WO2019104934A1 - 一种冰粘附强度测量装置及测量方法 - Google Patents

一种冰粘附强度测量装置及测量方法 Download PDF

Info

Publication number
WO2019104934A1
WO2019104934A1 PCT/CN2018/083692 CN2018083692W WO2019104934A1 WO 2019104934 A1 WO2019104934 A1 WO 2019104934A1 CN 2018083692 W CN2018083692 W CN 2018083692W WO 2019104934 A1 WO2019104934 A1 WO 2019104934A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
adhesion strength
ice adhesion
ice
guide rail
Prior art date
Application number
PCT/CN2018/083692
Other languages
English (en)
French (fr)
Inventor
刘若鹏
赵治亚
徐志财
曾元强
张运湘
胡宇
李自东
Original Assignee
洛阳尖端技术研究院
洛阳尖端装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 洛阳尖端技术研究院, 洛阳尖端装备技术有限公司 filed Critical 洛阳尖端技术研究院
Publication of WO2019104934A1 publication Critical patent/WO2019104934A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/42Low-temperature sample treatment, e.g. cryofixation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/04Measuring adhesive force between materials, e.g. of sealing tape, of coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/24Investigating strength properties of solid materials by application of mechanical stress by applying steady shearing forces

Definitions

  • the present invention relates to ice adhesion strength measurement and, more particularly, to an ice adhesion strength measuring device and a measuring method.
  • Icing is a natural phenomenon, and the surface of the material device freezes, which will have a huge impact on production and life.
  • the research on anti-icing has gradually become a hot spot.
  • the difficulty of removing surface icing is usually expressed by the ice adhesion strength.
  • the data gap is large and the horizontal is not possible. Comparison.
  • an ice-adhesive shear strength measuring device is generally used in the prior art, which is sequentially connected by a base, a bearing, a central shaft, and a force arm.
  • the surface of the measuring device is uncontrollable, resulting in data repeatability. Poor.
  • the present invention provides a simple ice adhesion strength measuring device and a measuring method, which can accurately measure the ice adhesion strength of a material surface.
  • the invention provides an ice adhesion strength measuring device, comprising:
  • a force gauge is located on the rail and connects the mold.
  • a vacuum system is further included on a side of the cooling sheet that is different from the guide rail.
  • the acrylic cover and the upper portion of the mold each have an opening having a diameter of 1-3 mm, and the opening of the acrylic cover is vertically aligned with the opening of the mold.
  • the guide rail has balls therein.
  • the cooling sheet is a semiconductor cooling sheet having a cold stage.
  • the invention also provides a method for measuring ice adhesion strength, comprising the following steps:
  • water droplets are injected into the mold through the acrylic cover and an opening in the upper portion of the mold, wherein the opening has a diameter of 1-3 mm, and the opening of the acrylic cover is The openings of the mold are vertically aligned.
  • the guide rail is moved by a ball, and the ball is located in the guide rail.
  • the surface of the test material is cooled by the cooling sheet, wherein the cooling sheet is a semiconductor cooling sheet.
  • the method further includes: evacuating through the vacuum system when cooling is performed by the cooling sheet.
  • the ice adhesion strength measuring device provided by the invention is simple and convenient, and can be operated at normal temperature without requiring personnel to enter an environment below 0 ° C;
  • the ice adhesion strength measuring method provided by the invention is simple and reproducible, and the icing process at normal temperature is realized by the semiconductor refrigerating sheet, and the semiconductor refrigeration technology is effectively applied to the measurement of the ice adhesion strength.
  • Figure 1 is a schematic view of an ice adhesion strength measuring device (1-cooling sheet; 2-acrylic lid; 3-mold; 4-pushing force gauge; 5-track).
  • the invention adopts a semiconductor piece which can be precisely controlled temperature, and the temperature control range is -20 ° C to room temperature.
