WO2019098515A1 - Energy harvesting system using two or more types of ambient energy - Google Patents

Energy harvesting system using two or more types of ambient energy Download PDF

Info

Publication number
WO2019098515A1
WO2019098515A1 PCT/KR2018/010451 KR2018010451W WO2019098515A1 WO 2019098515 A1 WO2019098515 A1 WO 2019098515A1 KR 2018010451 W KR2018010451 W KR 2018010451W WO 2019098515 A1 WO2019098515 A1 WO 2019098515A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
buffer
switching unit
electric energy
electrical energy
Prior art date
Application number
PCT/KR2018/010451
Other languages
French (fr)
Korean (ko)
Inventor
안현석
김영한
윤창석
임승옥
Original Assignee
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원 filed Critical 전자부품연구원
Publication of WO2019098515A1 publication Critical patent/WO2019098515A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/002Generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means

Definitions

  • the present invention relates to an energy harvesting system, and more particularly, to an energy harvesting system that collects more energy using two or more peripheral energy sources rather than collecting only one peripheral energy source, To an energy harvesting system using more than two kinds of peripheral energy for operating an electronic device.
  • IoT Internet
  • IoT device battery replacement and power cord connection are one of the obstacles to spread of IoT service.
  • IoT device Energy harvesting technology is attracting attention with the power supply technology of IoT device. Through the convergence of energy harvesting and IoT technology, IoT device is actively researching on the non-power driving technology and the battery use time extension technology. Demand is also increasing.
  • Typical energy harvesting energy sources include sunlight, vibration, heat, and wind, and there are devices that operate using the energy source.
  • Such conventional energy harvesting technology uses only one energy source in a limited environment, so that it is difficult to utilize if the amount of energy is insufficient.
  • an object of the present invention is to provide an energy harvesting system using two or more peripheral energy sources, which are capable of collecting more energy in various environments, rather than using only one energy source, have.
  • an energy conversion system comprising: a plurality of energy converters connected to a plurality of different peripheral energy sources, respectively, for receiving energy from the plurality of peripheral energy sources and converting the energy into electric energy; An electrical energy buffer for receiving and collecting electrical energy from the plurality of energy converters and for summing the collected electrical energy to a set power level; A constant voltage converter for receiving electrical energy from the electrical energy buffer and converting the load into driving power at a usable power level; And an electric energy storage for receiving and storing driving electric power from the constant voltage converter and for supplying driving electric power stored as a load, the energy harvesting system using at least two types of peripheral energies.
  • the plurality of different peripheral energy sources include at least two peripheral energy sources selected from the group consisting of solar, vibration, heat, and wind.
  • the electrical energy buffer comprises: a first switching unit capable of selectively connecting all of the plurality of energy converters to a plurality of buffer blocks; A plurality of buffer blocks for receiving electrical energy from an energy converter connected to the plurality of energy converters by the first switching unit and temporarily storing the electrical energy; And a second switching unit for connecting the plurality of buffer blocks in series to combine the electric energy collected in the plurality of buffer blocks with a predetermined electric energy level and deliver the combined electric energy to the constant voltage converter.
  • the first switching unit connects the plurality of energy converters to one of the plurality of buffer blocks, respectively.
  • the second switching unit connects one node of the buffer block to the ground when the buffer block receives and stores electrical energy from the energy converter.
  • the second switching unit releases the connection between the corresponding buffer block and the energy converter, and does not collect electric energy to the set individual electric energy level, And the energy converter.
  • the second switching unit When the summed electric energy level of the collected buffer blocks reaches the set summed electric energy, the second switching unit connects the collected buffer blocks in series to sum electric energy, and then transmits the resultant sum to the constant voltage converter.
  • the present invention may further comprise: a first switching unit capable of selectively connecting all of the plurality of energy converters to the plurality of buffer blocks; The plurality of buffer blocks receiving electric energy from an energy converter connected to the plurality of energy converters by the first switching unit and temporarily storing the electric energy; And a second switching unit for connecting the plurality of buffer blocks in series to combine the electric energy collected in the plurality of buffer blocks with a predetermined electric energy level and deliver the combined electric energy to the constant voltage converter, Providing an electrical energy buffer for the system.
  • the energy harvesting system collects more energy using two or more peripheral energy sources rather than collecting only one energy source and can operate an electronic device based on the energy.
  • the energy harvesting system combines the lesser electrical energy collected from each of the surrounding energy sources into a usable electrical energy level.
  • the energy harvesting system according to the present invention is capable of collecting more ambient energy in the same environment, it is possible to expand the kinds of electronic devices that can operate by utilizing energy harvesting technology. Therefore, when the energy harvesting system according to the present invention is used, it can be utilized in the development of sensors and devices capable of operating using an ambient energy source without a battery.
  • FIG. 1 is a block diagram illustrating an energy harvesting system using two or more kinds of energy according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a detailed configuration of the electric energy buffer of FIG.
  • FIG. 3 is a block diagram illustrating an example of summing the electrical energy collected in the buffer blocks of the electrical energy buffer of FIG.
  • FIG. 1 is a block diagram illustrating an energy harvesting system using two or more kinds of energy according to an embodiment of the present invention.
  • the energy harvesting system 100 collects more energy using two or more peripheral energy sources instead of collecting only one surrounding energy source, (80) (electronic device).
  • the energy harvesting system 100 includes a plurality of energy converters 10, an electrical energy buffer 20, a constant voltage converter 60, (70) (Electrical Energy Storage).
  • the plurality of energy converters 10 are connected to a plurality of different peripheral energy sources, respectively, and receive energy from a plurality of peripheral energy sources and convert them into electric energy.
  • the electric energy buffer 20 receives and collects electric energy from the plurality of energy converters 10, and combines the collected electric energy with the set power level.
  • the constant voltage converter 60 receives the electric energy from the electric energy buffer 20 and converts the electric energy into the driving electric power of the usable power level.
  • the electric energy reservoir 70 receives and stores drive power from the constant voltage converter 60 and provides the stored drive power to the load 80.
  • a plurality of different peripheral energy sources include first to n-th surrounding energy sources (n is a natural number of 2 or more).
  • the plurality of different peripheral energy sources may be sunlight, vibration, heat, wind, but is not limited thereto.
  • the plurality of energy converters 10 are connected to a plurality of different peripheral energy sources on a one-to-one basis, and receive energy from respective peripheral energy sources and convert them into electric energy.
  • the plurality of energy converters 10 includes first to n-th energy converters 11, 12, and 13.
  • the energy converter 10 uses a generally known technique to convert the energy received from the connected peripheral energy source into electric energy.
