WO2019100591A1 - 冷媒循环系统及其控制方法 - Google Patents

冷媒循环系统及其控制方法 Download PDF

Info

Publication number
WO2019100591A1
WO2019100591A1 PCT/CN2018/075094 CN2018075094W WO2019100591A1 WO 2019100591 A1 WO2019100591 A1 WO 2019100591A1 CN 2018075094 W CN2018075094 W CN 2018075094W WO 2019100591 A1 WO2019100591 A1 WO 2019100591A1
Authority
WO
WIPO (PCT)
Prior art keywords
circulation system
compressor
refrigerant circulation
refrigerant
vibration
Prior art date
Application number
PCT/CN2018/075094
Other languages
English (en)
French (fr)
Inventor
李晓阳
高旭
高智强
夏增强
刘汉
刘江驰
程诗
杨俊涛
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2019100591A1 publication Critical patent/WO2019100591A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor

Definitions

  • the present application relates to the field of heat exchange systems, and in particular to a refrigerant circulation system and a control method thereof.
  • the performance of the piping directly affects the noise and operational reliability of the outdoor unit.
  • Air conditioner products from development to mass production the dynamic performance of piping is based on repeated testing of a large number of prototypes before mass production to ensure product consistency, this method is only applicable to fixed-frequency air conditioners, and inverter air conditioners due to operating frequency points Many, the influence of piping manufacturing error on dynamic characteristics (such as modal properties) becomes difficult to accurately control, resulting in the operating frequency point of air conditioning products being within the actual resonant frequency range of the piping, and the service life of the air conditioner cannot be accurately guaranteed.
  • an object of the present application is to provide a control method of a refrigerant circulation system and a refrigerant circulation system capable of improving the service life of a refrigerant circulation system.
  • a control method of a refrigerant circulation system comprising: a control device, a compressor, a refrigerant delivery line connected to the compressor, and a detection device for detecting vibration of the refrigerant delivery line, Control methods include:
  • the refrigerant circulation system has a vibration detection mode, and when the refrigerant circulation system operates the vibration detection mode, the control device controls the detection device to respectively detect vibration of the refrigerant delivery line at different compressor frequencies, And correcting the operating frequency range of the compressor according to the vibration condition to avoid the resonance point of the refrigerant conveying pipeline.
  • control device controls the refrigerant circulation system to operate the vibration detection mode once every predetermined time interval, the predetermined duration being 1 to 3 years.
  • the predetermined length of time is reduced as the use time of the refrigerant circulation system increases.
  • the control device controls the compressor to sequentially operate at different frequencies.
  • the control device determines whether the refrigerant circulation system satisfies the frequency sweep condition, and controls the refrigerant circulation system to enter the vibration detection when the frequency sweep condition is satisfied. mode.
  • the frequency sweeping condition comprises:
  • the absolute value of the temperature difference between the actual indoor temperature and the target temperature is within a preset range; and/or,
  • the refrigerant circulation system operates a dehumidification condition.
  • the sweep range of the compressor is determined according to the magnitude of the absolute value of the temperature difference, and the control device controls the compressor The frequency varies within the sweep range.
  • the method for determining the frequency sweep range of the compressor according to the magnitude of the absolute value of the temperature difference comprises:
  • the sweep frequency range is [10 Hz, 120 Hz]; and/or,
  • the sweep range is [10, 50 Hz]; and / or,
  • the sweep range is [51, 90 Hz]; and / or,
  • the sweep range is [91, 120 Hz].
  • the control device records the vibration condition of the refrigerant conveying pipeline detected by the detecting device at different frequencies of the compressor, and according to the The vibration condition corrects the operating frequency range of the compressor.
  • the method for correcting the operating frequency range of the compressor according to the vibration condition comprises:
  • the detecting device includes a strain gauge for detecting a strain amount of the refrigerant conveying pipeline, and compares a strain amount detected by the strain gauge at a corresponding frequency point with a preset reference value, if the strain amount is less than or equal to the pre-measurement If the reference value is set, no correction is performed, and if the dependent variable is greater than the preset reference value, the corresponding frequency point is masked.
  • control device controls the compressor to operate at each compressor frequency point for a predetermined time, and compares an average value of the strain gauges detected by the strain gauges in the predetermined time with the preset reference value .
  • a refrigerant circulation system includes a compressor, a refrigerant delivery line connected to the compressor, and a detection device for detecting vibration of the refrigerant delivery line, and a control device, the control The device is controlled using the above control method.
  • the detecting means is disposed at a position bent or bent near the refrigerant conveying pipe.
  • the detecting device comprises a strain gauge attached to a wall of the refrigerant conveying pipe; or
  • the detecting means includes at least one amplitude detecting element for detecting the amplitude of the refrigerant delivery line.
