WO2019104993A1 - 压缩机及具有其的空调器 - Google Patents

压缩机及具有其的空调器 Download PDF

Info

Publication number
WO2019104993A1
WO2019104993A1 PCT/CN2018/090816 CN2018090816W WO2019104993A1 WO 2019104993 A1 WO2019104993 A1 WO 2019104993A1 CN 2018090816 W CN2018090816 W CN 2018090816W WO 2019104993 A1 WO2019104993 A1 WO 2019104993A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
chamber
compression chamber
compressor
stage compression
Prior art date
Application number
PCT/CN2018/090816
Other languages
English (en)
French (fr)
Inventor
叶晓飞
赵旭敏
闫婷
Original Assignee
珠海格力节能环保制冷技术研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力节能环保制冷技术研究中心有限公司 filed Critical 珠海格力节能环保制冷技术研究中心有限公司
Priority to US16/633,577 priority Critical patent/US11326603B2/en
Priority to EP18882876.8A priority patent/EP3633199A4/en
Publication of WO2019104993A1 publication Critical patent/WO2019104993A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the present invention relates to the field of air conditioning, and in particular to a compressor and an air conditioner having the same.
  • the existing rotor type two-stage booster compressors mostly adopt the structure of a built-in medium pressure chamber, and the medium pressure refrigerant is directly injected into the medium pressure chamber through the reinforced component, and the low pressure refrigerant is also discharged after being compressed by the first stage cylinder.
  • the medium pressure chamber the two parts of the refrigerant are mixed in the medium pressure chamber and enter the secondary cylinder suction port through the medium pressure flow passage.
  • the secondary cylinder is sucked and compressed to discharge the high pressure refrigerant, because the high speed medium pressure refrigerant passes through the medium pressure flow.
  • the direct entry into the secondary cylinder suction port will generate a certain degree of airflow turbulence, increasing the flow resistance of the medium pressure flow passage and the suction loss of the secondary cylinder, while the secondary cylinder suction passage is long and located at the cylinder height.
  • the lower position of the center increases the suction resistance of the secondary cylinder, resulting in increased power consumption and performance degradation of the rotor type two-stage booster compressor.
  • the present invention is directed to a compressor and an air conditioner having the same, which solves the problem that the resistance loss of the refrigerant in the compressor cylinder is large in the prior art, resulting in an increase in power consumption of the compressor and a decrease in performance.
  • a compressor comprising: a first stage cylinder including a first stage compression chamber; and a second stage cylinder including a second stage compression chamber and a gas storage chamber,
  • the refrigerant flowing out of the first-stage compression chamber enters the second-stage compression chamber through the gas storage chamber, and the flow-through area of the gas storage chamber is larger than the area of the gas outlet of the first-stage compression chamber.
  • the cross section of the air storage chamber includes a first curved section, a second curved section, and a first connecting line and a second connecting line connected therebetween, and the first connecting line and the second connecting line are along the first The circumferential extension of the secondary cylinder.
  • first curved segment and the second curved segment are opposite semi-circular shapes, and the first connecting line and the second connecting line are both arcs.
  • first connecting line and the second connecting line are coaxially disposed, the first connecting line is simultaneously tangent to the first curved section and the second curved section, and the second connecting line is simultaneously with the first curved section and the second The curved segments are tangent.
  • the gas storage chamber is a through hole that penetrates the second stage cylinder in the axial direction, and the suction port of the second stage compression chamber is disposed on the side wall of the gas storage chamber.
  • the distance from the center of the suction port of the second stage compression chamber to the upper end surface of the second stage cylinder is equal to the distance from the center of the suction port of the second stage compression chamber to the lower end surface of the second stage cylinder.
  • the suction port of the second-stage compression chamber has a waist shape.
  • the compressor further includes a lower flange disposed under the first stage cylinder, a middle pressure chamber is disposed in the lower flange, and a medium pressure flow passage is disposed in the first stage cylinder to flow out from the first stage compression chamber The refrigerant enters the gas storage chamber through the medium pressure chamber and the medium pressure flow passage.
  • the medium pressure flow passage is disposed near the first arc segment, and the suction port of the second compression chamber is disposed adjacent to the second arc segment.
  • a partition plate is further disposed between the first stage cylinder and the second stage cylinder, and the partition plate is provided with a circulation hole, and the refrigerant flowing out from the medium pressure flow passage enters the air storage chamber through the circulation hole.
  • cross-sectional shape of the flow hole is the same as the cross-sectional shape of the gas storage chamber.
  • the compressor further includes a partition disposed between the first stage cylinder and the second stage cylinder, wherein the intermediate pressure chamber is disposed in the partition, and the refrigerant flowing out of the first stage compression chamber enters the medium through the intermediate pressure chamber Air cavity.
