WO2013032062A1 - System for monitoring a solar module - Google Patents

System for monitoring a solar module Download PDF

Info

Publication number
WO2013032062A1
WO2013032062A1 PCT/KR2011/007933 KR2011007933W WO2013032062A1 WO 2013032062 A1 WO2013032062 A1 WO 2013032062A1 KR 2011007933 W KR2011007933 W KR 2011007933W WO 2013032062 A1 WO2013032062 A1 WO 2013032062A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar
information collecting
collecting device
communication
monitoring system
Prior art date
Application number
PCT/KR2011/007933
Other languages
French (fr)
Korean (ko)
Inventor
박일순
이순영
이승현
권영민
변형준
Original Assignee
(주)세화에너지산업
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)세화에너지산업 filed Critical (주)세화에너지산업
Publication of WO2013032062A1 publication Critical patent/WO2013032062A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/02Instruments for indicating weather conditions by measuring two or more variables, e.g. humidity, pressure, temperature, cloud cover or wind speed
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems
    • G08C19/02Electric signal transmission systems in which the signal transmitted is magnitude of current or voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/38Energy storage means, e.g. batteries, structurally associated with PV modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a module-specific communication method for operating and maintaining the solar power generation system, and more specifically, it is possible to monitor the photovoltaic power generation status with voltage and current values of the solar cell module and determine whether there is an abnormality. It is about a system.
  • Existing photovoltaic power generation system is composed of strings by connecting several solar cell modules in series, and the strings are connected in parallel at the connection board and collected by direct current, and the collected direct current is connected to the final large capacity inverter.
  • the efficiency of the system with this structure is more than 95%, which is excellent, but the power generation loss caused by voltage mismatch between cells, modules, and strings in the power generation system is 5 to 25%.
  • the cause of this voltage mismatch is cloud and building shadows, pollution, cell deterioration and burnout, which causes many problems in power plant life and safety.
  • the problem with the existing photovoltaic facility monitoring technology is that all the measurements are made around the inverter, so detailed information of the solar cell module, which occupies the largest portion of the power plant, is unknown.
  • monitoring facilities should be added, and the initial cost will also increase incidentally, making it difficult to flexibly respond to structural design changes.
  • the present invention has been made to solve the above problems, simplifying the system configuration for monitoring the information of the photovoltaic power generation equipment and modules to reduce the maintenance cost of the power generation equipment and secure the flexibility of the equipment to ensure the competitiveness of the product
  • the purpose is to provide a solar module monitoring system that can increase the.
  • the present invention is to provide a photovoltaic module monitoring system that can be used for communication by supplying power by utilizing the output power of the solar cell module without the need for a separate communication of the solar cell module sensing device. .
  • Another object of the present invention is to provide a solar module monitoring system including a sensing device capable of directly measuring a voltage, a current, an abnormality, and an environmental value of a solar cell module.
  • the present invention provides a monitoring system for monitoring photovoltaic power generation.
  • Each of the plurality of solar cell modules is provided, and a plurality of sensing voltages and currents generated by each of the plurality of solar cell modules are provided.
  • Monitoring the status of photovoltaic power generation by accessing the sensing information collecting device through a sensing device, a sensing information collecting device for receiving data from the plurality of sensing devices, processing data including storage, calculation and classification, and wired / wireless communication networks. It includes a monitoring terminal for each of the sensing device and the information collecting device is connected by a pair of communication lines.
  • the plurality of sensing devices are connected in series with one information collecting device in series to serially communicate between each object, and the plurality of sensing devices and the information collecting device perform serial communication between each object.
  • the communication line to which the information collection device is connected has a line number preconfigured in hardware and recognizes the line number, when any one of the plurality of sensing devices and the information collection device sends a request signal, Communication may be performed by sequentially copying and transmitting the request signal from the object closest to the object that has sent the request signal to the object located at the last end.
  • the object of the last stage receiving the request signal sends a response signal
  • the object may transmit the response signal to the object that sent the request signal sequentially.
  • a communication protocol leaving a space for an ID is used, and the sensing device performs communication by transmitting 1 to the next sensing device by adding 1 to the value of the space for ID in the transmitted response signal.
  • the response signal from the information collecting device to check the value of the space for the ID can be communicated in a way to confirm the ID.
  • the sensing device may read current and voltage values of the connected solar cell module, and may read environmental values including wind speed, wind direction, solar radiation, temperature, and precipitation from an environmental sensor connected through a predetermined channel.
  • the information collecting device transmits data related to photovoltaic power generation using a short range wireless communication network to a web or a local monitoring terminal, and in this case, the short range wireless communication network may be Zigbee.
  • the present invention by simplifying the system configuration for monitoring the information of the photovoltaic power plant and modules, it is possible to reduce the maintenance cost of the power plant and secure the flexibility of the equipment to increase the competitiveness of the product.
  • the number of communication lines of two to three lines required for communication is reduced to one in the prior art, thereby reducing the cost required for additional equipment and simplifying the equipment.
  • it is possible to secure the stability which is not a method of manually assigning values to each solar cell module to set individual IDs of the solar cell module in the related art, but an automatic ID detection function using the characteristics of the serial connection inside the string.
  • Implementation has the advantage of utility and automation of the facility.
  • FIG. 1 is a block diagram of a solar module monitoring system according to an embodiment of the present invention.
  • FIG. 2 is a view showing a line configuration of a conventional communication method.
  • FIG 3 is a view showing a communication line in the solar module monitoring system according to an embodiment of the present invention.
  • FIG. 4 is a view for explaining the power communication in the solar module monitoring system according to an embodiment of the present invention.
  • FIG. 5 is a view for explaining a communication method in a solar module monitoring system according to an embodiment of the present invention.
  • FIG. 6 is a view for explaining the ID verification method in the solar module monitoring system according to an embodiment of the present invention.
  • FIG. 7 is a block diagram showing an internal configuration of a sensing device in a solar module monitoring system according to an embodiment of the present invention.
  • FIG. 1 is a block diagram of a solar module monitoring system according to an embodiment of the present invention.
  • a solar module monitoring system for monitoring photovoltaic power generation includes a sensing device 200, an information collection device 300, and a monitoring terminal 500.
  • the sensing device 200 is provided for each of a plurality of solar cell modules 100, and the role of the solar cell module sensing device 200 can be summarized into three types.
  • the information collecting device 300 receives data from the plurality of sensing devices 200, performs data processing including storage, calculation, and classification, and transmits data to the monitoring terminal 500.
