的网络的控制层面,各设备需要交换路由信息。P设备与其他设备之间的路由交换可以通过公网路由的发布方式实现路由信息的交换,例如,内部网关协议(InteriorGatewayProtocol,IGP)、理由协议(例如(中间系统到中间系统(Intermediate System-to-Intermediate System,IS-IS)协议或开放最短路径优先(Open Shortest Path First,OSPF)或边界网关协议(Border Gateway Protocol,BGP)),并基于例如最短路径算法拓扑信息在网络中进行传播,生成SR隧道。CE设备和与其直接相连的PE设备之间例如可以通过静态路由或建立邻居关系来发布路由的方式来交换路由信息,各PE设备之间例如可以建立MP-BGP会话,通过MP-BGP消息来交换各自的VPN路由,与CE设备直接相连的PE设备会为CE设备建立对应的虚拟路由转发表(Virtual Routing Forwarding,VRF),存放对应CE设备的路由信息。以图2所示网络架构进行说明。CE1与直接相连的PE3之间可以建立邻居关系,例如,通过边界网关协议(Border Gateway Protocol,BGP)会话建立邻居关系,CE1通过BGP 消息把CE1的路由信息发布给直接相连的PE3,使PE3学习到CE1的路由信息。PE3可以通过与PE1之间建立MP-BGP会话交换VPN路由并分配和相互发布VPN标签。PE3把VPN路由信息发布给PE1,以及通过与PE2之间建立的MP-BGP对话把VPN路由信息发布给PE2,使PE1和PE2学习到PE3的VPN路由信息。PE1与CE2之间也可以通过MP-BGP建立邻接关系,从而使CE2学习到PE3的路由信息。同理,PE2与CE2之间也可以建立邻接关系,从而使CE2学习到PE3的路由信息。
上述各设备发布的路由信息中包括其各自的IP地址或媒体接入控制(Media Access Control,MAC)地址,从而可以使学习到该路由信息的设备能够根据上述地址确定到达该设备的路径。PE设备发布路由信息中的源IP地址可以为PE设备配置的SRv6 VPN SID。
本发明实施例中,为了减少PE中部署BFD的数量,将CE设备多归连接的PE设备中至少两个PE设备分别配置两个SRv6 VPN SID,配置的SRv6 VPN SID均用于标识该CE所属的VPN或PE设备连接该CE设备的出接口。具体的,第一PE设备配置第一SRv6 VPN SID,第一SRv6 VPN SID用于标识第二CE所属的VPN或第一PE连接第二CE的出接口,第二PE配置第二SRv6 VPN SID,第二SRv6 VPN SID用于标识第二CE所属的VPN或第二PE连接第二CE的出接口。第一SRv6 VPN SID与第二SRv6 VPN SID相同。
例如,在图2所示网络架构中,PE1配置第一SRv6 VPN SID的SID段为101::(64),索引为1001,则PE1的第一SRv6 VPN SID为101::1001。同时,PE1还配置第四SRv6 VPN SID的SID段为555::(64),结合为第一SRv6 VPN SID配置的索引1001,则可以得出第四SRv6 VPN SID为555::1001。PE1配置的第一SRv6 VPN SID和PE2配置的第二SRv6 VPN SID相同,所以PE2配置第二SRv6 VPN SID的SID段为101::(64),索引为1001,则PE2的第二SRv6 VPN SID为101::1001。同时,PE2还配置第三SRv6 VPN SID的SID段为666::(64),结合第二SRv6 VPN SID配置的索引1001,则可以得出PE2的第三SRv6 VPN SID为666::1001。
在上述CE1向CE2发送报文的过程中,P1根据报文封装的第一SRv6 VPN SID来确定下一跳节点,所以在PE3确定通过路径1传输报文后,报文在传输至P1时,即使第一SRv6 VPN SID对应的PE1故障,P1和PE1之间无法传输报文,P1还可以根据第一SRv6 VPN SID确定出到达PE2的路径来传输报文,所以P1可以通过到达PE2的路径将报文传输给PE2,使PE2将报文传输给CE2,从而保证报文的正常传输。
本发明实施例中,第二SRv6 VPN SID与第一SRv6 VPN SID相同,所以其他设备到达第一SRv6 VPN SID的路径包括到达第一PE设备和第二PE设备的路径。所以在第一CE设备发送给第二CE设备的报文时,如果到达第一PE设备的路径故障,也可以根据报文封装的第一SRv6 VPN SID确定出到达第二PE设备的路径,进而可以将报文传输给到达第二PE设备的路径传输,从而可以使第二PE设备将报文发送给第二CE设备。如此,在第一CE向第二CE发送报文时,入PE在确定传报文输路径过程中,可以不检测路径中出PE是否故障,而是在报文传输过程中检测到出PE故障时,再通过到达与出PE的SRv6 VPN SID相同的PE的路径来传输报文,从而实现快速路径倒换,所以建立路径的各PE设备之间不需要部署BFD来检测故障,从而减少了PE 设备中部署BFD的数量,降低了BFD占用PE设备的资源。
并且本发明实施例中,建立路径的各PE设备之间不需要部署BFD来检测故障,路径倒换过程只需要一层的故障检测,即P1和PE1之间的故障检测,从而可减少PE设备确定路径时故障检测的时间,进而可以减少了完成路径倒换所需要的时间,提高路径倒换的速度,提升了路径倒换的性能。
例如,P1和PE1之间故障检测时,通常需要30ms,再结合倒换路径的时间,P1在确定故障并完成路径倒换过程相对于上述的两层故障检测方式,至少可以节省50ms,从而提高路径倒换的速度,提升了路径倒换的性能。
以下分别从控制层面和转发层面对本发明实施例进行说明。
本发明一实施例提供了一种处理路由的方法,用于上述承载SRv6-based VPN业务的网络的控制层面,具体可以用于图2所示的网络架构的控制层面,如图3所示,该方法包括以下步骤。
101,第一P设备接收第一PE设备发送的第一路由。
其中,第一路由包括第一SRv6 VPN SID所属的网段。本发明实施例中用于上述承载SRv6-based VPN业务的网络,所以SRv6 VPN SID所属的网段为IPv6网段。SRv6 VPN SID包括SID段和索引两部分,SID段表示IPv6网段地址,所以第一SRv6 VPN SID所属的网段即为第一PE设备配置第一SRv6 VPN SID的SID段。
各设备之间需要交换路由信息,以确定到达彼此之间的路径。P设备与其他设备之间的路由交换可以通过公网路由的发布方式实现路由信息的交换。所以,第一P设备会接收到其他设备发送的路由路由中包括对应设备的地址,例如,第一PE设备向第一P设备发送的第一路由,第一路由包括第一PE设备的第一SRv6 VPN SID所属的网段。第一P设备会接收到第一PE设备发送的包括第一SRv6 VPN SID所属的网段的第一路由。
102,第一P设备接收第二PE设备发送的第二路由。
第二路由包括第二SRv6 VPN SID所属的网段。基于与步骤101相同的原理,第一P设备也可以接收第二PE设备发送的包括第二SRv6 VPN SID所属的网段的第二路由。
103,第一P设备根据第一SRv6 VPN SID所属的网段建立从第一P设备到第一PE设备的第五路径。
第一P设备接收第一PE设备发送的第一路由后,从第一路由中确定出第一SRv6 VPN SID所属的网段,则可以根据第一SRv6 VPN SID所属的网段建立从第一P设备到第一PE设备的第五路径。在后续通过第一P设备向第二CE传输报文时,可以根据最长匹配原理,基于报文的外层目的地址和第一SRv6 VPN SID所属的网段确定出通过第五路径将报文传输给第一PE,使第一PE将报文转发给第二CE。
104,第一P设备根据第二SRv6 VPN SID所属的网段建立从第一P设备到第二PE设备的第六路径。
第一P设备接收第二PE设备发送的第二路由后,从第二路由中确定出第二SRv6 VPN SID所属的网段,则可以根据第二SRv6 VPN SID所属的网段建立从第一P设备到第二PE设备的第六路径。在后续通过第一P设备向第二CE传输报文时,可以通过 第六路径将报文传输给第二PE,使第二PE将报文转发给第二CE。
本发明实施例中,第一SRv6 VPN SID和第二SRv6 VPN SID相同,第一SRv6 VPN SID所属的网段和第二SRv6 VPN SID所属的网段也相同,所以第一P设备建立的第五路径和第六路径所到达的网段相同,所以第一P设备的数据转发层面在转发目的地址为第一SRv6 VPN SID的报文时,可以有两条路径进行转发,第一P设备的控制层面会向转发层面下发一条路径,来使第一P设备的数据转发层面根据控制层面下发的路径转发报文。由于第一PE为第一PE设备的邻居节点,第一PE设备为第一P设备的下一跳,所以第一P设备的控制层面通常会优选第五路径,但是,在第五路径发生故障时,第六路径被作为备用路径,即第一P设备将报文倒换至第六路径向第二CE设备转发报文。
在上述过程第一P设备分别接收第一PE设备和第二PE设备发送的路由,在控制层面,其他P设备也会通过相同的原理接收第一PE设备和第二PE设备发送的路由,并建立对应的用于传输报文的路径,并且第一PE设备和第二PE设备还会向其他PE设备(如入PE设备)发送VPN路由,具体的VPN路由也可以通过被MP-BGP消息携带的方式发送给其他PE设备。例如,第二PE设备可以向入PE设备发送的第一VPN路由,第一VPN路由包括第二SRv6 VPN SID;第一PE设备可以向入PE设备发送第二VPN路由,第二VPN路由包括第一SRv6 VPN SID。入PE设备在接收第一VPN路由和第二VPN路由后,根据第一SRv6 VPN SID建立到达第一PE设备的路径,并根据第二SRv6 VPN SID建立到达第二PE设备的路径。由于第一SRv6 VPN SID和第二SRv6 VPN SID相同,所以入PE设备的数据转发层面在转发目的地址为第一SRv6 VPN SID的报文时,可以有两条路径进行转发,入PE设备的控制层面会向转发层面下发一条路径。
通过控制层面路由信息的交换过程,各设备之间可以建立的传输路径。在上述实施例的基础上,第一CE设备向第二CE设备发送第一报文过程中可以实现多归保护,使第一报文传输给第二CE设备。
具体的,本发明一实施例提供了一种数据传输的方法,用于上述SRv6-based VPN的数据转发层面,具体可以用于图2所示的网络架构的数据转发层面,如图4所示,该方法包括以下步骤。
201,第一P设备接收到第一报文。
其中,第一报文为第一CE设备向第二CE设备发送的报文,第一报文封装的外层目的地址为第一SRv6 VPN SID。
在基于SRv6-based VPN业务的网络中,数据转发层面用于实现对两个CE之间传输的报文进行转发。本发明实施例,以第一CE设备向第二CE设备发送第一报文为例。
本发明实施例中,第一CE设备将第一报文发送给入PE设备(如图2中PE3),此时第一报文中包括源CE地址和目的CE地址,源CE地址为第一CE设备的地址,目的CE地址为第二CE设备的地址。入PE设备接收第一报文后,其控制层面可以根据目的CE地址和对应第一CE设备的VRF确定出传输第一报文的路径,并将确定的路径下发给入PE设备的数据转发层面。入PE设备的数据转发层面可以基于确定的路径和SR-BE等隧道技术封装第一报文,并转发封装的第一报文。
本发明实施例中,入PE设备确定传输第一报文的路径中出PE设备为第一PE设备,其地址为第一SRv6 VPN SID,第一报文经传输到达第一P设备,所以第一P设备接收到第一报文时,第一报文封装的外层目的地址为第一SRv6 VPN SID。第一P设备根据第一报文的外层目的地址确定需要将第一报文发送给地址为第一SRv6 VPN SID的设备。所以第一P设备可以根据第一SRv6 VPN SID确定传输第一报文的路径。
202,第一P设备根据第一SRv6 VPN SID确定传输第一报文的第五路径。
第五路径为第一P设备到达第一PE的路径。
通过步骤103可知,第一设备接收第一PE设备发送的第一路由后,通过第一SRv6 VPN SID所属的网段建立到达第一PE设备的第五路径,则本步骤中,根据第一报文的外层目的地址,即第一SRv6 VPN SID,根据最长匹配原理可以确定出传输第一报文的第五路径。
需要说明的是,由于第一PE设备的第一SRv6 VPN SID和第二PE设备的第二SRv6 VPN SID相同,第一SRv6 VPN SID所属的网段和第二SRv6 VPN SID所属的网段也相同,所以第一设备中到达第一SRv6 VPN SID的路径包括两条,一条为第一P设备到达第一PE设备的第五路径,另一条为第一P设备到达第二PE设备的第六路径。由于第一PE设备为第一P设备下一跳,所以第一P设备通常会优先通过第五路径来传输第一报文。所以本发明实施例中第一P设备根据第一报文的目的地址确定第一P设备到达第一PE设备的第五路径,来传输第一报文。
203,第一P设备确定第五路径出现故障,第一P设备根据第一SRv6 VPN SID确定通过第六路径转发所述第一报文。
第一P设备通过第六路径连接第二PE。
在基于SRv6-based VPN业务的网络中,邻居设备之间在传输数据时也需要进行故障检测,通常邻居设备之间会配置BFD进行快速的路径故障检测。第一P设备根据第一SRv6 VPN SID确定第一P设备到达第一PE的第五路径后,其下一跳为第一PE设备,则第一P设备可以根据与第一PE设备之间配置BFD检测第五路径是否故障。如果第一P设备检测到第五路径故障,第一P设备需要进行路径倒换,即根据第一SRv6 VPN SID和最长匹配原理确定出到达第二PE设备的第六路径来传输第一报文。
需要说明的是,第一P设备确定通过到达第二PE的第六路径来传输第一报文时,也可以对第一P设备到达下一跳的路径进行路径故障检测,以保证第一报文能够正常传输给下一跳。