  • the electric energy buffer 20 includes a passive element that temporarily stores electric energy converted by the plurality of energy converters 10 and is capable of storing electric energy such as a capacitor.
  • the electric energy buffer 20 combines the electric energy collected from the plurality of energy converters 10, converts the electric energy into a set power level, and transmits the converted power level to the constant voltage converter 60.
  • the constant voltage converter 60 receives the electric energy stored in the electric energy buffer 20 and converts the load 80 into drive power at a usable power level.
  • the electric energy storage device 70 is an energy storage device for storing driving electric power for operating the load 80.
  • a capacitor, a secondary battery, or the like can be used.
  • the electric energy reservoir 70 provides the stored driving power to the load 80.
  • the energy converter 10 receives one or more peripheral energy sources and converts them into electric energy.
  • the electric energy converted in the energy converter 10 is accumulated in the electric energy buffer 20.
  • the amount of electric energy accumulated in the electric energy buffer 20 is also different in each of the energy converters 10.
  • the electrical energy buffer 20 sums up the accumulated electrical energy.
  • the electric energy accumulated in the electric energy buffer 20 can not be used as it is for the load 80 because the operable power level (voltage and current level) is fixed in the case of the load 80 such as a general electronic device.
  • the electric energy accumulated in the electric energy buffer 20 is transferred to the constant voltage transformer 60 to convert it into drive power that the load 80 can use, that is, a constant voltage / current and supplies the converted drive power to the constant voltage converter 60.
  • the electric energy storage 70 stores the driving power received from the constant voltage transformer 60 and provides the required driving power to the load 80 among the stored driving power.
  • FIG. 2 is a block diagram showing a detailed configuration of the electric energy buffer 20 of FIG.
  • FIG. 3 is a block diagram illustrating an example of summing the electrical energy collected in the buffer blocks 40 of FIG.
  • the electric energy buffer 20 includes a first switching unit 30, a plurality of buffer blocks 40, and a second switching unit 50.
  • the first switching unit 30 may selectively connect the plurality of energy converters 10 to the plurality of buffer blocks 40, respectively.
  • the plurality of buffer blocks 40 receives the electric energy from the energy converter 10 connected among the plurality of energy converters 10 by the first switching unit 30 and temporarily stores the electric energy.
  • the second switching unit 50 connects the plurality of buffer blocks 40 in series to combine the electric energy collected in the plurality of buffer blocks 40 to a predetermined electric energy level and transmits the sum to the constant voltage converter 60.
  • EC # 1, EC # 2, ... , And EC # N represent electrical energy output from the first to nth energy converters 11, 12, and 13, respectively.
  • the first switching unit 30 connects the plurality of energy converters 10 to one of the plurality of buffer blocks 40, respectively.
  • the first switching unit 30 includes a 1-1 switching unit 31, a 1-2 switching unit 32, , And a first-n switching unit (33).
  • the 1-1 to 1-n switching units 31, 32 and 33 include n switches corresponding to the number of the first to nth energy converters 11, 12 and 13, respectively.
  • the plurality of buffer blocks 40 include first through n-th buffer blocks 41.42.43.
  • the first through n-th buffer blocks 41, 42, and 43 are connected to the first through n-th switches 31, 32, and 33, respectively.
  • the second switching unit 50 stores electric energy in the first to n-th buffer blocks 41, 42 and 43 in cooperation with the first switching unit 30, or integrates the stored electric energy, .
  • the second switching unit 50 includes a second-1 switching unit 51, a second-2 switching unit 52, A (n-1) th switching unit 53, and a (2-n) th switching unit 54.
  • the second-1 switching unit 51, the second-2 switching unit 52, N-1 switching sections 53 are provided between the first to n-th buffer blocks 41, 42 and 43, respectively, and the second-n switching section 54 is provided between the n-th buffer block 43).
  • the second-1 switching unit 51, the second-2 switching unit 52, And the (2- (n-1) th switching unit 53 includes switches connected to the two neighboring buffer blocks 40, respectively.
  • the first buffer block 41 is connected to the 1-1 switch 31 at one end and to the ground node and the serial node at the other end by the 2-1 switching unit 51.
  • the second buffer block 42 is connected to one end of the first-second switching unit 32, the serial node and the connection node by the second-1 switching unit 51 at one end.
  • the connection node is a node connecting to the constant voltage converter 60.
  • the second buffer block 42 is connected to one of the ground node and the serial node by the second-second switching unit 52 at the other end.
  • the third buffer block to the n-th buffer block 33 are connected in the same manner as the second buffer block 42. At this time, one end of the n-th buffer block 43 is connected to the second (n-1) th switching unit 53 and the other end is connected to the second-n switching unit 54.
  • the second switching unit 50 connects the other end of the buffer block 40 to the ground node when the buffer block 40 receives and stores electrical energy from the energy converter 10. [ One end of the buffer block 40 receives and stores electrical energy from the energy converter 10 connected through the first switching unit 30 or the second switching unit 50.
  • the second switching unit 50 disconnects the energy converter 10 connected to the buffer block 40 when the buffer block 40 collects electrical energy to the set individual electric energy level. That is, when charging of the electric energy set in the buffer block 40 is completed, the second switching unit 50 blocks the connection between the buffer block 40 and the energy converter 10, which have been charged. The plurality of energy converters 10 switches to another buffer block 40 that is not charged by the first and second switching units 30 and 50 to store electrical energy.
  • the second switching unit 50 When the accumulated electrical energy level of the collected buffer blocks 40 reaches the set total electrical energy, the second switching unit 50 outputs the collected buffer blocks 40 in series as shown in FIG. 3 The electric energy is combined, and the electric energy is transmitted to the constant voltage transformer 60.
  • the second switching unit 50 connects the plurality of buffer blocks 40 in series after the electric energy is accumulated in the plurality of buffer blocks 40 at a predetermined level, ) To ground. 3, when the first to n-th buffer blocks 41, 42 and 43 are connected in series, the first buffer block 41, the second buffer block 42 to the (n-1)
  • the summed electric energy is transmitted to the rear-end constant voltage transformer 60 through the VB node.
  • the electric energy must be collected at a specific voltage level or higher.
  • the electrical energy buffer 20 can couple the buffer blocks 40 in which the less electrical energy is collected in series to raise the instantaneous VB voltage to a level at which the constant voltage transformer 60 is operable, To a desired electric energy level.
  • all of the first to n-th buffer blocks 41, 42 and 43 are electrically connected in series.
  • the present invention is not limited to this. Only a certain number of the buffer blocks 40 of the plurality of buffer blocks 40 can reach the summed electrical energy of the summed electrical energy level so that only a corresponding number of the buffer blocks 40 can be selectively connected in series.
  • the energy harvesting system 100 collects more energy using two or more peripheral energy sources rather than collecting only one energy source, and loads the load 80 on the basis of the energy .
  • the energy harvesting system 100 combines the small amount of electric energy collected from each of the surrounding energy sources into an usable electric energy level.
  • the energy harvesting technique can be utilized to expand the type of the load 80 that can be operated. Accordingly, when the energy harvesting system 100 according to the present embodiment is used, it can be utilized in the development of a load 80, for example, a sensor and a device, which can operate using an ambient energy source without a battery.

