WO2020032457A1 - Submodule for mmc converter - Google Patents

Submodule for mmc converter Download PDF

Info

Publication number
WO2020032457A1
WO2020032457A1 PCT/KR2019/009466 KR2019009466W WO2020032457A1 WO 2020032457 A1 WO2020032457 A1 WO 2020032457A1 KR 2019009466 W KR2019009466 W KR 2019009466W WO 2020032457 A1 WO2020032457 A1 WO 2020032457A1
Authority
WO
WIPO (PCT)
Prior art keywords
controller
voltage
submodule
sub
charging
Prior art date
Application number
PCT/KR2019/009466
Other languages
French (fr)
Korean (ko)
Inventor
박용희
유현호
정홍주
이주연
Original Assignee
효성중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 효성중공업 주식회사 filed Critical 효성중공업 주식회사
Publication of WO2020032457A1 publication Critical patent/WO2020032457A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the present invention relates to a submodule of a modular multilevel converter (MMC), and more particularly to a submodule of an MMC converter configured to stably supply power to a submodule controller for controlling a submodule for an MMC converter.
  • MMC modular multilevel converter
  • a Modular Multilevel Converter (MMC) converter may be linked to an HVDC system for power transmission and reactive power compensation.
  • the MMC converter includes a plurality of submodules connected in series.
  • the submodule is a very important factor and is controlled by the submodule controller provided inside the submodule.
  • the submodule is used as a power source of the submodule controller using the high voltage of the submodule.
  • a power supply device for converting the low voltage required for the submodule controller is required.
  • the submodule 10 includes a bridge circuit including a plurality of switches 11 and 12 and a capacitor 13.
  • the submodule 10 is controlled by an internal submodule controller 16.
  • the power supply of the submodule controller 16 uses the high voltage charged in the capacitor 13. That is, the high voltage of the submodule 10 is converted into the power of the submodule controller 16 by the DC-DC converter 15 to be supplied to the submodule controller 16.
  • the submodule controller 16 switches the switches 11 and 12.
  • the submodule 10 of the conventional MMC converter is required to supply the submodule controller 16 with a high voltage of several tens to several tens of volts stored in the submodule 10 to supply power to the submodule controller 16.
  • a DC-DC converter 15 that converts to a low voltage of several tens of volts is necessary.
  • an object of the present invention is to provide a submodule of an MMC converter capable of stably supplying a voltage required for the operation of the submodule controller without providing a DC-DC converter in the submodule applied to the MMC converter.
  • the present invention has an additional object to provide a sub-module of the MMC converter to prevent a failure due to the internal overvoltage of the sub-module in supplying power to the controller of the sub-module applied to the MMC converter.
  • Sub-module of the MMC converter according to an embodiment of the present invention, the charging unit for charging a voltage; A plurality of switching elements connected in parallel to the charging unit in a bridge form; And a sub module controller for controlling switching of the plurality of switching elements, wherein the sub module controller is connected to a main controller with a power line and receives a voltage from the main controller through the power line.
  • it further comprises one or more charging cells connected to the sub module controller, the voltage charged in the charging cell is supplied to the sub module controller.
  • the apparatus may further include at least one charging cell connected to the sub module controller and a switch for electrically connecting the charging cell and the sub module controller, wherein the sub module controller detects a voltage supplied from the main controller.
  • the sub-module controller further includes a voltage detector, and when the voltage detected by the voltage detector is less than a preset voltage, the sub-module controller turns on the switch to supply the charged voltage to the sub-module controller.
  • the sub-module of the MMC converter according to another embodiment of the present invention, the charging unit for charging a voltage; A plurality of switching elements connected in parallel to the charging unit in a bridge form; And a sub-module controller for controlling switching of the plurality of switching elements, wherein the sub-module controller is connected to a main controller by an optical fiber cable and uses a optical signal received from the main controller through the optical fiber cable to supply a voltage.
  • the sub-module controller the light receiving unit for receiving an optical signal received from the main controller; And a photoelectric conversion unit generating a voltage by converting the optical signal received from the light receiving unit into an electrical signal.
  • it further comprises one or more charging cells connected to the sub module controller, the voltage charged in the charging cell is supplied to the sub module controller.
  • the apparatus may further include at least one charging cell connected to the sub module controller, and a switch for electrically connecting the charging cell and the sub module controller, wherein the sub module controller detects a voltage supplied from the main controller.
  • the sub-module controller further includes a voltage detector, and when the voltage detected by the voltage detector is less than a preset voltage, the sub-module controller turns on the switch to supply the charged voltage to the sub-module controller.
  • a stable voltage can be supplied to the submodule controller even when the submodule of the MMC converter is not provided with a high specification DC-DC converter.
  • the submodule since the submodule does not have a DC-DC converter, cost can be reduced and there is no problem in the operation of the submodule controller even when an overvoltage occurs in the internal high voltage.
  • the present invention it is possible to operate the submodule controller without operating the submodule, so that the abnormal state of the submodule can be monitored in advance even when the submodule is not operated.
  • 1 is a configuration diagram of a sub module of a conventional MMC converter.
  • FIG. 2 is a configuration diagram of a sub module of an MMC converter according to an embodiment of the present invention.
  • 3 to 7 are diagrams illustrating the configuration of a sub module of an MMC converter, according to another exemplary embodiment.
  • first, second, A, B, (a), and (b) may be used. These terms are only to distinguish the components from other components, and the nature, order, order, etc. of the components are not limited by the terms. If a component is described as being “connected”, “coupled” or “connected” to another component, that component may be directly connected or connected to that other component, but there is another component between each component. It should be understood that may be “connected”, “coupled” or “connected”.
  • FIG. 2 is a configuration diagram of a sub module of an MMC converter according to an embodiment of the present invention.
  • the submodule 100 includes a plurality of switching devices 110 and 120, a charging unit 130, and a submodule controller 140.
  • the plurality of switching devices 110 and 120 may switch the input voltage input to the sub module 100 to charge the charging unit 130.
  • the plurality of switching elements 110 and 120 may be preferably composed of two to six power semiconductor switches, and are connected to the charging unit 130 in a bridge form to control the switching operation by the sub-module controller 140.
  • the figure shows a half bridge shape as an example, a full bridge shape is also possible.
