WO2019098198A1 - 画像生成装置、ヘッドマウントディスプレイ、画像生成システム、画像生成方法、およびプログラム - Google Patents
画像生成装置、ヘッドマウントディスプレイ、画像生成システム、画像生成方法、およびプログラム Download PDFInfo
- Publication number
- WO2019098198A1 WO2019098198A1 PCT/JP2018/042003 JP2018042003W WO2019098198A1 WO 2019098198 A1 WO2019098198 A1 WO 2019098198A1 JP 2018042003 W JP2018042003 W JP 2018042003W WO 2019098198 A1 WO2019098198 A1 WO 2019098198A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- unit
- reprojection
- mounted display
- alpha
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T19/00—Manipulating 3D models or images for computer graphics
- G06T19/006—Mixed reality
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T15/00—3D [Three Dimensional] image rendering
- G06T15/10—Geometric effects
- G06T15/20—Perspective computation
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G5/00—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G5/00—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
- G09G5/36—Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the display of a graphic pattern, e.g. using an all-points-addressable [APA] memory
- G09G5/37—Details of the operation on graphic patterns
- G09G5/377—Details of the operation on graphic patterns for mixing or overlaying two or more graphic patterns
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/64—Constructional details of receivers, e.g. cabinets or dust covers
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F13/00—Video games, i.e. games using an electronically generated display having two or more dimensions
- A63F13/20—Input arrangements for video game devices
- A63F13/21—Input arrangements for video game devices characterised by their sensors, purposes or types
- A63F13/213—Input arrangements for video game devices characterised by their sensors, purposes or types comprising photodetecting means, e.g. cameras, photodiodes or infrared cells
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F13/00—Video games, i.e. games using an electronically generated display having two or more dimensions
- A63F13/25—Output arrangements for video game devices
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F2300/00—Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
- A63F2300/30—Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by output arrangements for receiving control signals generated by the game device
- A63F2300/308—Details of the user interface
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F2300/00—Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
- A63F2300/60—Methods for processing data by generating or executing the game program
- A63F2300/66—Methods for processing data by generating or executing the game program for rendering three dimensional images
- A63F2300/6661—Methods for processing data by generating or executing the game program for rendering three dimensional images for changing the position of the virtual camera
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0138—Head-up displays characterised by optical features comprising image capture systems, e.g. camera
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/014—Head-up displays characterised by optical features comprising information/image processing systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0093—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for monitoring data relating to the user, e.g. head-tracking, eye-tracking
Definitions
- the present invention relates to an image generation device, a head mounted display, an image generation system, and an image generation method.
- a head mounted display connected to a game machine is mounted on a head, and while watching a screen displayed on the head mounted display, game play is performed by operating a controller or the like.
- the head mounted display is attached, the user can not see anything other than the image displayed on the head mounted display, so the sense of immersion in the image world is enhanced, and the effect of further enhancing the entertainment of the game can be obtained.
- a virtual image of virtual reality VR (Virtual Reality)
- VR Virtual Reality
- a user wearing a non-transmissive head mounted display can not directly view the outside world, but a camera mounted on the head mounted display can capture an image of the outside world and display it on a display panel.
- a video see-through type head mounted display There is also a video see-through type head mounted display.
- augmented reality is realized by superimposing virtual world objects generated by computer graphics (CG (Computer Graphics)) on external images captured by a camera. Images can also be generated and displayed.
- CG Computer Graphics
- the image of augmented reality is an extension of the real world with virtual objects, and the user experiences the virtual world while being aware of the connection with the real world Can.
- the camera mounted on the head mounted display is superimposed while the external image is captured at a high frame rate in conjunction with the movement of the head of the user
- the virtual world takes longer to render, so the frame rate of the virtual world is lower than that of the camera. Therefore, the augmented reality image can not be generated according to the high frame rate of the camera, and the user feels a slight delay in the augmented reality image and loses a sense of connection with the real world.
- the present invention has been made in view of these problems, and it is an object of the present invention to provide an image generation apparatus, a head mounted display, an image generation system, and an image generation method capable of improving the quality of an augmented reality image. It is in.
- an image generating apparatus includes a rendering unit that renders an object in a virtual space to generate a computer graphics image, and a captured image of the real space provided from a head mounted display
- An alpha-added image generation unit that generates an alpha-added computer graphics image based on the depth information of the image
- a reprojection unit that converts the alpha-added computer graphics image to a new viewpoint position or gaze direction
- a transmitter configured to transmit the processed computer graphic image with alpha to the head mounted display.
- the head mounted display is provided with a reprojection unit that converts a photographed image in real space into a new viewpoint position or gaze direction, a receiving unit that receives an alpha-added computer graphics image, and a reprojection process. And a superimposing unit for superimposing the computer graphic image with alpha on the photographed image of the real space to generate an augmented reality image.
- This image generation system is an image generation system including a head mounted display and an image generation device, wherein the image generation device renders an object in a virtual space to generate a computer graphics image, and the head mount An alpha-added image generation unit for generating an alpha-added computer graphics image based on depth information of a real space captured image provided from a display; and matching the alpha-added computer graphics image to a new viewpoint position or gaze direction And a transmission unit for transmitting the alpha-added computer graphic image subjected to the reprojection processing to the head mounted display.
- the head mounted display includes a second reprojection unit that converts a captured image of the physical space to a new viewpoint position or gaze direction, and a receiving unit that receives an alpha-added computer graphics image from the image generation device. And a superimposing unit that superimposes the alpha-added computer graphic image on the photographed image of the real space subjected to the reprojection processing to generate an augmented reality image.
- Yet another aspect of the present invention is an image generation method.
- This method generates a computer graphic image with alpha based on a rendering step of rendering an object in virtual space to generate a computer graphics image, and depth information of a real space photographed image provided from a head mounted display Step of generating an image with alpha, a reprojection step of converting the computer graphic image with alpha to a new viewpoint position or gaze direction, and a head of the computer graphic image with alpha subjected to reprojection processing Transmitting to the mount display.
- Yet another aspect of the present invention is an image generating device.
- This apparatus renders an object in a virtual space and generates a computer graphics image, and a transmitting unit transmits the computer graphics image together with depth information to a head mounted display for superimposing on a photographed image in real space And.
- Yet another aspect of the present invention is a head mounted display.
- This head mounted display includes a first reprojection unit that converts a captured image in real space to a new viewpoint position or gaze direction, a receiving unit that receives a computer graphics image with depth information, and a computer graphic.
- a second reprojection unit that converts the source image into a new viewpoint position or gaze direction, and the depth information is added to the captured image in the real space subjected to the reprojection processing.
- a superimposing unit that generates an augmented reality image by superimposing a computer graphics image on a pixel-by-pixel basis with reference to depth information.
- This image generation system is an image generation system including a head mounted display and an image generation device, wherein the image generation device renders an object in a virtual space to generate a computer graphics image, and a real space And a transmitter configured to transmit the computer graphics image together with the depth information to the head mounted display to be superimposed on a photographed image.
- the head mount display is a first reprojection unit that converts a photographed image in real space to a new viewpoint position or gaze direction, and receives a computer graphics image with depth information from the image generation device And a second reprojection unit for converting the computer graphics image to a new viewpoint position or gaze direction, and the reprojection process is performed on the photographed image of the real space subjected to the reprojection process.
- a superimposing unit that generates an augmented reality image by superimposing the computer graphics image with depth information in units of pixels with reference to the depth information.
- Yet another aspect of the present invention is an image generation method.
- This method comprises: a first reprojection step of converting a photographed image in real space to a new viewpoint position or gaze direction; a receiving step of receiving a computer graphics image with depth information; and the computer graphics A second reprojection step of transforming an image to a new viewpoint position or line of sight direction, and a computer with the depth information having a reprojection process applied to the photographed image of the real space subjected to the reprojection process And generating an augmented reality image by superimposing the graphics image on a pixel-by-pixel basis with reference to depth information.
- FIG. 1 is a configuration diagram of an image generation system according to the present embodiment. It is a functional block diagram of the head mounted display which concerns on a premise technology. It is a functional block diagram of the image generation apparatus which concerns on a premise technology. It is a figure explaining the composition of the image generation system concerning the premise technology for superimposing a CG image on a camera image, and generating an augmented reality image. It is a functional block diagram of the head mounted display which concerns on 1st Embodiment.
- FIG. 1 is a functional configuration diagram of an image generation apparatus according to a first embodiment.
- FIG. 1 is an external view of a head mounted display 100.
- the head mounted display 100 is a display device mounted on the head of the user for viewing still images, moving images, and the like displayed on the display and listening to sounds, music, and the like output from headphones.
- a camera unit is mounted on the head mounted display 100, and while the user is wearing the head mounted display 100, the outside world can be photographed.
- the head mounted display 100 is an example of a “wearable display”.
- a method of generating an image displayed on the head mounted display 100 will be described.
- the method of generating an image according to the present embodiment is not limited to the head mounted display 100 in a narrow sense, but a glasses, glasses type display, glasses type camera, It can also be applied when wearing headphones, headsets (headphones with microphones), earphones, earrings, earpiece cameras, hats, camera hats, hair bands etc.
- FIG. 2 is a block diagram of an image generation system according to the present embodiment.
- the head mounted display 100 is connected to the image generation apparatus 200 by an interface 300 such as HDMI (High-Definition Multimedia Interface), which is a standard of a communication interface that transmits video and audio as digital signals, as an example. .
- HDMI High-Definition Multimedia Interface
- the image generation apparatus 200 predicts the position / attitude information of the head mounted display 100 from the current position / attitude information of the head mounted display 100 in consideration of the delay from the generation of an image to the display, and predicts the head mounted display 100 An image to be displayed on the head mounted display 100 is drawn on the premise of the position / posture information and transmitted to the head mounted display 100.
- An example of the image generation device 200 is a game machine.
- the image generation device 200 may be further connected to a server via a network.
- the server may provide the image generation apparatus 200 with an online application such as a game in which a plurality of users can participate via the network.
- the head mounted display 100 may be connected to a computer or a portable terminal instead of the image generation device 200.
- FIG. 3 is a functional block diagram of the head mounted display 100 according to the base technology.
- the control unit 10 is a main processor that processes and outputs signals such as image signals and sensor signals, and instructions and data.
- the input interface 20 receives an operation signal and a setting signal from the user and supplies the control unit 10 with the operation signal and the setting signal.
- the output interface 30 receives an image signal from the control unit 10 and displays it on the display panel 32.
