WO2019104794A1 - 天线罩和具有其的雷达系统 - Google Patents

天线罩和具有其的雷达系统 Download PDF

Info

Publication number
WO2019104794A1
WO2019104794A1 PCT/CN2017/118575 CN2017118575W WO2019104794A1 WO 2019104794 A1 WO2019104794 A1 WO 2019104794A1 CN 2017118575 W CN2017118575 W CN 2017118575W WO 2019104794 A1 WO2019104794 A1 WO 2019104794A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
radome
polypropylene
cover
side wall
Prior art date
Application number
PCT/CN2017/118575
Other languages
English (en)
French (fr)
Inventor
唐照成
王佳迪
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201780087694.9A priority Critical patent/CN110352535A/zh
Publication of WO2019104794A1 publication Critical patent/WO2019104794A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome

Definitions

  • the present disclosure relates to the field of antennas, and more particularly to a radome and a radar system therewith.
  • the shape and material of the radome have a great influence on the performance of the antenna. If it is not suitable, it will cause a series of problems such as distortion of the antenna pattern, reduction of transmission and reception gain, and increase of noise.
  • the main shapes of the omnidirectional radome are a straight cylinder type, a doughnut type, a disc type, and a spherical type.
  • the side walls are parallel to the axis, and the side walls and the cover are generally bonded together, and the structural stability is not good.
  • the doughnut and disc type radomes not only the structure is complicated, but also the arc has a large influence on the antenna pattern.
  • the spherical radome multiple splicing is required, the structure is extremely complicated, and processing is difficult.
  • the materials of the existing radome are mainly FRP, polytetrafluoroethylene (PTFE) and synthetic resin.
  • PTFE polytetrafluoroethylene
  • synthetic resin synthetic resin.
  • the dielectric constant and dielectric loss tangent of FRP are too large and unstable, which seriously degrades radar performance.
  • the radome is made thicker.
  • the price of PTFE is relatively expensive, the texture is soft, and it is not easy to be injection-molded. Generally, the machine-added process is adopted, and the processing cost is high.
  • the synthetic resin generally includes polyethylene (PE), ABS (Acrylonitrile Butadiene Styrene, acrylonitrile-butadiene-styrene copolymer), PC (Polycarbonate, polycarbonate), etc., wherein ABS dielectric constant is unstable, and the material It is not easy to make a radome with a very thin thickness; PE weather resistance is not good, and sunlight and rain can cause aging; PC dielectric constant is 3.0-3.2, and the corrosion resistance is not strong enough, and it is easily corroded by pesticides.
  • PE polyethylene
  • ABS Adiene Styrene
  • PC Polycarbonate, polycarbonate
  • the present disclosure provides a radome and a radar system therewith.
  • a radome comprising a polypropylene cover body having a truncated cone structure, the polypropylene cover body being internally provided with a receiving space for receiving an antenna; the polypropylene a top surface of the cover body is provided with a first opening portion, and a bottom surface of the polypropylene cover body is provided with a second opening portion for inserting the antenna into the receiving space, and the first opening portion is provided with a cover body
  • the sidewall of the polypropylene cover is disposed obliquely with respect to a bottom surface of the polypropylene cover.
  • an angle between an outer peripheral surface of the side wall of the polypropylene cover and a bottom surface of the polypropylene cover is 91°.
  • the sidewall of the polypropylene cover has a thickness of 0.5 ⁇ 0.2 mm.
  • the diameter of the first opening portion is smaller than the diameter of the second opening portion.
  • the second opening has a diameter of 110 ⁇ 5 mm.
  • the cover has a diameter of 90 ⁇ 5 mm.
  • a chamfered portion is disposed between the sidewall of the polypropylene cover and the cover; and one end of the chamfered portion is connected to a sidewall of the polypropylene cover adjacent to the first opening. One side and the other end are connected to the cover.
  • the chamfered portion has a radius of 10 ⁇ 5 mm.
  • the side wall of the polypropylene cover, the cover body and the chamfered portion are integrally formed.
  • the inner side wall of the polypropylene cover body is further provided with a fixing portion for connecting the antenna.
  • a radar system comprising an antenna and the radome of any of the above.
  • the central axis of the sidewall of the polypropylene cover coincides with the axis of rotation of the antenna.
  • the antenna includes an antenna body and a seat body for fixing the antenna body; the antenna body is received in a receiving space of the radome, and a side wall and a side of the polypropylene cover body The cover bodies are spaced apart from each other; the side of the radome near the second opening portion abuts on the seat body.
  • the seat body and the fixing portion of the radome are screwed.
  • the present disclosure adopts a polypropylene cover body, which has small dielectric constant and dielectric loss, good toughness, excellent performance in chemical properties, structure and electrical properties, and is light and beautiful, and cost. low.
  • PP polypropylene
  • the influence on the antenna pattern is small, the structure is simple, and it is convenient for injection molding and convenient production.
  • the antenna can realize the requirement of 360° omnidirectional uniform scanning in a single direction, and the gain and side lobes of the antenna can meet the actual use requirements.
  • the radome of the present disclosure can be applied to the 24-24.24 GHz and 76-81 GHz frequency bands, and has a wide frequency range.
  • FIG. 1 is a perspective structural view of a radome according to an embodiment of the present disclosure
  • FIG. 2 is a perspective structural view of a radome according to an embodiment of the present disclosure, illustrating a matching relationship between the radome and the antenna;
  • Figure 3 is a cross-sectional view of Figure 2 in the direction of the section A-A;
  • FIG. 4 is a side view of an antenna E in an embodiment of the present disclosure, showing a difference between an antenna cover not using a radome and an E-plane pattern using a polypropylene radome;
  • FIG. 5 is a side view of an antenna E according to an embodiment of the present disclosure, showing a difference between an antenna not using a radome and an E-plane pattern using a polypropylene radome having a thickness of 1.5 mm;
  • FIG. 6 is a side view of an antenna E according to an embodiment of the present disclosure, showing a difference between an antenna not using a radome and an E-plane pattern using a polypropylene radome having a thickness of 1.0 mm;