  • the switching elements 110 and 120 may include, for example, an IGBT, a FET, a transistor, and the like, and the charging unit 130 may be a capacitor, for example, a device that stores a DC voltage.
  • the submodule controller 140 receives the power required for operation from the outside to control the switching of the plurality of switching elements 110 and 120. To this end, the submodule controller 140 receives power from an external main controller 150.
  • the submodule controller 140 may be selectively connected to the main controller 150, which is an upper controller, by a power line 160. Accordingly, the submodule controller 140 may perform power line communication with the main controller 150. The submodule controller 140 may communicate not only a voltage but also a control signal through the power line communication from the main controller 150.
  • the sub-module controller 140 can receive power without a DC-DC converter necessarily provided in the prior art.
  • FIG. 3 is a diagram illustrating a submodule configuration of an MMC converter according to another exemplary embodiment of the present invention.
  • FIG. 3 only a portion P of the submodule controller 140 is illustrated in FIG. 2 for convenience of description.
  • Other components of FIG. 2, that is, not illustrated in FIG. 3, that is, the configuration and operation of the plurality of switching elements 110 and 120 and the charging unit 130 are the same. This also applies to FIGS. 4 to 7.
  • one or more charging cells 170 may be connected to the submodule controller 140 in the submodule 100 according to another embodiment of the present invention.
  • the charging cell 170 provides a constant voltage to the submodule controller 140 when the voltage applied to the submodule controller 140 is smaller than a preset reference voltage.
  • the submodule controller 140 stores the voltage supplied from the main controller 150 in an energy storage unit (not shown).
  • the voltage stored in the energy storage unit must be at least a voltage required for the operation of the submodule controller 140.
  • the sub-module controller 140 cannot operate so that the voltage of the charging cell 170 is supplied to the energy storage unit to prevent this. This is to ensure that the voltage stored is always the required operating voltage.
  • the voltage charged in the charging cell 170 is supplied to the submodule controller 140 so as to supply the submodule controller 140.
  • the sub-module controller 140 may further include a voltage detector 180 and the charging cell 170 and the sub-module controller 140.
  • the switch 190 may be connected between.
  • the voltage detector 180 detects a voltage supplied from the main controller 150 to the submodule controller 140. Accordingly, when the voltage supplied from the main controller 150 is less than the voltage required for the submodule controller 140, the submodule controller 140 turns on the switch 190 connected to the charging cell 170 to the charging cell 170. The charged voltage is supplied to the submodule controller 140.
  • the voltage is continuously supplied from the charging cell 170 to the sub-module controller 140 in FIG. 3, but in FIG. 4, the supply voltage from the main controller 150 is smaller than the voltage required for operation. Only when the voltage of the charging cell 170 is to be supplied to the sub-module controller 140.
  • the submodule controller 140 may be selectively connected to the main controller 150 by an optical power cable 200.
  • an optical power cable may include an optical fiber cable.
  • the optical fiber cable serves to transmit the light emitted from the light source.
  • the main controller 150 may include a light source for optical power transmission, and the light generated from the light source is transmitted to the submodule controller 140 through the optical fiber cable 200.
  • the sub-module controller 140 may include a light receiving unit 210 for receiving such light and a photoelectric conversion unit 220 for converting the light into power using the received light.
  • the light receiver 210 may include a semiconductor light receiver such as a photodiode as a device for detecting light.
  • the photoelectric conversion unit 220 may convert an optical signal into an electrical signal and may include, for example, a photoconductive sensor, a phototransistor, a photoconductive image sensor, and the like.
  • the submodule controller 140 may generate a voltage necessary for the operation of the submodule controller 140 using the optical signal received from the main controller 150 through the optical fiber cable 200. This allows the submodule controller 140 according to the present invention to be supplied with power without the DC-DC converter provided in the prior art.
  • 6 and 7 are diagrams illustrating submodules of the MMC converter according to another exemplary embodiment of the present invention, respectively.
  • one or more charging cells 170 may be connected to the submodule controller 140 in the submodule 100 according to another exemplary embodiment.
  • the charging cell 170 may provide a constant voltage to the submodule controller 140 when the voltage generated by the photoelectric conversion unit 220 of the submodule controller 140 is smaller than the voltage required for the operation of the submodule controller 140. do.
  • the submodule controller 140 stores the voltage generated by the photoelectric conversion unit 220 in the energy storage unit (not shown). In order for the submodule controller 140 to operate, the voltage stored in the energy storage unit must be at least a voltage required for the operation of the submodule controller 140. However, if the voltage stored in the energy storage unit does not reach the operating voltage due to some cause, the sub-module controller 140 cannot operate so that the voltage of the charging cell 170 is supplied to the energy storage unit to prevent this. This is to ensure that the voltage stored is always a constant voltage required for operation.
  • the photoelectric conversion unit 220 charges the voltage generated from the optical signal even if it does not reach the operating voltage of the submodule controller 140.
  • the voltage charged in the cell 170 is supplied to the submodule controller 140 so that the submodule controller 140 maintains a constant voltage.
  • the sub-module controller 140 illustrated in FIG. 6 may further include a voltage detector 240 and may include a charging cell 170.
  • the switch 250 may be connected between the submodule controllers 140.
  • the voltage detector 240 detects a voltage generated by the photoelectric converter 220. Accordingly, when the voltage detected by the voltage detector 240 is smaller than the voltage required for the operation of the submodule controller 140, the submodule controller 140 turns on the switch 250 connected to the charging cell 170 to charge the battery 170. ) Is supplied to the sub-module controller 140.
  • the voltage is continuously supplied from the charging cell 170 to the sub-module controller 140 in FIG. 6, but in FIG. 7, the voltage generated by the photoelectric conversion unit 240 is required for operation. Only when smaller, the voltage of the charging cell 170 is supplied to the submodule controller 140.
  • the submodule 100 of the MMC converter according to the present invention may supply a voltage required for the operation of the internal submodule controller 140 by using a voltage or an optical signal supplied from the main controller 150. Therefore, it is not necessary to provide a high-end DC-DC converter for the power supply of the submodule controller 140 as in the prior art. As a result, even when the voltage is not supplied to the submodule 100, the voltage can be applied to the submodule controller 140 so that the submodule 100 can be monitored even before the submodule 100 is operated. Even if an overvoltage occurs, it is irrelevant to the operation of the submodule controller 140.

