WO2019098074A1 - 線状物把持方法および制御装置 - Google Patents

線状物把持方法および制御装置 Download PDF

Info

Publication number
WO2019098074A1
WO2019098074A1 PCT/JP2018/041000 JP2018041000W WO2019098074A1 WO 2019098074 A1 WO2019098074 A1 WO 2019098074A1 JP 2018041000 W JP2018041000 W JP 2018041000W WO 2019098074 A1 WO2019098074 A1 WO 2019098074A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear object
linear
target
interference
determination step
Prior art date
Application number
PCT/JP2018/041000
Other languages
English (en)
French (fr)
Inventor
基善 北井
Original Assignee
倉敷紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 倉敷紡績株式会社 filed Critical 倉敷紡績株式会社
Priority to JP2019554172A priority Critical patent/JP7106571B2/ja
Publication of WO2019098074A1 publication Critical patent/WO2019098074A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices

Definitions

  • the present invention relates to a method of gripping a linear object using a robot hand, and a control device therefor.
  • Patent Document 1 is a robot apparatus that performs an assembling operation of the linear object, and holds the vicinity of the fixed end of the linear object to which one end is fixed, and then the gripping portion A device is described that slides along a predetermined trajectory and moves to the other end. It is said that this makes it possible to quickly grasp the other end which is difficult to estimate accurately due to a hook attached to the cable.
  • the device described in Patent Document 1 grips an existing linear body, and one end of the linear body to be gripped needs to be fixed.
  • one end of a plurality of wires incorporated in the harness or one end of a plurality of wires may be processed to perform processing such as peeling or connection of terminals. It is necessary to select and hold only the electric wire.
  • a plurality of linear materials are mixed in this way, and in some cases, it is not possible to select and grip only one linear material from overlapping.
  • the present invention has been made in consideration of the above, and it is possible to select one linear object from a plurality of linear objects based on three-dimensional shape data of linear objects and to hold the linear object with a robot hand, and It aims at providing a control device for that.
  • the linear object holding method is a linear object holding method by a robot hand, which comprises: measuring a three-dimensional shape of a plurality of linear objects; and based on the three-dimensional shape, the plurality of linear objects Determining a target linear object determined based on the determination step, determining whether or not another linear object interferes with the at least one linear object while gripping with the robot hand; And a step of gripping with a robot hand.
  • a robot hand comprises: measuring a three-dimensional shape of a plurality of linear objects; and based on the three-dimensional shape, the plurality of linear objects Determining a target linear object determined based on the determination step, determining whether or not another linear object interferes with the at least one linear object while gripping with the robot hand; And a step of gripping with a robot hand.
  • this method one of a plurality of linear objects can be selected and gripped by a robot hand.
  • the wire is an electric wire constituting a wire harness.
  • the linear object gripping method of the present invention is particularly suitable for gripping an electric wire planned to be incorporated in a wire harness or an electric wire incorporated in a wire harness in the manufacturing process of a wire harness.
  • the determination step includes a step of selecting one of the linear objects as the target linear object, a step of determining a holding position of the target linear object, and a predetermined shape including the holding position.
  • a determining step is a step of setting a planar region having a predetermined size as a first interference region, and determining whether or not the linear object other than the target linear object is present in the first interference region.
  • the target linear object is a linear object which is a candidate to be held by the robot hand.
  • the holding position of a linear object means what represented the position on the said linear object when holding with a robot hand with a three-dimensional coordinate. According to this method, when the robot hand grips the target linear object, it can be determined at high speed whether or not the robot hand interferes with the linear object other than the target linear object.
  • the step of selecting the noted linear object is a step of selecting the linear object closest to the standby position of the robot hand based on the three-dimensional shape of the plurality of linear objects.
  • the standby position of the robot hand is a position at which the robot hand stands by or passes before the operation of gripping the linear object and does not interfere with the linear object.
  • the standby position may be, for example, a position above, below or to the side of the linear object and separated by a predetermined distance, or may be determined based on the three-dimensional shape of the linear object .
  • the linear object having the shortest distance between the coordinates of the standby position and the coordinates of the gripping position of the linear object may be selected as the linear object located closest to the standby position. In this way, it is possible to preferentially select a line having a low possibility of interfering with other lines when gripping.
  • the first interference region is orthogonal to the target linear object.
  • that the first interference region is orthogonal to the target linear object means that the direction in which the target linear object extends at the holding position is perpendicular to the first interference region.
  • the first interference area is a circle having a predetermined radius centered on the gripping position.
  • the first interference area is a square having a side of a predetermined length centered on the grip position.
  • the smallest one of hexahedrons parallel to any axis of the coordinate system including the first interference region and all the sides representing the three-dimensional shape of the linear object is used.
  • the method further includes a step of setting as a first extended interference region, and a first preliminary determination step of determining whether or not the linear object other than the target linear object is present in the first extended interference region.
  • the first preliminary determination step is performed prior to the first determination step.
  • a step of acquiring a standby position of the robot hand, and a planar region having a predetermined width extending on both sides of a line connecting the grip position and the standby position of the robot hand The method further includes a step of setting as a second interference region, and a second determination step of determining whether or not the linear object other than the target linear object is present in the second interference region. According to this method, it is possible to quickly determine whether or not the robot hand moves to the target linear object and interferes with the linear object other than the target linear object.
  • the second interference area is set such that the angle of intersection with the target linear object is maximized.
  • the second interference area is a rectangle in which a line segment connecting the holding position and the standby position of the robot hand is an axis of symmetry of line symmetry.
  • the second interference region is included, and the smallest among hexahedrons parallel to any axis of the coordinate system in which all sides represent the three-dimensional shape of the linear object. Having a step of setting a second expanded interference region, and a second preliminary determination step of determining whether or not the linear object other than the target linear object is present in the second expanded interference region. .
  • the second preliminary determination step is performed prior to the second determination step.
  • the control device is a control device that controls gripping of linear objects by a robot hand, and acquires the three-dimensional shapes from a three-dimensional camera that measures the three-dimensional shapes of a plurality of linear objects. Based on the shape, it is determined whether or not another linear object interferes with at least one linear object among the linear objects when gripping with a robot hand, and is determined based on the result of the determination. The gripping position of the target linear object is notified to the robot provided with the robot hand.
  • linear object gripping method or control device of the present invention it is possible to select one linear object from a plurality of linear objects based on the three-dimensional shape data of linear objects and to hold it with a robot hand It becomes.
  • FIG. 1 One embodiment of the linear object gripping method and control device of the present invention will be described based on FIGS. 1 to 8.
  • FIG. 1 One embodiment of the linear object gripping method and control device of the present invention will be described based on FIGS. 1 to 8.
  • FIG. 1 One embodiment of the linear object gripping method and control device of the present invention will be described based on FIGS. 1 to 8.
  • FIG. 1 One embodiment of the linear object gripping method and control device of the present invention will be described based on FIGS. 1 to 8.
  • an entire system 10 for implementing the linear object gripping method of the present embodiment includes a robot 20, a three-dimensional camera 31, and a control device 32.
  • a wire harness W composed of electric wires (linear objects) W1 to W3 is disposed in the work space.
  • the linear object to be held is not particularly limited. However, in the linear object holding method according to the present embodiment, in the case of holding a flexible, irregular-shaped linear object such as a wire constituting the wire harness or the wire harness itself Particularly effective.
  • robot hand 22 is provided at the tip of the arm 21 of the robot, and the linear object is gripped by the gripping portions 23 of the robot hand.
  • robot hand may be simply referred to as "hand”.
  • the three-dimensional camera 31 is not particularly limited as long as it can measure the three-dimensional shape of the linear objects W1 to W3.