- the communication control unit 40 transmits data input from the control unit 10 to the outside through wired or wireless communication via the network adapter 42 or the antenna 44.
- the communication control unit 40 also receives data from the outside by wired or wireless communication via the network adapter 42 or the antenna 44, and outputs the data to the control unit 10.
- the storage unit 50 temporarily stores data to be processed by the control unit 10, parameters, operation signals and the like.
- the attitude sensor 64 detects position information of the head mounted display 100 and attitude information such as a rotation angle or tilt of the head mounted display 100.
- the attitude sensor 64 is realized by appropriately combining a gyro sensor, an acceleration sensor, an angular acceleration sensor, and the like.
- a motion sensor combining at least one or more of a three-axis geomagnetic sensor, a three-axis acceleration sensor, and a three-axis gyro (angular velocity) sensor may be used to detect front / rear, left / right, up / down motion of the user's head.
- the external input / output terminal interface 70 is an interface for connecting peripheral devices such as a USB (Universal Serial Bus) controller.
- the external memory 72 is an external memory such as a flash memory.
- the camera unit 80 includes components necessary for photographing such as a lens, an image sensor, and a distance measuring sensor, and supplies the photographed image of the outside world and depth information to the control unit 10.
- the control unit 10 controls focusing and zooming of the camera unit 80.
- the HDMI transmitting and receiving unit 90 transmits and receives digital signals of video and audio to and from the image generating apparatus 200 according to the HDMI.
- the HDMI transmitting and receiving unit 90 receives external images and depth information captured by the camera unit 80 from the control unit 10, and transmits the image to the image generation apparatus 200 through the HDMI transmission path.
- the HDMI transmitting and receiving unit 90 receives an image generated by the image generating apparatus 200 from the image generating apparatus 200 through the HDMI transmission path, and supplies the image to the control unit 10.
- the control unit 10 can supply an image or text data to the output interface 30 for display on the display panel 32, or can supply the image or text data to the communication control unit 40 to be transmitted to the outside.
- the current position / attitude information of the head mounted display 100 detected by the attitude sensor 64 is notified to the image generation apparatus 200 via the communication control unit 40 or the external input / output terminal interface 70.
- the HDMI transmitting / receiving unit 90 may transmit the current position / attitude information of the head mounted display 100 to the image generating apparatus 200.
- FIG. 4 is a functional block diagram of an image generation apparatus 200 according to the base technology.
- the figure depicts a block diagram focusing on functions, and these functional blocks can be realized in various forms by hardware only, software only, or a combination thereof.
- At least a part of the functions of the image generation device 200 may be implemented on the head mounted display 100. Alternatively, at least a part of the functions of the image generation device 200 may be implemented on a server connected to the image generation device 200 via a network.
- the position and orientation acquisition unit 210 acquires current position and orientation information of the head mounted display 100 from the head mounted display 100.
- the viewpoint and line of sight setting unit 220 sets the viewpoint position and the line of sight direction of the user using the position and orientation information of the head mounted display 100 acquired by the position and orientation acquiring unit 210.
- the HDMI transmitting and receiving unit 280 receives an image of the real space captured by the camera unit 80 from the head mounted display 100, and supplies the image to the image signal processing unit 250.
- the image signal processing unit 250 performs image signal processing such as RGB conversion (demosaicing), white balance, color correction, noise reduction, and the like on the Raw image captured by the camera unit 80 of the head mounted display 100 (ISP (Image Signal Processing) ), And a distortion correction process is performed to remove distortion and the like due to the optical system of the camera unit 80.
- the image signal processing unit 250 supplies the RGB image subjected to the image signal processing and the distortion correction processing to the image generation unit 230.
- the image generation unit 230 reads out data necessary for generating computer graphics from the image storage unit 260, renders an object in the virtual space to generate a CG image, and a camera in real space provided by the image signal processing unit 250 By superimposing on an image, an augmented reality image is generated and output to the image storage unit 260.
- the image generation unit 230 includes a rendering unit 232, an AR superimposing unit 234, a post processing unit 236, a reprojection unit 240, and a distortion processing unit 242.
- the rendering unit 232 renders an object in a virtual space viewed from the viewpoint position of the user wearing the head mounted display 100 according to the viewpoint position and the line of sight of the user set by the viewpoint / line of sight setting unit 220. It is supplied to the superimposing unit 234.
- the AR superimposing unit 234 generates an augmented reality image by superimposing the CG image generated by the rendering unit 232 on the camera image supplied from the image signal processing unit 250, and supplies the augmented reality image to the post processing unit 236.
- the post processing unit 236 performs post processing such as depth of field adjustment, tone mapping, and anti-aliasing on the augmented reality image, and the augmented reality image in which the virtual object is superimposed on the image in real space is smooth and natural Post-process to make it visible.
- the reprojection unit 240 receives the latest position / attitude information of the head mounted display 100 from the position / attitude acquiring unit 210, performs reprojection processing on the post-processed augmented reality image, and Convert to the image seen from the latest viewpoint position and gaze direction.
- the movement of the head mounted display 100 is detected, the CPU issues a drawing command, the GPU (Graphics Processing Unit) executes rendering, and the drawn image is output to the head mounted display 100.
- draw is performed at a frame rate of, for example, 60 fps (frames / second), and there is a delay of one frame from detection of movement of the head mounted display 100 to output of an image. This is about 16.67 ms at a frame rate of 60 fps, which is a sufficient time for a human to detect a shift.
- time warp or “reprojection” is performed to correct the rendered image in accordance with the latest position and posture of the head mounted display 100 so that it is difficult for a human to detect a deviation.
- the distortion processing unit 242 performs processing to distort and distort the image according to distortion generated in the optical system of the head mount display 100 with respect to the augmented reality image subjected to the reprojection processing, and the image storage unit 260
- the distortion processing unit 242 performs processing to distort and distort the image according to distortion generated in the optical system of the head mount display 100 with respect to the augmented reality image subjected to the reprojection processing, and the image storage unit 260
- the HDMI transmitting and receiving unit 280 reads the frame data of the augmented reality image generated by the image generating unit 230 from the image storage unit 260, and transmits the frame data to the head mounted display 100 according to the HDMI.
- FIG. 5 is a diagram for explaining the configuration of an image generation system according to the base technology for generating an augmented reality image by superimposing a CG image on a camera image.
- main configurations of the head mounted display 100 and the image generation apparatus 200 for generating an augmented reality image are illustrated and described.
- An external camera image captured by the camera unit 80 of the head mounted display 100 is transmitted to the image generation apparatus 200 and supplied to the image signal processing unit 250.
- the image signal processing unit 250 performs image signal processing and distortion correction processing on the camera image, and supplies it to the AR superimposing unit 234.
- the rendering unit 232 of the image generation device 200 generates a virtual object viewed from the viewpoint position / line of sight of the user wearing the head mounted display 100 and supplies the virtual object to the AR superimposing unit 234.
- the AR superimposing unit 234 superimposes a CG image on a camera image to generate an augmented reality image.
- the post processing unit 236 performs post processing on the augmented reality image.
- the reprojection unit 240 transforms the post-processed augmented reality image so as to fit the latest viewpoint position and gaze direction.
- the distortion processing unit 242 performs distortion processing on the augmented reality image after reprojection.
- the final RGB image after distortion processing is transmitted to the head mounted display 100 and displayed on the display panel 32.
- the camera image is superimposed in accordance with the frame rate of rendering of the CG image by the image generation apparatus 200. Since rendering takes time, the frame rate of rendering of the virtual space by the rendering unit 232 is slower than the frame rate of imaging of the real space by the camera unit 80. For example, even if shooting at 120 fps is performed by the camera unit 80, rendering may be possible only at 60 fps. As a result, the frame rate of the see-through image displayed on the display panel of the head mounted display 100 decreases in accordance with the frame rate of rendering, and the see-through image becomes jerky and results of not seeing reality even when viewing augmented reality images It becomes.
- FIG. 6 is a functional configuration diagram of the head mounted display 100 according to the first embodiment.
- the posture estimation unit 81 estimates posture information (position and rotation) of the head mounted display 100 from feature points of the image captured by the camera unit 80.
- the transmission and reception unit 92 transmits the posture information estimated by the posture estimation unit 81 to the image generation apparatus 200.
- the image signal processing unit 82 performs image signal processing such as RGB conversion (demosaicing), white balance, color correction, noise reduction, and the like on the Raw image captured by the camera unit 80, and further the optical system of the camera unit 80. A distortion correction process is performed to remove distortion and the like.
- the image signal processing unit 82 supplies the camera image subjected to the image signal processing and distortion correction processing to the control unit 10.
- the reprojection unit 84 performs reprojection processing on the camera image based on the latest position / attitude information of the head mounted display 100 detected by the attitude estimation unit 81 or the attitude sensor 64, and the latest viewpoint of the head mounted display 100. Convert to an image that can be seen from the position and gaze direction.
- the distortion processing unit 86 performs processing to deform and distort the image of the camera image subjected to the reprojection processing in accordance with distortion generated in the optical system of the head mount display 100, and the distortion-processed camera image Are supplied to the control unit 10.
- the AR superimposing unit 88 generates an augmented reality image by superimposing the alpha-added CG image generated by the image generation device 200 on the camera image subjected to the distortion processing, and supplies the augmented reality image to the control unit 10.
- the transmitting and receiving unit 92 transmits and receives digital signals of video and audio to and from the image generating apparatus 200.
- the transmission / reception unit 92 receives depth information of a camera image from the control unit 10 and transmits the depth information to the image generation apparatus 200.
- the transmitting and receiving unit 92 receives an image including the depth information generated by the image generating apparatus 200 from the image generating apparatus 200 and supplies the image to the control unit 10.
- FIG. 7 is a functional block diagram of the image generation apparatus 200 according to the first embodiment.
- the transmission / reception unit 282 receives depth information of an image of the real space taken by the camera unit 80 from the head mounted display 100 and supplies the depth information to the depth acquisition unit 252.
- the image generation unit 230 reads data necessary for generating computer graphics from the image storage unit 260, renders an object in the virtual space to generate a CG image, and a camera image of the real space provided from the depth acquisition unit 252
- the CG image with alpha is generated from the CG image on the basis of the depth information, and is output to the image storage unit 260.
- the image generation unit 230 includes a rendering unit 232, an alpha-added image generation unit 233, a post-processing unit 236, a reprojection unit 240, and a distortion processing unit 242.
