WO2019102520A1 - 情報処理装置、画像取得装置、基準物保持部材、情報処理方法及び情報処理プログラム - Google Patents

情報処理装置、画像取得装置、基準物保持部材、情報処理方法及び情報処理プログラム Download PDF

Info

Publication number
WO2019102520A1
WO2019102520A1 PCT/JP2017/041805 JP2017041805W WO2019102520A1 WO 2019102520 A1 WO2019102520 A1 WO 2019102520A1 JP 2017041805 W JP2017041805 W JP 2017041805W WO 2019102520 A1 WO2019102520 A1 WO 2019102520A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
information
cells
staining
reference object
Prior art date
Application number
PCT/JP2017/041805
Other languages
English (en)
French (fr)
Inventor
博忠 渡邉
千枝子 中田
拓郎 西郷
真美子 舛谷
健太 今井
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2017/041805 priority Critical patent/WO2019102520A1/ja
Publication of WO2019102520A1 publication Critical patent/WO2019102520A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/06Quantitative determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers

Definitions

  • the present invention relates to an information processing apparatus, an image acquisition apparatus, a reference object holding member, an information processing method, and an information processing program.
  • the first reference object processed with the first cell is imaged, and information of the acquired first reference object and the second reference object processed with the second cell are imaged and acquired A state in which the first cell is processed based on the information acquisition unit for acquiring information on the second reference object to be selected and the information on the first reference object and the information on the second reference object acquired by the information acquisition unit And a state comparing unit that compares the state of the second cell with the processed state of the second cell.
  • an information acquiring unit for imaging the first reference object processed with the first cell and acquiring information of the acquired first reference object, and the information acquired by the information acquiring unit It is an information processing device provided with the judgment part which judges the processed state of the 1st cell based on the information on a standard thing.
  • a holder for holding the reference object to be treated together with the cells stored in the container, and a holder for holding the holder in a removable manner with respect to the container. And a reference object holding member.
  • the first reference object processed with the first cell is imaged, and information of the acquired first reference object and the second reference object processed with the second cell are imaged and acquired
  • the first cell is processed based on information acquisition means for acquiring information on the second reference object to be selected, and information on the first reference object and information on the second reference object acquired by the information acquisition means
  • An information processing method comprising state comparison means for comparing a state and a processed state of the second cell.
  • the computer images the first reference object processed with the first cell, and images the acquired information of the first reference object and the second reference object processed with the second cell. And acquiring information of the second reference object to be acquired, and based on the information of the first reference object and the information of the second reference object acquired in the information acquisition step, It is an information processing program for performing the state comparison step which compares the processed state and the processed state of a 2nd cell.
  • FIG. 1 is a diagram showing an example of the configuration of a microscope observation system 1 according to an embodiment of the present invention.
  • the microscope observation system 1 performs image processing on a captured image acquired by imaging a cell or the like.
  • the microscope observation system 1 includes a microscope apparatus 20, an image processing apparatus 10, a display unit 30, and an operation unit 40.
  • the microscope apparatus 20 is a microscope that observes an enlarged image of a sample placed on the motorized stage 21.
  • the sample is a biological sample to be observed, beads or the like.
  • the biological sample is, for example, a fluorescently stained cell.
  • an image obtained by the microscope device 20 imaging a cell or the like will be simply referred to as a cell image.
  • the well plate WP is mounted on the motorized stage 21.
  • the well plate WP has one or more wells W.
  • the well W is an example of a container.
  • the well plate WP has 8 ⁇ 12 96 wells W as shown in FIG.
  • the number of wells W included in the well plate WP is not limited to this.
  • the well plate WP may have 48 of 6 ⁇ 8, 24 of 4 ⁇ 6, 386 of 16 ⁇ 24, or 1536 wells W of 32 ⁇ 48.
  • the cells are stored in well W. Alternatively, the cells may be cells cultured in the well W under specific experimental conditions.
  • Specific experimental conditions include temperature, humidity, culture period, elapsed time from the application of stimulus, type and intensity of stimulus to be applied, concentration, amount, presence or absence of stimulus, induction of biological characteristics, etc.
  • the stimulation is, for example, physical stimulation such as electricity, sound wave, magnetism, light or the like, or chemical stimulation by administration of a substance or a drug.
  • biological characteristics include the stage of cell differentiation, morphology, behavior of cells themselves, number of cells, behavior of molecules in cells, morphology and behavior of organelles, shape of elements in cells, shape of cells themselves , The behavior of nuclear structures, the behavior of DNA molecules, etc.
  • the microscope apparatus 20 observes the cells stored in each of the plurality of wells W of the well plate WP and the reference material.
  • the cells and the reference material are stored in each of the plurality of wells W.
  • Standards are stained with the cells. That is, the standard is treated with the cells, which is a treatment to stain the cells.
  • the reference substance is a predetermined protein.
  • the reference substance is not limited to a protein, and may be a carbohydrate, a lipid, a nucleic acid, or a specific amino acid.
  • the reference material is applied to, for example, a bead or a reference material holding member described later.
  • the predetermined protein is, for example, a protein contained in cells stained with a standard, a protein that can be stained with a protein to be observed, such as glyceraldehyde 3-phosphate dehydrogenase, actin and the like.
  • glyceraldehyde 3-phosphate dehydrogenase is also simply referred to as GAPDH.
  • the beads and the reference material holding member are immersed in the solution containing the reference material.
  • predetermined proteins are applied to the beads and the reference material holding member.
  • the predetermined protein is applied to the surface of the bead by immersing the bead in a solution containing the predetermined protein.
  • the staining state of the cells is associated with the staining state of a predetermined protein which is a reference substance.
  • staining is performed in a state in which the staining solution of the reference material and the staining solution of the protein to be observed are mixed.
  • a staining solution such as an antibody against the reference substance and a staining solution such as an antibody against a protein to be observed are mixed to stain the cells and the reference substance.
  • the ratio of the staining solution for staining the reference material and the staining solution for staining the cells is the same.
  • the staining solution is basically a very small amount, the staining solution of the antibody against the reference material and the staining solution such as the antibody against the protein to be observed are mixed in advance and used in the wells to be calibrated. Added.
  • dye liquid in a well can be suppressed. Therefore, by comparing the staining state of the reference substance stained together with the cells, it is possible to compare the staining states of the cells.
  • the staining state is determined based on the time for staining the cells to be stained and the reference material, and the concentration of the staining solution used for the staining. That is, the stained state of the cells by the staining process is determined based on the concentration of the staining solution and the time for the staining process.
  • the protein of the reference product and the protein of the cells to be stained may be the same or different.
  • the same type of protein may be used as a reference substance, or a protein representing a specific protein as a reference substance may be used.
  • the process of staining cells is described using an antigen-antibody reaction, but the method of staining is not limited thereto. Staining may be performed by methods such as color reaction other than antigen-antibody reaction.
  • the antigen-antibody reaction is to stain cells or a reference substance by an immune reaction.
  • the cells stored in the well W1 shown in FIG. 1 will also be described as reference cells.
  • the cells stored in the well W1 shown in FIG. 1 are also described as first cells.
  • a standard that is stained together with the reference cells is also referred to as a reference of reference cells.
  • the standard that is stained with this reference cell is also referred to as the first standard.
  • a reference cell reference is a reference used to evaluate the reference cells.
  • the cells stored in the well W2 shown in FIG. 1 are also described as target cells.
  • the cells stored in the well W2 shown in FIG. 1 are also described as second cells.
  • a reference substance stained with the target cell is also referred to as a reference substance of the target cell.
  • the standard that is stained with the subject cells is also referred to as a second standard.
  • the reference substance of the target cell is a reference substance used to evaluate the target cell.
  • the reference cells of the well W1 are compared with the reference cells of the well W1 and the target cells of the well W2. Therefore, the difference between the target cell in well W2 and the reference cell in well W1 as the reference is clarified.
  • the target cells of the well 2 are compared based on the reference cells of the well W1, but the present invention is not limited thereto.
  • the first cell of well W1 may be compared with the second cell of well 2.
  • the reference cells and the cells of interest are stained by the same staining procedure.
  • the staining procedure includes the type and concentration of the staining solution used for staining, the process of staining, the time of staining, and the like.
  • the state of staining of the reference material between wells W is generally the same state of staining.
  • the state of staining refers to the degree of tint of the standard after staining, and is the amount of dye in the staining solution bound to the standard after staining.
  • the state of staining when the state of staining is substantially the same, the colors of the reference of different wells W become substantially the same. That is, when the state of staining is substantially the same, the amount of dye bound to a predetermined amount of reference in different wells W is the same.
  • the state of staining may also be described as the state of staining.
  • the staining state of the reference substance between the wells W is different.
  • the staining state of the wells W can be compared. For example, when the staining solution is put in the well W, a predetermined amount of staining solution may not be supplied to the cells at the bottom of the well W, for example, the staining solution remains on the side of the well W or the like. In this case, the state of staining of cells may be different from the state of staining of cells supplied with a predetermined amount of staining solution.
  • the staining conditions include the conditions of the staining process, such as the amount of the staining solution supplied to the cells, and the conditions of staining the cells, such as the conditions of the fixation process of fixing the cells when staining the cells. It is.
  • the degree of staining varies depending on the cells, so there are cases where the state of staining of the cells in the wells can not be compared from the stained cells. Also, even if the cells in the wells are the same, when different stimulations are applied to the cells in each well, the degree of staining of the cells in the wells may differ due to the applied stimulation, and It may not be possible to compare the staining status of cells in Therefore, in order to be able to compare the staining state of cells in different wells, it was decided to place a reference material in each well to be compared and stain the reference material together with the cells.
  • the reference substances placed in the wells to be compared are substances of the same type, and if the conditions under which the reference substances are stained such as the staining solution and the staining time are the same, the reference substances placed in the wells to be compared The staining condition is almost the same. Therefore, the staining conditions of the wells to be compared can be estimated by comparing the state in which the respective reference materials placed in the wells to be compared are stained. That is, if the stained reference material in the wells to be compared has the same staining state, the staining conditions for each well are the same.
  • the staining conditions of are the same. Therefore, if the staining condition of the cells to be analyzed is different under the same staining conditions, it can be estimated that the amount of proteins to be stained contained in the cells to be analyzed is different. That is, the standard functions as an index for estimating the staining conditions for the cells in the well.
  • the staining condition of the reference material is obtained by staining the reference material with the cells to be analyzed under the staining condition such that the staining condition of the reference material between the wells is substantially the same as the staining condition.
  • the state of staining between each well can be compared.
  • differences in staining conditions between wells can be identified.
  • the state of staining on the cells to be analyzed can be clarified. Therefore, it is possible to analyze the cells taking into consideration the staining conditions for the cells to be analyzed.
  • the image processing apparatus 10 compares the staining conditions of the cells stained with the reference material by comparing the state of the staining of the reference material captured in the cell image for each well W. In this example, the image processing apparatus 10 determines the staining state and the target of the reference cell based on the information of the reference of the reference cell stained with the reference cell and the information of the reference of the target cell stained with the target cell. Compare with the staining status of the cells.
  • the image processing device 10 is an information processing device that analyzes a cell image captured by the microscope device 20.
  • the display unit 30 includes, for example, a liquid crystal display, and displays an image such as a captured image that the image processing apparatus 10 analyzes.
  • the image displayed on the display unit 30 includes an image generated based on the analysis result analyzed by the image processing apparatus 10.
  • the operation unit 40 is operated by the user.
  • the operation unit 40 outputs an operation signal when operated by the user.
  • the operation signal is supplied to the image processing apparatus 10.
  • the image processing apparatus 10 acquires various information supplied from the user based on the operation signal supplied from the operation unit 40. Examples of the operation unit 40 include a keyboard 40 a and a mouse 40 b.
  • FIG. 2 is a block diagram showing an example of a functional configuration of the microscope observation system 1.
  • the microscope apparatus 20 is a biological microscope, and includes an imaging unit 22 in addition to the motorized stage 21 described above.
  • the motorized stage 21 can arbitrarily move the position of the imaging target in a predetermined direction (for example, a direction in a two-dimensional plane in the horizontal direction).
  • the motorized stage 21 is driven by a motorized stage drive unit (not shown).
  • the microscope apparatus 20 does not need to be equipped with the electrically-driven stage 21, and it does not matter as a stage which does not operate
  • the imaging unit 22 includes an imaging element such as a charge-coupled device (CCD) or a complementary MOS (CMOS), and images an object to be imaged on the motorized stage 21.
  • the imaging unit 22 may be a non descand detector (NDD) detector.
  • NDD non descand detector
  • the objective lens receives the light transmitted through the cells.
  • the light received by the objective lens is not limited to the light transmitted through the cells.
  • the objective may receive the light reflected by the cells.
  • the microscope device 20 may be, for example, a differential interference contrast microscope (DIC), a phase contrast microscope, a fluorescence microscope, a confocal microscope, a super resolution microscope, a two-photon excitation fluorescence microscope, a light sheet microscope , Light field microscope, etc.
  • DIC differential interference contrast microscope
  • phase contrast microscope a fluorescence microscope
  • confocal microscope a confocal microscope
  • super resolution microscope a two-photon excitation fluorescence microscope
  • a light sheet microscope e.g., Light field microscope, etc.
  • the microscope device 20 captures an image of the culture vessel placed on the motorized stage 21.
  • the culture vessel include a well plate WP and a slide chamber.
  • the microscope apparatus 20 irradiates light with cells cultured in a large number of wells W of the well plate WP, and thereby images transmitted light transmitted through the cells as an image of the cells. Thereby, the microscope device 20 can acquire an image such as a transmission DIC image of cells, a phase difference image, a dark field image, and a bright field image. Furthermore, by irradiating the cells with excitation light that excites the fluorescent substance, the microscope device 20 captures the fluorescence emitted from the biological substance as an image of the cells.
  • cells are stained with immunostaining, chemical reagents or the like to obtain cell images. You may combine and observe them.
  • means for observing these cells, a method for staining the cells, etc. may be appropriately selected according to the purpose.
  • cells are fixed and stained to obtain a cell image. That is, the treatment in which the reference substance is treated with the cells is a treatment for fixing the cells.
  • Fixed cells stop metabolism. Therefore, in order to observe the time-dependent change in cells with fixed cells after stimulation of the cells, it is necessary to prepare a plurality of cell culture vessels seeded with the cells. For example, it may be desirable to stimulate the cells and observe changes in cells after a first time and changes in cells after a second time that is different from the first time. In this case, after stimulation is applied to the cells and the first time has elapsed, the cells are fixed and stained to obtain a cell image.
  • a cell culture vessel different from the cells used for the observation in the first time is prepared, and after stimulating the cells for a second time, the cells are fixed and stained to obtain a cell image.
  • the number of cells used to observe intracellular changes between the first time and the second time is not limited to one. Therefore, images of a plurality of cells are acquired at the first time and the second time, respectively. For example, if the number of cells observing changes in cells is 1000, 2000 cells will be photographed at the first time and the second time. Therefore, in order to acquire details of changes in cells in response to a stimulus, a plurality of cell images are required at each imaging timing from the stimulus, and a large amount of cell images are obtained.
  • the microscope device 20 picks up the light or fluorescence from the chromogenic substance itself taken in the biological substance, or the light or fluorescent produced by the substance having the chromophore binding to the biological substance as the image of the cell described above. May be Thereby, the microscopy system 1 can acquire a fluorescence image, a confocal image, a super resolution image, and a two-photon excitation fluorescence microscope image.
  • the method to acquire the image of a cell is not restricted to an optical microscope.
  • a method of acquiring an image of cells may be an electron microscope.
  • the type of the image in which the cell is imaged may be selected as appropriate.
  • the cells in the present embodiment are, for example, primary cultured cells, established cultured cells, cells of tissue sections, and the like.
  • a sample to be observed may be observed using a cell aggregate or a tissue sample to obtain an image including the cells.
  • the state of the cell is not particularly limited, and may be a living state or a fixed state. Of course, the state of the cell may be a combination of the information of the living state and the fixed information.
  • the image processing device 10 is an analysis device that analyzes cells.
  • the calculation unit 100 of the image processing apparatus 10 includes an analysis unit (not shown).
  • the analysis unit acquires a cell image from the image acquisition unit 101.
  • the analysis unit analyzes the cells captured in the cell image acquired from the image acquisition unit 101.
  • the analysis is, for example, analysis of the correlation of the cells imaged in the cell image. This correlation is calculated from the feature quantities of the cells imaged in the cell image.
  • the feature amount includes the brightness of the cell image, the cell area in the image, the variance of the brightness of the cell image in the image, and the like. That is, the feature amount is a feature derived from information acquired from a cell image.
  • the analysis unit calculates the luminance distribution in the cell image acquired from the image acquisition unit 101.
  • the analysis unit uses a plurality of images different in time series or changes in cell state such as differentiation, and changes in the predetermined time of the calculated brightness distribution or with changes in cell state such as differentiation of the calculated brightness distribution From the change, position information indicating a change in luminance different from the others may be obtained, and the change in luminance may be used as the feature amount.
  • the analysis unit analyzes the cells captured in the main captured image by multi-scale analysis of feature amounts indicating features of the cells extracted from the cell image.
  • the multi-scale analysis is obtained by, for example, a graphical Lasso method or the like.
  • the graphical lasso method is an efficient algorithm for estimating an accuracy matrix from a Gaussian model with L1 regularization. For example, it is described in "Sparse inverse covariance estimation with the graphical lasso" in Biostatistics (2008), 9, 3 432-441 by JEROME FRIEDMAN, TREVOR HASTIE and ROBERT TIBSHIRANI.
  • the image processing apparatus 10 compares the state of staining of the reference objects for each well W captured in a plurality of cell images used for analysis, and under staining conditions suitable for use in analysis. It is a computer apparatus which selects and displays the cell image by which the cell was imaged from the several cell image.
  • the image processing apparatus 10 includes an operation unit 100, a storage unit 200, a result output unit 300, and an operation detection unit 400.
  • the arithmetic unit 100 functions by causing a processor (circuitry) to execute a program stored in the storage unit 200. Further, some or all of the functional units of the computing unit 100 may be configured by hardware such as LSI (Large Scale Integration) or ASIC (Application Specific Integrated Circuit).
  • the calculation unit 100 includes an image acquisition unit 101, an extraction unit 102, a comparison unit 103, a determination unit 104, and a calibration unit 105 as its functional units.
  • the image acquisition unit 101 acquires a cell image from another device that captures a captured image.
  • the image acquisition unit 101 acquires a cell image captured by the imaging unit 22 included in the microscope device 20.
  • the image acquisition unit 101 supplies the cell image acquired from the imaging unit 22 to the extraction unit 102.
  • the image acquisition unit 101 may store the cell image acquired from the imaging unit 22 in the image storage unit 201.
  • the extraction unit 102 acquires a cell image from the image storage unit 201.
  • the cell image acquired by the image acquisition unit 101 a plurality of images in which the culture state of the cells is captured in time series, a plurality of images in which the cells are cultured under various experimental conditions, different stimuli are added.
  • An image of the harvested cells is included.
  • There is a state in which a captured image and a cell image obtained by capturing a cell stained with the reference are associated with each other.
  • the cell image will be described in the case of being captured in a state in which the reference object is included.
  • the extraction unit 102 acquires a cell image from the image acquisition unit 101.
  • the extraction unit 102 extracts information of a reference object included in the cell image acquired from the image acquisition unit 101.
  • the information on the reference object is luminance information indicating the brightness of the reference object in this example.
  • the luminance information indicating the brightness of the reference object changes in accordance with the amount of the fluorescent substance attached to the protein of the reference object.