  • an air conditioner including a compressor, which is the above-described compressor, is provided.
  • the refrigerant enters the second-stage compression chamber of the second-stage cylinder from the first-stage compression chamber of the first-stage cylinder through the gas storage chamber. Since the flow area of the gas storage chamber is larger than the area of the gas outlet of the first stage compression chamber, the flow rate of the refrigerant fluid decreases after the gas enters the gas storage chamber, and the pressure drops, and smoothly enters the second stage compression under the buffering action of the gas storage chamber.
  • the cavity reduces the reverse turbulence of the refrigerant, reduces the flow resistance loss of the refrigerant during the flow process, improves the suction efficiency of the second-stage cylinder, and ensures the working performance of the compressor.
  • Figure 1 is a cross-sectional structural view showing an embodiment of a compressor according to the present invention
  • Figure 2 is a partial structural exploded view of the compressor of Figure 1;
  • Figure 3 is a schematic view showing the structure of the second stage cylinder of the compressor of Figure 2;
  • Figure 4 is a top plan view showing the second stage cylinder of Figure 3;
  • Figure 5 is a cross-sectional view showing the structure of the second stage cylinder of Figure 4 taken along the line A-A;
  • Figure 6 shows a schematic view of the structure of the lower flange of the compressor of Figure 2.
  • the compressor of this embodiment includes a first stage cylinder 10 and a second stage cylinder 20.
  • the first stage cylinder 10 includes a first stage compression chamber 11 and the second stage cylinder 20 includes a second stage compression chamber 21 and a gas storage chamber 22.
  • the refrigerant flowing out of the first-stage compression chamber 11 enters the second-stage compression chamber 21 through the gas storage chamber 22, and the flow-through area of the gas storage chamber 22 is larger than the area of the gas outlet of the first-stage compression chamber 11.
  • the refrigerant enters the second-stage compression chamber 21 of the second-stage cylinder 20 from the first-stage compression chamber 11 of the first-stage cylinder 10 through the gas storage chamber 22. Since the flow area of the gas storage chamber 22 is larger than the area of the gas outlet of the first stage compression chamber 11, the flow rate of the refrigerant fluid decreases after the gas enters the gas storage chamber 22, and the pressure drops, and smoothly enters under the buffering effect of the gas storage chamber 22.
  • the second-stage compression chamber 21 reduces the reverse turbulence of the refrigerant, reduces the flow resistance loss of the refrigerant during the flow, improves the suction efficiency of the second-stage cylinder 20, and ensures the working performance of the compressor.
  • the compressor of the embodiment further includes a lower flange 30 disposed under the first stage cylinder 10 , and a middle pressure chamber 31 is disposed in the lower flange 30 .
  • the intermediate pressure chamber 31 is sealed by the lower cover 98.
  • the medium-stage cylinder 10 is provided with a medium-pressure flow passage 13 through which the refrigerant flowing out of the first-stage compression chamber 11 enters the gas storage chamber 22 via the intermediate pressure chamber 31 and the intermediate pressure flow passage 13.
  • the compressor of the present embodiment passes through the refrigerant sucked by the liquid separator member 93, and the refrigerant is sucked by the first-stage cylinder 10 and is first-stage compressed in the first-stage cylinder 10 and discharged to the middle. Pressure chamber 31.
  • the medium-pressure refrigerant sucked by the reinforcing member 92 is also injected into the intermediate pressure chamber 31, and the two-part refrigerant is sufficiently mixed in the intermediate pressure chamber 31 to enter the gas storage chamber 22 through the medium-pressure flow passage 13, and the second-stage cylinder 20 is sucked.
  • the port 23 is sucked by the second stage cylinder 20 and discharged after being subjected to secondary compression in the second stage compression chamber 21.
  • the flow area of the gas storage chamber 22 is larger than the area of the gas outlet of the first stage compression chamber 11 to reduce the pressure of the fluid, reduce the phenomenon of air flow rumination, and thereby reduce the medium pressure flow path 13
  • the flow resistance and the suction loss of the second stage cylinder 20 effectively ensure the working efficiency and performance of the compressor.
  • the air storage chamber 22 of the present embodiment is a through hole that penetrates the second stage cylinder 20 in the axial direction, and the air inlet 23 of the second stage compression chamber 21 is disposed in the air storage chamber.
  • the side wall of 22 is utilized to maximize the volume of the cylinder chamber to maximize the volume of the reservoir chamber 22 to substantially buffer the high velocity refrigerant fluid entering the reservoir chamber 22.
  • the distance from the center of the suction port 23 of the second-stage compression chamber 21 of the present embodiment to the upper end surface of the second-stage cylinder 20 is the same as that of the suction port 23 of the second-stage compression chamber 21.
  • the distance from the center to the lower end surface of the second stage cylinder 20 is equal.
  • the suction port 23 is located at an intermediate position of the side wall of the second-stage cylinder 20 in the height direction, the length of the suction air passage is reduced, the suction resistance of the second-stage cylinder 20 is lowered, and the second-stage cylinder 20 is reduced. Loss of inspiratory resistance.