Abstract

The present invention relates to a submodule for an MMC converter configured to supply power in a stable manner to a submodule controller for controlling the submodule for the MMC converter. A submodule for an MMC converter according to an embodiment of the present invention comprises: a charging unit for charging a voltage; a plurality of switching elements connected in parallel in a bridge form to the charging unit; and a submodule controller for controlling the switching of the plurality of switching elements, wherein the submodule controller is connected to a main controller by a power line and receives a voltage from the main controller through the power line.

Description

MMC 컨버터의 서브모듈Submodule of MMC Converter
본 발명은 모듈러 멀티레벨 컨버터(MMC)의 서브모듈에 관한 것으로서, 특히 MMC 컨버터용 서브모듈을 제어하는 서브모듈 제어기에 전원을 안정적으로 공급하도록 구성된 MMC 컨버터의 서브모듈에 관한 것이다.The present invention relates to a submodule of a modular multilevel converter (MMC), and more particularly to a submodule of an MMC converter configured to stably supply power to a submodule controller for controlling a submodule for an MMC converter.
공지된 바와 같이 초고압 직류송전(HVDC) 시스템에 전력송전 및 무효전력 보상을 위해 MMC(Modular Multilevel Converter) 컨버터가 연계될 수 있다. MMC 컨버터는 직렬로 연결된 복수의 서브모듈(submodule)을 포함한다.As is well known, a Modular Multilevel Converter (MMC) converter may be linked to an HVDC system for power transmission and reactive power compensation. The MMC converter includes a plurality of submodules connected in series.
MMC 컨버터에서 서브모듈은 매우 중요한 요소로서 서브모듈 내부에 마련된 서브모듈 제어기에 의해 제어되는데 일반적으로 서브모듈의 고전압을 이용하여 서브모듈 제어기의 전원으로 사용한다. In the MMC converter, the submodule is a very important factor and is controlled by the submodule controller provided inside the submodule. Generally, the submodule is used as a power source of the submodule controller using the high voltage of the submodule.
이때, 서브모듈의 고전압을 서브모듈 제어기의 전원으로 이용하기 위해서는 서브모듈 제어기에 필요한 저전압으로 변환하는 전원장치가 필요하다.In this case, in order to use the high voltage of the submodule as a power source of the submodule controller, a power supply device for converting the low voltage required for the submodule controller is required.
도 1에는 종래의 MMC 컨버터의 서브모듈의 구성도이다. 서브모듈(10)은 복수의 스위치(11,12)와 커패시터(13)를 포함하여 브릿지회로를 포함한다.1 is a configuration diagram of a submodule of a conventional MMC converter. The submodule 10 includes a bridge circuit including a plurality of switches 11 and 12 and a capacitor 13.
서브모듈(10)은 내부의 서브모듈 제어기(16)에 의해 제어된다. 서브모듈 제어기(16)의 전원은 커패시터(13)에 충전된 고전압을 이용한다. 즉, 서브모듈(10)의 고전압을 DC-DC 컨버터(15)에서 서브모듈 제어기(16)의 전원으로 변환하도록 하여 서브모듈 제어기(16)로 공급하도록 한다. 서브모듈 제어기(16)는 스위치(11,12)를 스위칭한다.The submodule 10 is controlled by an internal submodule controller 16. The power supply of the submodule controller 16 uses the high voltage charged in the capacitor 13. That is, the high voltage of the submodule 10 is converted into the power of the submodule controller 16 by the DC-DC converter 15 to be supplied to the submodule controller 16. The submodule controller 16 switches the switches 11 and 12.
이와 같이 종래의 MMC 컨버터의 서브모듈(10)은 서브모듈 제어기(16)로 전원을 공급하기 위하여 서브모듈(10)의 내부에 저장된 수~수십㎸의 고전압을 서브모듈 제어기(16)에 필요한 수~수십V의 저전압으로 변환하는 DC-DC 컨버터(15)가 반드시 필요하다.In this way, the submodule 10 of the conventional MMC converter is required to supply the submodule controller 16 with a high voltage of several tens to several tens of volts stored in the submodule 10 to supply power to the submodule controller 16. A DC-DC converter 15 that converts to a low voltage of several tens of volts is necessary.
그러나, 수~수십㎸의 고전압에 과전압이 발생하는 경우 DC-DC 컨버터(15)의 입력범위를 초과하여 고장이 발생하는 문제점이 있다. 이를 해결하기 위해서는 DC-DC 컨버터(15)의 입력전압 사양을 높여야 하는데, 과전압 발생 범위를 고려하기 위해서는 필요 이상의 고사양의 DC-DC 컨버터(15)를 적용함으로써 비용이 상승하는 문제점이 있다.However, when an overvoltage occurs at a high voltage of several tens to several kilowatts, there is a problem that a failure occurs exceeding the input range of the DC-DC converter 15. In order to solve this problem, the input voltage specification of the DC-DC converter 15 needs to be increased, but in order to consider the overvoltage generation range, there is a problem in that the cost increases by applying the DC-DC converter 15 having a higher specification than necessary.
이에, 본 발명은 MMC 컨버터에 적용된 서브모듈에 DC-DC 컨버터를 구비하지 않고도 서브모듈 제어기의 동작에 필요한 전압을 안정적으로 공급할 수 있도록 하는 MMC 컨버터의 서브모듈을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a submodule of an MMC converter capable of stably supplying a voltage required for the operation of the submodule controller without providing a DC-DC converter in the submodule applied to the MMC converter.
또한, 본 발명은 MMC 컨버터에 적용된 서브모듈의 제어기로 전원을 공급함에 있어서 서브모듈의 내부 과전압에 의한 고장을 막을 수 있도록 하는 MMC 컨버터의 서브모듈을 제공하는데 추가적인 목적이 있다.In addition, the present invention has an additional object to provide a sub-module of the MMC converter to prevent a failure due to the internal overvoltage of the sub-module in supplying power to the controller of the sub-module applied to the MMC converter.
본 발명의 일 실시예에 따른 MMC 컨버터의 서브모듈은, 전압을 충전하는 충전부; 상기 충전부에 브릿지 형태로 병렬연결된 복수의 스위칭소자; 및 상기 복수의 스위칭소자의 스위칭을 제어하는 서브모듈제어기;를 포함하고, 상기 서브모듈 제어기는 메인제어기와 전력선으로 연결되며 상기 전력선을 통해 상기 메인제어기로부터 전압을 수신한다.Sub-module of the MMC converter according to an embodiment of the present invention, the charging unit for charging a voltage; A plurality of switching elements connected in parallel to the charging unit in a bridge form; And a sub module controller for controlling switching of the plurality of switching elements, wherein the sub module controller is connected to a main controller with a power line and receives a voltage from the main controller through the power line.
본 발명에서, 상기 서브모듈제어기에 연결된 하나 이상의 충전셀을 더 포함하고 상기 충전셀에 충전된 전압이 상기 서브모듈제어기로 공급된다.In the present invention, it further comprises one or more charging cells connected to the sub module controller, the voltage charged in the charging cell is supplied to the sub module controller.
본 발명에서, 상기 서브모듈제어기에 연결된 하나 이상의 충전셀 및 상기 충전셀과 상기 서브모듈제어기를 전기적으로 연결하기 위한 스위치를 더 포함하고, 상기 서브모듈제어기는 상기 메인제어기로부터 공급되는 전압을 검출하는 전압검출부를 더 포함하며, 상기 서브모듈제어기는 상기 전압검출부에서 검출된 전압이 기설정된 전압보다 작은 경우 상기 스위치를 턴온하여 상기 충전셀에 충전된 전압이 상기 서브모듈제어기로 공급되도록 한다.In an embodiment of the present invention, the apparatus may further include at least one charging cell connected to the sub module controller and a switch for electrically connecting the charging cell and the sub module controller, wherein the sub module controller detects a voltage supplied from the main controller. The sub-module controller further includes a voltage detector, and when the voltage detected by the voltage detector is less than a preset voltage, the sub-module controller turns on the switch to supply the charged voltage to the sub-module controller.
