WO2019102544A1 - レドックスフロー電池 - Google Patents

レドックスフロー電池 Download PDF

Info

Publication number
WO2019102544A1
WO2019102544A1 PCT/JP2017/042015 JP2017042015W WO2019102544A1 WO 2019102544 A1 WO2019102544 A1 WO 2019102544A1 JP 2017042015 W JP2017042015 W JP 2017042015W WO 2019102544 A1 WO2019102544 A1 WO 2019102544A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
tank
electrolyte
battery
height
Prior art date
Application number
PCT/JP2017/042015
Other languages
English (en)
French (fr)
Inventor
和隆 川東
淳夫 池内
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to EP17890847.1A priority Critical patent/EP3716383A4/en
Priority to CN201780007485.9A priority patent/CN110073533B/zh
Priority to US16/071,547 priority patent/US10903510B2/en
Priority to JP2018529069A priority patent/JP6950870B2/ja
Priority to PCT/JP2017/042015 priority patent/WO2019102544A1/ja
Priority to AU2017390079A priority patent/AU2017390079B2/en
Priority to KR1020187020871A priority patent/KR102404500B1/ko
Priority to TW107135537A priority patent/TWI753206B/zh
Publication of WO2019102544A1 publication Critical patent/WO2019102544A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04671Failure or abnormal function of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04679Failure or abnormal function of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to redox flow batteries.
  • the RF battery includes a battery cell, a positive electrode tank for storing a positive electrode electrolyte supplied to the battery cell, a negative electrode tank for storing a negative electrode electrolyte, a battery cell and each tank. And a pipe (pipe line) for circulating the positive electrode electrolyte and the negative electrode electrolyte respectively.
  • the redox flow battery of the present disclosure is Battery cell, A tank for storing an electrolytic solution to be supplied to the battery cell; Piping connected to the battery cell and the tank for circulating the electrolytic solution; A container for collectively storing the battery cell, the tank, and the pipe; And a bulkhead provided in the container to prevent the electrolyte from leaking out of the container,
  • the height of the partition wall portion is equal to or higher than the liquid surface height when a predetermined amount of electrolyte leaks into the container with damage to the pipe,
  • the predetermined amount includes the total amount of the volume equivalent of the battery cell and the volume equivalent of the pipe.
  • FIG. 2 is a schematic configuration view schematically showing a redox flow battery of Embodiment 2.
  • the redox flow battery of Embodiment 3 it is a fragmentary sectional view expanding and showing the opening part provided in the bottom of a container.
  • a redox flow battery typically transports components such as battery cells, tanks, and pipes to an installation site, and the components are connected and assembled at the installation site.
  • components such as battery cells, tanks, and pipes
  • the present inventors have considered a form in which the above components are assembled at a place where a working space can be easily secured, such as a factory, and transported to an installation place in an assembled state.
  • a mode was considered in which the above-described components are collectively stored in a large-volume container such as a freight container.
  • the above components are collectively stored in a container such as the above-mentioned container, it is easy to transport and protect the above components, and it is also possible to store a large battery cell and a large tank. It can be a capacity battery. If there is a large battery cell and there is a large amount of electrolytic solution that can be held in the battery cell or piping, the piping etc. will be temporarily damaged, and at least a part of the electrolytic solution held in the battery cell and in the piping, When the entire amount leaks into the container, it may leak out of the container through a gap around a door provided in the container. Furthermore, a large tank is provided, and if there is a large amount of stored electrolytic solution, the piping etc.
  • the electrolytic solution in the tank is also a container Leaking inward increases the probability of leaking out of the container. It is conceivable to construct a weir at the installation site of the container so as to surround the outer periphery of the container to prevent further outflow of the electrolyte. However, if the buttocks are constructed of concrete or the like and the inner surface of the buttocks is coated or the like to prevent corrosion by the electrolytic solution, the installation period including the construction of the buttocks becomes long.
  • the electrolyte can be prevented from leaking out of the container.
  • a redox flow battery (RF battery) is Battery cell, A tank for storing an electrolytic solution to be supplied to the battery cell; Piping connected to the battery cell and the tank for circulating the electrolytic solution; A container for collectively storing the battery cell, the tank, and the pipe; And a bulkhead provided in the container to prevent the electrolyte from leaking out of the container, The height of the partition wall portion is equal to or higher than the liquid surface height when a predetermined amount of electrolyte leaks into the container with damage to the pipe, The predetermined amount includes the total amount of the volume equivalent of the battery cell and the volume equivalent of the pipe.
  • the above-mentioned RF battery is provided with a partition in a container that accommodates components such as a battery cell, a tank, and piping.
  • the height of the partition wall is the total amount of the total amount of the electrolytic solution in the battery cell and the total amount of the electrolytic solution held in the pipe (hereinafter referred to as cell leakage etc.) if the piping etc. connected to the tank is damaged temporarily. Even if the amount may leak into the container, the upper end of the partition will be above the liquid level of the electrolyte leaked into the container (hereinafter sometimes referred to as the liquid level of leaked liquid) It is adjusted to be positioned.
  • the above-mentioned RF battery is equipped with the partition part which has such a specific height, of course, when a part of electrolyte solution in a battery cell or a part of electrolyte solution in piping leaks in a container, As described above, even if the total amount of both the two leaks into the container, it can be reliably prevented from leaking further out of the container.
  • the above-described RF battery is configured to flow the electrolyte solution from the lower side to the upper side of the battery cell and return it to the tank (hereinafter referred to as the rising mode)
  • the piping on the supply side is damaged temporarily
  • the entire amount of electrolyte in the container may leak into the container.
  • the partition wall having a specific height set based on the leak amount of the cell or the like is provided, the electrolyte solution leaked into the container can be surely prevented from further leaking out of the container.
  • said RF battery is a simple structure provided with the partition part of specific height
  • the collar part which encloses the outer periphery of the container mentioned above can be abbreviate
  • the predetermined amount may further include a volume equivalent amount of the electrolytic solution stored in the tank, which is stored above the connection portion of the tank with the pipe.
  • the connection point with the piping in the tank when the connection point with the piping in the tank is provided below the liquid level of the electrolytic solution in the tank, the amount of leakage when the electrolytic solution stored in the tank leaks due to damage to the piping, etc. It corresponds to the volume (hereinafter, may be referred to as the upper volume) stored above the connection point with the piping in
  • the height of the partition provided in the above-described embodiment may be adjusted by combining the above-mentioned leak amount of cells and the like with the substantial amount of the upper volume. Since the said form is equipped with the partition part which has such a specific height, even if a part of electrolyte solution stored in a tank leaks into a container temporarily by damage, such as piping, the upper end of the partition part leaks.
  • connection location with the piping in the said tank is a form located above the 70% of points of the height of the said container from the inner bottom face of the said container.
  • connection portion of the tank with the pipe is disposed at a relatively high position in the container, the upper volume can be easily reduced even if the connection portion is below the liquid level in the tank. That is, it is easy to reduce the amount of leakage from the tank caused by damage to the piping and the like. From this point of view, the above embodiment is more likely to prevent the leakage of the electrolyte out of the container described above. If the connection with the piping in the tank is located at 100% of the height of the container, that is, if the liquid surface in the tank is at a relatively high level, the upper volume substantially remains Can be zero. In this case, the height of the partition can be reduced within a range that can prevent the electrolyte from leaking out of the container, and the partition can be made smaller and lighter.
  • the bottom of the container comprises an opening which penetrates into and out of the container,
  • the lower pit portion may include a storage tank that stores the electrolytic solution that leaks into the container and passes through the opening.
  • the said form can store the electrolyte solution leaked in the above-mentioned container in a lower pit part, the liquid level of the leaked liquid in a container can be made lower. From this, even if the above-mentioned form can prevent leakage of the above-mentioned electrolyte solution out of the container even if height of a partition part is made lower, electrolysis which electric appliances, such as a battery cell and a control part, leaked. It is easy to avoid being immersed in liquid.
  • the storage tank in the lower pit portion is located below the bottom of the container, when the leakage of the electrolytic solution into the above-described container occurs, the electrolytic solution first accumulates.
  • the leak detection sensor is provided in the storage tank, the leak of the electrolyte can be detected at the initial stage of the leak occurrence described above, that is, at the time when the leak amount is relatively small. It can be done earlier. From this point of view, the above embodiment can more reliably prevent the leakage of the electrolyte out of the container described above.
  • a leak detection sensor may be provided below the upper end of the partition wall.
  • the said form can detect the leak of electrolyte solution, before the liquid level of the above-mentioned leaked liquid reaches the upper end of a partition part. That is, leakage of the electrolyte can be detected at a time when the amount of leakage is small to some extent, and measures such as stopping the flow of the electrolyte can be performed earlier. From this point of view, the above embodiment can more reliably prevent the leakage of the electrolyte out of the container described above.
  • FIG. 1 is a longitudinal cross-sectional view of the container 2 cut in a plane orthogonal to the width direction, and shows the internal structure in a simplified manner.
  • FIG. 2 is a horizontal cross-sectional view of the container 2 cut in a plane orthogonal to the height direction, and shows the internal structure in a simplified manner.
  • the RF battery 1A includes a battery cell 10C and a supply mechanism for circulating and supplying the electrolytic solution to the battery cell 10C.
  • the supply mechanism includes a tank 3 for storing an electrolytic solution to be supplied to the battery cell 10C, and pipes 16 and 17 connected to the battery cell 10C and the tank 3 for circulating the electrolytic solution.
  • RF battery 1A is connected to a power generation unit and a load via an AC / DC converter, charges using the power generation unit as a power supply source, and discharges the load as a power supply target (anyway) Also not shown).
  • Examples of the power generation unit include a solar power generator, a wind power generator, and other general power plants.
  • the load is, for example, a demander.
  • the charge and discharge are performed using a positive electrode electrolyte and a negative electrode electrolyte containing, as active materials, ions (typically metal ions) whose valence changes due to oxidation and reduction, using the redox potential difference of positive and negative ions.
  • ions typically metal ions
  • the RF battery 1A according to the first embodiment is provided in the container 2 for storing the battery cells 10C, the tank 3, and the components such as the pipes 16 and 17 collectively and the container 2, and the electrolyte leaks out of the container 2. And a bulkhead portion 4A for preventing this.
  • the RF battery 1A is damaged even if the pipes 16, 17 etc. are damaged and a predetermined amount of electrolyte leaks into the container 2, (2) It is possible to prevent further leakage to the outside.
  • Each component will be described in detail below.
  • the battery cell 10C is interposed between the positive electrode 14 to which the positive electrode electrolyte is supplied, the negative electrode 15 to which the negative electrode electrolyte is supplied, and the positive electrode 14 and the negative electrode 15 as shown in FIGS. 5 and 6. And a diaphragm 11.
  • the positive electrode 14 and the negative electrode 15 are reaction sites to which a positive electrode electrolyte and a negative electrode electrolyte are respectively supplied to cause a battery reaction of the active material, and a porous material such as a fiber aggregate of a carbon material is used.
  • the diaphragm 11 is a member that separates the positive electrode 14 and the negative electrode 15 from each other and transmits a predetermined ion (for example, hydrogen ion), and an ion exchange membrane or the like is used.
  • Battery cell 10C is typically constructed using cell frame 110 illustrated in FIG.
  • the cell frame 110 includes a bipolar plate 111 and a frame 112 provided on the periphery of the bipolar plate 111.
  • the bipolar plate 111 is a conductive member in which the positive electrode 14 is disposed on one side, the negative electrode 15 is disposed on the other side, and a current flows but an electrolyte does not pass.
  • a conductive plastic plate or the like containing graphite or the like and an organic material is used for the bipolar plate 111.
  • the frame 112 includes a liquid supply hole 113 and a slit 114 for supplying a positive electrode electrolyte and a negative electrode electrolyte to the positive electrode 14 and the negative electrode 15 disposed in the frame, and a positive electrode electrolyte and a negative electrode outside the battery cell 10C.
  • a resin eg, polyvinyl chloride, polyethylene
  • An annular groove is provided near the outer peripheral edge of the frame body 112, and the sealing material 118 is disposed.
  • an elastic material such as an O-ring or a flat packing is used.
  • the battery cell 10C can use any form of a single cell battery including a single battery cell 10C or a multi-cell battery in which a plurality of battery cells 10C are stacked.
  • cell stack 100 In a multi-cell battery, a form called a cell stack 100 is used.
  • cell stack 100 is a stacked body in which a plurality of cell frames 110 (dipolar plate 111), positive electrode 14, diaphragm 11, and negative electrode 15 are stacked in this order, and a pair of end plates 130 sandwiching the stacked body. 130, and a plurality of clamping members 132 for clamping between the end plates 130, 130.
  • the seal material 118 interposed between the adjacent frame bodies 112 and 112 is crushed to hold the laminated body in a liquid-tight manner (see also FIG. 5). It prevents the leakage of the electrolyte from the cell 10C.
  • the number (cell number) of the battery cells 10C in the cell stack 100 can be selected as appropriate. The larger the number of cells, the easier it is to make a high output battery.
  • the cell stack 100 can be a stacked body of a predetermined number of cells as a sub-cell stack 120, and can be an aggregate in which a plurality of sub-cell stacks 120 are stacked. Each subcell stack 120 can include an electrolyte supply / discharge plate 122.
  • FIG. 1 illustrates the case where the number of cell stacks 100 stored in the container 2 (the number of stacks) is one, the number of stacks can be appropriately changed. If the number of stacks is plural, it is easy to make a high output battery. Both of the single cell battery and the multi-cell battery can be easily made a large output battery if they have large electrodes. In the case of a large container such as the container 2, a plurality of cell stacks 100 and a large cell stack 100 can be stored.
  • the circulation mechanism includes a positive electrode tank 34 (FIG. 2) for storing a positive electrode electrolyte to be circulated and supplied to the positive electrode 14, a negative electrode tank 35 (FIG. 2) for storing a negative electrolyte to circularly supply to the negative electrode 15, and a positive electrode tank.
  • Pipings 164 and 174 (FIGS. 2 and 5) connecting between the battery cell 10C and the battery cell 10C (typically, the cell stack 100, the same applies hereinafter), and pipings 165 and 175 connecting the negative electrode tank 35 and the battery cell 10C 2 and 5), and a positive pump 184 and a negative pump 185 (FIG.
  • the pipes 164 and 165 in the forward path and the pipes 174 and 175 in the return path for returning the electrolytic solution from the battery cell 10C to the tank 3 are connected to the pipes formed by the liquid supply hole 113 and the drain hole 115, respectively. And a negative electrode electrolyte circulation path.
  • the tank 3, the forward pipe 16, the return pipe 17 and the pump 18 are shown one by one, but in fact, as described above, the positive tank 34 and pipes 164, 174 and A pump 184, a tank 35 for negative electrode, pipes 165 and 175, and a pump 185 are provided.
  • the tank 3, the pipes 16 and 17, and the pump 18 may be collectively referred to.
  • the tank 3 is a box-like container for storing the above-described electrolytic solution.
  • the shape of the tank 3 can be selected as appropriate. If the shape along the container 2, that is, a rectangular shape in this case, it is easy to increase the volume of the tank 3 and increase the storage amount of the electrolyte solution.
  • the positive electrode tank 34 and the negative electrode tank 35 in this example are both in the form of a horizontally long rectangular parallelepiped and have the same size. When the two tanks 34 and 35 are combined, they conform to the inner circumferential shape of the tank chamber 2T described later, and the combined width is slightly smaller than the inner dimension of the tank chamber 2T (FIG. 2). The heights of the two tanks 34 and 35 are substantially the same as the height H of the container 2 (FIG. 1).
  • both tanks 34 and 35 are stored side by side in the width direction of the container 2 (vertical direction in FIG. 2).