  • the working principle of the semiconductor refrigeration device is based on the Peltier principle, which was first discovered by JAC Peltier in 1834, that is, when a circuit composed of two different conductors A and B is used and a direct current is applied, In addition to the Joule heat, some other heat is released, and the other joint absorbs heat to achieve the cooling effect; therefore, the present invention realizes the normal temperature refrigeration icing through the semiconductor refrigeration sheet, and rejects the general ice adhesion test.
  • the disadvantage of the device operating below 0 ° C is beneficial to personnel operation, and the cold stage of the semiconductor refrigeration chip can specifically cool the surface of the material, improving the cooling effect and shortening the cooling time.
  • the present invention provides an ice adhesion strength measuring apparatus comprising: a cooling sheet, a mold located above the cooling sheet, an acrylic cover covering the mold, a guide rail having balls on one side of the cooling sheet, and a guide rail and connected to the mold a push-pull force measuring device; the ice adhesion strength measuring device further comprises a vacuum system on the side of the cooling sheet different from the guide rail (a vacuum pumping system, such as a circulating water vacuum pump); wherein the cooling sheet comprises a semiconductor refrigeration sheet
  • a vacuum pumping system such as a circulating water vacuum pump
  • the cooling sheet comprises a semiconductor refrigeration sheet
  • the acrylic cover and the upper portion of the mold each have an aligned opening having a diameter of 1-3 mm; the semiconductor cooling sheet has a cold stage.
  • the present invention also provides a method for measuring ice adhesion strength, comprising the steps of: placing test materials (including but not limited to Teflon, aluminum sheets, and stainless steel sheets) on a cold stage of a semiconductor refrigeration sheet; Testing the surface of the material; then placing the acrylic cover over the mold and covering the mold; injecting water droplets into the mold through the mold opening (the volume of the water droplets is about 1/3-2/3 of the volume of the mold); cooling by the semiconductor cooling sheet And vacuuming through the vacuum system; after the water droplets are condensed into ice, the rail and the push-pull force gauge are slowly moved in a direction away from the test material (speed is about 1-3 cm/min), wherein the push-pull force gauge is located on the guide rail, and the guide rail is in the guide rail.
  • test materials including but not limited to Teflon, aluminum sheets, and stainless steel sheets
  • the acrylic cover and the upper part of the mold have aligned openings of 1-3 mm in diameter, and the water directly contacts the test material in the hollow mold at the bottom .
  • the acrylic cover and the upper portion of the mold have aligned openings of 1-3 mm in diameter for injecting water droplets during testing so that water droplets can condense on the surface of the test material, and the acrylic cover is used to isolate the mold from the outside world.
  • a closed system is formed.
  • the vacuum system is used to evacuate the air in the closed system to prevent water vapor from condensing on the surface under cooling conditions, which affects the accuracy and repeatability of the experiment.
  • the balls in the guide rail can control the push-pull force gauge on the guide rail to move slowly, so that the push-pull force gauge is slowly applied to the mold to ensure the uniformity of the applied force.
  • the semiconductor wafer loses the cooling effect, the temperature rises, the ice cube automatically melts, and no other release agent is required.
  • the ice adhesion strength measuring device is shown in Figure 1 below.
  • the specific test steps are as follows:
  • test material Teflon was placed on the cold stage of the semiconductor refrigeration sheet, and the mold (which had a bottom area of 1 cm 2 ) was placed on the surface of the test material Teflon;
  • the acrylic cover is then placed over the mold and covers the mold, and the acrylic cover and the upper portion of the mold have aligned openings of 2 mm in diameter;