  • the microscope apparatus 20 images the fluorescence of the fluorescent substance attached to this protein. At the position where the fluorescence is imaged, there is a protein to which a fluorescent substance is attached. When a large amount of fluorescent material is attached, brighter imaging is performed as compared with the case where a small amount of fluorescent material is attached.
  • the brightness of the fluorescent substance attached to the reference may be simply referred to as the brightness of the reference.
  • the information on the reference material may be, for example, the degree of color development showing the shade of color by staining.
  • the extraction unit 102 identifies the shape of the reference object included in the cell image.
  • the extraction unit 102 extracts luminance information of the reference object based on the shape of the identified reference object.
  • the extraction unit 102 extracts information of cells imaged together with the reference object.
  • the cell information is, for example, information such as brightness information indicating the brightness of the cell, and the shape of the cell.
  • the brightness information indicating the brightness of the cell changes in accordance with the amount of fluorescent substance attached to the protein of the cell.
  • the brightness of a fluorescent substance attached to a cell may be simply referred to as the brightness of the cell.
  • the extraction unit 102 acquires information on the reference substance of the reference cell and information on the reference cell from the reference cell image obtained by imaging the reference cell described above and the reference substance of the reference cell.
  • the extraction unit 102 also acquires information on the reference object of the target cell and information on the target cell from the target cell image obtained by imaging the target cell described above and the reference object of the target cell. That is, the information acquiring unit images the first reference object processed with the first cell, and images the information of the acquired first reference object and the second reference object processed with the second cell, and acquires 2 Acquire the information of the reference object.
  • the information acquisition unit is the extraction unit 102.
  • the information acquisition unit images the processed first cell, acquires information of the first cell, and images of the processed second cell, and acquires information of the second cell.
  • the extraction unit 102 supplies, to the comparison unit 103, the information on the reference substance of the extracted reference cell and the information on the reference substance of the target cell.
  • the comparison unit 103 compares the information of the reference cell with the information of the target cell by comparing the information of the reference substance of the reference cell with the information of the reference substance of the target cell.
  • Reference cell information is the amount of stained material contained in the reference cells.
  • the target cell information is the amount of the stained substance contained in the target cell. That is, the comparison unit 103 compares the staining conditions of the cells by comparing the reference objects. Specifically, the comparison unit 103 acquires, from the extraction unit 102, the information on the reference object of the reference cell and the information on the reference object of the target cell. The comparison unit 103 compares the information of the reference object acquired from the extraction unit 102. More specifically, the comparison unit 103 compares the luminance information of the reference object of the reference cell with the luminance information of the reference object of the target cell.
  • the comparison unit 103 supplies the result output unit 300 with the result of comparing the information of the reference material of the reference cell and the information of the reference material of the target cell.
  • the result output unit 300 obtains, from the comparison unit 103, the result of comparing the information of the reference substance of the reference cell with the information of the reference substance of the target cell.
  • the result output unit 300 causes the display unit 30 to display the comparison result acquired from the comparison unit 103.
  • the comparison unit 103 supplies the determination result of the comparison result of the information on the reference material of the reference cell and the information on the reference object of the target cell, the reference cell image, and the target cell image.
  • the determination unit 104 obtains, from the comparison unit 103, the comparison result of the information on the reference object of the reference cell and the information on the reference object of the target cell.
  • the determination unit 104 acquires a reference cell image and a target cell image from the comparison unit 103.
  • the determination unit 104 determines the state of staining of the reference cell and the state of staining of the target cell based on the comparison result of the information of the reference substance of the reference cell obtained from the comparison unit 103 and the information of the reference article of the target cell. judge. That is, the determination unit 104 determines the difference between the processing condition for the first cell and the processing condition for the second cell based on the result of the state comparison unit.
  • the determination unit 104 is one in which the reference cell and the target cell are stained under the same conditions Estimate. That is, the determination unit 104 determines that the reference cell image in which the reference cell is imaged and the target cell image in which the target cell is imaged can be used for analysis. For example, if the brightness of the protein of the cell of the reference cell image and the brightness of the protein of the cell of the target cell image differ by analysis, it is presumed that the difference in the brightness is not due to the difference in staining conditions be able to. Therefore, for example, when different stimuli are applied to each cell, it can be estimated that the amount of protein in the cells is different due to the difference in the stimuli.
  • the threshold of the difference in brightness is stored in advance as a reference for determining whether the information of the reference object of the reference cell and the information of the reference object of the target cell have substantially the same brightness. It may be stored in the staining condition storage unit 202 shown in the unit 200. Also, the threshold of the difference in brightness may be supplied from the operation unit 40 by the user operating the image processing apparatus 10.
  • the determination unit 104 stains the staining condition of the reference cell and the target cell. It is determined that the condition is different. That is, the determination unit 104 determines that the reference cell image in which the reference cell is imaged and the target cell image in which the target cell is imaged can not be used in the same analysis. This is because, for example, it is not known whether the brightness of the cells is different depending on the reaction to the stimulus, because the staining conditions of the cells are different.
  • the determination unit 104 supplies the determination result to the result output unit 300.
  • the result output unit 300 acquires the determination result from the determination unit 104.
  • the result output unit 300 causes the display unit 30 to display the determination result acquired from the determination unit 104. Further, the determination unit 104 supplies the determination result, the reference cell image, and the target cell image to the calibration unit 105.
  • the calibration unit 105 images the reference cell and the target cell based on the state of the staining of the reference cell and the state of the staining of the target cell, which are compared by the comparison unit 103, and the acquired reference cell and the target cell.
  • the information of at least one of the information is calibrated. That is, in the information processing apparatus, at least one of the information on the first cell and the information on the second cell is calibrated based on the information on the first reference object and the information on the second reference object.
  • the information processing apparatus is the image processing apparatus 10.
  • the calibration unit 105 acquires the determination result, the reference cell image, and the target cell image from the determination unit 104.
  • the calibration unit 105 calibrates the information of the cells based on the staining state of the reference objects.
  • the calibration unit 105 calculates a ratio between the brightness indicated by the brightness information of the reference object of the reference cell and the brightness indicated by the brightness information of the reference object of the target cell. Calibrate the brightness of the reference cell and the brightness of the target cell based on.
  • the calibration unit 105 determines the state of staining of the reference object stored in the storage unit.
  • the staining status of the cells may be calibrated based on the relationship between the and the staining status of the cells. That is, the calibration unit 105 may calibrate the color and brightness of the stained cell based on the relationship between the staining state of the reference material and the staining state of the cells stored in the storage unit.
  • the calibration unit 105 may store in advance information indicating the relationship between the degree of change of the reference object due to staining and the degree of change of cells due to staining.
  • the degree of change of the first reference material with respect to the degree of treatment for the first cell may be determined in advance. Also, the degree of change of the first reference material and the second reference material with respect to the degree of treatment to the first cell and the second cell may be determined in advance.
  • the calibration unit 105 since the calibration unit 105 uses the reference cell as a reference, the calibration unit 105 calculates information of the target cell in the same staining state as the reference cell. Note that the calibration unit 105 may calculate information on the reference cell in the same staining state as the target cell.
  • the calibration unit 105 supplies the calibration result to the result output unit 300.
  • the result output unit 300 acquires the calibration result from the calibration unit 105.
  • the result output unit 300 causes the display unit 30 to display the analysis result acquired from the calibration unit 105.
  • FIG. 3 is a flow chart showing an example of the calculation procedure of the image processing apparatus 10 of the present embodiment.
  • the calculation procedure shown here is an example, and omission of the calculation procedure or addition of the calculation procedure may be performed.
  • the user stains the cells and the reference substance (step S10). Specifically, the user stains the reference substance of the reference cell together with the reference cell. Also, the user stains the reference of the target cell together with the target cell.
  • the imaging unit 22 captures a reference cell image in which the reference cell and the reference substance of the reference cell are imaged.
  • the imaging unit 22 captures a target cell image in which a target cell and a reference object of the target cell are captured. That is, the image acquisition apparatus includes an imaging unit that images the first reference object and the second reference object.
  • the image acquisition device is the microscope observation system 1.
  • the image acquisition unit 101 acquires a reference cell image and a target cell image from the imaging unit 22 (step S20, step S30).
  • the image acquisition unit 101 causes the image storage unit 201 to store the cell image acquired from the imaging unit 22 (step S40). Specifically, the image acquisition unit 101 causes the image storage unit 201 to store the reference cell image acquired from the imaging unit 22 and the target cell image.
  • the extraction unit 102 extracts information of the reference object (step S50). Specifically, the extraction unit 102 acquires a reference cell image and a target cell image from the image storage unit 201. The extraction unit 102 extracts, from the reference cell image acquired from the image storage unit 201, information indicating the brightness of the reference object of the reference cell. The extraction unit 102 extracts information indicating the brightness of the reference cell from the reference cell image acquired from the image storage unit 201. Further, the extraction unit 102 extracts information indicating the brightness of the reference object of the target cell from the target cell image acquired from the image storage unit 201. The extraction unit 102 extracts information indicating the brightness of the target cell from the target cell image acquired from the image storage unit 201.
  • the extraction unit 102 supplies the information indicating the brightness of the reference cell extracted from the reference cell image and the information indicating the brightness of the reference object of the reference cell to the comparison unit 103. Further, the extraction unit 102 supplies, to the comparison unit 103, information indicating the brightness of the target cell extracted from the target cell image and information indicating the brightness of the reference object of the target cell.
  • the comparison unit 103 acquires, from the extraction unit 102, information indicating the brightness of the reference cell and information indicating the brightness of the reference object of the reference cell.
  • the comparison unit 103 acquires, from the extraction unit 102, information indicating the brightness of the target cell and information indicating the brightness of the reference object of the target cell.
  • the comparison unit 103 compares the brightnesses of the reference objects stained in different wells (step S60). Specifically, the comparison unit 103 compares the information indicating the brightness of the reference object of the reference cell acquired from the extraction unit 102 with the information indicating the brightness of the reference object of the target cell acquired from the extraction unit 102. .
  • the state comparison unit is configured to process the first cell and to process the second cell.
  • the state comparison unit is the comparison unit 103.
  • the comparison unit 103 supplies the result output unit 300 with the comparison result of the information indicating the brightness of the reference object of the reference cell and the information indicating the brightness of the reference object of the target cell acquired from the extraction unit 102. .
  • the result output unit 300 displays the comparison result of the information indicating the brightness of the reference object of the reference cell acquired from the comparing unit 103 and the information indicating the brightness of the reference object of the target cell acquired from the extracting unit 102 as the display unit.
  • the comparison unit 103 compares the information indicating the brightness of the reference object of the reference cell with the information indicating the brightness of the reference object of the target cell, the information indicating the brightness of the reference cell, and the brightness of the target cell.
  • Information to be shown, a reference cell image, and a target cell image are supplied to the determination unit 104.
  • the determination unit 104 uses the comparison unit 103 to compare the information on the reference object of the reference cell and the information on the reference object of the target cell, the information indicating the brightness of the reference cell, and the information indicating the brightness of the target cell. , A reference cell image and a target cell image.
  • the determination unit 104 compares the state of staining of the cells stained in different wells to determine the staining condition (step S70). Specifically, based on the information on the reference material of the reference cell acquired from the comparison unit 103 and the information on the reference object of the target cell, the determination unit 104 determines the brightness of the reference cell stained in different wells and the target Determine the brightness of the cells.
  • the determination unit 104 determines the reference. It is determined that the information indicating the brightness of the reference of the cell and the information indicating the brightness of the reference of the target cell are substantially the same.
  • the predetermined threshold is the reference object of the target cell with respect to the luminance value corresponding to the reference object of the reference cell. The corresponding luminance value is 5% difference.
  • the information indicating the brightness of the reference object is not limited to this, and the ratio of the brightness of the reference object to the brightness of the background area other than the cells may be used.
  • the determination unit 104 determines that the information indicating the brightness of the reference object of the reference cell and the information indicating the brightness of the reference object of the target cell are substantially the same, the state of staining of the reference cell; It is determined that the state of staining of the target cell is the same as the state of staining.
  • the determination unit 104 determines the reference cell reference. It is determined that the information indicating the brightness of the object and the information indicating the brightness of the reference object of the target cell are different. If the determination unit 104 determines that the information indicating the brightness of the reference object of the reference cell is different from the information indicating the brightness of the reference object of the target cell, the state of staining of the reference cell and the target cell It is determined that the state of staining is different from the state of staining.
  • the determination unit 104 supplies the determination result to the result output unit 300.
  • the result output unit 300 causes the display unit 30 to display the determination result acquired from the determination unit 104. Further, the determination unit 104 determines the determination result, the information indicating the brightness of the reference object of the reference cell, the information indicating the brightness of the reference cell, the information indicating the brightness of the reference object of the target cell, and the target cell. Information indicating brightness, a reference cell image, and a target cell image are supplied to the calibration unit 105.
  • the calibration unit 105 acquires, from the determination unit 104, the determination result, the information indicating the brightness of the reference cell, the information indicating the brightness of the target cell, the reference cell image, and the target cell image.
  • the calibration unit 105 calibrates the information indicating the brightness of the reference cell obtained from the determination unit 104 or the information indicating the brightness of the target cell (step S80). Specifically, if the determination result obtained from the determination unit 104 indicates that the state of the staining of the reference cell and the state of the staining of the target cell are in the same state of staining, the calibration unit 105 The ratio of the information on the brightness of the reference object to the information on the brightness of the reference object of the target cell is calculated.
  • the calibration unit 105 uses the information indicating the brightness of the reference cell or the brightness of the target cell based on the calculated ratio of the information on the brightness of the reference object of the reference cell to the information on the brightness of the reference object of the target cell. Calibrate the information shown.
  • the calibration unit 105 calibrates the brightness of the reference cell image or the target cell image based on the information indicating the brightness of the reference cell or the information indicating the brightness of the target cell.
  • the calibration unit 105 supplies the information indicating the brightness of the calibrated reference cell or the information indicating the brightness of the target cell and the calibrated reference cell image or the targeted cell image to the result output unit 300.
  • the result output unit 300 displays on the display unit 30 the information indicating the brightness of the calibrated reference cell obtained from the calibration unit 105 or the information indicating the brightness of the target cell, and the calibrated reference cell image or the target cell image. It is displayed (step S90).
  • the cell image in which the cell acquired in step S20 and step S30 described above is imaged and the imaged image in which the reference object stained with the cell is imaged may be different images.
  • the image acquisition unit 101 may store the cell image and the captured image obtained by capturing the reference object in the storage unit 200 in a mutually associated state.
  • FIG. 4 is a view showing an example of the step of staining cells and a reference substance.
  • staining shown here is an example, Comprising: A part of process may be abbreviate
  • the steps of fixing and staining each well and imaging may be repeated. That is, if there is a first well and a second well, the first well is fixed, stained and imaged, and then the second well is fixed, stained and imaged .
  • multiple wells may be fixed first, stained, and then imaged. That is, when there is a first well and a second well, the first well and the second well are fixed and stained. Thereafter, the first and second wells are imaged.
  • the step of fixing the wells may be performed in parallel.
  • the plurality of wells may be fixed first, and then the steps of staining and imaging each well may be repeated.
  • the step of staining includes a fixing step and a staining step.
  • the fixing step is a step of stopping the cell metabolism by the fixing solution as described above.
  • the fixation step denatures the proteins in the cells. Also, proteins are cross-linked and can not move. For example, formalin or acetone is used as the fixative.
  • the staining step is a step of attaching a primary antibody to a target protein and attaching a secondary antibody having a fluorescent substance attached to the primary antibody.
  • the secondary antibody containing a fluorescent substance is attached to the protein to which the primary antibody is attached by binding.
  • the fluorescent substance is attached to the protein by the reaction of the secondary antibody containing the fluorescent substance with the primary antibody.
  • the number of primary antibodies binding to one protein is not limited to one, and a plurality of primary antibodies will bind. Furthermore, multiple binding secondary antibodies will bind to the primary antibody.
  • increasing the amount of secondary antibody containing fluorescent substance increases the amount of secondary antibody attached to the primary antibody attached to the protein. Therefore, since the amount of secondary antibody present around the protein increases, when the protein is imaged, the luminance derived from the fluorescent substance increases as the amount of the secondary antibody input increases.
  • the number of proteins to which the secondary antibody binds increases, so when imaging a plurality of proteins, the area of the imaged fluorescent substance increases. Therefore, when imaging a plurality of proteins, the area to be observed originating from the fluorescent substance increases as the amount of the secondary antibody to be introduced increases.
  • the method of binding the fluorescent substance to the protein is not limited to the method described above.
  • the secondary antibody having a plurality of fluorescent substances is bound to the primary antibody bound to the protein, but the invention is not limited thereto.
  • a secondary antibody having one fluorescent substance may bind to a primary antibody bound to a protein.
  • the primary antibody may have a fluorescent substance, and may be a bond between the primary antibody and a protein.
  • only one primary antibody may be bound to one protein.
  • the dyeing process is not limited to the dyeing process and the fixing process.
  • a step of expanding cells may be included.
  • the treatment for cells is a treatment for expanding cells.
  • the step of expanding the cells physically expands the cells. This increases the size of the cells and makes observation of the cell's microstructure easier than before expansion.
  • a swellable substance is added to the cells, and the cells expand by swelling of the swellable substance.
  • the swellable substance is, for example, acrylate.
  • a fluorescent molecular tag is attached to bind a specific protein to acrylate, and acrylate monomers penetrate into cells. When the polymerization reaction of this monomer is initiated, a network of acrylate polymer is formed in cells.
  • the proteins in the cells are degraded, and water is added to the remaining acrylate polymer to absorb and expand the water, and the distance between the fluorescent tags imaged in the network can be expanded in any direction.
  • the distance between the fluorescent tags can be increased as compared to that before expansion, which makes it easy to observe the fine structure.
  • the reagent is added to the cells (step S110). In other words, it stimulates cells.