  • FIG. 7 is a perspective view of an antenna E surface according to an embodiment of the present disclosure, showing a difference between an antenna not using a radome and an E-plane pattern using a glass reinforced plastic radome having a thickness of 0.5 mm.
  • Antenna 100 antenna body 110; base 120;
  • first, second, third, etc. may be used in the present disclosure to describe various information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information without departing from the scope of the present disclosure.
  • second information may also be referred to as first information.
  • word "if” as used herein may be interpreted as "when” or “when” or “in response to a determination.”
  • the radome 200 of the present disclosure and a radar system therewith will be described in detail below with reference to the accompanying drawings.
  • the features of the embodiments and embodiments described below may be combined with each other without conflict.
  • the main factors that affect the antenna 100 performance of the radome 200 include dielectric constant and loss tangent (ie, dielectric loss), and curvature of the radome 200.
  • dielectric constant and loss tangent ie, dielectric loss
  • curvature of the radome 200 the larger the dielectric constant, the greater the reflection of electromagnetic waves on the interface between the air and the sidewall of the radome 200.
  • the larger the loss tangent the more energy is lost by the electromagnetic wave energy being converted into heat during the process of penetrating the radome 200.
  • the greater the curvature of the radome 200 directly interferes with the formation of plane waves of the antenna 100, resulting in deterioration of the side lobes.
  • an embodiment of the present disclosure provides a radome 200 that can include a polypropylene cover 1 .
  • the polypropylene cover 1 has a truncated cone structure.
  • the polypropylene cover 1 has a small dielectric constant and dielectric loss, good toughness, excellent chemical properties, structure and electrical properties, and is light and beautiful, and low in cost.
  • the polypropylene cover 1 is internally provided with a receiving space 13 for receiving the antenna 100.
  • the top surface of the polypropylene cover 1 is provided with a first opening portion 11, and the bottom surface of the polypropylene cover 1 is provided with a second opening portion 12.
  • the first opening portion 11 is provided with a cover 2 for inserting the antenna 100 into the receiving space 13.
  • the antenna 100 of the present embodiment extends into the accommodating space 13 from the second opening portion 12, thereby covering the antenna 100 in the radome 200 to protect the antenna 100.
  • the side wall of the polypropylene cover 1 of the present embodiment is inclined with respect to the bottom surface of the polypropylene cover 1.
  • the antenna 100 can achieve a 360° omnidirectional uniform scanning in a single direction, and the gain and side lobes of the antenna 100 can meet the actual use requirements.
  • the radome 200 of the present disclosure can be applied to the 24-24.24 GHz (unit: GHz) and 76-81 GHz frequency bands, and has a wide frequency range.
  • the angle between the outer peripheral surface of the side wall of the polypropylene cover 1 and the bottom surface of the polypropylene cover 1 can be set according to the performance requirements of the antenna 100.
  • the angle between the outer peripheral surface of the side wall of the polypropylene cover 1 and the bottom surface of the polypropylene cover 1 is greater than 90° (unit: degree), in fact, the side wall of the polypropylene cover 1
  • the angle between the outer peripheral surface and the bottom surface of the polypropylene cover 1 is slightly larger than 90°.
  • an angle between an outer peripheral surface of the side wall of the polypropylene cover 1 and a bottom surface of the polypropylene cover 1 is 91°.
  • the diameter of the first opening portion 11 is smaller than the diameter of the second opening portion 12.
  • the diameters of the first opening portion 11 and the second opening portion 12 can be set according to the size of the antenna 100, the performance requirement of the antenna 100, and the like, so that the pattern, the transmitting and the receiving gain of the antenna 100 are optimized.
  • the diameter of the second opening portion 12 is 110 ⁇ 5 mm (unit: mm).
  • the diameter of the second opening portion 12 may be selected to be other values between 105 mm, 110 mm, 115 mm, or 105-115 mm.
  • the diameter of the first opening portion 11 is greater than or equal to the diameter of the cover body 2.
  • the diameter of the first opening portion 11 is larger than the diameter of the cover body 2.
  • the diameter of the cover 2 can also be set according to factors such as the size of the antenna 100 and the performance requirements of the antenna 100.
  • the cover 2 may have a diameter of 90 ⁇ 5 mm.
  • the diameter of the cover 2 may be selected to be other values between 85 mm, 90 mm, 95 mm or 85-95 mm.
  • a chamfered portion 3 may be disposed between the side wall of the polypropylene cover 1 and the cover 2, and one end of the chamfered portion 3 is connected to the polypropylene cover 1
  • the side wall is adjacent to one side of the first opening portion 11, and the other end is connected to the cover body 2.
  • the size of the chamfered portion 3 can be determined according to the size of the cover 2, the size of the first opening, the size of the antenna 100, the performance requirements of the antenna 100, and the like, so that the antenna 100 satisfies the demand.
  • the chamfered portion 3 may have a radius of 10 ⁇ 5 mm.
  • the radius of the chamfered portion 3 may be other values between 5 mm, 10 mm, 15 mm, or 5-15 mm.
  • the first opening portion 11 has a diameter of 100 mm
  • the second opening portion 12 has a diameter of 110 mm
  • the cover body 2 has a diameter of 90 mm
  • the chamfered portion 3 has a radius of 10 mm.
  • the radome 200 covers the antenna 100, and the antenna 100 has an optimum pattern, transmission, and reception gain.
  • the side wall of the polypropylene cover 1, the cover 2 and the chamfered portion 3 are integrally formed, and the radome 200 has a strong structural stability.
  • the side wall of the polypropylene cover 1 , the cover 2 and the chamfered portion 3 may be respectively connected by bonding or other means, or the polypropylene cover 1
  • the side wall and the chamfered portion 3 are integrally formed, and the cover body 2 and the chamfered portion 3 are joined by bonding or other means, or the cover body 2 and the chamfered portion 3 are integrally formed.