또한, 본 발명의 다른 실시예에 따른 MMC 컨버터의 서브모듈은, 전압을 충전하는 충전부; 상기 충전부에 브릿지 형태로 병렬연결된 복수의 스위칭소자; 및 상기 복수의 스위칭소자의 스위칭을 제어하는 서브모듈제어기;를 포함하고, 상기 서브모듈 제어기는 메인제어기와 광섬유케이블로 연결되며 상기 광섬유케이블을 통해 상기 메인제어기로부터 수신되는 광신호를 이용하여 전압을 생성한다.In addition, the sub-module of the MMC converter according to another embodiment of the present invention, the charging unit for charging a voltage; A plurality of switching elements connected in parallel to the charging unit in a bridge form; And a sub-module controller for controlling switching of the plurality of switching elements, wherein the sub-module controller is connected to a main controller by an optical fiber cable and uses a optical signal received from the main controller through the optical fiber cable to supply a voltage. Create
본 발명에서, 상기 서브모듈제어기는, 상기 메인제어기로부터 수신되는 광신호를 수신하는 수광부; 및 상기 수광부에서 수신된 광신호를 전기적신호로 변환하여 전압을 생성하는 광전변환부를 포함한다.In the present invention, the sub-module controller, the light receiving unit for receiving an optical signal received from the main controller; And a photoelectric conversion unit generating a voltage by converting the optical signal received from the light receiving unit into an electrical signal.
본 발명에서, 상기 서브모듈제어기에 연결된 하나 이상의 충전셀을 더 포함하고 상기 충전셀에 충전된 전압이 상기 서브모듈제어기로 공급된다.In the present invention, it further comprises one or more charging cells connected to the sub module controller, the voltage charged in the charging cell is supplied to the sub module controller.
본 발명에서, 상기 서브모듈제어기에 연결된 하나 이상의 충전셀 및 상기 충전셀과 상기 서브모듈제어기를 전기적으로 연결하기 위한 스위치를 더 포함하고, 상기 서브모듈제어기는 상기 메인제어기로부터 공급되는 전압을 검출하는 전압검출부를 더 포함하며, 상기 서브모듈제어기는 상기 전압검출부에서 검출된 전압이 기설정된 전압보다 작은 경우 상기 스위치를 턴온하여 상기 충전셀에 충전된 전압이 상기 서브모듈제어기로 공급되도록 한다.In an embodiment of the present invention, the apparatus may further include at least one charging cell connected to the sub module controller, and a switch for electrically connecting the charging cell and the sub module controller, wherein the sub module controller detects a voltage supplied from the main controller. The sub-module controller further includes a voltage detector, and when the voltage detected by the voltage detector is less than a preset voltage, the sub-module controller turns on the switch to supply the charged voltage to the sub-module controller.
본 발명에 의하면 MMC 컨버터의 서브모듈에 고사양의 DC-DC 컨버터를 구비하지 않더라도 서브모듈 제어기로 안정적인 전압을 공급할 수 있다.According to the present invention, a stable voltage can be supplied to the submodule controller even when the submodule of the MMC converter is not provided with a high specification DC-DC converter.
본 발명에 의하면 서브모듈이 DC-DC 컨버터를 구비하지 않으므로 비용을 절감할 수 있고 내부 고전압에 과전압이 발생하더라도 서브모듈 제어기의 동작에는 전혀 문제가 없다.According to the present invention, since the submodule does not have a DC-DC converter, cost can be reduced and there is no problem in the operation of the submodule controller even when an overvoltage occurs in the internal high voltage.
본 발명에 의하면 서브모듈을 동작시키지 않아도 서브모듈 제어기를 동작시킬 수 있어 서브모듈을 동작시키지 않은 상태에서도 서브모듈의 이상상태를 사전에 모니터링하여 조치할 수 있다.According to the present invention, it is possible to operate the submodule controller without operating the submodule, so that the abnormal state of the submodule can be monitored in advance even when the submodule is not operated.
도 1은 종래의 MMC 컨버터의 서브모듈의 구성도이다.1 is a configuration diagram of a sub module of a conventional MMC converter.
도 2는 본 발명의 일 실시 예에 따른 MMC 컨버터의 서브모듈의 구성도이다.2 is a configuration diagram of a sub module of an MMC converter according to an embodiment of the present invention.
도 3 내지 도 7을 각각 본 발명의 또 다른 실시 예에 따른 MMC 컨버터의 서브모듈의 구성도이다.3 to 7 are diagrams illustrating the configuration of a sub module of an MMC converter, according to another exemplary embodiment.
이하, 본 발명의 일부 실시 예들을 예시적인 도면을 통해 상세히 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시 예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments of the present invention will be described in detail with reference to the accompanying drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are used to refer to the same components as much as possible, even if displayed on different drawings. In addition, in describing the embodiments of the present invention, when it is determined that a detailed description of a related well-known configuration or function disturbs the understanding of the embodiment of the present invention, the detailed description thereof will be omitted.
또한, 본 발명의 실시 예의 구성요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성요소 사이에 또 다른 구성요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.In addition, in describing the components of the embodiments of the present disclosure, terms such as first, second, A, B, (a), and (b) may be used. These terms are only to distinguish the components from other components, and the nature, order, order, etc. of the components are not limited by the terms. If a component is described as being "connected", "coupled" or "connected" to another component, that component may be directly connected or connected to that other component, but there is another component between each component. It should be understood that may be "connected", "coupled" or "connected".
도 2는 본 발명의 일 실시 예에 따른 MMC 컨버터의 서브모듈의 구성도이다.2 is a configuration diagram of a sub module of an MMC converter according to an embodiment of the present invention.
도 2를 참조하면, 본 발명의 일 실시 예에 따른 서브모듈(100)은 복수의 스위칭소자(110,120), 충전부(130) 및 서브모듈 제어기(140)를 포함하여 구성된다.Referring to FIG. 2, the submodule 100 according to an exemplary embodiment includes a plurality of switching devices 110 and 120, a charging unit 130, and a submodule controller 140.
복수의 스위칭소자(110,120)는 서브모듈(100)에 입력되는 입력전압을 스위칭하여 충전부(130)에 전압이 충전되도록 한다. 복수의 스위칭소자(110,120)는 바람직하게는 2~6개의 전력용 반도체 스위치로 구성될 수 있으며 충전부(130)와 브릿지 형태로 연결되어 서브모듈 제어기(140)에 의해 그 스위칭 동작이 제어된다. 도면에는 일례로 하프브릿지 형태를 도시하고 있으나 풀브릿지 형태도 가능하다.The plurality of switching devices 110 and 120 may switch the input voltage input to the sub module 100 to charge the charging unit 130. The plurality of switching elements 110 and 120 may be preferably composed of two to six power semiconductor switches, and are connected to the charging unit 130 in a bridge form to control the switching operation by the sub-module controller 140. Although the figure shows a half bridge shape as an example, a full bridge shape is also possible.
스위칭소자(110,120)은 예컨대 IGBT, FET, 트랜지스터 등을 포함할 수 있고 충전부(130)는 DC전압을 저장하는 소자로서 예컨대 커패시터가 될 수 있다.The switching elements 110 and 120 may include, for example, an IGBT, a FET, a transistor, and the like, and the charging unit 130 may be a capacitor, for example, a device that stores a DC voltage.
서브모듈 제어기(140)는 동작에 필요한 전원을 외부로부터 인가받아 복수의 스위칭소자(110,120)의 스위칭을 제어한다. 이를 위해 서브모듈 제어기(140)는 외부의 메인제어기(150)로부터 전원을 인가받는다.The submodule controller 140 receives the power required for operation from the outside to control the switching of the plurality of switching elements 110 and 120. To this end, the submodule controller 140 receives power from an external main controller 150.