  • the cells are fixed and fixed inactivated (step S120). Specifically, the stimulated cells are fixed by immersion in a fixative. By fixing the cells, cell metabolism is stopped. The steps after step S120 are performed after a predetermined time has elapsed since the stimulation of the cells. Wash cells after fixation and after fixation and inactivation respectively. The cells are solubilized (step S125). By solubilizing the cells, the cells are punctured and the staining solution can enter the cells. By allowing the staining solution to enter into cells, it is possible to introduce a secondary antibody in which a primary antibody and a fluorescent substance are attached to proteins in cells. After solubilization, wash the cells. Steps S120 to S125 are the above-described fixing step.
  • Attachments or beads are added to the wells (step S130). In other words, a reference is added to the wells. The attachment will be described later.
  • Blocking is to mask the primary antibody and the secondary antibody so that they do not adhere to unnecessary places.
  • the primary antibody is reacted (step S143).
  • To react the primary antibody is to attach the primary antibody to a predetermined cell.
  • the secondary antibody is reacted (step S146).
  • To react the secondary antibody means attaching a secondary antibody attached with a fluorescent substance to the primary antibody. Steps S140 to S146 are the above-described staining process.
  • the imaging unit 22 images the stained cells (step S150).
  • the user determines whether all the wells have been stained (step S160). If all the wells have not been stained (Step S160; NO), the user changes the wells to be stained (Step S165). Then, the process from step S110 is repeated. If all the wells have been stained (Step S160; YES), the staining is ended.
  • FIG. 5 is a view showing an example of an attachment and a bead.
  • the attachment is an example of a member that holds a reference object.
  • An attachment is added to each of the wells W as shown in FIG. 5 (a).
  • a standard is applied to the attachment ATCH.
  • the standard applied to the attachment ATCH is stained together with the cell CELL stored in the well W.
  • the beads BEAD are added to the same position as the cell CELL in the well W, as shown in FIG. 5 (b). As mentioned above, the bead BEAD is coated with a standard. The standard applied to the bead BEAD is stained together with the cell CELL stored in the well W.
  • FIG. 6 is a view showing an example of the structure of the attachment ATCH.
  • the attachment ATCH includes a holding unit NS that holds a reference object to be stained and / or fixed together with the cell CELL stored in the well W. That is, the holding unit NS holds the reference object to be processed together with the cells stored in the container. Further, the attachment ATCH is provided with a holding portion NS, and includes a support portion ST that detachably supports the holding portion NS with respect to the well W. That is, the support portion ST is provided with the holding portion NS, and detachably supports the holding portion NS with respect to the container.
  • the holding portion NS a reference material is applied to the surface of the well W facing the cell.
  • the diagonal length NSD of the holding portion NS is longer than the width STW of the support portion ST. That is, the holding portion NS can enlarge the surface on which the reference object is applied. Thereby, when imaging a reference
  • attachment ATCH can shorten the space
  • the length STH of the support ST in the Z-axis direction and the cell CELL of the well W are stored.
  • the reference material can be stained without increasing the amount of the fixative solution or staining solution used for staining.
  • the distance between the cell CELL in the well W and the reference object can be shortened in the Z-axis direction, it is possible to simultaneously image the reference object and the cells when observing along the Z-axis direction. It is. In this case, the reference object and the cells may be in the same depth of focus. Fixatives and stains are generally expensive test agents. For this reason, even in the case of using the attachment ATCH, the cost for testing the cells can be reduced by staining the cells without increasing the fixative solution or the staining solution. Moreover, the attachment ATCH can easily separate the stained cells from the reference material by providing the support portion ST. As a result, it is possible to reduce the time and effort required to remove the reference object in the cell image used for analysis of cells.
  • the attachment ATCH also includes an attachment portion SS.
  • the diameter SSD of the attachment portion SS corresponds to the diameter of the hole of the well W.
  • the attachment portion SS allows the attachment ATCH to be easily removed from the well W without falling into the well W.
  • the attachment portions SS of the plurality of attachments may be connected to each other so that the plurality of attachments can be attached and removed in one operation.
  • FIG. 7 is a view showing an example of the shape of the holding portion NS.
  • the holding portion NS1 shown in FIG. 7A has a circular shape in which a hole is provided at the central portion.
  • the holding portion NS2 shown in FIG. 7B has a circular shape.
  • the holding portion NS3 shown in FIG. 7C has a cross shape.
  • the amount of the reference material applied to the holding portion NS can be adjusted according to the shape of the holding portion NS. This is because the amount of reference material to be applied varies depending on the area of the holding portion NS.
  • FIG. 8 is a diagram showing an example of the state of staining of cells and the state of staining of reference material.
  • FIG. 8 (a) is a diagram showing an example of the state of staining of the cells of Experiment 1 and the state of staining of a reference material.
  • Experiment 1 is an experiment in which the same stimulus was applied to each of a plurality of wells W.
  • the reference of well W1, the reference of well W2, and the reference of well W4 are in the state of the same staining.
  • the state of staining of the cells in the well W1 and the state of staining of the cells in the well W2 are in the same state of staining.
  • the well W1 and the well W2 are compared.
  • the state of the staining of the reference substance of well W1 and the state of the staining of the reference substance of well W2 are the same Since it is a state, it shows that the cell of well W1 and the cell of well W2 showed the same reaction by stimulation.
  • the cells in well W1 and the cells in well W2 have the same staining conditions, and the cell image in which the cells in well W1 are imaged and the cell image in which the cells in well W2 are imaged are used for the same analysis be able to.
  • the well W1 and the well W4 are compared.
  • the state of the staining of the reference substance of well W1 and the state of the staining of the reference substance of well W4 are different Since it is a state, it shows that the cell of well W1 and the cell of well W4 showed a different reaction by stimulation.
  • the cells in well W1 and the cells in well W4 have the same staining conditions, and the cell image in which the cells in well W1 are imaged and the cell image in which the cells in well W4 are imaged are used for the same analysis be able to.
  • the well W1 and the well W5 are compared.
  • the state of staining of the cells of well W1 and the state of staining of the cells of well W5 are the same state of staining
  • the state of staining of the reference substance of well W1 is different from the state of staining of the reference substance of well W5 It is in the state of staining. That is, it shows that the cells of the well W1 and the cells of the well W5 showed different staining methods by staining. Therefore, analysis is performed because it is difficult to determine whether staining is due to differences in staining conditions or differences in cells because the staining conditions for cells in well W1 and the staining conditions for cells in well W5 are different. May be difficult.
  • the state of staining of the reference in the well W3 and the state of staining of the reference in the well W5 are in the same state of staining.
  • the state of staining of the cells of well W3 and the state of staining of the cells of well W5 are different from each other in the state of staining but show that they responded differently depending on the stimulation.
  • the cells in well W3 and the cells in well W5 have the same staining conditions, and the cell image in which the cells in well W3 are imaged and the cell image in which the cells in well W5 are imaged are used for the same analysis be able to.
  • FIG. 8 (b) is a view showing an example of the state of staining of the cells of Experiment 2 and the state of staining of a reference material.
  • Experiment 2 is the result of the experiment of the past cell which added the same stimulus as Experiment 1.
  • the condition of the staining of the reference material of the well W1 of Experiment 1 and the condition of the staining of the reference material of the well W2 of Experiment 2 are the same staining condition is there.
  • the staining of the cells of the well W1 of Experiment 1 and the staining of the cells of the well W2 of Experiment 2, the well W3 of Experiment 2 and the well W5 of Experiment 2 are performed by the same staining. I understand. If the staining condition of the cells in the well W1 in Experiment 1 is different from the staining condition of the cells in the well W2 in Experiment 2, the well W3 in Experiment 2 and the well W5 in Experiment 2, the reaction due to the stimulation is different So, it can be said that the state of cell staining is different.
  • the image processing apparatus 10 can show the cell image used for analysis in consideration of the difference in the staining of the cell image obtained by the past experiment.
  • the image processing apparatus 10 includes the image acquisition unit 101, the extraction unit 102, and the comparison unit 103.
  • the image acquisition unit 101 acquires, from the microscope device 20, a cell image in which a cell and a reference substance stained with the cell are imaged.
  • the extraction unit 102 extracts the state of staining of the cells and the reference material from the cell image acquired by the image acquisition unit 101.
  • the comparison unit 103 compares the state of staining of the reference objects for each well W extracted by the extraction unit 102.
  • the comparison unit 103 can compare the staining conditions for the reference material for each well W by comparing the state of the staining of the reference material for each well W extracted by the extraction unit 102.
  • the comparison unit 103 can compare the state of staining of the cells for each well W extracted by the extraction unit 102. As a result, it is possible to analyze cell images having the same staining condition without analyzing cell images having different cell staining conditions depending on staining, and it is possible to analyze the cell image with high accuracy.
  • the feature quantity when extracting a feature quantity such as a change in luminance from an image obtained by imaging stained cells, the feature quantity can be extracted using the image in which the staining state is calibrated, so a cell image is used. Poor analysis can be suppressed.
  • the microscope observation system 1 has described the configuration in which image processing is performed on a captured image obtained by capturing a fluorescently stained cell, a fluorescently stained reference material, and the like, but the present invention is limited thereto. Absent.
  • the information processing apparatus may detect the brightness of the fluorescence of the fluorescently stained cell or the brightness of the fluorescence of the fluorescently stained reference material.
  • the determination unit 104 can determine the state of staining of the cells of the cell image based on the result of comparison by the comparison unit 103. In the above description, the determination unit 104 can determine whether there is a difference in the state of cell staining due to stimulation or a difference in the state of cell staining due to different staining conditions.
  • the calibration unit 105 can calibrate the state of staining of cells based on the result determined by the determination unit 104. Thereby, when the difference in the state of staining between reference materials is within a predetermined threshold, the state of staining of cells can be calibrated. In addition, when the difference in the state of staining of the reference objects is outside the predetermined threshold, the cell staining experiment is performed again so that the difference in the state of staining of the reference objects is within the predetermined threshold.
  • FIG. 9 is a view showing an example of an artificial cell AC.
  • the artificial cell AC is added to the same position as the cell CELL, similarly to the bead BEAD described above.
  • the artificial cells AC, together with the cells CELL stored in the wells W, are stained by the fixation step and the staining step.
  • the artificial cell AC is one in which the reference substance PR is stored in the lipid bilayer LB. That is, the first reference and the second reference are placed in the space surrounded by the lipid bilayer.
  • the artificial cell AC is affected by the above-described fixation step as compared to the above-described bead BEAD and attachment ATCH.
  • FIG. 10 is a diagram showing an example of the step of staining the cell CELL and a standard containing an artificial cell AC.
  • FIG. 10 is different from the process of staining shown in FIG. 3 in the process of adding the artificial cell AC.
  • the artificial cell AC is added into the well W between the step of adding the reagent to the cell in step S110 and the step of immobilizing the cell in step S120 (step S115).
  • the artificial cell AC is punctured in the lipid bilayer bilayer LB by the fixation step, like the cell CELL stained together.
  • the fluorescent substance enters from the hole punched in the artificial cell AC, like the hole punched in the cell CELL, and the reference substance PR is stained.
  • the image processing apparatus 10 can compare the fixed state.
  • the state of fixation between the artificial cell AC and the cell CELL is determined based on the time of fixation and the concentration of the fixative. That is, the process for fixing the cells is determined based on the concentration of the fixing solution and the time for performing the fixing process
  • the comparison unit 103 compares the state of staining including the state of fixation of the cells with each other by comparing the state of staining of the artificial cells AC. Further, the comparison unit 103 compares the state of fixation of the cell CELL by comparing and comparing the state of staining of the artificial cell AC and the state of staining of the bead BEAD or the attachment ATCH. This is because the state of staining of the beads BEAD or attachment ATCH changes the state of staining depending on the staining step, but the state of staining of the artificial cell AC also changes depending on the fixing step. That is, when the cell image includes the artificial cell AC, the bead BEAD or the attachment ATCH, and the cell CELL, the comparison unit 103 can compare the fixation state of the cell CELL.
  • FIG. 11 is a diagram illustrating an example of a procedure of determination of the comparison unit 103 according to the second embodiment.
  • the comparison unit 103 compares whether the brightness of the artificial cells is the same (step S201).
  • the brightness of the artificial cell AC changes in accordance with the amount of the fluorescent substance attached to the protein of the reference product PR, similarly to the brightness of the reference product described above.
  • the brightness of the fluorescent substance attached to the reference substance PR of the artificial cell AC may be simply referred to as the brightness of the artificial cell.
  • the comparison unit 103 compares whether the brightness of the artificial cell included in the reference cell image and the brightness of the artificial cell included in the target cell image are substantially the same.
  • the comparing unit 103 is included in the reference cell image when it is assumed that the brightness of the artificial cell included in the reference cell image and the brightness of the artificial cell included in the target cell image are substantially the same (step S201; YES).
  • the brightness of the cells is compared with the brightness of the cells contained in the target cell image (step S203).
  • step S203 If the brightness of the reference cell included in the reference cell image and the brightness of the target cell included in the target cell image are substantially the same (step S203: YES), the comparing unit 103 “same state of cell staining” And the result (step S209). If the brightness of the reference cell included in the reference cell image is different from the brightness of the target cell included in the target cell image (step S203; NO), the comparison unit 103 “stains the cells by the stimulus applied to the cells. And the result is output (step S208).
  • the comparison unit 103 determines that the brightness of the artificial cell included in the reference cell image is different from the brightness of the artificial cell included in the target cell image (Step S201; NO), the comparison cell 103
  • the brightness of the attachment or bead, which is the reference is compared with the brightness of the attachment or bead, which is the reference of the target cell included in the target cell image (step S202).
  • step S207 the comparison unit 103 determines whether the brightness of the artificial cells is larger or smaller. Whether the brightness of the attachment or the beads is the same or not is compared (step S204). If the comparison between the artificial cells and the brightness of the attachment or the beads is the same (step S 204; YES), the comparison unit 103 “differentiates the state of cell staining depending on the staining process. And the result is output (step S206).
  • Step S 204 If the comparison between the artificial cells and the brightness of the attachment or the beads is different (Step S 204; NO), the comparing unit 103 “states the state of staining of the cells by the fixing step and the staining step. And the result is output (step S205).
  • FIG. 12 is a diagram showing an example of comparison of the state of staining including an artificial cell AC.
  • the staining process of the well W1 and the well W2 is different in the staining state of the attachment ATCH or the bead BEAD in the well W1 and the well W2, so that it can be seen that the staining process differs in the well W1 and the well W2. Due to the difference in the staining process, the brightness indicating the state of staining of the artificial cells AC and cells CELL in the well W1 differs from the brightness indicating the state of staining the artificial cells AC and cells CELL in the well W2.
  • FIG. 13 is a diagram showing an example of comparison of the state of staining including an artificial cell AC.
  • the fixation step differs because the number of holes created in the cells CELL of wells W1 and W2 and the artificial cells AC are different.
  • the staining process of the well W1 and the well W2 shows that the staining process of the attachment ATCH or the bead BEAD is the same in the well W1 and the well W2, so that the staining process is the same in the well W1 and the well W2.
  • the brightness indicating the state of staining of the artificial cells AC and cells CELL in the well W1 is different from the brightness indicating the state of staining the artificial cells AC and cells CELL in the well W2.
  • the comparison unit 103 compares the states of staining of the artificial cells AC. Thereby, the comparison part 103 can compare the state of dyeing including the fixation process. Further, the comparison unit 103 can compare whether or not the states of staining of the cells CELL are different depending on the fixing step by comparing and comparing the artificial cell AC with the bead BEAD or the attachment ATCH. Thereby, the user can know whether the state of the staining of the cell CELL has been changed by any of the fixation step or the staining step in the staining process. Thereby, the user can grasp the process requiring attention when performing the experiment again.
  • the microscope apparatus 20 may include the image processing apparatus 10.
  • the image processing apparatus 10 may include an imaging unit configured to image the reference object of the reference cell and the reference object of the target cell.
  • the microscope apparatus 20 includes the image processing apparatus 10
  • cell images in which the reference objects are substantially in the same staining state can be sorted.
  • the user can save time and effort of sorting cell images acquired from the microscope device 20.
  • the process of calibrating the cell processing process using the standard is not limited to this. That is, the difference in the treatment applied to the cells in each well may be calibrated using a reference material.
  • Treatments to cells include treatments that alter cell properties or cell performance.
  • a stain is introduced into the cells so that the stain binds to the intracellular dye. This makes it possible to change the color of the cells.
  • the proteins of cells can be denatured by immobilizing the cells. This can change the ability of the staining solution to be introduced into cells.
  • the determination unit determines the difference between the processing condition for the first cell and the processing condition for the second cell based on the result of the state comparison unit
  • the determination unit The processed state of the first cell may be determined based on the information of the first reference object acquired by the information acquisition unit.
  • a standard is used, and the expansion process of the standard is determined from the image of the standard.
  • the cells expand in size before and after treatment, so the cell sizes differ.
  • the growth rate of the reference after expansion may be divided from the image of the reference, and the growth rate of the reference per well may be used to calibrate the cell expansion step between the wells.
  • a reference material is used in the treatment step of peeling cells from the wells, and the peeling step of the reference material is determined from the image of the reference material.
  • the treatment in which the reference substance is treated with the cells is a treatment in which the cells are detached from the container.
  • the ability of cells to adhere to the wells is different since they exfoliate before and after treatment.
  • cells may be cultured and the cultured cells may adhere to the wells.
  • cells attached to the wells are detached using trypsin or trypsin-EDTA using a stripping solution. In this case, the cells may be damaged due to poor cell detachment treatment.
  • the extraction unit 102 extracts the shape of the reference cell from the cell image obtained by imaging the cells in different wells, and supplies the extracted shape of the reference cell to the comparison unit 103.
  • the comparison unit 103 compares the shape of the reference cell acquired from the extraction unit 102 for each well. As a result of the comparison by the comparison unit 103, the determination unit 104 determines that wells having the same shape of the reference cell have the same removal condition as the processing condition.
  • the condition for staining between wells is estimated based on the standard that is fixed and stained together with the cells in each well, but is not limited thereto.
  • An image obtained by imaging a reference object fixed and stained with cells may be taken, and the taken image may be compared with a predetermined image to determine whether the staining condition of the reference object is appropriate.
  • the result of the determination of the suitability of the staining condition of the reference material is taken as the suitability of the staining condition of the cells fixed and stained together with the reference material.
  • the degree of change of the reference material by fixation and staining may be obtained in advance.
  • the degree of change of the reference material relative to the degree of processing of the cells may be obtained in advance.
  • the degree of change in reference to treatment is a measure of the degree of change in cells due to treatment.
  • the degree of change of the reference to the treatment is an indicator of the degree of change of the cell by the treatment.
  • a program for executing each process of the image processing apparatus 10 according to the embodiment of the present invention is recorded in a computer readable recording medium, and the computer system reads the program recorded in the recording medium and executes the program.
  • the various processes described above may be performed.
  • the “computer system” referred to here may include an OS and hardware such as peripheral devices.
  • the “computer system” also includes a homepage providing environment (or display environment) if the WWW system is used.
  • “computer readable recording medium” refers to flexible disks, magneto-optical disks, ROMs, writable nonvolatile memories such as flash memories, portable media such as CD-ROMs, hard disks incorporated in computer systems, etc. Storage devices.
  • the “computer-readable recording medium” is a volatile memory (for example, DRAM (Dynamic Memory) inside a computer system that becomes a server or a client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line).
  • DRAM Dynamic Memory
  • the program which holds the program for a fixed time is included.
  • the program may be transmitted from a computer system in which the program is stored in a storage device or the like to another computer system via a transmission medium or by transmission waves in the transmission medium.
  • the “transmission medium” for transmitting the program is a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
  • the program may be for realizing a part of the functions described above.
  • it may be a so-called difference file (difference program) that can realize the above-described functions in combination with a program already recorded in the computer system.