  • the side wall of the polypropylene cover 1 and the chamfered portion 3 are joined by bonding or other means, but the structural stability of the radome 200 obtained in these combinations is poor.
  • the thickness of the side wall of the polypropylene cover 1 of the present embodiment can be set according to factors such as heat dissipation performance, performance requirements of the antenna 100, and the like.
  • the sidewall of the polypropylene cover 1 may have a thickness of 0.5 ⁇ 0.2 mm. Among them, ⁇ 0.2mm is an allowable error range of the thickness of the side wall of the polypropylene cover 1, which facilitates the processing of the polypropylene cover 1.
  • the side wall of the polypropylene cover 1 has a thickness of 0.5 mm, which has less influence on the performance of the antenna 100 and has a fast heat dissipation.
  • the inner side wall of the polypropylene cover 1 is further provided with a fixing portion 4 for connecting the antenna 100.
  • the fixing portion 4 is a thread, and an inner side wall of the polypropylene cover 1 is threadedly engaged with a base of the antenna 100.
  • the fixing portion 4 may also be a snap portion that is snapped onto the base of the antenna 100 to fix the polypropylene cover 1 to the antenna 100.
  • FIG. 4 is a diagram showing an E-plane pattern in which the antenna 100 does not use the radome 200 and the polypropylene radome 200 in a preferred embodiment.
  • the polypropylene radome 200 has less influence on the performance of the antenna 100, and the dustproof effect is obtained.
  • 5 to 6 are views showing an E-plane of the antenna 100 in which the radome 200 is not used and the polypropylene radome 200 is used.
  • the antenna 100 realizes 360° omnidirectional uniform scanning in a single direction, and the gain, beam width and side lobes of the antenna 100 can satisfy the actual use. demand.
  • the thinner the polypropylene radome 200 the less impact it has on the performance of the antenna 100.
  • the thinner the polypropylene radome 200 the better the heat dissipation of the antenna 100.
  • the thickness of the polypropylene radome 200 should not be too thin, and it is necessary to comprehensively consider the dustproof effect of the polypropylene radome 200 and the performance of the polypropylene radome 200 on the antenna 100 and the polypropylene antenna.
  • the thickness of the polypropylene radome 200 is set by factors such as the heat dissipation effect of the cover 200.
  • the antenna 100 is not limited to 360° uniform scanning, and may also be scanning of discrete angles or other angular ranges.
  • 7 is an E-plane pattern in which the antenna 100 is not used with a radome and a glass reinforced plastic radome having a thickness of 0.5 mm, and in conjunction with FIGS. 4 to 6, it can be seen that the performance of the antenna 100 using the polypropylene radome 200 is better.
  • the radome 200 of the above embodiment can be applied to any device (for example, a radar system) having the antenna 100, and the antenna 100 is protected by the radome 200 to extend the service life of the antenna 100.
  • a radar system for example, a radar system
  • the following embodiments will be further described by taking the radome 200 applied to a radar system as an example.
  • millimeter wave Compared with ultrasonic, infrared and laser radar, millimeter wave has stronger ability to penetrate smoke, fog and dust, and has all-weather all-day characteristics. Therefore, millimeter wave radar is widely used in automobiles, transportation, security, industry, and nobody. Machines and other industries and smart devices. With the diversification of application scenarios, the speed, angle measurement and ranging of a single radar can no longer meet the needs of equipment working in a more complex environment, and the demand for multi-tasking and multi-functionalization is increasing, in addition to the complexity of radar back-end data processing. It also requires a radar antenna to perform beam scanning to detect different orientations. The way to achieve beam scanning is mechanical scanning and electronic scanning, ie mechanical rotation or phased array.
  • the phased array is mostly used for military radar, the beam scanning speed is fast, and the reliability is high, but the system is complicated and the cost is very high.
  • Mechanical scanning is relatively simple and low cost, and is very practical in situations where the requirements are not particularly high and low cost is required.
  • the radome 200 has a great influence on the performance of the antenna 100. If it is not suitable, the antenna 100 pattern distortion, the transmission and reception gains are reduced, and the noise is increased.
  • an embodiment of the present disclosure also provides a radar system that can include the antenna 100 and the radome 200 of the above embodiment.
  • the antenna 100 may include an antenna body 110 and a base 120.
  • the antenna body 110 is fixed to the base 120.
  • the antenna body 110 is housed in the accommodating space 13 of the radome 200, and protects the antenna 100 by the radome 200 to prevent the antenna 100 from being damaged.
  • the antenna main body 110 is spaced apart from the side wall of the polypropylene cover 1 and the cover 2 to prevent the antenna cover 200 from directly contacting the antenna main body 110 from affecting the performance of the antenna 100.
  • the side of the radome 200 adjacent to the second opening 12 abuts against the base 120 , and the antenna body 110 is sealed in the accommodating space 13 to prevent external debris from entering the accommodating space 13 and affecting the antenna 100 .
  • the antenna body 110 has a size of 90 x 90 mm.
  • the size of the antenna body 110 can also be any other size.
  • the base 120 and the radome 200 can be fixedly connected by threads, snaps, or other means.
  • the base 120 and the fixed portion 4 of the radome 200 are threadedly engaged.
  • the fixing portion 4 is provided with a metal ring in a circumferential direction of the inner side wall of the radome 200, the metal ring is provided with an internal thread, and the base 120 is provided with an external thread.
  • the inner side wall of the radome 200 is directly provided with internal threads in the circumferential direction, and the base 120 is provided with external threads.
  • the inner side wall of the antenna 100 is provided with a latching portion
  • the base 120 is provided with a latching slot for engaging with the latching portion.
  • the central axis of the side wall of the polypropylene cover 1 coincides with the rotation axis of the antenna 100, reducing the influence of the radome 200 on the performance of the antenna 100, so that the performance of the antenna 100 is optimized.