  • the method further includes a mounting ring sleeved on the refrigerant delivery line, the amplitude detecting element is provided in plurality, and the plurality of amplitude detecting elements are circumferentially disposed on the mounting ring.
  • the mounting ring is provided with a notch, and the refrigerant conveying pipe can be inserted into the mounting ring via the notch.
  • the control detection device when the refrigerant circulation system enters the vibration detection mode, the control detection device respectively detects the vibration of the refrigerant delivery line at different compressor frequencies, and according to the vibration condition, the compressor is The working frequency range is corrected to avoid the resonance point of the refrigerant delivery line, thereby maximally avoiding the resonance of the refrigerant circulation system piping and effectively extending the service life of the refrigerant circulation system.
  • FIG. 1 is a schematic structural view of a refrigerant circulation system provided by a specific embodiment of the present application at a compressor;
  • FIG. 2 is a schematic structural view showing a cooperation of a mounting ring and an amplitude detecting element in a refrigerant circulation system provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural view of another refrigerant circulation system provided by a specific embodiment of the present application at a compressor.
  • compressor 2, refrigerant delivery pipeline; 3, mounting ring; 31, notch; 4, detection device; 41, amplitude detection component; 42, strain gauge; 5, weight sleeve.
  • the present application provides a refrigerant circulation system and a control method thereof.
  • the refrigerant circulation system includes a compressor 1, a refrigerant delivery line 2 connected to the compressor 1, and a vibration condition for detecting the refrigerant delivery line 2.
  • the detecting device 4 further includes a control device (not shown) connected to the compressor 1 and the detecting device 4, respectively.
  • the detecting device 4 can form a wired connection with the control device through the wire harness.
  • the wireless communication module is further included.
  • the detecting device 4 is connected to the control device through the wireless communication module, and the wireless communication module can be, for example, A module such as Bluetooth that enables wireless communication.
  • the refrigerant circulation system has a vibration detection mode, and the control device is configured to correct the operating frequency range of the compressor 1 according to the vibration condition of the pipeline detected by the detection device 4 when the refrigerant circulation system enters the vibration detection mode to avoid the refrigerant delivery pipeline Resonance point.
  • the present application provides a control method of the refrigerant circulation system.
  • the control device controls the frequency sweep of the compressor 1, that is, the control
  • the compressor 1 is sequentially operated at different frequencies
  • the control detecting device 4 respectively detects the vibration of the refrigerant delivery line 2 at different compressor frequencies, and synthesizes the vibration frequency of each compressor frequency to the operating frequency of the compressor 1.
  • the range is corrected, or the compressor is still adaptively operated at different frequencies, and the control device records the vibration of the refrigerant delivery line detected by the detecting device at different frequencies of the compressor (ie, the vibration condition is passive acquisition) ), and correct the operating frequency range of the compressor according to the vibration condition, thereby ensuring that the compressor 1 completely avoids the refrigerant
  • the resonance point of the feeding line 2 it is possible to avoid possible system refrigerant circulation pipe resonance occurs, effectively extending the life of the refrigerant cycle system.
  • the method of sweeping may be, for example, 10 Hz, 11 Hz, and 12 Hz when sweeping in the range of [10 Hz, 120 Hz]. .
  • the frequency sweeping is performed by sequentially increasing the frequency by 1 Hz, or may be performed by sequentially decrementing by 1 Hz, or sequentially increasing by NHz and sequentially decreasing by NHz, where N is a positive integer, preferably, 1 ⁇ N ⁇ 10.
  • control device controls the compressor 1 to operate at the next frequency after a predetermined time of operation at each frequency, for example, 1 to 3 minutes, further preferably 2 minutes.
  • the detecting means 4 comprises a plurality of detecting elements, and the detection results of the plurality of detecting elements are averaged as the final data for reference by the control means.
  • the detecting element is an amplitude detecting element 41 for detecting the amplitude of the refrigerant conveying line 2
  • the amplitude detecting element 41 is provided in plurality, for example, FIG. 2
  • the control device averages the three amplitudes detected by the three amplitude detecting elements 41 as the final amplitude of the refrigerant delivery line 2.
  • a mounting ring 3 is sleeved on the refrigerant conveying line 2, and three amplitude detecting elements 41 are circumferentially disposed on the mounting ring 3, preferably Uniformly disposed on the inner surface of the mounting ring 3, it is further preferred that the inner surface of the mounting ring 3 is provided with a mounting groove, and the amplitude detecting element 41 is embedded in the mounting groove.
  • the mounting ring 3 is preferably fixed to the refrigerant delivery line 2 by a temperature-resistant strap.
  • the mounting ring 3 is provided with a notch 31, the size of the notch 31 is smaller than the size of the refrigerant conveying pipe 2, and the refrigerant conveying pipe 2 can pass through the notch 31. It is snapped into the mounting ring 3 and is not easily detached from the mounting ring 3.