  • a stereo camera is used. This is because a stereo camera is suitable for measuring the three-dimensional shape of a linear object at high speed.
  • the stereo camera consists of two cameras, finds corresponding points of the points to be measured on two images taken from different viewpoints, and from the positional relationship between the two cameras, the three-dimensional measurement point according to the principle of triangulation Calculate the position.
  • three-dimensional measurement of linear objects by stereo method for example, in JP-A-2-309202, a large number of linear objects are imaged by two cameras, and the inclination of the bright lines and the interval between the bright lines in two images It is described that the corresponding point is determined by matching the distance of the feature as a feature, which can shorten the processing time required to determine the corresponding point.
  • a straight line obtained by projecting the straight line connecting the viewpoint of one image and the measurement point onto the other image is called an epipolar line
  • the corresponding point on the other image corresponding to the point on one image is always It is projected on the epipolar line on the other image.
  • the three-dimensional shape of the linear object can be obtained at high speed. It can measure.
  • the corresponding color is extracted from the image by using a color camera, and then the corresponding points are determined to obtain the three-dimensional shape of each linear object. It can be determined faster.
  • the control device 32 communicates with the stereo camera 31 by a communication unit (not shown), and acquires a three-dimensional shape of the linear objects W1 to W3 from the stereo camera. Based on the three-dimensional shape obtained from the stereo camera, the control device determines whether or not the hand 22 interferes with another linear object when grasping the linear object by an operation unit (not shown) based on the three-dimensional shape acquired from the stereo camera Perform various operations to determine the target linear object.
  • the control device also notifies the robot 20 of the gripping position of the target linear object to be gripped based on the calculation result via the communication unit.
  • another device for example, a robot controller or a control personal computer for controlling the operation of the robot is provided between the control device 32 and the robot 20. It may be notified to the device.
  • Determination step (S2) determining whether or not another linear object interferes when gripping a linear object, a step of gripping a target linear object determined based on the determination result in the determination step S2 ( S3).
  • Step S1 of measuring the three-dimensional shape of the plurality of linear objects W1 to W3 is performed by the stereo camera 31.
  • the stereo camera takes an image of a work space having a linear object, performs arithmetic processing on two images, and acquires three-dimensional shapes of the linear objects W1 to W3.
  • the three-dimensional shape of the linear object is expressed in an orthogonal coordinate system or an oblique coordinate system, preferably in orthogonal coordinates.
  • the determination step S2 is performed by the controller 32. Details of the determination process will be described later.
  • the step S3 of gripping the target linear object is performed by the robot 20.
  • the robot is notified of the gripping position of the target linear object to be gripped from the control device 32, and moves the arm 21 and the hand 22 to execute the gripping operation.
  • the determination step S2 will be described in detail below.
  • the determination step S2 of the present embodiment acquisition of the three-dimensional shape of the linear object (S21), selection of the target linear object (S22), and determination of the gripping position of the target linear object (S23) Acquisition of the robot hand standby position (S24), setting of various interference areas (S51 to S54), and various interference determinations (S61 to S64).
  • the control device 32 first obtains the three-dimensional shape of the linear objects W1 to W3 from the stereo camera 31 (S21).
  • the control device 32 selects a target linear object to be gripped by the hand 22 (S22).
  • an attention linear object to grip W1, and W2 and W3 will be described as linear objects (other linear objects) other than the attention linear object.
  • the control device may receive an instruction such as a color of the cable from the outside, and may determine a focused object based on the instruction.
  • the controller autonomously selects an attention line. For example, when the linear objects W1 to W3 are placed on a table, the highest position, ie, the uppermost one, can be selected as the target linear object based on the acquired three-dimensional shape. . This is because, even when the linear objects are placed in an overlapping manner, the higher the linear object is, the lower the probability that the other linear objects interfere with gripping the linear object.
  • the control device 32 determines the gripping position of the target linear object W1 (S23). For example, based on a predetermined condition such as several mm from the tip of the target linear object, the control device calculates the gripping position of the target linear object as three-dimensional coordinates.
  • the control device 32 acquires the standby position of the robot hand 22 (S24).
  • the standby position of the hand is predetermined, the coordinates are acquired as the standby position.
  • the standby position is acquired by calculation.
  • the control device acquires the current position of the robot hand 22 from the robot 20, and moves the robot hand to the standby position when the current position of the hand is different from the standby position.
  • a line segment connecting the standby position of the robot hand and the gripping position of the target linear object W1 gives an approximate moving path when the hand performs a gripping operation.
  • the controller 32 sets several interference areas including the gripping position of the target linear object for the interference determination between the robot hand 22 and the other linear objects W2 and W3.
  • the first interference area, the first extended interference area, the second interference area, and the second extended interference area are set in this order.
  • an interference determination is performed to determine whether the other linear objects are included in the respective interference areas.
  • the interference determination for each linear object is to shift the point or line segment on the linear object in the length direction and determine whether the point is within the interference area or whether the line segment intersects the interference area Can be done by In FIG.
  • the second preliminary determination for the second extended interference region, the second determination for the second interference region, the first preliminary determination for the first extended interference region, and the first determination for the first interference region are performed in this order.
  • each interference area and the interference determination for that area will be described.
  • a first determination step S61 for the first interference region 51 determines whether or not the hand 22 interferes with other linear objects W2 and W3 when gripping the target linear object W1. .
  • the first interference region 51 is a planar region including the grip position P of the target linear object W1 and having a predetermined shape and a predetermined size.
  • the first interference area preferably includes the gripping position P at its center.
  • the shape of the first interference region is not particularly limited, but is preferably a polygon, a circle or an ellipse. When the first interference region is a polygon, it is preferably a square, more preferably a square. This is because the load of calculation is lightened and high-speed determination can be made.
  • the first interference region is a polygon
  • a square having a side parallel to a plane formed by any two axes of a coordinate system (hereinafter simply referred to as “coordinate system”) representing the three-dimensional shape of a linear object is It is particularly preferable to set 1 interference region. This is because the efficiency of the first preliminary determination can be improved by further reducing the first expanded interference area described later.
  • the first interference region is not a polygon, it is preferably a circle. Similarly, the computational load is lightened, and high-speed determination is possible.
  • the first interference region 51 is too large, the probability of erroneously determining that the interference does not actually occur but the interference increases.
  • the first interference region is preferably large within a circle having a diameter 2.0 times circle C1. And, more preferably, the size included in a circle having the same size as the circle C1.
  • the first interference region is too small, the probability of erroneously determining that the interference does not interfere with the implementation increases.
  • the first interference area is preferably the same as circle C2. It is a size that can contain a circle of size.
  • the first interference region 51 is preferably orthogonal to the target linear object W1.
  • the fact that the first interference region is orthogonal to the target linear object means that the direction in which the target linear object extends at the holding position P is perpendicular to the first interference region. This is because the equation of the plane including the first interference region can be easily obtained.
  • the linear object is gripped by the robot hand 22
  • the linear object is often gripped from the side, that is, the direction perpendicular to the linear object.
  • the hand does not hold the target linear object from the side, even if the hand does not hold the target linear object from the other side. It is because there is a high probability of interfering with the object.
  • the first determination step S61 can be performed by determining whether the line segment L on another target linear object W2 intersects the first interference region 51.
  • the line segment L can be a line segment between two adjacent points S and T in a point group representing the three-dimensional shape of the linear object W2. If the line segment L intersects with the first interference area, any point on the line segment L is included in the first interference area.