  • the air inlet 23 of the second-stage compression chamber 21 of the present embodiment has a waist shape.
  • the waist circle includes two oppositely arranged semicircles and two parallel lines connecting the ends of the two semicircles, respectively.
  • the two parallel lines extend in a direction parallel to the axial direction of the 20 second stage cylinder.
  • a partition 40 is further disposed between the first-stage cylinder 10 and the second-stage cylinder 20 of the embodiment, and the partition 40 is provided with a circulation hole 41 for cooling from the intermediate pressure flow passage 13.
  • the agent enters the gas storage chamber 22 through the flow hole 41.
  • the cross-sectional shape of the flow hole 41 of the present embodiment is the same as the cross-sectional shape of the gas storage chamber 22, so that the flow hole 41 can serve as an extension of the gas storage chamber 22, further enhancing the buffering effect.
  • the cross section of the air storage chamber 22 of the present embodiment includes a first curved section, a second curved section, and a first connecting line and a second connecting line connected therebetween.
  • the first line and the second line extend in the circumferential direction of the second stage cylinder 20, further allowing the refrigerant to smoothly and stably enter the second stage compression chamber 21.
  • the medium-pressure flow passage 13 of the present embodiment has a circular shape. Accordingly, the first curved segment 22a and the second curved segment 22b of the present embodiment are oppositely disposed two and a half.
  • the circular shape corresponds to the intermediate pressure flow passage 13 to reduce a sudden change in state when the refrigerant fluid flows between the respective structures of the compressor.
  • the first connection line 22c and the second connection line 22d of the present embodiment are both arcs, so that the refrigerant fluid stably flows to the intake port 23 of the second-stage compression chamber 21.
  • the first connecting line 22c and the second connecting line 22d of the present embodiment are coaxially disposed, that is, the center of the circle where the first connecting line 22c is located coincides with the center of the circle where the second connecting line 22d is located.
  • the first connecting line 22c is tangential to the first curved section 22a and the second curved section 22b at the same time
  • the second connecting line 22d is tangential to the first curved section 22a and the second curved section 22b at the same time.
  • the medium-pressure flow passage 13 of the present embodiment is disposed near the first arc-shaped section, and the suction port 23 of the second-stage compression chamber 21 is disposed close to the second arc-shaped section to allow the refrigerant fluid to be stored.
  • the air chamber 22 is sufficiently buffered to reduce the flow resistance loss, and can effectively prevent the refrigerant fluid from forming eddy currents at both ends of the gas storage chamber 22.
  • the cross-sectional shape of the flow hole may also be the same as the shape of the air outlet of the first-stage cylinder, or the cross-sectional shape of the flow hole may be at the air outlet and gas storage of the first-stage cylinder.
  • the shape of the cavity plays a transitional role.
  • the compressor medium pressure chamber may also be disposed in the diaphragm, and the refrigerant flowing out of the first stage compression chamber may enter the gas storage chamber through the intermediate pressure chamber.
  • the present invention also provides an air conditioner, the air conditioner (not shown) according to the present embodiment includes a compressor, and the compressor is the above-described compressor.
  • the air conditioner of this embodiment has the advantages of stable and reliable operation of the compressor and long service life.
  • the refrigerant enters the second stage compression chamber of the second stage cylinder from the first stage compression chamber of the first stage cylinder through the gas storage chamber. Since the flow area of the gas storage chamber is larger than the area of the gas outlet of the first stage compression chamber, the flow rate of the refrigerant fluid decreases after the gas enters the gas storage chamber, and the pressure drops, and smoothly enters the second stage compression under the buffering action of the gas storage chamber.
  • the cavity reduces the reverse turbulence of the refrigerant, reduces the flow resistance loss of the refrigerant during the flow process, improves the suction efficiency of the second-stage cylinder, and ensures the working performance of the compressor.
  • orientations such as “front, back, up, down, left, right", “horizontal, vertical, vertical, horizontal” and “top, bottom” and the like are indicated. Or the positional relationship is generally based on the orientation or positional relationship shown in the drawings, and is merely for the convenience of the description of the present application and the simplified description, which are not intended to indicate or imply the indicated device or component. It must be constructed and operated in a specific orientation or in a specific orientation, and thus is not to be construed as limiting the scope of the application; the orientations “inside and outside” refer to the inside and outside of the contour of the components themselves.
  • spatially relative terms such as “above”, “above”, “on top”, “above”, etc., may be used herein to describe as in the drawings.
  • the exemplary term “above” can include both “over” and "under”.
  • the device can also be positioned in other different ways (rotated 80 degrees or at other orientations) and the corresponding description of the space used herein is explained accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