  • the detecting device 4 is disposed at a critical position close to the bending or bending of the refrigerant conveying pipe 2.
  • the vibration of the refrigerant delivery line can also be detected by other detecting elements, such as the strain gauge 42 shown in FIG.
  • the strain gauge 42 is preferably attached to the wall of the tube in the bent or bent position of the refrigerant delivery line 2.
  • the following is a specific process of correcting the frequency range of the compressor by taking the detecting component as the strain gauge 42 as an example, and comparing the strain detected by the strain gauge 42 at the corresponding frequency point with the preset reference value, if the strain is less than or equal to the preset
  • the reference value indicates that there is no resonance risk at the frequency point, and no correction is needed. If the strain is greater than the preset reference value, it indicates that there is a resonance risk at the frequency point, and the corresponding frequency point is shielded, that is, the compressor is not allowed. Work at this frequency point.
  • the control device controls the compressor to operate at each compressor frequency point for a predetermined time, for example, for 1 to 3 minutes, for a predetermined time.
  • the strain amount detected by the strain gauge 42 is averaged. For example, the strain is collected multiple times within a predetermined time, the maximum value and the minimum value are removed, and the corresponding variable is averaged, and the average value is compared with a preset reference value, and Determine if the frequency point needs to be masked.
  • the preset reference value can be obtained according to theoretical calculation or empirical value, or can be obtained after testing in the product development stage. For example, in the product development stage, the most common working conditions of the user during normal use are simulated, and several tests are qualified.
  • the amplitude of the refrigerant delivery line of the product under normal operating conditions is stored in the control unit as the maximum piping vibration data.
  • the preset reference value is 70 to 90 ⁇ .
  • the control device controls the refrigerant circulation system to run a vibration detection mode every predetermined time interval.
  • the predetermined length of time is preferably from 1 to 3 years.
  • the predetermined length of time is shortened as the use time of the refrigerant circulation system increases, for example, in the initial stage of use of the refrigerant circulation system.
  • the vibration test can be performed every three years, and the vibration test can be performed every two years in the middle, and the vibration test can be performed every one year at a later time.
  • the vibration detection mode is entered, that is, when the time reaches the predetermined time length, it is first determined whether the refrigerant circulation system satisfies the entry condition, and if it is satisfied, the vibration detection mode is entered, otherwise the detection is continued until the condition is met, and then the vibration detection mode is entered.
  • the frequency sweeping condition may be, for example, that the absolute value of the temperature difference between the actual indoor temperature and the target temperature is within a preset range, and may be, for example, a refrigerant circulation system operating a dehumidification condition, and in these two cases, the frequency sweeping of the compressor is performed on the system. The impact is small.
  • the magnitude of the absolute value of the temperature difference is determined.
  • the sweep range of the compressor, the frequency at which the control device controls the compressor varies within the sweep range.
  • the sweep frequency range is [0, 120 Hz]; when the absolute value of the temperature difference is (0, 5 ° C), the sweep frequency range is [10, 50 Hz]; The absolute value is (5 ° C, 10 ° C), the sweep frequency range is [51, 90 Hz]; when the absolute value of the temperature difference is greater than 10 ° C, the sweep frequency range is [91, 120 Hz]. Further preferably, when the compressor Correction of the operating frequency range is performed after the sweep in the range of [0, 120 Hz] is completed.
  • the control device controls the detecting device to perform intermittent work, for example, according to the speed gear position of the outdoor fan to control whether the detecting device is turned on, specifically Ground, the control device controls the detecting device to open for a certain time under each speed position of the outdoor fan for detecting, that is, when the outdoor fan is operated under one speed position, the control detecting device detects a certain time, and the control device detects the The result is recorded correspondingly to the compressor frequency.
  • the detection device is turned off, and after the outdoor fan is shifted, it is determined whether the detection device under the gear position after the shift is detected. If not, the control device is turned on and detected. If so, the control detection device remains in the off state until the next outdoor fan shift is performed.
  • a weight structure on the refrigerant delivery line 2, preferably the weight sleeve 5 shown in Fig. 1, and the weight sleeve 5 is preferably sleeved on the refrigerant At a critical position such as a bent or bent portion of the conveying pipe 2.
  • the refrigerant circulation system described in the present application may be a single heating or single refrigeration system, or a system capable of both heating and cooling, which is suitable for air conditioning, refrigerators, heat pump water heaters, etc., which need to utilize refrigerant circulation. In equipment for cooling or heating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种冷媒循环系统的控制方法及冷媒循环系统。该冷媒循环系统的控制方法包括:冷媒循环系统具有振动检测模式,当冷媒循环系统运行振动检测模式时,控制装置控制检测装置(4)分别检测冷媒输送管路(2)在不同的压缩机(1)频率下的振动情况,并根据振动情况对压缩机(1)的工作频率范围进行修正,从而最大限度地避免冷媒循环系统配管发生共振,有效延长冷媒循环系统的使用寿命。

