WO2019098372A1 - 系統運用者側コンピュータ、発電事業者側コンピュータ、電力システム、制御方法及びプログラム - Google Patents

系統運用者側コンピュータ、発電事業者側コンピュータ、電力システム、制御方法及びプログラム Download PDF

Info

Publication number
WO2019098372A1
WO2019098372A1 PCT/JP2018/042707 JP2018042707W WO2019098372A1 WO 2019098372 A1 WO2019098372 A1 WO 2019098372A1 JP 2018042707 W JP2018042707 W JP 2018042707W WO 2019098372 A1 WO2019098372 A1 WO 2019098372A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
amount
predetermined time
maximum
demand
Prior art date
Application number
PCT/JP2018/042707
Other languages
English (en)
French (fr)
Inventor
永渕 尚之
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to EP18877778.3A priority Critical patent/EP3716436A4/en
Priority to US16/764,568 priority patent/US20200389025A1/en
Publication of WO2019098372A1 publication Critical patent/WO2019098372A1/ja
Priority to US17/562,554 priority patent/US20220123553A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/144Demand-response operation of the power transmission or distribution network
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/004Generation forecast, e.g. methods or systems for forecasting future energy generation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/62The condition being non-electrical, e.g. temperature
    • H02J2310/64The condition being economic, e.g. tariff based load management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/30State monitoring, e.g. fault, temperature monitoring, insulator monitoring, corona discharge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/10Energy trading, including energy flowing from end-user application to grid