Abstract

第1細胞と共に処理した第1基準物を撮像し、取得される第1基準物の情報と、第2細胞と共に処理した第2基準物を撮像し、取得される第2基準物の情報とを取得する情報取得部と、情報取得部により取得した、第1基準物の情報と第2基準物の情報とに基づいて、第1細胞の処理された状態と第2細胞の処理された状態とを比較する状態比較部と、を備える、情報処理装置。

Description

情報処理装置、画像取得装置、基準物保持部材、情報処理方法及び情報処理プログラム
 本発明は、情報処理装置、画像取得装置、基準物保持部材、情報処理方法及び情報処理プログラムに関するものである。
 生物科学や医学等において、生物の健康や疾患等の状態は、例えば、細胞や細胞内の小器官等の状態と関連性があることが知られている。そのため、これら関連性を解析することは、生物科学や医学等の諸処の課題を解決する一つの手段になる。また、細胞間、或いは細胞内で伝達される情報の伝達経路を解析することは、例えば、工業用途でのバイオセンサーや、疾病予防を目的とした製薬等の研究に役立てることができる。細胞や組織片等に関する種々の解析技術として、例えば、画像処理を用いた技術が知られている(例えば、特許文献1参照)。
米国特許第9280698号明細書
 本発明の第1の態様によると、第1細胞と共に処理した第1基準物を撮像し、取得される第1基準物の情報と、第2細胞と共に処理した第2基準物を撮像し、取得される第2基準物の情報とを取得する情報取得部と、情報取得部により取得した、第1基準物の情報と第2基準物の情報とに基づいて、第1細胞の処理された状態と第2細胞の処理された状態とを比較する状態比較部と、を備える、情報処理装置である。
 本発明の第2の態様によると、第1細胞と共に処理した第1基準物を撮像し、取得される第1基準物の情報を取得する情報取得部と、情報取得部により取得した、第1基準物の情報に基づいて、第1細胞の処理された状態を判定する、判定部と、を備える、情報処理装置である。
 本発明の第3の態様によると、容器に格納される細胞とともに、処理される基準物を保持する保持部と、保持部が設けられ、容器に対して保持部を着脱可能に支持する支持部と、を備える、基準物保持部材である。
 本発明の第5の態様によると、第1細胞と共に処理した第1基準物を撮像し、取得される第1基準物の情報と、第2細胞と共に処理した第2基準物を撮像し、取得される第2基準物の情報とを取得する情報取得手段と、情報取得手段により取得された、第1基準物の情報と第2基準物の情報とに基づいて、第1細胞の処理された状態と第2細胞の処理された状態と、を比較する状態比較手段と、を有する、情報処理方法である。
 本発明の第6の態様によると、コンピュータに、第1細胞と共に処理した第1基準物を撮像し、取得される第1基準物の情報と、第2細胞と共に処理した第2基準物を撮像し、取得される第2基準物の情報とを取得する情報取得ステップと、情報取得ステップにより取得された、第1基準物の情報と第2基準物の情報とに基づいて、第1細胞の処理された状態と第2細胞の処理された状態とを比較する状態比較ステップと、を実行させるための、情報処理プログラムである。
本発明の実施形態による顕微鏡観察システムの構成の一例を示す図である。 顕微鏡観察システムの機能構成の一例を示すブロック図である。 本実施形態の画像処理装置の演算手順の一例を示す流れ図である。 細胞と基準物とを染色する工程の一例を示す図である。 アタッチメントとビーズの一例を示す図である。 アタッチメントの構造の一例を示す図である。 保持部の形状の一例を示す図である。 細胞の染色の状態と、基準物の染色の状態の一例を示す図である。 人工細胞の一例を示す図である。 細胞と人工細胞を含む基準物とを染色する工程の一例を示す図である。 第2の実施形態に係る比較部の判定の手順の一例について示す図である。 人工細胞を含む染色の状態の比較の一例を示す図である。 人工細胞を含む染色の状態の比較の一例を示す図である。
 [第1の実施形態]
 以下、図面を参照して、本発明の実施の形態について説明するが、本発明はこれに限定されない。以下の説明においては、XYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部の位置関係について説明する。対物レンズの光軸と直交する平面をXY平面とする。対物レンズの光軸に平行な方向をZ軸方向とする。図1は、本発明の実施形態による顕微鏡観察システム1の構成の一例を示す図である。
 顕微鏡観察システム1は、細胞等を撮像することにより取得される撮像画像に対して画像処理を行う。
 顕微鏡観察システム1は、顕微鏡装置20と、画像処理装置10と、表示部30と、操作部40とを備える。
 顕微鏡装置20は、電動ステージ21に載置される試料の拡大された像を観察する顕微鏡である。試料とは、具体的には、観察対象となる生体試料、ビーズなどである。生体試料とは、蛍光染色された細胞などである。以下の説明において、顕微鏡装置20が細胞等を撮像することにより取得される画像を、単に細胞画像とも記載する。
 ウェルプレートWPは、電動ステージ21に載置される。ウェルプレートWPは、1個ないし複数のウェルWを有する。ウェルWは、容器の一例である。本実施形態では、ウェルプレートWPは、図1に示すように8×12の96個のウェルWを有する。ウェルプレートWPが有するウェルWの数はこれに限られない。例えば、ウェルプレートWPは、6×8の48個や、4×6の24個や、16×24の386個や、32×48の1536個のウェルWを有していても構わない。細胞は、ウェルWに格納される。また、細胞は、ウェルWの中において、特定の実験条件のもと培養された細胞であってもよい。特定の実験条件とは、温度、湿度、培養期間、刺激が付与されてからの経過時間、付与される刺激の種類や強さ、濃度、量、刺激の有無、生物学的特徴の誘導等を含む。刺激とは、例えば、電気、音波、磁気、光等の物理的刺激や、物質や薬物の投与による化学的刺激等である。また、生物学的特徴とは、細胞の分化の段階や、形態、細胞自体の挙動、細胞数、細胞内の分子の挙動、オルガネラの形態や挙動、細胞内の要素の形状、細胞自体の形状、核内構造体の挙動、DNA分子の挙動等を示す特徴である。この一例では、顕微鏡装置20は、ウェルプレートWPが有する複数のウェルWのそれぞれに格納された細胞と、基準物とを観察する。
[基準物について]
 ここで、基準物について説明する。本実施形態では、複数のウェルWのそれぞれに、細胞と、基準物とが格納される。基準物は、細胞と共に染色される。つまり、基準物は細胞と共に処理され、この処理とは、細胞を染色する処理である。基準物とは、所定のタンパク質である。基準物は、タンパク質に限られず、糖質や脂質、核酸、特定のアミノ酸でも構わない。この基準物は、例えば、ビーズや、後述する基準物保持部材に塗布される。
 所定のタンパク質は、例えば、基準物と共に染色される細胞に含まれるタンパク質、グリセルアルデヒド3リン酸脱水素酵素、アクチンなどの、観察対象のタンパク質と共に染色することができるタンパク質である。なお、以下の説明では、グリセルアルデヒド3リン酸脱水素酵素のことを、単にGAPDHとも記載する。
 ビーズや基準物保持部材は、基準物が含まれる溶液に浸される。これにより、ビーズや基準物保持部材には、所定のタンパク質が塗布される。例えば、所定のタンパク質が含まれる溶液にビーズを浸すことにより、ビーズの表面に所定のタンパク質が塗布される。このビーズの表面に塗布されたタンパク質を、細胞と共に染色することにより、細胞の染色状態と、基準物である所定のタンパク質の染色状態とが対応付けられる。本実施形態では、基準物の染色液と観察対象のタンパク質の染色液とが混在している状態で染色する。したがって、細胞と基準物を染色する染色液には、基準物に対する抗体などの染色液と観察対象のタンパク質に対する抗体などの染色液とを混ぜ、細胞と基準物とを染色する。そして、校正したいウェル間で、基準物を染色するための染色液と細胞を染色するための染色液の割合が同じである。この場合に、染色液は基本的にはごく少量であるために、予め、基準物に対する抗体の染色液と観察対象のタンパク質に対する抗体などの染色液とをを予め混ぜておき、校正したいウェルに添加する。これにより、ウェルに染色液を注入する場合の実験手法の誤差を抑制することができる。そのため、細胞とともに染色された基準物の染色状態を比較することで、その細胞の染色状態を比較することができる。この染色状態は、染色対象である細胞や基準物を染色する時間や、この染色に用いる染色液の濃度に基づいて定まる。つまり、染色する処理による、細胞の染色された状態は、染色液の濃度、染色処理をする時間に基づいて、定まる。なお、基準物のタンパク質と染色対象の細胞のタンパク質とが同じでも構わないし、異なっていても構わない。染色対象の細胞のタンパク質が複数種類ある場合には、同じ種類のタンパク質を基準物質に用いても構わないし、特定のタンパク質を基準物として代表するタンパク質としても構わない。
 この一例では、細胞を染色する処理は、抗原抗体反応を用いる場合について説明するが、染色の方法は、これに限られない。染色は、抗原抗体反応以外の他の呈色反応などの方法によって行われてもよい。ここで、抗原抗体反応とは、細胞や基準物を免疫反応によって染色することである。
 以下の説明では、図1に示すウェルW1に格納される細胞を、基準細胞とも記載する。図1に示すウェルW1に格納される細胞を、第1細胞とも記載する。また、この基準細胞と共に染色される基準物を、基準細胞の基準物とも記載する。この基準細胞と共に染色される基準物を、第1基準物とも記載する。基準細胞の基準物は、基準細胞を評価するために用いられる基準物である。図1に示すウェルW2に格納される細胞を、対象細胞とも記載する。図1に示すウェルW2に格納される細胞を、第2細胞とも記載する。また、この対象細胞と共に染色される基準物を、対象細胞の基準物とも記載する。この対象細胞と共に染色される基準物を、第2基準物とも記載する。対象細胞の基準物は、対象細胞を評価するために用いられる基準物である。また、本実施形態においては、ウェルW1の基準細胞を基準とし、ウェルW1の基準細胞とウェルW2の対象細胞とを比較する。したがって、ウェルW2の対象細胞と、基準であるウェルW1の基準細胞との差異を明らかとする。なお、本実施形態では、ウェルW1の基準細胞を基準とし、ウェル2の対象細胞を比較したが、これに限られない。例えば、ウェルW1の第1の細胞と、ウェル2の第2の細胞とを比較するだけでも構わない。この基準細胞及び対象細胞は、同じ染色手順によって染色される。ここで、染色手順とは、染色に用いられる染色液の種類や濃度、染色の工程や、染色の時間などである。
 ウェルW毎の染色手順が同じ場合には、ウェルW同士の基準物の染色の状態は、概ね同じ染色の状態である。ここで、染色の状態とは、染色後の基準物の色味の度合のことであり、染色後に基準物に結合された染色液の色素の量である。例えば、染色の状態が概ね同じ場合、異なるウェルWの基準物の色味は、概ね同じ色味になる。すなわち、染色の状態が概ね同じ場合には、異なるウェルWの所定量の基準物に結合された色素の量が同じである。以下の説明では、染色の状態のことを、染色状態とも記載することがある。また、ウェルW毎の染色手順が異なる場合には、ウェルW同士の基準物の染色の状態は異なる。ウェルW同士の基準物の染色状態を比較することで、ウェル同士の染色の状態を比較することができる。例えば、ウェルWに染色液を入れるときに、この染色液がウェルWの側面などに残るなどして、既定の量の染色液がウェルWの底部の細胞に供給されない場合がある。この場合には、細胞の染色の状態は、既定の量の染色液が供給された細胞の染色の状態とは異なる場合がある。この場合に、異なるウェルWの基準物同士の染色状態を比較することで、ウェルW同士の細胞に対する染色条件を比較することができる。ここで、染色条件とは、細胞に供給される染色液の量などの染色工程の条件、細胞を染色するときに細胞を固定する固定工程の条件などの、細胞を染色する際に影響する条件である。
 ここで、比較するウェル同士の細胞が異なると、細胞により染色の度合いが異なるので、染色された細胞からウェル同士の細胞の染色の状態を比較できない場合がある。また、ウェル同士の細胞が同じであっても、それぞれのウェルの細胞に異なる刺激を加えると、加えられた刺激によりウェル内の細胞の染色の度合いが異なる場合あり、染色された細胞からウェル同士の細胞の染色状態を比較できない場合がある。そこで、異なるウェルにある細胞同士の染色状態を比較できるように、比較対象のウェルにはそれぞれ基準物を配置し、細胞とともに基準物を染色することとした。比較対象のウェルに配置される基準物は同じ種類の物質であり、それら基準物の、染色液や染色時間などの染色する条件を同じであれば、比較対象のウェルに配置される基準物の染色状態はおおむね同じである。したがって、比較対象のウェルに配置されるそれぞれの基準物が染色された状態を比較することで、その比較対象のウェルの染色条件を推定することができる。すなわち、比較対象のウェル内の染色された基準物が同じ染色状態であれば、それぞれのウェルの染色条件は同じである。例えば、比較対象のウェル内の染色された基準物が同じ染色状態である一方、解析対象の細胞の染色状態が異なる場合であれば、基準物が同じ染色状態であることから、それぞれのウェル内の染色条件は同じであると推定ができる。したがって、その同じ染色条件下で、解析対象の細胞の染色状態が異なるのであれば、解析対象の細胞に含まれる染色対象のタンパク質の量が異なることが推定できる。すなわち、基準物がそのウェルの細胞に対する染色条件を推定する指標として機能する。したがって、ウェル間の基準物同士の染色の状態が概ね同じ染色の状態とするような染色の条件の下で、解析対象の細胞共に、基準物を染色することで、基準物同士の染色状態を比較しそれぞれのウェル間の染色の状態を比較することができる。したがって、ウェル間の染色条件の差異を明らかとすることができる。ウェル間の染色条件の差異を明らかとすることで、解析対象の細胞に対する染色の状態を明らかとすることができる。したがって、解析対象の細胞に対する染色条件を考慮にいれ、細胞を解析することが可能となる。
 画像処理装置10は、ウェルW毎の細胞画像に撮像された基準物の染色の状態を比較することにより、この基準物と共に染色された細胞の染色条件を比較する。この一例では、画像処理装置10は、基準細胞と共に染色された基準細胞の基準物の情報と、対象細胞と共に染色された対象細胞の基準物の情報とに基づいて、基準細胞の染色状態と対象細胞の染色状態とを比較する。
 画像処理装置10とは、顕微鏡装置20によって撮像された細胞画像を解析する情報処理装置である。
 表示部30は、例えば液晶ディスプレイを備えており、画像処理装置10が解析する撮像画像などの画像を表示する。この表示部30に表示される画像には、画像処理装置10が解析した解析結果に基づいて生成される画像が含まれている。
 操作部40は、ユーザによって操作される。操作部40は、ユーザによって操作されると、操作信号を出力する。この操作信号は、画像処理装置10に供給される。画像処理装置10は、操作部40から供給された操作信号に基づいて、ユーザから供給された様々な情報を取得する。操作部40の一例として、キーボード40aや、マウス40bなどがある。
 次に、図2を参照して、顕微鏡観察システム1の機能構成の一例について説明する。
 図2は、顕微鏡観察システム1の機能構成の一例を示すブロック図である。
 顕微鏡装置20は、生物顕微鏡であり、上述した電動ステージ21に加え、撮像部22を備える。
 電動ステージ21は、所定の方向(例えば、水平方向の二次元平面内のある方向)に、撮像対象物の位置を任意に稼働可能である。電動ステージ21は、不図示の電動ステージ駆動部によって駆動される。なお、顕微鏡装置20は、電動ステージ21を備えていなくてもよく、ステージが所定方向に稼働しないステージとしても構わない。
 撮像部22は、CCD(Charge-Coupled Device)やCMOS(Complementary MOS)などの撮像素子を備えており、電動ステージ21上の撮像対象物を撮像する。なお、撮像部22は、NDD(Non Descand Detector)型の検出器でも構わない。電動ステージ21に置かれた撮像対象物の像は、対物レンズを介して不図示の結像レンズにより撮像部22の撮像面に結像される。
 対物レンズは、細胞を透過した光を受光する。なお、対物レンズが受光する光は、細胞を透過した光に限られない。対物レンズは、細胞によって反射された光を受光してもよい。
 より具体的には、顕微鏡装置20は、例えば、微分干渉顕微鏡(Differential Interference Contrast microscope;DIC)や位相差顕微鏡、蛍光顕微鏡、共焦点顕微鏡、超解像顕微鏡、二光子励起蛍光顕微鏡、ライトシート顕微鏡、ライトフィールド顕微鏡等の機能を有する。
 顕微鏡装置20は、電動ステージ21上に載置された培養容器を撮像する。この培養容器とは、例えば、ウェルプレートWPやスライドチャンバーなどがある。顕微鏡装置20は、ウェルプレートWPが有する多数のウェルWの中に培養された細胞に光を照射することで、細胞を透過した透過光を細胞の画像として撮像する。これによって、顕微鏡装置20は、細胞の透過DIC画像や、位相差画像、暗視野画像、明視野画像等の画像を取得することができる。
 さらに、細胞に蛍光物質を励起する励起光を照射することで、顕微鏡装置20は、生体物質から発光される蛍光を細胞の画像として撮像する。
 本実施形態においては、細胞を、免疫染色や化学試薬などで染色するなどし、細胞画像を取得する。それらを組み合わせて観察しても構わない。
 また、これらの細胞を観察する手段、細胞を染色する方法などは、目的に応じて適宜選択しても構わない。