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The present invention relates to an energy harvesting system using two or more types of energy. An energy harvesting system according to the present invention comprises: multiple energy converters which are connected to multiple different energy sources and receive energy as input from the multiple energy sources so as to convert the same into electrical energy, respectively; an electrical energy buffer for receiving and collecting electrical energy from the multiple energy converters, and adding the collected electrical energy up to a set power level; a constant voltage converter for receiving electrical energy from the electrical energy buffer and converting the same into driving power at an additionally available power level; and an electrical energy storage device for receiving and storing driving power from the constant voltage converter and providing the stored driving power to a load.

Description

이종 이상의 주변 에너지를 이용한 에너지 하베스팅 시스템Energy harvesting system using more than two kinds of peripheral energy
본 발명은 에너지 하베스팅 시스템(energy harvesting system)에 관한 것으로, 더욱 상세하게는 한 개의 주변 에너지원만을 수집하는 것이 아닌 두 개 이상의 주변 에너지원을 이용하여 더 많은 에너지를 수집하고 해당 에너지를 기반으로 전자 장치를 동작시키는 이종 이상의 주변 에너지를 이용한 에너지 하베스팅 시스템에 관한 것이다.The present invention relates to an energy harvesting system, and more particularly, to an energy harvesting system that collects more energy using two or more peripheral energy sources rather than collecting only one peripheral energy source, To an energy harvesting system using more than two kinds of peripheral energy for operating an electronic device.
광범위한 분야에서 사물인터넷(IoT) 기술이 확산됨에 초소형/저전력의 IoT 디바이스 시장이 폭발적으로 성장할 것으로 예측되고 있다. 하지만 최근 IoT 디바이스의 배터리 교체나 전원코드 연결 등의 전원 공급 방식의 한계는 IoT 서비스 확산의 걸림돌 중의 하나이다.With the proliferation of Internet (IoT) technology in a wide range of fields, the market for ultra-small / low-power IoT devices is expected to explode. However, recent limitations of power supply methods such as IoT device battery replacement and power cord connection are one of the obstacles to spread of IoT service.
IoT 디바이스 전원 공급 기술로 에너지 하베스팅 기술이 주목되고 있으며, 에너지 하베스팅과 IoT 기술의 융합을 통하여, IoT 디바이스의 무전원 구동 기술이나 배터리 사용 시간 확장 기술에 대한 연구가 활발히 진행되고 있으며, 관련 시장의 요구도 증가하고 있다.Energy harvesting technology is attracting attention with the power supply technology of IoT device. Through the convergence of energy harvesting and IoT technology, IoT device is actively researching on the non-power driving technology and the battery use time extension technology. Demand is also increasing.
대표적인 에너지 하베스팅 에너지원으로는 태양광, 진동, 열, 바람 등이 있으며, 해당 에너지원을 이용하여 동작하는 기기들이 존재한다. 이러한 기존의 에너지 하베스팅 기술은 한정된 환경 내에서 한 가지의 에너지원만을 이용하기 때문에, 해당 에너지의 양이 충분치 않은 환경이면, 활용이 어렵다는 문제점이 있다.Typical energy harvesting energy sources include sunlight, vibration, heat, and wind, and there are devices that operate using the energy source. Such conventional energy harvesting technology uses only one energy source in a limited environment, so that it is difficult to utilize if the amount of energy is insufficient.
[선행기술문헌][Prior Art Literature]
[특허문헌][Patent Literature]
한국공개특허공보 제2017-0101756(2017.09.06. 공개)Korean Patent Laid-Open Publication No. 2017-0101756 (published on September 6, 2017)
따라서 본 발명의 목적은 한 가지 에너지원만을 사용하는 것이 아닌, 두 가지 이상의 주변 에너지원을 이용하여 다양한 환경에서 더 많은 에너지를 수집할 수 있는 이종 이상의 주변 에너지를 이용한 에너지 하베스팅 시스템을 제공하는 데 있다.Therefore, an object of the present invention is to provide an energy harvesting system using two or more peripheral energy sources, which are capable of collecting more energy in various environments, rather than using only one energy source, have.
상기 목적을 달성하기 위하여, 본 발명은 서로 다른 복수의 주변 에너지원에 각각 연결되며, 상기 복수의 주변 에너지원으로부터 에너지를 입력받아 전기에너지로 변환하는 복수의 에너지 변환기; 상기 복수의 에너지 변환기로부터 전기에너지를 전달받아 수집하며, 수집된 전기에너지를 설정된 전력 레벨로 합하는 전기에너지 버퍼; 상기 전기에너지 버퍼로부터 전기에너지를 전달받아 부하가 사용 가능한 전력 레벨의 구동 전력으로 변환하는 정전압 변환기; 및 상기 정전압 변환기로부터 구동 전력을 전달받아 저장하며, 부하로 저장된 구동 전력을 제공하는 전기에너지 저장기;를 포함하는 이종 이상의 주변 에너지를 이용한 에너지 하베스팅 시스템을 제공한다.According to an aspect of the present invention, there is provided an energy conversion system comprising: a plurality of energy converters connected to a plurality of different peripheral energy sources, respectively, for receiving energy from the plurality of peripheral energy sources and converting the energy into electric energy; An electrical energy buffer for receiving and collecting electrical energy from the plurality of energy converters and for summing the collected electrical energy to a set power level; A constant voltage converter for receiving electrical energy from the electrical energy buffer and converting the load into driving power at a usable power level; And an electric energy storage for receiving and storing driving electric power from the constant voltage converter and for supplying driving electric power stored as a load, the energy harvesting system using at least two types of peripheral energies.
상기 서로 다른 복수의 주변 에너지원은 태양광, 진동, 열 및 바람으로 이루어지는 그룹에서 선택되는 적어도 두 개의 주변 에너지원을 포함한다.The plurality of different peripheral energy sources include at least two peripheral energy sources selected from the group consisting of solar, vibration, heat, and wind.
상기 전기에너지 버퍼는, 상기 복수의 에너지 변환기를 모두 선택적으로 복수의 버퍼 블록에 각각 연결할 수 있는 제1 스위칭부; 상기 제1 스위칭부에 의해 상기 복수의 에너지 변환기 중 연결되는 에너지 변환기로부터 전기에너지를 전달받아 임시 저장하는 복수의 버퍼 블록; 및 상기 복수의 버퍼 블록을 직렬로 연결하여 상기 복수의 버퍼 블록에 수집된 전기에너지를 설정된 전기에너지 레벨로 합하여 상기 정전압 변환기로 전달하는 제2 스위칭부;를 포함한다.Wherein the electrical energy buffer comprises: a first switching unit capable of selectively connecting all of the plurality of energy converters to a plurality of buffer blocks; A plurality of buffer blocks for receiving electrical energy from an energy converter connected to the plurality of energy converters by the first switching unit and temporarily storing the electrical energy; And a second switching unit for connecting the plurality of buffer blocks in series to combine the electric energy collected in the plurality of buffer blocks with a predetermined electric energy level and deliver the combined electric energy to the constant voltage converter.
상기 제1 스위칭부는 상기 복수의 에너지 변환기를 각각 상기 복수의 버퍼 블록 중 하나에 연결한다.The first switching unit connects the plurality of energy converters to one of the plurality of buffer blocks, respectively.
상기 제2 스위칭부는 상기 버퍼 블록이 상기 에너지 변환기로부터 전기에너지를 전달받아 저장할 때, 상기 버퍼 블록의 한 쪽 노드를 접지에 연결한다.The second switching unit connects one node of the buffer block to the ground when the buffer block receives and stores electrical energy from the energy converter.
상기 제2 스위칭부는 특정 버퍼 블록이 설정된 개별 전기에너지 레벨까지 전기에너지를 수집하면 해당 버퍼 블록과 에너지 변환기의 연결을 해제하고, 설정된 개별 전기에너지 레벨까지 전기에너지를 수집하지 못하면서 연결되지 않은 다른 버퍼 블록과 에너지 변환기를 연결하도록 스위칭한다.When the specific buffer block collects electric energy up to the set electric energy level, the second switching unit releases the connection between the corresponding buffer block and the energy converter, and does not collect electric energy to the set individual electric energy level, And the energy converter.
상기 제2 스위칭부는 수집이 완료된 버퍼 블록들의 합산 전기에너지 레벨이 설정된 합산 전기에너지에 도달하면, 상기 수집이 완료된 버퍼 블록들을 직렬로 연결하여 전기에너지를 합한 후 상기 정전압 변환기로 전달한다.When the summed electric energy level of the collected buffer blocks reaches the set summed electric energy, the second switching unit connects the collected buffer blocks in series to sum electric energy, and then transmits the resultant sum to the constant voltage converter.