Landscapes

  • Details Of Aerials (AREA)

Abstract

本公开提供一种天线罩和具有其的雷达系统,其中,天线罩包括聚丙烯罩体(1),聚丙烯罩体呈圆台型结构,聚丙烯罩体内部设有用于收容天线(100)的收容空间;聚丙烯罩体的顶面设有第一开口部(11),聚丙烯罩体的底面设有用于供天线穿设而进入收容空间的第二开口部(12),第一开口部上设有盖体(2);聚丙烯罩体的侧壁相对于聚丙烯罩体的底面倾斜设置。通过将聚丙烯罩体的侧壁相对于聚丙烯罩体的底面倾斜设置,对天线方向图的影响较小,结构简单,利于注塑拔模且方便生产。使用本公开的天线罩,天线能够实现单一方向360°全向均匀扫描的需求,天线的增益、副瓣均能满足实际使用需求。

Description

天线罩和具有其的雷达系统 技术领域
本公开涉及天线领域,尤其涉及一种天线罩和具有其的雷达系统。
背景技术
天线罩形状和材料对天线性能影响巨大,若不合适会造成天线方向图畸变、发射和接收增益降低,噪声增大等一系列问题。全向天线罩的主要形状有直筒圆柱型、面包圈型、圆盘型和球型。对于直筒圆柱型的天线罩,侧壁与轴线平行,侧壁和盖体一般粘接而成,结构稳定性不好。对于面包圈型和圆盘型的天线罩,不仅结构复杂,弧线也会对天线方向图产生较大的影响。对于球型的天线罩,需要多块拼接,结构异常复杂,加工困难。
现有天线罩的材料主要有玻璃钢、聚四氟乙烯(PTFE)和合成树脂。相对于毫米波频段,玻璃钢的介电常数和介电损耗正切都太大且不稳定,严重降低雷达性能。此外,由于玻璃钢质地较脆,制作的天线罩壁厚较厚。而聚四氟乙烯价格较贵,质地较软,不易注塑成型,一般采用机加工艺,加工成本高。合成树脂一般包括聚乙烯(PE)、ABS(Acrylonitrile Butadiene Styrene,丙烯腈-丁二烯-苯乙烯共聚物)、PC(Polycarbonate,聚碳酸酯)等,其中,ABS介电常数不稳定,且材质较脆不易做成厚度很薄的天线罩;PE耐候性不好,日晒、雨淋都会引起老化;PC介电常数3.0-3.2,且耐腐蚀能力不够强,易被农药腐蚀。
发明内容
本公开提供一种天线罩和具有其的雷达系统。
具体地,本公开是通过如下技术方案实现的:
根据本公开第一方面,提供一种天线罩,包括聚丙烯罩体,所述聚丙烯罩体呈圆台型结构,所述聚丙烯罩体内部设有用于收容天线的收容空间;所述聚丙烯罩体的顶面设有第一开口部,所述聚丙烯罩体的底面设有用于供天线穿设而进入所述收容空间的第二开口部,所述第一开口部上设有盖体;所述聚丙烯罩体的侧壁相对于所述聚丙烯罩体的底面倾斜设置。
可选地,所述聚丙烯罩体的侧壁的外周面与所述聚丙烯罩体的底面之间的夹角为91°。
可选地,所述聚丙烯罩体的侧壁的厚度为0.5±0.2mm。
可选地,所述第一开口部的直径小于所述第二开口部的直径。
可选地,所述第二开口部的直径为110±5mm。
可选地,所述盖体的直径为90±5mm。
可选地,所述聚丙烯罩体的侧壁和所述盖体之间设有倒角部;所述倒角部一端连接所述聚丙烯罩体的侧壁靠近所述第一开口部的一侧,另一端连接所述盖体。
可选地,所述倒角部的半径为10±5mm。
可选地,所述聚丙烯罩体的侧壁、所述盖体和所述倒角部一体成型。
可选地,所述聚丙烯罩体的内侧壁还设有固定部,用于连接所述天线。
根据本公开的第二方面,提供一种雷达系统,包括天线和如上述任一项所述的天线罩。
可选地,所述聚丙烯罩体的侧壁的中轴线与所述天线的转轴重合。
可选地,所述天线包括天线主体和用于固定所述天线主体的座体;所述天线主体收容在所述天线罩的收容空间内,并与所述聚丙烯罩体的侧壁和所述盖体均间隔设置;所述天线罩靠近所述第二开口部的一侧抵接在所述座体上。
可选地,所述座体和所述天线罩的固定部通过螺纹配合。
由以上本公开实施例提供的技术方案可见,本公开采用聚丙烯罩体,介电常数和介电损耗均较小,韧性好,化学性能、结构和电性能上表现优异,同时轻巧美观,成本低廉。通过将聚丙烯罩体的侧壁相对于聚丙烯(英文简称为PP, 英文全称为Polypropylene)罩体的底面倾斜设置,对天线方向图的影响较小,结构简单,利于注塑拔模且方便生产。使用本公开的天线罩,天线能够实现单一方向360°全向均匀扫描的需求,天线的增益、副瓣均能满足实际使用需求。此外,本公开的天线罩能够适用于24-24.24GHz和76-81GHz频段,适用频段范围广。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开一实施例示出的一种天线罩的立体结构图;
图2是本公开一实施例示出的一种天线罩的立体结构图,揭示了天线罩与天线的配合关系;
图3是图2在剖面A-A方向上的剖面图;
图4是本公开一实施例示出的一种天线E面方向图,揭示了天线未使用天线罩和使用聚丙烯天线罩的E面方向图的区别;
图5是本公开一实施例示出的一种天线E面方向图,揭示了天线未使用天线罩和使用厚度为1.5mm聚丙烯天线罩的E面方向图的区别;