  • the monitoring terminal 500 is connected to the information collection device 300 through the wired or wireless communication network 400 to monitor the status of solar power. At this time, the monitoring device outputs the environmental information of the installed place, the voltage, current, and environmental information of each solar cell module, and the stored data up to now can be checked.
  • the monitoring terminal 500 may be a web or a local remote administrator PC.
  • the sensed values of each sensing device 200 are transmitted to the information collection device 300 using real time communication, and then the data are periodically collected and periodically transmitted to the monitoring terminal 500.
  • the user can check the overall average voltage and current value, and can see the voltage and current value of each solar cell module connected to each sensing device 200, so that the problem is detected and responded to the problem of the individual solar cell module of the solar system It is easy to identify the parts required for maintenance, which can reduce the cost and time required for maintenance.
  • the information collecting device 300 may transmit photovoltaic power related data using a short range wireless communication network.
  • the Zigbee method may be used as the short range wireless communication network.
  • wired communication of RS485 and wireless communication method of Zigbee can be used.
  • the electrical data of the solar cell module module transmits information through RS485 wired communication, which is connected to the monitoring terminal 500 by connecting several information collection devices 300 to one set of communication ports due to the characteristics of RS485. If wired installation is difficult, Zigbee communication is used to share data.
  • the converter device to select the wired communication and the wireless communication in hardware, the system can be implemented using only one set of communication ports.
  • each sensing device 200 and the information collecting device 300 are connected by a pair of communication lines.
  • the plurality of sensing devices 200 are serially connected to one information collecting device 300 to serially communicate between each object.
  • FIG. 2 is a view showing a communication line in a conventional solar module monitoring system
  • Figure 3 is a view showing a communication line in a solar module monitoring system according to an embodiment of the present invention.
  • RS 485 format is used in a conventional solar module monitoring system, and three control lines of D +, D-, and ground (GND) are required for each communication entity.
  • FIG. 4 is a view for explaining the power communication in the solar module monitoring system according to an embodiment of the present invention.
  • the sensing device 200_1 includes a solar cell module output unit 210_1 and a board 220_1
  • the sensing device 200_2 includes a solar cell module output unit 210_2 and a board 220_2.
  • the sensing devices 200_1 and 220_2 are based on serial communication between entities, and use the power band generated from the module as the high and low signals of communication.
  • connection configuration is as follows.
  • the R terminal of the rear sensing device 200_2 and the T terminal of the front sensing device 200_1 constitute a serial communication between individual solar cell module sensing devices.
  • the signal level of each communication gradually increases as the power supply is connected in series.
  • the present invention to solve this phenomenon, as shown in Figure 4, by using a signal system using a photocoupler to perform the isolation function between each object to prevent the increase of the signal level of communication.
  • Each sensing device is connected with only one communication line, and the communication speed is designed based on 4800bps.
  • the communication protocol transmits and receives the location ID, voltage and current, and other information of the corresponding solar cell module.
  • FIG. 5 is a view for explaining a communication method in a solar module monitoring system according to an embodiment of the present invention.
  • a communication line to which a plurality of sensing apparatuses and the information collection apparatus 300 are connected has a plurality of sensing apparatuses in a state in which line numbers are preset in hardware and line numbers are recognized.
  • the object of the information collection device 300 sends a request signal
  • the object is sequentially communicated by copying and transmitting the request signal from the object closest to the object that sent the request signal to the object located at the end. That is, in the present invention, if only the first line number is known and the request signal is generated once, the request signal can be reduced from the front sensing device to the rear sensing device by copying the request signal from the beginning to the end.
  • the object of the last stage receiving the request signal sends a response signal
  • the communication to the object that sent the request signal in order to sequentially transmit the response signal. That is, beyond the conventional system in which the subject of the request and the object of the response communicate 1: 1, in the present invention, when the sensing device 200 generates a request signal only once, a response of the push type is made, which is data. It is a response method in which the amount of is not accumulated in any one place but is processed as a certain amount of data at a certain time.
  • FIG. 6 is a view for explaining the ID verification method in the solar module monitoring system according to an embodiment of the present invention.
  • a communication protocol using a space for ID is used in serial communication, and the sensing device 200 adds 1 to the next sensing device by adding 1 to the value of space for ID in the transmitted response signal. Communication is performed in a manner of transmitting, and finally, the information collecting device 300 receives the response signal to check the value of the space for the ID to confirm the ID.
  • the response signal started from the sensing device [6] reaches the information collecting device 300 while passing through the sensing device [5], ..., the sensing device [1], and the sensing device [0]. Each time one roughly, the ID value is increased by one. Finally, the information collecting device 300 receives the information "Line: 1, ID: 6, DATA: XXX", and can identify the ID of the sensing device in which the response signal is generated by the ID value of ID: 6. .
  • the sensing device 200 may read current and voltage values of the connected solar cell module, and may read environmental values including wind speed, wind direction, solar radiation, temperature, and precipitation from an environmental sensor connected through a predetermined channel.
  • FIG. 7 is a block diagram showing an internal configuration of a sensing device in a solar module monitoring system according to an embodiment of the present invention.
  • voltage and current may be measured and read for each sensing device 200.
  • the sensing device 200 includes a first current detector 710 for detecting an upper side current, a second current detector 720 for detecting a lower side current, a voltage detector 730 for detecting a voltage, and a DC voltage.
  • DC-DC converter 740 for changing the value, and the op amp 750 for matching the band of the sensing voltage value is made.
  • the sensing device 200 can sense the currents at both ends of the + terminal and the-terminal, respectively, the sensing device 200 can determine whether there is a leakage current.
  • the sensing device 200 of the present invention has a leakage current blocking function to prevent safety accidents in advance, and since the necessary power can be used by converting photovoltaic power generation therein, a separate external power supply is not required. not.
  • the present invention can be used in the solar cell related industries.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Atmospheric Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a system for monitoring a solar module. The system for monitoring a solar module according to the present invention comprises: a plurality of sensing devices provided for each of a plurality of solar cell modules and sensing voltages and currents generated at each solar cell module; an information collecting device receiving data from the plurality of sensing devices and performing data processing such as storing, calculating, and classifying data; and a monitoring terminal connected to the information collecting device over a wired/wireless communication network and monitoring the situation of solar power generation, wherein each sensing device is coupled by one communication line. According to the present invention, the configuration of a system for monitoring information on a solar generating facility and module is simplified, the maintenance cost of a generating facility is decreased, the flexibility of a facility is ensured, and the competitiveness of a product may be increased.