본 발명은 또한, 복수의 에너지 변환기를 모두 선택적으로 복수의 버퍼 블록에 각각 연결할 수 있는 제1 스위칭부; 상기 제1 스위칭부에 의해 상기 복수의 에너지 변환기 중 연결되는 에너지 변환기로부터 전기에너지를 전달받아 임시 저장하는 상기 복수의 버퍼 블록; 및 상기 복수의 버퍼 블록을 직렬로 연결하여 상기 복수의 버퍼 블록에 수집된 전기에너지를 설정된 전기에너지 레벨로 합하여 정전압 변환기로 전달하는 제2 스위칭부;를 포함하는 이종 이상의 주변 에너지를 이용한 에너지 하베스팅 시스템용 전기에너지 버퍼를 제공한다.The present invention may further comprise: a first switching unit capable of selectively connecting all of the plurality of energy converters to the plurality of buffer blocks; The plurality of buffer blocks receiving electric energy from an energy converter connected to the plurality of energy converters by the first switching unit and temporarily storing the electric energy; And a second switching unit for connecting the plurality of buffer blocks in series to combine the electric energy collected in the plurality of buffer blocks with a predetermined electric energy level and deliver the combined electric energy to the constant voltage converter, Providing an electrical energy buffer for the system.
본 발명에 따른 에너지 하베스팅 시스템은 한 개의 에너지원만을 수집하는 것이 아닌 두 개 이상의 주변 에너지원을 이용하여 더 많은 에너지를 수집하고, 해당 에너지를 기반으로 전자 장치를 동작시킬 수 있다.The energy harvesting system according to the present invention collects more energy using two or more peripheral energy sources rather than collecting only one energy source and can operate an electronic device based on the energy.
본 발명에 따른 에너지 하베스팅 시스템은 각각의 주변 에너지원으로부터 수집한 적은 전기에너지를 합하여 사용 가능한 전기에너지 레벨로 변환한다.The energy harvesting system according to the present invention combines the lesser electrical energy collected from each of the surrounding energy sources into a usable electrical energy level.
본 발명에 따른 에너지 하베스팅 시스템은 동일 환경 내에서 더 많은 주변 에너지의 수집이 가능하기 때문에, 에너지 하베스팅 기술을 활용하여 동작 가능한 전자 장치의 종류를 확대할 수 있다. 이로 인해 본 발명에 따른 에너지 하베스팅 시스템을 이용할 경우, 배터리 없이 주변 에너지원을 이용하여 동작 가능한 센서, 기기의 개발에 활용할 수 있다.Since the energy harvesting system according to the present invention is capable of collecting more ambient energy in the same environment, it is possible to expand the kinds of electronic devices that can operate by utilizing energy harvesting technology. Therefore, when the energy harvesting system according to the present invention is used, it can be utilized in the development of sensors and devices capable of operating using an ambient energy source without a battery.
도 1은 본 발명의 실시예에 따른 이종 이상의 에너지를 이용한 에너지 하베스팅 시스템을 보여주는 블록도이다.FIG. 1 is a block diagram illustrating an energy harvesting system using two or more kinds of energy according to an embodiment of the present invention.
도 2는 도 1의 전기에너지 버퍼의 세부 구성을 보여주는 블록도이다.2 is a block diagram showing a detailed configuration of the electric energy buffer of FIG.
도 3은 도 2의 전기에너지 버퍼의 버퍼 블록들에 수집된 전기에너지를 합하는 예를 보여주는 블록도이다.3 is a block diagram illustrating an example of summing the electrical energy collected in the buffer blocks of the electrical energy buffer of FIG.
하기의 설명에서는 본 발명의 실시예를 이해하는데 필요한 부분만이 설명되며, 그 이외 부분의 설명은 본 발명의 요지를 흩트리지 않는 범위에서 생략될 것이라는 것을 유의하여야 한다.In the following description, only parts necessary for understanding embodiments of the present invention will be described, and descriptions of other parts will be omitted to the extent that they do not disturb the gist of the present invention.
이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.The terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary meanings and the inventor is not limited to the meaning of the terms in order to describe his invention in the best way. It should be interpreted as meaning and concept consistent with the technical idea of the present invention. Therefore, the embodiments described in the present specification and the configurations shown in the drawings are merely preferred embodiments of the present invention, and are not intended to represent all of the technical ideas of the present invention, so that various equivalents And variations are possible.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 보다 상세하게 설명하고자 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 실시예에 따른 이종 이상의 에너지를 이용한 에너지 하베스팅 시스템을 보여주는 블록도이다.FIG. 1 is a block diagram illustrating an energy harvesting system using two or more kinds of energy according to an embodiment of the present invention.
도 1을 참조하면, 본 실시예에 따른 에너지 하베스팅 시스템(100)은 한 개의 주변 에너지원만을 수집하는 것이 아닌 두 개 이상의 주변 에너지원을 이용하여 더 많은 에너지를 수집하고, 해당 에너지를 기반으로 부하(80; 전자 장치)를 동작시키는 시스템이다.Referring to FIG. 1, the energy harvesting system 100 according to the present embodiment collects more energy using two or more peripheral energy sources instead of collecting only one surrounding energy source, (80) (electronic device).
이러한 본 실시예에 따른 에너지 하베스팅 시스템(100)은 복수의 에너지 변환기(10; Energy Converter), 전기에너지 버퍼(20; Electrical Energy Buffer), 정전압 변환기(60; Constant Voltage Converter) 및 전기에너지 저장기(70; Electrical Energy Storage)를 포함한다. 복수의 에너지 변환기(10)는 서로 다른 복수의 주변 에너지원에 각각 연결되며, 복수의 주변 에너지원으로부터 에너지를 입력받아 전기에너지로 변환한다. 전기에너지 버퍼(20)는 복수의 에너지 변환기(10)로부터 전기에너지를 전달받아 수집하며, 수집된 전기에너지를 설정된 전력 레벨로 합한다. 정전압 변환기(60)는 전기에너지 버퍼(20)로부터 합한 전기에너지를 전달받아 부하(80)가 사용 가능한 전력 레벨의 구동 전력으로 변환한다. 그리고 전기에너지 저장기(70)는 정전압 변환기(60)로부터 구동 전력을 전달받아 저장하며, 부하(80)로 저장된 구동 전력을 제공한다.The energy harvesting system 100 according to the present embodiment includes a plurality of energy converters 10, an electrical energy buffer 20, a constant voltage converter 60, (70) (Electrical Energy Storage). The plurality of energy converters 10 are connected to a plurality of different peripheral energy sources, respectively, and receive energy from a plurality of peripheral energy sources and convert them into electric energy. The electric energy buffer 20 receives and collects electric energy from the plurality of energy converters 10, and combines the collected electric energy with the set power level. The constant voltage converter 60 receives the electric energy from the electric energy buffer 20 and converts the electric energy into the driving electric power of the usable power level. The electric energy reservoir 70 receives and stores drive power from the constant voltage converter 60 and provides the stored drive power to the load 80.
여기서 서로 다른 복수의 주변 에너지원은 제1 내지 제n 주변 에너지원을 포함한다(이하 n은 2 이상의 자연수). 서로 다른 복수의 주변 에너지원은 태양광, 진동, 열, 바람이 될 수 있으며, 이것에 한정되는 것은 아니다.Here, a plurality of different peripheral energy sources include first to n-th surrounding energy sources (n is a natural number of 2 or more). The plurality of different peripheral energy sources may be sunlight, vibration, heat, wind, but is not limited thereto.
복수의 에너지 변환기(10)는 서로 다른 복수의 주변 에너지원에 일대일로 연결되며, 각각의 주변 에너지원으로부터 에너지를 입력받아 전기에너지로 변환한다. 복수의 에너지 변환기(10)는 제1 내지 제n 에너지 변환기(11,12,13)를 포함한다. 에너지 변환기(10)가 연결된 주변 에너지원으로부터 입력받은 에너지를 전기에너지로 변환하는 것은 일반적으로 알려진 기술을 이용한다.The plurality of energy converters 10 are connected to a plurality of different peripheral energy sources on a one-to-one basis, and receive energy from respective peripheral energy sources and convert them into electric energy. The plurality of energy converters 10 includes first to n- th energy converters 11, 12, and 13. The energy converter 10 uses a generally known technique to convert the energy received from the connected peripheral energy source into electric energy.
전기에너지 버퍼(20)는 복수의 에너지 변환기(10)에 의해 변환된 전기에너지를 일시적으로 저장하며, 커패시터와 같은 전기에너지 저장이 가능한 수동 소자를 포함한다. 전기에너지 버퍼(20)는 복수의 에너지 변환기(10)로부터 수집한 전기에너지를 합하여 설정된 전력 레벨로 변환하여 정전압 변환기(60)로 전달한다.The electric energy buffer 20 includes a passive element that temporarily stores electric energy converted by the plurality of energy converters 10 and is capable of storing electric energy such as a capacitor. The electric energy buffer 20 combines the electric energy collected from the plurality of energy converters 10, converts the electric energy into a set power level, and transmits the converted power level to the constant voltage converter 60.