图6是本公开一实施例示出的一种天线E面方向图,揭示了天线未使用天线罩和使用厚度为1.0mm聚丙烯天线罩的E面方向图的区别;
图7是本公开一实施例示出的一种天线E面方向图,揭示了天线未使用天线罩和使用厚度为0.5mm玻璃钢天线罩的E面方向图的区别。
附图标记:
天线100;天线主体110;座体120;
天线罩200;聚丙烯罩体1;第一开口部11;第二开口部12;收容空间13;盖体2;倒角部3;固定部4。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面结合附图,对本公开的天线罩200和具有其的雷达系统进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
天线罩200影响天线100性能主要因素包括介电常数和损耗角正切(即介电损耗)、天线罩200曲率。其中,介电常数越大,电磁波在空气与天线罩200的侧壁分界面上的反射就越大。损耗角正切越大,电磁波能量在穿透天线罩200过程中转化为热量而损耗的能量就越多。天线罩200曲率越大直接干扰天线100平面波的形成,导致副瓣恶化。对于此,结合图1至图3,本公开实施例提供一种天线罩200,该天线罩200可包括聚丙烯罩体1。其中,聚丙烯罩体1呈圆台 型结构。本实施例采用聚丙烯罩体1,介电常数和介电损耗均较小,韧性好,化学性能、结构和电性能上表现优异,同时轻巧美观,成本低廉。
进一步地,所述聚丙烯罩体1内部设有收容空间13,用于收容天线100。所述聚丙烯罩体1的顶面设有第一开口部11,所述聚丙烯罩体1的底面设有第二开口部12。其中,第一开口部11上设有盖体2,第二开口部12用于供天线100穿设而进入所述收容空间13。本实施例的天线100从第二开口部12伸入所述收容空间13内,从而将天线100罩设在天线罩200中,实现对天线100的保护。
此外,本实施例的聚丙烯罩体1的侧壁相对于所述聚丙烯罩体1的底面倾斜设置。通过将聚丙烯罩体1的侧壁相对于聚丙烯罩体1的底面倾斜设置,对天线100方向图的影响较小,结构简单,利于注塑拔模且方便生产。
使用本公开的天线罩200,天线100能够实现单一方向360°全向均匀扫描的需求,天线100的增益、副瓣均能满足实际使用需求。此外,本公开的天线罩200能够适用于24-24.24GHz(单位:吉赫)和76-81GHz频段,适用频段范围广。
聚丙烯罩体1的侧壁的外周面与聚丙烯罩体1的底面之间的夹角(图3中所示的α)可根据天线100的性能需求来设定。本实施例中,聚丙烯罩体1的侧壁的外周面与聚丙烯罩体1的底面之间的夹角大于90°(单位:度),实际上,聚丙烯罩体1的侧壁的外周面与聚丙烯罩体1的底面之间的夹角略大于90°。优选地,所述聚丙烯罩体1的侧壁的外周面与所述聚丙烯罩体1的底面之间的夹角为91°。
本实施例中,所述第一开口部11的直径小于所述第二开口部12的直径。其中,第一开口部11和第二开口部12的直径均可根据天线100的尺寸、天线100的性能需求等因素进行设定,从而使得天线100的方向图、发射和接收增益均达到最优。可选地,所述第二开口部12的直径为110±5mm(单位:毫米),比如,第二开口部12的直径可选择为105mm、110mm、115mm或者105-115mm之间的其他数值。
进一步地,第一开口部11的直径大于或等于盖体2的直径。优选地,第一开口部11的直径大于盖体2的直径。所述盖体2的直径也可根据天线100的尺寸、天线100的性能需求等因素进行设定。可选地,所述盖体2的直径可为90±5mm,比如,盖体2的直径可选择为85mm、90mm、95mm或者85-95mm之间的其他数值。
又结合图1至图3,所述聚丙烯罩体1的侧壁和所述盖体2之间可设有倒角部3,所述倒角部3一端连接所述聚丙烯罩体1的侧壁靠近所述第一开口部11的一侧,另一端连接所述盖体2。倒角部3的尺寸可根据盖体2尺寸、第一开口尺寸、天线100的尺寸、天线100的性能需求等决定,使得天线100满足需求。可选地,所述倒角部3的半径可为10±5mm,比如,倒角部3的半径可为5mm、10mm、15mm或者5-15mm之间的其他数值。在一具体实现方式中,第一开口部11的直径为100mm,第二开口部12的直径为110mm,盖体2的直径为90mm,倒角部3的半径为10mm,使用该尺寸配置下的天线罩200来罩设天线100,天线100的方向图、发射和接收增益均达到最优。
此外,本实施例中,所述聚丙烯罩体1的侧壁、所述盖体2和所述倒角部3是一体成型的,天线罩200的结构稳定性强。当然,在其他实施例中,所述聚丙烯罩体1的侧壁、所述盖体2和所述倒角部3可通过粘接或其他方式分别连接,或者,所述聚丙烯罩体1的侧壁和所述倒角部3一体成型,而所述盖体2和所述倒角部3通过粘接或其他方式连接,或者,所述盖体2和所述倒角部3一体成型,所述聚丙烯罩体1的侧壁和所述倒角部3通过粘接或其他方式连接,但这些组合方式下所获得的天线罩200的结构稳定性均较差。