Definitions

  • the present invention relates to a system operator computer, a generator operator computer, an electric power system, a control method, and a program.
  • Patent Document 1 describes, as a related technology, a technology for predicting power demand and power generation from weather data to determine the balance between supply and demand.
  • Patent Document 2 describes, as a related technology, a technology for predicting power demand using weather data and calculating an amount of power (amount of demand response) for reducing consumption when power is insufficient.
  • demand response which is known as a measure to reduce power consumption at the time of power shortage, requires consumers to reduce the power consumption equivalent to the shortage of power, and provides incentives for the increase and decrease of the power consumption. It is something to give. In order to properly perform demand response, it is necessary to accurately specify the maximum amount of power that can be supplied. Therefore, there is a need for a technology that can accurately specify the maximum amount of power that can be supplied in a power system.
  • An object of the present invention is to provide a system operator side computer, a power generation operator side computer, an electric power system, a control method and a program that can solve the above-mentioned problems.
  • the system operator side computer specifies a supply amount acquiring unit for acquiring the maximum power supplyable amount after a predetermined time from the power generation business operator and the power demand after the predetermined time A demand identifying unit, and an insufficient amount calculating unit that calculates an insufficient amount of power based on the electric power demand and the maximum electric power available amount.
  • the shortage calculation unit may calculate the power shortage based on weather.
  • the demand response unit may be configured to transmit an incentive for the power shortage to a request source of the power demand.
  • the power generation company computer is capable of supplying the maximum power after the predetermined time, the request acquiring unit acquiring the request for the maximum available power after the predetermined time from the system operator A supply amount specifying unit that calculates an amount, and a supply amount notification unit that notifies the system operator of the calculated maximum power supplyable amount.
  • the supply amount specifying unit calculates the maximum possible power supply amount based on the profit and loss when the power generation amount is increased. You may
  • the power generation company computer when the power generation company computer according to the fourth aspect or the fifth aspect can not supply the required amount of power, the amount of insufficient power for the required amount of power and
  • the demand response unit may be configured to transmit an incentive for the power shortage to a request source of the power demand.
  • the power system is a power system having a system operator computer and a generator operator computer, and the system operator computer is a predetermined time after the generator operator.
  • a request acquiring unit for acquiring a request for the maximum power supply available amount after a predetermined time from the system operator, and the maximum power supply available amount after the predetermined time.
  • a supply amount notification unit for notifying the system operator of the calculated maximum electric power supply amount.
  • the control method by the system operator side computer acquires the maximum available power supply amount after a predetermined time from the power generation company and specifies the power demand after the predetermined time And calculating the amount of power shortage based on the power demand and the maximum power supply available amount.
  • a control method by a power generation company computer includes: acquiring from the system operator a request for a maximum available power amount after a predetermined time; and supplying the maximum power after the predetermined time Calculating the possible amount, and notifying the system operator of the calculated maximum available power amount.
  • a control method by an electric power system comprising: acquiring a maximum electric power available amount after a predetermined time from a power generator; and specifying the electric power demand after the predetermined time Calculating the power shortage based on the power demand and the maximum power availability, obtaining a request for the maximum power availability after a predetermined time from the system operator, and the maximum after the predetermined time
  • the method includes calculating the available power supply amount and notifying the system operator of the calculated maximum available power supply amount.
  • the program acquires, from the power generation operator, the maximum electric power supplyable amount after a predetermined time, and the electric power demand after the predetermined time on the system operator computer. And calculating the amount of power shortage based on the power demand and the maximum power availability.
  • the program acquires, from the system operator, a request for the maximum power supply available amount after a predetermined time, and the maximum power supply after the predetermined time from the system operator.
  • the calculation of the possible amount and the notification of the calculated maximum power supply amount to the system operator are performed.
  • the system operator computer the power generation company computer, the power system, the control method, and the program according to the embodiment of the present invention, it is possible to accurately specify the maximum power that can be supplied in the power system.
  • FIG. 1 shows a configuration of a power system according to an embodiment of the present invention. It is a figure which shows the structure of the system
  • FIG. 5 shows a process flow of a power system according to an embodiment of the present invention. It is a schematic block diagram showing composition of a computer concerning at least one embodiment.
  • the power system 1 is a system that predicts the amount of power that can be supplied to consumers based on weather (including air temperature, barometric pressure, humidity, rainfall, and the like) information, and controls the supply of power to the consumers. In addition, even if the power system 1 requests the power generation company to generate power corresponding to the shortage when the supply amount of power to the consumer is insufficient, even if the power generation amount increases according to the request.
  • This is a system that performs control of power consumption by consumers, that is, demand response, when power supplied to consumers is insufficient.
  • the power system 1 according to one embodiment of the present invention, as shown in FIG. 1, includes a load 10, a first power supply device 20 (an example of a power generation device), a second power supply device 30 (an example of a power generation device)
  • the load 10 is a device that consumes power used by the consumer.
  • the load 10 is, for example, a home appliance used in one or more general homes.
  • a manager who manages the power supplied to the load 10 is called a “system operator”.
  • the system operator manages, for example, the power supplied in units of loads connected to the smart grid SG.
  • the first power supply device 20 is a power supply device in which the amount of generated power fluctuates according to the weather.
  • the first power supply device 20 is, for example, a device that supplies, to the load 10, power generated using regenerated energy such as solar energy, wind energy, or hydro energy.
  • the first power supply device 20 is a device owned by at least one of a consumer and a system operator.
  • the second power supply device 30 is a device that can control the amount of power generation regardless of the weather, and can supply predetermined power generated to the load 10 and increase or decrease the power supplied to the load 10 based on the predetermined power. It is an apparatus.
  • the second power supply device 30 is a device owned by a power generation company, for example, a device for supplying power generated using fossil fuel such as thermal power generation, specifically, generated using a gas turbine It is a device that supplies power.
  • the power generated by the first power supply device 20 and the second power supply device 30 is supplied to the load 10, and the power supplied by the second power supply device 30 to the load 10 is the normal time in the embodiment of the present invention. It can be increased or decreased.
  • the system operator computer 40 is a computer that transmits the power shortage to the power generation company computer 50 when it is predicted that the power supplied to the load 10 is insufficient at normal times.
  • the system operator computer 40 has a weather prediction unit 401, a power generation prediction unit 402, a demand identification unit 403, a supply amount acquisition unit 404, a shortage determination unit 405, a shortage amount calculation unit 406, and a demand response.
  • a unit 407 is provided.
  • the weather prediction unit 401 acquires weather information indicating prediction of weather after a predetermined time from, for example, a database DB of a company providing weather information via a communication line NW such as the Internet.
  • a predetermined time is, for example, after one hour, after 30 minutes, after 10 minutes, after 5 minutes, or the like.
  • the power generation amount prediction unit 402 predicts the power generation amount of the first power supply device 20 after a predetermined time based on the weather information acquired by the weather prediction unit 401. Specifically, the power generation amount prediction unit 402 determines, for example, the first power supply device 20 after a predetermined time based on the weather acquired by the weather prediction unit 401, such as the light amount according to the weather, and the past results of the power generation amount. Predict the amount of electricity generated by
  • the demand identifying unit 403 identifies the power demand after a predetermined time. For example, the demand identifying unit 403 identifies the power demand after a predetermined time based on the weather acquired by the weather predicting unit 401 and the past results of the power consumption, such as the operation of an air conditioner according to the temperature.
  • the supply amount acquiring unit 404 normally transmits, to the power generation company computer 50, a request for the maximum available power that can be supplied after a predetermined time, when it is predicted that the power supplied to the load 10 is insufficient after the predetermined time. . At this time, the supply amount acquisition unit 404 simultaneously transmits information on the charge for the amount of increase in the supplied power, together with the request for the maximum available power that can be supplied after a predetermined time. Then, the supply amount acquisition unit 404 acquires the maximum available power supply amount after a predetermined time from the power generation company.
  • the shortage determination unit 405 determines whether the power demand after a predetermined time is larger than the maximum power supply available amount after the predetermined time. Next, when the power demand after a predetermined time is greater than the maximum power supply available after a predetermined time, the shortage calculation unit 406 determines the power demand after the predetermined time and the power demand of the first power supply device 20 after the predetermined time. The difference between the amount of power generation and the sum of the maximum power supplyable amount after a predetermined time is calculated as the amount of insufficient power.
  • the demand response unit 407 requests each consumer to demand response (requires suppression of the amount of power consumption when power is insufficient, and the incentive when the received maximum amount of available power is insufficient with respect to the amount of power necessary for the load 10). Send request).
  • the power generation company computer 50 is a computer that determines whether or not to generate the amount of power for the insufficient power amount transmitted from the system operator computer 40, and transmits the determination result to the system operator computer 40.
  • the power generation company computer 50 includes a request acquisition unit 501, a supply amount identification unit 502, and a supply amount notification unit 503.
  • the request acquisition unit 501 acquires, from the system operator, a request for the maximum available power supply amount after a predetermined time.