  • the tanks 34 and 35 are respectively shown on the left and right of the paper surface.
  • the constituent material of the tank 3 include the above-described resin, rubber, and the like which do not react with the electrolytic solution and have resistance to the electrolytic solution. If the tank 3 is made of a flexible material such as rubber, since it can be elastically deformed, the internal pressure of the tank 3 fluctuates while being easily stored in the container 2 even if the tank 3 has a large volume. Also, it is easy to relieve the stress caused by the internal pressure by elastic deformation.
  • the electrolyte solution 6 is not stored in the tank 3 before the installation of the RF battery 1A, it is transported to the installation site in an empty state, and the electrolyte solution 6 is stored in the tank 3 after installation, the weight of the RF battery 1A Can be reduced and it is easy to carry and install.
  • connection point is provided on the side wall of the rectangular tank 3 and is located below the liquid surface of the electrolytic solution in the tank 3.
  • at least one connection point may be provided on the top surface of the tank 3 and may be located above the liquid level in the tank 3 (not shown, see Embodiment 4 described later).
  • the electrolyte solution from the tank 3 may be flowed upward from the lower side of the battery cell 10C and may be returned to the tank 3 in a rising mode.
  • the rising form is preferable because the electrolyte is easily diffused across the entire area of the electrode, and in this respect, the battery characteristics can be easily improved.
  • the cell frame 110 shown in FIG. 6 is provided with the liquid supply hole 113 at the lower side and the drain hole 115 at the upper side, the cell frame 110 can be suitably used for the rising mode.
  • connection portion of the tank 3 to the forward piping 16 is provided below the side wall of the tank 3 (closer to the bottom 20 of the container 2 in FIG. 1), and the connection portion of the tank 3 to the return piping 17 is It may be provided above the side wall of the tank 3 (close to the top plate 21).
  • the volume of the electrolyte stored in the tank 3 and stored above the connection point with the pipe 16 (upper volume 61, shown in phantom in FIG. ) Tends to be large. Therefore, if the electrolytes leak from the tank 3 into the container 2 due to damage to the pipes 16, 17 or the like, the leakage amount tends to be large.
  • connection point with the pipes 16 and 17 on the side wall of the tank 3 is below the liquid level of the electrolyte in the tank 3 Preferably, it is disposed at a somewhat high position away from the inner bottom surface of the container 2 (the inner surface of the bottom 20).
  • connection point with the pipes 16 and 17 in the tank 3 when the height of the tank 3 and the height H of the container 2 are substantially equal, the connection point with the pipes 16 and 17 in the tank 3 (located at the lowest position)
  • the connection point may be located, for example, above the inner bottom surface of the container 2 at a point 70% of the height H of the container 2.
  • the height H here is the distance from the inner bottom surface of the container 2 to the inner top plate surface of the container 2 (the inner surface of the top plate portion 21). If the height position from the inner bottom surface of the container 2 at the connection point is 70% or more of the height H of the container 2, the connection point is not more than the liquid level in the tank 3 as illustrated in FIG.
  • the height position of the connection point is a point at which the height H is 75% or more, further 78% or more, and 80% or more, the upper volume 61 is made smaller and the amount of leakage can be easily reduced.
  • the upper volume 61 tends to be large.
  • the height position of the above-mentioned connection point is a point of 70% or more of the height H.
  • the above-described battery cells 10C and the circulation mechanism are collectively stored in the container 2.
  • the container 2 typically includes a dry container used for transportation of general cargo and the like.
  • the shape of the container 2 is typically a rectangular shape, and in particular, a horizontally long rectangular shape in an installed state as illustrated in FIG. 1 (in FIG. 1, the lower side of the drawing is the installation surface side).
  • Such a container 2 connects a rectangular bottom portion 20 forming an installation place, a rectangular top plate portion 21 disposed opposite to the bottom portion 20, and a long side of the bottom portion 20 and a long side of the top plate portion 21.
  • a pair of end face portions 23 and 23d that connect the pair of side faces 22 and 22 see FIG. 2; see only the side face 22 on the back side in FIG.
  • the size along the longitudinal direction of the container 2 is the length, orthogonal to the longitudinal direction, and the direction from the bottom 20 to the top 21 along the height direction and the height direction
  • the size is referred to as height, perpendicular to the longitudinal direction, and the direction from one side 22 to the other side 22 is referred to as width, and the size along the width is referred to as width.
  • the container 2 of this example is provided with a door that can be opened and closed at one end (the right side in FIG. 1) of the end face portion 23 d.
  • the operator can open and close the door as needed, such as adjusting the operating conditions of the RF battery 1A or checking the above-described components.
  • the size of the door, the opening and closing method, etc. can be selected as appropriate.
  • substantially the entire end face portion 23d is a door, and a double door is provided. Therefore, the size of the opening in the state in which the double-opening door is opened can be made about the virtual plane area of the end face portion 23d, and the operator can easily perform the above-mentioned condition adjustment, inspection, and the like.
  • the size of the container 2 can be appropriately selected according to the size of the component to be stored.
  • Containers 2 include, for example, containers for international cargo according to ISO standards (eg, ISO 1496-1: 2013 etc.), typically 20-foot containers, 40-foot containers, 45-foot containers, or more. Large 20-foot high-cube containers, 40-foot high-cube containers, and 45-foot high-cube containers are available.
  • the constituent material of the container 2 include metals such as steel (eg, general structural rolled steel SS400). When each constituent member of the container 2 is made of metal, the above-mentioned resin having resistance to the electrolytic solution without reacting with the electrolytic solution in the area where the electrolytic solution may come in contact, at least the inner surface of the tank chamber 2T, etc.
  • the container 2 of this example is provided with a partition 24 that divides the horizontally long internal space into two in the longitudinal direction of the container 2, and one end face 23d side is a cell chamber 2C that mainly houses the battery cell 10C, and the other The end face 23 side (the left side in FIG. 2) is taken as a tank chamber 2T that mainly houses the tank 3.
  • the pipes 16 and 17 including the pump 18 are also stored in the cell chamber 2C.
  • battery cell 10C and tank 3 are arranged in the longitudinal direction of container 2 (FIG. 1). In the form in which the battery cell 10C and the pipes 16, 17 etc.
  • the tank 3 is stored at one end side and the tank 3 is stored at the other end side when viewing the inside of the container 2 in the longitudinal direction (hereinafter referred to as side form)
  • side form Compared with the configuration in which the battery cell 10C and a part of the pipes 16 and 17 are disposed on one end side and the remaining portion of the pump 18 and the pipes 16 and 17 are disposed on the other end (hereinafter referred to as a tank interposed form)
  • the arrangement of the pipes 16 and 17 between the battery cell 10C and the tank 3 can be simplified, and the connection between the battery cell 10C and the pipes 16 and 17 can be easily performed.
  • the tank 3 is housed in the container 2 so that the center of the tank 3 overlaps the center of the container 2 in the longitudinal direction, and the battery cell is placed at one end of the container 2 so as to sandwich the tank 3 10C, by accommodating the pump 18 and the like on the other end side, the weight balance tends to be easily obtained.
  • the partition portion 24 in this example is a rectangular plate material which is erected from the bottom portion 20 and has a height from the top end to the top plate portion 21 and a width from one side portion 22 to the other side portion 22 In other words, it has a size and shape close to a virtual plane area of the end face portion 23.
  • Such a partition part 24 is easy to shape even if the tank 3 is made of a flexible material such as rubber. If the partition part 24 is provided with an insertion hole through which the pipes 16 and 17 connected to the tank 3 are inserted, the electrolytic solution can flow between the tank chamber 2T and the cell chamber 2C. The shape, size, etc. of the partition portion 24 can be changed as appropriate. At least a part of the partition portion 24 can be omitted. If the height of the partition portion 24 from the inner surface of the bottom portion 20 is lower than, for example, the position of the connection portion of the tank 3 with the pipes 16 and 17, the above-mentioned insertion hole can be made unnecessary.
  • the partitioning portion 24 and the bottom portion 20 are substantially maintained in a liquid tight manner. Therefore, when the electrolyte leaks from the tank 3 or the like into the cell chamber 2C, the electrolyte does not substantially leak to the tank chamber 2T from the gap between the partition portion 24 and the bottom portion 20, and the leakage range of the electrolyte It can be limited within 2C. In this case, it is easy to perform processing after leakage.
  • the partition portion 24 may be provided so that the cell chamber 2C and the tank chamber 2T have desired volumes.
  • the partition portion 24 is provided at a position where the volume of the tank chamber 2T is approximately twice the volume of the cell chamber 2C, but can be changed as appropriate.
  • the volume of the tank chamber 2T and the volume of the cell chamber 2C can be made substantially equal, or the cell chamber 2C can be made larger (the tank chamber 2T can be made smaller).
  • the heat insulating material is provided in the partition 24, the left end face 23, the bottom 20 and the top plate 21, and the formation region of the tank chamber 2T in the two side faces 22 and 22.
  • the above-described container 2 further includes a partition wall 4A.
  • the partition 4A when the pipes 16, 17 etc. are damaged and a predetermined amount of electrolyte leaks into the container 2, from the gap between the above-mentioned door (end face portion 23d) and the bottom 20, etc. Furthermore, it is a member for preventing leakage and for holding the electrolyte in the container 2.
  • the partition 4A of this example is provided in the vicinity of the opening on the end face 23d side so as to cover the lower region of the opening.
  • the partition portion 4A of this example has a size capable of covering the lower region described above.
  • the width of the partition wall 4A is a size corresponding to the width of the opening on the side of the end face 23d described above (see also FIG. 2).
  • the height H 4 A of the partition wall 4 A is equal to or higher than the liquid level when the predetermined amount of electrolyte leaks into the container 2.
  • the predetermined amount of this example is higher than the connection point with the pipe in the tank 3 among the electrolytic solution 6 stored in the tank 3, the volume equivalent of the battery cell 10 C, the volume equivalent of the pipes 16, 17 and The total volume with the substantial volume of the upper volume 61 stored above is used.
  • the connection point to the pipe is the connection point (the connection point to the pipe 16 in the example of FIG.
  • the liquid level height is the distance from the inner surface of the bottom portion 20 to the liquid level.
  • the height H 4A is the minimum distance from the inner surface of the bottom portion 20 to the upper end of the partition 4A.
  • the minimum value of the height H 4A of the partition wall 4A is calculated on the assumption that all the predetermined amount of the electrolyte solution has leaked into the cell chamber 2C.
  • the cell chamber 2C is a region surrounded by the partition 4A, the partition 24 and the formation region of the cell chamber 2C in the two side portions 22 and 22 (in FIG. Show). Therefore, the minimum value of the height H 4A is the upper volume 61 (the length of the tank 3 and the width of the tank 3 and the height H 3 from the connection point with the pipes 16 and 17 to the top surface of the tank 3) It can be calculated from the product, the volume of the battery cell 10C, the volume of the pipes 16, 17 and the length and width of the cell chamber 2C.
  • the height H 4A of the partition wall portion 4A may be any liquid level or height when a predetermined amount of the electrolytic solution described above leaked to inside the container 2 (cell chamber 2C in this example). If the height H 4A is larger, leakage of the electrolyte solution to the outside of the container 2 can be more reliably prevented (see also the height H 4B in Embodiment 2 and FIG. 2 described later). If the height H 4A is too large, it becomes difficult for the operator to handle due to the large size and heavy weight of the bulkhead 4A, and the bulkhead 4A can be attached or detached at the time of assembly etc. It is likely to cause an increase in the burden on the operator, such as difficulty.
  • the height H 4A is, for example, not more than 1.2 times, not more than 1.15 times, not less than the above liquid level in a range satisfying the above liquid level or more. Or less, or 0.5 times or less of the height H of the container 2, or 0.48 times or less, or 0.45 times or less.
  • the formation position of the partition wall 4A is in the vicinity of the end face 23d (door)
  • the liquid of the leaked electrolyte solution in the cell chamber 2C as compared to the case where it is closer to the partition 24 (tank 3). Since it is easy to lower the surface height, it is easy to lower the height H 4A of the partition 4A.
  • Partition wall 4A is a plate material or the like having a certain width and a certain height H 4A above are available.
  • the partition 4A does not react with the electrolytic solution because it contacts the electrolytic solution, and the material having resistance to the electrolytic solution, for example, the above-mentioned resin or rubber, the above-mentioned resin on the surface of the metal plate made of steel or the like And the like.
  • a mounting frame (not shown) or the like is provided in the container 2 (here, in the cell chamber 2C) in the partition 2A, and it is easy to attach and detach the mounting frame using a fastening member such as a bolt.
  • a sealing material (not shown) can be interposed between the partition wall 4A and the mounting frame. In this case, the liquid tightness can be enhanced regardless of the constituent material of the partition wall 4A.
  • the attachment location of the partition wall 4 ⁇ / b> A includes the vicinity of a door, in particular, a formation location of a door whose size is such that the lower end of the door reaches the bottom 20.
  • a partition 4A is provided facing the virtual plane of the opening.
  • the partition wall 4A is provided to face the end face 23d, but the same applies to the case where a door is provided on the side face 22 or the end face 23. It is preferable that the end surface portions 23 and 23d and the two side surface portions 22 and 22 be connected to the bottom portion 20 in a liquid tight manner.
  • the leak detection sensor 40 is provided, leakage of the electrolyte solution generated in the container 2 can be detected early, which is preferable.
  • the leak detection sensor 40 is preferably disposed in the container 2 below the upper end of the partition 4A.
  • FIG. 1 illustrates the case where the leak detection sensor 40 is disposed near the bottom 20. The lower the mounting height of the leak detection sensor 40 (the height from the inner surface of the bottom 20) and the closer to the bottom 20, the leak of the electrolyte can be detected at the beginning of the leak, ie, at a time when the amount of leak is small. As a result, it is possible to promptly take measures such as stopping the pump 18 and to prevent further leakage.
  • the mounting height is, for example, 50% or less, 40% or less, 30% or less of the height H 4A of the partition 4A, or 25% or less, 20% or less, 15% or less of the height H of the container 2 The degree is mentioned.
  • the leak detection sensor 40 and the leak detection sensor 42 described later can appropriately use a known leak sensor capable of detecting the leak of the electrolytic solution.
  • a known leak sensor capable of detecting the leak of the electrolytic solution.
  • power is unnecessary, and a power failure can be detected.
  • a control unit for controlling equipment involved in circulation of the electrolytic solution such as the pump 18 in the circulation mechanism, a ventilation mechanism (not shown) of the following tank 3 and the like can be housed. If the battery cell 10C, the pump 18, the controller, and other devices increase the arrangement height from the bottom 20 to a certain extent while considering the above-mentioned weight balance, the electrolyte may leak from the tank 3 into the container 2 But it is difficult to immerse in the leaked electrolyte.
  • the ventilation mechanism of the tank 3 includes, for example, a gas generator, a gas flow rate adjustment mechanism, a backflow prevention mechanism, piping connected to the tank 3 and the like.
  • the gas generator generates flow gas for ventilating the gas phase of the tank 3.
  • a hydrogen-containing gas may be generated at the negative electrode and stored in the gas phase of the negative electrode tank due to a side reaction or the like of the battery reaction.
  • the gas phase of the negative electrode tank 35 is ventilated by the flow gas, the hydrogen concentration in the gas phase of the negative electrode tank 35 can be reduced and released to the atmosphere.
  • the flow gas preferably comprises or is substantially an inert gas.
  • the inert gas may, for example, be nitrogen or a rare gas (argon, neon, helium) or the like.
  • a gas generator capable of generating nitrogen can supply the flow gas semipermanently because nitrogen can be taken out from the atmosphere.
  • the gas flow rate adjustment mechanism adjusts the amount of flow gas supplied to the gas phase of the tank 3 from a gas supply source such as the above-described gas generator.
  • the gas flow rate adjustment mechanism includes, for example, a flow meter and a valve, and adjusts the opening degree of the valve based on the flow gas flow measured by the flow meter. The determination of the opening based on the flow rate, the operation of the valve, and the like may be performed by the above-described control unit.
  • the backflow prevention mechanism is provided in the exhaust pipe connected to the tank 3 to prevent the exhaust gas from flowing back to the gas phase of the tank 3.
  • a known water ring valve can be used as the backflow prevention mechanism.