Description

冷媒循环系统及其控制方法
相关申请
本申请要求2017年11月27日申请的,申请号为201711205774.8,名称为“冷媒循环系统及其控制方法”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及换热系统领域,具体涉及一种冷媒循环系统及其控制方法。
背景技术
配管作为空调室外机的重要组成部分,其动力学性能的好坏直接影响室外机噪音及运行可靠性。空调器产品从开发完成到批量生产,配管的动力学性能是依据量产前大量样机的实验反复验证来保证产品一致性的,这种方式仅适用于定频空调,而变频空调由于运行频率点很多,配管生产制造误差对动力学特性(如模态属性)的影响变得很难精确控制,导致空调产品的运行频率点处于配管实际共振频率区间内,空调使用寿命无法精确保证。
申请内容
有鉴于此,本申请的目的之一是提供一种能够提高冷媒循环系统的使用寿命的冷媒循环系统的控制方法及冷媒循环系统。
为达上述目的,一方面,本申请采用如下技术方案:
一种冷媒循环系统的控制方法,所述冷媒循环系统包括控制装置、压缩机、与所述压缩机连接的冷媒输送管路和用于检测所述冷媒输送管路振动情况的检测装置,所述控制方法包括:
所述冷媒循环系统具有振动检测模式,当所述冷媒循环系统运行所述振动检测模式时,所述控制装置控制检测装置分别检测所述冷媒输送管路在不同的压缩机频率下的振动情况,并根据所述振动情况对压缩机的工作频率范围进行修正,以避开所述冷媒输送管路的共振点。
优选地,所述控制装置每间隔预定时长控制所述冷媒循环系统运行一次所述振动检测模式,所述预定时长为1至3年。
优选地,所述预定时长随着所述冷媒循环系统使用时间的增加而缩减。
优选地,当所述冷媒循环系统运行所述振动检测模式时,所述控制装置控制所述压缩机依次在不同的频率下运行。
优选地,当所述冷媒循环系统需要运行振动检测模式时,所述控制装置判断所述冷媒循 环系统是否满足扫频条件,并当满足扫频条件时控制所述冷媒循环系统进入所述振动检测模式。
优选地,所述扫频条件包括:
当前室内实际温度与目标温度的温度差的绝对值在预设范围内;和/或,
所述冷媒循环系统运行除湿工况。
当当前室内实际温度与目标温度的温度差的绝对值在预设范围内时,根据所述温度差的绝对值的大小确定所述压缩机的扫频范围,所述控制装置控制所述压缩机的频率在所述扫频范围内变化。
优选地,根据所述温度差的绝对值的大小确定所述压缩机的扫频范围的方法包括:
当当前室内实际温度达到所述目标温度时,所述扫频范围为[10Hz,120Hz];和/或,
当所述温度差的绝对值在(0,5℃]时,所述扫频范围为[10,50Hz];和/或,
当所述温度差的绝对值在(5℃,10℃]时,所述扫频范围为[51,90Hz];和/或,
当所述温度差的绝对值大于10℃时,所述扫频范围为[91,120Hz]。
优选地,当所述冷媒循环系统运行振动检测模式时,所述控制装置记录所述压缩机在不同的频率下所述检测装置检测到的所述冷媒输送管路的振动情况,并根据所述振动情况对压缩机的工作频率范围进行修正。
优选地,根据所述振动情况对压缩机的工作频率范围进行修正的方法包括:
所述检测装置包括用于检测所述冷媒输送管路的应变量的应变片,将对应频率点下所述应变片检测的应变量与预设参考值进行比较,若应变量小于等于所述预设参考值,则不进行修正,若应变量大于所述预设参考值,则将该对应频率点屏蔽。
优选地,所述控制装置控制所述压缩机每个压缩机频率点下运行预定时间,将在所述预定时间内所述应变片检测的应变量的平均值与所述预设参考值进行比较。
另一方面,本申请采用如下技术方案:
一种冷媒循环系统,所述冷媒循环系统包括压缩机、与所述压缩机连接的冷媒输送管路和用于检测所述冷媒输送管路振动情况的检测装置,还包括控制装置,所述控制装置采用上述的控制方法进行控制。
优选地,所述检测装置设置在靠近所述冷媒输送管路弯折或弯曲的位置。
优选地,所述检测装置包括贴覆于所述冷媒输送管路的管壁上的应变片;或者,
所述检测装置包括用于检测所述冷媒输送管路的振幅的至少一个振幅检测元件。
优选地,还包括套设在所述冷媒输送管路上的安装环,所述振幅检测元件设置有多个,多个所述振幅检测元件沿周向设置在所述安装环上。
优选地,所述安装环上设置有缺口,所述冷媒输送管路能够经所述缺口卡入所述安装环内。
本申请提供的冷媒循环系统的控制方法中,当冷媒循环系统进入振动检测模式时,控制检测装置分别检测冷媒输送管路在不同的压缩机频率下的振动情况,并根据振动情况对压缩机的工作频率范围进行修正,以避开冷媒输送管路的共振点,从而能够最大限度的避免冷媒循环系统配管发生共振,有效延长冷媒循环系统的使用寿命。