  • the supply amount specifying unit 502 calculates the maximum power supplyable amount after a predetermined time. Specifically, the supply amount specifying unit 502 calculates how much the remaining life of the second power supply device 30 is reduced when the power generation amount is increased, and the number of times of maintenance due to the reduction of the remaining life is Expenses such as increase, or maintenance that can be performed during the regular inspection period due to the decrease of the remaining life (for example, increase of cost due to parts replacement, decrease of profit due to reduction of operation opportunity due to parts replacement) Etc). Further, when the power generation amount is increased, the supply amount specifying unit 502 calculates how much profit can be obtained by the power generation amount of the increase.
  • the supply amount specifying unit 502 performs the calculation of the profit for a plurality of power generation amounts up to the power generation amount capable of generating power. Then, the supply amount identifying unit 502 sets, for example, the amount of power that can obtain the maximum benefit as the maximum amount of power that can be supplied, out of the amount of power generation where the benefit is greater than the loss due to the maintenance cost. In the case where there is no power generation amount such that the profit is greater than the loss due to the maintenance cost, the supply amount specifying unit 502 sets the current power supply possible amount as the maximum power supply possible amount after a predetermined time. In the case of form, calculate zero).
  • the supply amount notifying unit 503 notifies the system operator by transmitting the maximum power supply available amount after the predetermined time calculated by the supply amount identifying unit 502 to the system operator computer 40.
  • the weather prediction unit 401 acquires weather information indicating prediction of weather after a predetermined time from, for example, a database DB of a company providing weather information via a communication line NW such as the Internet (step S1).
  • the power generation amount prediction unit 402 predicts the power generation amount of the first power supply device 20 after a predetermined time based on the weather information acquired by the weather prediction unit 401 (step S2).
  • the demand identifying unit 403 identifies the power demand after a predetermined time (step S3).
  • the supply amount acquiring unit 404 normally predicts whether or not the power supplied to the load 10 will be insufficient after a predetermined time (step S4). Specifically, when the power generation amount after the predetermined time predicted by the power generation amount prediction unit 402 is smaller than the power demand after the predetermined time specified by the demand identification unit 403, the supply amount acquiring unit 404 loads the predetermined time after the predetermined time. It is determined that the power supplied to 10 is insufficient. Further, when the power generation amount after the predetermined time predicted by the power generation amount prediction unit 402 is larger than the power demand after the predetermined time, the supply amount acquiring unit 404 has sufficient power to be supplied to the load 10 after the predetermined time. It is determined that
  • step S4 When the supply amount acquiring unit 404 normally predicts that the power supplied to the load 10 after a predetermined time is sufficient (NO in step S4), the process returns to step S1. In addition, when the supply amount acquiring unit 404 normally predicts that the power supplied to the load 10 is insufficient after a predetermined time (YES in step S4), the power generation request for the maximum electric power that can be supplied after the predetermined time is generated. It transmits to the enterprise computer 50 (step S5). At this time, the supply amount acquisition unit 404 simultaneously transmits information on the charge for the amount of increase in the supplied power, together with the request for the maximum available power that can be supplied after a predetermined time.
  • the request acquisition unit 501 receives from the system operator computer 40 an inquiry about the maximum available power that can be supplied after a predetermined time (a request for the maximum available power after a predetermined time) (step S6).
  • the supply amount specifying unit 502 calculates the maximum possible power supply amount after a predetermined time (step S7).
  • the supply amount notification unit 503 transmits the maximum power supplyable amount after the predetermined time calculated by the supply amount specification unit 502 to the system operator computer 40 (step S8).
  • the supply amount acquisition unit 404 receives the maximum available power supply amount after a predetermined time from the power generation company (step S9).
  • the supply amount acquiring unit 404 may, for example, order of earlier answers (reception order), such as the order of low power rates, etc. You can decide the priority and get the necessary amount of power.
  • the shortage determination unit 405 determines whether or not the power demand after a predetermined time is larger than the maximum available power supply amount after a predetermined time (step S10). Specifically, when the shortage determination unit 405 determines that the power demand after the predetermined time specified by the demand identification unit 403 is equal to or less than the maximum possible power supply amount after the predetermined time calculated by the supply amount identification unit 502 ( It is determined in step S10 that the power supplied to the load 10 after a predetermined time is sufficient, and the process returns to step S1.
  • the shortage calculation unit 406 calculates the difference between the power demand after a predetermined time and the sum of the power generation amount of the first power supply device 20 after a predetermined time and the maximum power supply available after a predetermined time It calculates as (step S11).
  • the demand response unit 407 requests a demand response based on the power shortage calculated by the shortage calculation unit 406, that is, the reduction amount of the load 10 and the incentive obtained when the load 10 is reduced.
  • the consumer is notified (step S12).
  • the consumer notified of the demand response request determines whether to accept the demand response request, that is, determines whether to reduce the load 10 and obtain an incentive. And a consumer performs processing according to a decision result.
  • the power system 1 has been described above.
  • the system operator computer 40 included in the power system 1 calculates the difference between the power demand after a predetermined time and the sum of the power generation amount of the first power supply device 20 after the predetermined time and the maximum power supply available amount after the predetermined time. Calculated as insufficient power.
  • the power generation company computer 50 included in the power system 1 acquires a request for the maximum power supply capacity after a predetermined time, calculates the maximum power supply capacity, and operates the system for the calculated maximum power supply capacity. Notify the person. By doing this, the power system 1 including the system operator computer 40 can identify the amount of insufficient power necessary to accurately identify the maximum amount of power that can be supplied.
  • the power system 1 including the power generation company computer 50 can accurately specify the maximum power supply capacity.
  • the power system 1 including the system operator computer 40 and the power generation company computer 50 appropriately sets the demand response (restricting the power consumption at the time of power shortage) to each consumer based on the power shortage.
  • the amount of available power can be determined by the respective gains and losses of the system operator and the power producer.
  • the first power supply apparatus 20 is described as an apparatus owned by at least one of the consumer and the system operator.
  • the first power supply device 20 may be a device owned by a power producer.
  • the second power supply device 30 is a device capable of supplying predetermined power to the load 10 at normal times, and supplies power to the load 10 based on the predetermined power. It may be an apparatus that can be increased or decreased. Moreover, in another embodiment of the present invention, the second power supply device 30 is a device that does not supply power to the load 10 at all times, and supplies power to the load 10 or supplies power. It may be an apparatus capable of increasing or decreasing the supply amount.
  • the second power supply device 30 is described as a device that supplies power generated using fossil fuel such as thermal power generation, for example.
  • the second power supply device 30 includes a device that supplies power generated using regenerated energy such as, for example, solar energy, wind energy, or hydro energy. May be If the second power supply device 30 is a device that supplies power generated by using regenerated energy such as solar energy, wind energy, or hydro energy, the power generation company computer 50 is based on the weather. The amount of power generation may be predicted.
  • the power generation company computer is provided with a request for the maximum available power that can be supplied after a predetermined time by the supply acquisition unit 404, as well as information on charges for the increased amount of power supplied. It was described as sending to 50.
  • the power generation company computer 50 for example, the supply amount notification unit 503 presents a charge for the increased amount of power supplied, and the maximum power supply is provided on the condition of the presented charge. The possible amount may be transmitted to the system operator computer 40.
  • the power generation company computer 50 here is not limited to one power generation company computer 50, and may be a power generation company computer 50 owned by each of a plurality of power companies.
  • the supply amount acquisition unit 404 transmits a request for the maximum available power that can be supplied after a predetermined time, and the amount of supplied power has increased. With regard to the fee, it may be transmitted simultaneously to bid.
  • the supply amount acquiring unit 404 presents, for example, a power generation amount to be bid and a charge per unit power for the power generation amount (corresponding to a minimum bid price of a general bid).
  • the power producer has already increased the amount of power supplied to a load different from the load 10, even if the amount of power that can be supplied within the initial contract range, It may not be possible to increase it.
  • the demand response unit 407 may request the system operator for a demand response, that is, within the contracted power but not increasing the supplied power more than that.
  • the system operator computer 40 may be required to provide an incentive.
  • the order of the processes may be switched as long as the appropriate process is performed.
  • Each of the storage unit and other storage devices in the embodiment of the present invention may be provided anywhere as long as appropriate transmission and reception of information is performed.
  • each of the storage unit and the other storage devices may be present in a distributed manner in a range where appropriate transmission and reception of information is performed, and the data may be distributed and stored.
  • FIG. 5 is a schematic block diagram showing the configuration of a computer according to at least one embodiment.
  • the computer 5 includes a CPU 6, a main memory 7, a storage 8 and an interface 9, as shown in FIG.
  • each of the power system 1 described above, the system operator computer 40, the power generation company computer 50, and the other control devices are implemented in the computer 5.
  • each processing unit described above is stored in the storage 8 in the form of a program.
  • the CPU 6 reads a program from the storage 8 and develops it in the main memory 7 and executes the above processing according to the program. Further, the CPU 6 secures a storage area corresponding to each storage unit described above in the main memory 7 in accordance with a program.
  • Examples of the storage 8 include a hard disk drive (HDD), a solid state drive (SSD), a magnetic disk, an optical magnetic disk, a compact disc read only memory (CD-ROM), and a digital versatile disc read only memory (DVD-ROM). , Semiconductor memory and the like.
  • the storage 8 may be internal media directly connected to the bus of the computer 5 or may be external media connected to the computer 5 via the interface 9 or a communication line.
  • the program is distributed to the computer 5 by a communication line, the computer 5 that has received the distribution may expand the program in the main memory 7 and execute the above processing.
  • storage 8 is a non-transitory tangible storage medium.
  • the program may realize part of the functions described above.
  • the program may be a file capable of realizing the above-described functions in combination with a program already recorded in a computer system, a so-called difference file (difference program).
  • the system operator computer the power generation company computer, the power system, the control method, and the program according to the embodiment of the present invention, it is possible to accurately specify the maximum power that can be supplied in the power system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