본 발명의 일 실시 예에서는 서브모듈 제어기(140)가 상위제어기인 메인제어기(150)와 선택적으로 전력선(power line)(160)으로 연결될 수 있다. 이에 따라 서브모듈 제어기(140)는 메인제어기(150)와 전력선통신(power line communication)을 수행할 수 있다. 서브모듈 제어기(140)는 메인제어기(150)로부터 전력선통신을 통해 전압의 수신뿐만 아니라 제어신호의 통신이 가능하다.In an embodiment of the present disclosure, the submodule controller 140 may be selectively connected to the main controller 150, which is an upper controller, by a power line 160. Accordingly, the submodule controller 140 may perform power line communication with the main controller 150. The submodule controller 140 may communicate not only a voltage but also a control signal through the power line communication from the main controller 150.
이와 같이 본 발명의 일 실시 예에 따른 서브모듈 제어기(140)는 종래기술에서 반드시 구비되는 DC-DC 컨버터 없이도 전원을 공급받을 수 있게 된다.As such, the sub-module controller 140 according to an embodiment of the present invention can receive power without a DC-DC converter necessarily provided in the prior art.
도 3은 본 발명의 다른 실시 예에 따른 MMC 컨버터의 서브모듈 구성도이다.3 is a diagram illustrating a submodule configuration of an MMC converter according to another exemplary embodiment of the present invention.
도 3에서는 설명의 편의상 도 2에서 서브모듈 제어기(140)에 대한 부분(P)만을 도시하고 있다. 도 3에 도시되지 않은 도 2의 다른 구성요소, 즉 복수의 스위칭소자(110,120) 및 충전부(130)의 구성 및 동작은 동일하다. 이하 도 4 내지 도 7도 마찬가지이다.In FIG. 3, only a portion P of the submodule controller 140 is illustrated in FIG. 2 for convenience of description. Other components of FIG. 2, that is, not illustrated in FIG. 3, that is, the configuration and operation of the plurality of switching elements 110 and 120 and the charging unit 130 are the same. This also applies to FIGS. 4 to 7.
도 3을 참조하면, 본 발명의 다른 실시 예에 따른 서브모듈(100)은 서브모듈 제어기(140)에 하나 이상의 충전셀(170)이 연결될 수 있다. 이러한 충전셀(170)은 서브모듈 제어기(140)에 인가되는 전압이 기설정된 기준전압보다 작은 경우 서브모듈 제어기(140)로 일정한 전압을 제공하도록 한다.Referring to FIG. 3, one or more charging cells 170 may be connected to the submodule controller 140 in the submodule 100 according to another embodiment of the present invention. The charging cell 170 provides a constant voltage to the submodule controller 140 when the voltage applied to the submodule controller 140 is smaller than a preset reference voltage.
구체적으로 설명하면, 서브모듈 제어기(140)는 메인제어기(150)로부터 공급되는 전압을 에너지저장부(미도시)에 저장한다. 서브모듈 제어기(140)가 동작하기 위해서는 에너지저장부에 저장된 전압은 최소한 서브모듈 제어기(140)의 동작에 필요한 전압이 되어야 한다. 하지만 어떤 원인에 의해 에너지저장부에 저장된 전압이 동작전압에 미치지 못하는 경우 서브모듈 제어기(140)는 동작할 수 없으므로 이를 방지하기 위해 충전셀(170)의 전압이 에너지저장부로 공급되어 에너지저장부에 저장되는 전압이 항상 필요한 동작전압이 될 수 있도록 하기 위한 것이다.Specifically, the submodule controller 140 stores the voltage supplied from the main controller 150 in an energy storage unit (not shown). In order for the submodule controller 140 to operate, the voltage stored in the energy storage unit must be at least a voltage required for the operation of the submodule controller 140. However, if the voltage stored in the energy storage unit does not reach the operating voltage due to some cause, the sub-module controller 140 cannot operate so that the voltage of the charging cell 170 is supplied to the energy storage unit to prevent this. This is to ensure that the voltage stored is always the required operating voltage.
이와 같이 메인제어기(150)에서 공급되는 전압이 서브모듈 제어기(140)의 동작전압에 미치지 못하더라도 충전셀(170)에 충전된 전압이 서브모듈 제어기(140)로 공급되도록 함으로써 서브모듈 제어기(140)가 동작에 필요한 일정전압을 유지할 수 있도록 한다.As such, even if the voltage supplied from the main controller 150 does not reach the operating voltage of the submodule controller 140, the voltage charged in the charging cell 170 is supplied to the submodule controller 140 so as to supply the submodule controller 140. ) To maintain a constant voltage required for operation.
도 4는 본 발명의 또 다른 실시 예에 따른 MMC 컨버터의 서브모듈 구성도이다. 도 4를 참조하면, 본 발명의 또 다른 실시 예에 따른 서브모듈(100)에서는 서브모듈 제어기(140)가 전압검출부(180)를 더 포함할 수 있고 충전셀(170)과 서브모듈 제어기(140) 간에 스위치(190)가 연결될 수 있다.4 is a diagram illustrating a submodule configuration of an MMC converter according to another embodiment of the present invention. Referring to FIG. 4, in the sub-module 100 according to another exemplary embodiment of the present disclosure, the sub-module controller 140 may further include a voltage detector 180 and the charging cell 170 and the sub-module controller 140. The switch 190 may be connected between.
전압검출부(180)는 메인제어기(150)로부터 서브모듈 제어기(140)으로 공급되는 전압을 검출한다. 이에 서브모듈 제어기(140)는 메인제어기(150)로부터 공급되는 전압이 서브모듈 제어기(140)에 필요한 전압보다 작으면 충전셀(170)과 연결된 스위치(190)를 턴온시켜 충전셀(170)에 충전된 전압이 서브모듈 제어기(140)로 공급되도록 한다.The voltage detector 180 detects a voltage supplied from the main controller 150 to the submodule controller 140. Accordingly, when the voltage supplied from the main controller 150 is less than the voltage required for the submodule controller 140, the submodule controller 140 turns on the switch 190 connected to the charging cell 170 to the charging cell 170. The charged voltage is supplied to the submodule controller 140.
도 3과 도 4를 비교하면, 도 3에서는 충전셀(170)에서 계속 전압이 서브모듈 제어기(140)로 공급되지만, 도 4에서는 메인제어기(150)에서의 공급전압이 동작에 필요한 전압보다 작은 경우에만 충전셀(170)의 전압이 서브모듈 제어기(140)로 공급되도록 하는 것이다. 3 and 4, the voltage is continuously supplied from the charging cell 170 to the sub-module controller 140 in FIG. 3, but in FIG. 4, the supply voltage from the main controller 150 is smaller than the voltage required for operation. Only when the voltage of the charging cell 170 is to be supplied to the sub-module controller 140.
도 5는 본 발명의 또 다른 실시 예에 따른 MMC 컨버터의 서브모듈 구성도이다. 도 5를 참조하면, 본 발명의 또 다른 실시 예에 따른 서브모듈(100)에서는 서브모듈 제어기(140)가 메인제어기(150)와 선택적으로 광전력케이블(optical power cable)(200)로 연결될 수 있다. 이러한 광전력케이블은 광섬유(optical fiber)케이블을 포함할 수 있다. 광섬유 케이블은 광원에서 발광된 광을 전달하는 역할을 한다. 이러한 구성에서 메인제어기(150)는 광전력 송신을 위한 광원을 구비할 수 있으며, 광원에서 발생한 광은 광섬유 케이블(200)을 통해 서브모듈 제어기(140)로 전달된다. 5 is a diagram illustrating a submodule configuration of an MMC converter according to another embodiment of the present invention. Referring to FIG. 5, in the submodule 100 according to another exemplary embodiment of the present disclosure, the submodule controller 140 may be selectively connected to the main controller 150 by an optical power cable 200. have. Such an optical power cable may include an optical fiber cable. The optical fiber cable serves to transmit the light emitted from the light source. In this configuration, the main controller 150 may include a light source for optical power transmission, and the light generated from the light source is transmitted to the submodule controller 140 through the optical fiber cable 200.
이때, 본 발명에 따른 서브모듈 제어기(140)는 이러한 광을 수신하기 위한 수광부(210)와 수광된 광을 이용하여 전력으로 변환하는 광전변환부(220)를 포함할 수 있다. 수광부(210)는 광을 검출하는 소자로서 예컨대 포토다이오드(photodiode) 등과 같은 반도체 수광소자를 포함할 수 있다. 광전변환부(220)는 광신호를 전기신호로 변환하는 소자로서 예컨대 광도전형 센서, 포토트랜지스터, 광도전형 이미지 센서 등을 포함할 수 있다.In this case, the sub-module controller 140 according to the present invention may include a light receiving unit 210 for receiving such light and a photoelectric conversion unit 220 for converting the light into power using the received light. The light receiver 210 may include a semiconductor light receiver such as a photodiode as a device for detecting light. The photoelectric conversion unit 220 may convert an optical signal into an electrical signal and may include, for example, a photoconductive sensor, a phototransistor, a photoconductive image sensor, and the like.