由于天线罩200的厚度越大,电磁波的损耗和反射率越大,直接干扰天线100平面波的形成,导致副瓣恶化。本实施例的聚丙烯罩体1的侧壁的厚度可根据散热性能、天线100的性能需求等因素来设定。可选地,所述聚丙烯罩体1的侧壁的厚度可为0.5±0.2mm。其中,±0.2mm为聚丙烯罩体1的侧壁的厚度可允许的误差范围,方便聚丙烯罩体1的加工。优选地,聚丙烯罩体1的侧壁的厚度为0.5mm,对天线100性能影响越小,且散热快。
进一步地,所述聚丙烯罩体1的内侧壁还设有固定部4,用于连接所述天线100。在一实施例中,所述固定部4为螺纹,所述聚丙烯罩体1的内侧壁与所述天线100的底座通过螺纹配合。在其他实施例中,所述固定部4也可为卡接部,所述卡接部卡接在所述天线100的底座上,从而将聚丙烯罩体1固定在天线100座上。
图4为一优选实施例中,天线100未使用天线罩200和使用聚丙烯天线罩200的E面方向图,此时,聚丙烯天线罩200对天线100的性能影响较小,且防尘效果较佳。图5至图6为天线100未使用天线罩200和使用聚丙烯天线罩200的E面方向图。从图5和图6可以看出,使用本公开的聚丙烯天线罩200后,天线100实现了单一方向360°全向均匀的扫描,天线100的增益、波束宽度、副瓣均能满足实际使用需求。从图5和图6可以看出,聚丙烯天线罩200越薄,对天线100的性能影响越小。此外,聚丙烯天线罩200越薄,越利于天线100的散热。但考虑到聚丙烯天线罩200的防尘效果,聚丙烯天线罩200的厚度不宜太薄,需要综合考虑聚丙烯天线罩200的防尘效果和聚丙烯天线罩200对天线100性能和聚丙烯天线罩200的散热效果等因素来设定聚丙烯天线罩200的厚度。当然,天线100不限于360°均匀扫描,也可以为离散角度或者其他角度范围的扫描。图7为天线100未使用天线罩和使用厚度为0.5mm玻璃钢天线罩的E面方向图,并结合图4至图6,可以看出,使用聚丙烯天线罩200的天线100的性能更佳。
值得一提的是,上述实施例的天线罩200可应用于任意具有天线100的设备(例如,雷达系统)中,通过天线罩200对天线100进行保护,延长天线100的使用寿命。以下实施例将以天线罩200应用于雷达系统为例进一步说明。
同超声波、红外和激光雷达等相比,毫米波穿透烟、雾、灰尘的能力更强,具有全天候全天时的特点,因而毫米波雷达广泛应用于汽车、交通、安防、工业、无人机等各种行业和智能设备。随着应用场景的多样化,单一雷达的测速、测角、测距已不能满足在较复杂环境下工作的设备的需求,多任务、多功能化需求日益增加,除了雷达后端数据处理的复杂化,还需要雷达天线能进行波束 扫描,探测不同方位。实现波束扫描的方式有机械扫描和电子扫描,即机械旋转或相控阵。其中,相控阵多用于军用雷达,波束扫描速度快,可靠性高,但系统复杂,成本非常高。机械扫描相对简单,成本低,在一些要求不是特别高且需要低成本的场合非常实用。无论对机械扫描还是相控阵,天线罩200对天线100性能影响巨大,若不合适会造成天线100方向图畸变、发射和接收增益降低,噪声增大。对于此,参见图3,本公开实施例还提供一种雷达系统,可包括天线100和上述实施例的天线罩200。
具体地,所述天线100可包括天线主体110和座体120。其中,天线主体110固定在座体120上。所述天线主体110收容在所述天线罩200的收容空间13内,通过天线罩200对天线100进行保护,防止天线100损坏。进一步地,天线主体110与所述聚丙烯罩体1的侧壁和所述盖体2均间隔设置,防止天线罩200与天线主体110直接接触对天线100性能造成影响。所述天线罩200靠近所述第二开口部12的一侧抵接在所述座体120上,将天线主体110密封在收容空间13内,防止外部的杂物进入收容空间13而影响天线100的性能。可选地,天线主体110的尺寸为90×90mm。当然,天线主体110的尺寸也可为其他任意尺寸大小。
座体120和天线罩200可通过螺纹、卡接或者其他方式实现固定连接,例如,在一实施例中,所述座体120和所述天线罩200的固定部4通过螺纹配合。可选地,固定部4为天线罩200的内侧壁的周向设置金属圈,所述金属圈上设有内螺纹,座体120上设有外螺纹。天线主体110从第二开口部12插入收容空间13后,转动天线罩200或天线100,使得内螺纹和外螺纹配合,即可将天线罩200固定在座体120上。可选地,天线罩200的内侧壁的周向直接设有内螺纹,座体120上设有外螺纹。天线主体110从第二开口部12插入收容空间13后,转动天线罩200或天线100,使得内螺纹和外螺纹配合,即可将天线罩200固定在座体120上。
在另一实施例中,天线100的内侧壁设有卡接部,座体120上设有用以与卡接部相配合的卡接槽。天线主体110从第二开口部12插入收容空间13后, 卡接部与卡接槽卡接配合,从而将天线罩200固定在座体120上。
此外,所述聚丙烯罩体1的侧壁的中轴线与所述天线100的转轴重合,减小天线罩200对天线100性能的影响,使得天线100的性能达到最优。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开保护的范围之内。