정전압 변환기(60)는 전기에너지 버퍼(20)에 저장된 전기에너지를 전달받아 부하(80)가 사용 가능한 전력 레벨의 구동 전력으로 변환한다.The constant voltage converter 60 receives the electric energy stored in the electric energy buffer 20 and converts the load 80 into drive power at a usable power level.
그리고 전기에너지 저장기(70)는 부하(80)가 동작하기 위한 구동 전력을 저장하는 에너지 저장 장치로서, 예컨대 커패시터, 이차전지 등이 사용될 수 있다. 전기에너지 저장기(70)는 저장하고 있는 구동 전력을 부하(80)로 제공한다.The electric energy storage device 70 is an energy storage device for storing driving electric power for operating the load 80. For example, a capacitor, a secondary battery, or the like can be used. The electric energy reservoir 70 provides the stored driving power to the load 80. [
이와 같은 본 실시예에 따른 에너지 하베스팅 시스템(100)의 동작 원리에 대해서 설명하면 다음과 같다.The operation principle of the energy harvesting system 100 according to the present embodiment will now be described.
먼저 에너지 변환기(10)가 1개 이상의 주변 에너지원을 입력받아 전기에너지로 변환한다.First, the energy converter 10 receives one or more peripheral energy sources and converts them into electric energy.
다음으로 에너지 변환기(10)에서 변환된 전기에너지는 전기에너지 버퍼(20)에 쌓인다. 이때 주변 환경에 따라 주변 에너지원의 종류 및 세기가 다르기 때문에, 각각의 에너지 변환기(10)에서 변환되어 전기에너지 버퍼(20)에 쌓이는 전기에너지의 양 또한 다르다. 따라서 전기에너지 버퍼(20)는 쌓인 전기에너지를 합산한다.Next, the electric energy converted in the energy converter 10 is accumulated in the electric energy buffer 20. At this time, since the type and intensity of the surrounding energy source are different depending on the surrounding environment, the amount of electric energy accumulated in the electric energy buffer 20 is also different in each of the energy converters 10. Thus, the electrical energy buffer 20 sums up the accumulated electrical energy.
보통 전자 장치와 같은 부하(80)의 경우, 동작 가능한 전력 레벨(전압 및 전류 레벨)이 정해져 있기 때문에, 전기에너지 버퍼(20)에 쌓인 전기에너지를 그대로 부하(80)에 사용할 수 없다.The electric energy accumulated in the electric energy buffer 20 can not be used as it is for the load 80 because the operable power level (voltage and current level) is fixed in the case of the load 80 such as a general electronic device.
따라서 전기에너지 버퍼(20)에 쌓인 전기에너지는 정전압 변환기(60)로 전달되어 부하(80)가 사용할 수 있는 구동 전력, 즉 일정한 전압/전류로 변환하고, 변환한 구동 전력을 정전압 변환기(60)는 전기에너지 저장기(70)에 전달하여 저장한다.Therefore, the electric energy accumulated in the electric energy buffer 20 is transferred to the constant voltage transformer 60 to convert it into drive power that the load 80 can use, that is, a constant voltage / current and supplies the converted drive power to the constant voltage converter 60. [ To the electric energy storage (70).
그리고 전기에너지 저장기(70)는 정전압 변환기(60)로부터 전달받은 구동 전력을 저장하며, 저장된 구동 전력 중에서 부하(80)로 필요로 하는 구동 전력을 제공한다.The electric energy storage 70 stores the driving power received from the constant voltage transformer 60 and provides the required driving power to the load 80 among the stored driving power.
이와 같은 본 실시예에 따른 에너지 하베스팅 시스템(100)의 전기에너지 버퍼(20)에 대해서 도 1 내지 도 3을 참조하여 설명하면 다음과 같다. 여기서 도 2는 도 1의 전기에너지 버퍼(20)의 세부 구성을 보여주는 블록도이다. 그리고 도 3은 도 2의 버퍼 블록(40)들에 수집된 전기에너지를 합하는 예를 보여주는 블록도이다.The electric energy buffer 20 of the energy harvesting system 100 according to the present embodiment will now be described with reference to FIGS. 1 to 3. FIG. 2 is a block diagram showing a detailed configuration of the electric energy buffer 20 of FIG. And FIG. 3 is a block diagram illustrating an example of summing the electrical energy collected in the buffer blocks 40 of FIG.
전기에너지 버퍼(20)는 제1 스위칭부(30), 복수의 버퍼 블록(40) 및 제2 스위칭부(50)를 포함한다. 제1 스위칭부(30)는 복수의 에너지 변환기(10)를 모두 선택적으로 복수의 버퍼 블록(40)에 각각 연결할 수 있다. 복수의 버퍼 블록(40)은 제1 스위칭부(30)에 의해 복수의 에너지 변환기(10) 중 연결되는 에너지 변환기(10)로부터 전기에너지를 전달받아 임시 저장한다. 그리고 제2 스위칭부(50)는 복수의 버퍼 블록(40)을 직렬로 연결하여 복수의 버퍼 블록(40)에 수집된 전기에너지를 설정된 전기에너지 레벨로 합하여 정전압 변환기(60)로 전달한다.The electric energy buffer 20 includes a first switching unit 30, a plurality of buffer blocks 40, and a second switching unit 50. The first switching unit 30 may selectively connect the plurality of energy converters 10 to the plurality of buffer blocks 40, respectively. The plurality of buffer blocks 40 receives the electric energy from the energy converter 10 connected among the plurality of energy converters 10 by the first switching unit 30 and temporarily stores the electric energy. The second switching unit 50 connects the plurality of buffer blocks 40 in series to combine the electric energy collected in the plurality of buffer blocks 40 to a predetermined electric energy level and transmits the sum to the constant voltage converter 60.
여기서 EC#1, EC#2,…, EC#N은 각각 제1 내지 제n 에너지 변환기(11,12,13)에서 출력되는 전기에너지를 나타낸다.Here, EC # 1, EC # 2, ... , And EC # N represent electrical energy output from the first to nth energy converters 11, 12, and 13, respectively.
제1 스위칭부(30)는 복수의 에너지 변환기(10)를 각각 복수의 버퍼 블록(40) 중 하나에 연결한다. 이러한 제1 스위칭부(30)는 제1-1 스위칭부(31), 제1-2 스위칭부(32), …, 제1-n 스위칭부(33)를 포함한다.The first switching unit 30 connects the plurality of energy converters 10 to one of the plurality of buffer blocks 40, respectively. The first switching unit 30 includes a 1-1 switching unit 31, a 1-2 switching unit 32, , And a first-n switching unit (33).
제1-1 내지 제1-n 스위칭부(31,32,33)는 각각 제1 내지 제n 에너지 변환기(11,12,13)의 개수에 대응되는 n개의 스위치들을 포함한다.The 1-1 to 1- n switching units 31, 32 and 33 include n switches corresponding to the number of the first to nth energy converters 11, 12 and 13, respectively.
복수의 버퍼 블록(40)은 제1 내지 제n 버퍼 블록(41.42.43)을 포함한다. 제1 내지 제n 버퍼 블록(41,42,43)은 일단이 제1-1 내지 제1-n 스위치(31,32,33)에 각각 연결된다.The plurality of buffer blocks 40 include first through n-th buffer blocks 41.42.43. The first through n-th buffer blocks 41, 42, and 43 are connected to the first through n- th switches 31, 32, and 33, respectively.
그리고 제2 스위칭부(50)는 제1 스위칭부(30)와 연동하여 제1 내지 제n 버퍼 블록(41,42,43)으로 전기에너지를 저장하거나, 저장된 전기에너지를 합하여 정전압 변환기(60)로 전달한다.The second switching unit 50 stores electric energy in the first to n-th buffer blocks 41, 42 and 43 in cooperation with the first switching unit 30, or integrates the stored electric energy, .
이러한 제2 스위칭부(50)는 제2-1 스위칭부(51), 제2-2 스위칭부(52),…, 제2-(n-1) 스위칭부(53), 제2-n 스위칭부(54)를 포함한다. 제2-1 스위칭부(51), 제2-2 스위칭부(52), …, 제2-(n-1) 스위칭부(53)는 제1 내지 제n 버퍼 블록(41,42,43) 사이에 각각 설치되고, 제2-n 스위칭부(54)는 제n 버퍼 블록(43)에 연결된다. 제2-1 스위칭부(51), 제2-2 스위칭부(52), …, 제2-(n-1) 스위칭부(53)는 각각 이웃하는 두 개의 버퍼 블록(40)에 각각 연결되는 스위치를 포함한다.The second switching unit 50 includes a second-1 switching unit 51, a second-2 switching unit 52, A (n-1) th switching unit 53, and a (2-n) th switching unit 54. The second-1 switching unit 51, the second-2 switching unit 52, N-1 switching sections 53 are provided between the first to n-th buffer blocks 41, 42 and 43, respectively, and the second-n switching section 54 is provided between the n-th buffer block 43). The second-1 switching unit 51, the second-2 switching unit 52, And the (2- (n-1) th switching unit 53 includes switches connected to the two neighboring buffer blocks 40, respectively.
즉 제1 버퍼 블록(41)은 일단에 제1-1 스위칭부(31)가 연결되며, 타단에 제2-1 스위칭부(51)에 의해 접지 노드 및 직렬 노드 중에 하나에 연결된다.That is, the first buffer block 41 is connected to the 1-1 switch 31 at one end and to the ground node and the serial node at the other end by the 2-1 switching unit 51.