  • the forms (1), (2) of continuously ventilating both the tanks 34, 35, ventilating each tank 34, 35 independently Form (3) is mentioned.
  • the exhaust pipe is connected to the tank 3 and the other end is opened to the outside of the container 2 and exhausted to the atmosphere outside the container 2 or opened in the container 2 to the side portion 22 of the container 2 etc. Exhausting from the vent provided can be mentioned.
  • the communication pipe is connected as in the above (1) and, contrary to the above (1), a pipe for exhausting the gas phase of the positive electrode tank 34 Are connected, and the above-mentioned gas generator is connected to the gas phase of the negative electrode tank 35.
  • the flow gas is introduced into the gas phase of the negative electrode tank 35, and the flow gas is supplied and exhausted to the gas phase of the positive electrode tank 34 via the communication pipe and the gas phase of the negative electrode tank 35.
  • the gas generating apparatus and the piping for exhaust are connected to the gas phase of each tank 34, 35, and the flow gas is introduced and exhausted into the gas phase of each tank 34, 35.
  • the RF battery 1A is a storage battery for stabilizing the fluctuation of the power generation output, storing power when surplus of generated power, load leveling, and the like with respect to the generation of natural energy such as solar power generation and wind power generation.
  • the RF battery 1A of Embodiment 1 can be used as a storage battery that is juxtaposed to a general power plant and is intended to prevent voltage sags and blackouts and load leveling.
  • the RF battery 1A according to the first embodiment includes the partition 4A having the specific height H 4A in the container 2, the pipes 16, 17 and the like are temporarily damaged, and a predetermined amount of electrolyte is contained in the container 2 Even if it leaks, it can prevent further leaking out of the container 2 by the partition part 4A. Even if the whole of the predetermined amount of electrolyte leaks, the upper end of the partition 4A is located above the surface of the leaked electrolyte.
  • the predetermined amount in this example is the total amount of the leaked amount of cells and the equivalent amount of the upper volume 61 in the tank 3.
  • the electrolytic solution is stored between the partition 24 forming the cell chamber 2C and the partition 4A facing the partition 24, that is, below the opening on the side of the end surface 23d. Therefore, the electrolyte solution does not flow out of the partition 4A even if the door is opened when performing processing after leakage.
  • the leak detection sensor 40 When the leak detection sensor 40 is provided, it is possible to detect the leakage of the above-mentioned electrolyte at a time when the leakage amount is relatively small, and it is possible to prevent the leakage of the electrolyte out of the container 2 more reliably.
  • the ridge portion surrounding the outer periphery of the above-mentioned container 2 can be omitted, or the ridge portion can be made to have a simple configuration, and it is expected that the installation work period, the installation change period, etc. can be shortened. .
  • the RF battery 1A of this example has the following effects.
  • the components such as the battery cell 10C, the tank 3, the pipes 16 and 17 and the like are accommodated in one container 2 at a time, so that the components are easy to transport and install. It produces the effect of being able to.
  • the total length of the pipes 16 and 17 can be easily shortened by dividing the inside of the container 2 into the cell chamber 2C and the tank chamber 2T and putting the pipes 16 and 17 in the cell chamber 2C. From this point, it is expected that it is easy to reduce the leakage of the electrolyte solution caused by the damage to the pipes 16 and 17. Further, since the total length is short, the assembly time can be shortened and the assembly workability is also excellent.
  • (3) By dividing the inside of the container 2 into the cell chamber 2C and the tank chamber 2T, it is easy to inspect the battery cell 10C, the pump 18, the above control unit and the like.
  • the RF battery 1B of Embodiment 2 will be described mainly with reference to FIG.
  • the basic configuration of the RF battery 1B of the second embodiment is the same as that of the RF battery 1A of the first embodiment, and the battery cell 10C, the tank 3, the pipes 16 and 17, the partition 4B, and a container 2 for storing these And
  • the RF battery 1B according to the second embodiment further includes a lower pit portion 25 attached to the bottom 20 of the container 2, and when electrolyte leaks from the tank 3 or the like into the container 2, a part of the leaked liquid is It can be stored in the pit portion 25.
  • the main difference from the first embodiment is that the lower pit portion 25 is provided.
  • the difference between the second embodiment and the first embodiment will be described in detail, and the configuration common to the first embodiment and the effects thereof will not be described in detail.
  • the lower pit portion 25 is a saucer-like member, and includes a bottom portion 250 and a peripheral wall portion 251 erected from the periphery of the bottom portion 250.
  • the lower pit portion 25 is attached to the bottom portion 20 to form a double bottom, and the bottom portion 20 of the container 2 forms an inner bottom, and the bottom portion 250 of the lower pit portion 25 Is the outer bottom.
  • the bottom 20 which is an inner bottom is provided with an opening 20 h penetrating inside and outside (front and back).
  • the lower pit portion 25 includes a storage tank for storing the electrolytic solution which leaks into the container 2 and passes through the opening 20 h.
  • the storage tank is provided so that a part of the inner surface is located below the opening 20 h and covers the opening 20 h.
  • the lower pit part 25 of this example makes the whole the storage tank.
  • the shape and size of the lower pit portion 25 can be appropriately selected.
  • the bottom 250 of the lower pit 25 in this example is a rectangular shape substantially the same size as the bottom 20 of the container 2.
  • the peripheral wall portion 251 has a rectangular frame shape along the outer shape of the bottom portion 250.
  • the lower pit portion 25 can easily support the container 2 mounted thereon stably because the planar shape and the planar area of the lower pit portion 25 are substantially equal to the bottom portion 20 of the container 2.
  • the lower pit portion 25 can function as an installation stand for the container 2. If an appropriate reinforcing material (not shown) is provided in the lower pit portion 25, the lower pit portion 25 can function as a firmer installation stand.
  • the volume of the storage tank in the lower pit portion 25 can be appropriately selected.
  • the height H 4B (in particular, the lower limit value) of the partition wall 4B can be easily reduced because the liquid level in the container 2 can be reduced. If the lower limit value of the height H 4 B of the partition wall 4 B is small, the height H 4 B can be easily set to a size that exceeds the liquid level height to some extent. If the height H 4 B is sufficiently higher than the liquid level height as illustrated in FIG.
  • the volume of the storage tank is, for example, 50% or more and 90% or less, and further 55% or more and 85% or less, 60% or more of the predetermined amount described above (in this example, the total of the leaked amount such as cell and the equivalent of the upper volume 61). 80% or less is mentioned.
  • the entire lower pit portion 25 is a reservoir, and the length of the reservoir is equivalent to the total length of the bottom 20 of the container 2 ( ⁇ equivalent to the total length of the bottom 250 of the lower pit 25), and the width of the reservoir is a container 2 Of the bottom 20 of the lower pit portion 25 (approximately the entire width of the bottom 250 of the lower pit portion 25).
  • the volume of a storage tank can also be made smaller than this example.
  • the lower pit portion 25 can be transported to the installation site of the RF battery 1 B in a state of being attached to the container 2. Alternatively, only the lower pit portion 25 may be installed in advance at the installation site, and the container 2 may be placed on the lower pit portion 25.
  • the size of the lower pit portion 25 and the size of the container 2 can be adjusted so that the size of the container 2 including the lower pit portion 25 satisfies the standard value of the above-mentioned container.
  • the size (opening area, width, length, etc.), shape, formation position, number, etc. of the opening 20 h provided in the bottom 20 of the container 2 can be appropriately selected.
  • a plurality of elongated holes extending in the width direction of the bottom portion 20 are provided at positions near the partition portion 24 in the bottom portion 20, and these elongated holes are used as the opening portion 20h. If a plurality of through holes penetrating to the inside and the outside of the bottom portion 20 are the openings 20h, it is easy to secure a large total opening area to some extent, and it is easy to flow the electrolyte into the storage tank.
  • each through hole can be easily reduced, and foreign matter and the like can be easily prevented from dropping into the storage tank from each through hole.
  • arranging a mesh material or the like in the opening can prevent the above-mentioned drop or the like of the foreign matter while allowing the electrolytic solution to flow into the storage tank.
  • leakage of the electrolytic solution generated in the container 2 can be detected early, which is preferable.
  • the electrolyte is accumulated in the storage tank. If the leakage of the electrolyte is detected at a time when the amount of leakage is small, it is possible to promptly perform measures such as stopping the pump 18, and it is easy to prevent further leakage, and the treatment after leakage can be reduced.
  • the leak detection sensor 40 is also provided in the container 2 (in this example, in the cell chamber 2C) in addition to the leak detection sensor 42 in the storage tank (see Embodiment 1), the above-mentioned leakage of the electrolyte It can detect more reliably. Further, one of the two sensors 40 and 42 can be used as a backup.
  • the leak detection sensor 40 may be provided in the container 2 and the leak detection sensor 42 may not be provided in the storage tank.
  • the RF battery 1B according to the second embodiment includes the lower pit portion 25 in addition to the partition wall 4B, so that the liquid level of the leaked liquid in the container 2 (in this example, in the cell chamber 2C) as described above. It can be lowered. Therefore, even if all of the above-mentioned predetermined amount of electrolyte leaks into the container 2, it is easier to prevent the electrolyte from leaking out of the container 2. In particular, even if the height H 4B of the partition 4B in the container 2 is lowered (H 4 B ⁇ H 4A ), leakage of the electrolytic solution to the outside of the container 2 can be prevented, and the partition 4B is lightweight and compact.
  • the RF battery 1B of the second embodiment omission of the ridge portion surrounding the outer periphery of the container 2 as described above, shortening of the installation work period due to the omission of the collar portion and the installation change arrangement period, reduction in size and weight of the partition wall 4B An improvement in assembly workability can be expected. Furthermore, from the point that the liquid level of the leaked liquid in the container 2 can be lowered, the stored items in the container 2, particularly the battery cell 10C, the electric devices such as the pump 18 and the control unit, are immersed in the electrolyte. Is easy to reduce or avoid. Also on the inner surface itself of the container 2, the area contaminated with the leaked electrolyte can be reduced. Therefore, the treatment after the leakage of the electrolyte can be reduced.
  • FIG. 4 is a longitudinal cross-sectional view of the RF battery of Embodiment 3 taken along a plane orthogonal to the width direction of the container 2 and shows the vicinity of the opening 20 h provided in the bottom 20 of the container 2 in an enlarged manner.
  • the gap 240 is provided at a predetermined interval. As shown in FIG. 4, in a longitudinal cross section, a gap 240 extending in the height direction between the partition 24 and the bottom 20 can be seen.
  • the connection location (location on the lower end side) with the bottom portion 20 in the partition portion 24 of this example is uneven, and in the state of being connected to the inner surface of the bottom portion 20, a gap 240 is formed.
  • an opening 20h is provided in a region closer to the tank 3 (left side in FIG.
  • the small wall portion 26 is erected in the region of the partition wall 4B side (right side in FIG. 4).
  • the small wall portion 26 in this example is a rectangular plate having a width corresponding to the entire width of the bottom portion 20 and having a height H 26 lower than the height of the gap 240.
  • the small wall portion 26 is provided at the bottom portion 20 so as to face the partition wall 4B.
  • the height H 26 of the small wall portion 26 (distance to the upper end of the small wall portion 26 from the inner surface of the bottom 20) may be lower than the height H 4B of the partition wall portion 4B, and the size of the above-mentioned gap 240, It can be selected appropriately according to the size of the opening 20 h and the like.
  • the height H 26 is, for example, about 80% or less of the height H 4 B of the partition wall 4 B.
  • the height H 26 may be 50% or less, or 40% or less, or 30% or less of the height H 4 B of the partition wall 4 B.
  • the formation position of the small wall portion 26 can be appropriately selected between the formation position of the opening 20 h and the formation position of the partition 4 B. If the formation position of the small wall portion 26 is set near the opening 20 h as in this example, the volume of the small region sandwiched between the small wall portion 26 and the partition portion 4B can be easily increased.
  • the electrolytic solution When the electrolytic solution leaks from the tank 3 or the like into the container 2, the electrolytic solution first accumulates in a small area surrounded by the small wall portion 26, the partition portion 4B, and part of the side surface portions 22 and 22 (FIG. 2).
  • the amount of leakage exceeding the volume of this small area i.e. the amount of leakage exceeding the height H 26
  • the leaked electrolyte passes over the upper end of the small wall 26 virtually as shown by the dashed double-dotted arrow. , And through the clearance 240 and the opening 20 h in order to flow into the reservoir in the lower pit portion 25.
  • the small wall portion 26 By providing the small wall portion 26, it is possible to extend the time from when the electrolytic solution leaks from the tank 3 or the like into the container 2 to when it accumulates in the lower pit portion 25.
  • leakage of the electrolytic solution 6 in the container 2 can be easily detected before the electrolytic solution is accumulated in the storage tank of the lower pit portion 25.
  • a leak detection sensor (not shown) is provided below the upper end of the small wall 26, the leak of the electrolyte can be detected at a time when the leak amount is smaller, and the flow of the electrolyte can be stopped. Can be done earlier.
  • the leak detection sensor 42 is provided in the storage tank of the lower pit portion 25, and the leak detection sensor 40 is above the upper end of the small wall portion 26 and below the upper end of the partition wall 4B (FIG. 3) The leak of the electrolyte solution 6 can be detected more reliably and earlier if at least one of the provision of
  • a predetermined amount for setting the height of the partition wall can be set as the leak amount of the cell or the like.
  • connection portion of the tank 3 with the pipes 16 and 17 may be used as the top surface of the tank 3. That is, the height position of the connection point is 100% of the height of the tank 3.
  • the upper volume 61 can be substantially zero. Therefore, even if the pipes 16, 17 etc. are damaged, the electrolytic solution 6 in the tank 3 is not substantially leaked into the container 2, and the leaked amount is equivalent to the volume of the battery cell 10C even if it leaks most. It is equivalent to the total amount (leakage amount of cells and the like) of the amount and the total volume equivalent of the pipes 16 and 17. Therefore, the height of the partition provided in the RF battery of Embodiment 4 may be adjusted to be equal to or higher than the liquid level when the electrolyte equivalent to the leaked amount such as the cell leaks into the container 2.
  • the RF battery of the fourth embodiment can make the partition portion smaller and lighter, but can prevent the electrolyte solution leaking into the container 2 from leaking out of the container 2.
  • the RF battery of the fourth embodiment when the lower pit portion 25 described in the second embodiment and the small wall portion 26 described in the third embodiment are provided, the height of the partition wall can be further reduced.
  • partition part 4A, 4B is provided in another part.
  • the partition wall 4A described in the first embodiment may be separately provided so as to face the partition 24 in addition to the vicinity of the end face 23d.
  • the partition wall 4A may be formed in an L shape and provided so as to extend from the end face 23d to the one side face 22 or in a rectangular frame or in a bottomed container.
  • the battery cell 10C and the tank 3 are not stored in the same container 2, and the battery container 10C and a part of the pipes 16 and 17 are stored, and the tank 3 and the pipes 16 and 17 are What has a tank container which stores other parts is mentioned.
  • the positive electrode container which stores positive electrode electrolyte solution, and the negative electrode container which stores negative electrode electrolyte solution can also be provided independently, respectively.
  • the height of the partition wall may be adjusted based on the total of the volume equivalent of the battery cells housed in the battery container and the volume equivalent of the pipe.
  • the volume of the storage tank is equal to or greater than the volume stored above the connection point with the pipe in the tank among the electrolytic solution stored in the tank [Supplementary Note 1] battery.
  • Embodiment 2 The details of the lower pit portion in the above-mentioned [Supplementary Note] may be referred to Embodiment 2.
  • a leak detection sensor is provided ([Supplementary Note 3])
  • the leak can be detected at an early stage, and the pump can be stopped at a time when the amount of leak is small as described above. Even if it is small to some extent, it is possible to prevent the electrolyte from leaking out of the container.
  • the entire amount of the electrolyte leaking out into the container can be stored in the lower pit portion, preferably substantially no electrolyte is accumulated in the container. You can do so. As a result, it is possible to more reliably prevent the electrolyte from leaking out of the container.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