附图说明
通过以下参照附图对本申请实施例的描述,本申请的上述以及其它目的、特征和优点将更为清楚,在附图中:
图1示出本申请具体实施方式提供的冷媒循环系统在压缩机处的结构示意图;
图2示出本申请具体实施方式提供的冷媒循环系统中安装环与振幅检测元件配合的结构示意图。
图3示出本申请具体实施方式提供的另一种冷媒循环系统在压缩机处的结构示意图。
图中,1、压缩机;2、冷媒输送管路;3、安装环;31、缺口;4、检测装置;41、振幅检测元件;42、应变片;5、配重套管。
具体实施方式
以下基于实施例对本申请进行描述,但是本申请并不仅仅限于这些实施例。在下文对本申请的细节描述中,详尽描述了一些特定的细节部分。对本领域技术人员来说没有这些细节部分的描述也可以完全理解本申请。为了避免混淆本申请的实质,公知的方法、过程、流程、元件并没有详细叙述。
此外,本领域普通技术人员应当理解,在此提供的附图都是为了说明的目的,并且附图不一定是按比例绘制的。
除非上下文明确要求,否则整个说明书和权利要求书中的“包括”、“包含”等类似词语应当解释为包含的含义而不是排他或穷举的含义;也就是说,是“包括但不限于”的含义。
在本申请的描述中,需要理解的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本申请提供了一种冷媒循环系统及其控制方法,如图1所示,冷媒循环系统包括压缩机1、与压缩机1连接的冷媒输送管路2和用于检测冷媒输送管路2振动情况的检测装置4,还包括控制装置(图中未示出),控制装置分别与压缩机1和检测装置4相连。检测装置4可以通过线束与控制装置形成有线连接,为了使得检测装置4的安装更加灵活,优选地,还包括无线通讯模块,检测装置4通过无线通讯模块与控制装置相连,无线通讯模块例如可以是蓝牙等能够通过无线方式实现通讯连接的模块。冷媒循环系统具有振动检测模式,控制装置用 于当冷媒循环系统进入振动检测模式时根据检测装置4检测的管路的振动情况对压缩机1的工作频率范围进行修正,以避开冷媒输送管路的共振点。
由于压缩机1在不同的工况下自适应地在不同的频率下运行,仅根据一种压缩机频率下管路的振动情况来对压缩机1的工作频率范围进行修正无法保证压缩机1完全避开冷媒输送管路2的共振点,针对这一问题,本申请提供了一种冷媒循环系统的控制方法,当冷媒循环系统进入振动检测模式时,控制装置控制压缩机1扫频,即控制压缩机1依次在不同的频率下运行,同时控制检测装置4分别检测冷媒输送管路2在不同的压缩机频率下的振动情况,综合各个压缩机频率下的振动情况对压缩机1的工作频率范围进行修正,或者是,压缩机仍然自适应地在不同的频率下运行,而控制装置记录压缩机在不同的频率下检测装置检测到的冷媒输送管路的振动情况(即振动情况是被动采集),并根据振动情况对压缩机的工作频率范围进行修正,从而能够保证压缩机1完全避开冷媒输送管路2的共振点,从而能够最大限度的避免冷媒循环系统配管发生共振,有效延长冷媒循环系统的使用寿命。
其中,扫频的方式例如可以是,当在[10Hz,120Hz]范围内扫频时,按10Hz、11Hz、12Hz。。这种依次递增1Hz的方式进行扫频,也可以是依次递减1Hz的方式进行扫频,或者依次递增NHz、依次递减NHz的方式,N为正整数,优选地,1≤N≤10。
为了保证检测装置4检测结果的准确性,优选地,控制装置控制压缩机1在每一个频率下工作预定时间之后再变为下一个频率工作,预定时间例如为1至3min,进一步优选为2min。
进一步优选地,检测装置4包括多个检测元件,将多个检测元件的检测结果求平均值作为最终的数据供控制装置参考使用。在一个具体的实施例中,如图1和图2所示,检测元件为振幅检测元件41,用于检测冷媒输送管路2的振幅,振幅检测元件41设置为多个,例如可以为图2所示的三个,控制装置将三个振幅检测元件41检测的三个振幅求平均值作为冷媒输送管路2最终的振幅。
为方便检测元件的安装,优选地,如图1和图2所示,在冷媒输送管路2上套设有安装环3,三个振幅检测元件41沿周向设置在安装环3上,优选均布在安装环3的内表面上,进一步优选地,安装环3的内表面上设置有安装槽,振幅检测元件41嵌设在安装槽内。安装环3优选通过耐温扎带固定在冷媒输送管路2上。
进一步优选地,为方便安装环3套在冷媒输送管路2上,在安装环3上设置有缺口31,缺口31的尺寸小于冷媒输送管路2的尺寸,冷媒输送管路2能够经缺口31卡入到安装环3内且不易与安装环3相脱离。