  • Cross determination can be performed by a known method. For example, taking the inner product of the normal vector N of the plane U including the first interference region 51 and the vectors PS and PT from the grip position P to both ends S and T of the line segment L, and the signs of the two inner products differ The line segment L intersects the plane U. When the line segment L and the plane U intersect, it may be determined whether the intersection point is within the first interference region 51 or not.
  • the first preliminary determination step S62 for the first expanded interference region 52 is performed prior to the first determination, and is faster when the hand 22 and the other linear objects W2 and W3 do not interfere with each other. Do to discover by calculation.
  • the first expanded interference area 52 is a space area including the first interference area 51.
  • the shape and size of the first expanded interference region are not particularly limited, but preferably, the smallest one of hexahedrons including the first interference region and all sides parallel to any axis of the coordinate system is selected. 1 Set as an extended interference area. When the coordinate system is an orthogonal coordinate system, this hexahedron is a rectangular parallelepiped. Thus, the first preliminary determination can be performed only by comparing the magnitudes of the coordinates. Specifically, referring to FIG. 8, the coordinates of eight vertices A to H of the first expanded interference region 52 are as shown in FIG.
  • the first judgment can be omitted if the result of the first preliminary judgment that the hand does not interfere with other linear objects is obtained.
  • the second determination step (S63) for the second interference region 53 is a path in which the hand 22 moves to the gripping position P of the target linear object W1, and interferes with the other linear objects W2 and W3. It is determined whether to do.
  • the second interference region 53 is a planar region including a line segment PQ connecting the gripping position P of the target linear object W1 and the standby position Q of the hand 22 and extending on both sides of the line segment PQ and having a predetermined width. .
  • the second interference region preferably includes a line segment PQ at the center in the width direction.
  • the shape of the second interference region is not particularly limited, but is preferably a rectangle or a parallelogram, and more preferably a rectangle in which the line segment PQ is an axis of symmetry of line symmetry. The purpose is to reduce the load of calculation and make determination faster.
  • the width of the second interference region 53 is too wide, there is an increased probability of erroneously determining that the interference does not actually occur.
  • the width of the second interference region is preferably less than or equal to the diameter of the circle C1 of FIG.
  • the width of the second interference region is too narrow, the probability of erroneously determining that the interference does not interfere with the implementation increases.
  • the width of the second interference area is preferably equal to or greater than the diameter of the circle C2 of FIG.
  • the second interference region 53 is preferably set so that the angle of intersection with the target linear object W1 is maximized. This is because, when the hand 22 approaches the target linear object W1, the gripping portions 23 often travel in such a plane.
  • the second determination step S63 can be performed by determining whether the line segment L on another target linear object W2 intersects with the second interference region 53.
  • the second preliminary judgment step (S64) for the second expanded interference area 54 is performed prior to the second judgment, and in order to find out the case where the hand 22 does not interfere with the other linear objects W2 and W3 by faster calculation. To do.
  • the second expanded interference area 54 is a space area including the second interference area 53.
  • the shape and size of the second expanded interference region are not particularly limited, but preferably, the smallest one of hexahedrons including the second interference region and all sides parallel to any axis of the coordinate system is selected. 2 Set as an extended interference area. When the coordinate system is an orthogonal coordinate system, this hexahedron is a rectangular parallelepiped. Thus, the second preliminary determination can be performed only by comparing the magnitudes of the coordinates.
  • the second judgment can be omitted if the result of the second preliminary judgment that the hand does not interfere with other linear objects is obtained.
  • the control device 32 performs other lines when gripping the gripping position of the target linear object W1 with the hand 22. It is determined that there is no interference of objects. Then, the robot 20 is notified of the gripping position of the target linear object W1 as the target linear object.
  • the control device 32 When it is determined that the line segment L is included in the first interference region or the second interference region in any of the first determination or the second determination, the control device 32 holds the gripping position of the target linear object W1 with the hand 22. It is determined that there is interference of other linear objects when gripping. Then, the subsequent determination process is omitted, the process returns to step S22, the target linear material is changed, and the same process is repeated.
  • the control device 32 autonomously selects the next target linear object, for example, based on the three-dimensional shape of the linear objects W1 to W3 previously acquired from the stereo camera 31, the line at the next highest position is A rod can be selected as the linear object of interest.
  • the entire linear object is rotated to change the direction, or the linear objects are shaken or vibrated. After changing the positional relationship between the linear objects, each step may be performed again.
  • the distance from the gripping position of each target linear object to the nearest other linear object may be calculated as the interference distance, and the object may be gripped from a linear object having a long interference distance. Thereby, the robot can be instructed to execute the gripping operation in the order in which the gripping is likely to be successful.
  • the interference distance can be easily calculated by using the distance from the intersection point of the first interference region or the second interference region and another linear object in the interference determination to the holding position.
  • the gripping operation is performed based on the determination result as to whether or not the linear object and another linear object interfere with each other. It is possible to select one linear object from among them and hold it with a robot hand.
  • the presence or absence of interference with other linear objects of the robot hand can be implemented by calculating the presence or absence of intersection between a polyhedron and a polyhedron using CAD data on the robot hand side and three-dimensional shape data of the linear object. You may However, this method is excellent in the determination accuracy, but is a time-consuming process.
  • it can be determined whether or not a linear object other than the target linear object is present in the first interference region, by the intersection determination between the planar first interference region and the linear object, so the amount of calculation can be reduced. And the presence or absence of interference can be determined at high speed. When there is no linear object other than the target linear object in the first interference region, the probability that the robot hand can grip the target linear object without interfering with other linear objects is high. The same applies to the second interference area.
  • the order in which the determination steps are performed is not particularly limited except that the first preliminary determination is performed prior to the first determination and the second preliminary determination is performed prior to the second determination.
  • the second determination step is performed first and the first determination step is performed later, this order may be reversed.
  • one determination step for example, the second After completing the preliminary determination step, another determination step (for example, the second determination step) may be performed on the same linear object again.
  • the target linear object is selected prior to the standby position acquisition (S24) of the robot hand (S22), but the standby position of the robot hand is acquired first, and the target line is obtained based on the standby position.
  • the material may be selected.
  • the linear object having the shortest distance between the coordinates of the standby position and the coordinates of the gripping position of the linear object may be selected as the linear object located closest to the standby position. This is preferable in that a linear material having a low possibility of interfering with another linear material can be preferentially selected when gripping.
  • the robot hand grips the linear object so that the linear part is substantially perpendicular to the gripping portion. If the direction of the linear object on the tip end side from the gripping position with respect to the gripping portion is substantially perpendicular, control of the robot becomes easy also when inserting into a processing machine or the like after gripping.
  • the posture of the robot hand is adjusted so that the gripping portion and the linear object form a right angle when gripping. Then, the robot hand moves along the second interference area from the standby position toward the grip position.
  • the posture of the robot hand, the moving direction of the robot hand, and the directions of the planes of the first and second interference regions coincide with each other, so that highly accurate interference determination is possible.
  • a robot hand holding a linear object may transport the linear object to various manufacturing devices and processing devices.
  • the tip of the gripped electric wire may be moved by a robot hand and inserted into a film peeling processor, a terminal crimping device, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