Description

태양광 모듈 모니터링 시스템Solar Module Monitoring System
본 발명은 태양광 발전 시스템을 운영 및 유지보수 관리를 위한 모듈별 통신 방안 관한 것으로서, 더욱 상세하게는 태양전지모듈의 전압 및 전류 값으로 태양광 발전 상황을 모니터링할 수 있으며 이상유무를 판단할 수 있는 시스템에 관한 것이다. The present invention relates to a module-specific communication method for operating and maintaining the solar power generation system, and more specifically, it is possible to monitor the photovoltaic power generation status with voltage and current values of the solar cell module and determine whether there is an abnormality. It is about a system.
기존 태양광 발전용 시스템은 다수개의 태양전지 모듈을 직렬 연결로 스트링으로 구성되며 이 스트링은 접속반에서 병렬로 연결하여 직류로 모아지며 이 모아진 직류는 최종 대용량 인버터에 연결하는 구성으로 되어 있다. 이러한 구조의 시스템의 효율은 95%이상으로 성능이 우수하지만 발전 시스템내 셀간, 모듈간, 스트링간에 발생하는 전압 불일치로 발생하는 발전량 손실률은 5~25%에 달하고 있다. 이 전압 미스매치의 원인으로는 구름 및 건물의 그림자, 오염, 셀 열화 및 소손 등을 발생 되므로 발전소 수명 및 안전에 많은 문제점로 야기된다.Existing photovoltaic power generation system is composed of strings by connecting several solar cell modules in series, and the strings are connected in parallel at the connection board and collected by direct current, and the collected direct current is connected to the final large capacity inverter. The efficiency of the system with this structure is more than 95%, which is excellent, but the power generation loss caused by voltage mismatch between cells, modules, and strings in the power generation system is 5 to 25%. The cause of this voltage mismatch is cloud and building shadows, pollution, cell deterioration and burnout, which causes many problems in power plant life and safety.
위와 같이 태양광 발전의 시스템이 다양해지고 있으며 대규모로 설치 운용되고 있어서 발전 설비의 유지보수와 감시를 효율적으로 할 필요가 강하게 대두되었으며, 많은 태양광 발전 시스템에서 이러한 요구를 해결하기 위해 다양한 방법이 제시되고 있는 실정이다. As photovoltaic power generation systems are diversified and installed and operated on a large scale, there is a strong need for efficient maintenance and monitoring of power generation facilities, and various methods are proposed to solve such demands in many solar power generation systems. It's happening.
종래 태양광 발전 모니터링 시스템에서는 다음과 같은 문제점이 존재한다.The following problems exist in the conventional photovoltaic monitoring system.
첫째, 기존의 태양광 발전 설비 모니터링 기술에 대한 문제점은 인버터 중심으로 모든 측정이 이뤄지고 있기 때문에 발전설비의 가장 많은 비중을 차지하고 있는 태양전지 모듈의 자세한 정보를 알 수 없다.First, the problem with the existing photovoltaic facility monitoring technology is that all the measurements are made around the inverter, so detailed information of the solar cell module, which occupies the largest portion of the power plant, is unknown.
둘째, 태양광 발전 설비를 추가로 증축하거나 전력 용량을 증가시키는 경우는 모니터링 설비를 추가해야하며, 초기 비용도 부수적으로 증가하게 되어 있어서 구조적으로 설계 변경 시 유연하게 대응하기 어렵다.Second, in the case of additionally expanding photovoltaic power generation facilities or increasing power capacity, monitoring facilities should be added, and the initial cost will also increase incidentally, making it difficult to flexibly respond to structural design changes.
셋째, 태양광 발전설비의 유지 보수 과정에서 발생되는 부분적인 통신선로의 고장과 쥐 등에 의한 선로의 파괴 또는 누설전류의 발생 등과 같은 실질적으로 발생하는 장해에 대해 대응하기 어렵다.Third, it is difficult to cope with practically occurring obstacles such as partial communication line breakdown caused by the maintenance process of photovoltaic power generation facilities, line breakage caused by rats, or generation of leakage current.
넷째, 태양광발전시스템의 태양전지 모듈 개별 모니터링의 어려움으로 개별 모듈의 노후화 및 고장여부 확인은 접속반 어레이에서 확인하여 모듈로 찾아 가야 하므로 시간 소요가 많다.Fourth, due to the difficulty of individual monitoring of the solar cell module of the photovoltaic power generation system, it is time consuming to check the aging and failure of individual modules by checking them in the connection panel array.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 태양광 발전설비 및 모듈의 정보를 모니터링하기 위한 시스템 구성을 간단하게 하여 발전설비의 유지보수 비용을 줄이고 설비의 유연성을 확보하여 제품의 경쟁력을 높일 수 있는 태양광 모듈 모니터링 시스템을 제공하는데 그 목적이 있다. The present invention has been made to solve the above problems, simplifying the system configuration for monitoring the information of the photovoltaic power generation equipment and modules to reduce the maintenance cost of the power generation equipment and secure the flexibility of the equipment to ensure the competitiveness of the product The purpose is to provide a solar module monitoring system that can increase the.
또한, 본 발명은 태양전지모듈 센싱 장치의 별도의 통신을 위한 전원의 필요 없이 태양전지 모듈의 출력전력을 활용으로 전원 공급되여 통신에 사용할 수 있는 태양광 모듈 모니터링 시스템을 제공하는데 그 다른 목적이 있다.In addition, the present invention is to provide a photovoltaic module monitoring system that can be used for communication by supplying power by utilizing the output power of the solar cell module without the need for a separate communication of the solar cell module sensing device. .
또한, 본 발명은 태양전지모듈의 전압, 전류, 이상유무, 환경값을 직접 측정할 수 있는 센싱장치를 포함하는 태양광 모듈 모니터링 시스템을 제공하는데 그 다른 목적이 있다.Another object of the present invention is to provide a solar module monitoring system including a sensing device capable of directly measuring a voltage, a current, an abnormality, and an environmental value of a solar cell module.
본 발명의 목적은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The object of the present invention is not limited to the above-mentioned object, and other objects that are not mentioned will be clearly understood by those skilled in the art from the following description.
이와 같은 목적을 달성하기 위한 본 발명은 태양광 발전을 모니터링하기 위한 모니터링 시스템에 있어서, 다수의 태양전지모듈마다 각각 마련되어 있으며, 각 다수의 태양전지모듈에서 발생된 전압 및 전류를 센싱하기 위한 다수의 센싱장치, 상기 다수의 센싱장치로부터 데이터를 수신하여 저장, 연산 및 분류를 포함하는 데이터 처리를 하는 센싱 정보수집 장치 및 유무선 통신망을 통해 상기 센싱 정보수집 장치에 접속하여 태양광 발전의 상황을 모니터링하기 위한 모니터링 단말기를 포함하며, 상기 각 센싱장치와 상기 정보수집 장치는 한쌍의 통신라인으로 연결되어 있다. In order to achieve the above object, the present invention provides a monitoring system for monitoring photovoltaic power generation. Each of the plurality of solar cell modules is provided, and a plurality of sensing voltages and currents generated by each of the plurality of solar cell modules are provided. Monitoring the status of photovoltaic power generation by accessing the sensing information collecting device through a sensing device, a sensing information collecting device for receiving data from the plurality of sensing devices, processing data including storage, calculation and classification, and wired / wireless communication networks. It includes a monitoring terminal for each of the sensing device and the information collecting device is connected by a pair of communication lines.
상기 다수의 센싱장치는 하나의 정보수집 장치와 직렬로 연결되어 각 객체 간에 직렬통신하며, 다수의 센싱장치와 상기 정보수집 장치가 각 객체 간에 직렬통신을 수행하는데 있어서, 상기 다수의 센싱장치와 상기 정보수집 장치가 연결된 통신라인은 하드웨어적으로 라인숫자가 미리 설정되어 있고, 상기 라인숫자를 인식하고 있는 상태에서, 상기 다수의 센싱장치와 상기 정보수집 장치 중에서 어느 한 객체가 요청신호를 발신하면, 상기 요청신호를 발신한 객체와 가장 인접한 객체부터 최종단에 위치한 객체까지 순차적으로 상기 요청신호를 복사하여 전달하는 방식으로 통신할 수 있다.The plurality of sensing devices are connected in series with one information collecting device in series to serially communicate between each object, and the plurality of sensing devices and the information collecting device perform serial communication between each object. When the communication line to which the information collection device is connected has a line number preconfigured in hardware and recognizes the line number, when any one of the plurality of sensing devices and the information collection device sends a request signal, Communication may be performed by sequentially copying and transmitting the request signal from the object closest to the object that has sent the request signal to the object located at the last end.