 更に別の本実施形態では、細胞を固定して染色し、細胞画像を取得する。つまり、基準物が細胞と共に処理される処理は、細胞を固定する処理である。固定された細胞は代謝が止まる。したがって、細胞に刺激を加えた後、細胞内の経時変化を固定細胞で観察する場合には、細胞を播種した複数の細胞培養容器を用意する必要がある。例えば、細胞に刺激を加え、第1時間後の細胞の変化と、第1時間とは異なる第2時間後の細胞の変化を観察したい場合がある。この場合には、細胞に刺激を加えて第1時間を経過した後に、細胞を固定して染色し、細胞画像を取得する。
 一方、第1時間での観察に用いた細胞とは異なる細胞培養容器を用意し、細胞に刺激を加え第2時間を経過した後に、細胞を固定し、染色して、細胞画像を取得する。これにより、第1時間の細胞の変化と、第2時間での細胞の変化とを観察することで、細胞内の経時変化を推定することができる。また、第1時間と第2時間との細胞内の変化を観察することに用いる細胞の数は1つに限られない。したがって、第1時間と第2時間とで、それぞれ複数の細胞の画像を取得することになる。例えば、細胞内の変化を観察する細胞の数が、1000個だった場合には、第1時間と第2時間とで2000個の細胞を撮影することになる。したがって、刺激に対する細胞内の変化の詳細を取得しようとする場合には、刺激からの撮像するタイミング毎に、複数の細胞画像が必要となり、大量の細胞画像が取得される。
 また、顕微鏡装置20は、生体物質内に取り込まれた発色物質そのものから発光或いは蛍光や、発色団を持つ物質が生体物質に結合することによって生じる発光或いは蛍光を、上述した細胞の画像として撮像してもよい。これにより、顕微鏡観察システム1は、蛍光画像、共焦点画像、超解像画像、二光子励起蛍光顕微鏡画像を取得することができる。
 なお、細胞の画像を取得する方法は、光学顕微鏡に限られない。例えば、細胞の画像を取得する方法は、電子顕微鏡でも構わない。細胞が撮像された画像の種類は適宜選択しても構わない。
 本実施形態における細胞は、例えば、初代培養細胞や、株化培養細胞、組織切片の細胞等である。細胞を観察するために、観察される試料は、細胞の集合体や組織試料を用い観察し、細胞を含む画像を取得しても構わない。なお、細胞の状態は、特に制限されず、生きている状態であっても、或いは固定されている状態であってもよい。勿論、細胞の状態は、生きている状態の情報と、固定されている情報とを組み合わせても構わない。
 画像処理装置10は、細胞を解析する解析装置である。画像処理装置10の演算部100は、不図示の解析部を備える。解析部は、画像取得部101から、細胞画像を取得する。解析部は、画像取得部101から取得した細胞画像に撮像された細胞を解析する。解析とは、例えば、細胞画像に撮像された細胞の相関を解析することである。この相関は、細胞画像に撮像された細胞の特徴量から算出する。この特徴量には、細胞画像の輝度、画像中の細胞面積、画像中の細胞画像の輝度の分散、形などが含まれる。すなわち、特徴量は、細胞画像から取得される情報から導出される特徴である。例えば、解析部は、画像取得部101から取得した細胞画像における輝度分布を算出する。解析部は、時系列もしくは、分化等の細胞状態の変化で異なる複数の画像を用い、算出される輝度分布の所定時間の変化、もしくは、算出される輝度分布の分化等の細胞状態変化に伴う変化から、他とは異なる輝度の変化を示す位置情報を求め、輝度の変化を特徴量としてもよい。
 ここで解析部は、細胞画像から抽出した細胞の特徴を示す特徴量を、マルチスケール解析することにより、本撮像画像に撮像された細胞を解析する。マルチスケール解析は、例えば、グラフィカルラッソ(Graphical Lasso)法などにより求められる。なお、本実施形態では、グラフィカルラッソ法とは、L1正則化付のガウシアンモデルから、精度行列を推定するための効率的なアルゴリズムである。例えば、JEROME FRIEDMANとTREVOR HASTIEとROBERT TIBSHIRANIによるBiostatistics (2008), 9, 3 432-441号の“Sparse inverse covariance estimation with the graphical lasso”に記載されている。
 本実施形態では、画像処理装置10は、解析に用いられる複数の細胞画像に撮像されたウェルW毎の基準物同士の染色の状態を比較して、解析に用いるのに適した染色条件での細胞が撮像された細胞画像を複数の細胞画像から選択し、提示するコンピュータ装置である。
 画像処理装置10は、演算部100と、記憶部200と、結果出力部300と、操作検出部400とを備える。
 演算部100は、プロセッサ(回路(circuitry))が記憶部200に格納されたプログラムを実行することにより機能する。また、これらの演算部100の各機能部のうちの一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)等のハードウェアによって構成されていてもよい。演算部100は、画像取得部101と、抽出部102と、比較部103と、判定部104と、校正部105とをその機能部として備える。
 画像取得部101は、撮像画像を撮像する他の装置から、細胞画像を取得する。この一例では、画像取得部101は、顕微鏡装置20が備える撮像部22が撮像した細胞画像を取得する。画像取得部101は、撮像部22から取得した細胞画像を、抽出部102に供給する。なお、画像取得部101は、撮像部22から取得した細胞画像を画像記憶部201に記憶させてもよい。この場合には、抽出部102は、画像記憶部201から細胞画像を取得する。
 ここで、画像取得部101が取得する細胞画像には、細胞の培養状態が時系列に撮像された複数の画像や、様々な実験条件下において細胞が培養された複数の画像、異なる刺激が加えられた細胞の画像が含まれる。また、画像取得部101が取得する細胞画像には、細胞と共に染色された基準物が含まれた状態で撮像されたものと、基準物と細胞とが別々に撮像され、基準物が撮像された撮像画像と、この基準物と共に染色された細胞が撮像された細胞画像とが互いに対応付けられた状態のものとがある。以下の説明では、細胞画像は、基準物が含まれた状態で撮像されたものについて説明する。
 抽出部102は、画像取得部101から細胞画像を取得する。抽出部102は、画像取得部101から取得した細胞画像に含まれる基準物の情報を抽出する。基準物の情報とは、この一例では、基準物の明るさを示す輝度情報である。この基準物の明るさを示す輝度情報は、基準物のタンパク質に付着した蛍光物質の量に応じて変化する。顕微鏡装置20は、このタンパク質に付着した蛍光物質の蛍光を撮像する。蛍光が撮像された位置には、蛍光物質が付着したタンパク質がある。蛍光物質が多く付着すると、蛍光物質が少なく付着した場合と比較して、より明るく撮像される。以下の説明では、基準物に付着した蛍光物質の明るさのことを、単に基準物の明るさと記載する場合がある。基準物の情報は、例えば、染色による色の濃淡を示す発色の度合であってもよい。具体的には、抽出部102は、細胞画像に含まれる基準物の形状を識別する。抽出部102は、識別した基準物の形状に基づいて、基準物の輝度情報を抽出する。また、抽出部102は、基準物と共に撮像された細胞の情報を抽出する。細胞の情報とは、例えば、細胞の明るさを示す輝度情報や、細胞の形状などの情報である。この細胞の明るさを示す輝度情報は、細胞のタンパク質に付着した蛍光物質の量に応じて変化する。以下の説明では、細胞に付着した蛍光物質の明るさのことを、単に細胞の明るさと記載する場合がある。
 より具体的には、抽出部102は、上述した基準細胞と、基準細胞の基準物とが撮像された基準細胞画像から、基準細胞の基準物の情報と、基準細胞の情報とを取得する。また、抽出部102は、上述した対象細胞と、対象細胞の基準物とが撮像された対象細胞画像から、対象細胞の基準物の情報と、対象細胞の情報とを取得する。つまり、情報取得部は、第1細胞と共に処理した第1基準物を撮像し、取得される第1基準物の情報と、第2細胞と共に処理した第2基準物を撮像し、取得される第2基準物の情報とを取得する。ここで情報取得部とは、抽出部102である。また、情報取得部は、処理がされた第1細胞を撮像し、第1細胞の情報と、処理がされた第2細胞を撮像し、第2細胞の情報とを取得する。
 抽出部102は、抽出した基準細胞の基準物の情報と、対象細胞の基準物の情報とを、比較部103に対して供給する。
 比較部103は、基準細胞の基準物の情報と、対象細胞の基準物の情報とを比較することにより、基準細胞の情報と、対象細胞の情報とを比較する。基準細胞の情報とは、基準細胞に含まれる染色された物質の量である。対象細胞の情報とは、対象細胞に含まれる染色された物質の量である。つまり、比較部103は、基準物同士を比較することにより、細胞同士の染色条件を比較する。
 具体的には、比較部103は、抽出部102から基準細胞の基準物の情報と、対象細胞の基準物の情報とを取得する。比較部103は、抽出部102から取得した基準物の情報同士を比較する。より具体的には、比較部103は、基準細胞の基準物の輝度情報と、対象細胞の基準物の輝度情報とを比較する。
 比較部103は、基準細胞の基準物の情報と、対象細胞の基準物の情報とを比較した結果を、結果出力部300に供給する。結果出力部300は、比較部103から、基準細胞の基準物の情報と、対象細胞の基準物の情報とを比較した結果を取得する。結果出力部300は、比較部103から取得した比較結果を、表示部30に表示させる。
 また、比較部103は、基準細胞の基準物の情報と対象細胞の基準物の情報との比較結果と、基準細胞画像と、対象細胞画像とを、判定部104に対して供給する。
 判定部104は、比較部103から、基準細胞の基準物の情報と対象細胞の基準物の情報との比較結果を取得する。判定部104は、比較部103から基準細胞画像と、対象細胞画像とを取得する。
 判定部104は、比較部103から取得した基準細胞の基準物の情報と、対象細胞の基準物の情報との比較結果に基づいて、基準細胞の染色の状態と、対象細胞の染色の状態を判定する。つまり、判定部104は、状態比較部の結果に基づいて、第1細胞に対する処理条件と第2細胞に対する処理条件との違いを判定する。具体的には、判定部104は、基準細胞の基準物の輝度と、対象細胞の基準物の輝度とが同じである場合には、基準細胞と対象細胞とは同じ条件下で染色されたものと推定する。つまり、判定部104は、基準細胞が撮像された基準細胞画像と、対象細胞が撮像された対象細胞画像とは、解析に用いることができると判定する。例えば解析により、基準細胞画像の細胞のタンパク質の輝度と、対象細胞画像の細胞のタンパク質の輝度とが異なっている場合には、その輝度の違いは、染色条件の違いによるものではないと推定することができる。したがって、例えば、それぞれの細胞に異なる刺激を加えた場合には、その刺激の違いにより細胞内のタンパク質の量が異なっていると推定することができる。
 なお、判定部104が、基準細胞の基準物の情報と、対象細胞の基準物の情報とが、概ね同じ明るさであるか否かを判定する基準として、明るさの差の閾値が予め記憶部200に示す染色条件記憶部202に記憶されていてもよい。また、明るさの差の閾値は、画像処理装置10を操作するユーザによって操作部40から供給されてもよい。
 また、判定部104は、基準細胞の基準物の情報が示す輝度と対象細胞の基準物の情報が示す輝度とが、異なる明るさを示す場合には、基準細胞の染色条件と対象細胞の染色条件とが、異なると判定する。つまり、判定部104は、基準細胞が撮像された基準細胞画像と、対象細胞が撮像された対象細胞画像とは、同じ解析に用いることはできないと判定する。これは、細胞の染色条件が異なるために、例えば、刺激に対する反応によって細胞の輝度が異なっているか否かが解らないためである。
 判定部104は、判定結果を、結果出力部300に供給する。結果出力部300は、判定部104から、判定結果を取得する。結果出力部300は、判定部104から取得した判定結果を、表示部30に表示させる。
 また、判定部104は、判定結果と、基準細胞画像と、対象細胞画像とを、校正部105に対して供給する。
 校正部105は、比較部103により比較される、基準細胞の染色の状態と対象細胞の染色の状態とに基づいて、基準細胞及び対象細胞を撮像し、取得される基準細胞と、対象細胞との情報の少なくとも一方の情報を校正する。つまり、情報処理装置では、第1基準物の情報と、第2基準物の情報とに基づいて、第1細胞の情報と、第2細胞の情報の少なくとも一方の情報を校正する。ここで情報処理装置とは、画像処理装置10である。
 校正部105は、判定部104から、判定結果と、基準細胞画像と、対象細胞画像とを取得する。校正部105は、判定部104から取得した判定結果が、同じ染色状態であることを示す場合、基準物同士の染色の状態に基づいて、細胞同士の情報を校正する。細胞同士の情報を校正するとは、例えば、校正部105は、基準細胞の基準物の輝度情報が示す明るさと、対象細胞の基準物の輝度情報が示す明るさとの比を算出し、算出した比に基づいて、基準細胞の明るさと、対象細胞の明るさを校正する。また、記憶部200に、基準物の染色の状態と細胞の染色の状態との関係を示す情報が記憶される場合には、校正部105は、記憶部に記憶された基準物の染色の状態と細胞の染色の状態との関係に基づいて、細胞の染色の状態を校正してもよい。つまり、校正部105は、記憶部に記憶された基準物の染色の状態と細胞の染色の状態との関係に基づいて、染色後の細胞の色味や輝度を校正してもよい。校正部105は、染色による基準物の変化の程度と、染色による細胞の変化の程度との関係を示す情報を事前に記憶しておいてもよい。つまり、第1細胞に対する処理の程度に対する、第1基準物の変化の程度が事前に求められていても構わない。また、第1細胞および第2細胞に対する処理の程度に対する、第1基準物および第2基準物の変化の程度が事前に求められていても構わない。
 校正部105は、本実施形態では、基準細胞を基準としているので、基準細胞と同じ染色状態での対象細胞の情報を算出する。なお、校正部105は、対象細胞と同じ染色状態での基準細胞の情報を算出しても構わない。
 校正部105は、校正結果を、結果出力部300に対して供給する。結果出力部300は、校正部105から校正結果を取得する。結果出力部300は、校正部105から取得した解析結果を、表示部30に表示させる。
[解析装置の動作の概要]
 次に、図3を参照して、画像処理装置10の具体的な演算手順について説明する。
 図3は、本実施形態の画像処理装置10の演算手順の一例を示す流れ図である。なお、ここに示す演算手順は、一例であって、演算手順の省略や演算手順の追加が行われてもよい。
 ユーザは、細胞と基準物とを染色する(ステップS10)。具体的には、ユーザは、基準細胞と共に、基準細胞の基準物を染色する。また、ユーザは、対象細胞と共に、対象細胞の基準物を染色する。
 撮像部22は、基準細胞と、基準細胞の基準物とが撮像された基準細胞画像を撮像する。撮像部22は、対象細胞と、対象細胞の基準物とが撮像された対象細胞画像を撮像する。つまり、画像取得装置は、第1基準物と第2基準物とを撮像する撮像部を備える。ここで、画像取得装置とは、顕微鏡観察システム1である。画像取得部101は、撮像部22から、基準細胞画像と、対象細胞画像とを取得する(ステップS20,ステップS30)。
 画像取得部101は、画像記憶部201に、撮像部22から取得した細胞画像を記憶させる(ステップS40)。具体的には、画像取得部101は、画像記憶部201に、撮像部22から取得した基準細胞画像と、対象細胞画像とを記憶させる。
 抽出部102は、基準物の情報を抽出する(ステップS50)。具体的には、抽出部102は、画像記憶部201から基準細胞画像と、対象細胞画像とを取得する。抽出部102は、画像記憶部201から取得した基準細胞画像から基準細胞の基準物の明るさを示す情報を抽出する。抽出部102は、画像記憶部201から取得した基準細胞画像から基準細胞の明るさを示す情報を抽出する。また、抽出部102は、画像記憶部201から取得した対象細胞画像から対象細胞の基準物の明るさを示す情報を抽出する。抽出部102は、画像記憶部201から取得した対象細胞画像から対象細胞の明るさを示す情報を抽出する。
 抽出部102は、基準細胞画像から抽出した基準細胞の明るさを示す情報と、基準細胞の基準物の明るさを示す情報とを、比較部103に対して供給する。また、抽出部102は、対象細胞画像から抽出した対象細胞の明るさを示す情報と、対象細胞の基準物の明るさを示す情報とを、比較部103に対して供給する。
 比較部103は、抽出部102から、基準細胞の明るさを示す情報と、基準細胞の基準物の明るさを示す情報とを取得する。比較部103は、抽出部102から、対象細胞の明るさを示す情報と、対象細胞の基準物の明るさを示す情報とを取得する。比較部103は、異なるウェルにおいて染色された基準物の明るさ同士を比較する(ステップS60)。具体的には、比較部103は、抽出部102から取得した基準細胞の基準物の明るさを示す情報と、抽出部102から取得した対象細胞の基準物の明るさを示す情報とを比較する。つまり、状態比較部は、情報取得部により取得した、第1基準物の情報と第2基準物の情報とに基づいて、第1細胞の処理された状態と第2細胞の処理された状態とを比較する。ここで状態比較部とは、比較部103である。比較部103は、基準細胞の基準物の明るさを示す情報と、抽出部102から取得した対象細胞の基準物の明るさを示す情報との比較結果を、結果出力部300に対して供給する。結果出力部300は、比較部103から取得した基準細胞の基準物の明るさを示す情報と、抽出部102から取得した対象細胞の基準物の明るさを示す情報との比較結果を、表示部30に表示させる。