204,第一P设备通过第六路径向第二CE设备转发第一报文。
第一P设备在步骤203中确定出通过第六路径传输第一报文后,则将第一报文倒换至第六路径进行传输。
此时第一P设备可以根据第六路径确定连接下一跳的出接口,然后通过与下一跳连接的出接口转发封装的第一报文。由于第二PE设备的第二SRv6 VPN SID和第一SRv6 VPN SID相同,第二SRv6 VPN SID和第一SRv6 VPN SID所标识的VPN相同,第一报文传输给第二PE设备后,第二PE设备通过第一报文封装的外层目的地址,即第一SRv6 VPN SID,查找对应的VRF表后,可以确定出正确的转发第一报文的路径,进而可以使第二PE设备将第一报文发送给第二CE设备,从而使多归保护生效,保证 报文的准确传输。
本发明实施例中,第二SRv6 VPN SID与第一SRv6 VPN SID相同,所以第一P设备到达第一SRv6 VPN SID的路径包括分别到达第一PE设备和第二PE设备的两条路径。所以在传输第一CE设备发送给第二CE设备的报文时,如果第一P设备到达第一PE的第五路径故障,第一P设备可以确定出到达第二PE设备的第六路径,进而可以将报文倒换至第六路径传输给第二PE设备,从而可以使第二PE设备将报文发送给第二CE设备。
如此,在第一CE设备向第二CE设备发送报文时,入PE设备在确定传报文输路径过程中,可以不检测路径中出PE设备是否故障,而是在报文传输过程中检测到出PE设备故障时,再通过到达与出PE设备的SRv6 VPN SID相同的PE设备的路径来传输报文,从而实现快速路径倒换,所以建立路径的各PE设备之间不需要部署BFD来检测故障,即入PE设备和出PE设备之间不需要部署BFD来检测故障,从而减少了PE设备中部署BFD的数量,降低了BFD占用PE设备的资源,并减少了PE设备确定路径时故障检测的时间,提高路径倒换的速度。
基于上述的本发明实施例,第二SRv6 VPN SID与第一SRv6 VPN SID相同,第一SRv6 VPN SID所属的网段和第二SRv6 VPN SID所属的网段也相同,在传输第一CE设备发送给第二CE设备的报文时,如果第一P设备到达第一PE的第五路径故障,第一P设备可以确定出到达第二PE设备的第六路径,使第二PE设备将报文发送给第二CE设备。在第一P设备到达第一PE设备的第五路径未故障的情况下,第一P设备将第一报文发送给第一PE设备。第一PE设备确定将第一报文传输给第二CE设备时,确定第一PE设备与第二CE设备之间直接连接的第一路径来转发第一报文,此时第一PE设备还需要检测第一PE设备与第二CE设备之间直接连接的第一路径是否故障,如果第一路径故障,则需要进行路径倒换,即将第一报文倒换给通过第二PE设备连接第二CE设备的第二路径进行传输。但是由于第二PE设备之间由于第二SRv6 VPN SID与第一SRv6 VPN SID相同,第一PE设备无法实现第一报文的路径倒换,进而无法实现多归路径保护。
基于上述问题,本发明实施例中,将CE设备多归连接的PE设备中至少两个PE设备再分别配置逃生SRv6 VPN SID,至少两个PE设备分别配置不同的逃生SRv6 VPN SID,至少两个PE设备配置的逃生SRv6 VPN SID也用于标识该CE所属的VPN或PE设备连接该CE设备的出接口,至少两个PE设备之间可以通过逃生SRv6 VPN SID建立路径。具体的,第一PE设备配置第一SRv6 VPN SID和第四SRv6 VPN SID,第一SRv6 VPN SID和第四SRv6 VPN SID均用于标识第二CE所属的VPN或第一PE连接第二CE的出接口。第二PE配置第二SRv6 VPN SID和第三SRv6 VPN SID,第二SRv6 VPN SID和第三SRv6 VPN SID均用于标识第二CE所属的VPN或第二PE连接第二CE的出接口。第三SRv6 VPN SID和第四SRv6 VPN SID即为逃生SRv6 VPN SID,第一SRv6 VPN SID与第二SRv6 VPN SID相同,第一SRv6 VPN SID与第四SRv6 VPN SID不同,第四SRv6 VPN SID与第三SRv6 VPN SID不同,第三SRv6 VPN SID与第二SRv6 VPN SID不同。
以下分别从控制层面和转发层面对本发明实施例进行说明。
承载SRv6-based VPN业务的网络中,各设备之间在控制层面需要进行路由信息交换。在图3所示实施例中说明第一PE设备和第二PE设备向第一P设备发送路由的过程,在本发明实施例中,由于第一PE设备和第二PE设备分别配置的逃生SRv6 VPN SID,所以在发送的路由中还会携带各自的逃生SRv6 VPN SID所属的网段。第一PE设备发送的第一路由中包括第一SRv6 VPN SID所属的网段和第四SRv6 VPN SID所属的网段,第一P设备接收第一路由后,会分别根据第一SRv6 VPN SID所属的网段和第四SRv6 VPN SID所属的网段建立与第一PE设备之间的路径。第二PE设备发送的第二路由中包括第二SRv6 VPN SID所属的网段和第三SRv6 VPN SID所属的网段,第一P设备接收第二路由后,会分别根据第二SRv6 VPN SID所属的网段和第三SRv6 VPN SID所属的网段建立与第二PE设备之间的路径。在本发明实施例中,由于第一PE设备和第二PE设备分别配置的逃生SRv6 VPN SID,所以其向各PE设备之间发送的VPN路由也会不同,以下以第一PE设备和第二PE设备之间发送VPN路由的过程为例进行说明。
本发明一实施例提供了又一种处理路由的方法,用于上述承载SRv6-based VPN业务的网络的控制层面,具体可以用于图2所示的网络架构的控制层面,如图5所示,该方法包括以下步骤。
301,第一PE设备接收第二PE设备发送的第一VPN路由。
其中,第一VPN路由包括第二SRv6 VPN SID和第三SRv6 VPN SID。
承载SRv6-based VPN业务的网络中,各PE设备之间在控制层面需要进行路由信息交换,即第一PE设备向第二PE设备发布其自己的VPN路由,第二PE设备也会向第一PE设备发布其自己的VPN路由。各PE设备之间通常通过MP-BGP消息来向对方发布自己的VPN路由。各PE设备发布VPN路由中会包括自己的SRv6 VPN SID。
第一PE设备和第二PE设备为与第二CE设备多归连接的设备。本发明实施中,第二PE设备和第二PE设备均配置两个SRv6 VPN SID。第一PE设备配置第一SRv6 VPN SID和第四SRv6 VPN SID,第一SRv6 VPN SID和第四SRv6 VPN SID均用于标识第二CE设备所属的VPN或第一PE设备连接第二CE设备的出接口。第二PE设备配置第二SRv6 VPN SID和第三SRv6 VPN SID,第二SRv6 VPN SID和第三SRv6 VPN SID均用于标识第二CE设备所属的VPN或第二PE设备连接第二CE设备的出接口。其中,第三SRv6 VPN SID和第四SRv6 VPN SID为逃生SRv6 VPN SID。并且第一SRv6 VPN SID与第二SRv6 VPN SID相同,第四SRv6 VPN SID与第三SRv6 VPN SID不同,第四SRv6 VPN SID与第一SRv6 VPN SID不同,第二SRv6 VPN SID与第三SRv6 VPN SID不同。
第一PE设备在发布VPN路由时,VPN路由中包括第一SRv6 VPN SID和第四SRv6 VPN SID。第二PE设备在发布VPN路由时,VPN路由中包括第二SRv6 VPN SID和第三SRv6 VPN SID。
具体的,第一VPN路由可以被携带MP-BGP消息的BGP-Prefix-SID属性字段中。
BGP-Prefix-SID属性字段中包括SRv6-VPN SID TLV字段。该SRv6-VPN SID TLV字段包括T字段、L字段、V字段,以及预留(reserved)字段。具体结构可以如图6所示。其中,T字段用于表示携带SRv6-VPN SID的类型;L字段用于表示V字段的 总长度,通常为16字节;V字段中携带具体的SRv6-VPN SID信息;预留字段在发送MP-BGP消息时应为填充0,可以在接收MP-BGP消息时忽略,通常为8字节。
需要说明的是,SRv6-based VPN中,T字段的功能可以相当于包括多协议标签交换(Multi-Protocol Label Switching,MPLS)标签的路由中一个VPN MPLS标签属性的功能,还可以相当于一个包括EVPN路由中一个VPN MPLS标签属性的功能。
本发明实施中,第一VPN路由包括第二SRv6 VPN SID和第三SRv6 VPN SID,所以BGP-Prefix-SID属性字段中在携带第二SRv6 VPN SID的基础上,还需要扩展出新的字段来携带第三SRv6 VPN SID。
在一个具体的实施方式中,可以扩展一个TLV字段来携带上述第三SRv6 VPN SID。该TLV字段中的类型T字段用于表示第三SRv6 VPN SID的类型,具体地,可用于表示该第三SRv6 VPN SID为逃生SRv6 VPN SID,用于指示在第一PE与第二CE之间发生故障或者第二CE发生故障时,指导第一PE设备通过第一PE设备与第二PE设备之间的路径转发报文,第二PE设备上配置有所述第三SRv6 VPN SID;该TLV字段中的长度L字段用于标识第三SRv6 VPN SID的长度,该TLV字段中的值V字段。
本发明实施中,通过BGP-Prefix-SID属性字段携带第三SRv6 VPN SID时,可以为第二SRv6 VPN SID和第三SRv6 VPN SID设置不同的Type。例如,设置第二SRv6 VPN SID的Type为1,设置第三SRv6 VPN SID的Type为2。第一PE设备在接收到MP-BGP消息时,可以根据BGP-Prefix-SID属性字段中不同的TLV字段来识别SRv6 VPN SID的Type,进而来区分第二SRv6 VPN SID和第三SRv6 VPN SID。
需要说明的是,本发明实施例中,还可以通过MP-BGP消息的NLRI字段来携带上述第三SRv6 VPN SID。
MP_REACH_NLRI可以理解为NLRI的多协议扩展属性信息,它包括地址族信息域、下一跳信息域、网络层可达性信息(NLRI)域三部分。
其中,地址族信息域包括地址族标识字段(2字节)、子地址族标识字段(1字节)。地址族标识(英文:Address Family Identifier,AFI)用于标识网络层协议,例如,AFI取1,表示IPv4;AFI取2,表示IPv6。SAFI标识子地址族的类型,例如,SAFI取1,表示单播;SAFI取2,表示组播;SAFI取128,表示VPN。更具体地,AFI值为1,SAFI值为1,表示NLRI字段中承载的是IPv4单播路由;AFI值为1,SAFI值为128表示NLRI字段中承载的BGP-VPNv4路由;AFI值为1,SAFI值为4表示NLRI字段中承载的BGP标签路由。
BGP同步地址族可以理解为现有的BGP协议中IPv4或IPv6地址族中扩展的子地址族,即,AFI值可以为1或2。SAFI的值可以根据国际互联网工程任务组(英文:Internet Engineering Task Force,IETF)制定的标准确定。
下一跳信息域包括下一跳的地址长度字段(1字节)和下一跳的地址字段(可变长度)。下一跳的地址长度字段用于标识下一跳的地址字段的长度,下一跳的地址字段的长度由下一跳的地址长度字段所标识的长度决定。
下一跳信息域与NLRI域之间留有1字节保留字段。
NLRI域包括NLRI字段。
NLRI字段例如可以包括TLV字段(可变长度)。TLV字段可以包括T字段、L 字段和V字段。其中,T字段用于表示携带的第三SRv6 VPN SID的类型;L字段用于表示携带的第三SRv6 VPN SID的总长度,通常为16字节;V字段中携带第三SRv6 VPN SID。
本领域技术人员可以理解,还可以通过其它方式来携带所述第三SRv6 VPN SID,本申请不再一一赘述。
302,第一PE设备确定第二SRv6 VPN SID与第一SRv6 VPN SID相同。
本发明实施例中,将CE设备多归连接的PE设备中至少两个PE设备配置相同的SRv6 VPN SID,用来标识PE设备中该CE所属的VPN或PE设备连接该CE设备的出接口。所以第一PE设备接收到第二PE设备的第一VPN路由后,可以判断出第一VPN路由中第二SRv6 VPN SID与第一PE设备的第一SRv6 VPN SID相同,所以第一PE设备可以判断出第二PE设备也接入了第二CE设备,进而可以确定第二CE设备是多归连接第一PE设备和第二PE设备。
303,第一PE设备根据第一VPN路由中的第三SRv6 VPN SID建立从第一PE设备到第二PE设备的第二路径。
其中,该第二路径在第一PE设备与第二CE设备直接连接的第一路径发生故障时,被第一PE设备用于向第二CE设备转发报文。
由于第一PE设备的第一SRv6 VPN SID与第二PE设备的第二SRv6 VPN SID相同,所以第一PE设备需要通过第二PE设备的第三SRv6 VPN SID建立与第二PE设备之间的路径,第二PE设备会通过第一PE设备的第四SRv6 VPN SID建立与第一PE设备之间的路径,从而可以使第一PE设备和第二PE设备之间能够进行数据传输。
所以第一PE设备在确定第二SRv6 VPN SID与第一SRv6 VPN SID相同后,根据第一VPN路由中的第三SRv6 VPN SID建立从第一PE设备到第二PE设备的第二路径。由此,在第一PE设备向第二CE设备发送报文时,如果第一PE设备与第二CE设备直接连接的第一路径发生故障,则第一PE设备可以将报文倒换至第二路径传输,使第二PE设备将报文传输给第二CE设备。