- the rendering unit 232 renders an object in a virtual space viewed from the viewpoint position of the user who wears the head mounted display 100 according to the viewpoint position and the gaze direction of the user set by the viewpoint / gaze setting unit 220 and CG An image is generated and supplied to the alpha-added image generation unit 233.
- the alpha-added image generation unit 233 generates an alpha-added CG image from the CG image based on the depth information of the camera image given from the depth acquisition unit 252. Specifically, the positional relationship between an object in the real space and an object in the virtual space is determined, and in the CG image, the area of the background of the virtual object or the occluded area hidden behind objects by the real space object in front of the virtual object. Sets the alpha value to be transparent.
- the alpha-added image generation unit 233 provides the post-processing unit 236 with the alpha-added CG image.
- the post-processing unit 236 performs post-processing such as depth of field adjustment, tone mapping, and anti-aliasing on the alpha-added CG image to post-process the alpha-added CG image so that it looks natural and smooth.
- the alpha value can also be set so that the boundary between the CG image and the camera image is translucent.
- the reprojection unit 240 receives the latest position / attitude information of the head mounted display 100 from the position / attitude acquiring unit 210, performs reprojection processing on the post-processed alpha-added CG image, and executes the head mounted display 100. Convert to the image seen from the latest viewpoint position and gaze direction of.
- the distortion processing unit 242 performs processing to deform and distort the CG image with alpha subjected to the reprojection processing in accordance with the distortion generated in the optical system of the head mounted display 100, and stores the image in the image storage unit 260. Do.
- the transmission / reception unit 282 reads the frame data of the CG image with alpha generated by the image generation unit 230 from the image storage unit 260, and transmits the CG image with alpha to the head mounted display 100 via the communication interface capable of transmitting the RGBA image signal.
- the RGBA image signal is an image signal in which an alpha value is added to the value of each color of red, green and blue for each pixel.
- FIG. 8 is a view for explaining the arrangement of an image generation system according to the first embodiment for generating an augmented reality image by superimposing a CG image on a camera image.
- An external camera image taken by the camera unit 80 of the head mounted display 100, depth information, and a timestamp are supplied to the image signal processing unit 82. Also, the camera image and the time stamp are supplied to the posture estimation unit 81.
- the attitude estimation unit 81 estimates the attitude information of the head mounted display 100 from the camera image, and supplies the attitude information and the time stamp to the rendering unit 232.
- the image signal processing unit 82 performs image signal processing and distortion correction processing on the camera image, and gives the camera image and the timestamp to the reprojection unit 84.
- the image signal processing unit 82 transmits the depth information to the image generation apparatus 200 and supplies the depth information to the alpha-added image generation unit 233.
- the rendering unit 232 of the image generation device 200 generates a virtual object viewed from the viewpoint position / line of sight of the user who wears the head mounted display 100, and supplies the CG image and the time stamp to the alpha-added image generation unit 233.
- the time stamp is passed from the alpha-added image generation unit 233 to the post-processing unit 236 and the reprojection unit 240.
- the alpha-added image generation unit 233 generates an alpha-added CG image from the CG image based on the depth information.
- the post processing unit 236 performs post processing on the alpha-added CG image.
- the reprojection unit 240 converts the post-processed alpha-added CG image so that it matches the latest viewpoint position and gaze direction based on the time stamp.
- the distortion processing unit 242 performs distortion processing on the alpha-added CG image after reprojection.
- the final RGBA image after distortion processing is transmitted to the head mounted display 100 and supplied to the AR superimposing unit 88.
- the RGBA image is a CG image in which an alpha value is set to indicate that the area on which the camera image is to be superimposed is transparent.
- the reprojection unit 84 of the head mounted display 100 converts the camera image subjected to the image signal processing and the distortion correction processing so as to match the latest viewpoint position and line of sight direction with reference to the time stamp, and generates a distortion processing unit 86.
- the distortion processing unit 86 performs distortion processing on the camera image after reprojection.
- the AR superimposing unit 88 generates an augmented reality image by superimposing the alpha-added CG image supplied from the image generation device 200 on the distortion-processed camera image.
- the generated augmented reality image is displayed on the display panel 32.
- the image generation system of the first embodiment since the camera image photographed by the camera unit 80 of the head mounted display 100 is not transferred to the image generation apparatus 200, the camera image photographed at a high frame rate is generated It can be superimposed on the CG image generated by the device 200. Therefore, the see-through image is not interrupted, and a user watching the augmented reality image on the head mounted display 100 can have a sense of connection with the real world.
- the configuration of the head mounted display 100 is basically the same as that shown in FIG. 6, but the reprojection unit 84 is configured to include a first reprojection unit 84a for a camera image and a second reprojection for a CG image. It has the part 84b.
- FIG. 9 is a functional block diagram of an image generation apparatus 200 according to the second embodiment.
- the image generation apparatus 2000 does not receive the camera image and the depth information captured by the camera unit 80 from the head mounted display 100.
- the image generation unit 230 reads data necessary for generation of computer graphics from the image storage unit 260, renders an object in the virtual space to generate a CG image, performs post processing, and outputs the CG image to the image storage unit 260.
- the image generation unit 230 includes a rendering unit 232 and a post processing unit 236.
- the rendering unit 232 renders an object in a virtual space viewed from the viewpoint position of the user who wears the head mounted display 100 according to the viewpoint position and the gaze direction of the user set by the viewpoint / gaze setting unit 220 and CG An image is generated and given to the post processing unit 236.
- the post processing unit 236 performs post processing on the CG image, performs post processing so that the CG image looks natural and smooth, and stores it in the image storage unit 260.
- the transmission / reception unit 282 reads frame data of a CG image including the alpha value and the depth information generated by the image generation unit 230 from the image storage unit 260, and head mounts as an RGBAD image via a communication interface capable of transmitting an RGBAD image signal. Transmit to the display 100.
- the RGBAD image signal is an image signal in which an alpha value and a depth value are added to the values of each color of red, green and blue for each pixel.
- FIG. 10 is a view for explaining the arrangement of an image generation system according to the second embodiment for generating an augmented reality image by superimposing a CG image on a camera image.
- An external camera image taken by the camera unit 80 of the head mounted display 100, depth information, and a timestamp are supplied to the image signal processing unit 82. Also, the camera image and the time stamp are supplied to the posture estimation unit 81.
- the attitude estimation unit 81 estimates the attitude information of the head mounted display 100 from the camera image, and supplies the attitude information and the time stamp to the rendering unit 232.
- the image signal processing unit 82 performs image signal processing and distortion correction processing on the camera image, and gives the camera image, depth information, and a timestamp to the first reprojection unit 84 a.
- the rendering unit 232 of the image generation device 200 generates a virtual object viewed from the viewpoint position and the gaze direction of the user wearing the head mounted display 100, and gives a CG image and a time stamp to the post processing unit 236.
- the post-processing unit 236 performs post-processing on the CG image, transmits it as an RGBAD image including an alpha value and depth information to the head mounted display 100 together with the time stamp, and supplies it to the reprojection unit 84 b.
- the first reprojection unit 84a of the head mounted display 100 converts the camera image subjected to the image signal processing and the distortion correction processing based on the time stamp so as to fit the latest viewpoint position and line of sight, and performs AR superposition. Supply to the section 88.
- the second reprojection unit 84 b of the head mounted display 100 converts the CG image based on the time stamp so as to fit the latest viewpoint position and line of sight direction, and supplies the converted image to the AR superimposing unit 88.
- the second reprojection unit 84b can perform reprojection processing in consideration of not only the rotation component but also the translation component using the depth information.
- the first reprojection unit 84a for the camera image and the second reprojection unit 84b for the CG image are separated because the rendering of the image generation apparatus 200 takes time.
- the difference amount to be corrected is different depending on the reprojection. For example, while reprojection of one frame ahead is performed by the first reprojection unit 84a, reprojection of two frame ahead must be performed by the second reprojection unit 84b.
- the AR superimposing unit 88 superimposes the CG image on which the reprojection processing has been performed by the second reprojection unit 84 b on the camera image on which the reprojection processing has been performed by the first reprojection unit 84 a.
- An image is generated and supplied to the distortion processing unit 86.
- the AR superimposing unit 88 can perform superimposing processing in pixel units using both depth information.
- the distortion processor 86 performs distortion processing on the augmented reality image.
- the generated augmented reality image is displayed on the display panel 32.
- FIG. 11 is a view for explaining a modification of the configuration of the image generation system according to the second embodiment for generating an augmented reality image by superimposing a CG image on a camera image. Points different from the configuration of FIG. 10 will be described.
- the first reprojection unit 84 a is provided downstream of the AR superimposing unit 88, and the image signal processing unit 82 directly supplies the camera image, the depth information, and the time stamp to the AR superposing unit 88.
- the timestamp is passed from the AR superimposing unit 88 to the first reprojection unit 84 a.
- the second reprojection unit 84b converts the CG image to the latest viewpoint position and line of sight direction based on the time stamp, and supplies the converted image to the AR superimposing unit 88.
- the AR superimposing unit 88 generates an augmented reality image by superimposing the CG image on which the reprojection processing has been performed by the second reprojection unit 84 b on the camera image.
- the first reprojection unit 84a predicts the output timing of the augmented reality image on the basis of the time stamp, converts the augmented reality image to fit the viewpoint position / line of sight at the output timing, and supplies the converted image to the distortion processing unit 86.
- the image generation system of the second embodiment as in the first embodiment, it is possible to superimpose a camera image photographed at a high frame rate on a CG image, so that the see-through image becomes broken.
- the CG image is transmitted to the head mounted display 100 including the depth information
- the head mounted display 100 can superimpose the camera image with high accuracy by referring to the depth information for each pixel.
- the present invention can be applied not only to the image see-through type but also to the optical see-through type head mounted display 100.
- prediction conversion is possible not only for rotational components but also for translational components in the reprojection unit 84b of the head mount display 100. Three-dimensional conversion is performed for each pixel to perform reprojection processing with high accuracy. It can be applied.
- the CG image since the CG image is subjected to reprojection processing on the head mounted display 100 side, the CG image can be converted to fit the viewpoint position and the line of sight immediately before displaying on the display panel 32, and the followability can be achieved with high accuracy. Can provide augmented reality images.
- the image generation apparatus 200 can use more resources for rendering.
- the posture estimation unit 81 may be provided in the image generation apparatus 200 as a modification.
- a video transmission (video see-through) type head mounted display has been described as an example, but an optical transmission (optical see-through) type in which the display unit is configured with a half mirror etc.
- the present embodiment can also be applied to the case of a head mounted display.