이와 같이 본 발명의 서브모듈 제어기(140)는 광섬유 케이블(200)을 통해 메인제어기(150)로부터 수신된 광신호를 이용하여 서브모듈 제어기(140)의 동작에 필요한 전압을 생성할 수 있도록 한다. 이는 본 발명에 따른 서브모듈 제어기(140)가 종래기술에 구비되는 DC-DC 컨버터 없이도 전원을 공급받을 수 있는 것이다.As described above, the submodule controller 140 may generate a voltage necessary for the operation of the submodule controller 140 using the optical signal received from the main controller 150 through the optical fiber cable 200. This allows the submodule controller 140 according to the present invention to be supplied with power without the DC-DC converter provided in the prior art.
도 6 및 도 7은 각각 본 발명의 또 다른 실시 예에 따른 MMC 컨버터의 서브모듈 구성도이다. 6 and 7 are diagrams illustrating submodules of the MMC converter according to another exemplary embodiment of the present invention, respectively.
도 6을 참조하면, 본 발명의 또 다른 실시 예에 따른 서브모듈(100)은 서브모듈 제어기(140)에 하나 이상의 충전셀(170)이 연결될 수 있다. 충전셀(170)은 서브모듈 제어기(140)의 광전변환부(220)에서 생성되는 전압이 서브모듈 제어기(140)의 동작에 필요한 전압보다 작은 경우 서브모듈 제어기(140)로 일정한 전압을 제공하도록 한다.Referring to FIG. 6, one or more charging cells 170 may be connected to the submodule controller 140 in the submodule 100 according to another exemplary embodiment. The charging cell 170 may provide a constant voltage to the submodule controller 140 when the voltage generated by the photoelectric conversion unit 220 of the submodule controller 140 is smaller than the voltage required for the operation of the submodule controller 140. do.
구체적으로, 서브모듈 제어기(140)는 광전변환부(220)에서 생성된 전압을 에너지저장부(미도시)에 저장한다. 서브모듈 제어기(140)가 동작하기 위해서는 에너지저장부에 저장된 전압은 최소한 서브모듈 제어기(140)의 동작에 필요한 전압이 되어야 한다. 하지만 어떤 원인에 의해 에너지저장부에 저장된 전압이 동작전압에 미치지 못하는 경우 서브모듈 제어기(140)는 동작할 수 없으므로 이를 방지하기 위해 충전셀(170)의 전압이 에너지저장부로 공급되어 에너지저장부에 저장되는 전압이 항상 동작에 필요한 일정전압이 될 수 있도록 하기 위한 것이다.In detail, the submodule controller 140 stores the voltage generated by the photoelectric conversion unit 220 in the energy storage unit (not shown). In order for the submodule controller 140 to operate, the voltage stored in the energy storage unit must be at least a voltage required for the operation of the submodule controller 140. However, if the voltage stored in the energy storage unit does not reach the operating voltage due to some cause, the sub-module controller 140 cannot operate so that the voltage of the charging cell 170 is supplied to the energy storage unit to prevent this. This is to ensure that the voltage stored is always a constant voltage required for operation.
이와 같이 메인제어기(150)에서 서브모듈 제어기(140)로 광신호가 전달될 때 광전변환부(220)에 의해 그 광신호로부터 생성되는 전압이 서브모듈 제어기(140)의 동작전압에 미치지 못하더라도 충전셀(170)에 충전된 전압이 서브모듈 제어기(140)로 공급되도록 함으로써 서브모듈 제어기(140)가 일정전압을 유지할 수 있도록 한다.As such, when the optical signal is transmitted from the main controller 150 to the submodule controller 140, the photoelectric conversion unit 220 charges the voltage generated from the optical signal even if it does not reach the operating voltage of the submodule controller 140. The voltage charged in the cell 170 is supplied to the submodule controller 140 so that the submodule controller 140 maintains a constant voltage.
도 7을 참조하면, 본 발명의 또 다른 실시 예에 따른 서브모듈(100)에서는 도 6에 도시된 서브모듈 제어기(140)가 전압검출부(240)를 더 포함할 수 있고 충전셀(170)과 서브모듈 제어기(140) 간에 스위치(250)가 연결될 수 있다.Referring to FIG. 7, in the sub-module 100 according to another exemplary embodiment of the present disclosure, the sub-module controller 140 illustrated in FIG. 6 may further include a voltage detector 240 and may include a charging cell 170. The switch 250 may be connected between the submodule controllers 140.
전압검출부(240)는 광전변환부(220)에서 생성되는 전압을 검출한다. 이에 서브모듈 제어기(140)는 전압검출부(240)에서 검출된 전압이 서브모듈 제어기(140)의 동작에 필요한 전압보다 작으면 충전셀(170)과 연결된 스위치(250)를 턴온시켜 충전셀(170)에 충전된 전압이 서브모듈 제어기(140)로 공급되도록 한다.The voltage detector 240 detects a voltage generated by the photoelectric converter 220. Accordingly, when the voltage detected by the voltage detector 240 is smaller than the voltage required for the operation of the submodule controller 140, the submodule controller 140 turns on the switch 250 connected to the charging cell 170 to charge the battery 170. ) Is supplied to the sub-module controller 140.
도 6과 도 7을 비교하면, 도 6에서는 충전셀(170)에서 계속 전압이 서브모듈 제어기(140)로 공급되지만, 도 7에서는 광전변환부(240)에서 생성되는 전압이 동작에 필요한 동작전압보다 작은 경우에만 서브모듈 제어기(140)로 충전셀(170)의 전압이 공급되도록 하는 것이다.6 and 7, the voltage is continuously supplied from the charging cell 170 to the sub-module controller 140 in FIG. 6, but in FIG. 7, the voltage generated by the photoelectric conversion unit 240 is required for operation. Only when smaller, the voltage of the charging cell 170 is supplied to the submodule controller 140.
이상에서 설명한 바와 같이 본 발명에 따른 MMC 컨버터의 서브모듈(100)은 메인제어기(150)에서 공급되는 전압 또는 광신호를 이용하여 내부의 서브모듈 제어기(140)의 동작에 필요한 전압을 공급할 수 있기 때문에, 종래기술과 같이 서브모듈 제어기(140)의 전원을 위해 고사양의 DC-DC 컨버터를 구비할 필요가 없다. 이로써 서브모듈(100)에 전압을 공급하지 않더라도 서브모듈 제어기(140)로 전압을 인가할 수 있어 서브모듈(100)의 동작 전에도 서브모듈(100)을 모니터링 할 수 있으며, 서브모듈(100)에 과전압이 발생하더라도 서브모듈 제어기(140)의 동작과는 상관이 없다.As described above, the submodule 100 of the MMC converter according to the present invention may supply a voltage required for the operation of the internal submodule controller 140 by using a voltage or an optical signal supplied from the main controller 150. Therefore, it is not necessary to provide a high-end DC-DC converter for the power supply of the submodule controller 140 as in the prior art. As a result, even when the voltage is not supplied to the submodule 100, the voltage can be applied to the submodule controller 140 so that the submodule 100 can be monitored even before the submodule 100 is operated. Even if an overvoltage occurs, it is irrelevant to the operation of the submodule controller 140.
상술한 본 발명은 바람직한 실시 예들을 통하여 상세하게 설명되었지만, 본 발명은 이러한 실시 예들의 내용에 한정되는 것이 아님을 밝혀둔다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면, 비록 실시 예에 제시되지 않았지만 첨부된 청구항의 기재 범위 내에서 다양한 본 발명에 대한 모조나 개량이 가능하며, 이들 모두 본 발명의 기술적 범위에 속함은 너무나 자명하다 할 것이다. 이에, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.Although the above-described present invention has been described in detail through the preferred embodiments, it should be understood that the present invention is not limited to the contents of these embodiments. Those skilled in the art to which the present invention pertains, although not shown in the examples, can be imitated or improved for various inventions within the scope of the appended claims, all of which fall within the technical scope of the present invention. Belonging will be too self-evident. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.