本发明实施例中,第二PE设备配置了与第二SRv6 VPN SID不相同的第三SRv6 VPN SID,可以使第一PE设备通过第三SRv6 VPN SID来建立第二路径,使第一PE设备传输给第二CE设备的报文在第一PE设备与第二CE设备直接连接的路径故障时可以将报文倒换至第二路径传输,从而实现快速的路径倒换,使报文可以传输给第二CE设备,从而实现了多归保护。
需要说明的是,第一PE设备结合第一VPN路由中第三SRv6 VPN SID和第二CE设备发送的路由可以生成快速重路由(Fast Reroute,FRR)信息,在第一PE设备传输报文过程中实现快速重路由。
在图5所示方法的基础上,本发明实施例还可以包括:第一PE设备向第二PE设备发送第二VPN路由。
其中,第二VPN路由中携带第一SRv6 VPN SID和第四SRv6 VPN SID。第四SRv6 VPN SID用于标识第二CE设备所属的VPN或第一PE连接第二CE的出接口,第四SRv6 VPN SID被第二PE设备用于建立从第二PE设备到第一PE设备的第三路径,第三路径在第二PE设备与第二CE设备直接连接的第四路径发生故障时,被第二PE设 备用于向第二CE设备传输报文,第四SRv6 VPN SID与第一SRv6 VPN SID不同,第一SRv6 VPN SID与第二PE设备保存的第二SRv6 VPN SID相同。
在控制层面,第一PE设备也需要向第二PE设备发送VPN路由,即第二VPN路由。第二VPN路由包括了第一PE设备配置的第一SRv6 VPN SID和第四SRv6 VPN SID。第二VPN路由也可以通过被MP-BGP消息携带的方式发送给第二PE设备,其被携带的方式与第一VPN路由被携带的方式相同,在此不再赘述。
第二PE设备接收到第二VPN路由后,可以确定第一SRv6 VPN SID与第二SRv6 VPN SID相同,则可以判断出第一PE设备也接入了第二CE,进而可以确定第二CE设备是多归连接第一PE设备和第二PE设备。所以第二PE设备可以通过第四SRv6 VPN SID建立从第二PE设备到第一PE设备的第三路径。由此,在第二PE设备向第二CE设备发送报文时,如果第二PE设备与第二CE设备直接连接的第四路径发生故障,则第二PE设备可以将报文倒换至第三路径传输,使第一PE设备将报文传输给第二CE设备,从而实现快速的路径倒换。
本发明实施例中,在控制层面,第一PE设备和第二PE设备还需要向其他PE设备(如入PE设备)发送VPN路由。以第一PE设备向其他PE设备发送VPN路由为例,第一PE设备向其他PE设备发送的VPN路由即为第二VPN路由,包括第一SRv6 VPN SID和第四SRv6 VPN SID。其他PE设备在接收第二VPN路由后,可以将第一SRv6 VPN SID与其自身配置的SRv6 VPN SID进行比较,判断两者是否相同。如果相同,则通过第四SRv6 VPN SID建立与第一PE设备之间的路径;如果不相同,则通过第一SRv6 VPN SID建立与第一PE设备之间的路径。
第一PE设备向其他PE设备发送的第二VPN路由也可以为被MP-BGP消息携带的方式发送给其他PE设备。
需要说明的是,其他PE设备判断第一SRv6 VPN SID与其自身配置的SRv6 VPN SID不同时,也可以通过第四SRv6 VPN SID建立与第一PE设备之间的路径,但是在其他PE设备向第一PE设备传输数据时,通常以第一SRv6 VPN SID作为第一PE设备的地址,使用通过第一SRv6 VPN SID建立与第一PE设备之间的路径进行传输,而不会使用通过第四SRv6 VPN SID建立与第一PE设备之间的路径进行传输。
本发明实施例中,在SRv6-based VPN的控制层面,各设备之间还可以通过公网发布路由,使P设备与其他设备之间可以交换路由信息。
本发明实施例通过控制层面中交换路由信息的过程,各设备彼此之间可以建立传输数据的路径,进而可以进行数据传输。本发明实施例中,将CE设备多归连接的PE设备中至少两个PE设备再分别配置逃生SRv6 VPN SID,至少两个PE设备之间可以通过逃生SRv6 VPN SID建立路径,可实现多归路径保护。以下以第一PE设备向第二CE设备发送第一报文的过程为例进行说明。
本发明又一实施例提供了一种数据传输的方法,用于上述基于SRv6-based VPN的网络的数据转发层面,具体可以用于图2所示的网络架构的数据转发层面,如图7所示,该方法包括以下步骤。
401,第一PE设备接收第一报文。
其中,第一报文为第一CE设备发送给第二CE设备的报文。
本发明实施例中,第一CE设备将第一报文发送给入PE设备,此时第一报文中包括源CE地址和目的CE地址,源CE地址为第一CE设备的地址,目的CE地址为第二CE设备的地址。入PE设备接收第一报文后,根据目的CE地址和对应第一CE设备的VRF确定出传输第一报文的路径。入PE设备将第一报文通过第一P设备发送至第一PE设备,第一PE设备接收到第一报文,第一报文封装的外层目的地址为第一SRv6 VPN SID。
402,第一PE设备根据第一SRv6 VPN SID确定转发第一报文的第一路径。
其中,第一路径为第一PE设备与所述第二CE设备直接连接的路径。
第一PE设备接收第一报文后,可以根据第一报文封装的第一SRv6 VPN SID查询对应的VRF表,从而确定出第一SRv6 VPN SID所标识的VPN或者与第二CE设备连接的出接口,进而可以确定出将第一报文发送给第二CE设备的第一路径。
第一PE设备与第二CE设备直接连接,所以通常第一PE设备确定通过第一PE设备与第二CE设备直接连接的第一路径来传输第一报文。所以第一PE设备在接收第一报文后可以确定出第一PE设备与第二CE设备直接连接的第一路径。
403,第一PE设备确定第一路径发生故障,第一PE设备根据第一SRv6 VPN SID以及保存的第二PE设备发送的第三SRv6 VPN SID,确定通过第二路径转发第一报文。
其中,第一PE设备通过第二路径连接第二PE设备。
在第一PE设备确定第一路径时,也会检测第一路径是否故障,以避免第一路径故障导致第一报文无法传输给第二CE设备。
如果第一PE设备检测第一路径发生故障,则需要进行路径倒换。第一PE设备到达第二CE设备的路径还包括从第一PE设备基于第二PE设备的第三SRv6 VPN SID建立的与第二PE设备连接的第二路径,所以此时第一PE设备可以将第一报文倒换至从第一PE设备到第二PE设备的第二路径,通过第二PE设备将第一报文转发给第二CE设备。
404,第一PE设备通过第二路径向第二CE转发所述第一报文。
本步骤中,第一PE设备确将第一报文倒换至第二路径传输后,确定出下一跳为第二PE设备,下一跳的地址为第二PE设备的第三SRv6 VPN SID,所以可以将第一报文封装的外层目的地址修改为第三SRv6 VPN SID,并通过与第二PE设备连接的出接口将封装的第一报文发送给第二PE设备。第二PE设备接收封装的第一报文后,对其解封装,然后将第一报文发送给第二CE设备。
本发明实施例中,第一PE设备通过第三SRv6 VPN SID来建立了到达第二PE设备的第二路径,使第一PE设备传输给第二CE设备的报文在第一PE设备与第二CE设备直接连接的路径故障时,可以将报文倒换至第二路径传输,从而实现快速的路径倒换和多归路径保护,使报文可以传输给第二CE设备。
图8是根据本发明一实施例提供的一种PE设备500的示意性框图。
该PE设备500作为第一PE设备,用在承载SRv6-based VPN业务的网络中,该网络包括第一CE设备,第二CE设备,ingress PE设备,N个egress PE设备,至少一个P设备,所述第一CE设备与所述ingress PE设备连接,所述第二CE设备多归连接所述N个egress PE设备,所述ingress PE设备通过所述至少一个P设备与所述N个 egress PE设备通信连接,所述第一CE设备与所述第二CE设备属于同一个VPN,所述N个egress PE设备中包括所述第一PE设备和第二PE设备,所述第一PE设备配置第一SRv6 VPN SID,所述第一SRv6 VPN SID用于标识所述第二CE设备所属的VPN或所述第一PE连接所述第二CE设备的出接口,所述第二PE设备配置第二SRv6 VPN SID和第三SRv6 VPN SID,所述第二SRv6 VPN SID和第三SRv6 VPN SID均用于标识所述第二CE设备所属的VPN或所述第二PE设备连接所述第二CE设备的出接口,其中,N为大于或等于2的整数。
如图8所示,PE设备500可以包括:
接收单元501,用于接收所述第二PE设备发送的第一VPN路由,所述第一VPN路由包括所述第二SRv6 VPN SID和所述第三SRv6 VPN SID;
处理单元502,用于确定所述第二SRv6 VPN SID与所述第一SRv6 VPN SID相同;
所述处理单元502,还用于根据所述第一VPN路由中的所述第三SRv6 VPN SID建立从所述第一PE设备到所述第二PE设备的第二路径,其中,该第二路径在所述第一PE设备与所述第二CE设备直接连接的第一路径发生故障时,被所述第一PE设备用于向所述第二CE设备转发报文。
本发明实施例中,第二SRv6 VPN SID与第一SRv6 VPN SID相同,所以到达第一SRv6 VPN SID的路径包括分别到达PE设备500和第二PE设备的两条路径。所以在传输第一CE设备发送给第二CE设备的报文时,如果到达PE设备500的第五路径故障,可以确定出到达第二PE设备的第六路径,进而可以将报文倒换至第六路径传输给第二PE设备,从而可以使第二PE设备将报文发送给第二CE设备。如此在第一CE设备向第二CE设备发送报文时,入PE设备在确定传报文输路径过程中,可以不检测路径中出PE设备是否故障,而是在报文传输过程中检测到出PE设备故障时,再通过到达与出PE设备的SRv6 VPN SID相同的PE设备的路径来传输报文,从而实现快速路径倒换,所以建立路径的各PE设备之间不需要部署BFD来检测故障,即入PE设备和出PE设备之间不需要部署BFD来检测故障,从而减少了PE设备中部署BFD的数量,降低了BFD占用PE设备的资源,并减少了PE设备确定路径时故障检测的时间,提高路径倒换的速度。并且第二PE设备配置了与第一SRv6 VPN SID不相同的第三SRv6 VPN SID,可以使PE设备500通过第一VPN路由中第三SRv6 VPN SID来建立第二路径,使PE设备500传输给第二CE设备的报文在PE设备500与第二CE设备直接连接的路径故障时可以将报文倒换至第二路径传输,从而实现快速的路径倒换,使报文可以传输给第二CE设备,从而实现了多归保护。
图9是根据本发明一实施例提供的又一种PE设备500的示意性框图。
可以理解的是,如图9所示,所述PE设备500还可以包括:
发送单元503,用于向所述第二PE设备发送第二VPN路由,所述第二VPN路由中携带所述第一SRv6 VPN SID和第四SRv6 VPN SID,其中,所述第四SRv6 VPN SID用于标识所述第二CE设备所属的VPN或所述第一PE设备连接所述第二CE设备的出接口,所述第四SRv6 VPN SID被所述第二PE设备用于建立从所述第二PE设备到所述第一PE设备的第三路径,所述第三路径在所述第二PE设备与所述第二CE设备直接连接的第四路径发生故障时,被所述第二PE设备用于向所述第二CE设备传输报 文,所述第四SRv6 VPN SID与所述第一SRv6 VPN SID不同,所述第一SRv6 VPN SID与所述第二PE设备保存的所述第二SRv6 VPN SID相同。
可以理解的是,所述第一VPN路由被携带在MP-BGP消息的BGP-Prefix-SID属性字段中,该BGP-Prefix-SID属性字段包括SRv6-VPN SID TLV字段,该SRv6-VPN SID TLV字段包括T字段,L字段和V字段,该V字段用于携带所述第三SRv6 VPN SID。
可以理解的是,所述接收单元501,还用于接收第一报文,所述第一报文为所述第一CE设备向所述第二CE设备发送的报文,所述第一报文封装的外层目的地址为所述第一SRv6 VPN SID;
所述处理单元502,还用于确定所述第一路径故障;
所述处理单元502,还用于根据所述第一SRv6 VPN SID和所述第三SRv6 VPN SID,确定通过所述第二路径转发所述第一报文。
根据本发明实施例的PE设备500,可对应于根据本发明实施例的处理路由的方法中的执行主体,并且PE设备500中的各个模块的上述和其它操作和/或功能分别为了实现图3所示实施例中第一PE设备所执行的各个方法的相应流程,为了简洁,在此不再赘述。
图10是根据本发明又一实施例提供的PE设备600的示意性框图。
该PE设备600作为第一PE设备,用在承载SRv6-based VPN业务的网络中,该网络包括第一CE设备,第二CE设备,ingress PE设备,N个egress PE设备,至少一个P设备,所述第一CE设备与所述ingress PE设备连接,所述第二CE设备多归连接所述N个egress PE设备,所述ingress PE设备通过所述至少一个P设备与所述N个egress PE设备通信连接,所述第一CE设备与所述第二CE设备属于同一个VPN,所述N个egress PE设备中包括所述第一PE设备和第二PE设备,所述第一PE设备配置第一SRv6 VPN SID,所述第一SRv6 VPN SID用于标识所述第二CE设备所属的VPN或所述第一PE设备连接所述第二CE设备的出接口,所述第二PE设备配置第二SRv6 VPN SID和第三SRv6 VPN SID,所述第二SRv6 VPN SID和第三SRv6 VPN SID均用于标识所述第二CE设备所属的VPN或所述第二PE设备连接所述第二CE设备的出接口,所述第一SRv6 VPN SID与所述第二SRv6 VPN SID相同,其中,N为大于或等于2的整数。
如图10所示,PE设备600可以包括:
接收单元601,用于接收第一报文,所述第一报文为所述第一CE设备向所述第二CE设备发送的报文,所述第一报文封装的外层目的地址为所述第一SRv6 VPN SID;