 比較部103は、基準細胞の基準物の明るさを示す情報と対象細胞の基準物の明るさを示す情報との比較結果と、基準細胞の明るさを示す情報と、対象細胞の明るさを示す情報と、基準細胞画像と、対象細胞画像とを、判定部104に対して供給する。
 判定部104は、比較部103から、基準細胞の基準物の情報と対象細胞の基準物の情報との比較結果と、基準細胞の明るさを示す情報と、対象細胞の明るさを示す情報と、基準細胞画像と、対象細胞画像とを取得する。判定部104は、異なるウェルにおいて染色された細胞同士の染色の状態を比較して、染色条件を判定する(ステップS70)。具体的には、判定部104は、比較部103から取得した基準細胞の基準物の情報と、対象細胞の基準物の情報とに基づいて、異なるウェルにおいて染色された基準細胞の明るさと、対象細胞の明るさとを判定する。
 より具体的には、判定部104は、基準細胞の基準物の明るさを示す情報と、対象細胞の基準物の明るさを示す情報との差が、所定の閾値以内の場合には、基準細胞の基準物の明るさを示す情報と、対象細胞の基準物の明るさを示す情報とが概ね同じであると判定する。例えば、基準物の明るさを示す情報を、基準物が撮像された撮像画像の輝度とする場合に、所定の閾値とは、基準細胞の基準物に対応する輝度値に対する、対象細胞の基準物に対応する輝度値が5%の違いである。もちろん、5%に限られず、5%未満の例えば1%、2%、3%、4%でも構わないし、5%よりも大きい値の、例えば6%、7%、8%、9%、10%、20%、30%でも構わない。基準物の明るさを示す情報はこれに限られず、細胞以外の背景領域の輝度に対する基準物の輝度の割合を用いても構わない。判定部104は、基準細胞の基準物の明るさを示す情報と、対象細胞の基準物の明るさを示す情報とが概ね同じであると判定した場合には、基準細胞の染色の状態と、対象細胞の染色の状態とが同じ染色の状態であると判定する。
 また、判定部104は、基準細胞の基準物の明るさを示す情報と、対象細胞の基準物の明るさを示す情報との差が、所定の閾値よりも大きい場合には、基準細胞の基準物の明るさを示す情報と、対象細胞の基準物の明るさを示す情報とが異なると判定する。判定部104は、基準細胞の基準物の明るさを示す情報と、対象細胞の基準物の明るさを示す情報とが異なると判定した場合には、基準細胞の染色の状態と、対象細胞の染色の状態とが異なる染色の状態であると判定する。
 判定部104は、判定結果を、結果出力部300に対して供給する。結果出力部300は、判定部104から取得した判定結果を、表示部30に表示させる。また、判定部104は、判定結果と、基準細胞の基準物の明るさを示す情報と、基準細胞の明るさを示す情報と、対象細胞の基準物の明るさを示す情報と、対象細胞の明るさを示す情報と、基準細胞画像と、対象細胞画像とを、校正部105に対して供給する。
 校正部105は、判定部104から、判定結果と、基準細胞の明るさを示す情報と、対象細胞の明るさを示す情報と、基準細胞画像と、対象細胞画像とを取得する。校正部105は、判定部104から取得した基準細胞の明るさを示す情報又は対象細胞の明るさを示す情報を校正する(ステップS80)。具体的には、校正部105は、判定部104から取得した判定結果が、基準細胞の染色の状態と、対象細胞の染色の状態とが同じ染色の状態であることを示すと、基準細胞の基準物の明るさの情報と対象細胞の基準物の明るさの情報との比を算出する。校正部105は、算出した基準細胞の基準物の明るさの情報と対象細胞の基準物の明るさの情報との比に基づいて、基準細胞の明るさを示す情報又は対象細胞の明るさを示す情報を校正する。校正部105は、校正した基準細胞の明るさを示す情報又は対象細胞の明るさを示す情報に基づいて、基準細胞画像又は対象細胞画像の明るさを校正する。
 校正部105は、校正した基準細胞の明るさを示す情報又は対象細胞の明るさを示す情報と、校正した基準細胞画像又は対象細胞画像を、結果出力部300に供給する。結果出力部300は、校正部105から取得した校正された基準細胞の明るさを示す情報又は対象細胞の明るさを示す情報と、校正された基準細胞画像又は対象細胞画像を、表示部30に表示させる(ステップS90)。
 なお、上述したステップS20及びステップS30において取得される細胞が撮像された細胞画像と、この細胞と共に染色された基準物が撮像された撮像画像とが、それぞれ別の画像であってもよい。この場合には、画像取得部101は、記憶部200に、細胞画像と、基準物が撮像された撮像画像とが互いに対応付けられた状態で記憶させればよい。
[染色の工程]
 次に、図4を参照して、図3に示したステップS10の染色の工程について説明する。
 図4は、細胞と基準物とを染色する工程の一例を示す図である。なお、ここに示す染色の工程は、一例であって、工程の一部が省略や工程が追加や、工程の順序の変更が行われてもよい。また、複数のウェルを固定し、染色し、撮像する場合には、ウェル毎に固定し、染色し、撮像する工程を繰り返しても構わない。すなわち、第1ウェルと第2ウェルとがある場合には、第1ウェルに対して、固定し、染色し、撮像をした後に、第2ウェルに対して、固定し、染色し、撮像をする。もちろん、最初に複数のウェルを固定し、染色して、その後撮像しても構わない。すなわち、第1ウェルと第2ウェルとがある場合には、第1ウェルと第2ウェルを固定し、染色をする。その後、第1ウェルと第2ウェルとを撮像する。この場合に、例えばウェルに対する固定工程を並行して行っても構わない。また、最初に複数のウェルを固定し、その後にウェル毎に染色し、撮像する工程を繰り返しても構わない。
 染色の工程には、固定工程と、染色工程とが含まれる。固定工程とは、上述したように固定液によって細胞の代謝を止める工程である。固定工程によって、細胞内のタンパク質が変性する。また、タンパク質が架橋され、動かなくなる。固定液には、例えば、ホルマリンや、アセトンなどが用いられる。染色工程とは、目標とするタンパク質に、1次抗体を取り付け、この1次抗体に蛍光物質が付けられた2次抗体を取り付ける工程である。1次抗体が結合により取り付けられたタンパク質に、蛍光物質を含む2次抗体が取り付けられる。蛍光物質を含む2次抗体が1次抗体を反応することで、蛍光物質はタンパク質に取り付けられたことになる。本実施形態においては、1つのタンパク質と結合する1次抗体の数は1つに限られず、複数の一次抗体が結合することとなる。さらに、1次抗体に対して、結合する2次抗体が複数結合することとなる。したがって、タンパク質が結合された1次抗体が十分ある場合には、蛍光物質を含む2次抗体を投入する量を増加すると、タンパク質に付着した1次抗体に付着する2次抗体の量が増える。したがって、タンパク質の周りに存在する二次抗体の量が増えることとなるので、タンパク質を撮像すると、投入する2次抗体の量が増えるにしたがって、蛍光物質に由来する輝度が高くなる。
 また、1次抗体が結合されたタンパク質が複数存在する場合には、2次抗体が結合するタンパク質の数が増えるので、複数存在するタンパク質を撮像すると、撮像される蛍光物質の面積が増える。したがって、複数タンパク質を撮像すると、投入する2次抗体の量が増えるにしたがって、蛍光物質に由来する観察する面積が増える。
 なお、タンパク質に対する蛍光物質の結合方法は上述の方法に限られない。本実施形態においては、タンパク質に結合した1次抗体に対して、複数の蛍光物質を持つ2次抗体が結合したがこれに限られない。例えば、タンパク質が結合した1次抗体に対して、1つの蛍光物質を持つ2次抗体が結合しても構わない。さらに、1次抗体が蛍光物質を持ち、1次抗体とタンパク質との結合によるものでも構わない。また、1つのタンパク質に対して、1次抗体は一つのみが結合しても構わない。
 なお、染色の工程には、染色工程と固定工程に限られない。例えば、細胞を拡張する工程が含まれていても構わない。この場合、細胞にされる処理とは、細胞を拡張する処理である。細胞を拡張する工程とは、細胞を物理的に拡張する。これにより、細胞の大きさが大きくなるので、細胞の微細構造の観察が、拡張する前に比べて容易になる。細胞を拡張する工程とは、細胞に膨潤性の物質を加え、膨潤性の物質が膨張することで細胞が拡張する。膨潤性の物質とは例えば、アクリル酸塩である。例えば特定のタンパク質をアクリル酸塩に結合させるための蛍光分子タグをつけ、アクリル酸塩モノマーを細胞内に浸透する。このモノマーの重合反応を開始させると、細胞内でアクリル酸塩ポリマーの網目状構造ができる。その後、細胞内のタンパク質を分解し、残ったアクリル酸塩ポリマーに水を加えると、水を吸水し膨張し、網目構造に結像している蛍光タグの間隔もあらゆる方向に広げることができる。これにより、膨張前に比べて蛍光タグの間隔を広げることができるので、微細構造を観察しやすくなる。
 細胞へ試薬を添加する(ステップS110)。つまり、細胞へ刺激を加える。
 細胞を固定し、固定不活性化する(ステップS120)。具体的には、刺激を加えた細胞を、固定液に浸すことで固定する。細胞を固定することで、細胞の代謝が止まる。なお、このステップS120以降の工程は、細胞へ刺激を加えてから所定の時間が経過した後に行われる。固定後と、固定不活性化後に、それぞれ細胞を洗う。
 細胞を可溶化する(ステップS125)。細胞を可溶化することにより細胞に穴があき、細胞内に染色液が入り込める状態になる。細胞内に染色液が入り込める状態になることで、細胞内のタンパク質に1次抗体および蛍光物質が取り付けられた2次抗体を細胞内に導入することができる。可溶化後に、細胞を洗う。
 このステップS120からステップS125までが、上述した固定工程である。
 アタッチメント又はビーズを、ウェルに添加する(ステップS130)。言い換えると、基準物を、ウェルに添加する。アタッチメントについては、後述する。
 ブロッキングする(ステップS140)。ブロッキングとは、1次抗体および2次抗体が、不要なところに付着しないよう、マスクをかけることである。
 1次抗体を反応させる(ステップS143)。1次抗体を反応させるとは、所定の細胞に、1次抗体を取り付けることである。
 2次抗体を反応させる(ステップS146)。2次抗体を反応させるとは、1次抗体に、蛍光物質が取り付けられた2次抗体を取り付けることである。
 このステップS140からステップS146までが、上述した染色工程である。
 撮像部22は、染色された細胞を撮像する(ステップS150)。
 ユーザは、全てのウェルを染色したか判定する(ステップS160)。
 全てのウェルが染色されていない場合(ステップS160;NO)には、ユーザは、染色するウェルを変更する(ステップS165)。そして、ステップS110からの処理を繰り返す。
 全てのウェルが染色された場合(ステップS160;YES)には、染色を終了する。
[アタッチメントと、ビーズについて]
 ここで、図5を参照して、アタッチメントとビーズについて説明する。
 図5は、アタッチメントとビーズの一例を示す図である。アタッチメントとは、基準物を保持する部材の一例である。
 アタッチメントは、図5(a)に示すように、ウェルWのそれぞれに添加される。アタッチメントATCHには、基準物が塗布される。アタッチメントATCHに塗布された基準物は、ウェルW内に格納された細胞CELLと共に染色される。
 ビーズBEADは、図5(b)に示すように、ウェルW内の細胞CELLと同じ位置に添加される。上述したように、ビーズBEADは、基準物が塗布されている。このビーズBEADに塗布された基準物は、ウェルW内に格納された細胞CELLと共に染色される。
 次に、図6を参照して、アタッチメントATCHの詳細について説明する。
 図6は、アタッチメントATCHの構造の一例を示す図である。
 図6(a)に示すように、アタッチメントATCHは、ウェルWに格納される細胞CELLとともに、染色及び又は固定される基準物を保持する保持部NSを備える。つまり、保持部NSは、容器に格納される細胞とともに、処理される基準物を保持する。また、アタッチメントATCHは、保持部NSが設けられ、ウェルWに対して保持部NSを着脱可能に支持する支持部STを備える。つまり、支持部STは、保持部NSが設けられ、容器に対して保持部NSを着脱可能に支持する。
 保持部NSは、ウェルWの細胞と対向する面に、基準物が塗布される。また、保持部NSの対角線の長さNSDは、支持部STの幅STWよりも、長い。つまり、保持部NSは、基準物が塗布される面を大きくとることができる。これにより、基準物を撮像する際に、大きく撮像することができる。
 また、アタッチメントATCHは、支持部STを備えることにより、ウェルWの底部に配置される細胞と、保持部NSとの間隔を短くすることができる。例えば、図6(b)に示すように、ウェルWの入り口からウェルWの底部に向かうZ軸方向において、支持部STのZ軸方向の長さSTHと、ウェルWの細胞CELLが格納された面CSまでの長さCSHとが対応する長さの場合、染色に用いる固定液や染色液の量を増やさなくても、基準物を染色することができる。また、Z軸方向において、ウェルWの細胞CELLと基準物との距離を短くすることができるので、Z軸方向に沿って、観察する場合に、基準物と細胞とを同時に撮像することが可能である。この場合に、基準物と細胞とが同じ焦点深度内であっても構わない。一般に、固定液や染色液は、価格が高い試験薬である。このため、アタッチメントATCHを使用する場合であっても、固定液や染色液を増やさずに細胞を染色することにより、細胞の試験にかかる費用を抑えることができる。
 また、アタッチメントATCHは、支持部STを備えることにより、染色後の細胞と、基準物とを容易に分離することができる。これにより、細胞の解析に用いる細胞画像に、基準物を取り除く手間を低減することができる。
 また、アタッチメントATCHは、取付け部SSを備える。取付け部SSの径SSDは、ウェルWの孔の径に応じた径である。取付け部SSによって、アタッチメントATCHは、ウェルW内に脱落することなく、容易にウェルWから取り除くことができる。また、複数のアタッチメントの取付け部SS同士を接続することにより、複数のアタッチメントを一度の作業で取り付け及び取り外しが行える構成にしてもよい。
[保持部の形状について]
 次に、図7を参照して、保持部NSの形状の一例について説明する。
 図7は、保持部NSの形状の一例を示す図である。
 図7(a)に示す保持部NS1は、中心部に穴が設けられた、円状の形状である。
 図7(b)に示す保持部NS2は、円状の形状である。
 図7(c)に示す保持部NS3は、十字状の形状である。
 図7(a)から、図7(c)までに示すように、保持部NSの形状を変えることにより、例えば、実験の時期や、実験に用いた薬剤などを示す目印とすることができる。また、保持部NSの形状に応じて、保持部NSに塗布される基準物の量を調節することができる。これは、保持部NSの面積に応じて、塗布される基準物の量が異なるからである。
[比較部の動作について]
 ここで、図8を参照して、比較部103の比較の処理の一例について説明する。
 図8は、細胞の染色の状態と、基準物の染色の状態の一例を示す図である。
 図8(a)は、実験1の細胞の染色の状態と、基準物の染色の状態の一例を示す図である。実験1は、複数のウェルWのそれぞれに同じ刺激を加えた実験である。
 この一例では、ウェルW1の基準物と、ウェルW2の基準物と、ウェルW4の基準物とが、同じ染色の状態である。また、ウェルW1の細胞の染色の状態と、ウェルW2の細胞の染色の状態とが、同じ染色の状態である。
 ここで、ウェルW1と、ウェルW2とを比較する。ウェルW1の基準物の染色の状態とウェルW2の基準物の染色の状態とが同じ染色の状態で、ウェルW1の細胞の染色の状態と、ウェルW2の細胞の染色の状態とが同じ染色の状態であるため、ウェルW1の細胞と、ウェルW2の細胞とが、刺激によって同じ反応を示したことを示す。言い換えると、ウェルW1の細胞と、ウェルW2の細胞とは、染色条件が同じであり、ウェルW1の細胞が撮像された細胞画像とウェルW2の細胞が撮像された細胞画像とを同じ解析に用いることができる。
 次に、ウェルW1と、ウェルW4とを比較する。ウェルW1の基準物の染色の状態とウェルW4の基準物の染色の状態とが同じ染色の状態で、ウェルW1の細胞の染色の状態と、ウェルW2の細胞の染色の状態とが異なる染色の状態であるため、ウェルW1の細胞と、ウェルW4の細胞とが、刺激によって異なる反応を示したことを示す。言い換えると、ウェルW1の細胞と、ウェルW4の細胞とは、染色条件が同じであり、ウェルW1の細胞が撮像された細胞画像とウェルW4の細胞が撮像された細胞画像とを同じ解析に用いることができる。
 次に、ウェルW1と、ウェルW5とを比較する。ウェルW1の細胞の染色の状態と、ウェルW5の細胞の染色の状態とが同じ染色の状態であるが、ウェルW1の基準物の染色の状態とウェルW5の基準物の染色の状態とが異なる染色の状態である。つまり、ウェルW1の細胞と、ウェルW5の細胞とが、染色によって異なる染まり方を示したことを示す。したがって、ウェルW1の細胞の染色条件と、ウェルW5の細胞の染色条件とが異なるために、染色が染色条件の違いによるのか、細胞の違いによるのかを判断することが難しいために、解析することが困難な場合がある。
 次に、ウェルW3と、ウェルW5とを比較する。ウェルW3の基準物の染色の状態とウェルW5の基準物の染色の状態とが同じ染色の状態でである。ウェルW3の細胞の染色の状態と、ウェルW5の細胞の染色の状態とは異なる染色の状態であるが、刺激によって異なる反応をしたことを示す。言い換えると、ウェルW3の細胞と、ウェルW5の細胞とは、染色条件が同じであり、ウェルW3の細胞が撮像された細胞画像とウェルW5の細胞が撮像された細胞画像とを同じ解析に用いることができる。