一种压缩机及具有其的空调器,其中,压缩机包括:第一级气缸(10),包括第一级压缩腔(11);第二级气缸(20),包括第二级压缩腔(21)和储气腔(22),从第一级压缩腔(11)内流出的制冷剂经储气腔(22)进入第二级压缩腔(21)内,储气腔(22)的过流面积大于第一级压缩腔(11)的出气口的面积。该压缩机有效地解决压缩机气缸中阻力损失大导致压缩机功耗增加、性能下降的问题。

Description

压缩机及具有其的空调器 技术领域
本发明涉及空调领域,具体而言,涉及一种压缩机及具有其的空调器。
背景技术
现有的转子式双级增焓压缩机大多采用内置中压腔的结构形式,中压制冷剂通过增焓部件直接喷射到该中压腔,低压制冷剂经一级气缸压缩后也排入该中压腔,两部分制冷剂在中压腔混合后经中压流道进入二级气缸吸气口,由二级气缸吸入并压缩后排出高压制冷剂,由于高速中压制冷剂通过中压流道直接进入二级气缸吸气口会产生一定程度的气流反窜,增大了中压流道的流阻和二级气缸吸气损失,同时二级气缸吸气流道较长且位于气缸高度中心的偏下位置,增加了二级气缸的吸气阻力,导致转子式双级增焓压缩机功耗增加、性能下降。
发明内容
本发明旨在提供一种压缩机及具有其的空调器,以解决现有技术中制冷剂在压缩机气缸中阻力损失大导致压缩机功耗增加、性能下降的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种压缩机,包括:第一级气缸,包括第一级压缩腔;第二级气缸,包括第二级压缩腔和储气腔,从第一级压缩腔内流出的制冷剂经储气腔进入第二级压缩腔内,储气腔的过流面积大于第一级压缩腔的出气口的面积。
进一步地,储气腔的横截面包括第一弧形段、第二弧形段及连接在两者之间的第一连线和第二连线,第一连线和第二连线沿第二级气缸的周向延伸。
进一步地,第一弧形段和第二弧形段为相对设置的两个半圆形,第一连线和第二连线均为弧线。
进一步地,第一连线和第二连线同轴设置,第一连线同时与第一弧形段和第二弧形段相切,第二连线同时与第一弧形段和第二弧形段相切。
进一步地,储气腔为沿轴向贯通第二级气缸的通孔,第二级压缩腔的吸气口设置在储气腔的侧壁上。
进一步地,第二级压缩腔的吸气口的中心到第二级气缸的上端面的距离与第二级压缩腔的吸气口的中心到第二级气缸的下端面的距离相等。
进一步地,第二级压缩腔的吸气口呈腰圆形。
进一步地,压缩机还包括设置在第一级气缸的下方的下法兰,下法兰中设置有中压腔,第一级气缸中设置有中压流道,从第一级压缩腔内流出的制冷剂经中压腔和中压流道再进入 储气腔。
进一步地,中压流道靠近第一弧形段设置,第二级压缩腔的吸气口靠近第二弧形段设置。
进一步地,第一级气缸和第二级气缸中间还设置有隔板,隔板上设置有流通孔,从中压流道流出的制冷剂经流通孔进入储气腔。
进一步地,流通孔的横截面形状与储气腔的横截面形状相同。
进一步地,压缩机还包括设置在第一级气缸和第二级气缸中间的隔板,隔板中设置有中压腔,从第一级压缩腔内流出的制冷剂经中压腔再进入储气腔。
根据本发明的另一方面,提供了一种空调器,包括压缩机,压缩机为上述的压缩机。
应用本发明的技术方案,制冷剂从第一级气缸的第一级压缩腔经储气腔进入第二级气缸的第二级压缩腔。由于储气腔的过流面积大于第一级压缩腔的出气口的面积,制冷剂流体在进入储气腔后流速降低、压力下降,在储气腔的缓冲作用下平稳地进入第二级压缩腔,减少了制冷剂的反向窜动,降低了制冷剂在流动过程中的流阻损失,提高了第二级气缸的吸气效率,保证了压缩机的工作性能。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了根据本发明的压缩机的实施例的剖视结构示意图;
图2示出了图1的压缩机的部分结构分解结构示意图;
图3示出了图2的压缩机的第二级气缸的结构示意图;
图4示出了图3的第二级气缸的俯视结构示意图;