[課題]複数の線状物から1本の線状物を選んでロボットハンドで把持できる方法を提供する。 [解決手段]ロボットハンドによる線状物把持方法であって、複数の線状物(W1~W3)の3次元形状を計測する工程と、前記3次元形状に基づき、前記複数の線状物のうち少なくとも1本の線状物に対し、ロボットハンド(22)で把持する際に他の線状物が干渉するか否かを判定する判定工程と、前記判定工程に基づき決定された目標線状物をロボットハンドで把持する工程とを有する線状物把持方法。

Description

線状物把持方法および制御装置
 本発明はロボットハンドを用いて線状物を把持する方法、およびそのための制御装置に関する。
 対象物を3次元カメラ等で認識して自律的に把持するロボットの普及が進んでいる。線状物を把持することについては、例えば特許文献1に、線状体の組み付け作業を行うロボット装置であって、一端が固定された線状体の固定端近傍を把持したのち、把持部を所定の軌跡でスライドさせて他端に移動させる装置が記載されている。これにより、ケーブルに付いた癖等により正確に推定することが困難な他端を素早く把持できるとされる。
特開2014-176917号公報
 しかしながら、特許文献1に記載された装置は単独で存在する線状体を把持するものであって、また、把持しようとする線状体の一端が固定されている必要があった。例えば、ワイヤーハーネスの製造工程を自動化する場合、ハーネスに組み込まれる、または組み込まれた複数の電線の端部に皮剥や端子の接続などの加工を行うために、複数の電線の中から1本の電線だけを選んで把持する必要がある。特許文献1に記載された技術では、このように複数の線状物が混在し、場合によっては重なり合う中から1本の線状物だけを選んで把持することができなかった。
 本発明は、上記を考慮してなされたものであり、線状物の3次元形状データに基づいて、複数の線状物から1本の線状物を選んでロボットハンドで把持できる方法、およびそのための制御装置を提供することを目的とする。
 本発明の線状物把持方法は、ロボットハンドによる線状物把持方法であって、複数の線状物の3次元形状を計測する工程と、前記3次元形状に基づき、前記複数の線状物のうち少なくとも1本の線状物に対し、ロボットハンドで把持する際に他の線状物が干渉するか否かを判定する判定工程と、前記判定工程に基づき決定された目標線状物をロボットハンドで把持する工程とを有する。この方法によって、複数の線状物から1本を選んでロボットハンドで把持することができる。
 好ましくは、前記線状物がワイヤーハーネスを構成する電線である。本発明の線状物把持方法は、ワイヤーハーネスの製造工程において、ワイヤーハーネスに組み込まれることが予定された電線またはワイヤーハーネスに組み込まれた電線を把持するのに特に適している。
 好ましくは、前記判定工程は、前記線状物のうち1本を注目線状物として選択する工程と、前記注目線状物の把持位置を決定する工程と、前記把持位置を含み所定の形状および所定の大きさを有する平面状の領域を第1干渉領域として設定する工程と、前記第1干渉領域内に前記注目線状物以外の前記線状物が存在するか否かを判定する第1判定工程とを有する。ここで、注目線状物は、ロボットハンドで把持する候補となる線状物である。また、線状物の把持位置とは、ロボットハンドで把持するときの当該線状物上の位置を3次元座標で表したものをいう。この方法によって、ロボットハンドが注目線状物を把持するときに、注目線状物以外の線状物と干渉するか否かを高速に判定できる。
 好ましくは、前記注目線状物を選択する工程は、前記複数の線状物の前記3次元形状に基づいて、最もロボットハンドの待機位置側にある前記線状物を選択する工程である。ロボットハンドの待機位置とは、ロボットハンドが線状物を把持する動作の前に待機または通過する位置であり、線状物に干渉しない位置である。待機位置は、例えば線状物の上方、下方または側方であって、予め決められた距離だけ離れた位置であってもよいし、線状物の3次元形状に基づいて決定してもよい。最も待機位置側にある線状物として、待機位置の座標と当該線状物の把持位置の座標との距離が最も短い線状物を選択してもよい。これにより、把持する際に他の線状物と干渉する可能性の低い線状物を優先的に選択することができる。
 好ましくは、前記第1干渉領域が前記注目線状物と直交する。ここで、第1干渉領域が注目線状物と直交するとは、把持位置において注目線状物が伸びる方向が第1干渉領域と直角をなすことをいう。
 好ましくは、前記第1干渉領域が前記把持位置を中心として所定の半径を有する円である。あるいは、好ましくは、前記第1干渉領域が、前記把持位置を中心とし、所定の長さの辺を有する正方形である。
 好ましくは、前記判定工程は、前記第1干渉領域を内包し、すべての辺が前記線状物の前記3次元形状を表す座標系のいずれかの軸に平行な6面体のうち最小のものを第1拡張干渉領域として設定する工程と、前記第1拡張干渉領域内に前記注目線状物以外の前記線状物が存在するか否かを判定する第1予備判定工程とをさらに有する。そして、前記第1予備判定工程は前記第1判定工程より先に実施される。
 好ましくは、前記判定工程は、前記ロボットハンドの待機位置を取得する工程と、前記把持位置と前記ロボットハンドの前記待機位置を結ぶ線分の両側に拡がり所定の幅を有する平面状の領域を第2干渉領域として設定する工程と、前記第2干渉領域内に前記注目線状物以外の前記線状物が存在するか否かを判定する第2判定工程とをさらに有する。この方法によって、ロボットハンドが注目線状物まで移動する経路で、注目線状物以外の線状物と干渉するか否かを高速に判定できる。
 好ましくは、前記第2干渉領域は、前記注目線状物との交角が最大となるように設定される。
 好ましくは、前記第2干渉領域が、前記把持位置と前記ロボットハンドの前記待機位置を結ぶ線分を線対称の対称軸とする長方形である。
 好ましくは、上記線状物把持方法は、前記第2干渉領域を内包し、すべての辺が前記線状物の3次元形状を表す座標系のいずれかの軸に平行な6面体のうち最小のものを第2拡張干渉領域として設定する工程と、前記第2拡張干渉領域内に前記注目線状物以外の前記線状物が存在するか否かを判定する第2予備判定工程とをさらに有する。そして、前記第2予備判定工程は前記第2判定工程より先に実施される。
 本発明の制御装置は、ロボットハンドによる線状物把持を制御する制御装置であって、複数の線状物の3次元形状を計測する3次元カメラから該3次元形状を取得し、前記3次元形状に基づき、前記線状物のうち少なくとも1本の線状物に対し、ロボットハンドで把持する際に他の線状物が干渉するか否かを判定し、前記判定の結果に基づき決定された目標線状物の把持位置を前記ロボットハンドを備えるロボットに通知する。
 本発明の線状物把持方法または制御装置によれば、線状物の3次元形状データに基づいて、複数の線状物から1本の線状物を選んでロボットハンドで把持することが可能となる。
本発明の一実施形態の線状物把持方法を実行する全体システムを示す図である。 本発明の一実施形態の線状物把持方法の工程フロー図である。 本発明の一実施形態の線状物把持方法の判定工程の工程フロー図である。 本発明の一実施形態の第1干渉領域および第1拡張干渉領域を示す図である。 本発明の一実施形態の第2干渉領域および第2拡張干渉領域を示す図である。 本発明の一実施形態の第1干渉領域の大きさを説明するための図である。 本発明の一実施形態の第1判定工程を説明するための図である。 本発明の一実施形態の第1予備判定工程を説明するための図である。
 本発明の線状物把持方法および制御装置の一実施形態を図1~図8に基づいて説明する。
 図1において、本実施形態の線状物把持方法を実施するための全体システム10は、ロボット20と、3次元カメラ31と、制御装置32とを有する。
 作業空間には電線(線状物)W1~W3から構成されるワイヤーハーネスWが配置されている。把持対象とする線状物は特に限定されないが、本実施形態の線状物把持方法は、ワイヤーハーネスを構成する電線や、ワイヤーハーネス自体など、柔軟で形状が定まらない線状物を把持する場合に特に有効である。
 ロボット20としては、公知の多関節ロボットを好適に利用することができる。ロボットのアーム21の先端にはロボットハンド22が備えられており、ロボットハンドの把持部23、23で線状物を把持する。なお、本明細書中で「ロボットハンド」を単に「ハンド」ということがある。
 3次元カメラ31は、線状物W1~W3の3次元形状を計測できるものであれば特に限定されない。好ましくはステレオカメラを用いる。ステレオカメラは線状物の3次元形状を高速に計測するのに適するからである。