電池セルと、前記電池セルに供給する電解液を貯留するタンクと、前記電池セルと前記タンクとに接続されて、前記電解液を流通する配管と、前記電池セルと、前記タンクと、前記配管とを一括して収納するコンテナと、前記コンテナ内に設けられ、前記電解液が前記コンテナ外に漏出することを防止する隔壁部とを備え、前記隔壁部の高さは、所定量の電解液が前記配管の損傷に伴って前記コンテナ内に漏れ出たときの液面高さ以上であり、前記所定量は、前記電池セルの容積相当量と前記配管の容積相当量との合計量を含むレドックスフロー電池。

Description

レドックスフロー電池
 本発明は、レドックスフロー電池に関する。
 大容量の蓄電池の一つに、レドックスフロー電池(以下、RF電池と呼ぶことがある)がある。RF電池は、特許文献1の図5に記載されるように、電池セルと、電池セルに供給する正極電解液を貯留する正極タンク及び負極電解液を貯留する負極タンクと、電池セルと各タンクとに接続されて、正極電解液、負極電解液をそれぞれ流通する配管(管路)とを備える。
特開2002-025599号公報
 本開示のレドックスフロー電池は、
 電池セルと、
 前記電池セルに供給する電解液を貯留するタンクと、
 前記電池セルと前記タンクとに接続されて、前記電解液を流通する配管と、
 前記電池セルと、前記タンクと、前記配管とを一括して収納するコンテナと、
 前記コンテナ内に設けられ、前記電解液が前記コンテナ外に漏出することを防止する隔壁部とを備え、
 前記隔壁部の高さは、所定量の電解液が前記配管の損傷に伴って前記コンテナ内に漏れ出たときの液面高さ以上であり、
 前記所定量は、前記電池セルの容積相当量と前記配管の容積相当量との合計量を含む。
実施形態1のレドックスフロー電池をコンテナの幅方向に直交する平面で切断した縦断面図である。 実施形態1のレドックスフロー電池をコンテナの高さ方向に直交する平面で切断した水平断面図である。 実施形態2のレドックスフロー電池を模式的に示す概略構成図である。 実施形態3のレドックスフロー電池において、コンテナの底部に設けられた開口部近傍を拡大して示す部分断面図である。 実施形態のレドックスフロー電池に用いられるセルスタックを示す概略断面図である。 実施形態のレドックスフロー電池に用いられるセルスタックを示す概略構成図である。
[本開示が解決しようとする課題]
 レドックスフロー電池は、代表的には、電池セル、タンク、配管等の構成要素を設置場所に搬送し、設置場所で上記構成要素が接続されて組み立てられる。しかし、設置場所では十分な作業スペースを確保できず、組立作業を行い難い場合がある。そこで、本発明者らは、工場等の作業スペースを確保し易い場所で上記構成要素を組み立てておき、組立状態で設置場所に搬送する形態を検討した。特に、貨物用コンテナといった大容積の容器に上記構成要素を一括して収納する形態を検討した。
 上述のコンテナ等の容器に上記構成要素を一括して収納すれば、搬送し易く、上記構成要素を保護できる上に、大型の電池セルや大型のタンクを収納可能であり、大出力電池や大容量電池とすることができる。大型の電池セルを備えて、電池セルや配管に保持可能な電解液が多い場合に仮に配管等が損傷して、電池セル内及び配管内に保持されていた電解液の少なくとも一部、更にはその全量がコンテナ内に漏れ出ると、コンテナに設けられた扉の周囲の隙間等を経て、コンテナ外にも漏れ出る可能性がある。更に、大型のタンクを備えて、電解液の貯留量が多い場合に仮に配管等が損傷して、上述の電池セル内の電解液及び配管内の電解液に加えてタンク内の電解液もコンテナ内に漏れると、コンテナ外に漏れ出る確率が高まる。コンテナの設置場所に、コンテナの外周を囲むように堰部を構築して、電解液の更なる流出を防止することが考えられる。しかし、堰部をコンクリート等で構築し、堰部の内面に電解液による腐食を防止する塗装等を施すと、堰部の構築を含めた設置工期が長くなる。また、コンテナの設置後に配置位置の変更等が要求された場合、堰部を壊し、コンテナの新たな配置位置に堰部を別途構築する必要があり、配置変更の際の工期も長くなる。従って、簡単な構成で設置や配置変更も容易に行えつつ、コンテナ内の電解液がコンテナ外に漏出することを防止できることが望ましい。
 そこで、電解液がコンテナ外に漏出することを防止できるレドックスフロー電池を提供することを目的の一つとする。
[本開示の効果]
 本開示のレドックスフロー電池によれば、電解液がコンテナ外に漏出することを防止できる。
[本願発明の実施形態の説明]
 最初に本願発明の実施態様を列記して説明する。
(1)本発明の一態様に係るレドックスフロー電池(RF電池)は、
 電池セルと、
 前記電池セルに供給する電解液を貯留するタンクと、
 前記電池セルと前記タンクとに接続されて、前記電解液を流通する配管と、
 前記電池セルと、前記タンクと、前記配管とを一括して収納するコンテナと、
 前記コンテナ内に設けられ、前記電解液が前記コンテナ外に漏出することを防止する隔壁部とを備え、
 前記隔壁部の高さは、所定量の電解液が前記配管の損傷に伴って前記コンテナ内に漏れ出たときの液面高さ以上であり、
 前記所定量は、前記電池セルの容積相当量と前記配管の容積相当量との合計量を含む。
 上記のRF電池は、電池セル、タンク、配管といった構成要素を収納するコンテナ内に隔壁部を備える。この隔壁部の高さは、仮にタンクに接続される配管等が損傷して、電池セル内の電解液の全量と配管内に保持される電解液の全量との合計量(以下、セル等漏出量と呼ぶことがある)がコンテナ内に漏出しても、隔壁部の上端が、コンテナ内に漏出した電解液の液面(以下、漏出液の液面と呼ぶことがある)よりも上に位置するように調整されている。上記のRF電池は、このような特定の高さを有する隔壁部を備えるため、電池セル内の電解液の一部、又は配管内の電解液の一部がコンテナ内に漏出した場合は勿論、上述のようにその双方の全量の合計量がコンテナ内に漏出した場合でも、コンテナ外に更に漏出することを確実に防止できる。例えば、上記のRF電池を、電解液を電池セルの下方から上方に向かって流し、タンクに戻す形態(以下、上昇形態と呼ぶ)とする場合に仮に供給側の配管が損傷すると、電池セル内の電解液の全量がコンテナ内に漏出し得る。この場合でも、セル等漏出量に基づいて設定される特定の高さを有する隔壁を備えれば、上記コンテナ内に漏出した電解液がコンテナ外に更に漏出することを確実に防止できる。また、上記のRF電池は、特定の高さの隔壁部を備えるという簡単な構成でありながら、上述したコンテナの外周を囲む堰部を省略できる、又は堰部を簡素な構成とすることができ、設置工期の短縮、配置変更工期の短縮も期待できる。
(2)上記のRF電池の一形態として、
 前記所定量は、更に、前記タンク内に貯留される電解液のうち、前記タンクにおける前記配管との接続箇所よりも上方に貯留される容積相当量を含む形態が挙げられる。
 ここで、例えばタンクにおける配管との接続箇所がタンク内の電解液の液面以下に設けられる場合、タンクに貯留される電解液のうち、配管等の損傷によって漏出するときの漏出量は、タンクにおける配管との接続箇所よりも上方に貯留される容積(以下、上部容積と呼ぶことがある)に相当する。上記形態に備えられる隔壁部の高さは、上述のセル等漏出量に上部容積の相当量を合せて調整すればよい。上記形態は、このような特定の高さを有する隔壁部を備えるため、仮に配管等の損傷によってタンクに貯留される電解液の一部がコンテナ内に漏出する場合でも、隔壁部の上端が漏出液の液面よりも上に位置して、コンテナ外に更に漏出することを確実に防止できる。上述の上昇形態とする場合でも、セル等漏出量及び上部容積の相当量に基づいて設定される特定の高さを有する隔壁部を備えれば、仮に供給側の配管が損傷しても、上記コンテナ内に漏出した電解液がコンテナ外に更に漏出することを確実に防止できる。
(3)上記(2)のRF電池の一形態として、
 前記タンクにおける配管との接続箇所は、前記コンテナの内底面から、前記コンテナの高さの70%の地点よりも上方に位置する形態が挙げられる。
 上記形態は、タンクにおける配管との接続箇所がコンテナ内の比較的高い位置に配置されるため、上記接続箇所がタンク内の液面以下であっても上部容積を小さくし易い。即ち、配管等の損傷に伴うタンクからの漏出量を少なくし易い。この点から、上記形態は、上述のコンテナ外への電解液の漏出をより防止し易い。タンクにおける配管との接続箇所がコンテナの高さの100%の地点、即ちタンクの天面に配置される場合には、タンク内の液面が比較的高い位置にあっても上部容積を実質的にゼロにすることができる。この場合、コンテナ外への電解液の漏出を防止可能な範囲で隔壁部の高さを低くできて、隔壁部を小型、軽量にできる。
(4)上記のRF電池の一例として、
 更に、前記コンテナの底部に取り付けられる下部ピット部を備え、
 前記コンテナの底部は、その内外に貫通する開口部を備え、
 前記下部ピット部は、前記コンテナ内に漏れ出て前記開口部を経た電解液を貯留する貯留槽を含む形態が挙げられる。
 上記形態は、上述のコンテナ内に漏出した電解液を下部ピット部に貯留できるため、コンテナ内における漏出液の液面をより低くできる。このことから、上記形態は、隔壁部の高さをより低くしても、上述のコンテナ外への電解液の漏出を防止できる上に、電池セルや制御部等の電気機器類が漏出した電解液に浸漬されることを回避し易い。また、下部ピット部の具備による上述の堰部の省略、堰部の省略に伴う設置工期や配置変更工期の短縮、隔壁部の小型化・軽量化による組立作業性の向上等が期待できる。その他、上記形態は、コンテナと下部ピット部とを工場等で一体化して設置現場に同時に搬送すれば、設置現場での下部ピット部の組付が不要であり、設置現場での作業を軽減できる。
(5)上記(4)のRF電池の一例として、
 前記貯留槽内に漏洩検知センサを備える形態が挙げられる。
 ここで、下部ピット部の貯留槽は、コンテナの底部よりも下方に位置するため、上述のコンテナ内への電解液の漏出が発生すると、最初に電解液が溜まる箇所である。上記形態は、この貯留槽内に漏洩検知センサを備えるため、上述の漏出発生初期、即ち漏出量が比較的少ない時期に電解液の漏出を検知でき、電解液の流通を停止する等の対応をより早期に行える。この点から、上記形態は、上述のコンテナ外への電解液の漏出をより確実に防止できる。
(6)上記のRF電池の一例として、
 前記コンテナ内であって、前記隔壁部の上端よりも下方に漏洩検知センサを備える形態が挙げられる。
 上記形態は、上述の漏出液の液面が隔壁部の上端に達する前に、電解液の漏出を検知できる。即ち漏出量がある程度少ない時期に電解液の漏出を検知でき、電解液の流通を停止する等の対応をより早期に行える。この点から、上記形態は、上述のコンテナ外への電解液の漏出をより確実に防止できる。
[本願発明の実施形態の詳細]
 以下、図面を参照して、本願発明の実施形態に係るレドックスフロー電池(RF電池)を具体的に説明する。図中、同一符号は同一名称物を意味する。
[実施形態1]
 以下、図1,図2を主に参照して、実施形態1のRF電池1Aを説明する。
 図1は、コンテナ2をその幅方向に直交する平面で切断した縦断面図であり、内部構造を簡略化して示す。
 図2は、コンテナ2をその高さ方向に直交する平面で切断した水平断面図であり、内部構造を簡略化して示す。
(基本構成)
 実施形態1のRF電池1Aは、電池セル10Cと、電池セル10Cに電解液を循環供給する供給機構とを備える。供給機構は、電池セル10Cに供給する電解液を貯留するタンク3と、電池セル10Cとタンク3とに接続されて、電解液を流通する配管16,17とを含む。代表的には、RF電池1Aは、交流/直流変換器を介して、発電部と負荷とに接続され、発電部を電力供給源として充電を行い、負荷を電力提供対象として放電を行う(いずれも図示せず)。発電部は、例えば、太陽光発電機、風力発電機、その他一般の発電所等が挙げられる。負荷は、需要家等が挙げられる。充放電は、酸化還元により価数が変化するイオン(代表的には金属イオン)を活物質として含む正極電解液及び負極電解液を使用し、正負のイオンの酸化還元電位差を利用して行う。
 特に、実施形態1のRF電池1Aは、電池セル10C、タンク3、配管16,17といった構成要素を一括して収納するコンテナ2と、コンテナ2内に設けられ、電解液がコンテナ2外に漏出することを防止する隔壁部4Aとを備える。隔壁部4Aの高さH4Aを後述する特定の大きさとすることで、RF電池1Aは、配管16,17等が損傷して、所定量の電解液がコンテナ2内に漏れ出ても、コンテナ2外に更に漏出することを防止できる。
 以下、構成要素ごとに詳細に説明する。
(電池セル)
 電池セル10Cは、図5,図6に示すように正極電解液が供給される正極電極14と、負極電解液が供給される負極電極15と、正極電極14,負極電極15間に介在される隔膜11とを備える。
 正極電極14、負極電極15は、正極電解液、負極電解液がそれぞれ供給されて活物質が電池反応を行う反応場であり、炭素材料の繊維集合体といった多孔体等が利用される。
 隔膜11は、正極電極14,負極電極15間を分離すると共に所定のイオン(例、水素イオン)を透過する部材であり、イオン交換膜等が利用される。
 電池セル10Cは、代表的には、図6に例示するセルフレーム110を用いて構築される。セルフレーム110は、双極板111と、双極板111の周縁部に設けられる枠体112とを含む。
 双極板111は、代表的には、一面に正極電極14が配置され、他面に負極電極15が配置され、電流を流すが電解液を通さない導電性部材である。双極板111には、黒鉛等と有機材とを含む導電性プラスチック板等が利用される。