그리고, 상기 요청신호를 수신한 최종단의 객체가 응답신호를 발신하면, 상기 요청신호를 발신한 객체까지 순차적으로 상기 응답신호를 전달하는 방식으로 통신할 수 있다. When the object of the last stage receiving the request signal sends a response signal, the object may transmit the response signal to the object that sent the request signal sequentially.
상기 직렬통신에 있어서 ID를 위한 공간을 남겨둔 통신 프로토콜을 사용하며, 상기 센싱장치는 전달된 응답신호에서 ID를 위한 공간의 값에 1을 더하여 다음 센싱장치로 전달하는 방식으로 통신을 수행하고, 최종적으로 상기 정보수집 장치에서 응답신호를 수신하여 상기 ID를 위한 공간의 값을 확인하여 ID를 확인하는 방식으로 통신할 수 있다. In the serial communication, a communication protocol leaving a space for an ID is used, and the sensing device performs communication by transmitting 1 to the next sensing device by adding 1 to the value of the space for ID in the transmitted response signal. By receiving the response signal from the information collecting device to check the value of the space for the ID can be communicated in a way to confirm the ID.
상기 센싱장치는 연결된 태양전지모듈의 전류, 전압값을 읽을 수 있으며, 정해진 채널을 통해 연결된 환경센서로부터 풍속, 풍향, 일사량, 온도 및 강수량을 포함하는 환경값을 읽을 수 있다. The sensing device may read current and voltage values of the connected solar cell module, and may read environmental values including wind speed, wind direction, solar radiation, temperature, and precipitation from an environmental sensor connected through a predetermined channel.
상기 정보수집 장치 근거리 무선통신망을 이용하여 태양광 발전 관련 데이터를 송신할 수 있는 웹이나 로컬 모니터링단말기로 전송하며, 이때, 근거리 무선통신망은 지그비(Zigbee)일 수 있다.The information collecting device transmits data related to photovoltaic power generation using a short range wireless communication network to a web or a local monitoring terminal, and in this case, the short range wireless communication network may be Zigbee.
본 발명에 의하면, 태양광 발전설비 및 모듈의 정보를 모니터링하기 위한 시스템 구성을 간단하게 하여 발전설비의 유지보수 비용을 줄이고 설비의 유연성을 확보하여 제품의 경쟁력을 높일 수 있는 효과가 있다. According to the present invention, by simplifying the system configuration for monitoring the information of the photovoltaic power plant and modules, it is possible to reduce the maintenance cost of the power plant and secure the flexibility of the equipment to increase the competitiveness of the product.
또한, 태양광 발전 설비에 따른 광범위한 태양전지모듈들의 각 모듈상태를 원격으로 파악할 수 있으므로, 태양광 발전 용량에 대한 세부사항을 파악할 수 있고, 태양전지모듈에 설치된 센싱장치를 통하여 태양전지모듈 ID를 사용하여 각각의 이상 유무를 확인할 수 있고, 이를 통하여 종래의 인버터 모니터링 만으로 많이 부족할 수 있기에 태양전지모듈의 센싱장치로 개별 태양전지 모듈의 이상유무에 대한 문제 인식과 대응을 할 수 있다. In addition, it is possible to remotely grasp the state of each module of a wide range of solar cell modules according to the photovoltaic power generation facilities, so that you can grasp the details of the photovoltaic generation capacity, and the solar cell module ID through the sensing device installed in the solar cell module By using each of them, it is possible to check whether there is an abnormality, and through this, the conventional inverter monitoring alone can be insufficient. Therefore, the sensing device of the solar cell module can recognize and respond to the problem of the abnormality of the individual solar cell module.
또한, 태양전지모듈로부터 얻어진 전압을 그대로 통신의 High, Low신호에 사용함으로써 종래의 기술 중 통신에 필요한 2~3선의 통신선의 갯수를 1개로 줄여서 추가적인 설비에 필요한 비용을 절감함과 동시에 설비단순화에 따른 안정성도 확보할 수 있으며, 이는 종래의 기술에 태양전지 모듈의 개별 ID를 설정하기 위해 태양전지 모듈별로 각각 수동으로 값을 부여한 방법이 아닌 String내부의 직렬연결의 특성을 이용한 자동ID 검출기능을 구현하여 설비의 유용성과 자동화의 이점이 있다. 또한, 이를 토대로 다수의 태양전지모듈 String들의 통신단자 여러쌍을 한 쌍의 묶음으로 결합하는 연결이 가능하며 결과적으로 접속함 체크보드의 단일 통신단자에 여러개의 태양전지모듈 String으로부터 나오는 다수의 통신선들과 연결구성을 하여 설비단순화를 할 수 있다.  In addition, by using the voltage obtained from the solar cell module as the high and low signals of communication, the number of communication lines of two to three lines required for communication is reduced to one in the prior art, thereby reducing the cost required for additional equipment and simplifying the equipment. In addition, it is possible to secure the stability, which is not a method of manually assigning values to each solar cell module to set individual IDs of the solar cell module in the related art, but an automatic ID detection function using the characteristics of the serial connection inside the string. Implementation has the advantage of utility and automation of the facility. In addition, based on this, it is possible to connect several pairs of communication terminals of multiple solar cell module strings in a pair and consequently connect multiple communication lines from multiple solar cell strings to a single communication terminal of the check box. It is possible to simplify the equipment by connecting and configuring.
종래에 태양전지모듈 센싱 데이터를 주고받기 위해 무선통신 방식만 사용되는 설비와 비교하여 날씨와 구조물에 상관없이 안정성 있게 통신을 할 수 있으므로, 통신안정성에서 큰 신뢰성을 갖고 있다. Compared to a facility that uses only a wireless communication method for transmitting and receiving solar cell module sensing data, it can communicate stably regardless of weather and structure, and thus has great reliability in communication stability.
도 1은 본 발명의 일 실시예에 따른 태양광 모듈 모니터링 시스템의 블록도이다. 1 is a block diagram of a solar module monitoring system according to an embodiment of the present invention.
도 2는 종래 통신방식의 라인구성을 보여주는 도면이다.2 is a view showing a line configuration of a conventional communication method.
도 3은 본 발명의 일 실시예에 따른 태양광 모듈 모니터링 시스템에서 통신라인을 보여주는 도면이다.3 is a view showing a communication line in the solar module monitoring system according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 태양광 모듈 모니터링 시스템에서 전력 통신을 설명하기 위한 도면이다.4 is a view for explaining the power communication in the solar module monitoring system according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 태양광 모듈 모니터링 시스템에서 통신방식을 설명하기 위한 도면이다.5 is a view for explaining a communication method in a solar module monitoring system according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 태양광 모듈 모니터링 시스템에서 ID 확인 방식을 설명하기 위한 도면이다. 6 is a view for explaining the ID verification method in the solar module monitoring system according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 태양광 모듈 모니터링 시스템에서 센싱장치의 내부구성을 보여주는 블록도이다.7 is a block diagram showing an internal configuration of a sensing device in a solar module monitoring system according to an embodiment of the present invention.
이하, 첨부된 도면을 참조해서 본 발명의 실시예를 상세히 설명하면 다음과 같다. 우선 각 도면의 구성 요소들에 참조 부호를 부가함에 있어서, 동일한 구성 요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 그리고, 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 명세서 전반에 걸쳐서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. First of all, in adding reference numerals to the components of each drawing, it should be noted that the same reference numerals have the same reference numerals as much as possible even if displayed on different drawings. In describing the present invention, when it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. In addition, throughout the specification, when a part is said to "include" a certain component, it means that it may further include other components, without excluding the other components unless otherwise stated. .
도 1은 본 발명의 일 실시예에 따른 태양광 모듈 모니터링 시스템의 블록도이다. 1 is a block diagram of a solar module monitoring system according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 태양광 발전을 모니터링하기 위한 태양광 모듈 모니터링 시스템은 센싱장치(200), 정보수집 장치(300), 모니터링 단말기(500)를 포함하여 이루어진다. Referring to FIG. 1, a solar module monitoring system for monitoring photovoltaic power generation according to the present invention includes a sensing device 200, an information collection device 300, and a monitoring terminal 500.