発電事業者から所定時間後の最大電力供給可能量を取得する供給量取得部と、前記所定時間後の電力需要を特定する需要特定部と、前記電力需要と前記最大電力供給可能量とに基づいて不足電力量を算出する不足量算出部と、を備える系統運用者側コンピュータ。

Description

系統運用者側コンピュータ、発電事業者側コンピュータ、電力システム、制御方法及びプログラム
 本発明は、系統運用者側コンピュータ、発電事業者側コンピュータ、電力システム、制御方法及びプログラムに関する。
 本願は、2017年11月20日に日本に出願された特願2017-222706号について優先権を主張し、その内容をここに援用する。
 発電システムにおいて、電力系統には、さまざまな方法で発電した電力が供給される。電力系統に供給される電力の1つとして、再生可能エネルギーを用いて発電される電力が挙げられる。
 特許文献1には、関連する技術として、気象データから電力需要と発電量を予測して需給バランスを判断する技術が記載されている。
 特許文献2には、関連する技術として、気象データを用いて電力需要を予測し、電力不足時に消費を抑える電力量(デマンドレスポンスの量)を計算する技術が記載されている。
特開2015-008588号公報 特開2016-077051号公報
 ところで、電力不足時に消費電力量を抑える方策として知られているデマンドレスポンスとは、消費者に電力の不足分に相当する電力消費の低減を要求するとともに、その電力消費の増減に対してインセンティブを与えるものである。デマンドレスポンスを適切に行うためには、供給可能な最大電力量を正確に特定する必要がある。
 そのため、電力システムにおいて、供給可能な最大電力量を正確に特定することのできる技術が求められている。
 本発明は、上記の課題を解決することのできる系統運用者側コンピュータ、発電事業者側コンピュータ、電力システム、制御方法及びプログラムを提供することを目的としている。
 本発明の第1の態様によれば、系統運用者側コンピュータは、発電事業者から所定時間後の最大電力供給可能量を取得する供給量取得部と、前記所定時間後の電力需要を特定する需要特定部と、前記電力需要と前記最大電力供給可能量とに基づいて不足電力量を算出する不足量算出部と、を備える。
 本発明の第2の態様によれば、第1の態様による系統運用者側コンピュータにおいて、前記不足量算出部は、天気に基づいて、前記不足電力量を算出してもよい。
 本発明の第3の態様によれば、第1の態様または第2の態様による系統運用者側コンピュータは、要求される電力量を供給できない場合に、当該要求される電力量に対する不足電力量と、当該不足電力量に対するインセンティブとを前記要求される電力量の要求元に送信するデマンドレスポンス部、を備えていてもよい。
 本発明の第4の態様によれば、発電事業者側コンピュータは、系統運用者から所定時間後の最大電力供給可能量のリクエストを取得するリクエスト取得部と、前記所定時間後の最大電力供給可能量を算出する供給量特定部と、算出した前記最大電力供給可能量を前記系統運用者に通知する供給量通知部と、を備える。
 本発明の第5の態様によれば、第4の態様による発電事業者側コンピュータにおいて、前記供給量特定部は、発電量を増加させた場合の損益に基づいて前記最大電力供給可能量を算出してもよい。
 本発明の第6の態様によれば、第4の態様または第5の態様による発電事業者側コンピュータは、要求される電力量を供給できない場合に、当該要求される電力量に対する不足電力量と、当該不足電力量に対するインセンティブとを前記要求される電力量の要求元に送信するデマンドレスポンス部、を備えていてもよい。
 本発明の第7の態様によれば、電力システムは、系統運用者側コンピュータと発電事業者側コンピュータとを有する電力システムであって、前記系統運用者側コンピュータは、発電事業者から所定時間後の最大電力供給可能量を取得する供給量取得部と、前記所定時間後の電力需要を特定する需要特定部と、前記電力需要と前記最大電力供給可能量とに基づいて不足電力量を算出する不足量算出部と、を備え、前記発電事業者側コンピュータは、系統運用者から所定時間後の最大電力供給可能量のリクエストを取得するリクエスト取得部と、前記所定時間後の最大電力供給可能量を算出する供給量特定部と、算出した前記最大電力供給可能量を前記系統運用者に通知する供給量通知部と、を備える。
 本発明の第8の態様によれば、系統運用者側コンピュータによる制御方法は、発電事業者から所定時間後の最大電力供給可能量を取得することと、前記所定時間後の電力需要を特定することと、前記電力需要と前記最大電力供給可能量とに基づいて不足電力量を算出することと、を含む。
 本発明の第9の態様によれば、発電事業者側コンピュータによる制御方法は、系統運用者から所定時間後の最大電力供給可能量のリクエストを取得することと、前記所定時間後の最大電力供給可能量を算出することと、算出した前記最大電力供給可能量を前記系統運用者に通知することと、を含む。
 本発明の第10の態様によれば、電力システムによる制御方法は、発電事業者から所定時間後の最大電力供給可能量を取得することと、前記所定時間後の電力需要を特定することと、前記電力需要と前記最大電力供給可能量とに基づいて不足電力量を算出することと、系統運用者から所定時間後の最大電力供給可能量のリクエストを取得することと、前記所定時間後の最大電力供給可能量を算出することと、算出した前記最大電力供給可能量を前記系統運用者に通知することと、を含む。
 本発明の第11の態様によれば、プログラムは、系統運用者側コンピュータに、発電事業者から所定時間後の最大電力供給可能量を取得することと、前記所定時間後の電力需要を特定することと、前記電力需要と前記最大電力供給可能量とに基づいて不足電力量を算出することと、を実行させる。
 本発明の第12の態様によれば、プログラムは、発電事業者側コンピュータに、系統運用者から所定時間後の最大電力供給可能量のリクエストを取得することと、前記所定時間後の最大電力供給可能量を算出することと、算出した前記最大電力供給可能量を前記系統運用者に通知することと、を実行させる。
 本発明の実施形態による系統運用者側コンピュータ、発電事業者側コンピュータ、電力システム、制御方法及びプログラムによれば、電力システムにおいて、供給可能な最大電力量を正確に特定することができる。
本発明の一実施形態による電力システムの構成を示す図である。 本発明の一実施形態による系統運用者側コンピュータの構成を示す図である。 本発明の一実施形態による発電事業者側コンピュータの構成を示す図である。 本発明の一実施形態による電力システムの処理フローを示す図である。 少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
<実施形態>
 以下、図面を参照しながら実施形態について詳しく説明する。
 本発明の一実施形態による電力システム1の構成について説明する。
 電力システム1は、天気(気温、気圧、湿度、雨量などを含む)情報に基づいて消費者へ供給可能な電力量を予測し、消費者への電力の供給を制御するシステムである。また、電力システム1は、消費者への電力の供給量が不足する場合にその不足分に相当する発電を発電事業者にリクエストし、そのリクエストに応じて発電量が増加した場合であっても、消費者へ供給する電力が不足する場合に、消費者による消費電力量の抑制、すなわちデマンドレスポンスを行うシステムである。
 本発明の一実施形態による電力システム1は、図1に示すように、負荷10、第1電力供給装置20(発電装置の一例)、第2電力供給装置30(発電装置の一例)、系統運用者側コンピュータ40、発電事業者側コンピュータ50を備える。
 負荷10は、消費者が使用する電力を消費する装置である。負荷10は、例えば、1つ以上の一般家庭で使用される家電製品である。
 なお、本発明の実施形態において、負荷10に供給する電力を管理する管理者を「系統運用者」と呼ぶ。系統運用者は、例えば、スマートグリッドSGに接続される負荷10単位で供給する電力を管理する。
 第1電力供給装置20は、天気に応じて発電量が変動する電力供給装置である。第1電力供給装置20は、例えば、太陽光エネルギー、風力エネルギー、水力エネルギーなどの再生エネルギーを利用して発電した電力を負荷10に供給する装置である。
 なお、第1電力供給装置20は、消費者及び系統運用者の少なくとも何れか一方が所持する装置である。