  • Water droplets are injected into the mold through the mold opening (the volume of the water droplets is about 1/3 of the volume of the mold), cooled by the semiconductor refrigeration sheet and evacuated by a vacuum system, and after the water droplets are condensed into ice, to the right (ie, away from the test material) Teflon direction) Slowly moving (speed about 1cm/min) rail, the guide rail moves to the right, so that the push-pull force gauge on the guide rail moves slowly to the right. At this time, the push-pull force gauge slowly applies force to the mold, the mold The push-pull force count value F at the time of falling off is 10.7 N.
  • Example 2 The same as Example 1, except that the push-pull force count value F when the mold was detached was 10.1 N.
  • the ice adhesion strength measuring device is shown in Figure 1 below.
  • the specific test steps are as follows:
  • test piece aluminum sheet Place the test piece aluminum sheet on the cold stage of the semiconductor refrigeration sheet, and place the mold (which has a bottom area of 1 cm 2 ) on the surface of the test material aluminum sheet;
  • the acrylic cover is then placed over the mold and covers the mold, and the acrylic cover and the upper portion of the mold have aligned openings of 1 mm in diameter;
  • Water droplets are injected into the mold through the mold opening (the volume of the water droplets is about 2/3 of the volume of the mold), cooled by the semiconductor cooling sheet and evacuated by the vacuum system, and after the water droplets are condensed into ice, to the right (ie, away from the test material)
  • the direction of the aluminum sheet is slowly moved (speed is about 2cm/min).
  • the guide rail moves to the right, so that the push-pull force gauge on the guide rail moves slowly to the right. At this time, the push-pull force gauge slowly applies force to the mold, and the mold falls off.
  • the push-pull force count value F is 150N.
  • Example 4 The same as Example 4, except that the push-pull force count value F when the mold was detached was 149.6 N.
  • the ice adhesion strength measuring device is shown in Figure 1 below.
  • the specific test steps are as follows:
  • the acrylic cover is then placed over the mold and covers the mold, and the acrylic cover and the upper portion of the mold have aligned openings of 3 mm in diameter;
  • Water droplets are injected into the mold through the mold opening (the volume of the water droplets is about 1/2 of the volume of the mold), cooled by the semiconductor refrigeration sheet and evacuated by the vacuum system, and after the water droplets are condensed into ice, to the right (ie, away from the test material)
  • the direction of the stainless steel piece) slowly moves (the speed is about 3cm/min).
  • the guide rail moves to the right, so that the push-pull force gauge on the guide rail moves slowly to the right. At this time, the push-pull force gauge slowly applies force to the mold, and the mold falls off.
  • the push-pull force count value F is 55.3 N.
  • the surface of the Teflon, aluminum sheet and stainless steel sheet tested by the present invention has an ice adhesion strength of about 102 KPa, 1483 KPa and 555 KPa, respectively, and the test data has good uniformity and high contrast, which can satisfy daily life.
  • Scientific research demand this is because the present invention forms a closed system by isolating the outside air through the acrylic cover, and the vacuum system is used to evacuate the air in the closed system to prevent water vapor from condensing on the surface under cooling conditions, affecting the accuracy of the experiment and Repeatability.
  • the invention realizes the normal temperature refrigeration icing by the semiconductor refrigeration sheet, and the disadvantage of the general ice adhesion test device working below 0 ° C is discarded, which is beneficial to personnel operation.
  • the ice adhesion strength measuring device and the measuring method provided by the invention can be used for characterizing the ice adhesion strength of the surface of the material device, the unified testing standard, and can also be used for standard materials (such as fan blades, transmission lines, high-iron bottom surface materials). Research on anti-icing.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