处理单元602,用于根据所述第一SRv6 VPN SID确定转发所述第一报文的第一路径,其中,所述第一路径为所述第一PE设备与所述第二CE设备直接连接的路径;
所述处理单元602,还用于确定所述第一路径发生故障,所述第一PE设备根据所述第一SRv6 VPN SID以及保存的所述第二PE设备发送的所述第三SRv6 VPN SID,确定通过第二路径转发所述第一报文,其中,所述第一PE设备通过所述第二路径连接所述第二PE设备;
发送单元603,用于通过所述第二路径向所述第二CE转发所述第一报文。
本发明实施例中,第二SRv6 VPN SID与第一SRv6 VPN SID相同,所以到达第一SRv6 VPN SID的路径包括分别到达PE设备600和第二PE设备的两条路径。所以在传输第一CE设备发送给第二CE设备的报文时,如果到达PE设备600的第五路径故障,可以确定出到达第二PE设备的第六路径,进而可以将报文倒换至第六路径传输给第二PE设备,从而可以使第二PE设备将报文发送给第二CE设备。如此在第一CE设备向第二CE设备发送报文时,入PE设备在确定传报文输路径过程中,可以不检测路径中出PE设备是否故障,而是在报文传输过程中检测到出PE设备故障时,再通过到达与出PE设备的SRv6 VPN SID相同的PE设备的路径来传输报文,从而实现快速路径倒换,所以建立路径的各PE设备之间不需要部署BFD来检测故障,即入PE设备和出PE设备之间不需要部署BFD来检测故障,从而减少了PE设备中部署BFD的数量,降低了BFD占用PE设备的资源,并减少了PE设备确定路径时故障检测的时间,提高路径倒换的速度。并且PE设备600向第二CE设备传输第一报文,在PE设备600与第二CE设备直接连接的路径故障时可以将报文倒换至第二路径传输,从而实现快速的路径倒换,使报文可以传输给第二CE设备,从而实现了多归保护。
可以理解的是,所述接收单元601,还用于接收所述第二PE设备发送的第一VPN路由,所述第一VPN路由包括所述第二SRv6 VPN SID和所述第三SRv6 VPN SID;
所述处理单元602,还用于确定所述第二SRv6 VPN SID与所述第一SRv6 VPN SID相同时,根据所述第三SRv6 VPN SID建立所述第二路径。
根据本发明实施例的PE设备600,可对应于根据本发明实施例的数据传输的方法中的执行主体,并且PE设备600中的各个模块的上述和其它操作和/或功能分别为了实现图4所示实施例中第一PE设备所执行的各个方法的相应流程,为了简洁,在此不再赘述。
图11是根据本发明一实施例提供的P设备700的示意性框图。
该P设备700作为第一P设备,用在承载SRv6-based VPN业务的网络中,该网络包括第一CE设备,第二CE设备,ingress PE设备,N个egress PE设备,至少一个P设备,所述第一CE设备与所述ingress PE设备连接,所述第二CE设备多归连接所述N个egress PE设备,所述ingress PE设备通过所述至少一个P设备与所述N个egress PE设备通信连接,所述第一CE设备与所述第二CE设备属于同一个VPN,所述N个egress PE设备中包括第一PE设备和第二PE设备,所述第一PE设备配置第一SRv6 VPN SID,所述第一SRv6 VPN SID用于标识所述第二CE设备所属的VPN或所述第一PE连接所述第二CE设备的出接口,所述第二PE设备配置所述第二SRv6 VPN SID,所述第二SRv6 VPN SID用于标识第二CE设备所属的VPN或所述第二PE设备连接所述第二CE设备的出接口,所述第一SRv6 VPN SID与所述第二SRv6 VPN SID相同,所述至少一个P设备包括所述第一P设备,所述第一P设备为所述第一PE设备的邻居节点,所述第一PE设备为所述第一P设备的下一跳,其中,N为大于或等于2的整数。
如图11所示,P设备700可以包括:
接收单元701,用于接收所述第一PE设备发送的第一路由,所述第一路由包括所述第一SRv6 VPN SID所属的网段;
所述接收单元701,还用于接收所述第二PE设备发送的第二路由,所述第二路由包括所述第二SRv6 VPN SID所属的网段;
处理单元702,用于根据所述第一SRv6 VPN SID所属的网段建立从所述第一P设备到所述第一PE设备的第五路径,所述第五路径被所述第一P设备用于向所述第二CE设备转发报文;
所述处理单元702,还用于根据所述第二SRv6 VPN SID所属的网段建立从所述第一P设备到所述第二PE设备的第六路径,该第六路径用于在所述第五路径发生故障时,被所述第一P设备用于向所述第二CE设备转发报文。
本发明实施例中,第二SRv6 VPN SID与第一SRv6 VPN SID相同,第二SRv6 VPN SID所属的网段和第一SRv6 VPN SID所属的网段也相同,所以P设备700到达第一SRv6 VPN SID的路径包括分别到达第一PE设备和第二PE设备的两条路径。所以P设备700在传输第一CE设备发送给第二CE设备的报文时,如果到达第一PE的第五路径故障,P设备700可以确定出到达第二PE设备的第六路径,进而可以将报文倒换至第六路径传输给第二PE设备,从而可以使第二PE设备将报文发送给第二CE设备。如此在第一CE设备向第二CE设备发送报文时,入PE设备在确定传报文输路径过程中,可以不检测路径中出PE设备是否故障,而是在报文传输过程中检测到出PE设备故障时,再通过到达与出PE设备的SRv6 VPN SID相同的PE设备的路径来传输报文,从而实现快速路径倒换,所以建立路径的各PE设备之间不需要部署BFD来检测故障,即入PE设备和出PE设备之间不需要部署BFD来检测故障,从而减少了PE设备中部署BFD的数量,降低了BFD占用PE设备的资源,并减少了PE设备确定路径时故障检测的时间,提高路径倒换的速度。
可以理解的是,所述接收单元701,还用于接收第一报文,所述第一报文为所述第一CE设备向所述第二CE设备发送的报文,所述第一报文封装的外层目的地址为所述第一SRv6 VPN SID;
所述处理单元702,还用于在所述第五路径故障时,根据所述第一SRv6 VPN SID,确定通过所述第六路径转发所述第一报文。
根据本发明实施例的P设备700,可对应于根据本发明实施例的处理路由的方法中的执行主体,并且P设备700中的各个模块的上述和其它操作和/或功能分别为了实现图5所示实施例中第一P设备所执行的各个方法的相应流程,为了简洁,在此不再赘述。
图12是根据本发明又一实施例提供的P设备800的示意性框图。
该P设备800作为第一P设备,用在承载基于SRv6-based VPN业务的网络中,该SRv6-based VPN包括第一用户边缘CE设备,第二CE设备,ingress PE设备,N个egress PE设备,至少一个P设备,所述第一CE设备与所述ingress PE设备连接,所述第二CE设备多归连接所述N个egress PE设备,所述ingress PE设备通过所述至少一个P设备与所述N个egress PE设备通信连接,所述第一CE设备与所述第二CE设备属于同一个VPN,所述N个egress PE设备中包括第一PE设备和第二PE设备,所述第一PE设备配置第一SRv6 VPN SID,所述第一SRv6 VPN SID用于标识所述第二CE设备所属的VPN或所述第一PE连接所述第二CE设备的出接口,所述第二PE 设备配置所述第二SRv6 VPN SID,所述第二SRv6 VPN SID用于标识第二CE设备所属的VPN或所述第二PE设备连接所述第二CE设备的出接口,所述第一SRv6 VPN SID与所述第二SRv6 VPN SID相同,所述至少一个P设备包括所述第一P设备,所述第一P设备为所述第一PE设备的邻居节点,所述第一PE设备为所述第一P设备的下一跳,其中,N为大于或等于2的整数。
如图12所示,P设备800可以包括:
接收单元801,用于接收到第一报文,所述第一报文为所述第一CE设备向所述第二CE设备发送的报文,所述第一报文封装的外层目的地址为所述第一SRv6 VPN SID;
处理单元802,用于根据所述第一SRv6 VPN SID确定传输所述第一报文的第五路径,所述第一P设备通过所述第五路径连接所述第一PE设备;
所述处理单元802,还用于确定所述第五路径出现故障,所述第一P设备根据所述第一SRv6 VPN SID确定通过第六路径转发所述第一报文,所述第一P设备通过所述第六路径连接所述第二PE;
发送单元803,用于通过所述第六路径向所述第二CE设备转发所述第一报文。
本发明实施例中,第二SRv6 VPN SID与第一SRv6 VPN SID相同,所以P设备800到达第一SRv6 VPN SID的路径包括分别到达第一PE设备和第二PE设备的两条路径。所以P设备800在传输第一CE设备发送给第二CE设备的报文时,如果到达第一PE的第五路径故障,P设备800可以确定出到达第二PE设备的第六路径,进而可以将报文倒换至第六路径传输给第二PE设备,从而可以使第二PE设备将报文发送给第二CE设备。如此在第一CE设备向第二CE设备发送报文时,入PE设备在确定传报文输路径过程中,可以不检测路径中出PE设备是否故障,而是在报文传输过程中检测到出PE设备故障时,再通过到达与出PE设备的SRv6 VPN SID相同的PE设备的路径来传输报文,从而实现快速路径倒换,所以建立路径的各PE设备之间不需要部署BFD来检测故障,即入PE设备和出PE设备之间不需要部署BFD来检测故障,从而减少了PE设备中部署BFD的数量,降低了BFD占用PE设备的资源,并减少了PE设备确定路径时故障检测的时间,提高路径倒换的速度。
可以理解的是,所述接收单元801,还用于接收所述第一PE设备发送的第一路由,所述第一路由包括所述第一SRv6 VPN SID所属的网段;
所述接收单元801,还用于接收所述第二PE设备发送的第二路由,所述第二路由包括所述第二SRv6 VPN SID所属的网段;
所述处理单元802,还用于根据所述第一SRv6 VPN SID所属的网段建立所述第五路径,以及根据所述第二SRv6 VPN SID所属的网段建立所述第六路径,该第六路径用于在所述第五路径发生故障时,被所述第一P设备用于向所述第二CE设备转发报文。
根据本发明实施例的P设备800,可对应于根据本发明实施例的数据传输的方法中的执行主体,并且P设备800中的各个模块的上述和其它操作和/或功能分别为了实现图7所示实施例中第一PE设备所执行的各个方法的相应流程,为了简洁,在此不再赘述。
图13是本发明实施例提供的另一种PE设备900的示意性结构图。如图13所示, PE设备900包括处理器901、存储器902和通信接口903。
处理器901可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器301还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
存储器902可以是独立的器件也可以集成在处理器901中。存储器902可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器902还可以包括上述种类的存储器的组合。
通信接口903用于与外部设备通信,通信接口903可以为无线接口或有线接口。其中,无线接口可以是蜂窝移动网络接口,无线局域网接口等。有线接口可以是以太网接口,例如或光接口或电接口。
PE设备900还可以包括总线904,总线904用于连接处理器901、存储器902和通信接口903,使处理器901、存储器902和通信接口903通过总线904进行相互通信。所述总线904可以分为地址总线、数据总线、控制总线等。为便于表示,图13中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
所述PE设备900,用于实现本发明实施例图3所示的处理路由的方法中第一PE设备所执行的相应流程,为了简洁,在此不再赘述。
可选地,存储器902还可以用于存储程序指令,处理器901调用该存储器902中存储的程序指令,可以执行图3所示方法中的一个或多个步骤,或其中可选的实施方式。
所述处理器901用于执行图8或图9所述的PE设备500的处理单元502的所有操作,所述通信接口903可以用于执行图8或图9所述的PE设备500的接收单元501以及图9所示的发送单元503的所有操作。
图14是本发明实施例提供的再一种PE设备1000的示意性结构图。如图14所示,PE设备1000包括处理器1001、存储器1002和通信接口1003。
处理器1001可以是CPU,网络处理器或者CPU和NP的组合。处理器1001还可以进一步包括硬件芯片。上述硬件芯片可以是ASIC,PLD或其组合。上述PLD可以是CPLD,FPGA,通用阵列逻辑或其任意组合。
存储器1002可以是独立的器件也可以集成在处理器1001中。存储器1002可以包括易失性存储器,例如RAM;存储器也可以包括非易失性存储器,例如快闪存储器,硬盘或固态硬盘;存储器1002还可以包括上述种类的存储器的组合。
通信接口1003用于与外部设备通信,通信接口1003可以为无线接口或有线接口。其中,无线接口可以是蜂窝移动网络接口,无线局域网接口等。有线接口可以是以太网接口,例如或光接口或电接口。
PE设备1000还可以包括总线1004,总线1004用于连接处理器1001、存储器1002和通信接口1003,使处理器1001、存储器1002和通信接口1003通过总线1004进行相互通信。所述总线1004可以分为地址总线、数据总线、控制总线等。为便于表示,图14中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
所述PE设备1000,用于实现本发明实施例图4所示的数据传输的方法中第一PE设备所执行的相应流程,为了简洁,在此不再赘述。