 第2電力供給装置30は、天気によらず発電量を制御できる装置であって、負荷10に発電した所定の電力を供給し、その所定の電力を基準に負荷10に供給する電力を増減できる装置である。第2電力供給装置30は、発電事業者が所持する装置であり、例えば、火力発電などの化石燃料を利用して発電した電力を供給する装置、具体的には、ガスタービンを用いて発電した電力を供給する装置である。本発明の一実施形態における通常時とは、第1電力供給装置20と第2電力供給装置30の発電する電力が負荷10に供給され、第2電力供給装置30が負荷10に供給する電力を増減できる状態のことである。
 系統運用者側コンピュータ40は、通常時に、負荷10に供給される電力が不足することが予測される場合に、不足電力量を発電事業者側コンピュータ50に送信するコンピュータである。
 系統運用者側コンピュータ40は、図2に示すように、天気予測部401、発電量予測部402、需要特定部403、供給量取得部404、不足判定部405、不足量算出部406、デマンドレスポンス部407を備える。
 天気予測部401は、所定時間後の天気の予測を示す天気情報を、例えば、インターネットなどの通信回線NWを介して、天気情報を提供する企業のデータベースDBなどから取得する。所定時間後とは、例えば、1時間後、30分後、10分後、5分後などである。
 発電量予測部402は、天気予測部401が取得した天気情報に基づいて所定時間後の第1電力供給装置20の発電量を予測する。具体的には、発電量予測部402は、例えば、天気に応じた光量など、天気予測部401が取得した天気と発電量の過去の実績などに基づいて所定時間後の第1電力供給装置20の発電量を予測する。
 需要特定部403は、所定時間後の電力需要を特定する。例えば、需要特定部403は、気温に応じたエアコンの稼働など、天気予測部401が取得した天気と電力消費量の過去の実績に基づいて、所定時間後の電力需要を特定する。
 供給量取得部404は、通常時に、所定時間後に負荷10に供給される電力が不足すると予測した場合、所定時間後に供給可能な最大電力供給可能量のリクエストを発電事業者側コンピュータ50に送信する。このとき、供給量取得部404は、所定時間後に供給可能な最大電力供給可能量のリクエストとともに、供給される電力が増加した分の料金についての情報を同時に送信する。そして、供給量取得部404は、発電事業者から所定時間後の最大電力供給可能量を取得する。
 不足判定部405は、所定時間後の電力需要が所定時間後の最大電力供給可能量よりも多いか否かを判定する。
 次に、不足量算出部406は、所定時間後の電力需要が所定時間後の最大電力供給可能量よりも多い場合、所定時間後の電力需要と、所定時間後の第1電力供給装置20の発電量及び所定時間後の最大電力供給可能量の総和との差分を不足電力量として算出する。
 デマンドレスポンス部407は、受けた最大電力供給可能量が負荷10に必要な電力量に対して不足している場合、各消費者にデマンドレスポンス(電力不足時に消費電力量を抑制を依頼するとともにインセンティブを与えること)の要求を送信する。
 発電事業者側コンピュータ50は、系統運用者側コンピュータ40から送信された不足電力量分の電力量を発電するか否かを判定し、判定結果を系統運用者側コンピュータ40に送信するコンピュータである。
 発電事業者側コンピュータ50は、図3に示すように、リクエスト取得部501、供給量特定部502、供給量通知部503を備える。
 リクエスト取得部501は、系統運用者から所定時間後の最大電力供給可能量のリクエストを取得する。
 供給量特定部502は、所定時間後の最大電力供給可能量を算出する。
 具体的には、供給量特定部502は、発電量を増加させた場合に第2電力供給装置30の余寿命がどの程度低下するかを算出し、その余寿命の低下に伴うメンテナンスの回数が増加する場合や、定期点検期間にその余寿命の低下に伴うメンテナンスを行うことができる場合などの費用(例えば、部品交換に伴う費用の増加、部品交換に伴う運転機会の低減に伴う収益の減少など)を算出する。また、供給量特定部502は、発電量を増加させた場合にその増加分の発電量によりいくらの利益が得られるかを算出する。供給量特定部502は、この利益の算出を発電可能な発電量を上限とする複数の発電量に対して行う。そして、供給量特定部502は、例えば、利益がメンテナンス費用による損失よりも多くなる発電量のうち、例えば、最大の利益が得られる電力量を最大電力供給可能量とする。なお、供給量特定部502は、利益がメンテナンス費用による損失よりも多くなる発電量が存在しない場合には、所定時間後の最大電力供給可能量として現在の電力供給可能量(本発明の一実施形態の場合、ゼロ)を算出する。
 供給量通知部503は、供給量特定部502が算出した所定時間後の最大電力供給可能量を、系統運用者側コンピュータ40に送信することによって系統運用者に通知する。
 次に、本発明の一実施形態による電力システム1の処理について図4を用いて説明する。
 天気予測部401は、所定時間後の天気の予測を示す天気情報を、例えば、インターネットなどの通信回線NWを介して、天気情報を提供する企業のデータベースDBなどから取得する(ステップS1)。
 発電量予測部402は、天気予測部401が取得した天気情報に基づいて所定時間後の第1電力供給装置20の発電量を予測する(ステップS2)。
 需要特定部403は、所定時間後の電力需要を特定する(ステップS3)。
 供給量取得部404は、通常時に、所定時間後に負荷10に供給される電力が不足するか否かを予測する(ステップS4)。具体的には、供給量取得部404は、発電量予測部402が予測した所定時間後の発電量が需要特定部403が特定した所定時間後の電力需要よりも少ない場合に、所定時間後に負荷10に供給される電力が不足すると判定する。また、供給量取得部404は、発電量予測部402が予測した所定時間後の発電量が所定時間後の電力需要よりも多い場合に、所定時間後に負荷10に供給される電力は充分であると判定する。
 供給量取得部404は、通常時に、所定時間後に負荷10に供給される電力が充分であると予測した場合(ステップS4においてNO)、ステップS1の処理に戻す。
 また、供給量取得部404は、通常時に、所定時間後に負荷10に供給される電力が不足すると予測した場合(ステップS4においてYES)、所定時間後に供給可能な最大電力供給可能量のリクエストを発電事業者側コンピュータ50に送信する(ステップS5)。このとき、供給量取得部404は、所定時間後に供給可能な最大電力供給可能量のリクエストとともに、供給される電力が増加した分の料金についての情報を同時に送信する。
 リクエスト取得部501は、系統運用者側コンピュータ40から所定時間後に供給可能な最大電力供給可能量の問い合わせ(所定時間後の最大電力供給可能量のリクエスト)を受信する(ステップS6)。
 供給量特定部502は、所定時間後の最大電力供給可能量を算出する(ステップS7)。
 供給量通知部503は、供給量特定部502が算出した所定時間後の最大電力供給可能量を、系統運用者側コンピュータ40に送信する(ステップS8)。
 供給量取得部404は、発電事業者から所定時間後の最大電力供給可能量を受信する(ステップS9)。なお、供給量取得部404は、受信した最大電力供給可能量の総和が実際に必要な電力量を超えた場合には、例えば、回答の早い順(受信順)、電力料金の安い順などの優先順位を決めて、必要な電力量を得ればよい。
 不足判定部405は、所定時間後の電力需要が所定時間後の最大電力供給可能量よりも多いか否かを判定する(ステップS10)。具体的には、不足判定部405は、需要特定部403が特定した所定時間後の電力需要が供給量特定部502が算出した所定時間後の最大電力供給可能量以下であると判定した場合(ステップS10においてNO)、所定時間後に負荷10に供給される電力は充分であると判定し、ステップS1の処理に戻す。
 また、不足判定部405が、需要特定部403が特定した所定時間後の電力需要が供給量特定部502が算出した所定時間後の最大電力供給可能量よりも多いと判定した場合(ステップS10においてYES)、不足量算出部406は、所定時間後の電力需要と、所定時間後の第1電力供給装置20の発電量及び所定時間後の最大電力供給可能量の総和との差分を不足電力量として算出する(ステップS11)。
 デマンドレスポンス部407は、不足量算出部406が算出した不足電力量に基づいて、デマンドレスポンスを要求する、すなわち負荷10の低減量と、その負荷10の低減を行った場合に得られるインセンティブとを消費者に通知する(ステップS12)。