센싱장치(200)는 다수의 태양전지모듈(Solar cell, 100)마다 각각 마련되어 있으며, 태양전지모듈 센싱장치(200)의 역할은 크게 3가지로 요약할 수 있다.The sensing device 200 is provided for each of a plurality of solar cell modules 100, and the role of the solar cell module sensing device 200 can be summarized into three types.
첫째, 태양전지모듈로부터 생성된 전력 전송을 위한 역할.First, a role for power transmission generated from the solar cell module.
둘째, 태양전지모듈로부터 생성된 전력을 센싱하여 전압과 전류를 측정하는 센싱역할.Second, sensing the voltage and current by sensing the power generated from the solar cell module.
셋째, 태양전지모듈로부터 생성된 전력에 대한 정보를 전달하는 통신역할.Third, the communication role of delivering information on the power generated from the solar cell module.
정보수집 장치(300)는 다수의 센싱장치(200)로부터 데이터를 수신하여 저장, 연산 및 분류를 포함하는 데이터 처리를 하고, 모니터링 단말기(500)에 데이터를 송신한다.The information collecting device 300 receives data from the plurality of sensing devices 200, performs data processing including storage, calculation, and classification, and transmits data to the monitoring terminal 500.
모니터링 단말기(500)는 유무선 통신망(400)을 통해 정보수집 장치(300)에 접속하여 태양광 발전의 상황을 모니터링 한다. 이 때, 모니터링 장치에는 설비되어있는 장소의 환경정보와 각 태양전지모듈의 전압, 전류, 환경정보가 출력되며, 현재까지의 저장데이터를 확인할 수 있다.  The monitoring terminal 500 is connected to the information collection device 300 through the wired or wireless communication network 400 to monitor the status of solar power. At this time, the monitoring device outputs the environmental information of the installed place, the voltage, current, and environmental information of each solar cell module, and the stored data up to now can be checked.
본 발명에서 모니터링 단말기(500)는 웹이나 로컬 원격 관리자의 PC 등이 사용될 수 있다.  In the present invention, the monitoring terminal 500 may be a web or a local remote administrator PC.
본 발명의 태양광 모듈 모니터링 시스템에서는 각 센싱장치(200)별 센싱된 값을 실시간 통신을 이용하여 정보수집 장치(300)로 전송한 후 이 데이터들을 종합하여 모니터링 단말기(500)로 주기적으로 송신하여 사용자가 전체적인 평균 전압 및 전류 값을 확인할 수 있으며, 각 센싱장치(200)가 연결된 태양전지모듈별 전압과 전류값을 볼 수 있으므로, 개별의 태양전지모듈 이상시 문제감지 및 대응으로 태양광 시스템의 유지보수에 필요한 부분을 용이하게 파악할 수 있으며, 그에 따른 유지보수에 드는 비용과 시간을 절감할 수 있다.In the photovoltaic module monitoring system of the present invention, the sensed values of each sensing device 200 are transmitted to the information collection device 300 using real time communication, and then the data are periodically collected and periodically transmitted to the monitoring terminal 500. The user can check the overall average voltage and current value, and can see the voltage and current value of each solar cell module connected to each sensing device 200, so that the problem is detected and responded to the problem of the individual solar cell module of the solar system It is easy to identify the parts required for maintenance, which can reduce the cost and time required for maintenance.
본 발명의 일 실시예에서 정보수집 장치(300)는 근거리 무선통신망을 이용하여 태양광 발전 관련 데이터를 송신할 수 있다. 이때, 근거리 무선통신망은 지그비(Zigbee) 방식이 사용될 수 있다. In an embodiment of the present invention, the information collecting device 300 may transmit photovoltaic power related data using a short range wireless communication network. In this case, the Zigbee method may be used as the short range wireless communication network.
본 발명의 태양광 모듈 모니터링 시스템에서 RS485의 유선통신과 지그비의 무선통신 방식을 사용할 수 있다. 예를 들어, 태양전지모듈 모듈의 전기적 데이터는 RS485 유선통신으로 정보를 전달하며 이는 RS485의 특성 상 여러개의 정보수집 장치(300)를 1세트의 통신포트로 연결하여 모니터링 단말기(500)와 통신할 수 있으며, 유선 설치가 어려운 경우에는 지그비 통신을 이용하여 데이터를 공유하게 된다. 그리고, 컨버터 장치에서 유선통신과 무선통신을 하드웨어적으로 선택하도록 함으로써, 1세트의 통신포트만을 사용하여 시스템을 구현할 수 있다. In the solar module monitoring system of the present invention, wired communication of RS485 and wireless communication method of Zigbee can be used. For example, the electrical data of the solar cell module module transmits information through RS485 wired communication, which is connected to the monitoring terminal 500 by connecting several information collection devices 300 to one set of communication ports due to the characteristics of RS485. If wired installation is difficult, Zigbee communication is used to share data. In addition, by allowing the converter device to select the wired communication and the wireless communication in hardware, the system can be implemented using only one set of communication ports.
본 발명에서 각 센싱장치(200)와 정보수집 장치(300)는 한 쌍의 통신라인으로 연결되어 있다. 그리고, 다수의 센싱장치(200)는 하나의 정보수집 장치(300)와 직렬로 연결되어 각 객체 간에 직렬통신한다.In the present invention, each sensing device 200 and the information collecting device 300 are connected by a pair of communication lines. In addition, the plurality of sensing devices 200 are serially connected to one information collecting device 300 to serially communicate between each object.
도 2는 종래 태양광 모듈 모니터링 시스템에서 통신라인을 보여주는 도면이고, 도 3은 본 발명의 일 실시예에 따른 태양광 모듈 모니터링 시스템에서 통신라인을 보여주는 도면이다.2 is a view showing a communication line in a conventional solar module monitoring system, Figure 3 is a view showing a communication line in a solar module monitoring system according to an embodiment of the present invention.
도 2는 종래 태양광 모듈 모니터링 시스템에서 RS 485형식이 사용된 예이며, 각 통신 개체마다 D+, D-, 접지(GND)의 3개의 제어선이 필요한 구조이다. 2 is an example in which the RS 485 format is used in a conventional solar module monitoring system, and three control lines of D +, D-, and ground (GND) are required for each communication entity.
이에 반하여, 도 3에 도시된 본 발명의 태양광 모듈 모니터링 시스템에서는 센싱장치(200)객체간 1개의 통신라인만으로 구현되어 있다.On the contrary, in the solar module monitoring system of the present invention illustrated in FIG. 3, only one communication line between the sensing device 200 objects is implemented.
본 발명에서는 이러한 1개의 통신라인으로 구현하기 위하여 하드웨어적인 회로구성과, 소프트웨어적으로 프로토콜을 제안하고자 한다.In the present invention, a hardware circuit configuration and a software protocol are proposed in order to implement such a communication line.
도 4는 본 발명의 일 실시예에 따른 태양광 모듈 모니터링 시스템에서 전력 통신을 설명하기 위한 도면이다.4 is a view for explaining the power communication in the solar module monitoring system according to an embodiment of the present invention.
도 4에서 센싱장치(200_1)는 태양전지 모듈 출력부(210_1)와 보드(220_1)를 포함하며, 센싱장치(200_2)는 태양전지 모듈 출력부(210_2)와 보드(220_2)를 포함한다.In FIG. 4, the sensing device 200_1 includes a solar cell module output unit 210_1 and a board 220_1, and the sensing device 200_2 includes a solar cell module output unit 210_2 and a board 220_2.
본 발명에서 센싱장치(200_1, 220_2)는 개체간의 직렬통신을 기본으로 하고, 모듈로부터 생성된 전원의 대역을 그대로 통신의High, Low신호로 사용한다.In the present invention, the sensing devices 200_1 and 220_2 are based on serial communication between entities, and use the power band generated from the module as the high and low signals of communication.
연결 구성은 다음과 같다. The connection configuration is as follows.