 枠体112は、枠内に配置される正極電極14,負極電極15に正極電解液、負極電解液をそれぞれ供給する給液孔113及びスリット114と、電池セル10C外に正極電解液、負極電解液をそれぞれ排出する排液孔115及びスリット116とを有する絶縁性部材である。枠体112の構成材料には、電解液と反応せず、電解液に対する耐性を有する樹脂(例、ポリ塩化ビニル、ポリエチレン)等が利用される。枠体112の外周縁寄りには環状の溝が設けられてシール材118が配置される。シール材118には、Oリングや平パッキン等の弾性材が利用される。
 電池セル10Cは、単数の電池セル10Cを備える単セル電池、複数の電池セル10Cが積層されてなる多セル電池のいずれの形態も利用できる。
 多セル電池では、セルスタック100と呼ばれる形態が利用される。セルスタック100は、代表的には、セルフレーム110(双極板111)、正極電極14、隔膜11、負極電極15という順序で複数積層された積層体と、この積層体を挟む一対のエンドプレート130,130と、両エンドプレート130,130間を締め付ける複数の締付部材132とを備える。この積層方向の締付力によって積層状態を保持すると共に、隣り合う枠体112,112間に介在されるシール材118を押し潰して積層体を液密に保持し(図5も参照)、電池セル10Cからの電解液の漏出を防止する。セルスタック100における電池セル10Cの数(セル数)は適宜選択できる。セル数が多いほど大出力電池とし易い。その他、図6に例示するようにセルスタック100は、所定のセル数の積層体をサブセルスタック120とし、複数のサブセルスタック120が積層された集合体とすることができる。各サブセルスタック120は電解液の給排板122を備えることができる。
 図1では、コンテナ2内に収納されるセルスタック100の数(スタック数)が一つである場合を例示するが、スタック数は適宜変更できる。スタック数を複数とすれば、大出力電池とし易い。単セル電池、多セル電池のいずれの形態も、大型の電極を備えれば、大出力電池とし易い。コンテナ2のような大型の容器であれば、複数のセルスタック100や、大型のセルスタック100を収納できる。
(循環機構)
 循環機構は、正極電極14に循環供給する正極電解液を貯留する正極タンク34(図2)と、負極電極15に循環供給する負極電解液を貯留する負極タンク35(図2)と、正極タンク34と電池セル10C(代表的にはセルスタック100、以下同様)間を接続する配管164,174(図2,図5)と、負極タンク35と電池セル10C間を接続する配管165,175(図2,図5)と、各タンク34,35から電池セル10Cに供給する往路をなす配管164,165に設けられた正極のポンプ184,負極のポンプ185(図5)とを備える。往路の配管164,165、電池セル10Cからタンク3に電解液を戻す復路をなす配管174,175はそれぞれ、上述の給液孔113や排液孔115がつくる管路に接続され、正極電解液の循環経路、負極電解液の循環経路を構築する。
 図1では、説明の便宜上、タンク3、往路の配管16、復路の配管17、ポンプ18をそれぞれ一つずつ示すが、実際には、上述のように正極用のタンク34及び配管164,174並びにポンプ184、負極用のタンク35及び配管165,175並びにポンプ185をそれぞれ備える。図2についても同様である。以下、タンク3、配管16,17、ポンプ18とまとめて呼ぶことがある。
 配管16,17の構成材料には、電解液と反応せず、電解液に対する耐性を有する上述の樹脂等が挙げられる。代表的には、図1に例示するように配管16,17の一端は、タンク3内の電解液の液面以下に配置され、他端は電池セル10C等に接続され、中間部にタンク3との接続箇所を有する。
 ポンプ18には公知のものを適宜利用できる。
 電解液は、正負の活物質をバナジウムイオンとするもの(特許文献1)、正極活物質をマンガンイオン、負極活物質をチタンイオンとするもの、その他、公知の組成のものが利用できる。
 タンク3は、上述の電解液を貯留する箱状の容器である。タンク3の形状は適宜選択できる。コンテナ2に沿った形状、ここでは直方体状とすれば、タンク3の容積を大きくして電解液の貯留量を増大し易い。この例の正極タンク34及び負極タンク35はいずれも横長の直方体状で、同じ大きさである。両タンク34,35を合せると、後述するタンク室2Tの内周形状に沿っており、この合わせた幅は、タンク室2Tの内寸よりも若干小さい程度である(図2)。両タンク34,35の高さは、コンテナ2の高さHに同程度である(図1)。この例では、両タンク34,35はコンテナ2の幅方向(図2では上下方向)に並んで収納される。図5では説明の便宜上、紙面の左右にタンク34,35をそれぞれ示す。タンク3の構成材料は、電解液と反応せず、電解液に対する耐性を有する上述の樹脂やゴム等が挙げられる。ゴム等の可撓性材料からなるタンク3であれば、弾性変形可能であるため、大容積のタンク3であってもコンテナ2内に収納し易い上に、タンク3の内部圧力が変動しても、弾性変形によって内部圧力に起因する応力を緩和し易い。なお、RF電池1Aの設置前にはタンク3内に電解液6を貯留せず空の状態で設置現場に搬送し、設置後にタンク3内に電解液6を貯留すれば、RF電池1Aの重量を軽減でき、搬送や設置作業を行い易い。
 タンク3における往路の配管16との接続箇所、復路の配管17との接続箇所の配置位置は、適宜選択できる。図1では、いずれの接続箇所も、直方体状のタンク3の側壁に設けられ、タンク3内の電解液の液面よりも下方に位置する場合を例示する。その他、少なくとも一方の接続箇所は、タンク3の天面に設けられ、タンク3内の液面よりも上方に位置することもできる(図示せず、後述の実施形態4参照)。
 正極電解液の循環経路、負極電解液の循環経路の一例として、タンク3からの電解液を電池セル10Cの下方から上方に向かって流し、タンク3に戻す上昇形態とすることが挙げられる。上昇形態は、電解液が電極の全域に亘って拡散し易く、この点から電池特性を高め易く好ましい。図6に示すセルフレーム110は、給液孔113を下方、排液孔115を上方に備えるため、上昇形態に好適に利用できる。上昇形態では、例えば、タンク3における往路の配管16との接続箇所をタンク3の側壁の下方(図1ではコンテナ2の底部20寄り)に設け、タンク3における復路の配管17との接続箇所をタンク3の側壁の上方(同天板部21寄り)に設けることが挙げられる。この場合、タンク3内に貯留される電解液のうち、配管16との接続箇所よりも上方に貯留される容積(上部容積61、図1では仮想的に二点鎖線のハッチングを付して示す)が大きくなり易い。そのため、仮に配管16,17等が損傷する等して、タンク3から電解液がコンテナ2内に漏出する場合に漏出量が多くなり易い。漏出量の低減、ひいてはコンテナ2外への電解液の漏出防止の観点から、タンク3の側壁における配管16,17との接続箇所は、タンク3内の電解液の液面よりも下方であって、コンテナ2の内底面(底部20の内面)から離れて、ある程度高い位置に配置されることが好ましい。
 定量的には、図1に例示するようにタンク3の高さとコンテナ2の高さHとが実質的に等しい場合にタンク3における配管16,17との接続箇所(最も低い位置に配置される接続箇所)は、例えばコンテナ2の内底面からコンテナ2の高さHの70%の地点よりも上方に位置することが挙げられる。ここでの高さHとは、コンテナ2の内底面からコンテナ2の内天板面(天板部21の内面)までの距離とする。上記接続箇所におけるコンテナ2の内底面からの高さ位置が、コンテナ2の高さHの70%以上の地点であれば、図1に例示するように上記接続箇所がタンク3内の液面以下であっても上部容積61を小さくし易く、漏出量を低減し易い。ひいては、コンテナ2外への電解液の漏出を防止し易い。上記接続箇所の高さ位置が高さHの75%以上、更に78%以上、80%以上の地点であれば、上部容積61をより小さくして、漏出量をより低減し易い。
 後述するようにコンテナ2内をセル室2Cとタンク室2Tとに分け、タンク室2Tの容積をセル室2Cよりも大きくする場合には、上部容積61が大きくなり易い。この場合に漏出量をより低減する観点からは、上述の接続箇所の高さ位置が高さHの70%以上の地点であることが望ましい。
(コンテナ)
 上述の電池セル10C及び循環機構は、コンテナ2内に一括して収納される。コンテナ2は、代表的には、一般貨物の輸送等に利用されるドライコンテナが挙げられる。コンテナ2の形状は、代表的には直方体状、特に図1に例示するように設置状態において横長の直方体状が挙げられる(図1では紙面下側が設置面側)。このようなコンテナ2は、設置箇所をなす長方形状の底部20と、底部20に対向配置される長方形状の天板部21と、底部20の長辺と天板部21の長辺とを繋ぐ一対の側面部22,22(図2参照。図1では紙面奥側の側面部22のみ見える)と、底部20の短辺と天板部21の短辺とを繋ぐ一対の端面部23,23dとを備えるものが挙げられる。この例では、後述する扉が設けられる端面部23dを除いて、端面部23及び二つの側面部22,22は、底部20に対して、液密に接続されていることが好ましい。以下、コンテナ2の設置状態において、コンテナ2の長手方向に沿った大きさを長さ、長手方向に直交し、底部20から天板部21に向かう方向を高さ方向、高さ方向に沿った大きさを高さ、長手方向に直交し、一方の側面部22から他方の側面部22に向かう方向を幅方向、幅方向に沿った大きさを幅と呼ぶ。
 この例のコンテナ2は、一方(図1では右側)の端面部23dに開閉自在な扉を備える。作業者は、RF電池1Aの運転条件を調整したり上記構成要素を点検したりする等、必要に応じて扉を開閉できる。扉の大きさ、開閉方式等は適宜選択できる。この例では、端面部23dの実質的に全体を扉とし、両開き扉を備える。そのため、両開き扉を開いた状態での開口部の大きさを端面部23dの仮想の平面面積程度にすることができ、作業者が上述の条件調整や点検等を行い易い。
 コンテナ2のサイズは、収納する構成要素の大きさ等に応じて適宜選択できる。コンテナ2として、例えば、ISO規格(例、ISO 1496-1:2013等)に準拠する国際海上貨物用コンテナ、代表的には20フィートコンテナや40フィートコンテナ、45フィートコンテナ、これらよりも高さが大きい20フィートハイキューブコンテナや40フィートハイキューブコンテナ、45フィートハイキューブコンテナ等が利用できる。コンテナ2の構成材料は、鋼(例、一般構造用圧延鋼材 SS400)等の金属が挙げられる。コンテナ2の各構成部材を金属製とする場合、電解液が接触する可能性がある領域、少なくともタンク室2Tの内面等には、電解液と反応せず、電解液に対する耐性を有する上述の樹脂の塗装層や耐酸塗装、めっき(例、貴金属やニッケル、クロム等の金属)等からなる被覆層を備えることが好ましい。コンテナ2の内面全面(後述する仕切部24を含む)に被覆層を備えることがより好ましい。
 この例のコンテナ2は、その横長の内部空間をコンテナ2の長手方向に二つに分ける仕切部24を備え、一方の端面部23d側を、主として電池セル10Cを収納するセル室2Cとし、他方(図2では左側)の端面部23側を、主としてタンク3を収納するタンク室2Tとする。セル室2Cには、ポンプ18を含めて配管16,17も収納する。この収納状態では、コンテナ2の長手方向に電池セル10Cとタンク3とが並ぶように配置される(図1)。コンテナ2内を長手方向にみて、その一端側に電池セル10C及び配管16,17等を収納し、他端側にタンク3を収納する形態(以下、サイド形態と呼ぶ)は、例えばタンク3を挟んで一端側に電池セル10C及び配管16,17の一部、他端側にポンプ18及び配管16,17の残部等が配置される形態(以下、タンク介在形態と呼ぶ)に比較して、電池セル10Cとタンク3間の配管16,17の配置状態を単純にし易く、電池セル10Cと配管16,17との接続作業を行い易い。
 但し、上述のサイド形態では、RF電池1Aを設置する際に、構成要素を収納したコンテナ2をクレーン等で吊り上げると傾くことが有り、所定の設置場所に底部20を載置し難いことが考えられる。従って、吊り上げ時にコンテナ2が傾かないように、好ましくは底部20が水平に維持されるように重量バランスを考慮して、セル室2Cとタンク室2Tとの容積分配割合、セル室2C内の収納物(後述するその他の収納部材も含む)について質量やセル室2C内での配置位置、タンク3の質量等を調整することが好ましい。上述のタンク介在形態では、タンク3の中心がコンテナ2の長手方向の中心に重複するようにタンク3をコンテナ2内に収納し、このタンク3を挟むように、コンテナ2の一端側に電池セル10C、他端側にポンプ18等を収納することで、重量バランスをとり易い傾向にある。
 この例の仕切部24は、底部20から立設され、その上端が天板部21に至る高さと、一方の側面部22から他方の側面部22に至る幅とを有する長方形状の板材であり、いわば端面部23の仮想の平面面積に近い大きさ及び形状を有する。このような仕切部24は、ゴム等の可撓性材料からなるタンク3であっても保形し易い。この仕切部24にはタンク3に接続される配管16,17が挿通する挿通孔を設ければ、タンク室2Tとセル室2C間で電解液を流通できる。仕切部24の形状、大きさ等は適宜変更できる。仕切部24の少なくとも一部を省略することもできる。仕切部24における底部20の内面からの立設高さを例えばタンク3における配管16,17との接続箇所の位置よりも低くすれば、上述の挿通孔を不要にできる。
 仕切部24と底部20間とは、実質的に液密に保持される。そのため、タンク3等から電解液がセル室2C内に漏出した場合に、仕切部24と底部20間の隙間からタンク室2Tに電解液が実質的に漏れず、電解液の漏出範囲をセル室2C内に制限できる。この場合、漏出後の処理等を行い易い。