图5示出了图4的第二级气缸的A-A向剖视结构示意图;以及
图6示出了图2的压缩机的下法兰的结构示意图。
其中,上述附图包括以下附图标记:
10、第一级气缸;11、第一级压缩腔;13、中压流道;20、第二级气缸;21、第二级压缩腔;22、储气腔;22a、第一弧形段;22b、第二弧形段;22c、第一连线;22d、第二连线;23、吸气口;30、下法兰;31、中压腔;40、隔板;41、流通孔;92、增焓部件;93、分液器部件;98、下盖板。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。以下对至少 一个示例性实施例的描述实际上仅仅是说明性的,绝不作为对本申请及其应用或使用的任何限制。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本申请的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
如图1和图2所示,本实施例的压缩机包括第一级气缸10和第二级气缸20。其中,第一级气缸10包括第一级压缩腔11,第二级气缸20包括第二级压缩腔21和储气腔22。从第一级压缩腔11内流出的制冷剂经储气腔22进入第二级压缩腔21内,储气腔22的过流面积大于第一级压缩腔11的出气口的面积。
应用本实施例的技术方案,制冷剂从第一级气缸10的第一级压缩腔11经储气腔22进入第二级气缸20的第二级压缩腔21。由于储气腔22的过流面积大于第一级压缩腔11的出气口的面积,制冷剂流体在进入储气腔22后流速降低、压力下降,在储气腔22的缓冲作用下平稳地进入第二级压缩腔21,减少了制冷剂的反向窜动,降低了制冷剂在流动过程中的流阻损失,提高了第二级气缸20的吸气效率,保证了压缩机的工作性能。
进一步地,如图1、图2和图6所示,本实施例的压缩机还包括设置在第一级气缸10的下方的下法兰30,下法兰30中设置有中压腔31,中压腔31通过下盖板98密封。第一级气缸10中设置有中压流道13,从第一级压缩腔11内流出的制冷剂经中压腔31和中压流道13再进入储气腔22。如图中虚线箭头指示方向,本实施例的压缩机通过分液器部件93吸入的制冷剂,制冷剂由第一级气缸10吸入并在第一级气缸10中进行一级压缩后排出至中压腔31。增焓部件92吸入的中压制冷剂同样喷射到中压腔31,两部分制冷剂在中压腔31充分混合后经过中压流道13进入储气腔22,第二级气缸20的吸气口23,由第二级气缸20吸入并在第二级压缩腔21中进行二级压缩后排出。在现有的压缩机中,由于高速中压制冷剂通过中压流道直接进入第二级气缸的吸气口,会产生一定的气流反窜,增大了中压流道的流阻和第二级气缸的吸气损失,影响压缩机的吸气效率和性能。而在本实施例中,储气腔22的过流面积大于第一级压缩腔11的出气口的面积降低了流体的压力、减弱了气流反窜的现象,进而降低了中压流道13的流阻和第二级气缸20的吸气损失,从而有效地保证了压缩机的工作效率和性能。
优选地,如图3至图5所示,本实施例的储气腔22为沿轴向贯通第二级气缸20的通孔,第二级压缩腔21的吸气口23设置在储气腔22的侧壁上,以充分利用气缸空间,使储气腔22的容积最大,以充分缓冲进入储气腔22的高速制冷剂流体。
进一步地,如图5所示,本实施例的第二级压缩腔21的吸气口23的中心到第二级气缸20的上端面的距离与第二级压缩腔21的吸气口23的中心到第二级气缸20的下端面的距离相等。使吸气口23在高度方向上位于第二级气缸20的侧壁的中间位置,减少了吸气流道的长度、降低了第二级气缸20的吸气阻力、减少了第二级气缸20的吸气阻力损失。
具体地,本实施例的第二级压缩腔21的吸气口23呈腰圆形。腰圆形包括两个相对布置的半圆和分别连接两个半圆端点的两条平行线。上述两条平行线的延伸方向平行于20第二级气缸的轴向。