可选地,存储器1002还可以用于存储程序指令,处理器1001调用该存储器1002中存储的程序指令,可以执行图4所示方法中的一个或多个步骤,或其中可选的实施方式。
所述处理器1001用于执行图10所述的PE设备600的处理单元602的所有操作,所述通信接口1003可以用于执行图10所述的PE设备600的接收单元601和发送单元603的所有操作。
图15是本发明实施例提供的另一种P设备1100的示意性结构图。如图15所示,P设备1100包括处理器1101、存储器1102和通信接口1103。
处理器1101可以是CPU,网络处理器或者CPU和NP的组合。处理器1001还可以进一步包括硬件芯片。上述硬件芯片可以是ASIC,PLD或其组合。上述PLD可以是CPLD,FPGA,GAL或其任意组合。
存储器1102可以是独立的器件也可以集成在处理器1101中。存储器1102可以包括易失性存储器,例如RAM;存储器也可以包括非易失性存储器,例如快闪存储器,硬盘或固态硬盘;存储器1102还可以包括上述种类的存储器的组合。
通信接口1103用于与外部设备通信,通信接口1103可以为无线接口或有线接口。其中,无线接口可以是蜂窝移动网络接口,无线局域网接口等。有线接口可以是以太网接口,例如或光接口或电接口。
P设备1100还可以包括总线1104,总线1104用于连接处理器1101、存储器1102和通信接口1103,使处理器1101、存储器1102和通信接口1103通过总线1104进行相互通信。所述总线1104可以分为地址总线、数据总线、控制总线等。为便于表示,图15中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
所述P设备1100,用于实现本发明实施例图5所示的处理路由的方法中第一P设备所执行的相应流程,为了简洁,在此不再赘述。
可选地,存储器1102还可以用于存储程序指令,处理器1101调用该存储器1102中存储的程序指令,可以执行图5所示方法中的一个或多个步骤,或其中可选的实施方式。
所述处理器1101用于执行图11所述的P设备700的处理单元702的所有操作,所述通信接口1103可以用于执行图11所述的P设备700的接收单元701的所有操作。
图16是本发明实施例提供的另一种P设备1200的示意性结构图。如图16所示,P设备1200包括处理器1201、存储器1202和通信接口1203。
处理器1201可以是CPU,网络处理器或者CPU和NP的组合。处理器1001还可以进一步包括硬件芯片。上述硬件芯片可以是ASIC,PLD或其组合。上述PLD可以是CPLD,现场可编程逻辑门阵列FPGA,通用阵列逻辑或其任意组合。
存储器1202可以是独立的器件也可以集成在处理器1101中。存储器1102可以包括易失性存储器,例如随机存取存储器RAM;存储器也可以包括非易失性存储器,例如快闪存储器,硬盘或固态硬盘;存储器1202还可以包括上述种类的存储器的组合。
通信接口1203用于与外部设备通信,通信接口1203可以为无线接口或有线接口。其中,无线接口可以是蜂窝移动网络接口,无线局域网接口等。有线接口可以是以太网接口,例如或光接口或电接口。
P设备1200还可以包括总线1204,总线1204用于连接处理器1201、存储器1202和通信接口1203,使处理器1201、存储器1202和通信接口1203通过总线1204进行相互通信。所述总线1204可以分为地址总线、数据总线、控制总线等。为便于表示,图16中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
所述P设备1200,用于实现本发明实施例图7所示的处理路由的方法中第一P设备所执行的相应流程,为了简洁,在此不再赘述。
可选地,存储器1202还可以用于存储程序指令,处理器1201调用该存储器1202中存储的程序指令,可以执行图7所示方法中的一个或多个步骤,或其中可选的实施方式。
所述处理器1201用于执行图12所述的P设备800的处理单元802的所有操作,所述通信接口1203可以用于执行图12所述的P设备800的接收单元801和发送单元803的所有操作。
本发明实施例还提供了一种通信系统,包括如图8或9所述的PE设备500和如图11所述的P设备700。
本发明实施例还提供了又一种通信系统,包括如图8或9所述的PE设备500和如图12所述的P设备700。
本发明实施例还提供了另一种通信系统,包括如图10所述的PE设备600和如图11所述的P设备800。
本发明实施例还提供了再一种通信系统,包括如图10所述的PE设备600和如图12所述的P设备800。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘)等。
应理解,本领域技术人员在阅读本申请文件的基础上,可以针对本申请实施例中 所描述的可选的特征、步骤或方法进行不需要付出创造性的组合,都属于本申请公开的实施例,只是由于描述或行文的简单没有重复赘述不同组合。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种处理路由的方法,其特征在于,该方法用在承载基于第六版互联网协议段路由的虚拟专用网络SRv6-based VPN业务的网络中,该网络包括第一用户边缘CE设备,第二CE设备,入运营商边缘ingress PE设备,N个出运营商边缘egress PE设备,至少一个运营商P设备,所述第一CE设备与所述ingress PE设备连接,所述第二CE设备多归连接所述N个egress PE设备,所述ingress PE设备通过所述至少一个P设备与所述N个egress PE设备通信连接,所述第一CE设备与所述第二CE设备属于同一个虚拟专用网络VPN,所述N个egress PE设备中包括第一PE设备和第二PE设备,所述第一PE设备配置第一SRv6 VPN段标识SID,所述第一SRv6 VPN SID用于标识所述第二CE设备所属的VPN或所述第一PE连接所述第二CE设备的出接口,所述第二PE设备配置第二SRv6 VPN SID和第三SRv6 VPN SID,所述第二SRv6 VPN SID和第三SRv6 VPN SID均用于标识所述第二CE设备所属的VPN或所述第二PE设备连接所述第二CE设备的出接口,其中,N为大于或等于2的整数,所述方法包括:
    所述第一PE设备接收所述第二PE设备发送的第一VPN路由,所述第一VPN路由包括所述第二SRv6 VPN SID和所述第三SRv6 VPN SID;
    所述第一PE设备确定所述第二SRv6 VPN SID与所述第一SRv6 VPN SID相同;
    所述第一PE设备根据所述第一VPN路由中的所述第三SRv6 VPN SID建立从所述第一PE设备到所述第二PE设备的第二路径,其中,该第二路径在所述第一PE设备与所述第二CE设备直接连接的第一路径发生故障时,被所述第一PE设备用于向所述第二CE设备转发报文。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一PE设备向所述第二PE设备发送第二VPN路由,所述第二VPN路由中携带所述第一SRv6 VPN SID和第四SRv6 VPN SID,其中,所述第四SRv6 VPN SID用于标识所述第二CE设备所属的VPN或所述第一PE设备连接所述第二CE设备的出接口,所述第四SRv6 VPN SID被所述第二PE设备用于建立从所述第二PE设备到所述第一PE设备的第三路径,所述第三路径在所述第二PE设备与所述第二CE设备直接连接的第四路径发生故障时,被所述第二PE设备用于向所述第二CE设备传输报文,所述第四SRv6 VPN SID与所述第一SRv6 VPN SID不同,所述第一SRv6 VPN SID与所述第二PE设备保存的所述第二SRv6 VPN SID相同。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一VPN路由被携带在多协议扩展-边界网关协议MP-BGP消息的边界网关协议-前缀-段标识BGP-Prefix-SID属性字段中,该BGP-Prefix-SID属性字段包括SRv6-VPN SID类型长度值TLV字段,该SRv6-VPN SID TLV字段包括类型T字段,长度L字段和值V字段,该V字段用于携带所述第三SRv6 VPN SID。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述方法还包括:
    所述第一PE设备接收第一报文,所述第一报文为所述第一CE设备向所述第二CE设备发送的报文,所述第一报文封装的外层目的地址为所述第一SRv6 VPN SID;
    所述第一PE设备确定所述第一路径故障;
    所述第一PE设备根据所述第一SRv6 VPN SID和所述第三SRv6 VPN SID,确定通过所述第二路径转发所述第一报文。
  5. 一种数据传输的方法,其特征在于,该方法用在承载基于第六版互联网协议段 路由的虚拟专用网络SRv6-based VPN业务的网络中,该网络包括第一用户边缘CE设备,第二CE设备,入运营商边缘ingress PE设备,N个出运营商边缘egress PE设备,至少一个运营商P设备,所述第一CE设备与所述ingress PE设备连接,所述第二CE设备多归连接所述N个egress PE设备,所述ingress PE设备通过所述至少一个P设备与所述N个egress PE设备通信连接,所述第一CE设备与所述第二CE设备属于同一个虚拟专用网络VPN,所述N个egress PE设备中包括第一PE设备和第二PE设备,所述第一PE设备配置第一SRv6 VPN段标识SID,所述第一SRv6 VPN SID用于标识所述第二CE设备所属的VPN或所述第一PE设备连接所述第二CE设备的出接口,所述第二PE设备配置第二SRv6 VPN SID和第三SRv6 VPN SID,所述第二SRv6 VPN SID和第三SRv6 VPN SID均用于标识所述第二CE设备所属的VPN或所述第二PE设备连接所述第二CE设备的出接口,所述第一SRv6 VPN SID与所述第二SRv6 VPN SID相同,其中,N为大于或等于2的整数,所述方法包括:
    所述第一PE设备接收第一报文,所述第一报文为所述第一CE设备向所述第二CE设备发送的报文,所述第一报文封装的外层目的地址为所述第一SRv6 VPN SID;
    所述第一PE设备根据所述第一SRv6 VPN SID确定转发所述第一报文的第一路径,其中,所述第一路径为所述第一PE设备与所述第二CE设备直接连接的路径;
    所述第一PE设备确定所述第一路径发生故障,所述第一PE设备根据所述第一SRv6 VPN SID以及保存的所述第二PE设备发送的所述第三SRv6 VPN SID,确定通过第二路径转发所述第一报文,其中,所述第一PE设备通过所述第二路径连接所述第二PE设备;
    所述第一PE设备通过所述第二路径向所述第二CE转发所述第一报文。
  6. 根据权利要求5所述的方法,其特征在于,在所述第一PE接收所述第一报文之前,所述方法还包括:
    所述第一PE设备接收所述第二PE设备发送的第一VPN路由,所述第一VPN路由包括所述第二SRv6 VPN SID和所述第三SRv6 VPN SID;
    所述第一PE设备确定所述第二SRv6 VPN SID与所述第一SRv6 VPN SID相同;
    所述第一PE设备根据所述第三SRv6 VPN SID建立所述第二路径。
  7. 一种处理路由的方法,其特征在于,该方法用在承载基于第六版互联网协议段路由的虚拟专用网SRv6-based VPN业务的网络中,该网络包括第一用户边缘CE设备,第二CE设备,入运营商边缘ingress PE设备,N个出运营商边缘egress PE设备,至少一个运营商P设备,所述第一CE设备与所述ingress PE设备连接,所述第二CE设备多归连接所述N个egress PE设备,所述ingress PE设备通过所述至少一个P设备与所述N个egress PE设备通信连接,所述第一CE设备与所述第二CE设备属于同一个虚拟专用网络VPN,所述N个egress PE设备中包括第一PE设备和第二PE设备,所述第一PE设备配置第一SRv6 VPN段标识SID,所述第一SRv6 VPN SID用于标识所述第二CE设备所属的VPN或所述第一PE连接所述第二CE设备的出接口,所述第二PE设备配置所述第二SRv6 VPN SID,所述第二SRv6 VPN SID用于标识第二CE设备所属的VPN或所述第二PE设备连接所述第二CE设备的出接口,所述第一SRv6 VPN SID与所述第二SRv6 VPN SID相同,所述至少一个P设备包括第一P设备,所述第一P设备为所述第一PE设备的邻居节点,所述第一PE设备为所述第一P设备的下一跳,其中,N为大于或等于2的整数,所述方法包括:
    所述第一P设备接收所述第一PE设备发送的第一路由,所述第一路由包括所述第一SRv6 VPN SID所属的网段;
    所述第一P设备接收所述第二PE设备发送的第二路由,所述第二路由包括所述 第二SRv6 VPN SID所属的网段;
    所述第一P设备根据所述第一SRv6 VPN SID所属的网段建立从所述第一P设备到所述第一PE设备的第五路径,所述第五路径被所述第一P设备用于向所述第二CE设备转发报文;
    所述第一P设备根据所述第二SRv6 VPN SID所属的网段建立从所述第一P设备到所述第二PE设备的第六路径,该第六路径用于在所述第五路径发生故障时,被所述第一P设备用于向所述第二CE设备转发报文。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述第一P设备接收第一报文,所述第一报文为所述第一CE设备向所述第二CE设备发送的报文,所述第一报文封装的外层目的地址为所述第一SRv6 VPN SID;
    所述第一P设备确定所述第五路径故障;