- the depth information of the camera image and the depth information of the CG image are compared, and the CG image is deleted for the region where the real space object exists in front of the virtual space object. Make it visible through the real space.
- DESCRIPTION OF SYMBOLS 10 control part 20 input interface, 30 output interface, 32 display panel, 40 communication control part, 42 network adapter, 44 antenna, 50 storage part, 64 attitude sensor, 70 external input / output terminal interface, 72 external memory, 80 camera unit , 81 attitude estimation unit, 82 image signal processing unit, 84 reprojection unit, 86 distortion processing unit, 88 AR superposition unit, 90 HDMI transmission / reception unit, 92 transmission / reception unit, 100 head mounted display, 200 image generation device, 210 position / attitude Acquisition unit, 220 viewpoint / line-of-sight setting unit, 230 image generation unit, 232 rendering unit, 233 image generation unit with alpha, 234 AR superposition unit, 236 post-processing unit 240 re-projection portion, 242 distortion processing unit, 250 an image signal processing unit, 252 depth obtaining section, 260 image storage unit, 280 HDMI receiving unit, 282 reception unit, 300 interface.
- the invention can be used in the field of image generation.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Computer Graphics (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- Geometry (AREA)
- Optics & Photonics (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Processing Or Creating Images (AREA)
- Image Generation (AREA)
- Controls And Circuits For Display Device (AREA)
Abstract
レンダリング部232は、仮想空間のオブジェクトをレンダリングしてコンピュータグラフィックス画像を生成する。ポストプロセス部236は、コンピュータグラフィックス画像にポストプロセスを施す。送受信部282は、現実空間の撮影画像に重畳するためにポストプロセスが施されたコンピュータグラフィックス画像を奥行き情報とともにヘッドマウントディスプレイ100に送信する。
Description
この発明は、画像生成装置、ヘッドマウントディスプレイ、画像生成システム、および画像生成方法に関する。
ゲーム機に接続されたヘッドマウントディスプレイを頭部に装着して、ヘッドマウントディスプレイに表示された画面を見ながら、コントローラなどを操作してゲームプレイすることが行われている。ヘッドマウントディスプレイを装着すると、ヘッドマウントディスプレイに表示される映像以外はユーザは見ないため、映像世界への没入感が高まり、ゲームのエンタテインメント性を一層高める効果がある。また、ヘッドマウントディスプレイに仮想現実(VR(Virtual Reality))の映像を表示させ、ヘッドマウントディスプレイを装着したユーザが頭部を回転させると、360度見渡せる全周囲の仮想空間が表示されるようにすると、さらに映像への没入感が高まり、ゲームなどのアプリケーションの操作性も向上する。
また、非透過型ヘッドマウントディスプレイを装着したユーザは外界を直接見ることができなくなるが、ヘッドマウントディスプレイに搭載されたカメラによって外界の映像を撮影してディスプレイパネルに表示することのできるビデオ透過(ビデオシースルー)型ヘッドマウントディスプレイもある。ビデオ透過型ヘッドマウントディスプレイでは、カメラで撮影される外界の映像にコンピュータグラフィックス(CG(Computer Graphics))によって生成された仮想世界のオブジェクトを重畳させることで拡張現実(AR(Augmented Reality))の映像を生成して表示することもできる。拡張現実の映像は、現実世界から切り離された仮想現実とは違って、現実世界が仮想オブジェクトで拡張されたものであり、ユーザは現実世界とのつながりを意識しつつ、仮想世界を体験することができる。
拡張現実の映像をヘッドマウントディスプレイに表示する場合、ヘッドマウントディスプレイに搭載されたカメラではユーザの頭部の動きに連動して高フレームレートで外界の映像が取り込まれるのに対して、重畳される仮想世界はレンダリングに時間がかかるため、仮想世界のフレームレートはカメラに比べると低い。そのため、カメラの高フレームレートに合わせて拡張現実の映像を生成することができず、ユーザは拡張現実の映像に微妙な遅れを感じ、現実世界とのつながり感を失うことになる。
本発明はこうした課題に鑑みてなされたものであり、その目的は、拡張現実の映像の品質を向上させることのできる画像生成装置、ヘッドマウントディスプレイ、画像生成システム、および画像生成方法を提供することにある。
上記課題を解決するために、本発明のある態様の画像生成装置は、仮想空間のオブジェクトをレンダリングしてコンピュータグラフィックス画像を生成するレンダリング部と、ヘッドマウントディスプレイから提供される現実空間の撮影画像の奥行き情報にもとづいてアルファ付きコンピュータグラフィックス画像を生成するアルファ付き画像生成部と、前記アルファ付きコンピュータグラフィックス画像を新たな視点位置または視線方向に合うように変換するリプロジェクション部と、リプロジェクション処理が施された前記アルファ付きコンピュータグラフィックス画像を前記ヘッドマウントディスプレイに送信する送信部とを含む。
本発明の別の態様は、ヘッドマウントディスプレイである。このヘッドマウントディスプレイは、現実空間の撮影画像を新たな視点位置または視線方向に合うように変換するリプロジェクション部と、アルファ付きコンピュータグラフィックス画像を受信する受信部と、リプロジェクション処理が施された前記現実空間の撮影画像に前記アルファ付きコンピュータグラフィックス画像を重畳して拡張現実画像を生成する重畳部とを含む。
本発明のさらに別の態様は、画像生成システムである。この画像生成システムは、ヘッドマウントディスプレイと画像生成装置を含む画像生成システムであって、前記画像生成装置は、仮想空間のオブジェクトをレンダリングしてコンピュータグラフィックス画像を生成するレンダリング部と、前記ヘッドマウントディスプレイから提供される現実空間の撮影画像の奥行き情報にもとづいてアルファ付きコンピュータグラフィックス画像を生成するアルファ付き画像生成部と、前記アルファ付きコンピュータグラフィックス画像を新たな視点位置または視線方向に合うように変換する第1のリプロジェクション部と、リプロジェクション処理が施された前記アルファ付きコンピュータグラフィックス画像を前記ヘッドマウントディスプレイに送信する送信部とを含む。前記ヘッドマウントディスプレイは、前記現実空間の撮影画像を新たな視点位置または視線方向に合うように変換する第2のリプロジェクション部と、前記画像生成装置からアルファ付きコンピュータグラフィックス画像を受信する受信部と、リプロジェクション処理が施された現実空間の撮影画像に前記アルファ付きコンピュータグラフィックス画像を重畳して拡張現実画像を生成する重畳部とを含む。
本発明のさらに別の態様は、画像生成方法である。この方法は、仮想空間のオブジェクトをレンダリングしてコンピュータグラフィックス画像を生成するレンダリングステップと、ヘッドマウントディスプレイから提供される現実空間の撮影画像の奥行き情報にもとづいてアルファ付きコンピュータグラフィックス画像を生成するアルファ付き画像生成ステップと、前記アルファ付きコンピュータグラフィックス画像を新たな視点位置または視線方向に合うように変換するリプロジェクションステップと、リプロジェクション処理が施された前記アルファ付きコンピュータグラフィックス画像を前記ヘッドマウントディスプレイに送信する送信ステップとを含む。
本発明のさらに別の態様は、画像生成装置である。この装置は、仮想空間のオブジェクトをレンダリングしてコンピュータグラフィックス画像を生成するレンダリング部と、現実空間の撮影画像に重畳するために前記コンピュータグラフィックス画像を奥行き情報とともにヘッドマウントディスプレイに送信する送信部とを含む。
本発明のさらに別の態様は、ヘッドマウントディスプレイである。このヘッドマウントディスプレイは、現実空間の撮影画像を新たな視点位置または視線方向に合うように変換する第1のリプロジェクション部と、奥行き情報付きのコンピュータグラフィックス画像を受信する受信部と、コンピュータグラフィックス画像を新たな視点位置または視線方向に合うように変換する第2のリプロジェクション部と、リプロジェクション処理が施された前記現実空間の撮影画像にリプロジェクション処理が施された前記奥行き情報付きのコンピュータグラフィックス画像を画素単位で奥行き情報を参照して重畳することにより拡張現実画像を生成する重畳部とを含む。
本発明のさらに別の態様は、画像生成システムである。この画像生成システムは、ヘッドマウントディスプレイと画像生成装置を含む画像生成システムであって、前記画像生成装置は、仮想空間のオブジェクトをレンダリングしてコンピュータグラフィックス画像を生成するレンダリング部と、現実空間の撮影画像に重畳するために前記コンピュータグラフィックス画像を奥行き情報とともに前記ヘッドマウントディスプレイに送信する送信部とを含む。前記ヘッドマウントディスプレイは、現実空間の撮影画像を新たな視点位置または視線方向に合うように変換する第1のリプロジェクション部と、前記画像生成装置から奥行き情報付きのコンピュータグラフィックス画像を受信する受信部と、前記コンピュータグラフィックス画像を新たな視点位置または視線方向に合うように変換する第2のリプロジェクション部と、リプロジェクション処理が施された前記現実空間の撮影画像にリプロジェクション処理が施された前記奥行き情報付きのコンピュータグラフィックス画像を画素単位で奥行き情報を参照して重畳することにより拡張現実画像を生成する重畳部とを含む。
本発明のさらに別の態様は、画像生成方法である。この方法は、現実空間の撮影画像を新たな視点位置または視線方向に合うように変換する第1のリプロジェクションステップと、奥行き情報付きのコンピュータグラフィックス画像を受信する受信ステップと、前記コンピュータグラフィックス画像を新たな視点位置または視線方向に合うように変換する第2のリプロジェクションステップと、リプロジェクション処理が施された前記現実空間の撮影画像にリプロジェクション処理が施された前記奥行き情報付きのコンピュータグラフィックス画像を画素単位で奥行き情報を参照して重畳することにより拡張現実画像を生成する重畳ステップとを含む。
なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、コンピュータプログラム、データ構造、記録媒体などの間で変換したものもまた、本発明の態様として有効である。
本発明によれば、拡張現実の映像の品質を向上させることができる。
図1は、ヘッドマウントディスプレイ100の外観図である。ヘッドマウントディスプレイ100は、ユーザの頭部に装着してディスプレイに表示される静止画や動画などを鑑賞し、ヘッドホンから出力される音声や音楽などを聴くための表示装置である。
ヘッドマウントディスプレイ100に内蔵または外付けされたジャイロセンサや加速度センサなどによりヘッドマウントディスプレイ100を装着したユーザの頭部の位置情報と頭部の回転角や傾きなどの姿勢(orientation)情報を計測することができる。
ヘッドマウントディスプレイ100にはカメラユニットが搭載されており、ユーザがヘッドマウントディスプレイ100を装着している間、外界を撮影することができる。
ヘッドマウントディスプレイ100は、「ウェアラブルディスプレイ」の一例である。ここでは、ヘッドマウントディスプレイ100に表示される画像の生成方法を説明するが、本実施の形態の画像生成方法は、狭義のヘッドマウントディスプレイ100に限らず、めがね、めがね型ディスプレイ、めがね型カメラ、ヘッドフォン、ヘッドセット(マイクつきヘッドフォン)、イヤホン、イヤリング、耳かけカメラ、帽子、カメラつき帽子、ヘアバンドなどを装着した場合にも適用することができる。
図2は、本実施の形態に係る画像生成システムの構成図である。ヘッドマウントディスプレイ100は、一例として、映像・音声をデジタル信号で伝送する通信インタフェースの標準規格であるHDMI(登録商標)(High-Definition Multimedia Interface)などのインタフェース300で画像生成装置200に接続される。
画像生成装置200は、ヘッドマウントディスプレイ100の現在の位置・姿勢情報から、映像の生成から表示までの遅延を考慮してヘッドマウントディスプレイ100の位置・姿勢情報を予測し、ヘッドマウントディスプレイ100の予測位置・姿勢情報を前提としてヘッドマウントディスプレイ100に表示されるべき画像を描画し、ヘッドマウントディスプレイ100に伝送する。
画像生成装置200の一例はゲーム機である。画像生成装置200は、さらにネットワークを介してサーバに接続されてもよい。その場合、サーバは、複数のユーザがネットワークを介して参加できるゲームなどのオンラインアプリケーションを画像生成装置200に提供してもよい。ヘッドマウントディスプレイ100は、画像生成装置200の代わりに、コンピュータや携帯端末に接続されてもよい。
図3~図5を参照して、本実施の形態の前提技術を説明する。
図3は、前提技術に係るヘッドマウントディスプレイ100の機能構成図である。
制御部10は、画像信号、センサ信号などの信号や、命令やデータを処理して出力するメインプロセッサである。入力インタフェース20は、ユーザからの操作信号や設定信号を受け付け、制御部10に供給する。出力インタフェース30は、制御部10から画像信号を受け取り、ディスプレイパネル32に表示する。
通信制御部40は、ネットワークアダプタ42またはアンテナ44を介して、有線または無線通信により、制御部10から入力されるデータを外部に送信する。通信制御部40は、また、ネットワークアダプタ42またはアンテナ44を介して、有線または無線通信により、外部からデータを受信し、制御部10に出力する。
記憶部50は、制御部10が処理するデータやパラメータ、操作信号などを一時的に記憶する。
姿勢センサ64は、ヘッドマウントディスプレイ100の位置情報と、ヘッドマウントディスプレイ100の回転角や傾きなどの姿勢情報を検出する。姿勢センサ64は、ジャイロセンサ、加速度センサ、角加速度センサなどを適宜組み合わせて実現される。3軸地磁気センサ、3軸加速度センサおよび3軸ジャイロ(角速度)センサの少なくとも1つ以上を組み合わせたモーションセンサを用いて、ユーザの頭部の前後、左右、上下の動きを検出してもよい。
外部入出力端子インタフェース70は、USB(Universal Serial Bus)コントローラなどの周辺機器を接続するためのインタフェースである。外部メモリ72は、フラッシュメモリなどの外部メモリである。
カメラユニット80は、レンズ、イメージセンサ、測距センサなど撮影に必要な構成を含み、撮影された外界の映像と奥行き情報を制御部10に供給する。制御部10は、カメラユニット80のフォーカスやズームなどを制御する。
HDMI送受信部90は、HDMIにしたがって映像・音声のデジタル信号を画像生成装置200との間で送受信する。HDMI送受信部90は、カメラユニット80により撮影された外界の映像と奥行き情報を制御部10から受け取り、HDMI伝送路で画像生成装置200に送信する。HDMI送受信部90は、画像生成装置200により生成された画像をHDMI伝送路で画像生成装置200から受信し、制御部10に供給する。
制御部10は、画像やテキストデータを出力インタフェース30に供給してディスプレイパネル32に表示させたり、通信制御部40に供給して外部に送信させることができる。
姿勢センサ64が検出したヘッドマウントディスプレイ100の現在の位置・姿勢情報は、通信制御部40または外部入出力端子インタフェース70を介して画像生成装置200に通知される。あるいは、HDMI送受信部90がヘッドマウントディスプレイ100の現在の位置・姿勢情報を画像生成装置200に送信してもよい。
図4は、前提技術に係る画像生成装置200の機能構成図である。同図は機能に着目したブロック図を描いており、これらの機能ブロックはハードウエアのみ、ソフトウエアのみ、またはそれらの組合せによっていろいろな形で実現することができる。
画像生成装置200の少なくとも一部の機能をヘッドマウントディスプレイ100に実装してもよい。あるいは、画像生成装置200の少なくとも一部の機能を、ネットワークを介して画像生成装置200に接続されたサーバに実装してもよい。
位置・姿勢取得部210は、ヘッドマウントディスプレイ100の現在の位置・姿勢情報をヘッドマウントディスプレイ100から取得する。
視点・視線設定部220は、位置・姿勢取得部210により取得されたヘッドマウントディスプレイ100の位置・姿勢情報を用いて、ユーザの視点位置および視線方向を設定する。
HDMI送受信部280は、ヘッドマウントディスプレイ100からカメラユニット80により撮影された現実空間の映像を受信し、画像信号処理部250に供給する。
画像信号処理部250は、ヘッドマウントディスプレイ100のカメラユニット80により撮影されたRaw画像に対してRGB変換(デモザイク処理)、ホワイトバランス、色補正、ノイズリダクションなどの画像信号処理(ISP(Image Signal Processing))を施し、さらにカメラユニット80の光学系による歪みなどを取り除く歪み補正処理を施す。画像信号処理部250は画像信号処理および歪み補正処理が施されたRGB画像を画像生成部230に供給する。
画像生成部230は、画像記憶部260からコンピュータグラフィックスの生成に必要なデータを読み出し、仮想空間のオブジェクトをレンダリングしてCG画像を生成し、画像信号処理部250から提供される現実空間のカメラ画像に重畳することで拡張現実画像を生成し、画像記憶部260に出力する。
画像生成部230は、レンダリング部232と、AR重畳部234と、ポストプロセス部236と、リプロジェクション部240と、歪み処理部242とを含む。
レンダリング部232は、視点・視線設定部220によって設定されたユーザの視点位置および視線方向にしたがって、ヘッドマウントディスプレイ100を装着したユーザの視点位置から視線方向に見える仮想空間のオブジェクトをレンダリングし、AR重畳部234に与える。
AR重畳部234は、画像信号処理部250から供給されるカメラ画像にレンダリング部232により生成されたCG画像を重畳することで拡張現実画像を生成し、ポストプロセス部236に与える。
ポストプロセス部236は、拡張現実画像に対して、被写界深度調整、トーンマッピング、アンチエイリアシングなどのポストプロセスを施し、現実空間の画像に仮想オブジェクトが重畳された拡張現実画像が自然で滑らかに見えるように後処理する。
リプロジェクション部240は、位置・姿勢取得部210からヘッドマウントディスプレイ100の最新の位置・姿勢情報を受け取り、ポストプロセスが施された拡張現実画像に対してリプロジェクション処理を施し、ヘッドマウントディスプレイ100の最新の視点位置・視線方向から見える画像に変換する。
ここで、リプロジェクションについて説明する。ヘッドマウントディスプレイ100にヘッドトラッキング機能をもたせて、ユーザの頭部の動きと連動して視点や視線方向を変えて仮想現実の映像を生成した場合、仮想現実の映像の生成から表示までに遅延があるため、映像生成時に前提としたユーザの頭部の向きと、映像をヘッドマウントディスプレイ100に表示した時点でのユーザの頭部の向きとの間でずれが発生し、ユーザは酔ったような感覚(「VR酔い(Virtual Reality Sickness)」などと呼ばれる)に陥ることがある。
このように、ヘッドマウントディスプレイ100の動きを検知し、CPUが描画コマンドを発行し、GPU(Graphics Processing Unit)がレンダリングを実行し、描画された画像がヘッドマウントディスプレイ100に出力されるまでには時間がかかる。描画がたとえば60fps(フレーム/秒)のフレームレートで行われており、ヘッドマウントディスプレイ100の動きを検知してから画像を出力するまでに1フレーム分の遅れが生じるとする。これはフレームレート60fpsのもとでは、16.67ミリ秒ほどであり、人間がずれを感知するには十分な時間である。
そこで、「タイムワープ」または「リプロジェクション」と呼ばれる処理を行い、レンダリングした画像をヘッドマウントディスプレイ100の最新の位置と姿勢に合わせて補正することで人間がずれを感知しにくいようにする。
歪み処理部242は、リプロジェクション処理が施された拡張現実画像に対してヘッドマウントディスプレイ100の光学系で生じる歪みに合わせて画像を変形(distortion)させて歪ませる処理を施し、画像記憶部260に記憶する。
HDMI送受信部280は、画像記憶部260から画像生成部230により生成された拡張現実画像のフレームデータを読み出し、HDMIにしたがってヘッドマウントディスプレイ100に伝送する。
図5は、カメラ画像にCG画像を重畳して拡張現実画像を生成するための前提技術に係る画像生成システムの構成を説明する図である。ここでは、説明を簡単にするため、拡張現実画像を生成するためのヘッドマウントディスプレイ100と画像生成装置200の主な構成を図示して説明する。
ヘッドマウントディスプレイ100のカメラユニット80により撮影された外界のカメラ画像は画像生成装置200に送信され、画像信号処理部250に供給される。画像信号処理部250は、カメラ画像に対して画像信号処理と歪み補正処理を施し、AR重畳部234に与える。
画像生成装置200のレンダリング部232は、ヘッドマウントディスプレイ100を装着したユーザの視点位置・視線方向から見た仮想オブジェクトを生成し、AR重畳部234に与える。
AR重畳部234は、カメラ画像にCG画像を重畳し、拡張現実画像を生成する。ポストプロセス部236は拡張現実画像にポストプロセスを施す。リプロジェクション部240はポストプロセスが施された拡張現実画像を最新の視点位置・視線方向に合うように変換する。歪み処理部242はリプロジェクション後の拡張現実画像に歪み処理を施す。歪み処理後の最終的なRGB画像はヘッドマウントディスプレイ100に送信され、ディスプレイパネル32に表示される。