由于冷媒输送管路2在弯曲、弯折的位置容易出现损坏,因此优选地,检测装置4设置在靠近冷媒输送管路2弯折或弯曲的关键位置。
当然,可以理解的是,还可以通过其他的检测元件来检测冷媒输送管路的振动情况,例如可以为如图3所示的应变片42等。当检测元件为应变片42时,应变片42优选贴覆在冷媒 输送管路2弯折或弯曲位置的管壁上。
下面以检测元件为应变片42为例介绍对压缩机频率范围进行修正的具体过程,将对应频率点下应变片42检测的应变量与预设参考值进行比较,若应变量小于或等于预设参考值,则说明该频率点下不存在共振风险,不需要进行修正,若应变量大于预设参考值,则说明该频率点下存在共振风险,将该对应频率点屏蔽,即不允许压缩机在该频率点下工作。
为了保证检测装置的检测结果能够准确体现出冷媒输送管路的应变量,优选地,控制装置控制压缩机在每个压缩机频率点下运行预定时间,例如运行1至3min,对在预定时间内应变片42检测的应变量求平均值,例如,在预定时间内,多次采集应变量,去掉最大值和最小值后对应变量求平均值,将该平均值与预设参考值进行比较,并判断是否需要将该频率点屏蔽。
其中的预设参考值可以根据理论计算或者经验值得到,也可以是在产品开发阶段经过测试得到,例如,在产品开发阶段,模拟用户正常使用时最常用的几种工况,检测数台合格产品在常用工况下的冷媒输送管路的振幅,将其中的最大振幅保存在控制装置中作为最大配管振动数据。在一个具体的实施例中,当采用应变片42作为检测装置时,预设参考值为70至90μξ。
由于冷媒输送管路2的衰减是一个长期的过程,因此无需实时的检测器振动情况,且检测周期也无需过于频繁,优选地,控制装置每间隔预定时长控制冷媒循环系统运行一次振动检测模式,预定时长优选为1至3年。
进一步地,由于随着冷媒循环系统使用时间的增长,冷媒输送管路2的衰减会加快,因此,预定时长随着冷媒循环系统使用时间的增加而缩短,例如,在冷媒循环系统使用的初期,可以每间隔三年进行一次振动检测,中期每间隔两年进行一次振动检测,而后期可以每间隔一年进行一次振动检测。
由于在振动检测模式下,压缩机1会运行在各种不同的频率,在控制压缩机1扫频工作的情况下,为保证系统稳定性以及用户的使用舒适度,优选地,当冷媒循环系统满足扫频条件时进入振动检测模式,即,当时间达到预定时长时首先判断冷媒循环系统是否满足进入条件,若满足则进入振动检测模式,否则持续检测,直至满足条件后再进入振动检测模式。
扫频条件例如可以是当前室内实际温度与目标温度的温度差的绝对值在预设范围内,再例如可以是冷媒循环系统运行除湿工况,这两种情况下进行压缩机的扫频对系统的影响较小。
由于当温度差较大时不适于将压缩机运行在低频范围,优选地,当当前室内实际温度与目标温度的温度差的绝对值在预设范围内时,根据温度差的绝对值的大小确定压缩机的扫频范围,控制装置控制压缩机的频率在扫频范围内变化。具体地,当当前室内实际温度达到目标温度时,扫频范围为[0,120Hz];当温度差的绝对值在(0,5℃]时,扫频范围为[10,50Hz];当温度差的绝对值在(5℃,10℃]时,扫频范围为[51,90Hz];当温度差的绝对值大于10℃ 时,扫频范围为[91,120Hz]。进一步优选地,当压缩机完成在[0,120Hz]范围内的扫频后再进行工作频率范围的修正。
在被动采集振动数据的情况下,为了避免检测装置频繁工作影响其使用寿命,优选地,控制装置控制检测装置进行间歇性工作,例如,根据室外风机的转速档位来控制检测装置是否开启,具体地,控制装置控制检测装置在室外风机的每个转速档位下开启一定的时间进行检测,即,室外风机在一个转速档位下运行时,控制检测装置检测一定的时间,同时控制装置对检测结果与压缩机频率进行对应记录,检测完毕后关闭检测装置,直至室外风机换挡后,判断换挡后的转速档位下检测装置是否进行过检测,如果没有,则控制检测装置开启并进行检测,如果有,则控制检测装置保持关闭状态,直至下次室外风机换挡后再进行判断。
为了进一步提高减振降噪的效果,优选地,在冷媒输送管路2上设置有配重结构,优选为图1中所示的配重套管5,配重套管5优选套设在冷媒输送管路2的弯折或弯曲部分等关键位置上。
可以理解的是,本申请所述的冷媒循环系统可以为单制热或者单制冷系统,也可以是既能够制热又能够制冷的系统,其适用于空调、冰箱、热泵热水器等需要利用冷媒循环来制冷或者制热的设备中。
本领域的技术人员容易理解的是,在不冲突的前提下,上述各优选方案可以自由地组合、叠加。
应当理解,上述的实施方式仅是示例性的,而非限制性的,在不偏离本申请的基本原理的情况下,本领域的技术人员可以针对上述细节做出的各种明显的或等同的修改或替换,都将包含于本申请的权利要求范围内。