 デマンドレスポンスの要求の通知を受けた消費者は、そのデマンドレスポンスの要求を受け入れるか否かを判定し、すなわち、負荷10を低減しインセンティブを得るか否かを判定する。そして、消費者は、判定結果に応じた処理を行う。
 以上、本発明の一実施形態による電力システム1について説明した。
 電力システム1の備える系統運用者側コンピュータ40は、所定時間後の電力需要と、所定時間後の第1電力供給装置20の発電量及び所定時間後の最大電力供給可能量の総和との差分を不足電力量として算出する。
 また、電力システム1の備える発電事業者側コンピュータ50は、所定時間後の最大電力供給可能量のリクエストを取得し、最大電力供給可能量を算出して、算出した最大電力供給可能量を系統運用者に通知する。
 こうすることにより、系統運用者側コンピュータ40を備える電力システム1は、供給可能な最大電力量を正確に特定するために必要な不足電力量を特定することができる。また、発電事業者側コンピュータ50を備える電力システム1は、最大電力供給可能量を正確に特定することができる。
 また、系統運用者側コンピュータ40と発電事業者側コンピュータ50とを備える電力システム1は、不足電力量に基づいて、各消費者にデマンドレスポンス(電力不足時に消費電力量を抑制すること)を適切に要求することができ、系統運用者と発電事業者とのそれぞれの損益により電力供給可能量を決定することができる。
 なお、本発明の一実施形態では、第1電力供給装置20は、消費者及び系統運用者の少なくとも何れか一方が所持する装置であるものとして説明した。しかしながら、本発明の別の実施形態では、第1電力供給装置20は、発電事業者が所持する装置であってもよい。
 なお、本発明の一実施形態では、第2電力供給装置30は、通常時に、負荷10に対して所定の電力を供給可能な装置であり、所定の電力を基準に負荷10に供給する電力を増減できる装置であってよい。また、本発明の別の実施形態では、第2電力供給装置30は、通常時に、負荷10に対してまったく電力を供給しない装置であり、負荷10に電力を供給しないか、電力を供給しその供給量を増減できる装置であってもよい。
 なお、本発明の一実施形態では、第2電力供給装置30は、例えば、火力発電などの化石燃料を利用して発電した電力を供給する装置であるものとして説明した。しかしながら、本発明の別の実施形態では、第2電力供給装置30は、例えば、太陽光エネルギー、風力エネルギー、水力エネルギーなどの再生エネルギーを利用して発電した電力を供給する装置を含むものであってもよい。第2電力供給装置30が、太陽光エネルギー、風力エネルギー、水力エネルギーなどの再生エネルギーを利用して発電した電力を供給する装置である場合には、発電事業者側コンピュータ50は、天気に基づいて発電量を予測するものであってよい。
 なお、本発明の一実施形態では、供給量取得部404が所定時間後に供給可能な最大電力供給可能量のリクエストとともに、供給される電力が増加した分の料金についての情報を発電事業者側コンピュータ50に送信するものとして説明した。しかしながら、本発明の別の実施形態では、発電事業者側コンピュータ50(例えば、供給量通知部503)が供給される電力が増加した分の料金を提示し、提示した料金を条件に最大電力供給可能量を系統運用者側コンピュータ40に送信するものであってもよい。
 なお、ここでの発電事業者側コンピュータ50は、1つの発電事業者側コンピュータ50に限定するものではなく、複数の電力事業者それぞれが所持する発電事業者側コンピュータ50であってよい。送信先の発電事業者側コンピュータ50が複数ある場合には、供給量取得部404は、所定時間後に供給可能な最大電力供給可能量のリクエストを送信するとともに、供給される電力が増加した分の料金については入札を行う旨を同時に送信するものであってもよい。供給量取得部404は、入札を行う場合には、例えば、入札対象となる発電量とその発電量に対する単位電力当たりの料金(一般的な入札の最低落札価格に相当)とを提示する。
 なお、発電事業者は、当初の契約範囲内の供給可能な電力量である場合であっても、負荷10とは異なる負荷への電力供給量が既に増加しており、負荷10に対する供給電力を増加させることができない場合がある。この場合、デマンドレスポンス部407は、系統運用者に対してデマンドレスポンスを要求するものであってもよい、すなわち、契約電力内であるがこれ以上の供給電力の増加を行わない代わりにその分のインセンティブを与えることを系統運用者側コンピュータ40に要求するものであってもよい。
 なお、本発明の実施形態における処理は、適切な処理が行われる範囲において、処理の順番が入れ替わってもよい。
 本発明の実施形態における記憶部、その他の記憶装置のそれぞれは、適切な情報の送受信が行われる範囲においてどこに備えられていてもよい。また、記憶部、その他の記憶装置のそれぞれは、適切な情報の送受信が行われる範囲において複数存在しデータを分散して記憶していてもよい。
 本発明の実施形態について説明したが、上述の電力システム1、系統運用者側コンピュータ40、発電事業者側コンピュータ50、その他の制御装置は内部に、コンピュータシステムを有していてもよい。そして、上述した処理の過程は、プログラムの形式でコンピュータが読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。コンピュータの具体例を以下に示す。
 図5は、少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
 コンピュータ5は、図5に示すように、CPU6、メインメモリ7、ストレージ8、インターフェース9を備える。
 例えば、上述の電力システム1、系統運用者側コンピュータ40、発電事業者側コンピュータ50、その他の制御装置のそれぞれは、コンピュータ5に実装される。そして、上述した各処理部の動作は、プログラムの形式でストレージ8に記憶されている。CPU6は、プログラムをストレージ8から読み出してメインメモリ7に展開し、当該プログラムに従って上記処理を実行する。また、CPU6は、プログラムに従って、上述した各記憶部に対応する記憶領域をメインメモリ7に確保する。
 ストレージ8の例としては、HDD(Hard Disk Drive)、SSD(Solid State Drive)、磁気ディスク、光磁気ディスク、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disc Read Only Memory)、半導体メモリ等が挙げられる。ストレージ8は、コンピュータ5のバスに直接接続された内部メディアであってもよいし、インターフェース9または通信回線を介してコンピュータ5に接続される外部メディアであってもよい。また、このプログラムが通信回線によってコンピュータ5に配信される場合、配信を受けたコンピュータ5が当該プログラムをメインメモリ7に展開し、上記処理を実行してもよい。少なくとも1つの実施形態において、ストレージ8は、一時的でない有形の記憶媒体である。
 また、上記プログラムは、前述した機能の一部を実現してもよい。さらに、上記プログラムは、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるファイル、いわゆる差分ファイル(差分プログラム)であってもよい。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例であり、発明の範囲を限定しない。これらの実施形態は、発明の要旨を逸脱しない範囲で、種々の追加、省略、置き換え、変更を行ってよい。
 本発明の実施形態による系統運用者側コンピュータ、発電事業者側コンピュータ、電力システム、制御方法及びプログラムによれば、電力システムにおいて、供給可能な最大電力量を正確に特定することができる。
1・・・電力システム
5・・・コンピュータ
6・・・CPU
7・・・メインメモリ
8・・・ストレージ
9・・・インターフェース
10・・・負荷
20・・・第1電力供給装置
30・・・第2電力供給装置
40・・・系統運用者側コンピュータ
50・・・発電事業者側コンピュータ
401・・・天気予測部
402・・・発電量予測部
403・・・需要特定部
404・・・供給量取得部
405・・・不足判定部
406・・・不足量算出部
407・・・デマンドレスポンス部
501・・・リクエスト取得部
502・・・供給量特定部
503・・・供給量通知部
DB・・・天気情報
SG・・・スマートグリッド