Claims (7)

  1. 전압을 충전하는 충전부;A charging unit for charging a voltage;
    상기 충전부에 브릿지 형태로 병렬연결된 복수의 스위칭소자; 및A plurality of switching elements connected in parallel to the charging unit in a bridge form; And
    상기 복수의 스위칭소자의 스위칭을 제어하는 서브모듈제어기;를 포함하고,And a sub-module controller for controlling switching of the plurality of switching elements.
    상기 서브모듈 제어기는 메인제어기와 전력선으로 연결되며 상기 전력선을 통해 상기 메인제어기로부터 전압을 수신하는 MMC 컨버터의 서브모듈.The submodule controller is connected to a main controller and a power line, and receives a voltage from the main controller through the power line.
  2. 제1항에 있어서,The method of claim 1,
    상기 서브모듈제어기에 연결된 하나 이상의 충전셀을 더 포함하고 상기 충전셀에 충전된 전압이 상기 서브모듈제어기로 공급되는 MMC 컨버터의 서브모듈.The sub module of the MMC converter further comprises one or more charging cells connected to the sub module controller, the voltage charged in the charging cell is supplied to the sub module controller.
  3. 제1항에 있어서,The method of claim 1,
    상기 서브모듈제어기에 연결된 하나 이상의 충전셀 및 상기 충전셀과 상기 서브모듈제어기를 전기적으로 연결하기 위한 스위치를 더 포함하고, 상기 서브모듈제어기는 상기 메인제어기로부터 공급되는 전압을 검출하는 전압검출부를 더 포함하며, 상기 서브모듈제어기는 상기 전압검출부에서 검출된 전압이 기설정된 전압보다 작은 경우 상기 스위치를 턴온하여 상기 충전셀에 충전된 전압이 상기 서브모듈제어기로 공급되도록 하는 MMC 컨버터의 서브모듈.At least one charging cell connected to the sub module controller, and a switch for electrically connecting the charging cell and the sub module controller, wherein the sub module controller further includes a voltage detector configured to detect a voltage supplied from the main controller; And the sub-module controller turns on the switch to supply the voltage charged in the charging cell to the sub-module controller when the voltage detected by the voltage detector is less than a predetermined voltage.
  4. 전압을 충전하는 충전부;A charging unit for charging a voltage;
    상기 충전부에 브릿지 형태로 병렬연결된 복수의 스위칭소자; 및A plurality of switching elements connected in parallel to the charging unit in a bridge form; And
    상기 복수의 스위칭소자의 스위칭을 제어하는 서브모듈제어기;를 포함하고,And a sub-module controller for controlling switching of the plurality of switching elements.
    상기 서브모듈 제어기는 메인제어기와 광섬유케이블로 연결되며 상기 광섬유케이블을 통해 상기 메인제어기로부터 수신되는 광신호를 이용하여 전압을 생성하는 MMC 컨버터의 서브모듈.The submodule controller is connected to a main controller and an optical fiber cable and generates a voltage using an optical signal received from the main controller through the optical fiber cable.
  5. 제4항에 있어서, 상기 서브모듈제어기는,The method of claim 4, wherein the sub-module controller,
    상기 메인제어기로부터 수신되는 광신호를 수신하는 수광부; 및A light receiving unit receiving an optical signal received from the main controller; And
    상기 수광부에서 수신된 광신호를 전기적신호로 변환하여 전압을 생성하는 광전변환부를 포함하는 MMC 컨버터의 서브모듈.The sub-module of the MMC converter including a photoelectric conversion unit for generating a voltage by converting the optical signal received from the light receiving unit into an electrical signal.
  6. 제5항에 있어서,The method of claim 5,
    상기 서브모듈제어기에 연결된 하나 이상의 충전셀을 더 포함하고 상기 충전셀에 충전된 전압이 상기 서브모듈제어기로 공급되는 MMC 컨버터의 서브모듈.Submodule of the MMC converter further comprises one or more charging cells connected to the submodule controller, the voltage charged in the charging cell is supplied to the submodule controller.
  7. 제5항에 있어서,The method of claim 5,
    상기 서브모듈제어기에 연결된 하나 이상의 충전셀 및 상기 충전셀과 상기 서브모듈제어기를 전기적으로 연결하기 위한 스위치를 더 포함하고, 상기 서브모듈제어기는 상기 광전변환부에서 생성되는 전압을 검출하는 전압검출부를 더 포함하며, 상기 서브모듈제어기는 상기 전압검출부에서 검출된 전압이 기설정된 전압보다 작은 경우 상기 스위치를 턴온하여 상기 충전셀에 충전된 전압이 상기 서브모듈제어기로 공급되도록 하는 MMC 컨버터의 서브모듈.At least one charging cell connected to the sub module controller, and a switch for electrically connecting the charging cell and the sub module controller, wherein the sub module controller is configured to detect a voltage generated by the photoelectric conversion unit. The sub-module controller further includes a sub-module of the MMC converter that turns on the switch to supply the charged voltage to the sub-module controller when the voltage detected by the voltage detector is smaller than a predetermined voltage.
PCT/KR2019/009466 2018-08-07 2019-07-30 Submodule for mmc converter WO2020032457A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0091536 2018-08-07
KR1020180091536A KR20200016431A (en) 2018-08-07 2018-08-07 Sub-module for mmc converter