进一步地,如图2所示,本实施例的第一级气缸10和第二级气缸20中间还设置有隔板40,隔板40上设置有流通孔41,从中压流道13流出的制冷剂经流通孔41进入储气腔22。优选地,本实施例的流通孔41的横截面形状与储气腔22的横截面形状相同,以使流通孔41能够作为储气腔22的延伸,进一步加强缓冲效果。
具体地,如图4所示,本实施例的储气腔22的横截面包括第一弧形段、第二弧形段及连接在两者之间的第一连线和第二连线,第一连线和第二连线沿第二级气缸20的周向延伸,进一步使制冷剂平滑稳定地进入第二级压缩腔21。
更具体的,如图2所示,本实施例的中压流道13为圆形,相应地,本实施例的第一弧形段22a和第二弧形段22b为相对设置的两个半圆形,以与中压流道13对应,减小制冷剂流体在压缩机的各结构之间流动时的状态突变。进一步地,本实施例的第一连线22c和第二连线22d均为弧线,使制冷剂流体稳定流向第二级压缩腔21的吸气口23。
优选地,本实施例的的第一连线22c和第二连线22d同轴设置,也就是说,第一连线22c所在的圆的圆心与第二连线22d所在的圆的圆心重合。并且第一连线22c同时与第一弧形段22a和第二弧形段22b相切,第二连线22d同时与第一弧形段22a和第二弧形段22b相切。上述结构使储气腔22各处的过流面积相近,降低了制冷剂流体在流动过程中的状态变化。
同时如图2所示,本实施例的中压流道13靠近第一弧形段设置,第二级压缩腔21的吸气口23靠近第二弧形段设置,以使制冷剂流体在储气腔22中充分缓冲,降低流阻损失,并能有效地避免制冷剂流体在储气腔22的两端形成涡流。
在图中未示出的其他实施例中,流通孔的横截面形状也可以与第一级气缸的出气口的形状相同,或者流通孔的横截面形状在第一级气缸的出气口与储气腔的形状之间,起到过渡作用。
在其他图中未示出的实施例中,压缩机中压腔还可以设置在隔板中,从第一级压缩腔内流出的制冷剂经中压腔再进入储气腔。
本发明还提供了一种空调器,根据本实施例的空调器(图中未示出)包括压缩机,压缩机为上述的压缩机。本实施例的空调器具有压缩机运行平稳可靠、使用寿命长的优点。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
制冷剂从第一级气缸的第一级压缩腔经储气腔进入第二级气缸的第二级压缩腔。由于储气腔的过流面积大于第一级压缩腔的出气口的面积,制冷剂流体在进入储气腔后流速降低、压力下降,在储气腔的缓冲作用下平稳地进入第二级压缩腔,减少了制冷剂的反向窜动,降低了制冷剂在流动过程中的流阻损失,提高了第二级气缸的吸气效率,保证了压缩机的工作性能。
在本申请的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本申请保护范围的限制;方位词“内、外”是指相对于各部件本身的轮廓的内外。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转80度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
此外,需要说明的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本申请保护范围的限制。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种压缩机,其特征在于,包括:
    第一级气缸(10),包括第一级压缩腔(11);
    第二级气缸(20),包括第二级压缩腔(21)和储气腔(22),从所述第一级压缩腔(11)内流出的制冷剂经所述储气腔(22)进入所述第二级压缩腔(21)内,所述储气腔(22)的过流面积大于所述第一级压缩腔(11)的出气口的面积。