 ステレオカメラは2台のカメラからなり、異なる視点から撮像された2枚の画像上で計測したい点の対応点を求め、2台のカメラの位置関係から3角測量の原理によって計測点の3次元位置を算出する。ステレオ方式による線状物の3次元計測に関しては、例えば、特開平2-309202号公報には、多数の線状物を2台のカメラで撮像し、2つの画像中の輝線の傾きと輝線間の距離を特徴として照合することにより対応点を決定することが記載されており、これによって、対応点の決定にかかる処理時間を短縮できるとされる。
 また、ステレオ方式において、一方の画像の視点と計測点を結ぶ直線を他方の画像上に投影した直線をエピポーラ線といい、一方の画像上の点に対応する他方の画像上の対応点は必ず他方の画像上のエピポーラ線上に投影されている。このことを利用して、線状物上のある点の対応点を求めるには、他方の画像上で線状物とエピポーラ線の交点を求めればよく、高速に線状物の3次元形状を計測できる。また、線状物が互いに異なる色に色分けされている場合には、カラーカメラを用いることにより、画像から該当する色を抽出してから対応点を求めることで、各線状物の3次元形状をより高速に求めることができる。
 制御装置32は、図示しない通信部によってステレオカメラ31と通信し、ステレオカメラから線状物W1~W3の3次元形状を取得する。制御装置は図示しない演算部によって、ステレオカメラから取得した3次元形状に基づいて、ハンド22が線状物を把持する際に他の線状物と干渉するか否かを判定し、把持すべき目標線状物を決定するための各種演算を行う。また、制御装置は前記通信部を介して、演算結果に基づいて、把持すべき目標線状物の把持位置をロボット20に通知する。なお、把持位置をロボット20に直接通知するだけでなく、制御装置32とロボット20との間にロボットの動作を制御する別の装置(例えば、ロボットコントローラや制御用パソコン等)を設け、それらの装置に対して通知しても良い。
 本実施形態の線状物把持方法を以下に説明する。
 図2を参照して、本実施形態の線状物把持方法は、複数の線状物W1~W3の3次元形状を計測する工程(S1)、計測された3次元形状に基づいてロボットハンド22が線状物を把持する際に他の線状物が干渉するか否かを判定する判定工程(S2)、判定工程S2における判定結果に基づいて決定された目標線状物を把持する工程(S3)からなる。
 複数の線状物W1~W3の3次元形状を計測する工程S1はステレオカメラ31によって実施される。ステレオカメラは線状物のある作業空間を撮像し、2枚の画像を演算処理して線状物W1~W3それぞれの3次元形状を取得する。線状物の3次元形状は、直交座標系または斜交座標系で表され、好ましくは直交座標で表される。
 判定工程S2は制御装置32によって実施される。判定工程については詳細を後述する。
 目標線状物を把持する工程S3はロボット20によって実施される。ロボットは、把持すべき目標線状物の把持位置を制御装置32から通知され、アーム21およびハンド22を移動させて把持動作を実行する。
 以下に判定工程S2を詳細に説明する。
 図3を参照して、本実施形態の判定工程S2では、線状物の3次元形状の取得(S21)、注目線状物の選択(S22)、注目線状物の把持位置の決定(S23)、ロボットハンド待機位置の取得(S24)、各種干渉領域の設定(S51~S54)と各種干渉判定(S61~S64)を実施する。
 制御装置32はまず、ステレオカメラ31から線状物W1~W3の3次元形状を取得する(S21)。
 制御装置32は次に、ハンド22で把持しようとする注目線状物を選択する(S22)。以下において、W1を把持しようとする注目線状物、W2とW3を注目線状物以外の線状物(他の線状物)として説明する。制御装置は、ケーブルの色などの指定を外部から受けて、その指示に基づいて注目線状物を決定してもよい。好ましくは、制御装置は自律的に注目線状物を選択する。例えば、線状物W1~W3が台の上に置かれている場合、取得した3次元形状に基づいて最も高い位置、すなわち最も上にある線状物を注目線状物として選択することができる。線状物が重なり合って置かれている場合でも、上にある線状物ほど、その線状物を把持するときに他の線状物が干渉する確率が低いからである。
 制御装置32は次に、注目線状物W1の把持位置を決定する(S23)。例えば、注目線状物の先端から何mmというような予め定められた条件に基づいて、制御装置が注目線状物の把持位置を3次元座標として算出する。
 制御装置32は次に、ロボットハンド22の待機位置を取得する(S24)。ハンドの待機位置が予め定められている場合は、その座標を待機位置として取得する。待機位置を線状物の3次元形状に基づいて決定する場合、例えば線状物から所定距離離れた上方に決定するなどの場合は、演算により待機位置を取得する。また、制御装置はロボットハンド22の現在位置をロボット20から取得し、ハンドの現在位置が待機位置と異なる場合は、ロボットハンドを待機位置に移動させる。ロボットハンドの待機位置と注目線状物W1の把持位置を結ぶ線分が、ハンドが把持動作を実行するときのおおよその移動経路を与える。
 制御装置32は次に、ロボットハンド22と他の線状物W2、W3との干渉判定のために、注目線状物の把持位置を含むいくつかの干渉領域を設定する。図3では、第1干渉領域、第1拡張干渉領域、第2干渉領域、第2拡張干渉領域の順に設定している。そして、すべての他の線状物の1本毎に、当該他の線状物が上記それぞれの干渉領域に含まれるか否かを判定する干渉判定を行う。各線状物についての干渉判定は、線状物上の点または線分を長さ方向にずらしながら、その点が干渉領域内にあるかまたはその線分が干渉領域と交差するかを判定することによって行うことができる。図3では、第2拡張干渉領域に対する第2予備判定、第2干渉領域に対する第2判定、第1拡張干渉領域に対する第1予備判定、第1干渉領域に対する第1判定の順に実施している。以下に、図3の順番とは異なるが、各干渉領域とその領域に対する干渉判定とについて説明する。
 図4を参照して、第1干渉領域51に対する第1判定工程S61は、ハンド22が注目線状物W1を把持するときに他の線状物W2、W3と干渉するか否かを判定する。
 第1干渉領域51は、注目線状物W1の把持位置Pを含み、所定の形状および所定の大きさを有する平面状の領域である。第1干渉領域は、その中心に把持位置Pを含むことが好ましい。第1干渉領域の形状は特に限定されないが、好ましくは、多角形、円または楕円とする。第1干渉領域が多角形の場合は、好ましくは4角形、より好ましくは正方形である。計算の負荷が軽くなり、高速な判定が可能となるからである。第1干渉領域が多角形の場合、線状物の3次元形状を表す座標系(以下、単に「座標系」という)のいずれか2本の軸がなす平面に平行な辺を有する正方形を第1干渉領域とするのが特に好ましい。後述する第1拡張干渉領域をより小さくして第1予備判定の効率を向上できるからである。第1干渉領域が多角形でない場合は、好ましくは円である。同じく、計算の負荷が軽くなり、高速な判定が可能となるからである。
 第1干渉領域51の大きさは、大きすぎると実際には干渉しないのに干渉すると誤判定する確率が増大する。図6を参照して、ハンド22の最大断面に外接する最小の円を円C1とすると、第1干渉領域は、好ましくは、円C1の2.0倍の直径を有する円に内包される大きさであり、より好ましくは、円C1と同じ大きさの円に内包される大きさである。一方、第1干渉領域が小さすぎると、実施には干渉するのに干渉しないと誤判定する確率が増大する。図6を参照して、ハンドが線状物を把持するために動作させる把持部23の最大断面に外接する最小の円を円C2とすると、第1干渉領域は、好ましくは、円C2と同じ大きさの円を内包できる大きさである。
 第1干渉領域51は、好ましくは、注目線状物W1と直交する。第1干渉領域が注目線状物と直交するとは、把持位置Pにおいて注目線状物が伸びる方向が第1干渉領域と直角をなすことをいう。第1干渉領域を含む平面の方程式が容易に求められるからである。また、ロボットハンド22で線状物を把持する場合、線状物を真横から、つまり線状物と直角の方向から把持することが多いからである。また、注目線状物と直交する第1干渉領域内に他の線状物が存在する場合には、ハンドが注目線状物を真横から把持しない場合であっても、ハンドが当該他の線状物と干渉する蓋然性が高いからである。
 図7を参照して、第1判定工程S61は、対象とする他の線状物W2上の線分Lと第1干渉領域51との交差判定によって行うことができる。線分Lは、線状物W2の3次元形状を表す点群のうち隣り合う2点S、T間の線分とすることができる。線分Lが第1干渉領域と交差するなら、線分L上のどこかの点が第1干渉領域に含まれる。交差判定は公知の方法で行うことができる。例えば、第1干渉領域51を含む平面Uの法線ベクトルNと、把持位置Pから線分Lの両端S、TへのベクトルPSおよびPTとの内積を取り、2つの内積の符号が異なる場合は線分Lは平面Uと交差する。線分Lと平面Uが交差する場合は、その交点が第1干渉領域51内にあるか否かを判定すればよい。