Publications (1)

Publication Number Publication Date
WO2020032457A1 true WO2020032457A1 (en) 2020-02-13

Family

ID=69414971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/009466 WO2020032457A1 (en) 2018-08-07 2019-07-30 Submodule for mmc converter

Country Status (2)

Country Link
KR (1) KR20200016431A (en)
WO (1) WO2020032457A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111478289A (en) * 2020-04-14 2020-07-31 国家电网有限公司 Converter valve overvoltage protection method and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050226625A1 (en) * 2004-04-09 2005-10-13 Microwave Photonics, Inc. Optical fiber communications method and system without a remote electrical power supply
JP2011024393A (en) * 2009-07-21 2011-02-03 Hitachi Ltd Power conversion device
JP2013255422A (en) * 2010-03-15 2013-12-19 Hitachi Ltd Power conversion device
KR101630510B1 (en) * 2014-05-13 2016-06-14 엘에스산전 주식회사 Modular Multi-Level Converter
KR101758301B1 (en) * 2016-12-21 2017-07-14 윤광희 Apparatus and Method for providing power to a controller of modular multilevel converter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101725087B1 (en) 2014-12-29 2017-04-26 주식회사 효성 Power control device for sub-module of mmc converter
KR101711948B1 (en) 2014-12-29 2017-03-03 주식회사 효성 Power control device for sub-module of mmc converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050226625A1 (en) * 2004-04-09 2005-10-13 Microwave Photonics, Inc. Optical fiber communications method and system without a remote electrical power supply
JP2011024393A (en) * 2009-07-21 2011-02-03 Hitachi Ltd Power conversion device
JP2013255422A (en) * 2010-03-15 2013-12-19 Hitachi Ltd Power conversion device
KR101630510B1 (en) * 2014-05-13 2016-06-14 엘에스산전 주식회사 Modular Multi-Level Converter
KR101758301B1 (en) * 2016-12-21 2017-07-14 윤광희 Apparatus and Method for providing power to a controller of modular multilevel converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111478289A (en) * 2020-04-14 2020-07-31 国家电网有限公司 Converter valve overvoltage protection method and system
CN111478289B (en) * 2020-04-14 2022-07-05 国家电网有限公司 Converter valve overvoltage protection method and system

Also Published As

Publication number Publication date
KR20200016431A (en) 2020-02-17

Similar Documents

Publication Publication Date Title
WO2019132428A1 (en) Method for diagnosing sub-module state during initial charge of mmc converter
WO2015060576A1 (en) Battery management system capable of transmitting secondary protection signal and diagnostic signal using few insulation elements
US9013853B2 (en) Direct current breaker and electrical power system comprising such direct current breaker
WO2012005464A2 (en) Battery power supply device and power controlling method for same
WO2022114624A1 (en) Photovoltaic power generation system
WO2020091168A1 (en) Power converter
WO2011139023A2 (en) Dc/dc converter for photovoltaic power generation, an inverter system and a photovoltaic power generation system comprising them
WO2020032457A1 (en) Submodule for mmc converter
WO2012044125A2 (en) Variable disconnection apparatus of battery system and variable disconnection control method thereof
WO2014073787A1 (en) Emergency bypass changeover circuit of uninterruptible power supply
WO2021033956A1 (en) Battery system and operating method thereof
WO2011078424A1 (en) Load-segmentation-based full bridge inverter and method for controlling same
WO2017090896A1 (en) Power management device of power system, linked with distributed power resources, and method therefor
WO2018079918A1 (en) Battery cell balancing device
WO2020054959A1 (en) Dc-dc converter for solar linked energy storage system and control method thereof
WO2021141238A1 (en) Photovoltaic power generation system
WO2016039502A1 (en) Voltage sensing and control circuit
WO2016108597A1 (en) Power control apparatus for sub-module of mmc converter
WO2018117387A2 (en) Voltage detection integrated circuit and battery management system including same
WO2020141838A2 (en) Submodules of mmc converter
WO2022114464A1 (en) Direct current/direct current converter and control method thereof
WO2010074397A2 (en) Apparatus and method for controlling output voltage interconnected with utility networks
WO2022164097A1 (en) Multi-level converter-type statcom system and operation method
WO2023038400A1 (en) Melt bonding protection module and battery system comprising same
WO2023090941A1 (en) Power conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19847314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19847314

Country of ref document: EP

Kind code of ref document: A1