上述の前提技術に係る画像生成システムでは、画像生成装置200によるCG画像のレンダリングのフレームレートに合わせてカメラ画像を重畳することになる。レンダリングは処理時間がかかるため、レンダリング部232による仮想空間のレンダリングのフレームレートは、カメラユニット80による現実空間の撮影のフレームレートに比べると遅い。たとえば、カメラユニット80により120fpsの撮影が行われても、レンダリングは60fpsでしか描画できないことがある。そのため、ヘッドマウントディスプレイ100のディスプレイパネルに表示されるシースルー映像のフレームレートはレンダリングのフレームレートに合わせて低下し、シースルー映像がとぎれとぎれになり、拡張現実の映像を見ても現実感が伴わない結果となる。
以下、前提技術に係る画像生成システムにおける課題を克服したいくつかの実施の形態に係る画像生成システムを説明するが、前提技術と重複する説明は適宜省略し、前提技術から改善した構成について説明する。
図6は、第1の実施の形態に係るヘッドマウントディスプレイ100の機能構成図である。
姿勢推定部81は、カメラユニット80により撮影された画像の特徴点からヘッドマウントディスプレイ100の姿勢情報(位置と回転)を推定する。送受信部92は、姿勢推定部81によって推定された姿勢情報を画像生成装置200に送信する。
画像信号処理部82は、カメラユニット80により撮影されたRaw画像に対してRGB変換(デモザイク処理)、ホワイトバランス、色補正、ノイズリダクションなどの画像信号処理を施し、さらにカメラユニット80の光学系による歪みなどを取り除く歪み補正処理を施す。画像信号処理部82は画像信号処理および歪み補正処理が施されたカメラ画像を制御部10に供給する。
リプロジェクション部84は、姿勢推定部81または姿勢センサ64が検出したヘッドマウントディスプレイ100の最新の位置・姿勢情報にもとづき、カメラ画像に対してリプロジェクション処理を施し、ヘッドマウントディスプレイ100の最新の視点位置・視線方向から見える画像に変換する。
歪み処理部86は、リプロジェクション処理が施されたカメラ画像に対してヘッドマウントディスプレイ100の光学系で生じる歪みに合わせて画像を変形させて歪ませる処理を施し、歪み処理が施されたカメラ画像を制御部10に供給する。
AR重畳部88は、歪み処理が施されたカメラ画像に画像生成装置200により生成されたアルファ付きCG画像を重畳することで拡張現実画像を生成し、制御部10に供給する。
送受信部92は、映像・音声のデジタル信号を画像生成装置200との間で送受信する。送受信部92は、カメラ画像の奥行き情報を制御部10から受け取り、画像生成装置200に送信する。送受信部92は、画像生成装置200により生成された奥行き情報を含む画像を画像生成装置200から受信し、制御部10に供給する。
図7は、第1の実施の形態に係る画像生成装置200の機能構成図である。
送受信部282は、ヘッドマウントディスプレイ100からカメラユニット80により撮影された現実空間の映像の奥行き情報を受信し、デプス取得部252に供給する。
画像生成部230は、画像記憶部260からコンピュータグラフィックスの生成に必要なデータを読み出し、仮想空間のオブジェクトをレンダリングしてCG画像を生成し、デプス取得部252から提供される現実空間のカメラ画像の奥行き情報にもとづいてCG画像からアルファ付きCG画像を生成し、画像記憶部260に出力する。
画像生成部230は、レンダリング部232と、アルファ付き画像生成部233と、ポストプロセス部236と、リプロジェクション部240と、歪み処理部242とを含む。
レンダリング部232は、視点・視線設定部220によって設定されたユーザの視点位置および視線方向にしたがって、ヘッドマウントディスプレイ100を装着したユーザの視点位置から視線方向に見える仮想空間のオブジェクトをレンダリングしてCG画像を生成し、アルファ付き画像生成部233に与える。
アルファ付き画像生成部233は、デプス取得部252から与えられたカメラ画像の奥行き(デプス)情報にもとづいてCG画像からアルファ付きCG画像を生成する。具体的には、現実空間のオブジェクトと仮想空間のオブジェクトの位置関係を判定し、CG画像において仮想オブジェクトの背景の領域や仮想オブジェクトよりも手前にある現実空間のオブジェクトによって隠れて見えないオクルージョンの領域は透明になるようにアルファ値を設定する。アルファ付き画像生成部233は、アルファ付きCG画像をポストプロセス部236に与える。
ポストプロセス部236は、アルファ付きCG画像に対して、被写界深度調整、トーンマッピング、アンチエイリアシングなどのポストプロセスを施し、アルファ付きCG画像が自然で滑らかに見えるように後処理する。
アンチエイリアシングの際、CG画像とカメラ画像の境界が半透明になるようにアルファ値を設定することもできる。
リプロジェクション部240は、位置・姿勢取得部210からヘッドマウントディスプレイ100の最新の位置・姿勢情報を受け取り、ポストプロセスが施されたアルファ付きCG画像に対してリプロジェクション処理を施し、ヘッドマウントディスプレイ100の最新の視点位置・視線方向から見える画像に変換する。
歪み処理部242は、リプロジェクション処理が施されたアルファ付きCG画像に対してヘッドマウントディスプレイ100の光学系で生じる歪みに合わせて画像を変形させて歪ませる処理を施し、画像記憶部260に記憶する。
送受信部282は、画像記憶部260から画像生成部230により生成されたアルファ付きCG画像のフレームデータを読み出し、RGBA画像信号を伝送可能な通信インタフェースを介してアルファ付きCG画像をヘッドマウントディスプレイ100に伝送する。ここでRGBA画像信号とは、画素毎に赤、緑、青の各色の値にアルファ値を加えた画像信号である。
図8は、カメラ画像にCG画像を重畳して拡張現実画像を生成するための第1の実施の形態に係る画像生成システムの構成を説明する図である。
ヘッドマウントディスプレイ100のカメラユニット80により撮影された外界のカメラ画像とデプス情報とタイプスタンプは画像信号処理部82に供給される。また、カメラ画像とタイムスタンプは姿勢推定部81に供給される。姿勢推定部81はカメラ画像からヘッドマウントディスプレイ100の姿勢情報を推定し、姿勢情報とタイムスタンプをレンダリング部232に供給する。画像信号処理部82は、カメラ画像に対して画像信号処理と歪み補正処理を施し、カメラ画像とタイプスタンプをリプロジェクション部84に与える。画像信号処理部82は、デプス情報を画像生成装置200に送信し、アルファ付き画像生成部233に供給する。
画像生成装置200のレンダリング部232は、ヘッドマウントディスプレイ100を装着したユーザの視点位置・視線方向から見た仮想オブジェクトを生成し、CG画像とタイムスタンプをアルファ付き画像生成部233に与える。タイムスタンプはアルファ付き画像生成部233からポストプロセス部236、リプロジェクション部240に渡される。
アルファ付き画像生成部233は、デプス情報にもとづきCG画像からアルファ付きCG画像を生成する。ポストプロセス部236はアルファ付きCG画像にポストプロセスを施す。リプロジェクション部240はポストプロセスが施されたアルファ付きCG画像をタイムスタンプを基準にして最新の視点位置・視線方向に合うように変換する。歪み処理部242はリプロジェクション後のアルファ付きCG画像に歪み処理を施す。歪み処理後の最終的なRGBA画像はヘッドマウントディスプレイ100に送信され、AR重畳部88に供給される。このRGBA画像は、カメラ画像が重畳されるべき領域は透明であることを示すアルファ値が設定されたCG画像である。
ヘッドマウントディスプレイ100のリプロジェクション部84は、画像信号処理と歪み補正処理が施されたカメラ画像をタイムスタンプを基準にして最新の視点位置・視線方向に合うように変換し、歪み処理部86に供給する。歪み処理部86はリプロジェクション後のカメラ画像に歪み処理を施す。AR重畳部88は、画像生成装置200から供給されるアルファ付きCG画像を歪み処理後のカメラ画像に重畳することにより、拡張現実画像を生成する。生成された拡張現実画像は、ディスプレイパネル32に表示される。
第1の実施の形態の画像生成システムによれば、ヘッドマウントディスプレイ100のカメラユニット80によって撮影されたカメラ画像を画像生成装置200に転送しないため、高フレームレートで撮影されたカメラ画像を画像生成装置200が生成するCG画像に重畳することができる。そのためシースルー映像がとぎれとぎれになることがなく、ヘッドマウントディスプレイ100で拡張現実の映像を見ているユーザが現実世界とのつながり感をもつことができる。
第2の実施の形態について説明する。ヘッドマウントディスプレイ100の構成は基本的には図6に示したものと同じであるが、リプロジェクション部84は、カメラ画像用の第1のリプロジェクション部84aとCG画像用の第2のリプロジェクション部84bを有する。
図9は、第2の実施の形態に係る画像生成装置200の機能構成図である。
第2の実施の形態の画像生成装置2000は、ヘッドマウントディスプレイ100からカメラユニット80により撮影されたカメラ画像とデプス情報は受信しない。
画像生成部230は、画像記憶部260からコンピュータグラフィックスの生成に必要なデータを読み出し、仮想空間のオブジェクトをレンダリングしてCG画像を生成し、ポストプロセスを施し、画像記憶部260に出力する。
画像生成部230は、レンダリング部232と、ポストプロセス部236とを含む。
レンダリング部232は、視点・視線設定部220によって設定されたユーザの視点位置および視線方向にしたがって、ヘッドマウントディスプレイ100を装着したユーザの視点位置から視線方向に見える仮想空間のオブジェクトをレンダリングしてCG画像を生成し、ポストプロセス部236に与える。
ポストプロセス部236は、CG画像に対してポストプロセスを施し、CG画像が自然で滑らかに見えるように後処理し、画像記憶部260に記憶する。
送受信部282は、画像記憶部260から画像生成部230により生成されたアルファ値とデプス情報を含むCG画像のフレームデータを読み出し、RGBAD画像信号を伝送可能な通信インタフェースを介してRGBAD画像としてヘッドマウントディスプレイ100に伝送する。ここでRGBAD画像信号は、画素毎に赤、緑、青の各色の値にアルファ値およびデプス値を加えた画像信号である。
図10は、カメラ画像にCG画像を重畳して拡張現実画像を生成するための第2の実施の形態に係る画像生成システムの構成を説明する図である。
ヘッドマウントディスプレイ100のカメラユニット80により撮影された外界のカメラ画像とデプス情報とタイプスタンプは画像信号処理部82に供給される。また、カメラ画像とタイムスタンプは姿勢推定部81に供給される。姿勢推定部81はカメラ画像からヘッドマウントディスプレイ100の姿勢情報を推定し、姿勢情報とタイムスタンプをレンダリング部232に供給する。画像信号処理部82は、カメラ画像に対して画像信号処理と歪み補正処理を施し、カメラ画像とデプス情報とタイプスタンプを第1のリプロジェクション部84aに与える。
画像生成装置200のレンダリング部232は、ヘッドマウントディスプレイ100を装着したユーザの視点位置・視線方向から見た仮想オブジェクトを生成し、CG画像とタイムスタンプをポストプロセス部236に与える。
ポストプロセス部236はCG画像にポストプロセスを施し、アルファ値とデプス情報を含むRGBAD画像としてタイムスタンプとともにヘッドマウントディスプレイ100に送信し、リプロジェクション部84bに供給される。
ヘッドマウントディスプレイ100の第1のリプロジェクション部84aは、画像信号処理と歪み補正処理が施されたカメラ画像をタイムスタンプを基準にして最新の視点位置・視線方向に合うように変換し、AR重畳部88に供給する。
ヘッドマウントディスプレイ100の第2のリプロジェクション部84bは、CG画像をタイムスタンプを基準にして最新の視点位置・視線方向に合うように変換し、AR重畳部88に供給する。ここでCG画像にはデプス情報が含まれるため、第2のリプロジェクション部84bは、デプス情報を利用して回転成分だけでなく並進成分も考慮してリプロジェクション処理を行うことができる。