 図8(b)は、実験2の細胞の染色の状態と、基準物の染色の状態の一例を示す図である。実験2は、実験1と同じ刺激を加えた、過去の細胞の実験の結果である。
 ここで、実験1のウェルW1の基準物の染色の状態と、実験2のウェルW2、実験2のウェルW3及び、実験2のウェルW5の基準物の染色の状態とは、同じ染色の状態である。つまり、実験1のウェルW1の細胞の染色の状態と、実験2のウェルW2、実験2のウェルW3及び、実験2のウェルW5の細胞の染色の状態とは、同じ染色が行われていることがわかる。実験1のウェルW1の細胞の染色の状態と、実験2のウェルW2、実験2のウェルW3及び、実験2のウェルW5の細胞の染色の状態とが異なる場合には、刺激による反応が異なることで、細胞の染色の状態が異なると言える。つまり、異なる実験間であっても、基準物同士の染色の状態が同じである場合には、細胞の染色条件が同じであると言える。この場合には、細胞の染色の状態を比較することができる。これにより、画像処理装置10は、過去の実験によって得られた細胞画像の染色の差異を考慮して、解析に用いる細胞画像を示すことができる。
 以上説明したように、画像処理装置10は、画像取得部101と、抽出部102と、比較部103とを備える。画像取得部101は、顕微鏡装置20から、細胞と、この細胞と共に染色された基準物とが撮像された細胞画像を取得する。抽出部102は、画像取得部101が取得した細胞画像から、細胞と基準物との染色の状態を抽出する。比較部103は、抽出部102が抽出したウェルW毎の基準物同士の染色の状態を比較する。比較部103は、抽出部102が抽出したウェルW毎の基準物同士の染色の状態を比較することで、ウェルW毎の基準物に対する染色条件を比較することができる。ウェルW毎の基準物に対する染色条件を比較することにより、比較部103は、抽出部102が抽出したウェルW毎の細胞同士の染色の状態を比較することができる。
 これにより、染色によって細胞の染色条件が異なる細胞画像を解析に用いずに、染色条件が同じ細胞画像同士を解析することができ、精度よく細胞画像を解析することができる。
 さらに、染色された細胞が撮像された画像から、輝度の変化などの特徴量を抽出する場合に、染色状態が校正された画像を用い特徴量を抽出することができるので、細胞画像を用いた解析不良を抑制することができる。
 なお、上述した説明では、顕微鏡観察システム1は、蛍光染色された細胞や、蛍光染色された基準物等が撮像された撮像画像に対して画像処理を行う構成について説明したが、これに限られない。情報処理装置は、蛍光染色された細胞の蛍光の明るさや、蛍光染色された基準物の蛍光の明るさを検出してもよい。
 なお、上述した画像処理装置10は、判定部104、校正部105を備える構成について説明したが、判定部104及び校正部105を省略しても構わない。
 判定部104は、比較部103が比較した結果に基づいて、細胞画像の細胞の染色の状態を判定することができる。上述した説明では、判定部104は、刺激による細胞の染色の状態の違いか、染色条件の違いによる細胞の染色の状態の違いかを判定することができる。
 また、校正部105は、判定部104が判定した結果に基づいて、細胞の染色の状態を校正することができる。これにより、基準物同士の染色の状態の差が所定の閾値内の場合には、細胞の染色の状態を校正することができる。また、基準物同士の染色の状態の差が所定の閾値外の場合には、基準物同士の染色の状態の差が所定の閾値内になるように再度細胞の染色実験を行う。
[第2の実施形態]
 ここまでは、基準物が、ビーズやアタッチメントに塗布される構成について説明した。次に、基準物が、人工細胞内に含まれる場合について説明する。
 図9は、人工細胞ACの一例を示す図である。
 図9(a)に示すように、人工細胞ACは、上述したビーズBEADと同様に、細胞CELLと同じ位置に添加される。この人工細胞ACは、ウェルW内に格納された細胞CELLと共に、固定工程と染色工程とによって染色される。
 図9(b)に示すように、人工細胞ACとは、脂質二重層内LBに基準物PRが格納されたものである。つまり、第1基準物及び第2基準物は、脂質2重層で囲まれた空間に配置される。人工細胞ACは、上述したビーズBEADやアタッチメントATCHと比較して、上述した固定工程による影響を受ける。
 図10は、細胞CELLと人工細胞ACを含む基準物とを染色する工程の一例を示す図である。
 図10は、図3に示す染色の工程のうち、人工細胞ACを添加する工程が異なる。人工細胞ACは、ステップS110の細胞へ試薬を添加する工程と、ステップS120の細胞を固定不活性化する工程との間で、ウェルW内に添加される(ステップS115)。人工細胞ACは、固定工程により、共に染色される細胞CELLと同様に、脂質二重層内LBに穴があけられる。人工細胞ACにあけられた穴から、細胞CELLにあけられた穴と同様に蛍光物質が入り込み、基準物PRが染色される。これにより、画像処理装置10は、固定の状態を比較することができる。人工細胞ACと、細胞CELLとの固定の状態は、固定する時間、固定液の濃度に基づいて定まる。つまり、細胞を固定する処理は、固定液の濃度、固定処理をする時間に基づいて、定まる。
 比較部103は、人工細胞AC同士の染色の状態を比較することにより、細胞同士の固定の状態を含めた染色の状態を比較する。
 また、比較部103は、人工細胞ACの染色の状態と、ビーズBEAD又はアタッチメントATCHの染色の状態とを組み合わせて比較することにより、細胞CELLの固定の状態を比較する。これは、ビーズBEAD又はアタッチメントATCHの染色の状態は、染色工程によって染色の状態が変わってくるが、人工細胞ACは、固定工程によっても染色の状態が変わるためである。つまり、比較部103は、細胞画像に、人工細胞ACと、ビーズBEAD又はアタッチメントATCHと、細胞CELLとが含まれる場合には、細胞CELLの固定の状態を比較することができる。
 ここで、図11を参照して、細胞画像に、人工細胞ACと、ビーズBEAD又はアタッチメントATCHと、細胞CELLとが含まれる場合の、比較部103の判定の手順について説明する。
 図11は、第2の実施形態に係る比較部103の判定の手順の一例について示す図である。
 比較部103は、人工細胞同士の明るさが同じか否かを比較する(ステップS201)。人工細胞ACの明るさは、上述した基準物の明るさと同様に、基準物PRのタンパク質に付着した蛍光物質の量に応じて変化する。以下の説明では、人工細胞ACの基準物PRに付着した蛍光物質の明るさのことを、単に人工細胞の明るさと記載する場合がある。具体的には、比較部103は、基準細胞画像に含まれる人工細胞の明るさと、対象細胞画像に含まれる人工細胞の明るさとが概ね同じか否か比較する。
 比較部103は、基準細胞画像に含まれる人工細胞の明るさと、対象細胞画像に含まれる人工細胞の明るさとが概ね同じであるとした場合(ステップS201;YES)に、基準細胞画像に含まれる細胞の明るさと、対象細胞画像に含まれる細胞の明るさとを比較する(ステップS203)。
 比較部103は、基準細胞画像に含まれる基準細胞の明るさと、対象細胞画像に含まれる対象細胞の明るさとが概ね同じである場合(ステップS203;YES)、「細胞の染色の状態が同じ」と結果を出力する(ステップS209)。
 比較部103は、基準細胞画像に含まれる基準細胞の明るさと、対象細胞画像に含まれる対象細胞の明るさとが異なる場合(ステップS203;NO)、「細胞に加えられた刺激によって、細胞の染色の状態が異なる」と結果を出力する(ステップS208)。
 比較部103は、基準細胞画像に含まれる人工細胞の明るさと、対象細胞画像に含まれる人工細胞の明るさとが異なるとした場合(ステップS201;NO)に、基準細胞画像に含まれる基準細胞の基準物であるアタッチメント又はビーズの明るさと、対象細胞画像に含まれる対象細胞の基準物であるアタッチメント又はビーズの明るさとを比較する(ステップS202)。
 比較部103は、基準細胞画像に含まれるアタッチメント又はビーズの明るさと、対象細胞画像に含まれるアタッチメント又はビーズの明るさとが概ね同じである場合(ステップS202;YES)、「固定工程によって、細胞の染色の状態が異なる」と結果を出力する(ステップS207)。
 比較部103は、基準細胞画像に含まれるアタッチメント又はビーズの明るさと、対象細胞画像に含まれるアタッチメント又はビーズの明るさとが異なる場合(ステップS202;NO)に、人工細胞同士の明るさの大小関係と、アタッチメント又はビーズ同士の明るさの大小関係とが同じか否かを比較する(ステップS204)。比較部103は、人工細胞同士の明るさの大小関係と、アタッチメント又はビーズ同士の明るさの大小関係とが同じ場合(ステップS204;YES)には「染色工程によって、細胞の染色の状態が異なる」と結果を出力する(ステップS206)。
 比較部103は、人工細胞同士の明るさの大小関係と、アタッチメント又はビーズ同士の明るさの大小関係とが異なる場合(ステップS204;NO)には「固定工程及び染色工程によって細胞の染色の状態が異なる」と結果を出力する(ステップS205)。
 次に、図12を参照して、実験3の染色の比較の一例を示す。
 図12は、人工細胞ACを含む染色の状態の比較の一例を示す図である。
 ウェルW1と、ウェルW2との固定工程には、細胞CELLと、人工細胞ACとにあけられた穴の数が同じため、違いが無い。
 ウェルW1と、ウェルW2との染色工程は、アタッチメントATCH又はビーズBEADの染色の状態が、ウェルW1とウェルW2とで異なるため、ウェルW1と、ウェルW2とで染色工程が異なることがわかる。この染色工程の違いにより、ウェルW1の人工細胞AC及び細胞CELLの染色の状態を示す明るさと、ウェルW2の人工細胞AC及び細胞CELLの染色の状態を示す明るさとが異なる。
 次に、図13を参照して、実験4の染色の比較の一例を示す。
 図13は、人工細胞ACを含む染色の状態の比較の一例を示す図である。
 ウェルW1及びウェルW2の細胞CELLと、人工細胞ACとで、あけられた穴の数が異なるため、固定工程が異なる。
 ウェルW1と、ウェルW2との染色工程は、アタッチメントATCH又はビーズBEADの染色の状態が、ウェルW1とウェルW2とで同じため、ウェルW1と、ウェルW2とで染色工程は同じであることがわかる。この固定工程の違いにより、ウェルW1の人工細胞AC及び細胞CELLの染色の状態を示す明るさと、ウェルW2の人工細胞AC及び細胞CELLの染色の状態を示す明るさとが異なる。
[第2の実施形態のまとめ]
 以上説明したように、基準物が人工細胞ACの場合には、比較部103は、人工細胞AC同士の染色の状態を比較する。これにより、比較部103は、固定工程を含めた、染色の状態を比較することができる。
 また、比較部103は、人工細胞ACと、ビーズBEAD又はアタッチメントATCHとを組み合わせて比較することにより、固定工程によって、細胞CELL同士の染色の状態が異なるか否かを比較することができる。これにより、ユーザは、染色の工程うちの固定工程又は染色工程の何れかの工程によって、細胞CELLの染色の状態が変化したのかを知ることができる。これにより、ユーザは、実験をやり直す際に、注意を要する工程を把握することができる。
 なお、上述した説明では、画像処理装置10と、顕微鏡装置20とが異なる装置の場合について説明したが、これに限られない。顕微鏡装置20は、画像処理装置10を備えてもよい。言い換えると、画像処理装置10は、基準細胞の基準物と、対象細胞の基準物とを撮像する撮像部を備えていてもよい。顕微鏡装置20が画像処理装置10を備える場合には、基準物同士が概ね同じ染色の状態の細胞画像を選別することができる。これにより、ユーザは、顕微鏡装置20から取得する細胞画像を選別する手間を省くことができる。
 なお、上述の実施形態では、ウェル毎の細胞に対する染色・固定工程の違いを、基準物を用いて校正したが、基準物を用いて細胞の処理工程を校正する工程はこれに限られない。すなわち、ウェル毎の細胞に対して施された処理の違いを、基準物を用いて校正しても構わない。細胞に対する処理としては、細胞の性質もしくは細胞の性能を変える処理があげられる。例えば、細胞に対する染色工程では、細胞に対して染色液を導入することで、染色物が細胞内の染色対象物と結合する。これにより、細胞の色を変えることができる。また、例えば、細胞に対する固定工程では、細胞に対して固定処理をすることで、細胞のタンパク質を変性させることができる。これにより細胞内に染色液が導入される性能を変えることができる。
 また、上述の実施形態では、判定部は、状態比較部の結果に基づいて、第1細胞に対する処理条件と第2細胞に対する処理条件との違いを判定する場合について説明したが、判定部は、情報取得部により取得した、第1基準物の情報に基づいて、第1細胞の処理された状態を判定してもよい。
 また、ウェル毎の細胞に対して、細胞を拡張する処理する工程に、基準物を用い、基準物の拡張工程を基準物の画像から判断する。細胞を拡張する処理では、処理する前と処理する後で細胞が拡張するので、細胞の大きさが異なる。例えば、基準物の画像から、拡張前に対する拡張後の基準物の増加率を割りだし、ウェル毎の基準物の増加率を用い、ウェル間の細胞の拡張工程の校正をしても構わない。
 また、ウェル毎の細胞に対して、細胞をウェルから剥離する処理工程に基準物を用い、基準物の剥離工程を基準物の画像から判断する。この場合、基準物が細胞と共に処理される処理とは、細胞を容器から剥離する処理である。細胞を剥離する処理では、処理する前と処理する後で細胞が剥離するので細胞のウェル対する接着する能力が異なる。例えば、細胞を培養し、培養した細胞がウェルに接着することがある。この場合に、トリプシンまたはトリプシン・EDTAにより剥離液を用いてウェルに接着した細胞を剥離する。この場合に、細胞の剥離処理の不良により細胞に損傷を与えることがある。この場合に剥離した細胞の形状を観察することにより細胞の剥離処理の条件の違いを推定することができる。したがって、ウェル毎に剥離処理する培養した細胞の他に、基準細胞を配置し、剥離処理したのちの基準細胞の形状を観察する。ウェル毎に基準細胞を配置し、剥離した基準細胞の形状を観察することで、ウェル毎の剥離処理の処理条件の違いを推定することができる。この場合には、例えば、抽出部102は、異なるウェルの細胞を撮像した細胞画像から基準細胞の形状を抽出し、抽出した基準細胞の形状を比較部103に対して供給する。比較部103は、抽出部102から取得した基準細胞の形状をウェル毎に比較する。判定部104は、比較部103が比較した結果、基準細胞の形状が同じウェルは、剥離処理が同じ処理条件であると判定する。
 なお、上述の実施形態では、ウェル間の染色の条件を、それぞれのウェルでの細胞とともに固定・染色される基準物により推定したが、これに限られない。細胞とともに固定・染色される基準物を撮像した画像を撮像し、その撮像画像と、予め定められた画像とを比較して、基準物の染色条件の適否を判断しても構わない。基準物の染色条件の適否の判断の結果を、基準物とともに固定・染色した細胞の染色条件の適否とする。なお、基準物を撮像した画像に基づいて、基準物に結合した蛍光物質の輝度値から、基準物の染色条件の適否を判断しても構わない。この場合に、固定・染色による細胞の変化の程度に対する、固定・染色による基準物の変化の程度の関係を事前に求めていても構わない。また、基準物保持部材では、細胞の処理の程度に対する、基準物の変化の程度が事前に求められていても構わない。これにより、基準物の変化の程度を求めることで、細胞の固定・染色による変化の程度の適否を判断することが可能となる。従って、処理に対する基準物の変化の程度が、処理による細胞の変化の程度の基準となる。処理に対する基準物の変化の程度が、処理による細胞の変化の程度の指標となる。
 なお、本発明の実施形態における画像処理装置10の各処理を実行するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、当該記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより、上述した種々の処理を行ってもよい。
 なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものであってもよい。また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、フラッシュメモリ等の書き込み可能な不揮発性メモリ、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。
 さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(例えばDRAM(Dynamic Random Access Memory))のように、一定時間プログラムを保持しているものも含むものとする。また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。また、上記プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
 なお、上述の各実施形態の要件は、適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。また、法令で許容される限りにおいて、上述の各実施形態及び変形例で引用した装置などに関する全ての公開公報及び米国特許の開示を援用して本文の記載の一部とする。
 1…顕微鏡観察システム、10…画像処理装置、20…顕微鏡装置、30…表示部、101…画像取得部、103…比較部、CELL…細胞、AC…人工細胞、ATCH…アタッチメント