 図4を参照して、第1拡張干渉領域52に対する第1予備判定工程S62は、第1判定に先だって実施され、ハンド22と他の線状物W2、W3が干渉しない場合を、より高速な計算で発見するために行う。
 第1拡張干渉領域52は第1干渉領域51を内包する空間領域である。第1拡張干渉領域の形状や大きさは特に限定されないが、好ましくは、第1干渉領域を内包し、すべての辺が座標系のいずれかの軸に平行な6面体のうち最小のものを第1拡張干渉領域として設定する。座標系が直交座標系の場合は、この6面体は直方体である。これにより、座標の大小比較を行うだけで、第1予備判定が実施できる。具体的には、図8を参照して、第1拡張干渉領域52の8つの頂点A~Hの座標を図8のとおりとし、線分Lの一方の端点Sの座標を(xS,yS,zS)とすると、x1≦xS≦x2 かつ y1≦yS≦y2 かつ z1≦zS≦z2 であれば点Sは第1拡張干渉領域内にあり、そうでなければ点Sは第1拡張干渉領域外にある。
 第1拡張干渉領域52が第1干渉領域51を内包するので、第1予備判定によってハンドと他の線状物が干渉しないとの結果が得られた場合は、第1判定を省略できる。
 図5を参照して、第2干渉領域53に対する第2判定工程(S63)は、ハンド22が注目線状物W1の把持位置Pまで移動する経路で、他の線状物W2、W3と干渉するか否かを判定する。
 第2干渉領域53は、注目線状物W1の把持位置Pとハンド22の待機位置Qとを結ぶ線分PQを含み、線分PQの両側に広がり所定の幅を有する平面状の領域である。第2干渉領域は、その幅方向の中心に線分PQを含むことが好ましい。第2干渉領域の形状は、特に限定されないが、好ましくは長方形または平行四辺形であり、より好ましくは、線分PQを線対称の対称軸とする長方形である。計算の負荷を軽くして、より高速に判定するためである。
 第2干渉領域53の幅は、広すぎると実際には干渉しないのに干渉すると誤判定する確率が増大する。第2干渉領域の幅は、好ましくは、図6の円C1の直径以下である。一方、第2干渉領域の幅が狭すぎると、実施には干渉するのに干渉しないと誤判定する確率が増大する。第2干渉領域の幅は、好ましくは、図6の円C2の直径以上である。
 第2干渉領域53は、好ましくは、注目線状物W1との交角が最大となるように設定される。ハンド22が注目線状物W1に接近する際に、把持部23、23がそのような平面内を進むことが多いからである。
 第2判定工程S63は、第1判定工程S61と同様に、対象とする他の線状物W2上の線分Lと第2干渉領域53との交差判定によって行うことができる。
 第2拡張干渉領域54に対する第2予備判定工程(S64)は、第2判定に先だって実施され、ハンド22と他の線状物W2、W3が干渉しない場合を、より高速な計算で発見するために行う。
 第2拡張干渉領域54は第2干渉領域53を内包する空間領域である。第2拡張干渉領域の形状や大きさは特に限定されないが、好ましくは、第2干渉領域を内包し、すべての辺が座標系のいずれかの軸に平行な6面体のうち最小のものを第2拡張干渉領域として設定する。座標系が直交座標系の場合は、この6面体は直方体である。これにより、座標の大小比較を行うだけで、第2予備判定が実施できる。
 第2拡張干渉領域54が第2干渉領域53を内包するので、第2予備判定によってハンドと他の線状物が干渉しないとの結果が得られた場合は、第2判定を省略できる。
 判定の対象とする線分Lを線状物W2の長さ方向にずらしながら上記判定工程S61~S64を繰り返して、他の線状物W2との干渉判定が完了したら、次の他の線状物W3について同じ処理を行う。
 すべての他の線状物W2、W3が干渉領域51~54に含まれないと判定された場合は、制御装置32は注目線状物W1の把持位置をハンド22で把持する際に他の線状物の干渉がないと判定する。そして、注目線状物W1を目標線状物として、その把持位置をロボット20に通知する。
 いずれかの第1判定または第2判定で線分Lが第1干渉領域または第2干渉領域に含まれると判定された場合は、制御装置32は注目線状物W1の把持位置をハンド22で把持する際に他の線状物の干渉があると判定する。そして、以後の判定工程を省略して工程S22に戻り、注目線状物を変えて同じ処理を繰り返す。制御装置32が自律的に次の注目線状物を選択する場合は、例えば、先にステレオカメラ31から取得した線状物W1~W3の3次元形状に基づいて、次に高い位置にある線状物を注目線状物として選択することができる。
 何れの線状物に注目しても他の線状物と「干渉あり」と判定された場合は、線状物全体を回転させて向きを変えたり、線状物を振ったり振動させたりして線状物同士の位置関係を変化させてから、再度各工程を実施してもよい。また、各注目線状物の把持位置から最も近い他の線状物までの距離を干渉距離として計算しておき、干渉距離の長い線状物から把持するようにしてもよい。これにより、把持が成功しやすい順番で把持動作を実行するようロボットに指示することができる。干渉距離は、干渉判定における第1干渉領域または第2干渉領域と他の線状物との交点から把持位置までの距離を用いることで簡易に計算することができる。
 以上のとおり、本実施形態の線状物把持方法によれば、線状物と他の線状物が干渉するか否かの判定結果に基づいて把持動作を実行するので、複数の線状物から1本の線状物を選んでロボットハンドで把持することが可能となる。
 なお、ロボットハンドの他の線状物との干渉の有無は、ロボットハンド側のCADデータと線状物の3次元形状データを用いて、多面体と多面体との交差の有無を計算することによって実施してもよい。しかしこの方法は判定の正確さにおいて優れるが、時間のかかる処理である。本実施形態では、注目線状物以外の線状物が第1干渉領域内に存在するか否かを、平面状の第1干渉領域と線状物との交差判定によって判定できるので、計算量が少なく、干渉の有無を高速に判定できる。そして、第1干渉領域内に注目線状物以外の線状物が存在しない場合は、ロボットハンドが他の線状物と干渉しないで注目線状物を把持できる蓋然性が高い。第2干渉領域についても同様である。
 本発明は、上記の実施形態に限定されるものではなく、その技術的思想の範囲内で種々の変形が可能である。
 例えば、各判定工程を実施する順番は、第1予備判定を第1判定に先立って行い、第2予備判定を第2判定に先立って行う以外は、特に限定されない。上記実施形態では、第2判定工程を先に、第1判定工程を後で実施したが、この順番を逆にしてもよい。また、上記実施形態では、線分Lを線状物の長さ方向にずらしながら、1つの線分毎にすべての判定工程を実施したが、ある線状物について一つの判定工程(例えば第2予備判定工程)を終えてから、改めて同じ線状物について他の判定工程(例えば第2判定工程)を実施してもよい。
 また、上記実施形態では、ロボットハンドの待機位置取得(S24)に先立って注目線状物を選択したが(S22)、先にロボットハンドの待機位置を取得し、その待機位置に基づいて注目線状物を選択してもよい。その場合は、注目線状物として最も待機位置側にある線状物を選択できる。最も待機位置側にある線状物として、待機位置の座標と当該線状物の把持位置の座標との距離が最も短い線状物を選択してもよい。これにより、把持する際に他の線状物と干渉する可能性の低い線状物を優先的に選択できる点で好ましい。
 また、ロボットハンドが線状物を把持する際の姿勢(把持姿勢)は、把持部と線状物が略直角をなすように把持することが好ましい。把持部に対して把持位置から先端側の線状物の向きが略垂直であれば、把持した後に加工機等に挿入する際もロボットの制御が容易になるからである。好ましくは、待機位置において、把持した際に把持部と線状物とが直角をなす向きになるように、ロボットハンドの姿勢を調整する。そして、ロボットハンドは、待機位置から把持位置に向かって第2干渉領域に沿って移動する。これにより、ロボットハンドの姿勢、ロボットハンドの移動方向、ならびに第1および第2干渉領域の平面の向きが一致するため、高精度な干渉判定が可能となる。
 本発明によって線状物を把持したロボットハンドが当該線状物を種々の製造装置・加工装置まで搬送してもよい。例えば、把持した電線の先端をロボットハンドによって移動させ、被膜剥き加工機や端子圧着装置等に挿入してもよい。また、電線の先端をコネクタ等の各種部品に挿入しワイヤーハーネスを製造する工程に用いてもよい。
 10 線状物把持のための全体システム; 20 ロボット; 21 ロボットアーム; 22 ロボットハンド; 31 ステレオカメラ(3次元カメラ); 32 制御装置; 51 第1干渉領域; 52 第1拡張干渉領域; 53 第2干渉領域; 54 第2拡張干渉領域; L 線分; P 把持位置; Q ロボットハンドの待機位置; W ワイヤーハーネス; W1 注目線状物; W2、W3 注目線状物以外の線状物