뒷단의 센싱장치(200_2)의 R단자와 앞단의 센싱장치(200_1)의 T단자를 연결하는 방식으로 각기 개별의 태양전지모듈 센싱장치간의 직렬통신을 구성한다. 이 과정에서 직렬로 연결된 태양전지 센싱모듈은 앞단으로 갈수록 각 통신의 신호레벨이 전원의 직렬연결에 따라 점점 증가하게 된다. 본 발명에서는 이러한 현상을 해소하기 위하여, 도 4에 도시된 바와 같이, 각 개체간의 절연기능을 수행하는 포토커플러를 이용한 신호체계를 사용하여 통신의 신호레벨 증가를 방지한다. 각각의 센싱장치는 1개의 통신선으로만 연결되며 통신 속도는 4800bps를 기준으로 설계되었으며 통신프로토콜을 통하여 해당 태양전지모듈의 위치ID, 전압과 전류 및 그 외 정보를 주고 받는다.  The R terminal of the rear sensing device 200_2 and the T terminal of the front sensing device 200_1 constitute a serial communication between individual solar cell module sensing devices. In this process, as the solar cell sensing module connected in series increases, the signal level of each communication gradually increases as the power supply is connected in series. In the present invention, to solve this phenomenon, as shown in Figure 4, by using a signal system using a photocoupler to perform the isolation function between each object to prevent the increase of the signal level of communication. Each sensing device is connected with only one communication line, and the communication speed is designed based on 4800bps. The communication protocol transmits and receives the location ID, voltage and current, and other information of the corresponding solar cell module.
도 5는 본 발명의 일 실시예에 따른 태양광 모듈 모니터링 시스템에서 통신방식을 설명하기 위한 도면이다.5 is a view for explaining a communication method in a solar module monitoring system according to an embodiment of the present invention.
도 5를 참조하면, 본 발명에서 다수의 센싱장치와 정보수집 장치(300)가 연결된 통신라인은 하드웨어적으로 라인숫자가 미리 설정되어 있고, 라인숫자를 인식하고 있는 상태에서, 다수의 센싱장치와 정보수집 장치(300) 중에서 어느 한 객체가 요청신호를 발신하면, 요청신호를 발신한 객체와 가장 인접한 객체부터 최종단에 위치한 객체까지 순차적으로 요청신호를 복사하여 전달하는 방식으로 통신한다. 즉, 본 발명에서는 최 앞단의 라인숫자만 알고 요청신호를 한번만 발생시키면, 앞 센싱장치에서 뒤 센싱장치로 처음부터 끝까지 요청신호를 복사하여 넘기는 방식이기 때문에 요청에 들어가는 시간을 줄일 수 있다. Referring to FIG. 5, in the present invention, a communication line to which a plurality of sensing apparatuses and the information collection apparatus 300 are connected has a plurality of sensing apparatuses in a state in which line numbers are preset in hardware and line numbers are recognized. When an object of the information collection device 300 sends a request signal, the object is sequentially communicated by copying and transmitting the request signal from the object closest to the object that sent the request signal to the object located at the end. That is, in the present invention, if only the first line number is known and the request signal is generated once, the request signal can be reduced from the front sensing device to the rear sensing device by copying the request signal from the beginning to the end.
그리고, 요청신호를 수신한 최종단의 객체가 응답신호를 발신하면, 요청신호를 발신한 객체까지 순차적으로 응답신호를 전달하는 방식으로 통신한다. 즉, 요청의 주체와 응답의 개체가 1:1로 통신하던 기존 시스템의 방식을 벗어나서, 본 발명에서 센싱장치(200)는 한번만 요청신호를 발생시키면, 밀어내는 식의 응답이 이루어지는 것으로서, 이는 데이터의 양이 어느 한 곳에 누적되지 않고 일정시간에 일정 데이터 양으로 처리되는 응답 방식이다.Then, when the object of the last stage receiving the request signal sends a response signal, the communication to the object that sent the request signal in order to sequentially transmit the response signal. That is, beyond the conventional system in which the subject of the request and the object of the response communicate 1: 1, in the present invention, when the sensing device 200 generates a request signal only once, a response of the push type is made, which is data. It is a response method in which the amount of is not accumulated in any one place but is processed as a certain amount of data at a certain time.
도 6은 본 발명의 일 실시예에 따른 태양광 모듈 모니터링 시스템에서 ID 확인 방식을 설명하기 위한 도면이다. 6 is a view for explaining the ID verification method in the solar module monitoring system according to an embodiment of the present invention.
도 6을 참조하면, 본 발명에서 직렬통신에 있어서 ID를 위한 공간을 남겨둔 통신 프로토콜을 사용하며, 센싱장치(200)는 전달된 응답신호에서 ID를 위한 공간의 값에 1을 더하여 다음 센싱장치로 전달하는 방식으로 통신을 수행하고, 최종적으로 정보수집 장치(300)에서 응답신호를 수신하여 ID를 위한 공간의 값을 확인하여 ID를 확인하게 된다.Referring to FIG. 6, in the present invention, a communication protocol using a space for ID is used in serial communication, and the sensing device 200 adds 1 to the next sensing device by adding 1 to the value of space for ID in the transmitted response signal. Communication is performed in a manner of transmitting, and finally, the information collecting device 300 receives the response signal to check the value of the space for the ID to confirm the ID.
즉, 센싱장치[6]에서 시작된 응답신호는 센싱장치[5],...,센싱장치[1], 센싱장치[0]을 거치면서 정보수집 장치(300)에 도달하게 되는데, 센싱장치를 하나씩 거칠때마다 ID값이 1씩 증가하게 된다. 그리고, 최종적으로 정보수집 장치(300)에서는 "라인: 1, ID:6, DATA:XXX"라는 정보를 수신하고, ID:6이라는 ID값에 의해 응답신호가 발생한 센싱장치의 ID를 확인할 수 있다.That is, the response signal started from the sensing device [6] reaches the information collecting device 300 while passing through the sensing device [5], ..., the sensing device [1], and the sensing device [0]. Each time one roughly, the ID value is increased by one. Finally, the information collecting device 300 receives the information "Line: 1, ID: 6, DATA: XXX", and can identify the ID of the sensing device in which the response signal is generated by the ID value of ID: 6. .
본 발명에서 센싱장치(200)는 연결된 태양전지모듈의 전류, 전압값을 읽을 수 있으며, 정해진 채널을 통해 연결된 환경센서로부터 풍속, 풍향, 일사량, 온도 및 강수량을 포함하는 환경값을 읽을 수 있다.In the present invention, the sensing device 200 may read current and voltage values of the connected solar cell module, and may read environmental values including wind speed, wind direction, solar radiation, temperature, and precipitation from an environmental sensor connected through a predetermined channel.
도 7은 본 발명의 일 실시예에 따른 태양광 모듈 모니터링 시스템에서 센싱장치의 내부구성을 보여주는 블록도이다.7 is a block diagram showing an internal configuration of a sensing device in a solar module monitoring system according to an embodiment of the present invention.
도 7을 참조하면, 본 발명의 태양광 모듈 모니터링 시스템에서 각 센싱장치(200)마다 전압과 전류를 측정하여 읽을 수 있다.Referring to FIG. 7, in the solar module monitoring system of the present invention, voltage and current may be measured and read for each sensing device 200.
센싱장치(200)는 상측전류를 감지하기 위한 제1전류 감지부(710), 하측전류를 감지하기 위한 제2전류 감지부(720), 전압을 감지하기 위한 전압 감지부(730), DC 전압을 변경하기 위한 DC-DC 컨버터(740), 센싱 전압값의 대역을 맞추기 위한 OP 앰프(750)를 포함하여 이루어진다.The sensing device 200 includes a first current detector 710 for detecting an upper side current, a second current detector 720 for detecting a lower side current, a voltage detector 730 for detecting a voltage, and a DC voltage. DC-DC converter 740 for changing the value, and the op amp 750 for matching the band of the sensing voltage value is made.
본 발명에서 센싱장치(200)는 +단자, -단자 양단의 전류를 각기 센싱할 수 있기 때문에, 이를 이용하여 누설전류 여부를 확인할 수 있다. In the present invention, since the sensing device 200 can sense the currents at both ends of the + terminal and the-terminal, respectively, the sensing device 200 can determine whether there is a leakage current.
이처럼 본 발명의 센싱장치(200)에서는 누설전류 차단기능이 있어서 안전사고를 미연에 방지할 수 있으며, 내부에서 필요한 전력을 태양광 발전 전력을 변환하여 이용할 수 있으므로, 별도의 외부 전력공급이 필요하지 않다.As described above, the sensing device 200 of the present invention has a leakage current blocking function to prevent safety accidents in advance, and since the necessary power can be used by converting photovoltaic power generation therein, a separate external power supply is not required. not.
이상 본 발명을 몇 가지 바람직한 실시예를 사용하여 설명하였으나, 이들 실시예는 예시적인 것이며 한정적인 것이 아니다. 본 발명이 속하는 기술분야에서 통상의 지식을 지닌 자라면 본 발명의 사상과 첨부된 특허청구범위에 제시된 권리범위에서 벗어나지 않으면서 다양한 변화와 수정을 가할 수 있음을 이해할 것이다.While the invention has been described using some preferred embodiments, these embodiments are illustrative and not restrictive. Those skilled in the art will appreciate that various changes and modifications can be made without departing from the spirit of the invention and the scope of the rights set forth in the appended claims.
본 발명은 태양전지 관련 산업분야에서 이용가능하다.The present invention can be used in the solar cell related industries.