 仕切部24は、セル室2C、タンク室2Tが所望の容積となるように設ければよい。この例では、タンク室2Tの容積がセル室2Cの容積の概ね2倍程度となる位置に仕切部24を設けているが、適宜変更できる。例えば、タンク室2Tの容積とセル室2Cの容積とを実質的に等しくしたり、セル室2Cをより大きく(タンク室2Tをより小さく)したりすることもできる。
 その他、コンテナ2においてタンク3を囲む領域には断熱材を配置すると、コンテナ2外の環境に起因するタンク3内の電解液6の温度変化を抑制し易く好ましい。この例では、仕切部24、左側の端面部23、底部20及び天板部21並びに二つの側面部22,22におけるタンク室2Tの形成領域に断熱材を備えることが挙げられる。
(隔壁部)
 上述のコンテナ2内には、更に、隔壁部4Aを備える。隔壁部4Aは、配管16,17等が損傷して所定量の電解液がコンテナ2内に漏出した場合に、上述の扉(端面部23d)と底部20との隙間等から、コンテナ2外に更に漏出することを防止し、コンテナ2内に電解液を留めるための部材である。この目的から、この例の隔壁部4Aは、端面部23d側の開口部近傍に、この開口部の下方領域を覆うように設けられる。
 この例の隔壁部4Aは、上述の下方領域を覆うことができる大きさを有する。詳しくは、隔壁部4Aの幅は、上述の端面部23d側の開口部の幅に対応する大きさである(図2も参照)。隔壁部4Aの高さH4Aは、所定量の電解液がコンテナ2内に漏れ出たときの液面高さ以上である。この例の上記所定量は、電池セル10Cの容積相当量と、配管16,17の容積相当量と、タンク3内に貯留される電解液6のうち、タンク3における配管との接続箇所よりも上方に貯留される上部容積61の相当量との合計量とする。ここでの配管との接続箇所とは、タンク3における配管16,17との接続箇所のうち、最も低い位置に配置される接続箇所(図1の例示では配管16との接続箇所)とする。ここでの液面高さとは、底部20の内面から液面までの距離とする。高さH4Aとは、底部20の内面から隔壁部4Aの上端までの最小距離とする。
 この例では、隔壁部4Aの高さH4Aの最小値は、上述の所定量の電解液が全てセル室2C内に漏出したと仮定して算出する。セル室2Cは、隔壁部4Aと、仕切部24と、二つの側面部22,22におけるセル室2Cの形成領域とで囲まれる領域(図1では仮想的に二点鎖線のクロスハッチングを付して示す)である。そのため、高さH4Aの最小値は、上部容積61(タンク3の長さと、タンク3の幅と、配管16,17との接続箇所からタンク3の内天面までの高さHとの積)と、電池セル10Cの容積と、配管16,17の容積と、セル室2Cの長さ及び幅とから算出することができる。
 隔壁部4Aの高さH4Aは、上述の所定量の電解液がコンテナ2内(この例ではセル室2C内)に漏れ出たときの液面高さ以上であればよい。高さH4Aがより大きければ、コンテナ2外への電解液の漏出をより確実に防止できる(後述の実施形態2、図2の高さH4Bも参照)。高さH4Aが大き過ぎると、隔壁部4Aの大型化、大重量化によって作業者が取り扱い難くなり、組立時等に隔壁部4Aを着脱したり、点検時等に隔壁部4Aの内側に出入りし難かったりする等、作業者の負担の増大を招き易い。作業者の負担軽減等の観点から、高さH4Aは、上記液面高さ以上を満たす範囲で、例えば上記液面高さの1.2倍以下、更に1.15倍以下、1.1倍以下程度、又はコンテナ2の高さHの0.5倍以下、更に0.48倍以下、0.45倍以下程度が挙げられる。この例のように隔壁部4Aの形成位置が端面部23d(扉)近傍であれば、仕切部24(タンク3)寄りである場合に比較して、セル室2C内における漏出した電解液の液面高さを低くし易いため、隔壁部4Aの高さH4Aを低くし易い。
 隔壁部4Aは、上述の特定の幅及び特定の高さH4Aを有する板材等が利用できる。隔壁部4Aは、電解液に接触することから、電解液と反応せず、電解液に対する耐性を有する材料、例えば、上述の樹脂やゴム、上述の鋼等からなる金属板の表面に上記樹脂からなる被覆層を備えるもの等が挙げられる。隔壁部4Aは、例えば、コンテナ2内(ここではセル室2C内)に取付枠(図示せず)等を設けておき、取付枠にボルト等の締結部材等で取り付けると着脱し易い。隔壁部4Aと取付枠間にシール材(図示せず)を介在させることができる。この場合、隔壁部4Aの構成材料によらず、液密性を高められる。
 隔壁部4Aの取付箇所は、コンテナ2の構成部材のうち、扉、特に扉の下端が底部20に至るような大きさを有する扉の形成箇所の近傍が挙げられる。このような扉によって開閉される開口部の少なくとも一部を塞ぐように、この開口部の仮想平面に対面して隔壁部4Aを設ける。この例では、端面部23dに対面して隔壁部4Aを設けているが、扉が側面部22や端面部23に設けられている場合も同様である。なお、底部20に対して、端面部23,23d及び二つの側面部22,22は、液密に接続されていることが好ましい。
(センサ)
 更に、漏洩検知センサ40を備えると、コンテナ2内に発生した電解液の漏出を早期に検知できて好ましい。早期検知の観点からすると、漏洩検知センサ40は、コンテナ2内であって、隔壁部4Aの上端よりも下方に配置されることが好ましい。図1では、漏洩検知センサ40が底部20の近くに配置される場合を例示する。漏洩検知センサ40の取付高さ(底部20の内面からの高さ)が低く、底部20に近いほど、漏出初期、即ち漏出量が少ない時期に電解液の漏出を検知できる。その結果、ポンプ18を停止する等の対応を速やかに行えて、更なる漏出を防止し易い。また、漏出後の処理等も軽減できる。上記取付高さは、例えば隔壁部4Aの高さH4Aの50%以下、更に40%以下、30%以下程度、又はコンテナ2の高さHの25%以下、更に20%以下、15%以下程度が挙げられる。
 漏洩検知センサ40、及び後述の漏洩検知センサ42は電解液の漏出を検知可能な公知の漏液センサを適宜利用できる。例えば、浮子式漏洩センサとすると(特許文献1参照)、電力が不要であり、停電時等も検知できる。
(その他の収納部材)
 その他、コンテナ2内には、循環機構においてポンプ18等の電解液の循環に関与する機器等を制御する制御部、以下のタンク3の換気機構(いずれも図示せず)等を収納できる。電池セル10C、ポンプ18や制御部等の機器は、上述の重量バランスを考慮しつつ、底部20からの配置高さをある程度高くすると、仮にタンク3内から電解液がコンテナ2内に漏出した場合でも漏出した電解液に浸漬し難い。
 タンク3の換気機構は、例えば、ガス発生装置、ガス流量調整機構、逆流防止機構、タンク3に接続される配管等を備える。
 ガス発生装置は、タンク3の気相を換気するためのフローガスを発生させるものである。ここで、RF電池では、例えば、電池反応の副反応等に起因して負極で水素元素を含有するガスが発生して負極タンクの気相に貯まることがある。フローガスによって例えば負極タンク35の気相を換気すれば、負極タンク35の気相中の水素濃度を低下させて大気中に放出できる。フローガスは不活性ガスを含む、又は実質的に不活性ガスであることが好ましい。不活性ガスは、例えば、窒素や希ガス(アルゴン、ネオン、ヘリウム)等が挙げられる。窒素を発生可能なガス発生装置であれば、大気中から窒素を取り出せるため、半永久的にフローガスを供給できる。
 ガス流量調整機構は、上述のガス発生装置等のガス供給源からタンク3の気相に供給されるフローガスの供給量を調整するものである。ガス流量調整機構は、例えば、流量計とバルブとを備えて、流量計で計測したフローガスの流量に基づいてバルブの開度を調整する。流量に基づく開度の決定やバルブの動作等は、上述の制御部によって行うことが挙げられる。
 逆流防止機構は、タンク3に接続された排気用の配管に設けられて、排気ガスがタンク3の気相に逆流することを防止する。逆流防止機構は、例えば、公知の水封弁等が利用できる。
 上述のフローガスによってタンク3の気相を換気する具体的な形態として、両タンク34,35を連続して換気する形態(1),(2)、各タンク34,35を独立して換気する形態(3)が挙げられる。(1)正極タンク34⇒負極タンク35⇒排気という形態では、両タンク34,35の気相を連通管で接続すると共に、正極タンク34の気相に上述のガス発生装置を接続し、負極タンク35の気相に排気用の配管を接続する。そして、正極タンク34の気相にフローガスを導入し、正極タンク34及び連通管を介して負極タンク35の気相にもフローガスを供給すると共に、排気用の配管から排出する。排気用の配管の一端はタンク3に接続し、他端はコンテナ2外に開口させて、コンテナ2外の大気中に排気したり、コンテナ2内に開口させてコンテナ2の側面部22等に設けた換気口から排気したりすることが挙げられる。(2)負極タンク35⇒正極タンク34⇒排気という形態では、上記(1)と同様に連通管を接続すると共に、上記(1)とは逆に、正極タンク34の気相に排気用の配管を接続し、負極タンク35の気相に上述のガス発生装置を接続する。負極タンク35の気相にフローガスを導入し、連通管及び負極タンク35の気相を介して正極タンク34の気相にフローガスを供給すると共に排気する。(3)の形態では、各タンク34,35の気相に上述のガス発生装置と排気用の配管とを接続し、各タンク34,35の気相にフローガスを導入すると共に排気する。
(用途)
 実施形態1のRF電池1Aは、太陽光発電、風力発電等の自然エネルギーの発電に対して、発電出力の変動の安定化、発電電力の余剰時の蓄電、負荷平準化等を目的とした蓄電池に利用できる。また、実施形態1のRF電池1Aは、一般的な発電所に併設されて、瞬低・停電対策や負荷平準化を目的とした蓄電池として利用できる。
(主要な効果)
 実施形態1に係るRF電池1Aは、コンテナ2内に特定の高さH4Aを有する隔壁部4Aを備えるため、仮に配管16,17等が損傷して、所定量の電解液がコンテナ2内に漏出しても、隔壁部4Aによって、コンテナ2外に更に漏出することを防止できる。仮に上記所定量の電解液の全量が漏出しても、隔壁部4Aの上端が漏出した電解液の液面よりも上に位置するからである。この例の上記所定量は、セル等漏出量とタンク3内の上部容積61の相当量との合計量である。そのため、例えば配管16,17の容積相当量の少なくとも一部の量の電解液がコンテナ2内に漏出する場合は勿論、所定量の電解液が全てコンテナ2内に漏出しても、コンテナ2外に更に漏出することを防止できる。また、この例のRF電池1Aでは、セル室2Cを形成する仕切部24と、仕切部24に対向配置される隔壁部4A間、即ち端面部23d側の開口部の下方に電解液が溜められるため、漏出後の処理等を行うにあたり、扉を開けても電解液が隔壁部4A外に流出しない。漏洩検知センサ40を備える場合には、漏出量が比較的少ない時期に上述の電解液の漏出を検知でき、コンテナ2外への電解液の漏出をより確実に防止できる。このようなRF電池1Aでは、上述のコンテナ2の外周を囲む堰部を省略したり、堰部を簡素な構成としたりすることができ、設置工期や配置変更工期等を短縮できると期待される。
 更に、この例のRF電池1Aは、以下の効果を奏する。
(1)一つのコンテナ2に、電池セル10C、タンク3、配管16,17等の構成要素が一括して収納されているため、搬送し易い、設置し易い、上記構成要素をコンテナ2によって保護できる、といった効果を奏する。
(2)コンテナ2内をセル室2Cとタンク室2Tとに分け、セル室2C内に配管16,17をまとめることで、配管16,17の合計長を短くし易い。この点から、配管16,17の損傷に起因する電解液の漏出を低減し易いと期待される。また、上記合計長が短いことで、組立時間を短縮でき、組立作業性にも優れる。
(3)コンテナ2内をセル室2Cとタンク室2Tとに分けることで、電池セル10Cやポンプ18、上述の制御部等の点検等を行い易い。
[実施形態2]
 以下、主に図3を参照して、実施形態2のRF電池1Bを説明する。
 実施形態2のRF電池1Bの基本的構成は実施形態1のRF電池1Aと同様であり、電池セル10Cと、タンク3と、配管16,17と、隔壁部4Bと、これらを収納するコンテナ2とを備える。実施形態2のRF電池1Bは、更に、コンテナ2の底部20に取り付けられる下部ピット部25を備えており、タンク3等から電解液がコンテナ2内に漏出した場合に漏出液の一部を下部ピット部25に貯留できる。この下部ピット部25を備える点が実施形態1との主な相違点である。以下、実施形態2について、実施形態1との相違点を詳細に説明し、実施形態1と共通する構成及びその効果は詳細な説明を省略する。
(下部ピット部)
 下部ピット部25は、受け皿状の部材であり、底部250と、底部250の周縁から立設する周壁部251とを備える。RF電池1Bに備えられるコンテナ2では、この下部ピット部25が底部20に取り付けられて、いわば二重底になっており、コンテナ2の底部20が内側底をなし、下部ピット部25の底部250が外側底をなす。内側底である底部20は、その内外(表裏)に貫通する開口部20hを備える。下部ピット部25は、コンテナ2内に漏れ出て開口部20hを経た電解液を貯留する貯留槽を含む。貯留槽は、その内面の一部が開口部20hの下方に位置して、開口部20hを覆うように設けられる。この例の下部ピット部25はその全体を貯留槽とする。
 下部ピット部25の形状、大きさは適宜選択できる。この例の下部ピット部25の底部250は、コンテナ2の底部20と実質的に同じ大きさの長方形状である。周壁部251は、底部250の外形に沿った長方形の枠状である。下部ピット部25の平面形状、平面面積がコンテナ2の底部20に概ね等しいことで、下部ピット部25は、その上に取り付けられるコンテナ2を安定して支持し易い。いわば、下部ピット部25は、コンテナ2の設置架台として機能することができる。下部ピット部25内に適宜な補強材(図示せず)を備えると、下部ピット部25は、より強固な設置架台として機能できる。