一种冰粘附强度测量装置及测量方法,该测量装置包括:制冷片(1)、位于制冷片(1)上方的模具(3)、覆盖模具(3)的亚克力盖(2)、位于制冷片(1)的一侧的导轨(5)以及位于导轨(5)上并且连接模具(3)的推拉力计(4)。该冰粘附强度测量装置和测量方法可用于表征材料器件表面的冰粘附强度,统一测试标准,还可用于规范材料(如风机叶片、输电线路、高铁底部表面材料)的防除冰的研究。

Description

一种冰粘附强度测量装置及测量方法 技术领域
本发明涉及冰粘附强度测量,更具体地,涉及一种冰粘附强度测量装置及测量方法。
背景技术
结冰为一种自然现象,材料器件表面结冰会对生产生活造成巨大的影响。随着对结冰现象的重视,防除冰的研究逐渐成为热点,表面覆冰的除去难易程度通常用冰粘附强度表示,然而,由于测量装置的不一致,导致数据差距较大,无法进行横向比较。
针对以上问题,现有技术中通常采用一种冰粘附剪切强度测量装置,由基座,轴承,中心轴,力臂顺序连接,但是,该测量装置表面结冰不可控,导致数据重复性较差。
发明内容
针对以上问题,本发明提供了一种简易的冰粘附强度测量装置及测量方法,可较准确的测量材料表面冰粘附强度。
本发明提供了一种冰粘附强度测量装置,包括:
制冷片;
模具,位于所述制冷片上方;
亚克力盖,覆盖所述模具;
导轨,位于所述制冷片的一侧;以及
推拉力计,位于所述导轨上并且连接所述模具。
在以上冰粘附强度测量装置中,还包括真空系统,位于所述制冷片的与所述导轨不同的侧。
在以上冰粘附强度测量装置中,所述亚克力盖与所述模具上部均具有 直径为1-3mm的开口,并且所述亚克力盖的开口与所述模具的开口垂直对准。
在以上冰粘附强度测量装置中,所述导轨中具有滚珠。
在以上冰粘附强度测量装置中,所述制冷片为具有冷台的半导体制冷片。
本发明还提供了一种冰粘附强度测量方法,包括以下步骤:
将测试材料放置在制冷片的冷台上;将模具放置在所述测试材料的表面上;将亚克力盖放置在所述模具上方并覆盖所述模具;向所述模具中注入水滴;通过所述制冷片进行降温;待所述水滴凝结成冰后,向远离所述测试材料的方向移动导轨和推拉力计,其中,所述推拉力计位于所述导轨上;以及读出所述推拉力计数值,计算冰粘附强度。
在以上冰粘附强度测量方法中,通过所述亚克力盖与所述模具上部的开口向所述模具中注入水滴,其中,所述开口的直径为1-3mm,并且所述亚克力盖的开口与所述模具的开口垂直对准。
在以上冰粘附强度测量方法中,所述导轨通过滚珠移动,所述滚珠位于所述导轨中。
在以上冰粘附强度测量方法中,通过所述制冷片对所述测试材料的表面进行制冷,其中,所述制冷片为半导体制冷片。
在以上冰粘附强度测量方法中,还包括:在通过所述制冷片进行降温时,通过真空系统抽真空。
本发明提供的冰粘附强度测量装置简易、便捷,在常温下即可操作,无需人员进入0℃以下环境;
此外,本发明提供的冰粘附强度测量方法简单,重复性强,通过半导体制冷片实现在常温下的结冰过程,有效的将半导体制冷技术运用在冰粘附强度的测量中。
附图说明
图1是冰粘附强度测量装置的示意图(1-制冷片;2-亚克力盖;3-模具; 4-推拉力计;5-导轨)。
具体实施方式
下面的实施例可以使本领域技术人员更全面地理解本发明,但不以任何方式限制本发明。
本发明采用了可精确控温的半导体片,控温范围为-20℃~室温。半导体制冷器件的工作原理是基于帕尔帖原理,该效应是在1834年由J.A.C帕尔帖首先发现的,即利用当两种不同的导体A和B组成的电路且通有直流电时,在接头处除焦耳热以外还会释放出某种其它的热量,而另一个接头处则吸收热量,达到制冷效果;因此,本发明通过半导体制冷片实现了常温制冷结冰,摒弃了一般冰粘附测试装置在0℃以下工作的缺点,有利于人员操作,并且半导体制冷片的冷台可以针对性地对材料表面进行制冷,提高了制冷效果并且缩短了制冷时间。
本发明提供了一种冰粘附强度测量装置,包括:制冷片、位于制冷片上方的模具、覆盖模具的亚克力盖、位于制冷片的一侧的具有滚珠的导轨以及位于导轨上并且连接模具的推拉力计;该冰粘附强度测量装置还包括位于制冷片的与导轨不同的侧的真空系统(能抽真空的系统即可,如循环水式真空泵);其中,该制冷片包括半导体制冷片;亚克力盖与模具上部均具有直径为1-3mm的对准的开口;该半导体制冷片具有冷台。
本发明还提供了一种冰粘附强度测量方法,包括以下步骤:将测试材料(包括但不限于特氟龙、铝片和不锈钢片)放置在半导体制冷片的冷台上;将模具放置在测试材料的表面上;然后将亚克力盖放置在模具上方并覆盖模具;通过模具开口向模具中注入水滴(水滴的体积约为模具体积的1/3-2/3);通过半导体制冷片进行降温并且通过真空系统抽真空;待水滴凝结成冰后,向远离测试材料的方向缓慢移动(速度约为1-3cm/min)导轨和推拉力计,其中,推拉力计位于导轨上,该导轨中具有滚珠;以及读出推拉力计数值,计算冰粘附强度;其中,亚克力盖与模具上部均具有直径为1-3mm的对准的开口,水在底部中空的模具中直接与测试材料相接触。