제2 버퍼 블록(42)은 일단에 제2-1 스위칭부(51)에 의해 제1-2 스위칭부(32), 직렬 노드 및 연결 노드 중에 하나에 연결된다. 여기서 연결 노드는 정전압 변환기(60)와 연결하는 노드이다. 제2 버퍼 블록(42)은 타단에 제2-2 스위칭부(52)에 의해 접지 노드 및 직렬 노드 중에 하나에 연결된다.The second buffer block 42 is connected to one end of the first-second switching unit 32, the serial node and the connection node by the second-1 switching unit 51 at one end. Here, the connection node is a node connecting to the constant voltage converter 60. The second buffer block 42 is connected to one of the ground node and the serial node by the second-second switching unit 52 at the other end.
그리고 제3 버퍼 블록 내지 제n 버퍼 블록(33)은 제2 버퍼 블록(42)과 같은 방식으로 연결된다. 이때 제n 버퍼 블록(43)은 일단이 제2-(n-1) 스위칭부(53)에 연결되고, 타단이 제2-n 스위칭부(54)에 연결된다.The third buffer block to the n-th buffer block 33 are connected in the same manner as the second buffer block 42. At this time, one end of the n-th buffer block 43 is connected to the second (n-1) th switching unit 53 and the other end is connected to the second-n switching unit 54.
제2 스위칭부(50)는 버퍼 블록(40)이 에너지 변환기(10)로부터 전기에너지를 전달받아 저장할 때, 버퍼 블록(40)의 타단은 접지 노드에 연결한다. 버퍼 블록(40)의 일단은 제1 스위칭부(30) 또는 제2 스위칭부(50)를 통하여 연결되는 에너지 변환기(10)로부터 전기에너지를 전달받아 저장한다.The second switching unit 50 connects the other end of the buffer block 40 to the ground node when the buffer block 40 receives and stores electrical energy from the energy converter 10. [ One end of the buffer block 40 receives and stores electrical energy from the energy converter 10 connected through the first switching unit 30 or the second switching unit 50.
제2 스위칭부(50)는 버퍼 블록(40)이 설정된 개별 전기에너지 레벨까지 전기에너지를 수집하면, 해당 버퍼 블록(40)과 연결된 에너지 변환기(10)의 연결을 해제한다. 즉 버퍼 블록(40)에 설정된 전기에너지의 충전이 완료되면, 제2 스위칭부(50)는 충전이 완료된 버퍼 블록(40)과 에너지 변환기(10)의 연결을 차단한다. 복수의 에너지 변환기(10)는 제1 및 제2 스위칭부(30,50)에 의해 충전되지 않은 다른 버퍼 블록(40)으로 스위칭하여 전기에너지를 저장한다.The second switching unit 50 disconnects the energy converter 10 connected to the buffer block 40 when the buffer block 40 collects electrical energy to the set individual electric energy level. That is, when charging of the electric energy set in the buffer block 40 is completed, the second switching unit 50 blocks the connection between the buffer block 40 and the energy converter 10, which have been charged. The plurality of energy converters 10 switches to another buffer block 40 that is not charged by the first and second switching units 30 and 50 to store electrical energy.
그리고 제2 스위칭부(50)는 수집이 완료된 버퍼 블록(40)들의 합산 전기에너지 레벨이 설정된 합산 전기에너지에 도달하면, 도 3에 도시된 바와 같이, 수집이 완료된 버퍼 블록(40)들을 직렬로 연결하여 전기에너지를 합한 후 정전압 변환기(60)로 전달한다. 이때 복수의 버퍼 블록(40)에 전기에너지를 설정된 레벨로 전기에너지를 쌓은 후에, 제2 스위칭부(50)가 해당 복수의 버퍼 블록(40)을 직렬로 연결할 때, 최소 한 개의 버퍼 블록(40)은 접지에 연결한다. 예컨대 도 3에 도시된 바와 같이, 제1 내지 제n 버퍼 블록(41,42,43)을 직렬로 연결할 때, 제1 버퍼 블록(41), 제2 버퍼 블록(42) 내지 제n-1 버퍼 블록의 제2-1 내지 제2-(n-1) 스위칭부(51,52,53)는 접지 노드에서 직렬 노드로 스위칭하여 연결하고, 제n 버퍼 블록(43)의 제2-n 스위칭부(54)는 접지 노드와의 연결 상태를 유지한다.When the accumulated electrical energy level of the collected buffer blocks 40 reaches the set total electrical energy, the second switching unit 50 outputs the collected buffer blocks 40 in series as shown in FIG. 3 The electric energy is combined, and the electric energy is transmitted to the constant voltage transformer 60. When the second switching unit 50 connects the plurality of buffer blocks 40 in series after the electric energy is accumulated in the plurality of buffer blocks 40 at a predetermined level, ) To ground. 3, when the first to n-th buffer blocks 41, 42 and 43 are connected in series, the first buffer block 41, the second buffer block 42 to the (n-1) The second to n- th switching units 51, 52 and 53 of the block switch and connect to the serial node from the ground node, (54) maintains a connection state with the ground node.
이때 합산한 전기에너지는 VB 노드를 통해 뒷단의 정전압 변환기(60)로 전달된다. 정전압 변환기(60)가 동작하기 위해서는 특정 전압 레벨 이상으로 전기에너지가 수집되어야 동작이 가능하다. 전기에너지 버퍼(20)는 적은 전기에너지가 수집된 버퍼 블록(40)들을 직렬로 연결하여, 순간 VB 전압을 정전압 변환기(60)가 동작 가능한 레벨까지 상승시켜줄 수 있으며, 이는 각각 수집된 적은 전기에너지를 원하는 전기에너지 레벨까지 올릴 수 있는 방법이다.At this time, the summed electric energy is transmitted to the rear-end constant voltage transformer 60 through the VB node. In order for the constant voltage converter 60 to operate, the electric energy must be collected at a specific voltage level or higher. The electrical energy buffer 20 can couple the buffer blocks 40 in which the less electrical energy is collected in series to raise the instantaneous VB voltage to a level at which the constant voltage transformer 60 is operable, To a desired electric energy level.
한편 본 실시예에서는 제1 내지 제n 버퍼 블록(41,42,43) 모두를 직렬로 전기적으로 연결하는 예를 개시하였지만 이것에 한정되는 것은 아니다. 복수의 버퍼 블록(40) 중 일부 개수의 버퍼 블록(40)만으로 합산 전기에너지 레벨이 설정된 합산 전기에너지에 도달한다면, 해당 개수의 버퍼 블록(40)만을 선택적으로 직렬로 연결할 수 있다.In this embodiment, all of the first to n-th buffer blocks 41, 42 and 43 are electrically connected in series. However, the present invention is not limited to this. Only a certain number of the buffer blocks 40 of the plurality of buffer blocks 40 can reach the summed electrical energy of the summed electrical energy level so that only a corresponding number of the buffer blocks 40 can be selectively connected in series.
이와 같이 본 실시예에 따른 에너지 하베스팅 시스템(100)은 한 개의 에너지원만을 수집하는 것이 아닌 두 개 이상의 주변 에너지원을 이용하여 더 많은 에너지를 수집하고, 해당 에너지를 기반으로 부하(80)를 동작시킬 수 있다.As described above, the energy harvesting system 100 according to the present embodiment collects more energy using two or more peripheral energy sources rather than collecting only one energy source, and loads the load 80 on the basis of the energy .
본 실시예에 따른 에너지 하베스팅 시스템(100)은 각각의 주변 에너지원으로부터 수집한 적은 전기에너지를 합하여 사용 가능한 전기에너지 레벨로 변환한다.The energy harvesting system 100 according to the present embodiment combines the small amount of electric energy collected from each of the surrounding energy sources into an usable electric energy level.
그리고 본 실시예에 따른 에너지 하베스팅 시스템(100)은 동일 환경 내에서 더 많은 주변 에너지의 수집이 가능하기 때문에, 에너지 하베스팅 기술을 활용하여 동작 가능한 부하(80)의 종류를 확대할 수 있다. 이로 인해 본 실시예에 따른 에너지 하베스팅 시스템(100)을 이용할 경우, 배터리 없이 주변 에너지원을 이용하여 동작 가능한 부하(80), 예컨대 센서, 기기의 개발에 활용할 수 있다.Since the energy harvesting system 100 according to the present embodiment is capable of collecting more peripheral energy in the same environment, the energy harvesting technique can be utilized to expand the type of the load 80 that can be operated. Accordingly, when the energy harvesting system 100 according to the present embodiment is used, it can be utilized in the development of a load 80, for example, a sensor and a device, which can operate using an ambient energy source without a battery.
한편, 본 명세서와 도면에 개시된 실시예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게는 자명한 것이다.It should be noted that the embodiments disclosed in the present specification and drawings are only illustrative of specific examples for the purpose of understanding, and are not intended to limit the scope of the present invention. It will be apparent to those skilled in the art that other modifications based on the technical idea of the present invention are possible in addition to the embodiments disclosed herein.
[부호의 설명][Description of Symbols]
10 : 에너지 변환기10: energy converter
20 : 전기에너지 버퍼20: Electric energy buffer
30 : 제1 스위칭부30: First switching unit
31,32,33 : 제1-1 내지 제1-n 단위 스위칭부31, 32, 33: the first to n-th unit switching units
40 : 버퍼 블록40: buffer block
41,42,43 : 제1 내지 제n 버퍼 블록41, 42, 43: first to nth buffer blocks
50 : 제2 스위칭부50:
51,52,53,54 : 제2-1 내지 제2-n 단위 스위칭부51, 52, 53, 54: the second to n-th unit switching units
60 : 정전압 변환기60: constant voltage converter
70 : 전기에너지 저장기70: electric energy reservoir
80 : 부하80: Load
100 : 에너지 하베스팅 시스템100: Energy Harvesting System