Claims (15)

  1.  ロボットハンドによる線状物把持方法であって、
     複数の線状物の3次元形状を計測する工程と、
     前記3次元形状に基づき、前記複数の線状物のうち少なくとも1本の線状物に対し、ロボットハンドで把持する際に他の線状物が干渉するか否かを判定する判定工程と、
     前記判定工程に基づき決定された目標線状物をロボットハンドで把持する工程と、
    を有する線状物把持方法。
  2.  前記線状物がワイヤーハーネスを構成する電線である、
    請求項1に記載の線状物把持方法。
  3.  前記判定工程は、
      前記線状物のうち1本を注目線状物として選択する工程と、
      前記注目線状物の把持位置を決定する工程と、
      前記把持位置を含み所定の形状および所定の大きさを有する平面状の領域を第1干渉領域として設定する工程と、
      前記第1干渉領域内に前記注目線状物以外の前記線状物が存在するか否かを判定する第1判定工程とを有する
    請求項1または2に記載の線状物把持方法。
  4.  前記注目線状物を選択する工程は、前記複数の線状物の前記3次元形状に基づいて、最もロボットハンドの待機位置側にある前記線状物を選択する工程である、
    請求項3に記載の線状物把持方法。
  5.  前記第1干渉領域が前記注目線状物と直交する、
    請求項3または4に記載の線状物把持方法。
  6.  前記第1干渉領域が前記把持位置を中心として所定の半径を有する円である、
    請求項3~5のいずれか一項に記載の線状物把持方法。
  7.  前記第1干渉領域が、前記把持位置を中心とし、所定の長さの辺を有する正方形である、
    請求項3~5のいずれか一項に記載の線状物把持方法。
  8.  前記判定工程は、
      前記第1干渉領域を内包し、すべての辺が前記線状物の前記3次元形状を表す座標系のいずれかの軸に平行な6面体のうち最小のものを第1拡張干渉領域として設定する工程と、
      前記第1拡張干渉領域内に前記注目線状物以外の前記線状物が存在するか否かを判定する第1予備判定工程とをさらに有し、
      前記第1予備判定工程は前記第1判定工程より先に実施される、
    請求項3~7のいずれか一項に記載の線状物把持方法。
  9.  前記判定工程は、
      前記ロボットハンドの待機位置を取得する工程と、
      前記把持位置と前記ロボットハンドの前記待機位置を結ぶ線分の両側に拡がり所定の幅を有する平面状の領域を第2干渉領域として設定する工程と、
      前記第2干渉領域内に前記注目線状物以外の前記線状物が存在するか否かを判定する第2判定工程とをさらに有する、
    請求項3~8のいずれか一項に記載の線状物把持方法。
  10.  前記第2干渉領域は、前記注目線状物との交角が最大となるように設定される、
    請求項9に記載の線状物把持方法。
  11.  前記第2干渉領域が、前記把持位置と前記ロボットハンドの前記待機位置を結ぶ線分を線対称の対称軸とする長方形である、
    請求項9または10に記載の線状物把持方法。
  12.  前記判定工程は、
      前記第2干渉領域を内包し、すべての辺が前記線状物の前記3次元形状を表す座標系のいずれかの軸に平行な6面体のうち最小のものを第2拡張干渉領域として設定する工程と、
      前記第2拡張干渉領域内に前記注目線状物以外の前記線状物が存在するか否かを判定する第2予備判定工程とをさらに有し、
      前記第2予備判定工程は前記第2判定工程より先に実施される、
    請求項9~11のいずれか一項に記載の線状物把持方法。
  13.  ロボットハンドによる線状物把持を制御する制御装置であって、
     複数の線状物の3次元形状を計測する3次元カメラから該3次元形状を取得し、
     前記3次元形状に基づき、前記線状物のうち少なくとも1本の線状物に対し、ロボットハンドで把持する際に他の線状物が干渉するか否かを判定し、
     前記判定の結果に基づき決定された目標線状物の把持位置を前記ロボットハンドを備えるロボットに通知する、
    制御装置。
  14.  前記線状物がワイヤーハーネスを構成する電線である、
    請求項13に記載の制御装置。
  15.  前記線状物のうち少なくとも1本の線状物に対し、ロボットハンドで把持する際に他の線状物が干渉するか否かの判定は、
      前記線状物のうち1本を注目線状物として選択し、
      前記注目線状物の前記把持位置を決定し、
      前記把持位置を含み所定の形状および所定の大きさを有する平面状の領域を第1干渉領域として設定し、
      前記第1干渉領域内に前記注目線状物以外の前記線状物が存在するか否かを判定することによって行われる、
    請求項13または14に記載の制御装置。
PCT/JP2018/041000 2017-11-16 2018-11-05 線状物把持方法および制御装置 WO2019098074A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019554172A JP7106571B2 (ja) 2017-11-16 2018-11-05 線状物把持方法および制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017221045 2017-11-16
JP2017-221045 2017-11-16