ここで、ヘッドマウントディスプレイ100において、カメラ画像用の第1のリプロジェクション部84aとCG画像用の第2のリプロジェクション部84bに分かれているのは、画像生成装置200のレンダリングには時間がかかり、リプロジェクションによって補正すべき差分量が異なるからである。たとえば、第1のリプロジェクション部84aで1フレーム先のリプロジェクションを行うのに対して、第2のリプロジェクション部84bでは2フレーム先のリプロジェクションを行う必要がある。
AR重畳部88は、第2のリプロジェクション部84bによりリプロジェクション処理が施されたCG画像を、第1のリプロジェクション部84aによりリプロジェクション処理が施されたカメラ画像に重畳することにより、拡張現実画像を生成し、歪み処理部86に供給する。ここで、カメラ画像にもCG画像にもデプス情報があるため、AR重畳部88は、双方のデプス情報を利用して画素単位で重畳処理が可能である。
歪み処理部86は拡張現実画像に歪み処理を施す。生成された拡張現実画像は、ディスプレイパネル32に表示される。
図11は、カメラ画像にCG画像を重畳して拡張現実画像を生成するための第2の実施の形態に係る画像生成システムの構成の変形例を説明する図である。図10の構成とは異なる点を説明する。
図11の変形例では、第1のリプロジェクション部84aはAR重畳部88の後段に設けられ、画像信号処理部82はカメラ画像とデプス情報とタイプスタンプをAR重畳部88に直接供給する。タイプスタンプはAR重畳部88から第1のリプロジェクション部84aに渡される。第2のリプロジェクション部84bは、CG画像をタイムスタンプを基準にして最新の視点位置・視線方向に合うように変換し、AR重畳部88に供給する。AR重畳部88は、第2のリプロジェクション部84bによりリプロジェクション処理が施されたCG画像をカメラ画像に重畳することにより、拡張現実画像を生成する。第1のリプロジェクション部84aはタイムスタンプを基準にして拡張現実画像を出力タイミングを予想して出力タイミングにおける視点位置・視線方向に合うように変換し、歪み処理部86に供給する。
第2の実施の形態の画像生成システムによれば、第1の実施の形態と同様に、高フレームレートで撮影されたカメラ画像をCG画像に重畳することができるため、シースルー映像がとぎれとぎれになることがなく、現実感のある拡張現実の映像を提供することができるという利点の他、次の利点がある。CG画像をデプス情報も含めてヘッドマウントディスプレイ100に送信するため、ヘッドマウントディスプレイ100側で画素毎にデプス情報を参照してカメラ画像を高い精度で重畳することができる。また、映像シースルー型だけでなく光学シースルー型のヘッドマウントディスプレイ100にも応用できる。また、デプス情報があればヘッドマウントディスプレイ100のリプロジェクション部84bにおいて回転成分だけでなく並進成分も含めて予測変換が可能であり、画素毎に3次元変換をして高い精度でリプロジェクション処理を施すことができる。
また、ヘッドマウントディスプレイ100側でCG画像に対してリプロジェクション処理を施すため、ディスプレイパネル32に表示する直前の視点位置・視線方向に合うようにCG画像を変換でき、高い精度で追従性のある拡張現実画像を提供できる。また、画像生成装置200側のリプロジェクション処理の負担を軽減できるので、画像生成装置200側ではレンダリングにより多くのリソースをかけることができる。
さらに、ホログラムディスプレイのように表示対象の虚像距離まで再現できる表示装置を利用する場合、CG画像のデプス情報を反映して仮想オブジェクトを3D表示することもできる。
以上、本発明を実施の形態をもとに説明した。実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
図8、図10、図11において、姿勢推定部81をヘッドマウントディスプレイ100に設けた実施例を説明したが、変形例として姿勢推定部81を画像生成装置200に設けてもよい。
上記の説明では、ビデオ透過(ビデオシースルー)型のヘッドマウントディスプレイを例に説明したが、表示部をハーフミラー等で構成し、ユーザに眼前の現実空間を視認させる光学透過(オプティカルシースルー)型のヘッドマウントディスプレイの場合にも本実施の形態を適用することができる。光学透過型のヘッドマウントディスプレイの場合、カメラ画像の奥行き情報とCG画像の奥行き情報を比較して、仮想空間のオブジェクトよりも手前に現実空間のオブジェクトが存在する領域については、CG画像を削除し現実空間を透過して視認させる。光学透過型のヘッドマウントディスプレイの場合、カメラ画像をCG画像に重畳させる必要がないため、カメラ画像に関する画像信号処理やリプロジェクション処理は不要であり、カメラユニット80からのデプス情報がAR重畳部88において利用される。
10 制御部、 20 入力インタフェース、 30 出力インタフェース、 32 ディスプレイパネル、 40 通信制御部、 42 ネットワークアダプタ、 44 アンテナ、 50 記憶部、 64 姿勢センサ、 70 外部入出力端子インタフェース、 72 外部メモリ、 80 カメラユニット、 81 姿勢推定部、 82 画像信号処理部、 84 リプロジェクション部、 86 歪み処理部、 88 AR重畳部、 90 HDMI送受信部、 92 送受信部、 100 ヘッドマウントディスプレイ、 200 画像生成装置、 210 位置・姿勢取得部、 220 視点・視線設定部、 230 画像生成部、 232 レンダリング部、 233 アルファ付き画像生成部、 234 AR重畳部、 236 ポストプロセス部、 240 リプロジェクション部、 242 歪み処理部、 250 画像信号処理部、 252 デプス取得部、 260 画像記憶部、 280 HDMI送受信部、 282 送受信部、 300 インタフェース。
この発明は、画像生成の分野に利用できる。
Claims (12)
- 仮想空間のオブジェクトをレンダリングしてコンピュータグラフィックス画像を生成するレンダリング部と、
ヘッドマウントディスプレイから提供される現実空間の撮影画像の奥行き情報にもとづいてアルファ付きコンピュータグラフィックス画像を生成するアルファ付き画像生成部と、
前記アルファ付きコンピュータグラフィックス画像を新たな視点位置または視線方向に合うように変換するリプロジェクション部と、
リプロジェクション処理が施された前記アルファ付きコンピュータグラフィックス画像を前記ヘッドマウントディスプレイに送信する送信部とを含むことを特徴とする画像生成装置。 - 前記アルファ付き画像生成部により生成された前記アルファ付きコンピュータグラフィックス画像にポストプロセスを施すポストプロセス部をさらに含み、
前記リプロジェクション部は、ポストプロセスが施された前記アルファ付きコンピュータグラフィックス画像を新たな視点位置または視線方向に合うように変換することを特徴とする請求項1に記載の画像生成装置。 - 現実空間の撮影画像を新たな視点位置または視線方向に合うように変換するリプロジェクション部と、
アルファ付きコンピュータグラフィックス画像を受信する受信部と、
リプロジェクション処理が施された前記現実空間の撮影画像に前記アルファ付きコンピュータグラフィックス画像を重畳して拡張現実画像を生成する重畳部とを含むことを特徴とするヘッドマウントディスプレイ。 - ヘッドマウントディスプレイと画像生成装置を含む画像生成システムであって、
前記画像生成装置は、
仮想空間のオブジェクトをレンダリングしてコンピュータグラフィックス画像を生成するレンダリング部と、
前記ヘッドマウントディスプレイから提供される現実空間の撮影画像の奥行き情報にもとづいてアルファ付きコンピュータグラフィックス画像を生成するアルファ付き画像生成部と、
前記アルファ付きコンピュータグラフィックス画像を新たな視点位置または視線方向に合うように変換する第1のリプロジェクション部と、
リプロジェクション処理が施された前記アルファ付きコンピュータグラフィックス画像を前記ヘッドマウントディスプレイに送信する送信部とを含み、
前記ヘッドマウントディスプレイは、
前記現実空間の撮影画像を新たな視点位置または視線方向に合うように変換する第2のリプロジェクション部と、
前記画像生成装置からアルファ付きコンピュータグラフィックス画像を受信する受信部と、
リプロジェクション処理が施された現実空間の撮影画像に前記アルファ付きコンピュータグラフィックス画像を重畳して拡張現実画像を生成する重畳部とを含むことを特徴とする画像生成システム。 - 仮想空間のオブジェクトをレンダリングしてコンピュータグラフィックス画像を生成するレンダリングステップと、
ヘッドマウントディスプレイから提供される現実空間の撮影画像の奥行き情報にもとづいてアルファ付きコンピュータグラフィックス画像を生成するアルファ付き画像生成ステップと、
前記アルファ付きコンピュータグラフィックス画像を新たな視点位置または視線方向に合うように変換するリプロジェクションステップと、
リプロジェクション処理が施された前記アルファ付きコンピュータグラフィックス画像を前記ヘッドマウントディスプレイに送信する送信ステップとを含むことを特徴とする画像生成方法。 - 仮想空間のオブジェクトをレンダリングしてコンピュータグラフィックス画像を生成するレンダリング機能と、
ヘッドマウントディスプレイから提供される現実空間の撮影画像の奥行き情報にもとづいてアルファ付きコンピュータグラフィックス画像を生成するアルファ付き画像生成機能と、
前記アルファ付きコンピュータグラフィックス画像を新たな視点位置または視線方向に合うように変換するリプロジェクション機能と、
リプロジェクション処理が施された前記アルファ付きコンピュータグラフィックス画像を前記ヘッドマウントディスプレイに送信する送信機能とをコンピュータに実現させることを特徴とするプログラム。 - 仮想空間のオブジェクトをレンダリングしてコンピュータグラフィックス画像を生成するレンダリング部と、
現実空間の撮影画像に重畳するために前記コンピュータグラフィックス画像を奥行き情報とともにヘッドマウントディスプレイに送信する送信部とを含むことを特徴とする画像生成装置。 - 前記レンダリング部により生成された前記コンピュータグラフィックス画像にポストプロセスを施すポストプロセス部をさらに含み、
前記送信部は、現実空間の撮影画像に重畳するためにポストプロセスが施された前記コンピュータグラフィックス画像を奥行き情報とともにヘッドマウントディスプレイに送信することを特徴とする請求項7に記載の画像生成装置。 - 現実空間の撮影画像を新たな視点位置または視線方向に合うように変換する第1のリプロジェクション部と、
奥行き情報付きのコンピュータグラフィックス画像を受信する受信部と、
コンピュータグラフィックス画像を新たな視点位置または視線方向に合うように変換する第2のリプロジェクション部と、
リプロジェクション処理が施された前記現実空間の撮影画像にリプロジェクション処理が施された前記奥行き情報付きのコンピュータグラフィックス画像を画素単位で奥行き情報を参照して重畳することにより拡張現実画像を生成する重畳部とを含むことを特徴とするヘッドマウントディスプレイ。 - ヘッドマウントディスプレイと画像生成装置を含む画像生成システムであって、
前記画像生成装置は、
仮想空間のオブジェクトをレンダリングしてコンピュータグラフィックス画像を生成するレンダリング部と、
現実空間の撮影画像に重畳するために前記コンピュータグラフィックス画像を奥行き情報とともに前記ヘッドマウントディスプレイに送信する送信部とを含み、
前記ヘッドマウントディスプレイは、
現実空間の撮影画像を新たな視点位置または視線方向に合うように変換する第1のリプロジェクション部と、
前記画像生成装置から奥行き情報付きのコンピュータグラフィックス画像を受信する受信部と、
前記コンピュータグラフィックス画像を新たな視点位置または視線方向に合うように変換する第2のリプロジェクション部と、
リプロジェクション処理が施された前記現実空間の撮影画像にリプロジェクション処理が施された前記奥行き情報付きのコンピュータグラフィックス画像を画素単位で奥行き情報を参照して重畳することにより拡張現実画像を生成する重畳部とを含むことを特徴とする画像生成システム。 - 現実空間の撮影画像を新たな視点位置または視線方向に合うように変換する第1のリプロジェクションステップと、