Claims (12)

  1.  発電事業者から所定時間後の最大電力供給可能量を取得する供給量取得部と、
     前記所定時間後の電力需要を特定する需要特定部と、
     前記電力需要と前記最大電力供給可能量とに基づいて不足電力量を算出する不足量算出部と、
     を備える系統運用者側コンピュータ。
  2.  前記供給量取得部は、
     天気に基づいて特定された前記最大電力供給可能量を発電事業者から取得し、
     需要特定部は、
     前記天気に基づいて前記電力需要を特定する、
     請求項1に記載の系統運用者側コンピュータ。
  3.  要求される電力量を供給できない場合に、当該要求される電力量に対する不足電力量と、当該不足電力量に対するインセンティブとを前記要求される電力量の要求元に送信するデマンドレスポンス部、
     を備える請求項1または請求項2に記載の系統運用者側コンピュータ。
  4.  系統運用者から所定時間後の最大電力供給可能量のリクエストを取得するリクエスト取得部と、
     前記所定時間後の最大電力供給可能量を算出する供給量特定部と、
     算出した前記最大電力供給可能量を前記系統運用者に通知する供給量通知部と、
     を備える発電事業者側コンピュータ。
  5.  前記供給量特定部は、
     発電量を増加させた場合の損益に基づいて前記最大電力供給可能量を算出する、
     請求項4に記載の発電事業者側コンピュータ。
  6.  要求される電力量を供給できない場合に、当該要求される電力量に対する不足電力量と、当該不足電力量に対するインセンティブとを前記要求される電力量の要求元に送信するデマンドレスポンス部、
     を備える請求項4または請求項5に記載の発電事業者側コンピュータ。
  7.  系統運用者側コンピュータと発電事業者側コンピュータとを有する電力システムであって、
     前記系統運用者側コンピュータは、
     発電事業者から所定時間後の最大電力供給可能量を取得する供給量取得部と、
     前記所定時間後の電力需要を特定する需要特定部と、
     前記電力需要と前記最大電力供給可能量とに基づいて不足電力量を算出する不足量算出部と、
     を備え、
     前記発電事業者側コンピュータは、
     系統運用者から所定時間後の最大電力供給可能量のリクエストを取得するリクエスト取得部と、
     前記所定時間後の最大電力供給可能量を算出する供給量特定部と、
     算出した前記最大電力供給可能量を前記系統運用者に通知する供給量通知部と、
     を備える、
     電力システム。
  8.  発電事業者から所定時間後の最大電力供給可能量を取得することと、
     前記所定時間後の電力需要を特定することと、
     前記電力需要と前記最大電力供給可能量とに基づいて不足電力量を算出することと、
     を含む系統運用者側コンピュータによる制御方法。
  9.  系統運用者から所定時間後の最大電力供給可能量のリクエストを取得することと、
     前記所定時間後の最大電力供給可能量を算出することと、
     算出した前記最大電力供給可能量を前記系統運用者に通知することと、
     を含む発電事業者側コンピュータによる制御方法。
  10.  発電事業者から所定時間後の最大電力供給可能量を取得することと、
     前記所定時間後の電力需要を特定することと、
     前記電力需要と前記最大電力供給可能量とに基づいて不足電力量を算出することと、
     系統運用者から所定時間後の最大電力供給可能量のリクエストを取得することと、
     前記所定時間後の最大電力供給可能量を算出することと、
     算出した前記最大電力供給可能量を前記系統運用者に通知することと、
     を含む電力システムによる制御方法。
  11.  系統運用者側コンピュータに、
     発電事業者から所定時間後の最大電力供給可能量を取得することと、
     前記所定時間後の電力需要を特定することと、
     前記電力需要と前記最大電力供給可能量とに基づいて不足電力量を算出することと、
     を実行させるプログラム。
  12.  発電事業者側コンピュータに、
     系統運用者から所定時間後の最大電力供給可能量のリクエストを取得することと、
     前記所定時間後の最大電力供給可能量を算出することと、
     算出した前記最大電力供給可能量を前記系統運用者に通知することと、
     を実行させるプログラム。
PCT/JP2018/042707 2017-11-20 2018-11-19 系統運用者側コンピュータ、発電事業者側コンピュータ、電力システム、制御方法及びプログラム WO2019098372A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18877778.3A EP3716436A4 (en) 2017-11-20 2018-11-19 COMPUTER SIDE SYSTEM OPERATOR, COMPUTER SIDE ENERGY GENERATION COMPANY, ELECTRICAL SYSTEM, CONTROL PROCESS AND PROGRAM
US16/764,568 US20200389025A1 (en) 2017-11-20 2018-11-19 System Operator Side Computer, Power Generation Operator Side Computer, Power System, Control Method, And Program
US17/562,554 US20220123553A1 (en) 2017-11-20 2021-12-27 System operator side computer, power generation operator side computer, power system, control method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-222706 2017-11-20
JP2017222706A JP7372727B2 (ja) 2017-11-20 2017-11-20 系統運用者側コンピュータ、発電事業者側コンピュータ、電力システム、制御方法及びプログラム