    所述第一P设备根据所述第一SRv6 VPN SID,确定通过所述第六路径转发所述第一报文。
  9. 一种数据传输的方法,其特征在于,该方法用在承载基于第六版互联网协议段路由的虚拟专用网SRv6-based VPN业务的网络中,该网络包括第一用户边缘CE设备,第二CE设备,入运营商边缘ingress PE设备,N个出运营商边缘egress PE设备,至少一个运营商P设备,所述第一CE设备与所述ingress PE设备连接,所述第二CE设备多归连接所述N个egress PE设备,所述ingress PE设备通过所述至少一个P设备与所述N个egress PE设备通信连接,所述第一CE设备与所述第二CE设备属于同一个虚拟专用网络VPN,所述N个egress PE设备中包括第一PE设备和第二PE设备,所述第一PE设备配置第一SRv6 VPN段标识SID,所述第一SRv6 VPN SID用于标识所述第二CE设备所属的VPN或所述第一PE连接所述第二CE设备的出接口,所述第二PE设备配置所述第二SRv6 VPN SID,所述第二SRv6 VPN SID用于标识第二CE设备所属的VPN或所述第二PE设备连接所述第二CE设备的出接口,所述第一SRv6 VPN SID与所述第二SRv6 VPN SID相同,所述至少一个P设备包括第一P设备,所述第一P设备为所述第一PE设备的邻居节点,所述第一PE设备为所述第一P设备的下一跳,其中,N为大于或等于2的整数,所述方法包括:
    所述第一P设备接收到第一报文,所述第一报文为所述第一CE设备向所述第二CE设备发送的报文,所述第一报文封装的外层目的地址为所述第一SRv6 VPN SID;
    所述第一P设备根据所述第一SRv6 VPN SID确定传输所述第一报文的第五路径,所述第一P设备通过所述第五路径连接所述第一PE设备;
    所述第一P设备确定所述第五路径出现故障,所述第一P设备根据所述第一SRv6 VPN SID确定通过第六路径转发所述第一报文,所述第一P设备通过所述第六路径连接所述第二PE;
    所述第一P设备通过所述第六路径向所述第二CE设备转发所述第一报文。
  10. 根据权利要求9所述的方法,其特征在于,在所述第一P设备接收所述第一报文之前,所述方法还包括:
    所述第一P设备接收所述第一PE设备发送的第一路由,所述第一路由包括所述第一SRv6 VPN SID所属的网段;
    所述第一P设备接收所述第二PE设备发送的第二路由,所述第二路由包括所述第二SRv6 VPN SID所属的网段;
    所述第一P设备根据所述第一SRv6 VPN SID所属的网段建立所述第五路径;
    所述第一P设备根据所述第二SRv6 VPN SID所属的网段建立所述第六路径,该第六路径用于在所述第五路径发生故障时,被所述第一P设备用于向所述第二CE设 备转发报文。
  11. 一种运营商边缘PE设备,其特征在于,所述PE设备作为第一PE设备,用在承载基于第六版互联网协议段路由的虚拟专用网络SRv6-based VPN业务的网络中,该网络包括第一用户边缘CE设备,第二CE设备,入ingress PE设备,N个出egress PE设备,至少一个运营商P设备,所述第一CE设备与所述ingress PE设备连接,所述第二CE设备多归连接所述N个egress PE设备,所述ingress PE设备通过所述至少一个P设备与所述N个egress PE设备通信连接,所述第一CE设备与所述第二CE设备属于同一个虚拟专用网络VPN,所述N个egress PE设备中包括所述第一PE设备和第二PE设备,所述第一PE设备配置第一SRv6 VPN段标识SID,所述第一SRv6 VPN SID用于标识所述第二CE设备所属的VPN或所述第一PE连接所述第二CE设备的出接口,所述第二PE设备配置第二SRv6 VPN SID和第三SRv6 VPN SID,所述第二SRv6 VPN SID和第三SRv6 VPN SID均用于标识所述第二CE设备所属的VPN或所述第二PE设备连接所述第二CE设备的出接口,其中,N为大于或等于2的整数,所述第一PE设备包括:
    接收单元,用于接收所述第二PE设备发送的第一VPN路由,所述第一VPN路由包括所述第二SRv6 VPN SID和所述第三SRv6 VPN SID;
    处理单元,用于确定所述第二SRv6 VPN SID与所述第一SRv6 VPN SID相同;
    所述处理单元,还用于根据所述第一VPN路由中的所述第三SRv6 VPN SID建立从所述第一PE设备到所述第二PE设备的第二路径,其中,该第二路径在所述第一PE设备与所述第二CE设备直接连接的第一路径发生故障时,被所述第一PE设备用于向所述第二CE设备转发报文。
  12. 根据权利要求11所述的PE设备,其特征在于,还包括:
    发送单元,用于向所述第二PE设备发送第二VPN路由,所述第二VPN路由中携带所述第一SRv6 VPN SID和第四SRv6 VPN SID,其中,所述第四SRv6 VPN SID用于标识所述第二CE设备所属的VPN或所述第一PE设备连接所述第二CE设备的出接口,所述第四SRv6 VPN SID被所述第二PE设备用于建立从所述第二PE设备到所述第一PE设备的第三路径,所述第三路径在所述第二PE设备与所述第二CE设备直接连接的第四路径发生故障时,被所述第二PE设备用于向所述第二CE设备传输报文,所述第四SRv6 VPN SID与所述第一SRv6 VPN SID不同,所述第一SRv6 VPN SID与所述第二PE设备保存的所述第二SRv6 VPN SID相同。
  13. 根据权利要求11或12所述的PE设备,其特征在于,所述第一VPN路由被携带在多协议扩展-边界网关协议MP-BGP消息的边界网关协议-前缀-段标识BGP-Prefix-SID属性字段中,该BGP-Prefix-SID属性字段包括SRv6-VPN SID类型长度值TLV字段,该SRv6-VPN SID TLV字段包括类型T字段,长度L字段和值V字段,该V字段用于携带所述第三SRv6 VPN SID。
  14. 根据权利要求11-13任一项所述的PE设备,其特征在于,所述接收单元,还用于接收第一报文,所述第一报文为所述第一CE设备向所述第二CE设备发送的报文,所述第一报文封装的外层目的地址为所述第一SRv6 VPN SID;
    所述处理单元,还用于确定所述第一路径故障;
    所述处理单元,还用于根据所述第一SRv6 VPN SID和所述第三SRv6 VPN SID,确定通过所述第二路径转发所述第一报文。
  15. 一种运营商边缘PE设备,其特征在于,所述PE设备作为第一PE设备,用在承载基于第六版互联网协议段路由的虚拟专用网络SRv6-based VPN业务的网络中,该网络包括第一用户边缘CE设备,第二CE设备,入ingress PE设备,N个出egress PE 设备,至少一个运营商P设备,所述第一CE设备与所述ingress PE设备连接,所述第二CE设备多归连接所述N个egress PE设备,所述ingress PE设备通过所述至少一个P设备与所述N个egress PE设备通信连接,所述第一CE设备与所述第二CE设备属于同一个虚拟专用网络VPN,所述N个egress PE设备中包括所述第一PE设备和第二PE设备,所述第一PE设备配置第一SRv6 VPN段标识SID,所述第一SRv6 VPN SID用于标识所述第二CE设备所属的VPN或所述第一PE设备连接所述第二CE设备的出接口,所述第二PE设备配置第二SRv6 VPN SID和第三SRv6 VPN SID,所述第二SRv6 VPN SID和第三SRv6 VPN SID均用于标识所述第二CE设备所属的VPN或所述第二PE设备连接所述第二CE设备的出接口,所述第一SRv6 VPN SID与所述第二SRv6 VPN SID相同,其中,N为大于或等于2的整数,所述第一PE设备包括:
    接收单元,用于接收第一报文,所述第一报文为所述第一CE设备向所述第二CE设备发送的报文,所述第一报文封装的外层目的地址为所述第一SRv6 VPN SID;
    处理单元,用于根据所述第一SRv6 VPN SID确定转发所述第一报文的第一路径,其中,所述第一路径为所述第一PE设备与所述第二CE设备直接连接的路径;
    所述处理单元,还用于确定所述第一路径发生故障,所述第一PE设备根据所述第一SRv6 VPN SID以及保存的所述第二PE设备发送的所述第三SRv6 VPN SID,确定通过第二路径转发所述第一报文,其中,所述第一PE设备通过所述第二路径连接所述第二PE设备;
    发送单元,用于通过所述第二路径向所述第二CE转发所述第一报文。
  16. 根据权利要求15所述的PE设备,其特征在于,所述接收单元,还用于接收所述第二PE设备发送的第一VPN路由,所述第一VPN路由包括所述第二SRv6 VPN SID和所述第三SRv6 VPN SID;
    所述处理单元,还用于确定所述第二SRv6 VPN SID与所述第一SRv6 VPN SID相同时,根据所述第三SRv6 VPN SID建立所述第二路径。
  17. 一种运营商P设备,其特征在于,所述P设备作为第一P设备,用在承载基于第六版互联网协议段路由的虚拟专用网SRv6-based VPN业务的网络中,该网络包括第一用户边缘CE设备,第二CE设备,入运营商边缘ingress PE设备,N个出运营商边缘egress PE设备,至少一个P设备,所述第一CE设备与所述ingress PE设备连接,所述第二CE设备多归连接所述N个egress PE设备,所述ingress PE设备通过所述至少一个P设备与所述N个egress PE设备通信连接,所述第一CE设备与所述第二CE设备属于同一个虚拟专用网络VPN,所述N个egress PE设备中包括第一PE设备和第二PE设备,所述第一PE设备配置第一SRv6 VPN段标识SID,所述第一SRv6 VPN SID用于标识所述第二CE设备所属的VPN或所述第一PE连接所述第二CE设备的出接口,所述第二PE设备配置所述第二SRv6 VPN SID,所述第二SRv6 VPN SID用于标识第二CE设备所属的VPN或所述第二PE设备连接所述第二CE设备的出接口,所述第一SRv6 VPN SID与所述第二SRv6 VPN SID相同,所述至少一个P设备包括所述第一P设备,所述第一P设备为所述第一PE设备的邻居节点,所述第一PE设备为所述第一P设备的下一跳,其中,N为大于或等于2的整数,所述第一P设备包括:
    接收单元,用于接收所述第一PE设备发送的第一路由,所述第一路由包括所述第一SRv6 VPN SID所属的网段;
    所述接收单元,还用于接收所述第二PE设备发送的第二路由,所述第二路由包括所述第二SRv6 VPN SID所属的网段;
    处理单元,用于根据所述第一SRv6 VPN SID所属的网段建立从所述第一P设备到所述第一PE设备的第五路径,所述第五路径被所述第一P设备用于向所述第二CE 设备转发报文;
    所述处理单元,还用于根据所述第二SRv6 VPN SID所属的网段建立从所述第一P设备到所述第二PE设备的第六路径,该第六路径用于在所述第五路径发生故障时,被所述第一P设备用于向所述第二CE设备转发报文。
  18. 根据权利要求17所述的P设备,其特征在于,所述接收单元,还用于接收第一报文,所述第一报文为所述第一CE设备向所述第二CE设备发送的报文,所述第一报文封装的外层目的地址为所述第一SRv6 VPN SID;
    所述处理单元,还用于在所述第五路径故障时,根据所述第一SRv6 VPN SID,确定通过所述第六路径转发所述第一报文。
  19. 一种运营商P设备,其特征在于,所述P设备作为第一P设备,用在承载基于第六版互联网协议段路由的虚拟专用网SRv6-based VPN业务的网络中,该SRv6-based VPN包括第一用户边缘CE设备,第二CE设备,入运营商边缘ingress PE设备,N个出运营商边缘egress PE设备,至少一个P设备,所述第一CE设备与所述ingress PE设备连接,所述第二CE设备多归连接所述N个egress PE设备,所述ingress PE设备通过所述至少一个P设备与所述N个egress PE设备通信连接,所述第一CE设备与所述第二CE设备属于同一个虚拟专用网络VPN,所述N个egress PE设备中包括第一PE设备和第二PE设备,所述第一PE设备配置第一SRv6 VPN段标识SID,所述第一SRv6 VPN SID用于标识所述第二CE设备所属的VPN或所述第一PE连接所述第二CE设备的出接口,所述第二PE设备配置所述第二SRv6 VPN SID,所述第二SRv6 VPN SID用于标识第二CE设备所属的VPN或所述第二PE设备连接所述第二CE设备的出接口,所述第一SRv6 VPN SID与所述第二SRv6 VPN SID相同,所述至少一个P设备包括所述第一P设备,所述第一P设备为所述第一PE设备的邻居节点,所述第一PE设备为所述第一P设备的下一跳,其中,N为大于或等于2的整数,所述第一P设备包括:
    接收单元,用于接收到第一报文,所述第一报文为所述第一CE设备向所述第二CE设备发送的报文,所述第一报文封装的外层目的地址为所述第一SRv6 VPN SID;
    处理单元,用于根据所述第一SRv6 VPN SID确定传输所述第一报文的第五路径,所述第一P设备通过所述第五路径连接所述第一PE设备;
    所述处理单元,还用于确定所述第五路径出现故障,所述第一P设备根据所述第一SRv6 VPN SID确定通过第六路径转发所述第一报文,所述第一P设备通过所述第六路径连接所述第二PE;
    发送单元,用于通过所述第六路径向所述第二CE设备转发所述第一报文。
  20. 根据权利要求19所述的P设备,其特征在于,所述接收单元,还用于接收所述第一PE设备发送的第一路由,所述第一路由包括所述第一SRv6 VPN SID所属的网段;