在本发明中,亚克力盖与模具上部具有直径为1-3mm的对准的开口, 用于测试时注入水滴,使得水滴可凝结在测试材料表面,并且亚克力盖用于隔绝模具与外界的联系,形成一封闭系统,真空系统用于抽离封闭系统中的空气,防止在降温条件下,水蒸气凝结在表面,影响实验精确度与重复性。
导轨中的滚珠可以控制导轨上的推拉力计缓慢地移动,使得推拉力计缓慢地施力于模具上,保证了施力的均匀性。
此外,测量结束后,关闭电源,半导体片失去制冷效果,温度升高,冰块自动融化,无需其它脱模剂。
实施例1
冰粘附强度测量装置如下图1所示,具体测试步骤为:
将测试材料特氟龙放置在半导体制冷片的冷台上,将模具(其具有1cm 2的底面积)放置在测试材料特氟龙的表面上;
然后将亚克力盖放置在模具上方并覆盖模具,亚克力盖与模具上部具有直径为2mm的对准的开口;
通过模具开口向模具中注入水滴(水滴的体积约为模具体积的1/3),通过半导体制冷片进行降温并且通过真空系统抽真空,待水滴凝结成冰后,向右(即,远离测试材料特氟龙的方向)缓慢移动(速度约为1cm/min)导轨,导轨滚珠向右移动,使得导轨上的推拉力计缓慢向右移动,此时,推拉力计缓慢施力于模具上,模具脱落时的推拉力计数值F为10.7N。
实施例2
与实施例1相同,除了模具脱落时的推拉力计数值F为9.8N之外。
实施例3
与实施例1相同,除了模具脱落时的推拉力计数值F为10.1N之外。
实施例4
冰粘附强度测量装置如下图1所示,具体测试步骤为:
将测试材料铝片放置在半导体制冷片的冷台上,将模具(其具有1cm 2的底面积)放置在测试材料铝片的表面上;
然后将亚克力盖放置在模具上方并覆盖模具,亚克力盖与模具上部具 有直径为1mm的对准的开口;
通过模具开口向模具中注入水滴(水滴的体积约为模具体积的2/3),通过半导体制冷片进行降温并且通过真空系统抽真空,待水滴凝结成冰后,向右(即,远离测试材料铝片的方向)缓慢移动(速度约为2cm/min)导轨,导轨滚珠向右移动,使得导轨上的推拉力计缓慢向右移动,此时,推拉力计缓慢施力于模具上,模具脱落时的推拉力计数值F为150N。
实施例5
与实施例4相同,除了模具脱落时的推拉力计数值F为145.3N之外。
实施例6
与实施例4相同,除了模具脱落时的推拉力计数值F为149.6N之外。
实施例7
冰粘附强度测量装置如下图1所示,具体测试步骤为:
将测试材料不锈钢片放置在半导体制冷片的冷台上,将模具(其具有1cm 2的底面积)放置在测试材料不锈钢片的表面上;
然后将亚克力盖放置在模具上方并覆盖模具,亚克力盖与模具上部具有直径为3mm的对准的开口;
通过模具开口向模具中注入水滴(水滴的体积约为模具体积的1/2),通过半导体制冷片进行降温并且通过真空系统抽真空,待水滴凝结成冰后,向右(即,远离测试材料不锈钢片的方向)缓慢移动(速度约为3cm/min)导轨,导轨滚珠向右移动,使得导轨上的推拉力计缓慢向右移动,此时,推拉力计缓慢施力于模具上,模具脱落时的推拉力计数值F为55.3N。
实施例8
与实施例7相同,除了模具脱落时的推拉力计数值F为54.8N之外。
实施例9
与实施例7相同,除了模具脱落时的推拉力计数值F为56.4N之外。
通过实施例1至实施例9的模具中的冰块脱落时(剪切)施加力的大小F,冰与材料的的接触面积(即,模具的底面积)S,冰粘附强度P通过公式P=F/S计算得到,计算结果如下表1所示:
表1
Figure PCTCN2018083692-appb-000001
由上表1可知,本发明测试的特氟龙、铝片和不锈钢片的表面的冰粘附强度分别在102KPa、1483KPa和555KPa左右,测试数据均匀性较好,对比性高,可满足日常的科研需求;这是由于本发明通过亚克力盖隔绝外界空气,形成一封闭系统,同时真空系统用于抽离封闭系统中的空气,防止在降温条件下,水蒸气凝结在表面,影响实验精确度与重复性。
此外,本发明通过半导体制冷片实现了常温制冷结冰,摒弃了一般冰粘附测试装置在0℃以下工作的缺点,有利于人员操作。
综上,本发明提供的冰粘附强度测量装置和测量方法可用于表征材料器件表面的冰粘附强度,统一测试标准,还可用于规范材料(如风机叶片、输电线路、高铁底部表面材料)的防除冰的研究。
本领域技术人员应理解,以上实施例仅是示例性实施例,在不背离本发明的精神和范围的情况下,可以进行多种变化、替换以及改变。