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/764,568 A-371-Of-International US20200389025A1 (en) 2017-11-20 2018-11-19 System Operator Side Computer, Power Generation Operator Side Computer, Power System, Control Method, And Program
US17/562,554 Division US20220123553A1 (en) 2017-11-20 2021-12-27 System operator side computer, power generation operator side computer, power system, control method, and program

Publications (1)

Publication Number Publication Date
WO2019098372A1 true WO2019098372A1 (ja) 2019-05-23

Family

ID=66539016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042707 WO2019098372A1 (ja) 2017-11-20 2018-11-19 系統運用者側コンピュータ、発電事業者側コンピュータ、電力システム、制御方法及びプログラム

Country Status (4)

Country Link
US (2) US20200389025A1 (ja)
EP (1) EP3716436A4 (ja)
JP (1) JP7372727B2 (ja)
WO (1) WO2019098372A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2592311A (en) * 2020-02-19 2021-08-25 Conductify Ltd Hybrid grid and renewable based energy system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11404871B1 (en) 2021-09-08 2022-08-02 8Me Nova, Llc Methods and systems for automatic generation control of renewable energy resources
US11705727B2 (en) 2021-09-08 2023-07-18 8Me Nova, Llc Methods and systems for automatic generation control of renewable energy resources
WO2023038709A1 (en) * 2021-09-08 2023-03-16 8Me Nova, Llc Methods and systems for automatic generation control of renewable energy resources

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001086645A (ja) * 1999-09-17 2001-03-30 Mitsubishi Electric Corp 発電設備の最適運転計画算出方法およびその装置
JP2002135976A (ja) * 2000-10-26 2002-05-10 Mitsubishi Electric Corp 負荷平準化システム及び負荷平準化方法
JP2010130762A (ja) * 2008-11-26 2010-06-10 Hitachi Ltd 自然エネルギー発電装置を含む電力供給システムおよび需給調整方法
JP2013066320A (ja) * 2011-09-20 2013-04-11 Hitachi Ltd 電力需給調整システム
JP2015008588A (ja) 2013-06-25 2015-01-15 株式会社東芝 発電制御システム
JP2016077051A (ja) 2014-10-03 2016-05-12 株式会社東芝 デマンドレスポンス量配分システム
JP2016163431A (ja) * 2015-03-02 2016-09-05 三菱重工業株式会社 発電設備の運転計画策定システム及び発電設備の運転計画策定方法
JP2017222706A (ja) 2009-05-29 2017-12-21 パール セラピューティクス,インコーポレイテッド 2つ以上の活性剤を呼吸器送達するための組成物、方法および系

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5656792B2 (ja) * 2011-09-29 2015-01-21 三菱電機株式会社 電力融通システム、デマンド制御装置、デマンド制御方法及びプログラム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001086645A (ja) * 1999-09-17 2001-03-30 Mitsubishi Electric Corp 発電設備の最適運転計画算出方法およびその装置
JP2002135976A (ja) * 2000-10-26 2002-05-10 Mitsubishi Electric Corp 負荷平準化システム及び負荷平準化方法
JP2010130762A (ja) * 2008-11-26 2010-06-10 Hitachi Ltd 自然エネルギー発電装置を含む電力供給システムおよび需給調整方法
JP2017222706A (ja) 2009-05-29 2017-12-21 パール セラピューティクス,インコーポレイテッド 2つ以上の活性剤を呼吸器送達するための組成物、方法および系
JP2013066320A (ja) * 2011-09-20 2013-04-11 Hitachi Ltd 電力需給調整システム
JP2015008588A (ja) 2013-06-25 2015-01-15 株式会社東芝 発電制御システム
JP2016077051A (ja) 2014-10-03 2016-05-12 株式会社東芝 デマンドレスポンス量配分システム
JP2016163431A (ja) * 2015-03-02 2016-09-05 三菱重工業株式会社 発電設備の運転計画策定システム及び発電設備の運転計画策定方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2592311A (en) * 2020-02-19 2021-08-25 Conductify Ltd Hybrid grid and renewable based energy system
GB2592311B (en) * 2020-02-19 2022-09-21 Conductify Ltd Hybrid grid and renewable based energy system

Also Published As

Publication number Publication date
US20220123553A1 (en) 2022-04-21
EP3716436A1 (en) 2020-09-30
JP7372727B2 (ja) 2023-11-01
JP2019097252A (ja) 2019-06-20
US20200389025A1 (en) 2020-12-10
EP3716436A4 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
WO2019098372A1 (ja) 系統運用者側コンピュータ、発電事業者側コンピュータ、電力システム、制御方法及びプログラム
US20180217568A1 (en) Systems and methods for managing power generation and storage resources
JP6068590B2 (ja) サブアグリゲータシステム
JP6257538B2 (ja) 電力需給調整要請量決定装置及びその方法
KR102574580B1 (ko) 전력 그리드에서의 배터리 충전 및 방전 전력 제어
JP5645442B2 (ja) 電力需要管理システムおよび電力需要管理方法
CN101310227A (zh) 预测性合同系统和方法
JP6610059B2 (ja) 電力需要誘導装置
JP2019102006A (ja) 設備計画装置、設備計画方法及び設備計画プログラム
JP2015006059A (ja) 電力小売管理装置および電力小売管理方法
JP6150012B2 (ja) 発電制御装置、制御装置、制御方法及びプログラム
WO2018069993A1 (ja) 水素エネルギー貯蔵システム、水素エネルギー貯蔵システムの制御方法、及びプログラム
JP6290717B2 (ja) 電力管理装置
Bukhsh et al. Risk and reliability assessment of future power systems
Pinto et al. Mitigation in the very short-term of risk from wind ramps with unforeseen severity
KR20210035737A (ko) 수요 우선순위에 따른 에너지 인지 분배 시스템 및 그 방법
JP2021087278A (ja) 自己託送システム及び自己託送方法
JP2016127622A (ja) 電力需要予測システム
JP7226581B2 (ja) 制御装置、制御方法及びプログラム
JP7065291B2 (ja) 電力制御方法、プログラム、電力制御システム、及び電力管理システム
WO2021132583A1 (ja) 電力管理システム及び電力管理方法
WO2021132579A1 (ja) 電力管理システム及び電力管理方法
Liere‐Netheler et al. Technical and economic analysis of curative actions in distribution networks utilizing battery energy storage systems
JP2023142394A (ja) 災害対策計画立案システム及び災害対策計画立案方法
US9929564B2 (en) Utility provisioning in an energy resource system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18877778

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018877778

Country of ref document: EP

Effective date: 20200622