Claims (8)

  1. 서로 다른 복수의 주변 에너지원에 각각 연결되며, 상기 복수의 주변 에너지원으로부터 에너지를 입력받아 전기에너지로 변환하는 복수의 에너지 변환기;A plurality of energy converters each connected to a plurality of different peripheral energy sources and receiving energy from the plurality of peripheral energy sources and converting the energy into electrical energy;
    상기 복수의 에너지 변환기로부터 전기에너지를 전달받아 수집하며, 수집된 전기에너지를 설정된 전력 레벨로 합하는 전기에너지 버퍼;An electrical energy buffer for receiving and collecting electrical energy from the plurality of energy converters and for summing the collected electrical energy to a set power level;
    상기 전기에너지 버퍼로부터 전기에너지를 전달받아 부하가 사용 가능한 전력 레벨의 구동 전력으로 변환하는 정전압 변환기; 및A constant voltage converter for receiving electrical energy from the electrical energy buffer and converting the load into driving power at a usable power level; And
    상기 정전압 변환기로부터 구동 전력을 전달받아 저장하며, 부하로 저장된 구동 전력을 제공하는 전기에너지 저장기;An electric energy storage for receiving and storing drive power from the constant voltage transformer and providing drive power stored as a load;
    를 포함하는 이종 이상의 주변 에너지를 이용한 에너지 하베스팅 시스템.Energy harvesting system using more than two kinds of peripheral energies.
  2. 제1항에 있어서,The method according to claim 1,
    상기 서로 다른 복수의 주변 에너지원은 태양광, 진동, 열 및 바람으로 이루어지는 그룹에서 선택되는 적어도 두 개의 주변 에너지원을 포함하는 이종 이상의 주변 에너지를 이용한 에너지 하베스팅 시스템.Wherein the plurality of different peripheral energy sources are at least two peripheral energies selected from the group consisting of solar, vibration, heat and wind.
  3. 제1항에 있어서, 상기 전기에너지 버퍼는,The electric energy buffer according to claim 1,
    상기 복수의 에너지 변환기를 모두 선택적으로 복수의 버퍼 블록에 각각 연결할 수 있는 제1 스위칭부;A first switching unit capable of selectively connecting all of the plurality of energy converters to a plurality of buffer blocks;
    상기 제1 스위칭부에 의해 상기 복수의 에너지 변환기 중 연결되는 에너지 변환기로부터 전기에너지를 전달받아 임시 저장하는 복수의 버퍼 블록; 및A plurality of buffer blocks for receiving electrical energy from an energy converter connected to the plurality of energy converters by the first switching unit and temporarily storing the electrical energy; And
    상기 복수의 버퍼 블록을 직렬로 연결하여 상기 복수의 버퍼 블록에 수집된 전기에너지를 설정된 전기에너지 레벨로 합하여 상기 정전압 변환기로 전달하는 제2 스위칭부;A second switching unit for connecting the plurality of buffer blocks in series to combine the electric energy collected in the plurality of buffer blocks with a predetermined electric energy level and deliver the combined electric energy to the constant voltage converter;
    를 포함하는 이종 이상의 주변 에너지를 이용한 에너지 하베스팅 시스템.Energy harvesting system using more than two kinds of peripheral energies.
  4. 제3항에 있어서,The method of claim 3,
    상기 제1 스위칭부는 상기 복수의 에너지 변환기를 각각 상기 복수의 버퍼 블록 중 하나에 연결하는 이종 이상의 주변 에너지를 이용한 에너지 하베스팅 시스템.Wherein the first switching unit uses at least two kinds of peripheral energies that connect the plurality of energy converters to one of the plurality of buffer blocks, respectively.
  5. 제4항에 있어서,5. The method of claim 4,
    상기 제2 스위칭부는 상기 버퍼 블록이 상기 에너지 변환기로부터 전기에너지를 전달받아 저장할 때, 상기 버퍼 블록의 한 쪽 노드를 접지에 연결시키는 이종 이상의 주변 에너지를 이용한 에너지 하베스팅 시스템.Wherein the second switching unit uses at least two types of peripheral energy that connects one node of the buffer block to the ground when the buffer block receives and stores electrical energy from the energy converter.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 제2 스위칭부는 특정 버퍼 블록이 설정된 개별 전기에너지 레벨까지 전기에너지를 수집하면 해당 버퍼 블록과 에너지 변환기의 연결을 해제하고, 설정된 개별 전기에너지 레벨까지 전기에너지를 수집하지 못하면서 연결되지 않은 다른 버퍼 블록과 에너지 변환기를 연결하도록 스위칭하는 이종 이상의 주변 에너지를 이용한 에너지 하베스팅 시스템.When the specific buffer block collects electric energy up to the set electric energy level, the second switching unit releases the connection between the corresponding buffer block and the energy converter, and does not collect electric energy to the set individual electric energy level, And an energy harvesting system that uses more than two types of ambient energy to switch to connect energy converters.
  7. 제6항에 있어서,The method according to claim 6,
    상기 제2 스위칭부는 수집이 완료된 버퍼 블록들의 합산 전기에너지 레벨이 설정된 합산 전기에너지에 도달하면, 상기 수집이 완료된 버퍼 블록들을 직렬로 연결하여 전기에너지를 합한 후 상기 정전압 변환기로 전달하는 이종 이상의 주변 에너지를 이용한 에너지 하베스팅 시스템.The second switching unit may be configured such that when the summed electrical energy level of the collected buffer blocks reaches a set summed electrical energy, the second switching unit adds the electrical energy to the buffer blocks in which the collection is completed by connecting them in series, Energy harvesting system using.
  8. 복수의 에너지 변환기를 모두 선택적으로 복수의 버퍼 블록에 각각 연결할 수 있는 제1 스위칭부;A first switching unit capable of selectively connecting all of the plurality of energy converters to a plurality of buffer blocks;
    상기 제1 스위칭부에 의해 상기 복수의 에너지 변환기 중 연결되는 에너지 변환기로부터 전기에너지를 전달받아 임시 저장하는 상기 복수의 버퍼 블록; 및The plurality of buffer blocks receiving electric energy from an energy converter connected to the plurality of energy converters by the first switching unit and temporarily storing the electric energy; And
    상기 복수의 버퍼 블록을 직렬로 연결하여 상기 복수의 버퍼 블록에 수집된 전기에너지를 설정된 전기에너지 레벨로 합하여 정전압 변환기로 전달하는 제2 스위칭부;A second switching unit for connecting the plurality of buffer blocks in series to combine the electric energy collected in the plurality of buffer blocks with a predetermined electric energy level and transferring the combined electric energy to a constant voltage converter;
    를 포함하는 이종 이상의 주변 에너지를 이용한 에너지 하베스팅 시스템용 전기에너지 버퍼.An electrical energy buffer for an energy harvesting system using at least two or more peripheral energies,
PCT/KR2018/010451 2017-11-16 2018-09-07 Energy harvesting system using two or more types of ambient energy WO2019098515A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0152754 2017-11-16
KR1020170152754A KR102327132B1 (en) 2017-11-16 2017-11-16 Energy harvesting system using more than two kinds of ambient energy