Claims (23)

  1. 一种天线罩,其特征在于,包括聚丙烯罩体,所述聚丙烯罩体呈圆台型结构,所述聚丙烯罩体内部设有用于收容天线的收容空间;
    所述聚丙烯罩体的顶面设有第一开口部,所述聚丙烯罩体的底面设有用于供天线穿设而进入所述收容空间的第二开口部,所述第一开口部上设有盖体;
    所述聚丙烯罩体的侧壁相对于所述聚丙烯罩体的底面倾斜设置。
  2. 根据权利要求1所述的天线罩,其特征在于,所述聚丙烯罩体的侧壁的外周面与所述聚丙烯罩体的底面之间的夹角为91°。
  3. 根据权利要求1所述的天线罩,其特征在于,所述聚丙烯罩体的侧壁的厚度为0.5±0.2mm。
  4. 根据权利要求1所述的天线罩,其特征在于,所述第一开口部的直径小于所述第二开口部的直径。
  5. 根据权利要求4所述的天线罩,其特征在于,所述第二开口部的直径为110±5mm。
  6. 根据权利要求1所述的天线罩,其特征在于,所述盖体的直径为90±5mm。
  7. 根据权利要求1所述的天线罩,其特征在于,所述聚丙烯罩体的侧壁和所述盖体之间设有倒角部;
    所述倒角部一端连接所述聚丙烯罩体的侧壁靠近所述第一开口部的一侧,另一端连接所述盖体。
  8. 根据权利要求7所述的天线罩,其特征在于,所述倒角部的半径为10±5mm。
  9. 根据权利要求8所述的天线罩,其特征在于,所述聚丙烯罩体的侧壁、所述盖体和所述倒角部一体成型。
  10. 根据权利要求1所述的天线罩,其特征在于,所述聚丙烯罩体的内侧壁还设有固定部,用于连接所述天线。
  11. 一种雷达系统,包括天线,其特征在于,还包括天线罩,所述天线罩包 括聚丙烯罩体,所述聚丙烯罩体呈圆台型结构,所述聚丙烯罩体内部设有用于收容天线的收容空间;
    所述聚丙烯罩体的顶面设有第一开口部,所述聚丙烯罩体的底面设有用于供天线穿设而进入所述收容空间的第二开口部,所述第一开口部上设有盖体;
    所述聚丙烯罩体的侧壁相对于所述聚丙烯罩体的底面倾斜设置。
  12. 根据权利要求11所述的雷达系统,其特征在于,所述聚丙烯罩体的侧壁的外周面与所述聚丙烯罩体的底面之间的夹角为91°。
  13. 根据权利要求11所述的雷达系统,其特征在于,所述聚丙烯罩体的侧壁的厚度为0.5±0.2mm。
  14. 根据权利要求11所述的雷达系统,其特征在于,所述第一开口部的直径小于所述第二开口部的直径。
  15. 根据权利要求14所述的雷达系统,其特征在于,所述第二开口部的直径为110±5mm。
  16. 根据权利要求11所述的雷达系统,其特征在于,所述盖体的直径为90±5mm。
  17. 根据权利要求11所述的雷达系统,其特征在于,所述聚丙烯罩体的侧壁和所述盖体之间设有倒角部;
    所述倒角部一端连接所述聚丙烯罩体的侧壁靠近所述第一开口部的一侧,另一端连接所述盖体。
  18. 根据权利要求17所述的雷达系统,其特征在于,所述倒角部的半径为10±5mm。
  19. 根据权利要求18所述的雷达系统,其特征在于,所述聚丙烯罩体的侧壁、所述盖体和所述倒角部一体成型。
  20. 根据权利要求11所述的雷达系统,其特征在于,所述聚丙烯罩体的内侧壁还设有固定部,用于连接所述天线。
  21. 根据权利要求11所述的雷达系统,其特征在于,所述聚丙烯罩体的侧壁的中轴线与所述天线的转轴重合。
  22. 根据权利要求11所述的雷达系统,其特征在于,所述天线包括天线主体和用于固定所述天线主体的座体;
    所述天线主体收容在所述天线罩的收容空间内,并与所述聚丙烯罩体的侧壁和所述盖体均间隔设置;
    所述天线罩靠近所述第二开口部的一侧抵接在所述座体上。
  23. 根据权利要求22所述的雷达系统,其特征在于,所述座体和所述天线罩的固定部通过螺纹配合。
PCT/CN2017/118575 2017-11-30 2017-12-26 天线罩和具有其的雷达系统 WO2019104794A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780087694.9A CN110352535A (zh) 2017-11-30 2017-12-26 天线罩和具有其的雷达系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201721646407.7 2017-11-30
CN201721646407.7U CN207474678U (zh) 2017-11-30 2017-11-30 天线罩和具有其的雷达系统