 下部ピット部25における貯留槽の容積は、適宜選択できる。貯留槽が大きいほど、コンテナ2内(この例ではセル室2C内)に漏出した電解液の液面高さを低くし易く、コンテナ2外への電解液の漏出を防止し易い。また、上述のコンテナ2内の液面高さを低下できる点から、隔壁部4Bの高さH4B(特に、下限値)を小さくし易い。隔壁部4Bの高さH4Bの下限値が小さければ、高さH4Bを、上記液面高さをある程度超える大きさとし易い。高さH4Bが図3に例示するように上記液面高さよりも十分に高ければ、コンテナ2内に漏出した電解液がコンテナ2外に漏出することをより確実に防止し易い。貯留槽の容積は、例えば上述の所定量(この例ではセル等漏出量と上部容積61の相当量との合計量)の50%以上90%以下、更に55%以上85%以下、60%以上80%以下程度が挙げられる。
 貯留槽を大きくするには、長さ、幅、及び高さの少なくとも一つを調整すればよい。貯留槽の高さが大き過ぎると、下部ピット部25が高過ぎて、コンテナ2の設置状態が不安定になる可能性があるため、貯留槽の長さ及び幅を大きくすることが好ましいと考えられる。この例では、下部ピット部25の全体を貯留槽とし、貯留槽の長さをコンテナ2の底部20の全長相当(≒下部ピット部25の底部250の全長相当)、貯留槽の幅をコンテナ2の底部20の全幅相当(≒下部ピット部25の底部250の全幅相当)とする。なお、貯留槽の容積を本例より小さくすることもできる。
 下部ピット部25は、コンテナ2に取り付けた状態でRF電池1Bの設置現場に搬送することができる。又は、設置現場に下部ピット部25のみを予め設置しておき、下部ピット部25の上にコンテナ2を載置してもよい。
 なお、下部ピット部25を含めたコンテナ2の大きさが上述のコンテナの規格値を満たすように、下部ピット部25の大きさ、コンテナ2の大きさを調整することができる。
 コンテナ2の底部20に設けられる開口部20hの大きさ(開口面積、幅や長さ等)、形状、形成位置、個数等は、適宜選択できる。ここでは、底部20における仕切部24寄りの位置に底部20の幅方向に延びる複数の長孔を備え、これらの長孔を開口部20hとする。底部20の内外に貫通する複数の貫通孔を開口部20hとすれば、合計開口面積をある程度大きく確保し易く、電解液を貯留槽に流し易い。また、各貫通孔の開口面積を小さくし易く、各貫通孔から貯留槽内に異物等が落下することを防止し易い。各貫通孔がある程度大きい場合には、開口部にメッシュ材等を配置すると、電解液を貯留槽に流すことができながら、上述の異物の落下等を防止できる。
(センサ)
 更に、下部ピット部25の貯留槽内に漏洩検知センサ42を備えると、コンテナ2内に発生した電解液の漏出を早期に検知できて好ましい。電解液の漏出初期には、貯留槽内に電解液が溜まるからである。漏出量が少ない時期に電解液の漏出を検知すれば、ポンプ18を停止する等の対応を速やかに行えて、更なる漏出を防止し易く、漏出後の処理も軽減できる。貯留槽内に漏洩検知センサ42を備えることに加えて、コンテナ2内(この例ではセル室2C内)にも漏洩検知センサ40を備えると(実施形態1参照)、上述の電解液の漏出をより確実に検知できる。また、両センサ40,42のうち、一方のセンサをバックアップとしても利用できる。コンテナ2内に漏洩検知センサ40を備えて、貯留槽内には漏洩検知センサ42を備えないこともできる。
(主な効果)
 実施形態2のRF電池1Bは、隔壁部4Bに加えて、下部ピット部25を備えることで、上述のようにコンテナ2内(この例ではセル室2C内)における漏出液の液面高さを低くできる。そのため、仮に上述の所定量の電解液が全てコンテナ2内に漏出した場合でもコンテナ2外への電解液の漏出をより防止し易い。特に、コンテナ2内の隔壁部4Bの高さH4Bをより低くしても(H4B<H4A)、コンテナ2外への電解液の漏出を防止できる上に、隔壁部4Bを軽量・小型にすることもできる。このような実施形態2のRF電池1Bは、上述のコンテナ2の外周を囲む堰部の省略、堰部の省略に伴う設置工期や配置変更工期の短縮、隔壁部4Bの小型化・軽量化による組立作業性の向上等が期待できる。更に、コンテナ2内における漏出液の液面高さを低くできる点から、コンテナ2内の収納物、特に電池セル10C、ポンプ18や制御部等の電気機器類等が電解液に浸漬されることを低減又は回避し易い。コンテナ2の内面自体についても、漏洩した電解液によって汚染される領域を低減できる。従って、電解液の漏出後の処理等も軽減できる。
[実施形態3]
 以下、主に図4を参照して、実施形態3のRF電池を説明する。
 実施形態3のRF電池の基本的構成は、実施形態2のRF電池1Bと同様であり、実施形態2との主な相違点は、コンテナ2の底部20において、開口部20hの形成位置と隔壁部4B(図4では右側に位置する)の形成位置との間に立設される小壁部26を備え、小壁部26の高さH26は、隔壁部4Bの高さH4Bよりも小さい点にある。以下、実施形態3について、実施形態2との相違点を詳細に説明し、実施形態2と共通する構成及びその効果は詳細な説明を省略する。
 図4は、実施形態3のRF電池について、コンテナ2をその幅方向に直交する平面で切断した縦断面図であり、コンテナ2の底部20に設けられた開口部20h近傍を拡大して示す。
 この例のコンテナ2では、仕切部24と底部20との接続箇所をコンテナ2の幅方向にみると、所定の間隔で隙間240が設けられる。図4に示すように、ある縦断面では、仕切部24と底部20間に高さ方向に延びる隙間240が見える。この例の仕切部24における底部20との接続箇所(下端側の箇所)は凹凸形状であり、底部20の内面に接続された状態では隙間240を形成する。この例の底部20には、隙間240よりもタンク3側(図4では左側)の領域に開口部20hが設けられると共に、開口部20hの内周縁の近傍であって、タンク3とは反対側(隔壁部4B側、図4では右側)の領域に小壁部26が立設される。この例の小壁部26は、底部20の全幅相当の幅を有し、隙間240の高さよりも低い高さH26を有する長方形状の板材である。小壁部26は、隔壁部4Bに対向するように底部20に設けられる。
 小壁部26の高さH26(底部20の内面からの小壁部26の上端までの距離)は、隔壁部4Bの高さH4Bよりも低くてよく、上述の隙間240の大きさや、開口部20hの大きさ等に応じて適宜選択できる。高さH26は、例えば隔壁部4Bの高さH4Bの80%以下程度が挙げられる。高さH26は、隔壁部4Bの高さH4Bの50%以下、更に40%以下、30%以下程度とすることもできる。小壁部26の形成位置は、開口部20hの形成位置と隔壁部4Bの形成位置との間で適宜選択できる。この例のように小壁部26の形成位置を開口部20hの近くとすると、小壁部26と隔壁部4Bとで挟まれる小領域の容積を大きくし易い。
 タンク3等から電解液がコンテナ2内に漏出すると、電解液は、まず、小壁部26と隔壁部4Bと両側面部22,22(図2)の一部に囲まれる小領域に溜まる。この小領域の容積を超える漏出量、即ち高さH26を超える漏出量に達すると、漏出した電解液は、二点鎖線の矢印で仮想的に示すように小壁部26の上端を乗り越えて、隙間240、開口部20hを順に経て、下部ピット部25の貯留槽に流れ落ちる。
 小壁部26を備えることで、タンク3等から電解液がコンテナ2内に漏出してから、下部ピット部25に溜まるまでの時間を長くできる。このような小壁部26を備える実施形態3のRF電池では、下部ピット部25の貯留槽に電解液が溜まる前に、コンテナ2内における電解液6の漏出を発見し易くなる。特に小壁部26の上端よりも下方に漏洩検知センサ(図示せず)を備えていれば、漏出量がより少ない時期に電解液の漏出を検知でき、電解液の流通を停止する等の対応をより早期に行える。その結果、コンテナ2内において、漏出した電解液による汚染領域をより小さくし易く、漏出後の処理をより軽減できる。また、下部ピット部25の貯留槽内に漏洩検知センサ42を備えること、及び小壁部26の上端よりも上方であって、隔壁部4Bの上端よりも下方に漏洩検知センサ40(図3)を備えることの少なくとも一方を満たせば、電解液6の漏出をより確実に、早期に検知できる。
[実施形態4]
 実施形態4のRF電池として、隔壁部の高さを設定する所定量をセル等漏出量とすることができる。
 この形態では、例えば、タンク3における配管16,17との接続箇所をタンク3の天面とすることが挙げられる。即ち、上記接続箇所の高さ位置がタンク3の高さの100%の地点である。この場合、上部容積61を実質的にゼロとすることができる。そのため、仮に配管16,17等が損傷しても、タンク3内の電解液6がコンテナ2内に実質的に漏出されず、最も漏出した場合でもその漏液量は、電池セル10Cの容積相当量と配管16,17の合計容積相当量との合計量(セル等漏出量)相当である。従って、実施形態4のRF電池に備えられる隔壁部の高さは、セル等漏出量相当の電解液がコンテナ2内に漏れ出たときの液面高さ以上となるように調整すればよい。
 このようにタンク3における配管16,17との接続箇所の配置位置、タンク3内の液面の配置位置によっては、隔壁部の高さをより低くできる。従って、実施形態4のRF電池は、隔壁部をより小型、軽量にできながら、コンテナ2内に漏れ出た電解液がコンテナ2外に漏れ出ることを防止できる。この実施形態4のRF電池において、実施形態2で説明した下部ピット部25や、実施形態3で説明した小壁部26を備えると、隔壁部の高さを更に低くできる。
 本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。例えば、以下の変更が可能である。
(1)図1,図2において、スタック数、循環経路等を変更したり、コンテナ2内の収納物の配置を変更したり、仕切部24を省略したりする。
(2)隔壁部4A,4Bを扉の形成箇所に加えて、その他の箇所に設ける。
 例えば、実施形態1で説明した隔壁部4Aを、端面部23dの近傍に加えて、仕切部24に対面するように別途設けることが挙げられる。又は、隔壁部4AをL字状とし、端面部23dから一方の側面部22に渡るように設けたり、長方形の枠状としたり、有底の容器状とすることが挙げられる。
 その他のRF電池として、同一のコンテナ2内に電池セル10Cとタンク3とを収納せず、電池セル10C及び配管16,17の一部を収納する電池コンテナと、タンク3及び配管16,17の他部を収納するタンクコンテナとを備えるものが挙げられる。タンクコンテナとして、正極電解液を貯留する正極コンテナと、負極電解液を貯留する負極コンテナとをそれぞれ独立して備えることもできる。このようなRF電池において、電池コンテナの扉(端面部23d)の近くに隔壁部を設けたり、更に電池コンテナの下方に下部ピット部25を設けたりすることができる。隔壁部の高さは、電池コンテナに収納される電池セルの容積相当量及び配管の容積相当量との合計量に基づいて調整するとよい。
[付記]
 上述の実施形態1~4等の他、タンク内の電解液がコンテナ内に漏出した場合に、コンテナ外への電解液の漏出を防止できるRF電池として、例えば、以下の構成とすることができる。
[付記1]
 電池セルと、
 前記電池セルに供給する電解液を貯留するタンクと、
 前記電池セルと前記タンクとに接続されて、前記電解液を流通する配管と、
 前記電池セルと、前記タンクと、前記配管とを一括して収納するコンテナと、
 前記コンテナの底部に取り付けられる下部ピット部とを備え、
 前記底部は、その内外に貫通する開口部を備え、
 前記下部ピット部は、前記コンテナ内に漏れ出て前記開口部を経た電解液を貯留する貯留槽を含むレドックスフロー電池。
[付記2]
 上記貯留槽の容積は、前記タンク内に貯留される電解液のうち、前記タンクにおける前記配管との接続箇所よりも上方に貯留される容積と同等以上である[付記1]に記載のレドックスフロー電池。
[付記3]
 前記貯留槽内に漏洩検知センサを備える[付記1]又は[付記2]に記載のレドックスフロー電池。
 上述の[付記]における下部ピット部の詳細については、実施形態2を参照するとよい。実施形態2で説明したように、下部ピット部の貯留槽に電解液を貯留することで、上述の隔壁部4B等を備えていなくても、コンテナ外への電解液の漏出を防止し易い。特に、漏洩検知センサを備えれば([付記3])、漏出を早期に検知できて、上述のように漏出量が少ない時期にポンプの停止等の対応を行えるため、下部ピット部の貯留槽がある程度小さくても、コンテナ外への電解液の漏出を防止できる。貯留槽の容積を上述の特定の大きさとすれば([付記2])、コンテナ内に漏出した電解液の全量を下部ピット部内に貯留でき、好ましくはコンテナ内に電解液が実質的に溜まらないようにすることができる。その結果、コンテナ外への電解液の漏出をより確実に防止できる。
 1A,1B レドックスフロー電池(RF電池)
 10C 電池セル
 11 隔膜
 14 正極電極
 15 負極電極
 16,17,164,165,174,175 配管
 18,184,185 ポンプ
 100 セルスタック
 110 セルフレーム
 111 双極板
 112 枠体
 113 給液孔
 114,116 スリット
 115 排液孔
 118 シール材
 120 サブセルスタック
 122 給排板
 130 エンドプレート
 132 締付部材
 2 コンテナ
 2C セル室
 2T タンク室
 20 底部
 20h 開口部
 21 天板部
 22 側面部
 23,23d 端面部
 24 仕切部
 240 隙間
 25 下部ピット部(貯留槽)
 250 底部
 251 周壁部
 26 小壁部
 3 タンク
 34 正極タンク
 35 負極タンク
 4A,4B 隔壁部
 40,42 漏洩検知センサ
 6 電解液
 61 上部容積