Claims (16)

  1. 一种冷媒循环系统的控制方法,所述冷媒循环系统包括控制装置、压缩机、与所述压缩机连接的冷媒输送管路和用于检测所述冷媒输送管路振动情况的检测装置,所述控制装置与所述压缩机和所述检测装置相连,其特征在于,所述控制方法包括:
    所述冷媒循环系统具有振动检测模式,当所述冷媒循环系统运行所述振动检测模式时,所述控制装置控制检测装置分别检测所述冷媒输送管路在不同的压缩机频率下的振动情况,并根据所述振动情况对压缩机的工作频率范围进行修正。
  2. 根据权利要求1所述的控制方法,其特征在于,所述控制装置每间隔预定时长控制所述冷媒循环系统运行一次所述振动检测模式,优选地,所述预定时长为1至3年。
  3. 根据权利要求2所述的控制方法,其特征在于,所述预定时长随着所述冷媒循环系统使用时间的增加而缩减。
  4. 根据权利要求1至3之一所述的控制方法,其特征在于,当所述冷媒循环系统运行所述振动检测模式时,所述控制装置控制所述压缩机依次在不同的频率下运行。
  5. 根据权利要求4所述的控制方法,其特征在于,当所述冷媒循环系统需要运行振动检测模式时,所述控制装置判断所述冷媒循环系统是否满足扫频条件,并当满足扫频条件时控制所述冷媒循环系统进入所述振动检测模式。
  6. 根据权利要求5所述的控制方法,其特征在于,所述扫频条件包括:
    当前室内实际温度与目标温度的温度差的绝对值在预设范围内;和/或,
    所述冷媒循环系统运行除湿工况。
  7. 根据权利要求6所述的控制方法,其特征在于,当当前室内实际温度与目标温度的温度差的绝对值在预设范围内时,根据所述温度差的绝对值的大小确定所述压缩机的扫频范围,所述控制装置控制所述压缩机的频率在所述扫频范围内变化。
  8. 根据权利要求7所述的控制方法,其特征在于,根据所述温度差的绝对值的大小确定所述压缩机的扫频范围的方法包括:
    当当前室内实际温度达到所述目标温度时,所述扫频范围为[10Hz,120Hz];和/或,
    当所述温度差的绝对值在(0,5℃]时,所述扫频范围为[10,50Hz];和/或,
    当所述温度差的绝对值在(5℃,10℃]时,所述扫频范围为[51,90Hz];和/或,
    当所述温度差的绝对值大于10℃时,所述扫频范围为[91,120Hz]。
  9. 根据权利要求1至3之一所述的控制方法,其特征在于,当所述冷媒循环系统运行振动检测模式时,所述控制装置记录所述压缩机在不同的频率下所述检测装置检测到的所述冷媒输送管路的振动情况,并根据所述振动情况对压缩机的工作频率范围进行修正。
  10. 根据权利要求1至3之一所述的控制方法,其特征在于,根据所述振动情况对压缩机的工作频率范围进行修正的方法包括:
    所述检测装置包括用于检测所述冷媒输送管路的应变量的应变片,将对应频率点下所述应变片检测的应变量与预设参考值进行比较,若应变量小于或等于所述预设参考值,则不进行修正,若应变量大于所述预设参考值,则将该对应频率点屏蔽。
  11. 根据权利要求10所述的控制方法,其特征在于,所述控制装置控制所述压缩机在每个压缩机频率点下运行预定时间,将在所述预定时间内所述应变片检测的应变量的平均值与所述预设参考值进行比较。
  12. 一种冷媒循环系统,其特征在于,所述冷媒循环系统包括压缩机、与所述压缩机连接的冷媒输送管路和用于检测所述冷媒输送管路振动情况的检测装置,还包括控制装置,所述控制装置采用如权利要求1至11之一所述的控制方法进行控制。
  13. 根据权利要求12所述的冷媒循环系统,其特征在于,所述检测装置设置在靠近所述冷媒输送管路弯折或弯曲的位置。
  14. 根据权利要求12所述的冷媒循环系统,其特征在于,所述检测装置包括贴覆于所述冷媒输送管路的管壁上的应变片;或者,
    所述检测装置包括用于检测所述冷媒输送管路的振幅的至少一个振幅检测元件。
  15. 根据权利要求14所述的冷媒循环系统,其特征在于,还包括套设在所述冷媒输送管路上的安装环,所述振幅检测元件设置有多个,多个所述振幅检测元件沿周向设置在所述安装环上。
  16. 根据权利要求15所述的冷媒循环系统,其特征在于,所述安装环上设置有缺口,所述冷媒输送管路能够经所述缺口卡入所述安装环内。
PCT/CN2018/075094 2017-11-27 2018-02-02 冷媒循环系统及其控制方法 WO2019100591A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711205774.8A CN107883626A (zh) 2017-11-27 2017-11-27 冷媒循环系统及其控制方法
CN201711205774.8 2017-11-27

Publications (1)

Publication Number Publication Date
WO2019100591A1 true WO2019100591A1 (zh) 2019-05-31

Family

ID=61775269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075094 WO2019100591A1 (zh) 2017-11-27 2018-02-02 冷媒循环系统及其控制方法

Country Status (2)