奥行き情報付きのコンピュータグラフィックス画像を受信する受信ステップと、
前記コンピュータグラフィックス画像を新たな視点位置または視線方向に合うように変換する第2のリプロジェクションステップと、
リプロジェクション処理が施された前記現実空間の撮影画像にリプロジェクション処理が施された前記奥行き情報付きのコンピュータグラフィックス画像を画素単位で奥行き情報を参照して重畳することにより拡張現実画像を生成する重畳ステップとを含むことを特徴とする画像生成方法。 - 現実空間の撮影画像を新たな視点位置または視線方向に合うように変換する第1のリプロジェクション機能と、
奥行き情報付きのコンピュータグラフィックス画像を受信する受信機能と、
前記コンピュータグラフィックス画像を新たな視点位置または視線方向に合うように変換する第2のリプロジェクション機能と、
リプロジェクション処理が施された前記現実空間の撮影画像にリプロジェクション処理が施された前記奥行き情報付きのコンピュータグラフィックス画像を画素単位で奥行き情報を参照して重畳することにより拡張現実画像を生成する重畳機能とをコンピュータに実現させることを特徴とするプログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/762,786 US11204502B2 (en) | 2017-11-20 | 2018-11-13 | Image generation apparatus, head mounted display, image generation system, image generation method, and program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-222897 | 2017-11-20 | ||
JP2017222897A JP6978289B2 (ja) | 2017-11-20 | 2017-11-20 | 画像生成装置、ヘッドマウントディスプレイ、画像生成システム、画像生成方法、およびプログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019098198A1 true WO2019098198A1 (ja) | 2019-05-23 |
Family
ID=66539649
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/042003 WO2019098198A1 (ja) | 2017-11-20 | 2018-11-13 | 画像生成装置、ヘッドマウントディスプレイ、画像生成システム、画像生成方法、およびプログラム |
Country Status (3)
Country | Link |
---|---|
US (1) | US11204502B2 (ja) |
JP (1) | JP6978289B2 (ja) |
WO (1) | WO2019098198A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7217206B2 (ja) * | 2019-07-10 | 2023-02-02 | 株式会社ソニー・インタラクティブエンタテインメント | 画像表示装置、画像表示システムおよび画像表示方法 |
US20220319105A1 (en) * | 2019-07-10 | 2022-10-06 | Sony Interactive Entertainment Inc. | Image display apparatus, image display system, and image display method |
JP7377014B2 (ja) * | 2019-07-10 | 2023-11-09 | 株式会社ソニー・インタラクティブエンタテインメント | 画像表示装置、画像表示システムおよび画像表示方法 |
JP7429633B2 (ja) | 2020-12-08 | 2024-02-08 | Kddi株式会社 | 情報処理システム、端末、サーバ及びプログラム |
JP7557442B2 (ja) | 2021-08-26 | 2024-09-27 | Kddi株式会社 | 3dcgレンダリング装置、システム、方法およびプログラム |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015098292A1 (ja) * | 2013-12-25 | 2015-07-02 | ソニー株式会社 | 画像処理装置及び画像処理方法、コンピューター・プログラム、並びに画像表示システム |
JP2015191314A (ja) * | 2014-03-27 | 2015-11-02 | キヤノン株式会社 | 画像処理装置、画像処理システム及び画像処理方法 |
JP2016024273A (ja) * | 2014-07-17 | 2016-02-08 | 株式会社ソニー・コンピュータエンタテインメント | 立体画像提示装置、立体画像提示方法、およびヘッドマウントディスプレイ |
US20160364904A1 (en) * | 2015-06-12 | 2016-12-15 | Google Inc. | Electronic display stabilization for head mounted display |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2523740B (en) * | 2014-02-26 | 2020-10-14 | Sony Interactive Entertainment Inc | Image encoding and display |
JP6087453B1 (ja) * | 2016-02-04 | 2017-03-01 | 株式会社コロプラ | 仮想空間の提供方法、およびプログラム |
US11024014B2 (en) * | 2016-06-28 | 2021-06-01 | Microsoft Technology Licensing, Llc | Sharp text rendering with reprojection |
US10394313B2 (en) * | 2017-03-15 | 2019-08-27 | Microsoft Technology Licensing, Llc | Low latency cross adapter VR presentation |
-
2017
- 2017-11-20 JP JP2017222897A patent/JP6978289B2/ja active Active
-
2018
- 2018-11-13 WO PCT/JP2018/042003 patent/WO2019098198A1/ja active Application Filing
- 2018-11-13 US US16/762,786 patent/US11204502B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015098292A1 (ja) * | 2013-12-25 | 2015-07-02 | ソニー株式会社 | 画像処理装置及び画像処理方法、コンピューター・プログラム、並びに画像表示システム |
JP2015191314A (ja) * | 2014-03-27 | 2015-11-02 | キヤノン株式会社 | 画像処理装置、画像処理システム及び画像処理方法 |
JP2016024273A (ja) * | 2014-07-17 | 2016-02-08 | 株式会社ソニー・コンピュータエンタテインメント | 立体画像提示装置、立体画像提示方法、およびヘッドマウントディスプレイ |
US20160364904A1 (en) * | 2015-06-12 | 2016-12-15 | Google Inc. | Electronic display stabilization for head mounted display |
Also Published As
Publication number | Publication date |
---|---|
US20210191124A1 (en) | 2021-06-24 |
JP2019095916A (ja) | 2019-06-20 |
US11204502B2 (en) | 2021-12-21 |
JP6978289B2 (ja) | 2021-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6732716B2 (ja) | 画像生成装置、画像生成システム、画像生成方法、およびプログラム | |
US11119319B2 (en) | Rendering device, head-mounted display, image transmission method, and image correction method | |
WO2019098198A1 (ja) | 画像生成装置、ヘッドマウントディスプレイ、画像生成システム、画像生成方法、およびプログラム | |
US11373379B2 (en) | Image generation apparatus and image generation method for generating augmented reality images based on user interaction | |
US11120632B2 (en) | Image generating apparatus, image generating system, image generating method, and program | |
US11003408B2 (en) | Image generating apparatus and image generating method | |
JP2017097122A (ja) | 情報処理装置および画像生成方法 | |
JP7234021B2 (ja) | 画像生成装置、画像生成システム、画像生成方法、およびプログラム | |
WO2016063617A1 (ja) | 画像生成装置、画像抽出装置、画像生成方法、および画像抽出方法 | |
WO2020129115A1 (ja) | 情報処理システム、情報処理方法およびコンピュータプログラム | |
US11100716B2 (en) | Image generating apparatus and image generation method for augmented reality | |
JP7047085B2 (ja) | 画像生成装置、画像生成方法、およびプログラム | |
JP7429761B2 (ja) | 画像表示装置、画像表示システムおよび画像表示方法 | |
JP7377014B2 (ja) | 画像表示装置、画像表示システムおよび画像表示方法 | |
WO2021006191A1 (ja) | 画像表示装置、画像表示システムおよび画像表示方法 | |
US20240236290A9 (en) | Image generation device, program, image generation method, and image displaying system | |
WO2022255058A1 (ja) | 情報処理装置および画像生成方法 | |
EP4261768A1 (en) | Image processing system and method | |
WO2021106136A1 (ja) | 表示端末装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18877568 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18877568 Country of ref document: EP Kind code of ref document: A1 |