Claims (10)

  1. 一种冰粘附强度测量装置,其特征在于,包括:
    制冷片;
    模具,位于所述制冷片上方;
    亚克力盖,覆盖所述模具;
    导轨,位于所述制冷片的一侧;以及
    推拉力计,位于所述导轨上并且连接所述模具。
  2. 根据权利要求1所述的冰粘附强度测量装置,其特征在于,还包括真空系统,位于所述制冷片的与所述导轨不同的侧。
  3. 根据权利要求1所述的冰粘附强度测量装置,其特征在于,所述亚克力盖与所述模具上部均具有直径为1-3mm的开口,并且所述亚克力盖的开口与所述模具的开口垂直对准。
  4. 根据权利要求1所述的冰粘附强度测量装置,其特征在于,所述导轨中具有滚珠。
  5. 根据权利要求1所述的冰粘附强度测量装置,其特征在于,所述制冷片为具有冷台的半导体制冷片。
  6. 一种冰粘附强度测量方法,其特征在于,包括以下步骤:
    将测试材料放置在制冷片的冷台上;
    将模具放置在所述测试材料的表面上;
    将亚克力盖放置在所述模具上方并覆盖所述模具;
    向所述模具中注入水滴;
    通过所述制冷片进行降温;
    待所述水滴凝结成冰后,向远离所述测试材料的方向移动导轨和推拉力计,其中,所述推拉力计位于所述导轨上;以及
    读出所述推拉力计数值,计算冰粘附强度。
  7. 根据权利要求6所述的冰粘附强度测量方法,其特征在于,通过所述亚克力盖与所述模具上部的开口向所述模具中注入水滴,
    其中,所述开口的直径为1-3mm,并且所述亚克力盖的开口与所述模 具的开口垂直对准。
  8. 根据权利要求6所述的冰粘附强度测量方法,其特征在于,所述导轨通过滚珠移动,所述滚珠位于所述导轨中。
  9. 根据权利要求6所述的冰粘附强度测量方法,其特征在于,通过所述制冷片对所述测试材料的表面进行制冷,
    其中,所述制冷片为半导体制冷片。
  10. 根据权利要求6所述的冰粘附强度测量方法,其特征在于,还包括:在通过所述制冷片进行降温时,通过真空系统抽真空。
PCT/CN2018/083692 2017-12-01 2018-04-19 一种冰粘附强度测量装置及测量方法 WO2019104934A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711246020.7 2017-12-01
CN201711246020.7A CN109870405A (zh) 2017-12-01 2017-12-01 一种冰粘附强度测量装置及测量方法

Publications (1)

Publication Number Publication Date
WO2019104934A1 true WO2019104934A1 (zh) 2019-06-06

Family

ID=66665378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083692 WO2019104934A1 (zh) 2017-12-01 2018-04-19 一种冰粘附强度测量装置及测量方法

Country Status (2)

Country Link
CN (1) CN109870405A (zh)
WO (1) WO2019104934A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112858608A (zh) * 2021-01-14 2021-05-28 水电水利规划设计总院 一种雾凇强度测定方法
CN112858607A (zh) * 2021-01-14 2021-05-28 水电水利规划设计总院 一种雾凇强度测定装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110346289B (zh) * 2019-08-02 2021-11-19 中国商用飞机有限责任公司 材料切向冻粘强度试验的测试装置及测试方法
CN110470595A (zh) * 2019-09-11 2019-11-19 湖北理工学院 材料表面覆冰强度在线测量装置及覆冰过程实时监控系统
CN113218860B (zh) * 2021-03-31 2023-01-10 华北理工大学 一种静态冰粘结力测试装置
CN113484235B (zh) * 2021-06-25 2023-03-14 东北农业大学 风力机叶片表面冰粘附强度测量装置
CN115541492B (zh) * 2022-11-30 2023-03-24 成都流体动力创新中心 一种可重复精确测量冰粘附力的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102262048A (zh) * 2011-04-21 2011-11-30 西北工业大学 一种测量冰与物体间粘附力的装置及其测试方法
CN102269691A (zh) * 2011-05-06 2011-12-07 吉林大学 一种冰黏附强度测试方法和装置
CN102288542A (zh) * 2011-07-22 2011-12-21 华北电力大学(保定) 材料表面覆冰粘附强度测量系统及方法
CN102519874A (zh) * 2011-12-26 2012-06-27 厦门市弘瀚电子科技有限公司 一种led晶片表面粘附力测试仪
WO2017199050A1 (en) * 2016-05-20 2017-11-23 Gkn Aerospace Services Limited Ice test devices