Publications (1)

Publication Number Publication Date
WO2019098515A1 true WO2019098515A1 (en) 2019-05-23

Family

ID=66539041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010451 WO2019098515A1 (en) 2017-11-16 2018-09-07 Energy harvesting system using two or more types of ambient energy

Country Status (2)

Country Link
KR (2) KR102327132B1 (en)
WO (1) WO2019098515A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102266289B1 (en) * 2019-11-14 2021-06-17 한국전자기술연구원 Energy Harvester with Dual Input/Output Converter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101325645B1 (en) * 2010-09-16 2013-11-06 한국전자통신연구원 electric device used the energy harvesting
JP2015211574A (en) * 2014-04-28 2015-11-24 ルネサスエレクトロニクス株式会社 Power supply circuit, and control method of power supply circuit
KR20170053466A (en) * 2015-11-06 2017-05-16 엘지전자 주식회사 Apparatus for combining power, apparatus for controlling power and electric/electronic apparatus
KR20170057113A (en) * 2015-11-13 2017-05-24 한국전자통신연구원 Multi input power manager
JP6189786B2 (en) * 2014-04-25 2017-08-30 ルネサスエレクトロニクス株式会社 Power supply device and control method of power supply device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104205624B (en) * 2012-03-30 2018-05-15 英特尔公司 Low frequency converter with electrolytic capacitor
KR20170101756A (en) 2016-02-26 2017-09-06 전자부품연구원 RF Harvesting Method and Apparatus therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101325645B1 (en) * 2010-09-16 2013-11-06 한국전자통신연구원 electric device used the energy harvesting
JP6189786B2 (en) * 2014-04-25 2017-08-30 ルネサスエレクトロニクス株式会社 Power supply device and control method of power supply device
JP2015211574A (en) * 2014-04-28 2015-11-24 ルネサスエレクトロニクス株式会社 Power supply circuit, and control method of power supply circuit
KR20170053466A (en) * 2015-11-06 2017-05-16 엘지전자 주식회사 Apparatus for combining power, apparatus for controlling power and electric/electronic apparatus
KR20170057113A (en) * 2015-11-13 2017-05-24 한국전자통신연구원 Multi input power manager

Also Published As

Publication number Publication date
KR20190055915A (en) 2019-05-24
KR20210136955A (en) 2021-11-17
KR102327132B1 (en) 2021-11-17
KR102504806B1 (en) 2023-03-02

Similar Documents

Publication Publication Date Title
WO2010087545A1 (en) Charge equalization apparatus for series-connected battery string using regulated voltage source
WO2013032062A1 (en) System for monitoring a solar module
WO2009131336A2 (en) Two-stage charge equalization method and apparatus for series-connected battery string
WO2015060576A1 (en) Battery management system capable of transmitting secondary protection signal and diagnostic signal using few insulation elements
WO2019017574A1 (en) Flexible test platform for control and operational research of microgrid
WO2015072652A1 (en) Multi-battery charger and control method therefor
WO2022114624A1 (en) Photovoltaic power generation system
WO2024005418A1 (en) Serial connection structure of pouch-type battery cells applied to serial battery charging and discharging device
WO2020091168A1 (en) Power converter
WO2018151398A1 (en) System and method for assigning unique number to cell module controller
WO2019098515A1 (en) Energy harvesting system using two or more types of ambient energy
WO2017142106A1 (en) Power supply apparatus and system for sharing load using integrated communication module
WO2018079918A1 (en) Battery cell balancing device
WO2015156648A1 (en) Active cell balancing circuit using cell voltage measurement circuit of capacitor charging method
WO2017090896A1 (en) Power management device of power system, linked with distributed power resources, and method therefor
WO2014171719A1 (en) Alternating current linked power converting apparatus
WO2021107198A1 (en) Energy harvesting system using multiple surrounding energy sources
WO2020080594A1 (en) Smart balancing energy charging control system
WO2017146371A2 (en) Wireless signal harvesting method, and device for same
WO2021091190A1 (en) Charging apparatus using ess apparatus
WO2017023084A1 (en) Upfc device having one transformer
WO2020032457A1 (en) Submodule for mmc converter
WO2021256809A1 (en) Power equipment for remote control
WO2021029542A1 (en) Apparatus and method for improving power generation efficiency of solar cell
WO2022203473A1 (en) Dc-dc converter, power conversion device, and solar power generation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18878486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18878486

Country of ref document: EP

Kind code of ref document: A1