  2. 根据权利要求1所述的压缩机,其特征在于,所述储气腔(22)的横截面包括第一弧形段(22a)、第二弧形段(22b)及连接在两者之间的第一连线(22c)和第二连线(22d),所述第一连线(22c)和所述第二连线(22d)沿所述第二级气缸(20)的周向延伸。
  3. 根据权利要求2所述的压缩机,其特征在于,所述第一弧形段(22a)和所述第二弧形段(22b)为相对设置的两个半圆形,所述第一连线(22c)和所述第二连线(22d)均为弧线。
  4. 根据权利要求3所述的压缩机,其特征在于,所述第一连线(22c)和所述第二连线(22d)同轴设置,所述第一连线(22c)同时与所述第一弧形段(22a)和所述第二弧形段(22b)相切,所述第二连线(22d)同时与所述第一弧形段(22a)和所述第二弧形段(22b)相切。
  5. 根据权利要求2至4中任一项所述的压缩机,其特征在于,所述储气腔(22)为沿轴向贯通所述第二级气缸(20)的通孔,所述第二级压缩腔(21)的吸气口(23)设置在所述储气腔(22)的侧壁上。
  6. 根据权利要求5所述的压缩机,其特征在于,所述第二级压缩腔(21)的吸气口(23)的中心到所述第二级气缸(20)的上端面的距离与所述第二级压缩腔(21)的吸气口(23)的中心到所述第二级气缸(20)的下端面的距离相等。
  7. 根据权利要求5所述的压缩机,其特征在于,所述第二级压缩腔(21)的吸气口(23)呈腰圆形。
  8. 根据权利要求2所述的压缩机,其特征在于,所述压缩机还包括设置在所述第一级气缸(10)的下方的下法兰(30),所述下法兰(30)中设置有中压腔(31),所述第一级气缸(10)中设置有中压流道(13),从所述第一级压缩腔(11)内流出的制冷剂经所述中压腔(31)和中压流道(13)再进入所述储气腔(22)。
  9. 根据权利要求8所述的压缩机,其特征在于,所述中压流道(13)靠近所述第一弧形段(22a)设置,所述第二级压缩腔(21)的吸气口(23)靠近所述第二弧形段(22b)设置。
  10. 根据权利要求8所述的压缩机,其特征在于,所述第一级气缸(10)和所述第二级气缸(20)中间还设置有隔板(40),所述隔板(40)上设置有流通孔(41),从所述中压流道(13)流出的制冷剂经所述流通孔(41)进入所述储气腔(22)。
  11. 根据权利要求10所述的压缩机,其特征在于,所述流通孔(41)的横截面形状与所述储气腔(22)的横截面形状相同。
  12. 根据权利要求1所述的压缩机,其特征在于,所述压缩机还包括设置在所述第一级气缸和所述第二级气缸中间的隔板,所述隔板中设置有中压腔,从所述第一级压缩腔内流出的制冷剂经所述中压腔再进入所述储气腔。
  13. 一种空调器,包括压缩机,其特征在于,所述压缩机为权利要求1至12中任一项所述的压缩机。
PCT/CN2018/090816 2017-11-30 2018-06-12 压缩机及具有其的空调器 WO2019104993A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/633,577 US11326603B2 (en) 2017-11-30 2018-06-12 Two-stage compressor with a gas storage chamber between stages and air conditioner having same
EP18882876.8A EP3633199A4 (en) 2017-11-30 2018-06-12 COMPRESSOR AND AIR CONDITIONING WITH IT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711243105.X 2017-11-30
CN201711243105.XA CN108087272B (zh) 2017-11-30 2017-11-30 压缩机及具有其的空调器