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4411944B2 (ja) * 2003-11-12 2010-02-10 横浜ゴム株式会社 氷表面粗さ又は摩擦係数を予測する方法
CN103760106A (zh) * 2014-01-28 2014-04-30 国家电网公司 一种覆冰模具、利用其测量覆冰剪切力的装置及方法
CN203672696U (zh) * 2014-01-28 2014-06-25 国家电网公司 一种覆冰模具及利用其测量覆冰剪切力的装置
CN104374653B (zh) * 2014-11-21 2017-02-01 长安大学 一种利用离心力测试冰与沥青路面抗剪切强度的试验设备
CN105181392B (zh) * 2015-08-17 2018-03-16 石家庄国祥运输设备有限公司 一种空调机组制冷剂的抽样工装和抽样方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102262048A (zh) * 2011-04-21 2011-11-30 西北工业大学 一种测量冰与物体间粘附力的装置及其测试方法
CN102269691A (zh) * 2011-05-06 2011-12-07 吉林大学 一种冰黏附强度测试方法和装置
CN102288542A (zh) * 2011-07-22 2011-12-21 华北电力大学(保定) 材料表面覆冰粘附强度测量系统及方法
CN102519874A (zh) * 2011-12-26 2012-06-27 厦门市弘瀚电子科技有限公司 一种led晶片表面粘附力测试仪
WO2017199050A1 (en) * 2016-05-20 2017-11-23 Gkn Aerospace Services Limited Ice test devices

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112858608A (zh) * 2021-01-14 2021-05-28 水电水利规划设计总院 一种雾凇强度测定方法
CN112858607A (zh) * 2021-01-14 2021-05-28 水电水利规划设计总院 一种雾凇强度测定装置
CN112858608B (zh) * 2021-01-14 2022-06-17 水电水利规划设计总院 一种雾凇强度测定方法
CN112858607B (zh) * 2021-01-14 2022-06-17 水电水利规划设计总院 一种雾凇强度测定装置

Also Published As

Publication number Publication date
CN109870405A (zh) 2019-06-11

Similar Documents

Publication Publication Date Title
WO2019104934A1 (zh) 一种冰粘附强度测量装置及测量方法
US7802507B2 (en) Automatic sliced piece fabricating apparatus and automatic sliced piece sample fabricating apparatus
JP2003028923A (ja) ヒータ付プッシャ、電子部品ハンドリング装置および電子部品の温度制御方法
CN108646038A (zh) 一种控温控压样品台及温压控制系统
CN104617008A (zh) 晶圆加热装置
CN106981438A (zh) 铟镓合金作为代汞物在氧化层固定电荷测试中的方法
CN206073576U (zh) 基于水冷式半导体制冷的真空液氮冷冻干燥装置
JPH0697246A (ja) 低温における半導体材料の性質を試験する装置および方法
CN104236158A (zh) 一种测量过冷点或冰点的半导体制冷装置
CN208516102U (zh) 一种样品保存装置
CN205863207U (zh) 一种链式传输系统
US20240060862A1 (en) Refrigeration chip, refrigeration system, and sample testing system and method
CN204380715U (zh) 一种用于低频力学谱测试实验的低温致冷装置
CN113893989A (zh) 一种新型真空加湿涂布制膜机
TWI642085B (zh) 電漿處理裝置及在高功率射頻下的矽片溫度測量方法
CN220176046U (zh) 一种大豆野外霜冻实验装置
JP4121760B2 (ja) 水の三重点セルの氷付け方法及び装置
CN214892201U (zh) 一种导温冻干支架
CN220019338U (zh) 一种冰粘附力测试装置
CN215615644U (zh) 一种物联网基带数据处理装置
CN220084884U (zh) 一种基于帕尔贴效应的探针台的制冷载物台
JP5561320B2 (ja) 電子部品の検査装置
CN213933860U (zh) 一种土壤冻融循环实验装置
CN213066747U (zh) 一种动物血清烘干用降温冷却装置
JPS59181076A (ja) 低温自動テスタ−

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18882738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18882738

Country of ref document: EP

Kind code of ref document: A1