Country Link
CN (1) CN107883626A (zh)
WO (1) WO2019100591A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109520070B (zh) * 2018-09-30 2023-05-30 珠海格力电器股份有限公司 一种机组管路保护方法、系统及设备
CN114383378A (zh) * 2020-10-20 2022-04-22 青岛海尔电冰箱有限公司 制冷系统降噪方法、制冷装置及计算机存储介质
CN112361553B (zh) * 2020-10-30 2022-12-30 佛山市顺德区美的电子科技有限公司 空气调节器控制方法、装置、空气调节器及存储介质
CN112460773B (zh) * 2020-12-07 2021-11-23 珠海格力电器股份有限公司 空调系统的控制方法、装置、存储介质及空调器
CN113932556B (zh) * 2021-03-19 2023-04-07 海信冰箱有限公司 酒柜及其控制方法、装置
CN115014001A (zh) * 2022-05-13 2022-09-06 吉林建筑大学 一种风冷热泵机组热回收制冷系统及其热回收制冷方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060108185A (ko) * 2005-04-12 2006-10-17 엘지전자 주식회사 에어컨 배관 진동 해석 장치 및 방법
CN101821505A (zh) * 2007-10-05 2010-09-01 艾默生环境优化技术有限公司 可变速压缩机中的振动保护
CN202126056U (zh) * 2011-07-14 2012-01-25 Tcl空调器(中山)有限公司 变频空调器
CN105241026A (zh) * 2015-10-30 2016-01-13 海信(山东)空调有限公司 一种振动控制方法和设备
CN105444871A (zh) * 2015-12-11 2016-03-30 天津大学 电容式管/杆状物体振动在线测量装置及方法
CN106369757A (zh) * 2016-09-28 2017-02-01 珠海格力电器股份有限公司 一种多联机的压缩机频率控制方法、装置及多联机
CN107436018A (zh) * 2017-08-09 2017-12-05 珠海格力电器股份有限公司 改善空调配管气柱共振的控制方法、装置及空调
CN107514839A (zh) * 2017-08-15 2017-12-26 青岛海尔空调器有限总公司 一种空调压缩机管路振动保护的方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103629867B (zh) * 2012-08-20 2015-12-02 美的集团股份有限公司 一种压缩机配管系统及制冷装置
CN104048458B (zh) * 2013-03-11 2016-08-31 广东美的制冷设备有限公司 制冷设备的风机控制方法及系统
KR102295969B1 (ko) * 2015-03-24 2021-08-30 엘지전자 주식회사 공기조화기 및 그 제어방법
JP6524335B2 (ja) * 2016-03-14 2019-06-05 三菱電機株式会社 空気調和機

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060108185A (ko) * 2005-04-12 2006-10-17 엘지전자 주식회사 에어컨 배관 진동 해석 장치 및 방법
CN101821505A (zh) * 2007-10-05 2010-09-01 艾默生环境优化技术有限公司 可变速压缩机中的振动保护
CN202126056U (zh) * 2011-07-14 2012-01-25 Tcl空调器(中山)有限公司 变频空调器
CN105241026A (zh) * 2015-10-30 2016-01-13 海信(山东)空调有限公司 一种振动控制方法和设备
CN105444871A (zh) * 2015-12-11 2016-03-30 天津大学 电容式管/杆状物体振动在线测量装置及方法
CN106369757A (zh) * 2016-09-28 2017-02-01 珠海格力电器股份有限公司 一种多联机的压缩机频率控制方法、装置及多联机
CN107436018A (zh) * 2017-08-09 2017-12-05 珠海格力电器股份有限公司 改善空调配管气柱共振的控制方法、装置及空调
CN107514839A (zh) * 2017-08-15 2017-12-26 青岛海尔空调器有限总公司 一种空调压缩机管路振动保护的方法及装置

Also Published As

Publication number Publication date
CN107883626A (zh) 2018-04-06

Similar Documents

Publication Publication Date Title
WO2019100591A1 (zh) 冷媒循环系统及其控制方法
CN105674496B (zh) 一种空调除霜方法
CN110030683B (zh) 用于空调器的控制方法
CN107906686B (zh) 空调风机转速控制方法及空调系统
CN105987484B (zh) 空调制热频繁防高温保护时的除霜控制方法及系统
CN110671781B (zh) 一种多联机冷媒调节控制方法、装置、存储介质及空调器
CN104879881B (zh) 一种定频空调器的控制方法、控制器及定频空调器
CN105509241B (zh) 判断冷凝器管中感温包是否脱落的方法、装置及空调器
WO2019109959A1 (zh) 空调装置及用于判断其运行状态是否正常的方法
CN109654660B (zh) 空调器及其控制方法与装置
CN103292421A (zh) 多联机制冷运行外风机转速控制方法
CN103575004B (zh) 空调器除霜的方法和装置
CN107255340A (zh) 防止变频空调器的压缩机过热的控制方法及控制系统
CN104296946B (zh) 一种空调冷媒泄漏的检测方法及系统
CN106610091B (zh) 基于过热度的空调膨胀阀控制方法和控制装置
CN106288131B (zh) 一种空调器及其防凝露控制方法
CN109297138A (zh) 一种除霜判断方法和装置
CN110044025A (zh) 空调的制冷剂泄漏检测方法、系统及空调
US11561019B2 (en) Performance diagnosis device and performance diagnosis method for air conditioner
CN105371419A (zh) 通过可穿戴设备控制空调的方法、可穿戴设备和空调系统
WO2022222940A1 (zh) 空调机组及其除霜控制方法
CN104913589B (zh) 一种冰箱间室温度动态补偿的精确控温方法及冰箱
CN104676991B (zh) 空调器及其除霜方法
CN105485849A (zh) 一种空调控制方法、装置和空调装置
WO2020087672A1 (zh) 检测元件控制方法、装置及空调机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18880593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18880593

Country of ref document: EP

Kind code of ref document: A1