Claims (6)

  1.  電池セルと、
     前記電池セルに供給する電解液を貯留するタンクと、
     前記電池セルと前記タンクとに接続されて、前記電解液を流通する配管と、
     前記電池セルと、前記タンクと、前記配管とを一括して収納するコンテナと、
     前記コンテナ内に設けられ、前記電解液が前記コンテナ外に漏出することを防止する隔壁部とを備え、
     前記隔壁部の高さは、所定量の電解液が前記配管の損傷に伴って前記コンテナ内に漏れ出たときの液面高さ以上であり、
     前記所定量は、前記電池セルの容積相当量と前記配管の容積相当量との合計量を含むレドックスフロー電池。
  2.  前記所定量は、更に、前記タンク内に貯留される電解液のうち、前記タンクにおける前記配管との接続箇所よりも上方に貯留される容積相当量を含む請求項1に記載のレドックスフロー電池。
  3.  前記タンクにおける配管との接続箇所は、前記コンテナの内底面から、前記コンテナの高さの70%の地点よりも上方に位置する請求項2に記載のレドックスフロー電池。
  4.  更に、前記コンテナの底部に取り付けられる下部ピット部を備え、
     前記コンテナの底部は、その内外に貫通する開口部を備え、
     前記下部ピット部は、前記コンテナ内に漏れ出て前記開口部を経た電解液を貯留する貯留槽を含む請求項1から請求項3のいずれか1項に記載のレドックスフロー電池。
  5.  前記貯留槽内に漏洩検知センサを備える請求項4に記載のレドックスフロー電池。
  6.  前記コンテナ内であって、前記隔壁部の上端よりも下方に漏洩検知センサを備える請求項1から請求項5のいずれか1項に記載のレドックスフロー電池。
PCT/JP2017/042015 2017-11-22 2017-11-22 レドックスフロー電池 WO2019102544A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP17890847.1A EP3716383A4 (en) 2017-11-22 2017-11-22 REDOX FLOW BATTERY
CN201780007485.9A CN110073533B (zh) 2017-11-22 2017-11-22 氧化还原液流电池
US16/071,547 US10903510B2 (en) 2017-11-22 2017-11-22 Redox flow battery
JP2018529069A JP6950870B2 (ja) 2017-11-22 2017-11-22 レドックスフロー電池
PCT/JP2017/042015 WO2019102544A1 (ja) 2017-11-22 2017-11-22 レドックスフロー電池
AU2017390079A AU2017390079B2 (en) 2017-11-22 Redox flow battery
KR1020187020871A KR102404500B1 (ko) 2017-11-22 2017-11-22 레독스 플로우 전지
TW107135537A TWI753206B (zh) 2017-11-22 2018-10-09 氧化還原液流電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/042015 WO2019102544A1 (ja) 2017-11-22 2017-11-22 レドックスフロー電池

Publications (1)

Publication Number Publication Date
WO2019102544A1 true WO2019102544A1 (ja) 2019-05-31

Family

ID=66630941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042015 WO2019102544A1 (ja) 2017-11-22 2017-11-22 レドックスフロー電池

Country Status (7)

Country Link
US (1) US10903510B2 (ja)
EP (1) EP3716383A4 (ja)
JP (1) JP6950870B2 (ja)
KR (1) KR102404500B1 (ja)
CN (1) CN110073533B (ja)
TW (1) TWI753206B (ja)
WO (1) WO2019102544A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114566683B (zh) * 2022-03-03 2023-08-11 南京畅晟能源科技有限公司 一种多功能锌溴液流电池电堆测试装置及其测试方法
NO20220699A1 (en) * 2022-06-20 2023-12-21 Corvus Energy AS Safety and Support System for a Fuel Cell Module
CN116072937B (zh) * 2023-03-09 2023-07-18 杭州德海艾科能源科技有限公司 一种全钒液流电池故障检测方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358771A (ja) * 1986-08-28 1988-03-14 Agency Of Ind Science & Technol 電解液流通型電池の電解液タンク装置
JPS6358772A (ja) * 1986-08-28 1988-03-14 Agency Of Ind Science & Technol 電解液タンクからの電解液漏洩検知方法
JPH01176666A (ja) * 1988-01-06 1989-07-13 Meidensha Corp 電解液循環型電池
JP2002025599A (ja) 2000-07-12 2002-01-25 Sumitomo Electric Ind Ltd レドックスフロー電池の液漏れ検知システム
JP2007524968A (ja) * 2003-12-12 2007-08-30 ユーティーシー フューエル セルズ,エルエルシー 凍結温度以下での燃料電池発電装置内の水および補助電力の管理
JP2012218759A (ja) * 2011-04-07 2012-11-12 Jrf International Inc 発電用コンテナ
JP2016055905A (ja) * 2014-09-10 2016-04-21 Jfeエンジニアリング株式会社 揮発性薬液保管構造

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009032550A (ja) * 2007-07-27 2009-02-12 Sanyo Electric Co Ltd 電源装置
US20130011704A1 (en) * 2008-07-07 2013-01-10 Enervault Corporation Redox Flow Battery System with Multiple Independent Stacks
AT510723B1 (de) * 2010-12-21 2012-06-15 Cellstrom Gmbh Rahmen einer zelle einer redox-durchflussbatterie
KR101459927B1 (ko) * 2013-07-12 2014-11-07 오씨아이 주식회사 전해액 분배 효율성을 향상시킨 셀 프레임 및 이를 구비하는 레독스 흐름 전지
KR101377187B1 (ko) * 2014-01-02 2014-03-25 스탠다드에너지(주) 반응물질의 누설방지를 위한 저장 및 회수수단이 구비된 레독스 흐름전지 또는 연료전지
WO2016007555A1 (en) * 2014-07-07 2016-01-14 Unienergy Technologies, Llc Systems and methods in a redox flow battery
GB201511695D0 (en) * 2015-07-03 2015-08-19 Renewable Energy Dynamics Technology Ltd Improvements in redox flow batteries
CN205274253U (zh) * 2016-01-13 2016-06-01 扬州润扬物流装备有限公司 散货集装箱
CN107195942B (zh) * 2016-03-14 2019-12-31 大连融科储能技术发展有限公司 电解液储罐、液流电池、箱式液流电池系统及液流电池充放电控制方法
DE202018102309U1 (de) * 2017-04-25 2018-05-02 Edlmair Kunststofftechnik Gmbh Doppelwandiger Speichertank für stationäre Redox-Flow-Batterien

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358771A (ja) * 1986-08-28 1988-03-14 Agency Of Ind Science & Technol 電解液流通型電池の電解液タンク装置
JPS6358772A (ja) * 1986-08-28 1988-03-14 Agency Of Ind Science & Technol 電解液タンクからの電解液漏洩検知方法
JPH01176666A (ja) * 1988-01-06 1989-07-13 Meidensha Corp 電解液循環型電池
JP2002025599A (ja) 2000-07-12 2002-01-25 Sumitomo Electric Ind Ltd レドックスフロー電池の液漏れ検知システム
JP2007524968A (ja) * 2003-12-12 2007-08-30 ユーティーシー フューエル セルズ,エルエルシー 凍結温度以下での燃料電池発電装置内の水および補助電力の管理
JP2012218759A (ja) * 2011-04-07 2012-11-12 Jrf International Inc 発電用コンテナ
JP2016055905A (ja) * 2014-09-10 2016-04-21 Jfeエンジニアリング株式会社 揮発性薬液保管構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3716383A4

Also Published As

Publication number Publication date
JP6950870B2 (ja) 2021-10-13
US10903510B2 (en) 2021-01-26
TWI753206B (zh) 2022-01-21
EP3716383A1 (en) 2020-09-30
KR102404500B1 (ko) 2022-06-07
CN110073533A (zh) 2019-07-30
CN110073533B (zh) 2022-03-01
EP3716383A4 (en) 2020-12-09
US20190237782A1 (en) 2019-08-01
KR20200086758A (ko) 2020-07-20
TW201931656A (zh) 2019-08-01
AU2017390079A1 (en) 2019-06-06
JPWO2019102544A1 (ja) 2020-10-01

Similar Documents

Publication Publication Date Title
WO2019102544A1 (ja) レドックスフロー電池
US10396372B2 (en) Electrolytic solution circulation type battery
US20080241643A1 (en) Vanadium redox battery incorporating multiple electrolyte reservoirs
WO2016007555A1 (en) Systems and methods in a redox flow battery
WO2014045337A9 (ja) レドックスフロー電池
JP2021507498A (ja) 流動バッテリシステム
KR101791311B1 (ko) 레독스 흐름 전지의 스택 손상 방지 방법
US11081708B2 (en) Redox flow battery
JP2012160344A (ja) 電解液循環型電池のタンク、および電解液循環型電池
JP2012099416A (ja) レドックスフロー電池
KR20190063004A (ko) 모듈형 레독스 흐름 전지
JP5679520B2 (ja) レドックスフロー電池、
TWI712205B (zh) 集裝型電池
JP2015232960A (ja) 電池システム
WO2019087377A1 (ja) レドックスフロー電池
KR20190063959A (ko) 모듈형 레독스 흐름 전지

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018529069

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017390079

Country of ref document: AU

Date of ref document: 20171122

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017890847

Country of ref document: EP

Effective date: 20200622