    所述接收单元,还用于接收所述第二PE设备发送的第二路由,所述第二路由包括所述第二SRv6 VPN SID所属的网段;
    所述处理单元,还用于根据所述第一SRv6 VPN SID所属的网段建立所述第五路径,以及根据所述第二SRv6 VPN SID所属的网段建立所述第六路径,该第六路径用于在所述第五路径发生故障时,被所述第一P设备用于向所述第二CE设备转发报文。
  21. 一种通信系统,其特征在于,包括如权利要求11-16任一项所述的PE设备和如权利要求17-20中任一项所述的P设备。
PCT/CN2018/100443 2017-12-01 2018-08-14 处理路由的方法和装置、以及数据传输的方法和装置 WO2019105066A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18883637.3A EP3713162A4 (en) 2017-12-01 2018-08-14 ROUTE PROCESSING PROCESS AND APPARATUS, AND DATA TRANSMISSION APPARATUS AND PROCESS
US16/887,991 US11533249B2 (en) 2017-12-01 2020-05-29 Route processing method and apparatus, and data transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711258440.7 2017-12-01
CN201711258440.7A CN109873760B (zh) 2017-12-01 2017-12-01 处理路由的方法和装置、以及数据传输的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/887,991 Continuation US11533249B2 (en) 2017-12-01 2020-05-29 Route processing method and apparatus, and data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2019105066A1 true WO2019105066A1 (zh) 2019-06-06

Family

ID=66665125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100443 WO2019105066A1 (zh) 2017-12-01 2018-08-14 处理路由的方法和装置、以及数据传输的方法和装置

Country Status (4)

Country Link
US (1) US11533249B2 (zh)
EP (1) EP3713162A4 (zh)
CN (2) CN109873760B (zh)
WO (1) WO2019105066A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112737949A (zh) * 2019-10-14 2021-04-30 中兴通讯股份有限公司 故障检测方法及装置、电子设备、计算机可读介质
CN112751769A (zh) * 2019-10-31 2021-05-04 华为技术有限公司 发送报文的方法、装置及系统
CN113542114A (zh) * 2020-04-20 2021-10-22 华为技术有限公司 路由配置方法和路由配置装置
CN114143380A (zh) * 2022-01-04 2022-03-04 烽火通信科技股份有限公司 解决SRv6尾节点掉电场景OAM和业务不一致的方法和系统
CN114363231A (zh) * 2020-09-28 2022-04-15 中国移动通信有限公司研究院 一种切换下行流量的方法、装置和计算机可读存储介质
CN114389996A (zh) * 2022-01-04 2022-04-22 烽火通信科技股份有限公司 一种基于资源的多拓扑环境下SRv6 SID分配的方法及装置
EP4033705A4 (en) * 2019-10-22 2022-11-16 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND DEVICE
EP4040743A4 (en) * 2019-11-06 2023-01-11 Huawei Technologies Co., Ltd. MESSAGE TRANSMISSION METHOD, PROXY NODE AND STORAGE MEDIA
EP4072079A4 (en) * 2019-12-05 2023-01-11 ZTE Corporation ANTI-FIBER BREAKAGE METHOD AND DEVICE FOR SEGMENT ROUTING TUNNEL, ENTRY NODE AND DATA BEARER

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019164637A1 (en) 2018-02-23 2019-08-29 Futurewei Technologies, Inc. Advertising and programming preferred path routes using interior gateway protocols
WO2019209480A1 (en) 2018-04-26 2019-10-31 Futurewei Technologies, Inc. Resource reservation and maintenance for preferred path routes in a network
WO2019210769A1 (en) * 2018-05-03 2019-11-07 Huawei Technologies Co., Ltd. Explicit routing with network function encoding
CN111510388B (zh) * 2019-01-30 2022-01-21 华为技术有限公司 一种确定转发路径的方法、装置及系统
CN111698152B (zh) * 2019-03-15 2021-09-14 华为技术有限公司 一种故障保护方法、节点及存储介质
CN109921898A (zh) * 2019-03-28 2019-06-21 新华三技术有限公司 IPv6无状态地址生成方法及装置
US11356361B2 (en) * 2019-04-04 2022-06-07 Cisco Technology, Inc. Systems and methods for steering traffic into SR-TE policies
CN112398729B (zh) * 2019-08-14 2022-03-29 华为技术有限公司 一种链路状态信息的处理方法及装置
US11140074B2 (en) * 2019-09-24 2021-10-05 Cisco Technology, Inc. Communicating packets across multi-domain networks using compact forwarding instructions
CN112636935B (zh) * 2019-10-08 2023-06-30 中兴通讯股份有限公司 基于IPv6网络的虚拟专用网络组播方法及电子设备
CN112751766B (zh) * 2019-10-30 2023-07-11 华为技术有限公司 报文转发方法和系统、相关设备和芯片
CN110891022B (zh) * 2019-11-20 2021-11-16 Ut斯达康通讯有限公司 基于SRv6的虚拟子网标识符发布方法和装置
CN110958181B (zh) * 2019-12-06 2021-08-17 Ut斯达康通讯有限公司 ISIS协议发布跨SRv6的切片网络的方法及装置
CN115865792A (zh) 2019-12-31 2023-03-28 华为技术有限公司 一种路由信息的处理方法及装置
CN113132221A (zh) 2019-12-31 2021-07-16 华为技术有限公司 一种路由信息的处理方法及装置
CN113079089A (zh) * 2020-01-03 2021-07-06 华为技术有限公司 业务链的故障保护方法、装置、设备、系统及存储介质
US11438259B2 (en) * 2020-02-18 2022-09-06 Juniper Networks, Inc. Flexible algorithm aware border gateway protocol (BGP) prefix segment routing identifiers (SIDs)
CN115443640A (zh) * 2020-04-16 2022-12-06 瞻博网络公司 针对虚拟路由和转发的基于租户的映射
US11516112B2 (en) * 2020-10-20 2022-11-29 Ciena Corporation Optimized layer 3 VPN control plane using segment routing
CN112511418A (zh) * 2020-06-22 2021-03-16 中兴通讯股份有限公司 报文指示方法、装置、设备和存储介质
CN111885630B (zh) * 2020-07-01 2023-06-30 中国联合网络通信集团有限公司 数据传输方法及通信装置
US11743180B2 (en) * 2020-11-20 2023-08-29 At&T Intellectual Property I, L.P. System and method for routing traffic onto an MPLS network
CN116846807A (zh) * 2020-11-27 2023-10-03 华为技术有限公司 通信方法及装置
CN112491926A (zh) * 2020-12-11 2021-03-12 迈普通信技术股份有限公司 SRv6路径质量测量方法、装置、电子设备及存储介质
CN114844817A (zh) * 2021-02-02 2022-08-02 华为技术有限公司 一种在段路由sr网络中进行保护倒换方法及装置
CN113328937B (zh) * 2021-04-08 2022-05-24 新华三技术有限公司 分布式聚合的实现方法及装置
CN115225452A (zh) * 2021-04-19 2022-10-21 华为技术有限公司 转发路径的故障感知方法、装置及系统
CN113452606B (zh) * 2021-05-18 2023-12-26 新华三信息安全技术有限公司 通信方法及装置
CN113438158B (zh) * 2021-06-30 2022-06-21 新华三信息安全技术有限公司 一种报文转发方法及装置
CN115622915A (zh) * 2021-07-16 2023-01-17 华为技术有限公司 一种故障检测的方法、装置和系统
CN113810276A (zh) * 2021-08-31 2021-12-17 锐捷网络股份有限公司 一种段路由故障处理方法、装置、电子设备及存储介质
CN113992558B (zh) * 2021-10-26 2023-04-18 新华三信息安全技术有限公司 路由发布的方法、装置、电子设备及介质
WO2024086991A1 (zh) * 2022-10-24 2024-05-02 新华三技术有限公司 一种节点保护方法、装置、电子设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101217457A (zh) * 2007-12-28 2008-07-09 华为技术有限公司 实现快速重路由的方法及路由器
CN102664788A (zh) * 2012-04-05 2012-09-12 中兴通讯股份有限公司 Mpls l3vpn中ce双归链路保护的方法及系统
CN106936714A (zh) * 2015-12-31 2017-07-07 华为技术有限公司 一种vpn的处理方法和pe设备以及系统
US20170250907A1 (en) * 2016-02-29 2017-08-31 Cisco Technology, Inc. System and method for dataplane-signaled packet capture in ipv6 environment

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7894450B2 (en) * 2007-12-31 2011-02-22 Nortel Network, Ltd. Implementation of VPNs over a link state protocol controlled ethernet network
CN101227397B (zh) * 2008-01-28 2012-06-27 华为技术有限公司 保护链路的方法、设备和系统
FR2927795B1 (fr) 2008-02-22 2010-04-09 Charles Clor Precelle pour verrou orthodontique.