Publications (1)

Publication Number Publication Date
WO2019104993A1 true WO2019104993A1 (zh) 2019-06-06

Family

ID=62173533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090816 WO2019104993A1 (zh) 2017-11-30 2018-06-12 压缩机及具有其的空调器

Country Status (4)

Country Link
US (1) US11326603B2 (zh)
EP (1) EP3633199A4 (zh)
CN (1) CN108087272B (zh)
WO (1) WO2019104993A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108087272B (zh) 2017-11-30 2019-12-27 珠海格力电器股份有限公司 压缩机及具有其的空调器
CN109026691B (zh) * 2018-08-22 2024-03-22 珠海凌达压缩机有限公司 一种多缸多级压缩机及空调系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1239757A (zh) * 1998-06-22 1999-12-29 三星电子株式会社 具有用于多级压缩的多个压缩室的旋转式压缩机
CN1959116A (zh) * 2005-10-24 2007-05-09 日立空调·家用电器株式会社 密闭型二级回转压缩机
JP5199863B2 (ja) * 2008-12-26 2013-05-15 三洋電機株式会社 ロータリコンプレッサ
CN203081766U (zh) * 2013-02-05 2013-07-24 珠海格力节能环保制冷技术研究中心有限公司 压缩机、泵体组件及其高压缸
CN105545737A (zh) * 2016-01-25 2016-05-04 珠海格力节能环保制冷技术研究中心有限公司 双级增焓压缩机及其控制方法
CN108087272A (zh) * 2017-11-30 2018-05-29 珠海格力节能环保制冷技术研究中心有限公司 压缩机及具有其的空调器
CN207568841U (zh) * 2017-11-30 2018-07-03 珠海格力节能环保制冷技术研究中心有限公司 压缩机及具有其的空调器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4447859B2 (ja) * 2003-06-20 2010-04-07 東芝キヤリア株式会社 ロータリ式密閉形圧縮機および冷凍サイクル装置
CN102459911B (zh) 2009-06-11 2015-06-10 三菱电机株式会社 制冷剂压缩机以及热泵装置
JP2012251511A (ja) 2011-06-06 2012-12-20 Daikin Industries Ltd 圧縮機
CN104251207B (zh) 2013-06-28 2016-04-20 珠海格力节能环保制冷技术研究中心有限公司 双级增焓转子压缩机及具有其的空调器、热泵热水器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1239757A (zh) * 1998-06-22 1999-12-29 三星电子株式会社 具有用于多级压缩的多个压缩室的旋转式压缩机
CN1959116A (zh) * 2005-10-24 2007-05-09 日立空调·家用电器株式会社 密闭型二级回转压缩机
JP5199863B2 (ja) * 2008-12-26 2013-05-15 三洋電機株式会社 ロータリコンプレッサ
CN203081766U (zh) * 2013-02-05 2013-07-24 珠海格力节能环保制冷技术研究中心有限公司 压缩机、泵体组件及其高压缸
CN105545737A (zh) * 2016-01-25 2016-05-04 珠海格力节能环保制冷技术研究中心有限公司 双级增焓压缩机及其控制方法
CN108087272A (zh) * 2017-11-30 2018-05-29 珠海格力节能环保制冷技术研究中心有限公司 压缩机及具有其的空调器
CN207568841U (zh) * 2017-11-30 2018-07-03 珠海格力节能环保制冷技术研究中心有限公司 压缩机及具有其的空调器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3633199A4 *

Also Published As

Publication number Publication date
US11326603B2 (en) 2022-05-10
US20210071665A1 (en) 2021-03-11
CN108087272A (zh) 2018-05-29
EP3633199A1 (en) 2020-04-08
CN108087272B (zh) 2019-12-27
EP3633199A4 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
US11078914B2 (en) Hemispherical entrainment-type high-flow self-priming centrifugal pump
WO2019104993A1 (zh) 压缩机及具有其的空调器
CN107013497A (zh) 回流器叶片、压缩机结构和压缩机
CN207278540U (zh) 一种离心式制冷压缩机
CN106438374B (zh) 压缩机及具有其的空调器
CN106705508A (zh) 闪蒸罐和制冷系统
CN209100281U (zh) 泵体结构、压缩机及换热设备
CN207406491U (zh) 法兰组件、压缩机以及空调器
CN216812091U (zh) 压缩气缸、压缩机及制冷设备
CN103453700B (zh) 闪蒸器及包括该闪蒸器的空调
WO2018076691A1 (zh) 储液器和具有其的压缩机组件
WO2018072517A1 (zh) 空调器及其螺杆压缩机
CN209414174U (zh) 压缩机及制冷设备
CN207349101U (zh) 轴承座、螺杆压缩机及空调
CN207568841U (zh) 压缩机及具有其的空调器
CN210033831U (zh) 泵体组件及压缩机
US20200284247A1 (en) Compressor and Air Conditioner with Compressor
CN104819153A (zh) 具有圆锥排气流道和分歧入口结构的涡旋式制冷压缩机
CN109442581A (zh) 一种具有环境空气加湿作用的制冷设备
CN109915375A (zh) 泵体组件及压缩机
CN2856519Y (zh) 两级双吸泵壳体
CN109488595A (zh) 压缩机
CN214092306U (zh) 增焓压力脉动衰减装置、涡旋压缩机和空调系统
CN107490171A (zh) 消音器及具有其的空调器
CN208669590U (zh) 一种压缩机及空调系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882876

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018882876

Country of ref document: EP

Effective date: 20200102

NENP Non-entry into the national phase

Ref country code: DE