Claims (6)

  1. 태양광 발전을 모니터링하기 위한 모니터링 시스템에 있어서,In the monitoring system for monitoring solar power generation,
    다수의 태양전지모듈마다 각각 마련되어 있으며, 각 태양전지모듈에서 발생된 전압 및 전류를 센싱하기 위한 다수의 센싱장치; A plurality of sensing devices each provided for each of the plurality of solar cell modules and configured to sense voltages and currents generated by each solar cell module;
    상기 다수의 센싱장치로부터 데이터를 수신하여 저장, 연산 및 분류를 포함하는 데이터 처리를 하는 정보수집 장치 및 An information collecting device that receives data from the plurality of sensing devices and performs data processing including storage, operation, and classification;
    유무선 통신망을 통해 상기 정보수집 장치에 접속하여 태양광 발전의 상황을 모니터링하기 위한 모니터링 단말기를 포함하며, It includes a monitoring terminal for monitoring the status of photovoltaic power generation by connecting to the information collecting device through a wired or wireless communication network,
    상기 각 센싱장치끼리 1개의 통신라인으로 연결되어 있고,Each sensing device is connected to one communication line,
    상기 다수의 센싱장치는 하나의 정보수집 장치와 직렬로 연결되어 각 객체 간에 직렬통신하며,The plurality of sensing devices are connected in series with one information collecting device in serial communication between each object,
    상기 다수의 센싱장치와 상기 정보수집 장치가 각 객체 간에 직렬통신을 수행하는데 있어서, 상기 다수의 센싱장치와 상기 정보수집 장치가 연결된 통신라인은 하드웨어적으로 라인숫자가 미리 설정되어 있고, 상기 라인숫자를 인식하고 있는 상태에서, 상기 다수의 센싱장치와 상기 정보수집 장치 중에서 어느 한 객체가 요청신호를 발신하면, 상기 요청신호를 발신한 객체와 가장 인접한 객체부터 최종단에 위치한 객체까지 순차적으로 상기 요청신호를 복사하여 전달하는 방식으로 통신하는 것을 특징으로 하는 태양광 모듈 모니터링 시스템.In the serial communication between the plurality of sensing devices and the information collecting device, each object, a line number of the communication line to which the plurality of sensing devices and the information collecting device are connected is hardware-set in advance. In the state of recognizing, when any one of the plurality of sensing device and the information collecting device sends a request signal, the request sequentially from the object closest to the object that sent the request signal to the object located at the end Solar module monitoring system, characterized in that the communication by copying and transmitting the signal.
  2. 제1항에 있어서,The method of claim 1,
    상기 요청신호를 수신한 최종단의 객체가 응답신호를 발신하면, 상기 요청신호를 발신한 객체까지 순차적으로 상기 응답신호를 전달하는 방식으로 통신하는 것을 특징으로 하는 태양광 모듈 모니터링 시스템.When the object of the last stage receiving the request signal sends a response signal, the solar module monitoring system, characterized in that to communicate in a way to transmit the response signal to the object that sent the request signal sequentially.
  3. 제2항에 있어서,The method of claim 2,
    상기 직렬통신에 있어서 ID를 위한 공간을 남겨둔 통신 프로토콜을 사용하며, 상기 센싱장치는 전달된 응답신호에서 ID를 위한 공간의 값에 1을 더하여 다음 센싱장치로 전달하는 방식으로 통신을 수행하고, 최종적으로 상기 정보수집 장치에서 응답신호를 수신하여 상기 ID를 위한 공간의 값을 확인하여 ID를 확인하는 것을 특징으로 하는 태양광 모듈 모니터링 시스템.In the serial communication, a communication protocol leaving a space for an ID is used, and the sensing device performs communication by transferring 1 to the next sensing device by adding 1 to the value of the space for the ID in the transmitted response signal. Receiving a response signal from the information collecting device to check the value of the space for the ID to check the solar module monitoring system, characterized in that.
  4. 제1항에 있어서,The method of claim 1,
    상기 센싱장치는 연결된 태양전지모듈의 전류, 전압값을 읽을 수 있으며, 정해진 채널을 통해 연결된 환경센서로부터 풍속, 풍향, 일사량, 온도 및 강수량을 포함하는 환경값을 읽을 수 있는 것을 특징으로 하는 태양광 모듈 모니터링 시스템.The sensing device may read current and voltage values of the connected solar cell module, and may read environmental values including wind speed, wind direction, solar radiation, temperature, and precipitation from an environmental sensor connected through a predetermined channel. Modular monitoring system.
  5. 제1항에 있어서,The method of claim 1,
    상기 정보수집 장치는 근거리 무선통신망을 이용하여 태양광 발전 관련 데이터를 송신하는 것을 특징으로 하는 태양광 모듈 모니터링 시스템.The information collecting device is a photovoltaic module monitoring system, characterized in that for transmitting photovoltaic power generation data using a local area wireless communication network.
  6. 제5항에 있어서,The method of claim 5,
    상기 근거리 무선통신망은 지그비(Zigbee)인 것임을 특징으로 하는 태양광 모듈 모니터링 시스템.The short range wireless communication network is a Zigbee (Zigbee) solar module monitoring system, characterized in that.
PCT/KR2011/007933 2011-08-29 2011-10-24 System for monitoring a solar module WO2013032062A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0086583 2011-08-29
KR1020110086583A KR101086005B1 (en) 2011-08-29 2011-08-29 Photovoltaic monitoring system