US8953590B1 (en) * 2011-03-23 2015-02-10 Juniper Networks, Inc. Layer two virtual private network having control plane address learning supporting multi-homed customer networks
CN102255759B (zh) * 2011-08-16 2015-05-20 杭州华三通信技术有限公司 一种基于pw冗余备份的数据报文传输方法和设备
IL217698A0 (en) * 2012-01-24 2012-06-28 Eci Telecom Ltd Technique for providing protected connection between l2 communication networks
CN104219073B (zh) * 2013-05-31 2018-01-12 新华三技术有限公司 Spbm网络中的报文转发方法及装置
WO2015000173A1 (zh) * 2013-07-05 2015-01-08 华为技术有限公司 建立隧道的方法、分配标签的方法、设备及网络系统
US9391885B1 (en) * 2013-09-05 2016-07-12 Juniper Networks, Inc. MPLS label usage in Ethernet virtual private networks
ITRM20130571A1 (it) * 2013-10-17 2015-04-18 Cisco Tech Inc Protezione di un nodo di bordo scalabile utilizzante instradamento di segmenti
US9444677B2 (en) * 2013-10-18 2016-09-13 Cisco Technology, Inc. Scalable edge node protection using IPv6 segment routing extension header
US10063463B2 (en) * 2014-12-16 2018-08-28 Cisco Technology, Inc. Node protection for segment routing adjacency segments
US9787573B2 (en) * 2014-12-31 2017-10-10 Juniper Networks, Inc. Fast convergence on link failure in multi-homed Ethernet virtual private networks
CN105071960B (zh) * 2015-07-31 2018-09-21 华为技术有限公司 伪线部署方法、故障处理方法、相关设备及双归保护系统
US10666500B2 (en) * 2016-03-30 2020-05-26 Juniper Networks, Inc. Failure handling for active-standby redundancy in EVPN data center interconnect
US10432515B1 (en) * 2016-10-05 2019-10-01 Cisco Technology, Inc. Reducing number of Ethernet segment MPLS labels for all-active multi-homing
CN108574639B (zh) * 2017-03-14 2020-04-03 华为技术有限公司 Evpn报文处理方法、设备及系统
US10193812B2 (en) * 2017-03-31 2019-01-29 Juniper Networks, Inc. Multicast load balancing in multihoming EVPN networks
US10666459B1 (en) * 2017-04-07 2020-05-26 Cisco Technology, Inc. System and method to facilitate interoperability between virtual private LAN service (VPLS) and ethernet virtual private network (EVPN) with all-active multi-homing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101217457A (zh) * 2007-12-28 2008-07-09 华为技术有限公司 实现快速重路由的方法及路由器
CN102664788A (zh) * 2012-04-05 2012-09-12 中兴通讯股份有限公司 Mpls l3vpn中ce双归链路保护的方法及系统
CN106936714A (zh) * 2015-12-31 2017-07-07 华为技术有限公司 一种vpn的处理方法和pe设备以及系统
US20170250907A1 (en) * 2016-02-29 2017-08-31 Cisco Technology, Inc. System and method for dataplane-signaled packet capture in ipv6 environment

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
G.DAWRA, ED. ET AL.: "BGP Signaling of Ipv6-Segment-Routing-based VPN Networks Draft- dawra-idr- srv6-vpn-00.txt", IETF, 14 September 2017 (2017-09-14), XP055503683 *
See also references of EP3713162A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112737949B (zh) * 2019-10-14 2023-06-30 中兴通讯股份有限公司 故障检测方法及装置、电子设备、计算机可读介质
CN112737949A (zh) * 2019-10-14 2021-04-30 中兴通讯股份有限公司 故障检测方法及装置、电子设备、计算机可读介质
EP4033705A4 (en) * 2019-10-22 2022-11-16 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND DEVICE
US11895014B2 (en) 2019-10-22 2024-02-06 Huawei Technologies Co., Ltd. Aggregated route communication method and apparatus
CN112751769A (zh) * 2019-10-31 2021-05-04 华为技术有限公司 发送报文的方法、装置及系统
CN112751769B (zh) * 2019-10-31 2022-05-10 华为技术有限公司 发送报文的方法、装置及系统
EP4040743A4 (en) * 2019-11-06 2023-01-11 Huawei Technologies Co., Ltd. MESSAGE TRANSMISSION METHOD, PROXY NODE AND STORAGE MEDIA
EP4072079A4 (en) * 2019-12-05 2023-01-11 ZTE Corporation ANTI-FIBER BREAKAGE METHOD AND DEVICE FOR SEGMENT ROUTING TUNNEL, ENTRY NODE AND DATA BEARER
CN113542114A (zh) * 2020-04-20 2021-10-22 华为技术有限公司 路由配置方法和路由配置装置
CN114363231A (zh) * 2020-09-28 2022-04-15 中国移动通信有限公司研究院 一种切换下行流量的方法、装置和计算机可读存储介质
CN114389996A (zh) * 2022-01-04 2022-04-22 烽火通信科技股份有限公司 一种基于资源的多拓扑环境下SRv6 SID分配的方法及装置
CN114143380B (zh) * 2022-01-04 2023-06-09 烽火通信科技股份有限公司 解决SRv6尾节点掉电场景OAM和业务不一致的方法和系统
CN114389996B (zh) * 2022-01-04 2023-06-09 烽火通信科技股份有限公司 一种基于资源的多拓扑环境下SRv6 SID分配的方法及装置
CN114143380A (zh) * 2022-01-04 2022-03-04 烽火通信科技股份有限公司 解决SRv6尾节点掉电场景OAM和业务不一致的方法和系统

Also Published As

Publication number Publication date
CN111901235A (zh) 2020-11-06
EP3713162A1 (en) 2020-09-23
CN109873760A (zh) 2019-06-11
US20200296025A1 (en) 2020-09-17
EP3713162A4 (en) 2020-11-25
US11533249B2 (en) 2022-12-20
CN109873760B (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
WO2019105066A1 (zh) 处理路由的方法和装置、以及数据传输的方法和装置
EP3720066B1 (en) Packet sending and processing method and apparatus, pe node, and node
US11394644B2 (en) EVPN packet processing method, device, and system
US11431554B2 (en) Mechanism for control message redirection for SDN control channel failures
EP3065342B1 (en) Update of mac routes in evpn single-active topology
CN111510379B (zh) Evpn报文处理方法、设备及系统
US9860150B2 (en) Fast convergence of EVPN networks for multi homing topologies
EP3148127A1 (en) Egress protection for bum traffic with link failures in evpn
WO2021258754A1 (zh) 报文指示方法、装置、设备和存储介质
EP3151485A1 (en) Egress node protection in evpn all-active topology
US9860169B1 (en) Neighbor resolution for remote EVPN hosts in IPV6 EVPN environment
US20210203586A1 (en) Communication Method, Device, and System
US11611509B2 (en) Communication method, communications device, and communications system
JP7053901B2 (ja) ループ回避通信方法、ループ回避通信デバイスおよびループ回避通信システム
WO2017000802A1 (zh) 一种业务故障定位方法及装置
EP3586482B1 (en) Mechanism to detect data plane loops in an openflow network
WO2022042503A1 (zh) 一种报文传输方法、装置及系统
US11929923B2 (en) Packet transmission method and apparatus
CN110380966B (zh) 一种发现转发路径的方法及其相关设备
WO2020230146A1 (en) Method and apparatus for layer 2 route calculation in a route reflector network device
US20220247598A1 (en) Packet Detection Method, Connectivity Negotiation Relationship Establishment Method, and Related Device
JP7273125B2 (ja) BIERv6パケットを送信するための方法および第1のネットワークデバイス
WO2022017225A1 (zh) 报文发送方法、设备及系统
WO2022042547A1 (zh) 流量转发处理方法及设备
CN115460107A (zh) 路由检测方法、设备、系统及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18883637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018883637

Country of ref document: EP

Effective date: 20200615