Publications (1)

Publication Number Publication Date
WO2019104794A1 true WO2019104794A1 (zh) 2019-06-06

Family

ID=62256753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118575 WO2019104794A1 (zh) 2017-11-30 2017-12-26 天线罩和具有其的雷达系统

Country Status (2)

Country Link
CN (2) CN207474678U (zh)
WO (1) WO2019104794A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113437511A (zh) * 2021-08-25 2021-09-24 成都迅翼卫通科技有限公司 一种玻璃钢天线罩

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111525228B (zh) * 2020-05-18 2021-08-13 Oppo广东移动通信有限公司 天线模块和电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102604187A (zh) * 2012-02-29 2012-07-25 深圳光启创新技术有限公司 一种天线罩基板及其制备方法
CN102646867A (zh) * 2012-04-24 2012-08-22 中电科微波通信(上海)有限公司 天线防护罩
CN202737100U (zh) * 2012-04-24 2013-02-13 中电科微波通信(上海)有限公司 天线防护罩

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4728962A (en) * 1984-10-12 1988-03-01 Matsushita Electric Works, Ltd. Microwave plane antenna
CN101079516B (zh) * 2006-05-24 2013-02-27 松下电器产业株式会社 天线装置
JP5555087B2 (ja) * 2010-07-30 2014-07-23 株式会社豊田中央研究所 レーダ装置
CN102386477A (zh) * 2011-08-11 2012-03-21 西北工业大学 一种垂直极化宽带uhf波段天线
CN102820526B (zh) * 2012-07-31 2015-08-19 深圳光启创新技术有限公司 一种雷达天线以及雷达系统
US9887453B2 (en) * 2013-04-29 2018-02-06 Raytheon Company Ballistic radome with extended field of view

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102604187A (zh) * 2012-02-29 2012-07-25 深圳光启创新技术有限公司 一种天线罩基板及其制备方法
CN102646867A (zh) * 2012-04-24 2012-08-22 中电科微波通信(上海)有限公司 天线防护罩
CN202737100U (zh) * 2012-04-24 2013-02-13 中电科微波通信(上海)有限公司 天线防护罩

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113437511A (zh) * 2021-08-25 2021-09-24 成都迅翼卫通科技有限公司 一种玻璃钢天线罩
CN113437511B (zh) * 2021-08-25 2021-11-23 成都迅翼卫通科技有限公司 一种玻璃钢天线罩

Also Published As

Publication number Publication date
CN110352535A (zh) 2019-10-18
CN207474678U (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
US6937184B2 (en) Millimeter wave radar
US5017939A (en) Two layer matching dielectrics for radomes and lenses for wide angles of incidence
US8102324B2 (en) Sub-reflector of a dual-reflector antenna
US9203149B2 (en) Antenna system
US6429826B2 (en) Arrangement relating to reflector antennas
EP2615691A1 (en) Microwave antenna with ultra-high performance and feed source assembly thereof
WO2019104794A1 (zh) 天线罩和具有其的雷达系统
WO2015010609A1 (zh) 一种内嵌芯片式rfid标签及其制备方法
US20110006965A1 (en) Multi-Antenna Enclosure
US20090207095A1 (en) Radio Wave Lens Antenna Apparatus
US9293831B1 (en) Directional single-axis horn-reflector antenna
US20100097288A1 (en) Satellite antenna with holder assembly for holding LNBF
US20070279310A1 (en) Wireless communication device
JP2009278501A (ja) アンテナ用筐体
US9379457B2 (en) Radome for feed horn and assembly of feed horn and radome
CN108539429B (zh) 一种用于金属载体的宽带全向斜极化天线
US20150009083A1 (en) Feed horn having dielectric layers and assembly of feed horn and radome
JP2005192089A (ja) フィードホーン、電波受信用コンバータおよびアンテナ
US10566688B2 (en) Horn antenna module and antenna cover thereof
US9293815B1 (en) Ultra-wideband hemispherical teardrop antenna with a conical ground
US20120075163A1 (en) Antenna assembly providing multidirectional elliptical polarization
WO2020107378A1 (zh) 天线罩、雷达和可移动设备
US8063842B2 (en) Antenna apparatus
JP4858575B2 (ja) 放送受信用アンテナ装置
US10263322B2 (en) Vehicle antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933617

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17933617

Country of ref document: EP

Kind code of ref document: A1