Publications (1)

Publication Number Publication Date
WO2013032062A1 true WO2013032062A1 (en) 2013-03-07

Family

ID=45398089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/007933 WO2013032062A1 (en) 2011-08-29 2011-10-24 System for monitoring a solar module

Country Status (2)

Country Link
KR (1) KR101086005B1 (en)
WO (1) WO2013032062A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278780A (en) * 2013-04-25 2013-09-04 湖南科比特新能源电气技术有限公司 Photovoltaic module matrix monitor
CN103293460A (en) * 2013-05-21 2013-09-11 东华大学 ZigBee technology based outdoor solar cell monitoring system
CN103676887A (en) * 2013-12-17 2014-03-26 沈阳远大科技创业园有限公司 Photoelectricity curtain wall monitoring system based on Internet of Things
CN109974785A (en) * 2019-04-19 2019-07-05 中山能瑞电气科技有限公司 A kind of photovoltaic plant monitoring device and system based on Internet of Things centralized control type
RU2721164C1 (en) * 2019-10-15 2020-05-18 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Solar power station monitoring device

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101347845B1 (en) 2012-01-02 2014-01-08 박경열 Monitoring system for solar power generater
KR101183532B1 (en) * 2012-03-02 2012-09-20 주식회사 유비테크 Each channel surveillance and individual monitering system of photovoltaic power generation
KR101304022B1 (en) 2013-03-12 2013-09-09 에마텍 주식회사 Solar photovoltaic power generation system
KR101514971B1 (en) * 2013-03-29 2015-05-21 한서대학교 산학협력단 Solar photovoltaic system and method using the sensor network to operate
KR101326253B1 (en) 2013-05-21 2013-11-11 주식회사 초록세상 Photovoltaic power generator connection board and its control method
KR101492528B1 (en) * 2013-06-10 2015-02-12 주식회사 하이메틱스 Method for monitoring photovoltaic power generation by using rtu and wireless rtu device therefor
KR101866607B1 (en) * 2014-07-23 2018-06-12 현대중공업 주식회사 Winterization system of marine structure for polar region and method of winterization using the same
KR101558106B1 (en) * 2014-10-07 2015-10-19 박용준 A photovoltaic device comprising a vibration sensor
CN104750075A (en) * 2015-03-18 2015-07-01 苏州科技学院 ZigBee technology based control device for photovoltaic generating power supply
KR101630449B1 (en) * 2015-07-07 2016-06-14 주식회사 대은계전 System for intelligent solar monitoring using magnetic sensor
KR102077322B1 (en) * 2018-09-17 2020-02-13 (주)아이엠씨시스템 Transmitters, switching hubs and transmission control system using them
KR102085196B1 (en) * 2019-09-17 2020-03-05 (주)대연씨앤아이 Solar panel supporting self-identification and operating method of the same
KR102362571B1 (en) 2021-10-01 2022-02-15 (주)대연씨앤아이 Portable environment sensing device supporting autonomous power, operating method thereof, and environment sensing system including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030076800A (en) * 2002-03-21 2003-09-29 한국전기연구원 Method And Measurement Equipment For Following Of Solar Cell Equivalence Circuit Parameters
US20040231716A1 (en) * 2003-05-22 2004-11-25 Litwin Robert Zachary Wireless controlled battery powered heliostats for solar power plant application
KR20100072457A (en) * 2008-12-22 2010-07-01 한국전기연구원 Analysis device of solar cell module character, and thereof method
KR20110090325A (en) * 2010-02-03 2011-08-10 엘지전자 주식회사 Television which is equip with funtion of monitoring for solar cell module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030076800A (en) * 2002-03-21 2003-09-29 한국전기연구원 Method And Measurement Equipment For Following Of Solar Cell Equivalence Circuit Parameters
US20040231716A1 (en) * 2003-05-22 2004-11-25 Litwin Robert Zachary Wireless controlled battery powered heliostats for solar power plant application
KR20100072457A (en) * 2008-12-22 2010-07-01 한국전기연구원 Analysis device of solar cell module character, and thereof method
KR20110090325A (en) * 2010-02-03 2011-08-10 엘지전자 주식회사 Television which is equip with funtion of monitoring for solar cell module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278780A (en) * 2013-04-25 2013-09-04 湖南科比特新能源电气技术有限公司 Photovoltaic module matrix monitor
CN103293460A (en) * 2013-05-21 2013-09-11 东华大学 ZigBee technology based outdoor solar cell monitoring system
CN103676887A (en) * 2013-12-17 2014-03-26 沈阳远大科技创业园有限公司 Photoelectricity curtain wall monitoring system based on Internet of Things
CN109974785A (en) * 2019-04-19 2019-07-05 中山能瑞电气科技有限公司 A kind of photovoltaic plant monitoring device and system based on Internet of Things centralized control type
RU2721164C1 (en) * 2019-10-15 2020-05-18 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Solar power station monitoring device

Also Published As

Publication number Publication date
KR101086005B1 (en) 2011-11-22

Similar Documents

Publication Publication Date Title
WO2013032062A1 (en) System for monitoring a solar module
WO2016117797A2 (en) Photovoltaic system having fault diagnosis apparatus, and fault diagnosis method for photovoltaic system
WO2014200188A1 (en) Photovoltaic power generation monitoring method using rtu, and wireless rtu device
WO2012070754A1 (en) Device and method for the remote monitoring of a solar module
WO2022114624A1 (en) Photovoltaic power generation system
WO2020111560A1 (en) System and method for controlling photovoltaic balancing
WO2021040165A1 (en) Gateway device for controlling power of photovoltaic power generation facility
WO2020138623A1 (en) Switchboard monitoring system and operation method of same
WO2016085010A1 (en) System and method for effectively diagnosing whether abnormality exists in each solar module
CN104410106A (en) Photovoltaic inverter, inverter system and communication networking method for inverter system
WO2015170904A1 (en) Remote diagnostic system and method for photovoltaic module
KR101521635B1 (en) The photovoltaic power generation apparatus using wired and wireless communication and communication method of the same
WO2018216883A1 (en) Repeater optical core monitoring system using otdr
WO2018235987A1 (en) System for diagnosing solar panel
WO2020027538A1 (en) Device and method for determining whether power generation system is abnormal
WO2018169141A1 (en) Wavelength division multiplexing partial discharge monitoring system
WO2017090896A1 (en) Power management device of power system, linked with distributed power resources, and method therefor
WO2012043916A1 (en) Gateway for linking smart power distribution system and ami system, and system linking method using same
CN217902062U (en) Intelligent internet-of-things electric energy meter
CN206710860U (en) Common control equipment
CN207677999U (en) Novel protocol conversion device
WO2019225771A1 (en) Solar cell voltage measurement system and individual solar cell failure diagnosis method using same
WO2022025399A1 (en) Transmission tower monitoring system using optical fiber composite overhead ground wires as communication line and power source
WO2017003162A1 (en) Solar cell monitoring device
WO2012043969A1 (en) Data integration providing apparatus and method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11871489

Country of ref document: EP

Kind code of ref document: A1