Publications (1)

Publication Number Publication Date
WO2019098074A1 true WO2019098074A1 (ja) 2019-05-23

Family

ID=66540157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041000 WO2019098074A1 (ja) 2017-11-16 2018-11-05 線状物把持方法および制御装置

Country Status (3)

Country Link
JP (1) JP7106571B2 (ja)
TW (1) TW201922440A (ja)
WO (1) WO2019098074A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021056165A (ja) * 2019-10-01 2021-04-08 倉敷紡績株式会社 線状物の三次元計測方法、それを用いた線状物の作業位置決定方法、ロボットの制御方法、線状物の固定方法、線状物の作業位置決定装置および線状物把持システム
EP4170683A1 (de) * 2021-10-19 2023-04-26 Siegfried Reichert Translatorisches doppelgreifersystem zum ablegen eines kabelsatzes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05185388A (ja) * 1992-01-14 1993-07-27 Nippondenso Co Ltd 部品供給装置
JP2014161965A (ja) * 2013-02-26 2014-09-08 Toyota Industries Corp 物品取り出し装置
JP2015009314A (ja) * 2013-06-28 2015-01-19 キヤノン株式会社 干渉判定装置、干渉判定方法、コンピュータプログラム
WO2016158282A1 (ja) * 2015-03-31 2016-10-06 株式会社オートネットワーク技術研究所 電線群加工用の画像取得システム
JP2017047505A (ja) * 2015-09-02 2017-03-09 トヨタ自動車株式会社 把持可否判定方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7692486B2 (en) 2007-10-05 2010-04-06 Qualcomm, Incorporated Configurable feedback for an amplifier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05185388A (ja) * 1992-01-14 1993-07-27 Nippondenso Co Ltd 部品供給装置
JP2014161965A (ja) * 2013-02-26 2014-09-08 Toyota Industries Corp 物品取り出し装置
JP2015009314A (ja) * 2013-06-28 2015-01-19 キヤノン株式会社 干渉判定装置、干渉判定方法、コンピュータプログラム
WO2016158282A1 (ja) * 2015-03-31 2016-10-06 株式会社オートネットワーク技術研究所 電線群加工用の画像取得システム
JP2017047505A (ja) * 2015-09-02 2017-03-09 トヨタ自動車株式会社 把持可否判定方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021056165A (ja) * 2019-10-01 2021-04-08 倉敷紡績株式会社 線状物の三次元計測方法、それを用いた線状物の作業位置決定方法、ロボットの制御方法、線状物の固定方法、線状物の作業位置決定装置および線状物把持システム
JP7312663B2 (ja) 2019-10-01 2023-07-21 倉敷紡績株式会社 線状物の作業位置決定方法、ロボットの制御方法、線状物の固定方法、線状物の作業位置決定装置および線状物把持システム
EP4170683A1 (de) * 2021-10-19 2023-04-26 Siegfried Reichert Translatorisches doppelgreifersystem zum ablegen eines kabelsatzes

Also Published As

Publication number Publication date
TW201922440A (zh) 2019-06-16
JPWO2019098074A1 (ja) 2020-11-19
JP7106571B2 (ja) 2022-07-26

Similar Documents

Publication Publication Date Title
JP5778311B1 (ja) ピッキング装置およびピッキング方法
EP4155675A1 (en) Robot motion planning method, path planning method, grabbing method and devices thereof
US20180085923A1 (en) Robot control device, robot, and robot system
JP5685027B2 (ja) 情報処理装置、物体把持システム、ロボットシステム、情報処理方法、物体把持方法およびプログラム
JP2016099257A (ja) 情報処理装置及び情報処理方法
JP2012218119A (ja) 情報処理装置、情報処理装置の制御方法、およびプログラム
WO2019098074A1 (ja) 線状物把持方法および制御装置
TWI760596B (zh) 線狀物之前端移動方法、控制裝置以及三維相機
JP7454132B2 (ja) ロボットシステムの制御装置、ロボットシステムの制御方法、コンピュータ制御プログラム、及びロボットシステム
JP7140826B2 (ja) 把持制御装置
JP7177639B2 (ja) 帯状物の3次元計測方法および帯状物の3次元計測装置
JP2007125653A (ja) ロボットハンドの把持制御装置
EP4269050A1 (en) Interference determination device, robot control system, and interference determination method
JP7217109B2 (ja) 帯状物の作業位置決定方法、ロボット制御方法、帯状物の作業位置決定装置および帯状物ハンドリングシステム
CN117794704A (zh) 机器人控制设备、机器人控制系统以及机器人控制方法
JP2022150024A (ja) ワーク把持方法、ロボット制御装置およびワーク把持システム
WO2020050121A1 (ja) 帯状物の作業位置決定方法、ロボット制御方法、帯状物の作業位置決定装置、帯状物ハンドリングシステム、帯状物の3次元計測方法および帯状物の3次元計測装置
JP7415013B2 (ja) ロボットの構成部材の干渉を検出するロボット装置
TWI839380B (zh) 帶狀物的作業位置決定方法、機器人控制方法、帶狀物的作業位置決定裝置、帶狀物處理系統、帶狀物的三維測量方法及帶狀物的三維測量裝置
JP7450857B2 (ja) 計測パラメータの最適化方法及び装置、並びに、コンピュータ制御プログラム
JP2023061438A (ja) ロボットシステム、制御方法、画像処理装置、画像処理方法、物品の製造方法、プログラム、及び記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18877761

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019554172

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18877761

Country of ref document: EP

Kind code of ref document: A1