Claims (20)

  1.  第1細胞と共に処理した第1基準物を撮像し、取得される第1基準物の情報と、
     第2細胞と共に処理した第2基準物を撮像し、取得される第2基準物の情報とを取得する情報取得部と、
     前記情報取得部により取得した、前記第1基準物の情報と前記第2基準物の情報とに基づいて、前記第1細胞の処理された状態と前記第2細胞の処理された状態とを比較する状態比較部と、
     を備える、情報処理装置。
  2.  前記状態比較部の結果に基づいて、前記第1細胞に対する処理条件と前記第2細胞に対する処理条件との違いを判定する、判定部
     を更に備える、請求項1に記載の情報処理装置。
  3.  前記情報取得部は、前記処理がされた第1細胞を撮像し、第1細胞の情報と、前記処理がされた第2細胞を撮像し、第2細胞の情報とを取得し、
     前記第1基準物の情報と、前記第2基準物の情報とに基づいて、前記第1細胞の情報と、前記第2細胞の情報の少なくとも一方の情報を校正する、
     請求項2に記載の情報処理装置。
  4.  前記第1基準物及び前記第2基準物は、タンパク質である、請求項1~3の何れか一項に記載の情報処理装置。
  5.  前記第1基準物及び前記第2基準物は、脂質2重層で囲まれた空間に配置される、請求項1~4の何れか一項に記載の情報処理装置。
  6.  前記第1細胞および前記第2細胞に対する処理の程度に対する、前記第1基準物および前記第2基準物の変化の程度が事前に求められている、請求項1~5の何れか一項に記載の情報処理装置。
  7.  第1細胞と共に処理した第1基準物を撮像し、取得される第1基準物の情報を取得する情報取得部と、
     前記情報取得部により取得した、前記第1基準物の情報に基づいて、前記第1細胞の処理された状態を判定する、判定部と、を備える、情報処理装置。
  8.  前記第1細胞に対する処理の程度に対する、前記第1基準物の変化の程度が事前に求められている、請求項7に記載の情報処理装置。
  9.  前記処理は、細胞を染色する処理である、請求項1~8のいずれか一項に記載の情報処理装置。
  10.  前記染色する処理による、細胞の染色された状態は、染色液の濃度、染色処理をする時間に基づいて、定まる、請求項9に記載の情報処理装置。
  11.  前記染色する処理は、抗原抗体反応を用いる、
     請求項9又は10に記載の情報処理装置。
  12.  前記処理は、細胞を固定する処理である、請求項1~8のいずれか一項に記載の情報処理装置。
  13.  前記固定する処理は、固定液の濃度、固定処理をする時間に基づいて、定まる、請求項12に記載の情報処理装置。
  14.  前記処理は、細胞を容器から剥離する処理である、請求項1~8の何れか一項に記載の情報処理装置。
  15.  前記処理は、細胞を拡張する処理である、請求項1~8の何れか一項に記載の情報処理装置。
  16.  請求項1~6の何れか一項に記載の情報処理装置と、
     前記第1基準物と前記第2基準物とを撮像する撮像部を備える、画像取得装置。
  17.  容器に格納される細胞とともに、処理される基準物を保持する保持部と、
     前記保持部が設けられ、前記容器に対して前記保持部を着脱可能に支持する支持部と、
     を備える、基準物保持部材。
  18.  前記細胞の処理の程度に対する、前記基準物の変化の程度が事前に求められている、請求項17に記載の基準物保持部材。
  19.  第1細胞と共に処理した第1基準物を撮像し、取得される第1基準物の情報と、第2細胞と共に処理した第2基準物を撮像し、取得される第2基準物の情報とを取得する情報取得手段と、
     前記情報取得手段により取得された、前記第1基準物の情報と前記第2基準物の情報とに基づいて、前記第1細胞の処理された状態と前記第2細胞の処理された状態と、を比較する状態比較手段と、
     を有する、情報処理方法。
  20.  コンピュータに、
     第1細胞と共に処理した第1基準物を撮像し、取得される第1基準物の情報と、第2細胞と共に処理した第2基準物を撮像し、取得される第2基準物の情報とを取得する情報取得ステップと、
     前記情報取得ステップにより取得された、前記第1基準物の情報と前記第2基準物の情報とに基づいて、前記第1細胞の処理された状態と前記第2細胞の処理された状態とを比較する状態比較ステップと、
     を実行させるための、情報処理プログラム。
PCT/JP2017/041805 2017-11-21 2017-11-21 情報処理装置、画像取得装置、基準物保持部材、情報処理方法及び情報処理プログラム WO2019102520A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/041805 WO2019102520A1 (ja) 2017-11-21 2017-11-21 情報処理装置、画像取得装置、基準物保持部材、情報処理方法及び情報処理プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/041805 WO2019102520A1 (ja) 2017-11-21 2017-11-21 情報処理装置、画像取得装置、基準物保持部材、情報処理方法及び情報処理プログラム

Publications (1)

Publication Number Publication Date
WO2019102520A1 true WO2019102520A1 (ja) 2019-05-31

Family

ID=66631454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041805 WO2019102520A1 (ja) 2017-11-21 2017-11-21 情報処理装置、画像取得装置、基準物保持部材、情報処理方法及び情報処理プログラム

Country Status (1)

Country Link
WO (1) WO2019102520A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352496A (en) * 1976-10-25 1978-05-12 Hitachi Ltd Revision apparatus of feature parameter
JPH05501151A (ja) * 1989-02-24 1993-03-04 セル・アナラシス・システムズ・インコーポレーテッド 細胞の染色および分析を行なうためのデュアルカメラ顕微鏡およびその方法
JP2002530676A (ja) * 1998-11-20 2002-09-17 アプライド スペクトラル イメイジング リミテッド 細胞のインサイチュ分析方法
WO2005036143A1 (ja) * 2003-10-10 2005-04-21 Hamamatsu Photonics K.K. 蛍光色素の濃度を定量する方法およびシステム
JP2014524013A (ja) * 2011-06-06 2014-09-18 メディパン・ゲーエムベーハー 合成校正用粒子を用いた細胞に基づく免疫蛍光アッセイによる免疫蛍光病巣を自動的に判定するための方法及びシステム
WO2016203952A1 (ja) * 2015-06-16 2016-12-22 コニカミノルタ株式会社 病理標本、病理標本の作製方法、および蛍光画像の取得方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352496A (en) * 1976-10-25 1978-05-12 Hitachi Ltd Revision apparatus of feature parameter
JPH05501151A (ja) * 1989-02-24 1993-03-04 セル・アナラシス・システムズ・インコーポレーテッド 細胞の染色および分析を行なうためのデュアルカメラ顕微鏡およびその方法
JP2002530676A (ja) * 1998-11-20 2002-09-17 アプライド スペクトラル イメイジング リミテッド 細胞のインサイチュ分析方法
WO2005036143A1 (ja) * 2003-10-10 2005-04-21 Hamamatsu Photonics K.K. 蛍光色素の濃度を定量する方法およびシステム
JP2014524013A (ja) * 2011-06-06 2014-09-18 メディパン・ゲーエムベーハー 合成校正用粒子を用いた細胞に基づく免疫蛍光アッセイによる免疫蛍光病巣を自動的に判定するための方法及びシステム
WO2016203952A1 (ja) * 2015-06-16 2016-12-22 コニカミノルタ株式会社 病理標本、病理標本の作製方法、および蛍光画像の取得方法

Similar Documents

Publication Publication Date Title
US20230111225A1 (en) Method for resetting an array
JP5631999B2 (ja) 蛍光画像を用いて明視野画像を生成するためのシステム及び方法
US20070197894A1 (en) Method for fluorescence lifetime imaging microscopy and spectroscopy
JP6967232B2 (ja) 画像処理装置、画像処理方法及び画像処理プログラム
JP6960935B2 (ja) コントロールスライドを使用する改善された画像解析アルゴリズム
Jo et al. Ultrafast method for the analysis of fluorescence lifetime imaging microscopy data based on the Laguerre expansion technique
CN112424588A (zh) 从样本的自体荧光分离出荧光试剂的荧光的信息处理装置及显微镜
JP2022105045A (ja) 解析装置
EP3540043B1 (en) Analysis device, analysis method, and program
Zhou et al. Pooled PCR testing strategy and prevalence estimation of submicroscopic infections using Bayesian latent class models in pregnant women receiving intermittent preventive treatment at Machinga District Hospital, Malawi, 2010
JPWO2018066039A1 (ja) 解析装置、解析方法、及びプログラム
WO2019102520A1 (ja) 情報処理装置、画像取得装置、基準物保持部材、情報処理方法及び情報処理プログラム
CN106323949B (zh) 检测装置及其加压组件
EP3428262B1 (en) Image processing device
Borowsky et al. A pilot validation study comparing FIBI, a slide-free imaging method, with standard FFPE H&E tissue section histology for primary surgical pathology diagnosis
Chang et al. Increasing precision of lifetime determination in fluorescence lifetime imaging
US20240085405A1 (en) Image processing device, analysis device, image processing method, image processing program, and display device
Schöler et al. Quantitative Live-Cell Ca2+ Imaging During Isotropic Cell Stretch
El Kaffas Measuring the mechanical properties of apoptotic cells using particle tracking microrheology
WO2020195829A1 (ja) 皮膚の状態を評価する方法
Saxton Single-Particle Tracking of DNA-Binding Biomolecules in Cells: Power-Law Distributions of Dwell Times
WO2018109826A1 (ja) 解析装置、解析プログラム及び解析方法
Torres et al. Improved identification of cranial nerves using paired-agent imaging: topical staining protocol optimization through experimentation and simulation
Aggarwal et al. Characterisation and correction of polarisation effects in fluorescently labelled fibres
WO2020070885A1 (ja) 判定装置、判定プログラム及び判定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17932878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP