WO2019097717A1 - Variable magnification optical system, optical device, and manufacturing method of variable magnification optical system - Google Patents

Variable magnification optical system, optical device, and manufacturing method of variable magnification optical system Download PDF

Info

Publication number
WO2019097717A1
WO2019097717A1 PCT/JP2017/041637 JP2017041637W WO2019097717A1 WO 2019097717 A1 WO2019097717 A1 WO 2019097717A1 JP 2017041637 W JP2017041637 W JP 2017041637W WO 2019097717 A1 WO2019097717 A1 WO 2019097717A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
optical system
lens
focusing
magnification optical
Prior art date
Application number
PCT/JP2017/041637
Other languages
French (fr)
Japanese (ja)
Inventor
幸介 町田
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2017/041637 priority Critical patent/WO2019097717A1/en
Priority to JP2019553667A priority patent/JPWO2019097717A1/en
Publication of WO2019097717A1 publication Critical patent/WO2019097717A1/en
Priority to JP2022150242A priority patent/JP7351390B2/en
Priority to JP2023143590A priority patent/JP2023164939A/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length

Definitions

  • the present invention relates to a variable magnification optical system, an optical device, and a method of manufacturing the variable magnification optical system.
  • variable magnification optical systems suitable for photographic cameras, electronic still cameras, video cameras and the like. See, for example, Japanese Patent Laid-Open No. 2004-198529.
  • variable magnification optical system it is not sufficient to suppress the fluctuation of various aberrations at the time of focusing.
  • the first aspect of the present invention is Have multiple lens groups, During zooming, the distance between the lens units changes, The plurality of lens units are disposed on the image side of the object-side focusing lens unit that moves when focusing and the object-side focusing lens unit, and a locus that is different from the object-side focusing lens unit when focusing And at least one image-side focusing lens group that moves It is a variable power optical system that satisfies the following conditional expression.
  • MTF1 / MTF2 ⁇ 5.0 0.2 ⁇ BFw / fw ⁇ 2.0
  • MTF1 absolute value of the amount of movement of the object-side focusing lens unit when focusing from an infinite distance object to a close distance object in the telephoto end state
  • MTF2 focusing from an infinity object to a close object in the telephoto end state
  • a method of manufacturing a variable magnification optical system having a plurality of lens groups comprising: The distance between the lens units is changed during zooming.
  • the plurality of lens units are disposed on the image side of the object-side focusing lens unit moving in focusing and the image-side focusing lens unit, and a locus different from the object-side focusing lens unit in focusing And at least one image-side focusing lens group that moves at
  • This is a manufacturing method of a variable magnification optical system configured to satisfy the following conditional expression.
  • MTF1 / MTF2 ⁇ 5.0 0.2 ⁇ BFw / fw ⁇ 2.0
  • MTF1 absolute value of the amount of movement of the object-side focusing lens unit when focusing from an infinite distance object to a close distance object in the telephoto end state
  • MTF2 focusing from an infinity object to a close object in the telephoto end state
  • FIG. 1 is a cross-sectional view of the variable magnification optical system according to the first example.
  • FIGS. 2A, 2B, and 2C are aberration diagrams at the time of focusing on an infinity object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the first example, respectively.
  • FIGS. 3A, 3B, and 3C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the first example.
  • FIG. 4 is a cross-sectional view of a variable magnification optical system according to a second example.
  • FIGS. 5A, 5B, and 5C are aberration diagrams at the time of focusing on an infinity object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the second example, respectively.
  • FIGS. 6A, 6B, and 6C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the second example.
  • FIG. 7 is a cross-sectional view of the variable magnification optical system according to the third example.
  • FIGS. 8A, 8B, and 8C are aberration diagrams at the time of focusing on an infinity object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third example, respectively.
  • FIGS. 9A, 9B, and 9C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third example.
  • FIG. 10 is a cross-sectional view of the variable magnification optical system according to the fourth example.
  • 11A, 11B, and 11C are various aberration diagrams at the time of focusing on an infinity object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fourth example.
  • 12A, 12B, and 12C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fourth example.
  • FIG. 13 is a cross-sectional view of the variable magnification optical system according to the fifth example.
  • FIGS. 14C are various aberration diagrams at the time of infinity object focusing in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fifth example.
  • FIG. 15A, FIG. 15B, and FIG. 15C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fifth example.
  • FIG. 16 is a cross-sectional view of the variable magnification optical system according to the sixth example.
  • FIGS. 17A, 17B, and 17C are aberration diagrams at the time of focusing on an infinity object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the sixth example.
  • 18A, 18B, and 18C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the sixth example.
  • FIG. 19 is a cross-sectional view of a variable magnification optical system according to a seventh example.
  • FIGS. 20A, 20B, and 20C are aberration diagrams at the time of focusing on an infinity object in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively, of the zoom optical system according to the seventh example.
  • FIGS. 21A, 21B, and 21C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the seventh example.
  • FIG. 22 is a cross-sectional view of a variable magnification optical system according to an eighth example.
  • FIGS. 23A, 23B, and 23C show various aberrations of the variable magnification optical system of the eighth embodiment at the wide-angle end state, at the intermediate focal length state, and at the telephoto end state when focusing on infinity.
  • FIGS. 24A, 24B, and 24C show various aberrations of the variable magnification optical system according to Example 8 at the wide-angle end, at the intermediate focal length, and at the telephoto end when focusing on short-distance objects.
  • FIG. 25 is a cross-sectional view of the variable magnification optical system according to the ninth example.
  • FIGS. 26A, 26B, and 26C are aberration diagrams at the time of focusing on an infinite object in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively, of the variable magnification optical system according to the ninth example.
  • FIGS. 27A, 27B, and 27C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the ninth example.
  • FIG. 28 is a cross-sectional view of the variable magnification optical system according to the tenth example.
  • FIGS. 29A, 29B, and 29C are aberration diagrams at the time of focusing on an infinity object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the tenth example.
  • FIGS. 30A, 30B, and 30C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the tenth example.
  • FIG. 31 is a cross-sectional view of a variable magnification optical system according to an eleventh example.
  • FIGS. 33A, 33B, and 33C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to Example 11.
  • FIG. 34 is a view showing the configuration of a camera provided with a variable magnification optical system.
  • FIG. 35 is a flowchart schematically showing a method of manufacturing a variable magnification optical system.
  • variable magnification optical system has a plurality of lens units, and the distance between the lens units changes at the time of zooming, and the plurality of lens units move at the time of focusing.
  • at least one image-side focusing lens group disposed on the image side of the object-side focusing lens group and moving along a locus different from that of the object-side focusing lens group at the time of focusing; It is comprised so that conditional expression (1) and (2) may be satisfied.
  • MTF1 / MTF2 ⁇ 5.0 (2) 0.2 ⁇ BFw / fw ⁇ 2.0
  • MTF1 absolute value of the amount of movement of the object-side focusing lens unit when focusing from an infinite distance object to a close distance object in the telephoto end state
  • MTF2 focusing from an infinity object to a close object in the telephoto end state
  • the variable magnification optical system of the present embodiment has a plurality of lens groups, and changes the distance between the lens groups at the time of zooming from the wide-angle end state to the telephoto end state, thereby achieving good aberration correction at the time of zooming.
  • an object side focusing lens group in which a plurality of lens groups move when focusing from an infinite distance object to a near distance object and an image side from the object side focusing lens group And at least one image-side focusing lens group that moves on a different trajectory from the object-side focusing lens group at the time of focusing, whereby focusing from an infinite distance object to a near distance object is performed.
  • the lens group refers to a portion having at least one lens separated by an air gap.
  • the lens component means a single lens or a cemented lens.
  • Conditional expression (1) is an absolute value of the amount of movement of the object-side focusing lens unit in focusing from an infinite distance object to a close distance object in the telephoto end state, and an infinite distance object to the near distance object in the telephoto end state This defines the ratio to the absolute value of the movement amount of the focusing lens unit disposed closest to the object side in the image side focusing lens unit at the time of focusing.
  • the effect of the present embodiment can be made more reliable by setting the upper limit value of the conditional expression (1) to 4.7.
  • conditional expression (1) is 2.0 ⁇ MTF1 / MTF2 ⁇ 5.0 It is preferable to By setting the lower limit value of the conditional expression (1) to 2.0 as described above, it is possible to more effectively suppress the variation of the spherical aberration at the time of focusing.
  • Conditional expression (2) defines the ratio between the back focus of the variable magnification optical system in the wide angle end state and the focal length of the variable magnification optical system in the wide angle end state.
  • the effect of the present embodiment can be made more reliable by setting the upper limit value of the conditional expression (2) to 1.70.
  • the effect of this embodiment can be made more reliable by setting the lower limit of conditional expression (2) to 0.30.
  • At least one focusing lens group of the object-side focusing lens group and the image-side focusing lens group has a lens having at least one negative refractive power, and It is desirable to satisfy conditional expression (3) of (3) 0.45 ⁇ (-fFN) /
  • fFN Of the lenses in the object-side focusing lens group and the image-side focusing lens group, the focal length fF of the lens having the strongest negative refractive power: the object-side focusing lens group and the image-side focusing Of the lens units, the focal length of the focusing lens unit with the highest refractive power
  • At least one focusing lens group of the object-side focusing lens group and the image-side focusing lens group has a lens having at least one negative refractive power, thereby achieving infinite distance. It is possible to suppress the variation of spherical aberration and chromatic aberration at the time of focusing from an object to a near distance object.
  • the conditional expression (3) shows the focal length of the lens having the strongest negative refractive power among the lenses in the object side focusing lens group and the image side focusing lens group, the object side focusing lens group and the image side Among the focusing lens groups, the ratio to the focal length of the focusing lens group having the strongest refractive power is defined.
  • the effect of the present embodiment can be made more reliable by setting the upper limit value of the conditional expression (3) to 1.60.
  • the effect of the present embodiment can be made more reliable by setting the lower limit value of the conditional expression (3) to 0.47.
  • variable magnification optical system of the present embodiment it is desirable that the object side focusing lens unit have a positive refractive power. With this configuration, it is possible to suppress fluctuations of various aberrations including spherical aberration when focusing from an infinite distance object to a close distance object.
  • variable magnification optical system of the present embodiment it is desirable that the focusing lens unit disposed closest to the image side among the image side focusing lens units have positive refractive power. With this configuration, it is possible to suppress fluctuations of various aberrations including spherical aberration when focusing from an infinite distance object to a close distance object.
  • variable magnification optical system of the present embodiment it is desirable that the object-side focusing lens unit be configured of one or two lens components. With this configuration, the focusing lens unit can be reduced in size and weight.
  • variable magnification optical system it is desirable that the image side focusing lens unit be constituted by one or two lens components. With this configuration, the focusing lens unit can be reduced in size and weight.
  • variable magnification optical system of the present embodiment has the first lens group fixed at the time of focusing on the most object side.
  • At least one focusing lens group of the object-side focusing lens group and the image-side focusing lens group has a lens having at least one negative refractive power. It is desirable to satisfy the following conditional expression (4). (4) 0.65 ⁇ nP / nN ⁇ 1.10
  • nP Of the lenses in the object side focusing lens group and the image side focusing lens group, the refractive index nN of the lens having the most positive refractive power: the object side focusing lens group and the image side focusing Of the lenses in the lens group, the refractive index of the lens with the strongest negative refractive power
  • At least one focusing lens group of the object-side focusing lens group and the image-side focusing lens group has a lens having at least one negative refractive power, thereby achieving infinite distance. It is possible to suppress the variation of spherical aberration and chromatic aberration at the time of focusing from an object to a near distance object.
  • the conditional expression (4) shows the refractive index of the lens having the most positive refractive power among the lenses in the object side focusing lens group and the image side focusing lens group, the object side focusing lens group and the image side Among the lenses in the focusing lens group, it defines the ratio to the refractive index of the lens having the strongest negative refractive power.
  • the effect of the present embodiment can be made more reliable by setting the upper limit value of the conditional expression (4) to 1.05. Moreover, in order to make the effect of the present embodiment more reliable, it is preferable to set the upper limit value of the conditional expression (4) to 1.03. Further, it is preferable to set the upper limit value of conditional expression (4) to 1.00, and further to 0.95.
  • the effect of the present embodiment can be made more reliable by setting the lower limit value of the conditional expression (4) to 0.67.
  • variable magnification optical system of the present embodiment it is desirable that the following conditional expression (5) be satisfied.
  • (5) 0.40 ⁇
  • fF1 focal length of the object side focusing lens unit
  • f1 focal length of the first lens unit
  • Conditional expression (5) defines the ratio of the focal length of the object side focusing lens unit to the focal length of the first lens unit.
  • the effect of the present embodiment can be made more reliable by setting the upper limit value of the conditional expression (5) to 2.55.
  • the effect of the present embodiment can be made more reliable by setting the lower limit value of the conditional expression (5) to 0.45.
  • variable magnification optical system of the present embodiment satisfy the following conditional expression (6).
  • (6) 0.20 ⁇
  • fF2 Focal length f1 of the focusing lens group disposed closest to the image side among the image-side focusing lens groups
  • f1 Focal length of the first lens group
  • Conditional expression (6) defines the ratio of the focal length of the focusing lens unit disposed closest to the image side of the image-side focusing lens unit to the focal length of the first lens unit.
  • the effect of the present embodiment can be made more reliable by setting the upper limit value of the conditional expression (6) to 3.60.
  • the effect of the present embodiment can be made more reliable by setting the lower limit value of the conditional expression (6) to 0.25.
  • the object-side focusing lens unit be formed of, in order from the object side, a lens having positive refractive power and a lens having negative refractive power.
  • variable magnification optical system of the present embodiment has an aperture stop, and the object side focusing lens unit be disposed on the image side of the aperture stop. This configuration can reduce the weight of the focusing lens unit.
  • variable magnification optical system of the present embodiment it is desirable that the following conditional expression (7) be satisfied.
  • (7) 0.10 ⁇
  • fF1 focal length ft of the object-side focusing lens unit focal length of the variable magnification optical system in the telephoto end state
  • the conditional expression (7) defines the ratio of the focal length of the object side focusing lens unit to the focal length of the variable magnification optical system in the telephoto end state.
  • the focal length of the object side focusing lens unit becomes long, and focusing from an infinite distance object to a near distance object
  • the amount of movement of the object-side focusing lens unit becomes too large, and it becomes difficult to correct fluctuations of various aberrations including spherical aberration when focusing from an infinite distance object to a close distance object.
  • the effect of this embodiment can be made more reliable by setting the lower limit of conditional expression (7) to 0.12. Moreover, in order to make the effect of this embodiment more reliable, it is preferable to set the lower limit of conditional expression (7) to 0.15.
  • variable magnification optical system of the present embodiment satisfy the following conditional expression (8).
  • (8) 0.10 ⁇
  • fF2 focal length ft of the focusing lens group disposed closest to the image side among the image-side focusing lens groups
  • ft focal length of the variable magnification optical system in the telephoto end state
  • Conditional expression (8) defines the ratio of the focal length of the focusing lens unit disposed closest to the image side among the image-side focusing lens groups to the focal length of the variable magnification optical system in the telephoto end state. is there.
  • the variable magnification optical system according to the present embodiment can effectively change the various aberrations including the spherical aberration at the time of focusing from an infinite distance object to a close distance object. It can be suppressed.
  • the focal length of the focusing lens unit disposed closest to the image among the image side focusing lens units becomes long.
  • the amount of movement of the focusing lens unit disposed closest to the image side when focusing from an infinite distance object to a near distance object becomes too large, and spherical aberration when focusing from an infinite distance object to a near distance object It becomes difficult to correct fluctuations of various aberrations including.
  • the effect of the present embodiment can be made more reliable by setting the upper limit value of the conditional expression (8) to 2.80.
  • the corresponding value of the conditional expression (8) of the variable magnification optical system of the present embodiment falls below the lower limit value
  • the refractive power of the focusing lens unit disposed closest to the image among the image side focusing lens units becomes strong.
  • the effect of this embodiment can be made more reliable by setting the lower limit of conditional expression (8) to 0.12.
  • variable magnification optical system According to the present embodiment satisfy the following conditional expression (9). (9)
  • ⁇ WF1 lateral magnification of the object-side focusing lens unit in the wide-angle end state when focusing on an infinite object
  • ⁇ WF2 to the most object side of the image-side focusing lens units in the wide-angle end state when focusing on an infinite object
  • Conditional expression (9) gives the most magnification among the image-side focusing lens groups in the wide-angle end state at the time of infinity object focusing and the lateral magnification of the object-side focusing lens group at the wide-angle end state at infinity object focusing. It defines the ratio to the lateral magnification of the focusing lens unit disposed on the object side.
  • the variable magnification optical system according to the present embodiment causes fluctuations of various aberrations including the spherical aberration at the time of focusing from an infinite distance object to a close distance object in the wide-angle end state. Can be effectively suppressed.
  • the corresponding value of the conditional expression (9) of the variable magnification optical system of the present embodiment exceeds the upper limit value, it is disposed closest to the object side in the image side focusing lens group in the wide angle end state at the time of focusing on an infinite distance object.
  • the lateral magnification of the object-side focusing lens group in the wide-angle end state at the time of infinity object focusing increases with respect to the lateral magnification of the focusing lens group, and focusing from an infinite distance object to a near distance object in the wide angle end state It becomes difficult to suppress fluctuations of various aberrations including spherical aberration at the time of focusing.
  • the effect of the present embodiment can be made more reliable by setting the upper limit value of the conditional expression (9) to 3.50.
  • conditional expression (9) it is preferable to set the upper limit value of the conditional expression (9) to 3.00. Further, it is preferable to set the upper limit value of conditional expression (9) to 2.50, further 2.00, further 1.50, and further 1.20.
  • variable magnification optical system of the present embodiment it is desirable that the following conditional expression (10) be satisfied.
  • ⁇ Rw composite lateral magnification from the object-side focusing lens unit to the image plane in the wide-angle end state at the time of infinity object focusing
  • ⁇ Rt an image from the object-side focusing lens group in the telephoto end state at infinity object focusing
  • Conditional expression (10) shows the combined lateral magnification from the object-side focusing lens unit to the image plane in the wide-angle end state at the time of infinity object focusing and the object-side focusing lens in the telephoto end state at infinity object focusing It defines the ratio to the combined lateral magnification from the group to the image plane.
  • the variable magnification optical system according to the present embodiment causes fluctuations of various aberrations including the spherical aberration at the time of focusing from an infinite distance object to a close distance object in the wide-angle end state. Can be effectively suppressed.
  • the effect of the present embodiment can be made more reliable by setting the upper limit value of the conditional expression (10) to 3.50.
  • conditional expression (10) it is preferable to set the upper limit value of the conditional expression (10) to 3.00. Further, it is preferable to set the upper limit value of conditional expression (10) to 2.60, further 2.20, and further 1.90.
  • variable magnification optical system of the present embodiment it is desirable that the following conditional expression (11) be satisfied.
  • (11) 15.0 ° ⁇ w ⁇ 85.0 °
  • ⁇ w half angle of view of the variable magnification optical system in the wide angle end state
  • Conditional expression (11) defines the optimum value of the angle of view in the wide-angle end state.
  • the variable magnification optical system according to the present embodiment can properly correct various aberrations such as coma aberration, distortion aberration, and field curvature while having a wide angle of view. it can.
  • conditional expression (11) it is preferable to set the upper limit of conditional expression (11) to 80.0 °. Further, it is preferable to set the upper limit value of the conditional expression (11) to 75.0 °, more preferably 70.0 °, further preferably 65.0 °. In order to secure the effect of the present embodiment, it is preferable to set the lower limit value of the conditional expression (11) to 16.0 °. Further, it is desirable to set the lower limit value of conditional expression (11) to 17.0 °, 35.0 °, 37.0 °, 39.0 °, 40.0 °, 42.0 °. .
  • the optical device of the present embodiment has the variable magnification optical system having the above-described configuration. As a result, it is possible to realize an optical device capable of favorably suppressing aberration fluctuation at the time of zooming from the wide-angle end state to the telephoto end state, and at the time of focusing from an infinite distance object to a near distance object. .
  • a method of manufacturing a variable magnification optical system is a method of manufacturing a variable magnification optical system having a plurality of lens groups, and is configured such that an interval between the lens groups changes at the time of zooming.
  • the lens unit is disposed on the image side with respect to the object-side focusing lens unit that moves when focusing and the object-side focusing lens unit, and moves along a locus different from that of the object-side focusing lens unit when focusing.
  • This is a manufacturing method of a variable power optical system configured to have at least one image side focusing lens group and configured to satisfy the following conditional expressions (1) and (2).
  • MTF1 / MTF2 ⁇ 5.0 (2) 0.2 ⁇ BFw / fw ⁇ 2.0
  • MTF1 absolute value of the amount of movement of the object-side focusing lens unit when focusing from an infinite distance object to a close distance object in the telephoto end state
  • MTF2 focusing from an infinity object to a close object in the telephoto end state
  • variable power optical system capable of favorably suppressing aberration fluctuation at the time of zooming from the wide-angle end state to the telephoto end state, and at the time of focusing from an infinite distance object to a close distance object.
  • FIG. 1 is a cross-sectional view of the variable magnification optical system according to the first example. Arrows in FIG. 1 and FIGS. 4, 7, 10, 13, 16, 19, 22, 25, 28, and 31 described later indicate the wide-angle end state (W) to the telephoto end. The movement locus of each lens unit at the time of zooming to the state (T) is shown.
  • the variable magnification optical system according to the present embodiment includes, in order from the object side, a first lens group G1 having negative refractive power, a second lens group G2 having positive refractive power, and a third lens group G3 having positive refractive power.
  • the first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a convex surface facing the object side, and a cemented negative lens having a biconcave negative lens L12 and a positive meniscus lens L13 having a convex surface facing the object side It consists of
  • the second lens group G2 is composed of a positive cemented lens of a double convex positive lens L21 and a negative meniscus lens L22 having a concave surface facing the object side.
  • the third lens group G3 is composed of a positive cemented lens of a negative meniscus lens L31 with a convex surface facing the object side and a biconvex positive lens L32.
  • the fourth lens group G4 includes, in order from the object side, a cemented negative lens constructed of a double concave negative lens L41 and a positive meniscus lens L42 having a convex surface facing the object side, and a positive meniscus lens L43 having a convex surface facing the object side It consists of
  • the fifth lens group G5 is composed of a positive cemented lens of a biconvex positive lens L51 and a negative meniscus lens L52 having a concave surface facing the object side.
  • the sixth lens group G6 is composed of a biconvex positive lens L61.
  • the seventh lens group G7 is composed of a negative meniscus lens L71 with a concave surface facing the object side.
  • the distance between the first lens group G1 and the second lens group G2, the second lens group G2, and the third lens group G2 during zooming between the wide angle end state and the telephoto end state The distance between the lens group G3, the distance between the third lens group G3 and the fourth lens group G4, the distance between the fourth lens group G4 and the fifth lens group G5, the distance between the fifth lens group G5 and the sixth lens group G6 All the lens units from the first lens unit G1 to the seventh lens unit G7 move along the optical axis such that the distance and the distance between the sixth lens unit G6 and the seventh lens unit G7 change.
  • the fifth lens group G5 is moved to the object side along the optical axis, and the sixth lens group G6 has a locus different from that of the fifth lens group G5.
  • the sixth lens group G6 has a locus different from that of the fifth lens group G5.
  • Table 1 below presents values of specifications of the variable magnification optical system according to the present example.
  • f is the focal length
  • BF is the back focus, that is, the distance on the optical axis from the lens surface closest to the image to the image plane I.
  • m is the order of the optical surface counted from the object side
  • r is the radius of curvature
  • d is the surface distance (distance between the nth surface (n is an integer) and the n + 1th surface)
  • nd is the d line
  • the refractive index with respect to a wavelength of 587.6 nm) and d d respectively indicate Abbe numbers with respect to the d-line (wavelength of 587.6 nm).
  • OP indicates an object plane
  • variable indicates a variable surface interval
  • S indicates an aperture stop
  • I indicates an image plane.
  • the radius of curvature r ⁇ indicates a plane.
  • the description of the refractive index nd 1.00000 of air is omitted.
  • the lens surface is an aspheric surface, the surface number is marked with *, and the paraxial radius of curvature is shown in the column of radius of curvature r.
  • [Spherical surface data] shows the aspheric surface coefficient and the conical constant when the shape of the aspheric surface shown in [Surface data] is expressed by the following equation.
  • x (h 2 / r) / [1+ ⁇ 1-1 (h / r) 2 ⁇ 1/2 ] + A4h 4 + A6h 6 + A8h 8 + A10h 10
  • h is the height in the direction perpendicular to the optical axis
  • x is the distance along the optical axis direction from the tangent plane of the apex of the aspheric surface at height h to the aspheric surface
  • is the conical constant
  • A4, A6, A8 and A10 are aspheric coefficients
  • r is a paraxial radius of curvature which is a radius of curvature of the reference spherical surface.
  • "E-n" indicates "x 10- n ", for example, "1.234 E-05" indicates "1.234
  • f is the focal length of the whole lens system
  • FNO is the f-number
  • 2 ⁇ is the angle of view (unit: “°”)
  • Ymax is the maximum image height
  • TL is the variable power optical system according to this embodiment
  • is the imaging magnification between the object and the image
  • d0 is the distance on the optical axis from the object surface OP to the first surface
  • d0 0.000 is infinite
  • d0 641.690
  • etc. indicate a variable distance between the nth surface and the (n + 1) th surface, respectively, when focusing on a short distance or near distance object.
  • f and ⁇ are f at infinity, ⁇ at short distance, W at the wide-angle end, M at the intermediate focal length, and T at the telephoto end.
  • the starting surface number ST of each lens group and the focal length f are shown.
  • the correspondence values of the conditional expressions of the variable magnification optical system according to the present embodiment are shown.
  • the unit of focal length f, radius of curvature r and other lengths listed in Table 1 is generally “mm”.
  • the optical system is not limited to this because the same optical performance can be obtained by proportional enlargement or reduction.
  • symbol of Table 1 described above shall be similarly used also in the table
  • FIGS. 2A, 2B, and 2C are various aberration diagrams at the time of focusing on an infinity object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the first example, respectively.
  • FIGS. 3A, 3B, and 3C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the first example.
  • FNO indicates an F number
  • NA indicates a numerical aperture
  • Y indicates an image height.
  • the f-number or numerical aperture value corresponding to the maximum aperture is shown
  • the astigmatism diagram and the distortion diagram the maximum value of the image height is shown
  • the value of each image height is shown.
  • astigmatism diagrams a solid line indicates a sagittal image plane, and a broken line indicates a meridional image plane.
  • the same reference numerals as in this example are used also in the aberration diagrams of the examples below.
  • variable magnification optical system As shown in the various aberration diagrams, the variable magnification optical system according to the present embodiment has excellent imaging performance with excellent correction of various aberrations from the wide-angle end state to the telephoto end state, and also at the time of near distance focusing. It can be seen that it has excellent imaging performance.
  • FIG. 4 is a view showing a lens configuration of a variable magnification optical system according to a second example.
  • the variable magnification optical system according to the present embodiment includes, in order from the object side, a first lens group G1 having negative refractive power, a second lens group G2 having positive refractive power, an aperture stop S, and negative refractive power.
  • the first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a convex surface on the object side, a negative meniscus lens L12 having a convex surface on the object side, and a positive meniscus lens L13 having a convex surface on the object side It consists of a cemented negative lens.
  • the second lens group G2 includes, in order from the object side, a double positive lens L21 cemented with a negative meniscus lens L22 having a concave surface facing the object side, and a negative meniscus lens L23 having a convex surface facing the object side And a cemented positive lens with a biconvex positive lens L24.
  • the third lens group G3 is composed of, in order from the object side, a biconcave negative lens L31, and a cemented positive lens constructed by a biconcave negative lens L32 and a biconvex positive lens L33.
  • the fourth lens group G4 is composed of a positive cemented lens of a biconvex positive lens L41 and a negative meniscus lens L42 having a concave surface facing the object side.
  • the fifth lens group G5 is composed of a biconvex positive lens L51.
  • the sixth lens group G6 is composed of a negative meniscus lens L61 with a concave surface facing the object side.
  • the distance between the first lens group G1 and the second lens group G2, the second lens group G2, and the third lens group G2 during zooming between the wide angle end state and the telephoto end state is the distance between the lens group G3, the distance between the third lens group G3 and the fourth lens group G4, the distance between the fourth lens group G4 and the fifth lens group G5, and the fifth lens group G5 and the sixth lens group G6 All the lens units from the first lens unit G1 to the sixth lens unit G6 move along the optical axis so that the interval between
  • the fourth lens group G4 is moved to the object side along the optical axis, and the fifth lens group G5 has a locus different from that of the fourth lens group G4.
  • Table 2 below presents values of specifications of the variable magnification optical system according to the present example.
  • FIGS. 5A, 5B, and 5C are various aberration diagrams at the time of focusing on an infinite distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the second example.
  • FIGS. 6A, 6B, and 6C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the second example.
  • variable magnification optical system As shown in the various aberration diagrams, the variable magnification optical system according to the present embodiment has excellent imaging performance with excellent correction of various aberrations from the wide-angle end state to the telephoto end state, and at the time of focusing on a short distance object. It can also be seen that they have excellent imaging performance.
  • FIG. 7 is a diagram showing the lens configuration of the variable magnification optical system according to the third example.
  • the variable magnification optical system according to the present embodiment includes, in order from the object side, a first lens group G1 having negative refractive power, a second lens group G2 having positive refractive power, and a third lens group G3 having positive refractive power.
  • the first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a convex surface on the object side, a negative meniscus lens L12 having a convex surface on the object side, and a positive meniscus lens L13 having a convex surface on the object side It consists of a cemented negative lens.
  • the second lens group G2 is composed of a positive cemented lens of a double convex positive lens L21 and a negative meniscus lens L22 having a concave surface facing the object side.
  • the third lens group G3 is composed of a positive cemented lens of a negative meniscus lens L31 with a convex surface facing the object side and a biconvex positive lens L32.
  • the fourth lens group G4 is composed of a cemented negative lens constructed by a double concave negative lens L41 and a positive meniscus lens L42 having a convex surface directed to the object side.
  • the fifth lens group G5 is composed of a positive cemented lens of a biconvex positive lens L51 and a negative meniscus lens L52 having a concave surface facing the object side.
  • the sixth lens group G6 is composed of a biconvex positive lens L61.
  • the seventh lens group G7 is composed of a negative meniscus lens L71 with a concave surface facing the object side.
  • the distance between the first lens group G1 and the second lens group G2, the second lens group G2, and the third lens group G2 during zooming between the wide angle end state and the telephoto end state The distance between the lens group G3, the distance between the third lens group G3 and the fourth lens group G4, the distance between the fourth lens group G4 and the fifth lens group G5, the distance between the fifth lens group G5 and the sixth lens group G6 All the lens units from the first lens unit G1 to the seventh lens unit G7 move along the optical axis such that the distance and the distance between the sixth lens unit G6 and the seventh lens unit G7 change.
  • the fifth lens group G5 is moved to the object side along the optical axis, and the sixth lens group G6 has a locus different from that of the fifth lens group G5.
  • the sixth lens group G6 has a locus different from that of the fifth lens group G5.
  • Table 3 below presents values of specifications of the variable magnification optical system according to the present example.
  • FIGS. 8A, 8B, and 8C are various aberration diagrams at the time of focusing on an infinity object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third example.
  • FIGS. 9A, 9B, and 9C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third example.
  • variable magnification optical system As shown in the various aberration diagrams, the variable magnification optical system according to the present embodiment has excellent imaging performance with excellent correction of various aberrations from the wide-angle end state to the telephoto end state, and at the time of focusing on a short distance object. It can also be seen that they have excellent imaging performance.
  • FIG. 10 is a diagram showing the lens configuration of the variable magnification optical system according to the fourth example.
  • the variable magnification optical system according to the present embodiment has, in order from the object side, a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, an aperture stop S, and positive refractive power.
  • the first lens group G1 includes, in order from the object side, a negative meniscus lens L11 with a convex surface facing the object side and a negative cemented lens of a positive meniscus lens L12 with a convex surface facing the object side, and a positive lens It consists of a meniscus lens L13.
  • the second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object, a biconcave negative lens L22, a biconvex positive lens L23, and a biconcave negative lens L24. And a cemented negative lens of a biconvex positive lens L25.
  • the third lens group G3 includes, in order from the object side, a biconvex positive lens L31, a negative meniscus lens L32 with a concave surface facing the object side, a biconvex positive lens L33, and a biconcave negative lens L34. It consists of
  • the fourth lens group G4 is composed of a positive cemented lens of a biconvex positive lens L41 and a negative meniscus lens L42 having a concave surface facing the object side.
  • the fifth lens group G5 is composed of a biconvex positive lens L51.
  • the sixth lens group G6 is composed of, in order from the object side, a biconcave negative lens L61, and a positive meniscus lens L62 having a convex surface facing the object side.
  • the distance between the first lens group G1 and the second lens group G2, the second lens group G2, and the third lens group G2 during zooming between the wide angle end state and the telephoto end state is the distance between the lens group G3, the distance between the third lens group G3 and the fourth lens group G4, the distance between the fourth lens group G4 and the fifth lens group G5, and the fifth lens group G5 and the sixth lens group G6 All the lens units from the first lens unit G1 to the sixth lens unit G6 move along the optical axis so that the interval between
  • the fourth lens group G4 is moved to the image side along the optical axis
  • the fifth lens group G5 is moved to the object side along the optical axis.
  • Table 4 below presents values of specifications of the variable magnification optical system according to the present example.
  • 11A, 11B, and 11C are various aberration diagrams at the time of focusing on an infinite distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fourth example.
  • 12A, 12B, and 12C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fourth example.
  • variable magnification optical system As shown in the various aberration diagrams, the variable magnification optical system according to the present embodiment has excellent imaging performance with excellent correction of various aberrations from the wide-angle end state to the telephoto end state, and at the time of focusing on a short distance object. It can also be seen that they have excellent imaging performance.
  • FIG. 13 is a diagram showing the lens configuration of the variable magnification optical system according to the fifth example.
  • the variable magnification optical system according to the present embodiment has, in order from the object side, a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, an aperture stop S, and positive refractive power.
  • the first lens group G1 includes, in order from the object side, a positive cemented lens of a negative meniscus lens L11 with a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 with a convex surface facing the object side It consists of
  • the second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface on the object side, a negative meniscus lens L22 having a concave surface on the object side, and a positive meniscus lens L23 having a concave surface on the object side
  • the negative meniscus lens L24 has a concave surface facing the object side.
  • the third lens group G3 has a concave surface facing the object side, a positive meniscus lens L31 having a convex surface facing the object side, a biconvex positive lens L32, a biconvex positive lens L33, and a convex lens facing the object side in this order from the object side And a cemented positive lens with the negative meniscus lens L34.
  • the fourth lens group G4 is composed of, in order from the object side, a biconcave negative lens L41 and a biconvex positive lens L42.
  • the fifth lens group G5 is composed of a biconvex positive lens L51.
  • the sixth lens group G6 is composed of, in order from the object side, a biconcave negative lens L61, and a positive meniscus lens L62 having a convex surface facing the object side.
  • the distance between the first lens group G1 and the second lens group G2, the second lens group G2, and the third lens group G2 during zooming between the wide angle end state and the telephoto end state is the distance between the lens group G3, the distance between the third lens group G3 and the fourth lens group G4, the distance between the fourth lens group G4 and the fifth lens group G5, and the fifth lens group G5 and the sixth lens group G6 All the lens units from the first lens unit G1 to the sixth lens unit G6 move along the optical axis so that the interval between
  • the fourth lens group G4 is moved to the object side along the optical axis, and the fifth lens group G5 has a locus different from that of the fourth lens group G4.
  • Table 5 below presents values of specifications of the variable magnification optical system according to the present example.
  • FIG. 14A, FIG. 14B, and FIG. 14C are various aberration diagrams at the time of infinity object focusing in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fifth example.
  • FIG. 15A, FIG. 15B, and FIG. 15C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fifth example.
  • variable magnification optical system As shown in the various aberration diagrams, the variable magnification optical system according to the present embodiment has excellent imaging performance with excellent correction of various aberrations from the wide-angle end state to the telephoto end state, and at the time of focusing on a short distance object. It can also be seen that they have excellent imaging performance.
  • FIG. 16 is a diagram showing the lens configuration of the variable magnification optical system according to the sixth example.
  • the variable magnification optical system according to this embodiment includes, in order from the object side, a first lens group G1 having positive refracting power, a second lens group G2 having negative refracting power, and a third lens group G3 having positive refracting power.
  • the first lens group G1 is composed of, in order from the object side, a biconvex positive lens L11, and a cemented positive lens of a negative meniscus lens L12 with a convex surface facing the object side and a biconvex positive lens L13.
  • the second lens group G2 includes, in order from the object side, a biconcave negative lens L21, a positive meniscus lens L22 with a convex surface facing the object side, and a biconcave negative lens L23 with a convex surface facing the object side And a cemented negative lens with the meniscus lens L24.
  • the third lens group G3 is composed of, in order from the object side, a biconvex positive lens L31, and a cemented positive lens of a biconvex positive lens L32 and a biconcave negative lens L33.
  • the fourth lens group G4 is composed of a positive cemented lens of a biconvex positive lens L41 and a negative meniscus lens L42 having a concave surface facing the object side.
  • the fifth lens group G5 is composed of a negative meniscus lens L51 having a convex surface facing the object side.
  • the sixth lens group G6 is composed of a positive meniscus lens L61 having a concave surface facing the object side.
  • the seventh lens group G7 is composed of, in order from the object side, a negative meniscus lens L71 having a concave surface facing the object side, and a biconvex positive lens L72.
  • the distance between the first lens group G1 and the second lens group G2, the second lens group G2, and the third lens group G2 during zooming between the wide angle end state and the telephoto end state The distance between the lens group G3, the distance between the third lens group G3 and the fourth lens group G4, the distance between the fourth lens group G4 and the fifth lens group G5, the distance between the fifth lens group G5 and the sixth lens group G6 All the lens units from the first lens unit G1 to the seventh lens unit G7 move along the optical axis such that the distance and the distance between the sixth lens unit G6 and the seventh lens unit G7 change.
  • the fourth lens group G4 is moved to the object side along the optical axis, and the sixth lens group G6 has a locus different from that of the fourth lens group G4.
  • Table 6 below presents values of specifications of the variable magnification optical system according to the present example.
  • FIGS. 17A, 17B, and 17C are various aberration diagrams at the time of focusing on an infinity object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the sixth example.
  • 18A, 18B, and 18C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the sixth example.
  • variable magnification optical system As shown in the various aberration diagrams, the variable magnification optical system according to the present embodiment has excellent imaging performance with excellent correction of various aberrations from the wide-angle end state to the telephoto end state, and at the time of focusing on a short distance object. It can also be seen that they have excellent imaging performance.
  • FIG. 19 is a diagram showing a lens configuration of a variable magnification optical system according to a seventh example.
  • the variable magnification optical system according to the present embodiment has, in order from the object side, a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, an aperture stop S, and positive refractive power.
  • the first lens group G1 includes, in order from the object side, a positive cemented lens of a negative meniscus lens L11 with a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 with a convex surface facing the object side It consists of
  • the second lens group G2 includes, in order from the object side, a biconcave negative lens L21, a biconcave negative lens L22, and a cemented positive lens constructed by a biconvex positive lens L23 and a biconcave negative lens L24. It consists of
  • the third lens group G3 is composed of, in order from the object side, a biconvex positive lens L31, and a cemented positive lens of a biconvex positive lens L32 and a biconcave negative lens L33.
  • the fourth lens group G4 is composed of, in order from the object side, a double convex positive lens L41 and a negative meniscus lens L42 having a concave surface facing the object side.
  • the fifth lens group G5 is composed of a biconvex positive lens L51.
  • the sixth lens group G6 is composed of a negative cemented lens of a positive meniscus lens L61 having a concave surface facing the object side and a biconcave negative lens L62.
  • the seventh lens group G7 is composed of a positive meniscus lens L71 having a concave surface facing the object side.
  • the distance between the first lens group G1 and the second lens group G2, the second lens group G2, and the third lens group G2 during zooming between the wide angle end state and the telephoto end state The distance between the lens group G3, the distance between the third lens group G3 and the fourth lens group G4, the distance between the fourth lens group G4 and the fifth lens group G5, the distance between the fifth lens group G5 and the sixth lens group G6 All the lens units from the first lens unit G1 to the seventh lens unit G7 move along the optical axis such that the distance and the distance between the sixth lens unit G6 and the seventh lens unit G7 change.
  • the fourth lens group G4 is moved to the image side along the optical axis
  • the fifth lens group G5 is moved to the object side along the optical axis.
  • Table 7 below presents values of specifications of the variable magnification optical system according to the present example.
  • FIGS. 20A, 20B, and 20C are various aberration diagrams at the time of focusing on an infinity object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the seventh example.
  • 21A, 21B, and 21C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the seventh example.
  • variable magnification optical system As shown in the various aberration diagrams, the variable magnification optical system according to the present embodiment has excellent imaging performance with excellent correction of various aberrations from the wide-angle end state to the telephoto end state, and at the time of focusing on a short distance object. It can also be seen that they have excellent imaging performance.
  • FIG. 22 is a diagram showing a lens configuration of a variable magnification optical system according to an eighth example.
  • the variable magnification optical system according to the present embodiment includes, in order from the object side, a first lens group G1 having negative refractive power, a second lens group G2 having positive refractive power, an aperture stop S, and negative refractive power.
  • the first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a convex surface on the object side, a negative meniscus lens L12 having a convex surface on the object side, and a positive meniscus lens L13 having a convex surface on the object side It consists of a cemented positive lens.
  • the second lens group G2 includes, in order from the object side, a double positive lens L21 cemented with a negative meniscus lens L22 having a concave surface facing the object side, and a negative meniscus lens L23 having a convex surface facing the object side And a cemented positive lens with a biconvex positive lens L24.
  • the third lens group G3 includes, in order from the object side, a negative meniscus lens L31 having a concave surface facing the object side, and a cemented positive lens constructed by a biconcave negative lens L32 and a positive meniscus lens L33 having a convex surface facing the object side It consists of
  • the fourth lens group G4 is composed of a biconvex positive lens L41.
  • the fifth lens group G5 is composed of a negative meniscus lens L51 having a concave surface facing the object side.
  • the sixth lens group G6 is composed of a biconvex positive lens L61.
  • the seventh lens group G7 is composed of a negative meniscus lens L71 with a concave surface facing the object side.
  • the distance between the first lens group G1 and the second lens group G2, the second lens group G2, and the third lens group G2 during zooming between the wide angle end state and the telephoto end state The distance between the lens group G3, the distance between the third lens group G3 and the fourth lens group G4, the distance between the fourth lens group G4 and the fifth lens group G5, the distance between the fifth lens group G5 and the sixth lens group G6 All the lens units from the first lens unit G1 to the seventh lens unit G7 move along the optical axis such that the distance and the distance between the sixth lens unit G6 and the seventh lens unit G7 change.
  • the fourth lens group G4 is moved to the object side along the optical axis
  • the fifth lens group G5 and the sixth lens group G6 are each configured as a fourth lens. Focusing from an infinite distance object to a near distance object is performed by moving to the object side along the optical axis with a locus different from that of the group G4.
  • Table 8 below presents values of specifications of the variable magnification optical system according to the present example.
  • FIGS. 23A, 23B, and 23C are various aberration diagrams at the time of focusing on an infinite distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the eighth example.
  • FIGS. 24A, 24B, and 24C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the eighth example.
  • variable magnification optical system As shown in the various aberration diagrams, the variable magnification optical system according to the present embodiment has excellent imaging performance with excellent correction of various aberrations from the wide-angle end state to the telephoto end state, and at the time of focusing on a short distance object. It can also be seen that they have excellent imaging performance.
  • FIG. 25 is a diagram showing a lens configuration of a variable magnification optical system according to a ninth example.
  • the variable magnification optical system according to the present embodiment has, in order from the object side, a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, an aperture stop S, and positive refractive power
  • the first lens group G1 includes, in order from the object side, a cemented negative lens of a negative meniscus lens L11 with a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 with a convex surface facing the object side It consists of
  • the second lens group G2 includes, in order from the object side, a biconcave negative lens L21, a negative meniscus lens L22 with a concave surface facing the object side, a positive meniscus lens L23 with a concave surface facing the object side, and a concave surface with the object side And a cemented negative lens with a negative meniscus lens L24 directed.
  • the third lens group G3 includes, in order from the object side, a positive meniscus lens L31 having a convex surface facing the object, a negative meniscus lens L32 having a convex surface facing the object, and a positive meniscus lens L33 having a convex surface facing the object It consists of a cemented positive lens and a biconvex positive lens L34.
  • the fourth lens group G4 is composed of, in order from the object side, a positive meniscus lens L41 having a concave surface facing the object side, and a biconcave negative lens L42.
  • the fifth lens group G5 is composed of a positive cemented lens of a biconvex positive lens L51 and a negative meniscus lens L52 having a concave surface facing the object side.
  • the sixth lens group G6 is composed of a positive meniscus lens L61 having a concave surface facing the object side.
  • the seventh lens group G7 is composed of a biconcave negative lens L71.
  • the distance between the first lens group G1 and the second lens group G2, the second lens group G2, and the third lens group G2 during zooming between the wide angle end state and the telephoto end state The distance between the lens group G3, the distance between the third lens group G3 and the fourth lens group G4, the distance between the fourth lens group G4 and the fifth lens group G5, the distance between the fifth lens group G5 and the sixth lens group G6 All the lens units from the first lens unit G1 to the seventh lens unit G7 move along the optical axis such that the distance and the distance between the sixth lens unit G6 and the seventh lens unit G7 change.
  • the fifth lens group G5 is moved to the object side along the optical axis, and the sixth lens group G6 has a locus different from that of the fifth lens group G5.
  • the sixth lens group G6 has a locus different from that of the fifth lens group G5.
  • Table 9 below presents values of specifications of the variable magnification optical system according to the present example.
  • FIGS. 26A, 26B, and 26C show various aberrations of the variable magnification optical system of the ninth example when focusing on an infinite object at the wide-angle end, at an intermediate focal length, and at the telephoto end.
  • FIGS. 27A, 27B, and 27C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the ninth example.
  • variable magnification optical system As shown in the various aberration diagrams, the variable magnification optical system according to the present embodiment has excellent imaging performance with excellent correction of various aberrations from the wide-angle end state to the telephoto end state, and at the time of focusing on a short distance object. It can also be seen that they have excellent imaging performance.
  • FIG. 28 is a diagram showing the lens configuration of a variable magnification optical system according to the tenth example.
  • the variable magnification optical system according to the present embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group G3 having a positive refractive power.
  • the first lens group G1 is composed of, in order from the object side, a biconvex positive lens L11, and a cemented positive lens of a negative meniscus lens L12 with a convex surface facing the object side and a biconvex positive lens L13.
  • the second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object, a positive meniscus lens L22 having a convex surface facing the object, a negative biconcave lens L23, and a convex surface And a cemented negative lens with a positive meniscus lens L24 facing the lens.
  • the third lens group G3 is composed of, in order from the object side, a biconvex positive lens L31, and a cemented positive lens of a biconvex positive lens L32 and a biconcave negative lens L33.
  • the fourth lens group G4 is composed of a negative meniscus lens L41 having a convex surface facing the object side and a positive lens cemented with a biconvex positive lens L42.
  • the fifth lens group G5 is composed of, in order from the object side, a biconvex positive lens L51 and a biconcave negative lens L52.
  • the sixth lens group G6 is composed of, in order from the object side, a negative meniscus lens L61 having a concave surface facing the object side, and a biconvex positive lens L62.
  • the distance between the first lens group G1 and the second lens group G2, the second lens group G2, and the third lens group G2 during zooming between the wide angle end state and the telephoto end state is the distance between the lens group G3, the distance between the third lens group G3 and the fourth lens group G4, the distance between the fourth lens group G4 and the fifth lens group G5, and the fifth lens group G5 and the sixth lens group G6 All the lens units from the first lens unit G1 to the sixth lens unit G6 move along the optical axis so that the interval between
  • the fourth lens group G4 is moved to the object side along the optical axis
  • the fifth lens group G5 is moved to the image side along the optical axis.
  • Table 10 below presents values of specifications of the variable magnification optical system according to the present example.
  • FIGS. 29A, 29B, and 29C are various aberration diagrams at the time of focusing on an infinity object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the tenth example.
  • FIGS. 30A, 30B, and 30C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the tenth example.
  • variable magnification optical system As shown in the various aberration diagrams, the variable magnification optical system according to the present embodiment has excellent imaging performance with excellent correction of various aberrations from the wide-angle end state to the telephoto end state, and at the time of focusing on a short distance object. It can also be seen that they have excellent imaging performance.
  • FIG. 31 shows a lens arrangement of a variable magnification optical system according to an eleventh example.
  • the variable magnification optical system according to the present embodiment includes, in order from the object side, a first lens group G1 having negative refractive power, a second lens group G2 having positive refractive power, and a third lens group G3 having positive refractive power.
  • the first lens group G1 is composed of, in order from the object side, a negative meniscus lens L11 having a convex surface facing the object side, and a cemented positive lens having a biconcave negative lens L12 and a positive meniscus lens L13 having a convex surface facing the object side It consists of
  • the second lens group G2 is composed of a positive cemented lens of a double convex positive lens L21 and a negative meniscus lens L22 having a concave surface facing the object side.
  • the third lens group G3 is composed of a positive cemented lens of a negative meniscus lens L31 with a convex surface facing the object side and a biconvex positive lens L32.
  • the fourth lens group G4 is composed of a cemented negative lens constructed by a double concave negative lens L41 and a positive meniscus lens L42 having a convex surface directed to the object side.
  • the fifth lens group G5 is composed of a biconvex positive lens L51.
  • the sixth lens group G6 is composed of a biconvex positive lens L61.
  • the seventh lens group G7 is composed of a negative meniscus lens L71 with a concave surface facing the object side.
  • the distance between the first lens group G1 and the second lens group G2, the second lens group G2, and the third lens group G2 during zooming between the wide angle end state and the telephoto end state The distance between the lens group G3, the distance between the third lens group G3 and the fourth lens group G4, the distance between the fourth lens group G4 and the fifth lens group G5, the distance between the fifth lens group G5 and the sixth lens group G6 All the lens units from the first lens unit G1 to the seventh lens unit G7 move along the optical axis such that the distance and the distance between the sixth lens unit G6 and the seventh lens unit G7 change.
  • the fifth lens group G5 is moved to the object side along the optical axis, and the sixth lens group G6 has a locus different from that of the fifth lens group G5.
  • the sixth lens group G6 has a locus different from that of the fifth lens group G5.
  • Table 11 below presents values of specifications of the variable magnification optical system according to the present example.
  • FIGS. 33A, 33B, and 33C are aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to Example 11.
  • variable magnification optical system As shown in the various aberration diagrams, the variable magnification optical system according to the present embodiment has excellent imaging performance with excellent correction of various aberrations from the wide-angle end state to the telephoto end state, and at the time of focusing on a short distance object. It can also be seen that they have excellent imaging performance.
  • high optical performance is provided to well suppress aberration fluctuation during zooming from the wide-angle end state to the telephoto end state, and when focusing from an infinity object to a near distance object.
  • a variable magnification optical system can be realized.
  • the drive mechanism of the focusing lens group can be miniaturized and the lens barrel can be made quiet at high speed without increasing the size of the lens barrel. It is possible to realize high-quality focusing operation.
  • variable magnification optical system Although a six-group configuration or a seven-group configuration is shown as a numerical example of the variable magnification optical system according to the present embodiment, the present embodiment is not limited to this, and the magnification variation of other group configurations (for example, eight groups etc.)
  • An optical system can also be configured. Specifically, a lens or lens group may be added to the most object side or the most image side of the variable magnification optical system of each of the above embodiments. Alternatively, a lens or a lens group may be added between the adjacent lens group and the lens group.
  • each focusing lens group may be configured of one or two lens components, and a configuration including one lens component is more preferable.
  • a focusing lens group can also be applied to auto focusing, and is also suitable for driving by a motor for auto focusing, such as an ultrasonic motor, a stepping motor, a VCM motor or the like.
  • variable magnification optical system of each of the above-described embodiments the entire lens group or a part thereof is moved as a vibration reduction group so as to include a component in a direction perpendicular to the optical axis, or It is also possible to adopt a configuration in which vibration isolation is performed by rotational movement (swinging) in the in-plane direction including.
  • the lens surface of the lens constituting the variable magnification optical system of each of the above embodiments may be a spherical surface, a flat surface, or an aspheric surface.
  • the lens surface is spherical or flat, it is preferable because lens processing and assembly adjustment can be facilitated, and deterioration of optical performance due to lens processing and assembly adjustment errors can be prevented.
  • the deterioration of the imaging performance is small.
  • the lens surface is aspheric, any of aspheric aspheric surfaces by grinding, a glass mold aspheric surface formed by shaping a glass into aspheric surface shape, or a composite aspheric surface formed by forming a resin on a glass surface into an aspheric surface shape Good.
  • the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • the aperture stop S is disposed between the second lens group G2 and the third lens group G3 or between the third lens group G3 and the fourth lens group G4.
  • the lens frame may substitute for the role without providing a member as the aperture stop.
  • an antireflective film having high transmittance over a wide wavelength range may be provided on the lens surface of the lens constituting the variable magnification optical system of each of the above embodiments. This can reduce flare and ghost and achieve high contrast and high optical performance.
  • FIG. 34 is a view showing the configuration of a camera provided with the variable magnification optical system of the present embodiment.
  • the camera 1 is a so-called mirrorless camera of a lens interchangeable type provided with the variable magnification optical system according to the first embodiment as the photographing lens 2.
  • the photographing lens 2 In the present camera 1, light from an object (not shown) from the object (not shown) is collected by the photographing lens 2 and passes through an OLPF (Optical Low Pass Filter) (not shown) on the imaging surface of the imaging unit 3 Form an image of the subject. Then, the subject image is photoelectrically converted by the photoelectric conversion element provided in the imaging unit 3 to generate the image of the subject. This image is displayed on an EVF (Electronic view finder) 4 provided in the camera 1. Thereby, the photographer can observe the subject via the EVF 4. When the photographer presses a release button (not shown), the image of the subject generated by the imaging unit 3 is stored in a memory (not shown). In this way, the photographer can shoot a subject with the main camera 1.
  • OLPF Optical Low Pass Filter
  • variable magnification optical system according to the first embodiment mounted as the photographing lens 2 in the present camera 1 has good optical performance as described above, and weight reduction and downsizing of the focusing lens group are achieved. ing. That is, the camera 1 realizes high optical performance that well suppresses aberration fluctuation during zooming from the wide-angle end state to the telephoto end state, and when focusing from an infinite distance object to a near distance object. By reducing the size and weight of the focusing lens unit, it is possible to realize high-speed focusing operation. Even if a camera mounted with the variable magnification optical system according to the second to eleventh examples as the taking lens 2 is configured, the same effect as the camera 1 can be obtained.
  • variable magnification optical system according to each of the above embodiments is mounted on a single-lens reflex camera having a quick return mirror and observing a subject by a finder optical system, the same effect as that of the camera 1 can be obtained. it can.
  • FIG. 35 is a flowchart showing an outline of a method of manufacturing a variable magnification optical system according to this embodiment.
  • the method of manufacturing a variable magnification optical system according to this embodiment shown in FIG. 35 is a method of manufacturing a variable magnification optical system having a plurality of lens groups, and includes the following steps S1 to S3.
  • Step S1 A plurality of lens groups are prepared, and the intervals between the lens groups are changed at the time of zooming.
  • MTF1 / MTF2 ⁇ 5.0 (2) 0.2 ⁇ BFw / fw ⁇ 2.0
  • MTF1 absolute value of the amount of movement of the object-side focusing lens unit when focusing from an infinite distance object to a close distance object in the telephoto end state
  • MTF2 focusing from an infinity object to a close object in the telephoto end state
  • variable magnification optical system of the present embodiment aberration fluctuation at the time of zooming from the wide-angle end state to the telephoto end state, and aberration fluctuation at the time of focusing from an infinite distance object to a near distance object

Abstract

This variable magnification optical system comprises multiple lens groups, and the intervals between the lens groups change during variable magnification. The multiple lens groups include an object-side focusing lens group which moves during focusing, and at least one image-side focusing lens group which is arranged on the image side of the object-side focusing lens group and which during focusing moves on a trajectory different from that of the object-side focusing lens group. By satisfying a prescribed conditional expression, the variable magnification optical system favorably suppresses aberration fluctuation when changing magnification from a wide-angle end state to a telephoto end state and aberration fluctuation when focusing from an object at infinity to an object at close range.

Description

変倍光学系、光学装置、および変倍光学系の製造方法Variable power optical system, optical device, and method of manufacturing variable power optical system
 本発明は、変倍光学系、光学装置、および変倍光学系の製造方法に関する。 The present invention relates to a variable magnification optical system, an optical device, and a method of manufacturing the variable magnification optical system.
 従来、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した変倍光学系が提案されている。例えば、特開2004-198529号公報を参照。しかしながら、従来の変倍光学系は、合焦の際、諸収差の変動を抑えることが充分ではなかった。 Heretofore, there have been proposed variable magnification optical systems suitable for photographic cameras, electronic still cameras, video cameras and the like. See, for example, Japanese Patent Laid-Open No. 2004-198529. However, in the conventional variable magnification optical system, it is not sufficient to suppress the fluctuation of various aberrations at the time of focusing.
特開2004-198529号公報Unexamined-Japanese-Patent No. 2004-198529
 本発明の第1の態様は、
 複数のレンズ群を有し、
 変倍時に前記各レンズ群の間隔が変化し、
 前記複数のレンズ群は、合焦の際移動する物体側合焦レンズ群と、前記物体側合焦レンズ群より像側に配置され、合焦の際前記物体側合焦レンズ群とは異なる軌跡で移動する少なくとも一つの像側合焦レンズ群とを有し、
 以下の条件式を満足する変倍光学系である。
  MTF1/MTF2 < 5.0
  0.2 < BFw/fw < 2.0
 ただし、
MTF1:望遠端状態における無限遠物体から近距離物体への合焦の際の前記物体側合焦レンズ群の移動量の絶対値
MTF2:望遠端状態における無限遠物体から近距離物体への合焦の際の、前記像側合焦レンズ群のうち最も物体側に配置された合焦レンズ群の移動量の絶対値
BFw:広角端状態における前記変倍光学系のバックフォーカス
fw:広角端状態における前記変倍光学系の焦点距離
The first aspect of the present invention is
Have multiple lens groups,
During zooming, the distance between the lens units changes,
The plurality of lens units are disposed on the image side of the object-side focusing lens unit that moves when focusing and the object-side focusing lens unit, and a locus that is different from the object-side focusing lens unit when focusing And at least one image-side focusing lens group that moves
It is a variable power optical system that satisfies the following conditional expression.
MTF1 / MTF2 <5.0
0.2 <BFw / fw <2.0
However,
MTF1: absolute value of the amount of movement of the object-side focusing lens unit when focusing from an infinite distance object to a close distance object in the telephoto end state MTF2: focusing from an infinity object to a close object in the telephoto end state The absolute value BFw of the movement amount of the focusing lens unit disposed closest to the object side among the image-side focusing lens units at the time of: back focus fw of the variable magnification optical system in the wide angle end state: in the wide angle end state Focal length of the variable magnification optical system
 また、本発明の第2の態様は、
 複数のレンズ群を有する変倍光学系の製造方法であって、
 変倍時に前記各レンズ群の間隔が変化するように構成し、
 前記複数のレンズ群が、合焦の際移動する物体側合焦レンズ群と、前記物体側合焦レンズ群より像側に配置され、合焦の際前記物体側合焦レンズ群とは異なる軌跡で移動する少なくとも一つの像側合焦レンズ群とを有するように構成し、
 以下の条件式を満足するように構成する変倍光学系の製造方法である。
  MTF1/MTF2 < 5.0
  0.2 < BFw/fw < 2.0
 ただし、
MTF1:望遠端状態における無限遠物体から近距離物体への合焦の際の前記物体側合焦レンズ群の移動量の絶対値
MTF2:望遠端状態における無限遠物体から近距離物体への合焦の際の、前記像側合焦レンズ群のうち最も物体側に配置された合焦レンズ群の移動量の絶対値
BFw:広角端状態における前記変倍光学系のバックフォーカス
fw:広角端状態における前記変倍光学系の焦点距離
Further, according to a second aspect of the present invention,
A method of manufacturing a variable magnification optical system having a plurality of lens groups, comprising:
The distance between the lens units is changed during zooming.
The plurality of lens units are disposed on the image side of the object-side focusing lens unit moving in focusing and the image-side focusing lens unit, and a locus different from the object-side focusing lens unit in focusing And at least one image-side focusing lens group that moves at
This is a manufacturing method of a variable magnification optical system configured to satisfy the following conditional expression.
MTF1 / MTF2 <5.0
0.2 <BFw / fw <2.0
However,
MTF1: absolute value of the amount of movement of the object-side focusing lens unit when focusing from an infinite distance object to a close distance object in the telephoto end state MTF2: focusing from an infinity object to a close object in the telephoto end state The absolute value BFw of the movement amount of the focusing lens unit disposed closest to the object side among the image-side focusing lens units at the time of: back focus fw of the variable magnification optical system in the wide angle end state: in the wide angle end state Focal length of the variable magnification optical system
図1は、第1実施例に係る変倍光学系の断面図である。FIG. 1 is a cross-sectional view of the variable magnification optical system according to the first example. 図2A、図2B、および図2Cはそれぞれ、第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、および望遠端状態における無限遠物体合焦時の諸収差図である。FIGS. 2A, 2B, and 2C are aberration diagrams at the time of focusing on an infinity object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the first example, respectively. 図3A、図3B、および図3Cはそれぞれ、第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、および望遠端状態における近距離物体合焦時の諸収差図である。FIGS. 3A, 3B, and 3C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the first example. 図4は、第2実施例に係る変倍光学系の断面図である。FIG. 4 is a cross-sectional view of a variable magnification optical system according to a second example. 図5A、図5B、および図5Cはそれぞれ、第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、および望遠端状態における無限遠物体合焦時の諸収差図である。FIGS. 5A, 5B, and 5C are aberration diagrams at the time of focusing on an infinity object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the second example, respectively. 図6A、図6B、および図6Cはそれぞれ、第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、および望遠端状態における近距離物体合焦時の諸収差図である。FIGS. 6A, 6B, and 6C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the second example. 図7は、第3実施例に係る変倍光学系の断面図である。FIG. 7 is a cross-sectional view of the variable magnification optical system according to the third example. 図8A、図8B、および図8Cはそれぞれ、第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、および望遠端状態における無限遠物体合焦時の諸収差図である。FIGS. 8A, 8B, and 8C are aberration diagrams at the time of focusing on an infinity object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third example, respectively. 図9A、図9B、および図9Cはそれぞれ、第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、および望遠端状態における近距離物体合焦時の諸収差図である。FIGS. 9A, 9B, and 9C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third example. 図10は、第4実施例に係る変倍光学系の断面図である。FIG. 10 is a cross-sectional view of the variable magnification optical system according to the fourth example. 図11A、図11B、および図11Cはそれぞれ、第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態、および望遠端状態における無限遠物体合焦時の諸収差図である。FIGS. 11A, 11B, and 11C are various aberration diagrams at the time of focusing on an infinity object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fourth example. 図12A、図12B、および図12Cはそれぞれ、第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態、および望遠端状態における近距離物体合焦時の諸収差図である。12A, 12B, and 12C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fourth example. 図13は、第5実施例に係る変倍光学系の断面図である。FIG. 13 is a cross-sectional view of the variable magnification optical system according to the fifth example. 図14A、図14B、および図14Cはそれぞれ、第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態、および望遠端状態における無限遠物体合焦時の諸収差図である。FIG. 14A, FIG. 14B, and FIG. 14C are various aberration diagrams at the time of infinity object focusing in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fifth example. 図15A、図15B、および図15Cはそれぞれ、第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態、および望遠端状態における近距離物体合焦時の諸収差図である。FIG. 15A, FIG. 15B, and FIG. 15C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fifth example. 図16は、第6実施例に係る変倍光学系の断面図である。FIG. 16 is a cross-sectional view of the variable magnification optical system according to the sixth example. 図17A、図17B、および図17Cはそれぞれ、第6実施例に係る変倍光学系の広角端状態、中間焦点距離状態、および望遠端状態における無限遠物体合焦時の諸収差図である。FIGS. 17A, 17B, and 17C are aberration diagrams at the time of focusing on an infinity object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the sixth example. 図18A、図18B、および図18Cはそれぞれ、第6実施例に係る変倍光学系の広角端状態、中間焦点距離状態、および望遠端状態における近距離物体合焦時の諸収差図である。18A, 18B, and 18C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the sixth example. 図19は、第7実施例に係る変倍光学系の断面図である。FIG. 19 is a cross-sectional view of a variable magnification optical system according to a seventh example. 図20A、図20B、および図20Cはそれぞれ、第7実施例に係る変倍光学系の広角端状態、中間焦点距離状態、および望遠端状態における無限遠物体合焦時の諸収差図である。FIGS. 20A, 20B, and 20C are aberration diagrams at the time of focusing on an infinity object in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively, of the zoom optical system according to the seventh example. 図21A、図21B、および図21Cはそれぞれ、第7実施例に係る変倍光学系の広角端状態、中間焦点距離状態、および望遠端状態における近距離物体合焦時の諸収差図である。FIGS. 21A, 21B, and 21C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the seventh example. 図22は、第8実施例に係る変倍光学系の断面図である。FIG. 22 is a cross-sectional view of a variable magnification optical system according to an eighth example. 図23A、図23B、および図23Cはそれぞれ、第8実施例に係る変倍光学系の広角端状態、中間焦点距離状態、および望遠端状態における無限遠物体合焦時の諸収差図である。FIGS. 23A, 23B, and 23C show various aberrations of the variable magnification optical system of the eighth embodiment at the wide-angle end state, at the intermediate focal length state, and at the telephoto end state when focusing on infinity. 図24A、図24B、および図24Cはそれぞれ、第8実施例に係る変倍光学系の広角端状態、中間焦点距離状態、および望遠端状態における近距離物体合焦時の諸収差図である。FIGS. 24A, 24B, and 24C show various aberrations of the variable magnification optical system according to Example 8 at the wide-angle end, at the intermediate focal length, and at the telephoto end when focusing on short-distance objects. 図25は、第9実施例に係る変倍光学系の断面図である。FIG. 25 is a cross-sectional view of the variable magnification optical system according to the ninth example. 図26A、図26B、および図26Cはそれぞれ、第9実施例に係る変倍光学系の広角端状態、中間焦点距離状態、および望遠端状態における無限遠物体合焦時の諸収差図である。FIGS. 26A, 26B, and 26C are aberration diagrams at the time of focusing on an infinite object in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively, of the variable magnification optical system according to the ninth example. 図27A、図27B、および図27Cはそれぞれ、第9実施例に係る変倍光学系の広角端状態、中間焦点距離状態、および望遠端状態における近距離物体合焦時の諸収差図である。FIGS. 27A, 27B, and 27C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the ninth example. 図28は、第10実施例に係る変倍光学系の断面図である。FIG. 28 is a cross-sectional view of the variable magnification optical system according to the tenth example. 図29A、図29B、および図29Cはそれぞれ、第10実施例に係る変倍光学系の広角端状態、中間焦点距離状態、および望遠端状態における無限遠物体合焦時の諸収差図である。FIGS. 29A, 29B, and 29C are aberration diagrams at the time of focusing on an infinity object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the tenth example. 図30A、図30B、および図30Cはそれぞれ、第10実施例に係る変倍光学系の広角端状態、中間焦点距離状態、および望遠端状態における近距離物体合焦時の諸収差図である。FIGS. 30A, 30B, and 30C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the tenth example. 図31は、第11実施例に係る変倍光学系の断面図である。FIG. 31 is a cross-sectional view of a variable magnification optical system according to an eleventh example. 図32A、図32B、および図32Cはそれぞれ、第11実施例に係る変倍光学系の広角端状態、中間焦点距離状態、および望遠端状態における無限遠物体合焦時の諸収差図である。FIGS. 32A, 32B, and 32C are aberration diagrams at the time of focusing on an infinity object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to Example 11. 図33A、図33B、および図33Cはそれぞれ、第11実施例に係る変倍光学系の広角端状態、中間焦点距離状態、および望遠端状態における近距離物体合焦時の諸収差図である。FIGS. 33A, 33B, and 33C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to Example 11. 図34は、変倍光学系を備えたカメラの構成を示す図である。FIG. 34 is a view showing the configuration of a camera provided with a variable magnification optical system. 図35は、変倍光学系の製造方法の概略を示すフロー図である。FIG. 35 is a flowchart schematically showing a method of manufacturing a variable magnification optical system.
 以下、本実施形態に係る変倍光学系、光学装置および変倍光学系の製造方法について説明する。
 本実施形態の変倍光学系は、複数のレンズ群を有し、変倍時に前記各レンズ群の間隔が変化し、前記複数のレンズ群は、合焦の際移動する物体側合焦レンズ群と、前記物体側合焦レンズ群より像側に配置され、合焦の際前記物体側合焦レンズ群とは異なる軌跡で移動する少なくとも一つの像側合焦レンズ群とを有し、以下の条件式(1)および(2)を満足するように構成されている。
(1)MTF1/MTF2 < 5.0
(2)0.2 < BFw/fw < 2.0
 ただし、
MTF1:望遠端状態における無限遠物体から近距離物体への合焦の際の前記物体側合焦レンズ群の移動量の絶対値
MTF2:望遠端状態における無限遠物体から近距離物体への合焦の際の、前記像側合焦レンズ群のうち最も物体側に配置された合焦レンズ群の移動量の絶対値
BFw:広角端状態における前記変倍光学系のバックフォーカス
fw:広角端状態における前記変倍光学系の焦点距離
Hereinafter, a variable magnification optical system, an optical device, and a method of manufacturing the variable magnification optical system according to the present embodiment will be described.
The variable magnification optical system according to the present embodiment has a plurality of lens units, and the distance between the lens units changes at the time of zooming, and the plurality of lens units move at the time of focusing. And at least one image-side focusing lens group disposed on the image side of the object-side focusing lens group and moving along a locus different from that of the object-side focusing lens group at the time of focusing; It is comprised so that conditional expression (1) and (2) may be satisfied.
(1) MTF1 / MTF2 <5.0
(2) 0.2 <BFw / fw <2.0
However,
MTF1: absolute value of the amount of movement of the object-side focusing lens unit when focusing from an infinite distance object to a close distance object in the telephoto end state MTF2: focusing from an infinity object to a close object in the telephoto end state The absolute value BFw of the movement amount of the focusing lens unit disposed closest to the object side among the image-side focusing lens units at the time of: back focus fw of the variable magnification optical system in the wide angle end state: in the wide angle end state Focal length of the variable magnification optical system
 本実施形態の変倍光学系は、複数のレンズ群を有し、広角端状態から望遠端状態への変倍時に、各レンズ群の間隔を変化させることによって、変倍時の良好な収差補正を図ることができる。また、本実施形態の変倍光学系は、複数のレンズ群が、無限遠物体から近距離物体への合焦の際移動する物体側合焦レンズ群と、物体側合焦レンズ群より像側に配置され、合焦の際物体側合焦レンズ群とは異なる軌跡で移動する少なくとも一つの像側合焦レンズ群とを有することにより、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を効果的に抑えることができる。
 なお、レンズ群とは、空気間隔で分離された、少なくとも1枚のレンズを有する部分をいう。また、レンズ成分とは、単レンズまたは接合レンズをいう。
The variable magnification optical system of the present embodiment has a plurality of lens groups, and changes the distance between the lens groups at the time of zooming from the wide-angle end state to the telephoto end state, thereby achieving good aberration correction at the time of zooming. Can be Further, in the variable magnification optical system of the present embodiment, an object side focusing lens group in which a plurality of lens groups move when focusing from an infinite distance object to a near distance object and an image side from the object side focusing lens group And at least one image-side focusing lens group that moves on a different trajectory from the object-side focusing lens group at the time of focusing, whereby focusing from an infinite distance object to a near distance object is performed. Variations of various aberrations including spherical aberration can be effectively suppressed.
The lens group refers to a portion having at least one lens separated by an air gap. The lens component means a single lens or a cemented lens.
 条件式(1)は、望遠端状態における無限遠物体から近距離物体への合焦の際の物体側合焦レンズ群の移動量の絶対値と、望遠端状態における無限遠物体から近距離物体への合焦の際の、像側合焦レンズ群のうち最も物体側に配置された合焦レンズ群の移動量の絶対値との比を規定するものである。本実施形態の変倍光学系は、この条件式(1)を満足することにより、無限遠物体から近距離物体への合焦の際の球面収差の変動を効果的に抑えることができる。 Conditional expression (1) is an absolute value of the amount of movement of the object-side focusing lens unit in focusing from an infinite distance object to a close distance object in the telephoto end state, and an infinite distance object to the near distance object in the telephoto end state This defines the ratio to the absolute value of the movement amount of the focusing lens unit disposed closest to the object side in the image side focusing lens unit at the time of focusing. By satisfying the conditional expression (1), the variable magnification optical system according to the present embodiment can effectively suppress the fluctuation of spherical aberration at the time of focusing from an infinite distance object to a close distance object.
 本実施形態の変倍光学系の条件式(1)の対応値が上限値を上回ると、像側合焦レンズ群のうち最も物体側に配置された合焦レンズ群に対して物体側合焦レンズ群の移動量が大きくなりすぎてしまい、無限遠物体から近距離物体への合焦の際の球面収差の変動を補正することが困難となる。なお、条件式(1)の上限値を4.7に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(1)の上限値を4.5にすることが好ましい。また、条件式(1)の上限値を4.0、更に3.5、更に2.8、更に2.4にすることが好ましい。 When the corresponding value of the conditional expression (1) of the variable magnification optical system according to the present embodiment exceeds the upper limit value, object side focusing with respect to the focusing lens group disposed closest to the object among the image side focusing lens groups. The amount of movement of the lens unit becomes too large, and it becomes difficult to correct the variation of the spherical aberration at the time of focusing from an infinite distance object to a close distance object. In addition, the effect of the present embodiment can be made more reliable by setting the upper limit value of the conditional expression (1) to 4.7. Moreover, in order to make the effect of this embodiment more reliable, it is preferable to set the upper limit of conditional expression (1) to 4.5. Further, it is preferable to set the upper limit value of conditional expression (1) to 4.0, further 3.5, further 2.8, and further 2.4.
 また、本実施形態の効果を確実にするために、条件式(1)は、
2.0 < MTF1/MTF2 < 5.0
とすることが好ましい。このように条件式(1)の下限値を2.0に設定することにより、合焦の際の球面収差の変動をさらに効果的に抑えることができる。
Moreover, in order to secure the effect of the present embodiment, the conditional expression (1) is
2.0 <MTF1 / MTF2 <5.0
It is preferable to By setting the lower limit value of the conditional expression (1) to 2.0 as described above, it is possible to more effectively suppress the variation of the spherical aberration at the time of focusing.
 条件式(2)は、広角端状態における変倍光学系のバックフォーカスと広角端状態における変倍光学系の焦点距離との比を規定するものである。本実施形態の変倍光学系は、この条件式(2)を満足することにより、広角端状態におけるコマ収差をはじめとする諸収差を効果的に補正することができる。
 なお、バックフォーカスとは、最も像側のレンズ面から像面までの光軸上の距離である。
Conditional expression (2) defines the ratio between the back focus of the variable magnification optical system in the wide angle end state and the focal length of the variable magnification optical system in the wide angle end state. By satisfying the conditional expression (2), the variable magnification optical system according to the present embodiment can effectively correct various aberrations including coma aberration in the wide-angle end state.
The back focus is the distance on the optical axis from the lens surface closest to the image to the image plane.
 本実施形態の変倍光学系の条件式(2)の対応値が上限値を上回ると、広角端状態における焦点距離に対して広角端状態におけるバックフォーカスが大きくなり、広角端状態におけるコマ収差をはじめとする諸収差を補正することが困難となる。なお、条件式(2)の上限値を1.70に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式 (2)の上限値を1.40にすることが好ましい。また、条件式(2)の上限値を1.20、更に1.00、更に0.80にすることが好ましい。 When the corresponding value of the conditional expression (2) of the variable magnification optical system according to this embodiment exceeds the upper limit value, the back focus in the wide angle end state becomes large with respect to the focal length in the wide angle end state. It will be difficult to correct the initial aberrations. In addition, the effect of the present embodiment can be made more reliable by setting the upper limit value of the conditional expression (2) to 1.70. Moreover, in order to make the effect of the present embodiment more reliable, it is preferable to set the upper limit value of the conditional expression (2) to 1.40. Further, it is preferable to set the upper limit value of conditional expression (2) to 1.20, further 1.00, and further 0.80.
 一方、本実施形態の変倍光学系の条件式(2)の対応値が下限値を下回ると、広角端状態における焦点距離に対して広角端状態におけるバックフォーカスが小さくなり、広角端状態におけるコマ収差をはじめとする諸収差を補正することが困難となる。また、鏡筒のメカ部材を配置するのが困難となる。なお、条件式(2)の下限値を0.30に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(2)の下限値を0.40にすることが好ましい。また、条件式(2)の下限値を0.45、更に0.50、更に0.55、更に0.60にすることが好ましい。
 以上の構成により、広角端状態から望遠端状態への変倍時の収差変動、および無限遠物体から近距離物体への合焦の際の諸収差の変動を良好に抑えることができる変倍光学系を実現することができる。
On the other hand, when the corresponding value of the conditional expression (2) of the variable magnification optical system of the present embodiment falls below the lower limit, the back focus in the wide angle end becomes smaller than the focal length in the wide angle end. It is difficult to correct various aberrations including the aberration. In addition, it becomes difficult to arrange the mechanical members of the lens barrel. In addition, the effect of this embodiment can be made more reliable by setting the lower limit of conditional expression (2) to 0.30. Moreover, in order to make the effect of this embodiment more reliable, it is preferable to set the lower limit of conditional expression (2) to 0.40. Further, it is preferable to set the lower limit value of conditional expression (2) to 0.45, further 0.50, further 0.55, and further 0.60.
With the above configuration, it is possible to favorably suppress the fluctuation of aberration at the time of zooming from the wide-angle end state to the telephoto end state, and the fluctuation of various aberrations at the time of focusing from an infinity object to a near distance object System can be realized.
 本実施形態の変倍光学系は、前記物体側合焦レンズ群および前記像側合焦レンズ群の少なくとも一つの合焦レンズ群が、少なくとも一つの負の屈折力を有するレンズを有し、以下の条件式(3)を満足することが望ましい。
(3)0.45 < (-fFN)/|fF| < 1.70
 ただし、
fFN:前記物体側合焦レンズ群および前記像側合焦レンズ群内にあるレンズのうち、最も負の屈折力が強いレンズの焦点距離
fF:前記物体側合焦レンズ群および前記像側合焦レンズ群のうち、最も屈折力が強い合焦レンズ群の焦点距離
In the zoom lens system of the present embodiment, at least one focusing lens group of the object-side focusing lens group and the image-side focusing lens group has a lens having at least one negative refractive power, and It is desirable to satisfy conditional expression (3) of
(3) 0.45 <(-fFN) / | fF | <1.70
However,
fFN: Of the lenses in the object-side focusing lens group and the image-side focusing lens group, the focal length fF of the lens having the strongest negative refractive power: the object-side focusing lens group and the image-side focusing Of the lens units, the focal length of the focusing lens unit with the highest refractive power
 本実施形態の変倍光学系は、物体側合焦レンズ群および像側合焦レンズ群の少なくとも一つの合焦レンズ群が、少なくとも一つの負の屈折力を有するレンズを有することで、無限遠物体から近距離物体への合焦の際の球面収差や色収差の変動を抑えることができる。
 上記条件式(3)は、物体側合焦レンズ群および像側合焦レンズ群内にあるレンズのうち、最も負の屈折力が強いレンズの焦点距離と、物体側合焦レンズ群および像側合焦レンズ群のうち、最も屈折力が強い合焦レンズ群の焦点距離との比を規定するものである。本実施形態の変倍光学系は、この条件式(3)を満足することにより、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることができる。
In the zoom lens system of the present embodiment, at least one focusing lens group of the object-side focusing lens group and the image-side focusing lens group has a lens having at least one negative refractive power, thereby achieving infinite distance. It is possible to suppress the variation of spherical aberration and chromatic aberration at the time of focusing from an object to a near distance object.
The conditional expression (3) shows the focal length of the lens having the strongest negative refractive power among the lenses in the object side focusing lens group and the image side focusing lens group, the object side focusing lens group and the image side Among the focusing lens groups, the ratio to the focal length of the focusing lens group having the strongest refractive power is defined. By satisfying the conditional expression (3), the variable magnification optical system according to the present embodiment can suppress fluctuations of various aberrations including the spherical aberration at the time of focusing from an infinite distance object to a close distance object. it can.
 本実施形態の変倍光学系の条件式(3)の対応値が上限値を上回ると、物体側合焦レンズ群および像側合焦レンズ群のうち、最も屈折力が強い合焦レンズ群の屈折力が強くなりすぎ、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることが困難となる。なお、条件式(3)の上限値を1.60に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(3)の上限値を1.50にすることが好ましい。また、条件式(3)の上限値を1.40、更に1.30、更に1.25にすることが好ましい。 When the corresponding value of the conditional expression (3) of the variable magnification optical system of the present embodiment exceeds the upper limit value, the focusing lens group having the strongest refractive power among the object side focusing lens group and the image side focusing lens group The refractive power becomes too strong, and it becomes difficult to suppress fluctuations of various aberrations including spherical aberration when focusing from an infinite distance object to a close distance object. In addition, the effect of the present embodiment can be made more reliable by setting the upper limit value of the conditional expression (3) to 1.60. Moreover, in order to make the effect of this embodiment more reliable, it is preferable to set the upper limit of conditional expression (3) to 1.50. Further, it is preferable to set the upper limit value of conditional expression (3) to 1.40, further 1.30, and further 1.25.
 一方、本実施形態の変倍光学系の条件式(3)の対応値が下限値を下回ると、物体側合焦レンズ群および像側合焦レンズ群内にあるレンズのうち、最も負の屈折力が強いレンズの屈折力が強くなりすぎ、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることが困難となる。なお、条件式(3)の下限値を0.47に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(3)の下限値を0.50にすることが好ましい。また、条件式(3)の下限値を0.54、更に0.60にすることが好ましい。 On the other hand, when the corresponding value of the conditional expression (3) of the variable magnification optical system of the present embodiment falls below the lower limit value, the most negative refraction among the lenses in the object side focusing lens group and the image side focusing lens group The refractive power of the lens with strong power becomes too strong, and it becomes difficult to suppress the fluctuation of various aberrations including the spherical aberration at the time of focusing from an infinite distance object to a close distance object. In addition, the effect of the present embodiment can be made more reliable by setting the lower limit value of the conditional expression (3) to 0.47. Moreover, in order to make the effect of this embodiment more reliable, it is preferable to set the lower limit of conditional expression (3) to 0.50. Further, it is preferable to set the lower limit value of conditional expression (3) to 0.54, further preferably 0.60.
 また、本実施形態の変倍光学系は、前記物体側合焦レンズ群が正の屈折力を有することが望ましい。この構成により、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることができる。 Further, in the variable magnification optical system of the present embodiment, it is desirable that the object side focusing lens unit have a positive refractive power. With this configuration, it is possible to suppress fluctuations of various aberrations including spherical aberration when focusing from an infinite distance object to a close distance object.
 また、本実施形態の変倍光学系は、前記像側合焦レンズ群のうち最も像側に配置された合焦レンズ群が正の屈折力を有することが望ましい。この構成により、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることができる。 Further, in the variable magnification optical system of the present embodiment, it is desirable that the focusing lens unit disposed closest to the image side among the image side focusing lens units have positive refractive power. With this configuration, it is possible to suppress fluctuations of various aberrations including spherical aberration when focusing from an infinite distance object to a close distance object.
 また、本実施形態の変倍光学系は、前記物体側合焦レンズ群が、一つまたは二つのレンズ成分で構成されていることが望ましい。この構成により、合焦レンズ群を小型軽量化できる。 Further, in the variable magnification optical system of the present embodiment, it is desirable that the object-side focusing lens unit be configured of one or two lens components. With this configuration, the focusing lens unit can be reduced in size and weight.
 また、本実施形態の変倍光学系は、前記像側合焦レンズ群が、一つまたは二つのレンズ成分で構成されていることが望ましい。この構成により、合焦レンズ群を小型軽量化できる。 Further, in the variable magnification optical system according to the present embodiment, it is desirable that the image side focusing lens unit be constituted by one or two lens components. With this configuration, the focusing lens unit can be reduced in size and weight.
 また、本実施形態の変倍光学系は、最も物体側に、合焦の際固定の第1レンズ群を有することが望ましい。この構成により、鏡筒の大型化を抑制することできる。 Further, it is desirable that the variable magnification optical system of the present embodiment has the first lens group fixed at the time of focusing on the most object side. By this configuration, the enlargement of the lens barrel can be suppressed.
 また、本実施形態の変倍光学系は、前記物体側合焦レンズ群および前記像側合焦レンズ群の少なくとも一つの合焦レンズ群が、少なくとも一つの負の屈折力を有するレンズを有し、以下の条件式(4)を満足することが望ましい。
(4)0.65 < nP/nN < 1.10
 ただし、
nP:前記物体側合焦レンズ群および前記像側合焦レンズ群内にあるレンズのうち、最も正の屈折力が強いレンズの屈折率
nN:前記物体側合焦レンズ群および前記像側合焦レンズ群内にあるレンズのうち、最も負の屈折力が強いレンズの屈折率
Further, in the zoom lens system of the present embodiment, at least one focusing lens group of the object-side focusing lens group and the image-side focusing lens group has a lens having at least one negative refractive power. It is desirable to satisfy the following conditional expression (4).
(4) 0.65 <nP / nN <1.10
However,
nP: Of the lenses in the object side focusing lens group and the image side focusing lens group, the refractive index nN of the lens having the most positive refractive power: the object side focusing lens group and the image side focusing Of the lenses in the lens group, the refractive index of the lens with the strongest negative refractive power
 本実施形態の変倍光学系は、物体側合焦レンズ群および像側合焦レンズ群の少なくとも一つの合焦レンズ群が、少なくとも一つの負の屈折力を有するレンズを有することで、無限遠物体から近距離物体への合焦の際の球面収差や色収差の変動を抑えることができる。
 上記条件式(4)は、物体側合焦レンズ群および像側合焦レンズ群内にあるレンズのうち、最も正の屈折力が強いレンズの屈折率と、物体側合焦レンズ群および像側合焦レンズ群内にあるレンズのうち、最も負の屈折力が強いレンズの屈折率との比を規定するものである。本実施形態の変倍光学系は、この条件式(4)を満足することにより、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることができる。
In the zoom lens system of the present embodiment, at least one focusing lens group of the object-side focusing lens group and the image-side focusing lens group has a lens having at least one negative refractive power, thereby achieving infinite distance. It is possible to suppress the variation of spherical aberration and chromatic aberration at the time of focusing from an object to a near distance object.
The conditional expression (4) shows the refractive index of the lens having the most positive refractive power among the lenses in the object side focusing lens group and the image side focusing lens group, the object side focusing lens group and the image side Among the lenses in the focusing lens group, it defines the ratio to the refractive index of the lens having the strongest negative refractive power. By satisfying the conditional expression (4), the variable magnification optical system according to the present embodiment can suppress fluctuations of various aberrations including the spherical aberration at the time of focusing from an infinite distance object to a close distance object. it can.
 本実施形態の変倍光学系の条件式(4)の対応値が上限値を上回ると、物体側合焦レンズ群および像側合焦レンズ群内にあるレンズのうち、最も正の屈折力が強いレンズの正の屈折力が強くなりすぎ、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることが困難となる。なお、条件式(4)の上限値を1.05に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(4)の上限値を1.03にすることが好ましい。また、条件式(4)の上限値を1.00、更に0.95にすることが好ましい。 When the corresponding value of the conditional expression (4) of the variable magnification optical system of the present embodiment exceeds the upper limit value, the most positive refractive power of the lenses in the object side focusing lens group and the image side focusing lens group is obtained. The positive refractive power of a strong lens becomes too strong, and it becomes difficult to suppress fluctuations of various aberrations including spherical aberration when focusing from an infinite distance object to a near distance object. In addition, the effect of the present embodiment can be made more reliable by setting the upper limit value of the conditional expression (4) to 1.05. Moreover, in order to make the effect of the present embodiment more reliable, it is preferable to set the upper limit value of the conditional expression (4) to 1.03. Further, it is preferable to set the upper limit value of conditional expression (4) to 1.00, and further to 0.95.
 一方、本実施形態の変倍光学系の条件式(4)の対応値が下限値を下回ると、物体側合焦レンズ群および像側合焦レンズ群内にあるレンズのうち、最も負の屈折力が強いレンズの負の屈折力が強くなりすぎ、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることが困難となる。なお、条件式(4)の下限値を0.67に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(4)の下限値を0.70にすることが好ましい。また、条件式(4)の下限値を0.75、更に0.80、更に0.83にすることが好ましい。 On the other hand, when the corresponding value of the conditional expression (4) of the variable magnification optical system of the present embodiment falls below the lower limit value, the most negative refraction among the lenses in the object side focusing lens group and the image side focusing lens group The negative refracting power of the lens with strong power becomes too strong, and it becomes difficult to suppress the fluctuation of various aberrations including the spherical aberration at the time of focusing from an infinite distance object to a near distance object. In addition, the effect of the present embodiment can be made more reliable by setting the lower limit value of the conditional expression (4) to 0.67. Moreover, in order to make the effect of this embodiment more reliable, it is preferable to set the lower limit of conditional expression (4) to 0.70. Further, it is preferable to set the lower limit value of conditional expression (4) to 0.75, further to 0.80, and further to 0.83.
 また、本実施形態の変倍光学系は、以下の条件式(5)を満足することが望ましい。
(5)0.40 < |fF1|/|f1| < 2.60
 ただし、
fF1:前記物体側合焦レンズ群の焦点距離
f1:前記第1レンズ群の焦点距離
Further, in the variable magnification optical system of the present embodiment, it is desirable that the following conditional expression (5) be satisfied.
(5) 0.40 <| fF1 | / | f1 | <2.60
However,
fF1: focal length of the object side focusing lens unit f1: focal length of the first lens unit
 条件式(5)は、物体側合焦レンズ群の焦点距離と第1レンズ群の焦点距離との比を規定するものである。本実施形態の変倍光学系は、この条件式(5)を満足することにより、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を効果的に抑え、広角端状態から望遠端状態への変倍の際の球面収差をはじめとする諸収差の変動を抑えることができる。 Conditional expression (5) defines the ratio of the focal length of the object side focusing lens unit to the focal length of the first lens unit. By satisfying the conditional expression (5), the variable magnification optical system according to the present embodiment effectively changes the various aberrations including the spherical aberration when focusing from an infinite distance object to a close distance object. It is possible to suppress fluctuations of various aberrations including spherical aberration at the time of zooming from the wide-angle end state to the telephoto end state.
 本実施形態の変倍光学系の条件式(5)の対応値が上限値を上回ると、第1レンズ群の屈折力が強くなり、広角端状態から望遠端状態への変倍の際の球面収差をはじめとする諸収差の変動を抑えることが困難となる。なお、条件式(5)の上限値を2.55に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(5)の上限値を2.50にすることが好ましい。また、条件式(5)の上限値を2.30、更に2.10にすることが好ましい。 When the corresponding value of the conditional expression (5) of the variable magnification optical system of the present embodiment exceeds the upper limit, the refractive power of the first lens group becomes strong, and the spherical surface at the time of zooming from the wide-angle end state to the telephoto end state. It becomes difficult to suppress the fluctuation of various aberrations including the aberration. In addition, the effect of the present embodiment can be made more reliable by setting the upper limit value of the conditional expression (5) to 2.55. Moreover, in order to make the effect of the present embodiment more reliable, it is preferable to set the upper limit value of the conditional expression (5) to 2.50. Further, it is preferable to set the upper limit value of conditional expression (5) to 2.30, and further to 2.10.
 一方、本実施形態の変倍光学系の条件式(5)の対応値が下限値を下回ると、物体側合焦レンズ群の屈折力が強くなり、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることが困難となる。なお、条件式(5)の下限値を0.45に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(5)の下限値を0.47にすることが好ましい。また、条件式(5)の下限値を0.50、更に0.55、更に0.60にすることが好ましい。 On the other hand, when the corresponding value of the conditional expression (5) of the variable magnification optical system of the present embodiment falls below the lower limit, the refractive power of the object side focusing lens unit becomes strong, and focusing from an infinite distance object to a near distance object It is difficult to suppress fluctuations of various aberrations including the spherical aberration at the time of. In addition, the effect of the present embodiment can be made more reliable by setting the lower limit value of the conditional expression (5) to 0.45. Moreover, in order to make the effect of this embodiment more reliable, it is preferable to set the lower limit of conditional expression (5) to 0.47. Further, it is preferable to set the lower limit value of conditional expression (5) to 0.50, further 0.55, and further 0.60.
 また、本実施形態の変倍光学系は、以下の条件式(6)を満足することが望ましい。
(6)0.20 < |fF2|/|f1| < 3.80
 ただし、
fF2:前記像側合焦レンズ群のうち最も像側に配置された合焦レンズ群の焦点距離
f1:前記第1レンズ群の焦点距離
Further, it is desirable that the variable magnification optical system of the present embodiment satisfy the following conditional expression (6).
(6) 0.20 <| fF2 | / | f1 <3.80
However,
fF2: Focal length f1 of the focusing lens group disposed closest to the image side among the image-side focusing lens groups f1: Focal length of the first lens group
 条件式(6)は、像側合焦レンズ群のうち最も像側に配置された合焦レンズ群の焦点距離と第1レンズ群の焦点距離との比を規定するものである。本実施形態の変倍光学系は、この条件式(6)を満足することにより、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を効果的に抑え、広角端状態から望遠端状態への変倍の際の球面収差をはじめとする諸収差の変動を抑えることができる。 Conditional expression (6) defines the ratio of the focal length of the focusing lens unit disposed closest to the image side of the image-side focusing lens unit to the focal length of the first lens unit. By satisfying the conditional expression (6), the variable magnification optical system according to the present embodiment effectively changes the various aberrations including the spherical aberration at the time of focusing from an infinite distance object to a close distance object. It is possible to suppress fluctuations of various aberrations including spherical aberration at the time of zooming from the wide-angle end state to the telephoto end state.
 本実施形態の変倍光学系の条件式(6)の対応値が上限値を上回ると、第1レンズ群の屈折力が強くなり、広角端状態から望遠端状態への変倍の際の球面収差をはじめとする諸収差の変動を抑えることが困難となる。なお、条件式(6)の上限値を3.60に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(6)の上限値を3.40にすることが好ましい。また、条件式(6)の上限値を3.00、更に2.50、更に1.90にすることが好ましい。 When the corresponding value of the conditional expression (6) of the variable magnification optical system of the present embodiment exceeds the upper limit, the refractive power of the first lens group becomes strong, and the spherical surface at the time of zooming from the wide-angle end state to the telephoto end state It becomes difficult to suppress the fluctuation of various aberrations including the aberration. In addition, the effect of the present embodiment can be made more reliable by setting the upper limit value of the conditional expression (6) to 3.60. In order to make the effect of the present embodiment more reliable, it is preferable to set the upper limit value of the conditional expression (6) to 3.40. Further, it is preferable to set the upper limit value of conditional expression (6) to 3.00, further 2.50, and further 1.90.
 一方、本実施形態の変倍光学系の条件式(6)の対応値が下限値を下回ると、像側合焦レンズ群のうち最も像側に配置された合焦レンズ群の屈折力が強くなり、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることが困難となる。なお、条件式(6)の下限値を0.25に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(6)の下限値を0.28にすることが好ましい。また、条件式(6)の下限値を0.50、更に0.70、更に0.90、更に1.20にすることが好ましい。 On the other hand, when the corresponding value of the conditional expression (6) of the variable magnification optical system of the present embodiment falls below the lower limit value, the refractive power of the focusing lens unit disposed closest to the image among the image side focusing lens units becomes strong. As a result, it becomes difficult to suppress fluctuations of various aberrations including spherical aberration at the time of focusing from an infinite distance object to a close distance object. In addition, the effect of the present embodiment can be made more reliable by setting the lower limit value of the conditional expression (6) to 0.25. Moreover, in order to make the effect of this embodiment more reliable, it is preferable to set the lower limit of conditional expression (6) to 0.28. Further, it is preferable to set the lower limit value of conditional expression (6) to 0.50, further 0.70, further 0.90, and further 1.20.
 また、本実施形態の変倍光学系は、物体側合焦レンズ群は、物体側から順に、正の屈折力を有するレンズと、負の屈折力を有するレンズとから成ることが望ましい。この構成により、無限遠物体から近距離物体への合焦の際の球面収差や色収差の変動を効果的に抑えることができる。 In the zoom lens system according to the present embodiment, it is preferable that the object-side focusing lens unit be formed of, in order from the object side, a lens having positive refractive power and a lens having negative refractive power. With this configuration, it is possible to effectively suppress the variation of spherical aberration and chromatic aberration at the time of focusing from an infinite distance object to a close distance object.
 また、本実施形態の変倍光学系は、開口絞りを有し、前記物体側合焦レンズ群は、前記開口絞りより像側に配置されていることが望ましい。この構成により、合焦レンズ群を軽量化することが出来る。 Further, it is desirable that the variable magnification optical system of the present embodiment has an aperture stop, and the object side focusing lens unit be disposed on the image side of the aperture stop. This configuration can reduce the weight of the focusing lens unit.
 また、本実施形態の変倍光学系は、以下の条件式(7)を満足することが望ましい。
(7)0.10 < |fF1|/ft < 3.00
 ただし、
fF1:前記物体側合焦レンズ群の焦点距離
ft:望遠端状態における前記変倍光学系の焦点距離
Further, in the variable magnification optical system of the present embodiment, it is desirable that the following conditional expression (7) be satisfied.
(7) 0.10 <| fF1 | / ft <3.00
However,
fF1: focal length ft of the object-side focusing lens unit focal length of the variable magnification optical system in the telephoto end state
 条件式(7)は、物体側合焦レンズ群の焦点距離と望遠端状態における変倍光学系の焦点距離との比を規定するものである。本実施形態の変倍光学系は、この条件式(7)を満足することにより、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を効果的に抑えることができる。 The conditional expression (7) defines the ratio of the focal length of the object side focusing lens unit to the focal length of the variable magnification optical system in the telephoto end state. By satisfying the conditional expression (7), the variable magnification optical system according to the present embodiment effectively changes the various aberrations including the spherical aberration when focusing from an infinite distance object to a close distance object. It can be suppressed.
 本実施形態の変倍光学系の条件式(7)の対応値が上限値を上回ると、物体側合焦レンズ群の焦点距離が長くなり、無限遠物体から近距離物体への合焦の際の物体側合焦レンズ群の移動量が大きくなりすぎ、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を補正することが困難となる。なお、条件式(7)の上限値を2.80に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(7)の上限値を2.60にすることが好ましい。また、条件式(7)の上限値を2.20、更に1.90、更に1.60にすることが好ましい。 When the corresponding value of the conditional expression (7) of the variable magnification optical system of the present embodiment exceeds the upper limit, the focal length of the object side focusing lens unit becomes long, and focusing from an infinite distance object to a near distance object The amount of movement of the object-side focusing lens unit becomes too large, and it becomes difficult to correct fluctuations of various aberrations including spherical aberration when focusing from an infinite distance object to a close distance object. By setting the upper limit value of the conditional expression (7) to 2.80, the effect of the present embodiment can be made more reliable. Moreover, in order to make the effect of this embodiment more reliable, it is preferable to set the upper limit of conditional expression (7) to 2.60. Further, it is preferable to set the upper limit value of conditional expression (7) to 2.20, further 1.90, and further 1.60.
 一方、本実施形態の変倍光学系の条件式(7)の対応値が下限値を下回ると、物体側合焦レンズ群の屈折力が強くなり、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることが困難となる。なお、条件式(7)の下限値を0.12に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(7)の下限値を0.15にすることが好ましい。 On the other hand, when the corresponding value of the conditional expression (7) of the variable magnification optical system of the present embodiment falls below the lower limit, the refractive power of the object side focusing lens unit becomes strong, and focusing from an infinite distance object to a near distance object It is difficult to suppress fluctuations of various aberrations including the spherical aberration at the time of. In addition, the effect of this embodiment can be made more reliable by setting the lower limit of conditional expression (7) to 0.12. Moreover, in order to make the effect of this embodiment more reliable, it is preferable to set the lower limit of conditional expression (7) to 0.15.
 また、本実施形態の変倍光学系は、以下の条件式(8)を満足することが望ましい。
(8)0.10 < |fF2|/ft < 3.00
 ただし、
fF2:前記像側合焦レンズ群のうち最も像側に配置された合焦レンズ群の焦点距離
ft:望遠端状態における前記変倍光学系の焦点距離
Further, it is desirable that the variable magnification optical system of the present embodiment satisfy the following conditional expression (8).
(8) 0.10 <| fF2 | / ft <3.00
However,
fF2: focal length ft of the focusing lens group disposed closest to the image side among the image-side focusing lens groups ft: focal length of the variable magnification optical system in the telephoto end state
 条件式(8)は、像側合焦レンズ群のうち最も像側に配置された合焦レンズ群の焦点距離と、望遠端状態における変倍光学系の焦点距離との比を規定するものである。本実施形態の変倍光学系は、この条件式(8)を満足することにより、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を効果的に抑えることができる。 Conditional expression (8) defines the ratio of the focal length of the focusing lens unit disposed closest to the image side among the image-side focusing lens groups to the focal length of the variable magnification optical system in the telephoto end state. is there. By satisfying the conditional expression (8), the variable magnification optical system according to the present embodiment can effectively change the various aberrations including the spherical aberration at the time of focusing from an infinite distance object to a close distance object. It can be suppressed.
 本実施形態の変倍光学系の条件式(8)の対応値が上限値を上回ると、像側合焦レンズ群のうち最も像側に配置された合焦レンズ群の焦点距離が長くなり、無限遠物体から近距離物体への合焦の際の、最も像側に配置された合焦レンズ群の移動量が大きくなりすぎ、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を補正することが困難となる。なお、条件式(8)の上限値を2.80に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(8)の上限値を2.60にすることが好ましい。 When the corresponding value of the conditional expression (8) of the variable magnification optical system of the present embodiment exceeds the upper limit value, the focal length of the focusing lens unit disposed closest to the image among the image side focusing lens units becomes long. The amount of movement of the focusing lens unit disposed closest to the image side when focusing from an infinite distance object to a near distance object becomes too large, and spherical aberration when focusing from an infinite distance object to a near distance object It becomes difficult to correct fluctuations of various aberrations including. In addition, the effect of the present embodiment can be made more reliable by setting the upper limit value of the conditional expression (8) to 2.80. Moreover, in order to make the effect of the present embodiment more reliable, it is preferable to set the upper limit value of the conditional expression (8) to 2.60.
 一方、本実施形態の変倍光学系の条件式(8)の対応値が下限値を下回ると、像側合焦レンズ群のうち最も像側に配置された合焦レンズ群の屈折力が強くなり、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることが困難となる。なお、条件式(8)の下限値を0.12に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(8)の下限値を0.15にすることが好ましい。 On the other hand, when the corresponding value of the conditional expression (8) of the variable magnification optical system of the present embodiment falls below the lower limit value, the refractive power of the focusing lens unit disposed closest to the image among the image side focusing lens units becomes strong. As a result, it becomes difficult to suppress fluctuations of various aberrations including spherical aberration at the time of focusing from an infinite distance object to a close distance object. In addition, the effect of this embodiment can be made more reliable by setting the lower limit of conditional expression (8) to 0.12. Moreover, in order to make the effect of this embodiment more reliable, it is preferable to set the lower limit of conditional expression (8) to 0.15.
 また、本実施形態の変倍光学系は、以下の条件式(9)を満足することが望ましい。
(9)|βWF1|/|βWF2| < 4.00
 ただし、
βWF1:無限遠物体合焦時の広角端状態における前記物体側合焦レンズ群の横倍率
βWF2:無限遠物体合焦時の広角端状態における、前記像側合焦レンズ群のうち最も物体側に配置された合焦レンズ群の横倍率
Further, it is desirable that the variable magnification optical system according to the present embodiment satisfy the following conditional expression (9).
(9) | βWF1 | / | βWF2 | <4.00
However,
βWF1: lateral magnification of the object-side focusing lens unit in the wide-angle end state when focusing on an infinite object βWF2: to the most object side of the image-side focusing lens units in the wide-angle end state when focusing on an infinite object Lateral magnification of the focusing lens unit arranged
 条件式(9)は、無限遠物体合焦時の広角端状態における物体側合焦レンズ群の横倍率と、無限遠物体合焦時の広角端状態における、像側合焦レンズ群のうち最も物体側に配置された合焦レンズ群の横倍率との比を規定するものである。本実施形態の変倍光学系は、この条件式(9)を満足することにより、広角端状態における無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を効果的に抑えることができる。 Conditional expression (9) gives the most magnification among the image-side focusing lens groups in the wide-angle end state at the time of infinity object focusing and the lateral magnification of the object-side focusing lens group at the wide-angle end state at infinity object focusing. It defines the ratio to the lateral magnification of the focusing lens unit disposed on the object side. By satisfying the conditional expression (9), the variable magnification optical system according to the present embodiment causes fluctuations of various aberrations including the spherical aberration at the time of focusing from an infinite distance object to a close distance object in the wide-angle end state. Can be effectively suppressed.
 本実施形態の変倍光学系の条件式(9)の対応値が上限値を上回ると、無限遠物体合焦時の広角端状態における、像側合焦レンズ群のうち最も物体側に配置された合焦レンズ群の横倍率に対して、無限遠物体合焦時の広角端状態における物体側合焦レンズ群の横倍率が大きくなり、広角端状態における無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることが困難となる。なお、条件式(9)の上限値を3.50に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(9)の上限値を3.00にすることが好ましい。また、条件式(9)の上限値を2.50、更に2.00、更に1.50、更に1.20にすることが好ましい。 When the corresponding value of the conditional expression (9) of the variable magnification optical system of the present embodiment exceeds the upper limit value, it is disposed closest to the object side in the image side focusing lens group in the wide angle end state at the time of focusing on an infinite distance object. The lateral magnification of the object-side focusing lens group in the wide-angle end state at the time of infinity object focusing increases with respect to the lateral magnification of the focusing lens group, and focusing from an infinite distance object to a near distance object in the wide angle end state It becomes difficult to suppress fluctuations of various aberrations including spherical aberration at the time of focusing. In addition, the effect of the present embodiment can be made more reliable by setting the upper limit value of the conditional expression (9) to 3.50. Moreover, in order to make the effect of the present embodiment more reliable, it is preferable to set the upper limit value of the conditional expression (9) to 3.00. Further, it is preferable to set the upper limit value of conditional expression (9) to 2.50, further 2.00, further 1.50, and further 1.20.
 また、本実施形態の変倍光学系は、以下の条件式(10)を満足することが望ましい。
(10)|βRw|/|βRt| < 4.00
 ただし、
βRw:無限遠物体合焦時の広角端状態における前記物体側合焦レンズ群から像面までの合成横倍率
βRt:無限遠物体合焦時の望遠端状態における前記物体側合焦レンズ群から像面までの合成横倍率
Further, in the variable magnification optical system of the present embodiment, it is desirable that the following conditional expression (10) be satisfied.
(10) | βRw | / | βRt | <4.00
However,
βRw: composite lateral magnification from the object-side focusing lens unit to the image plane in the wide-angle end state at the time of infinity object focusing βRt: an image from the object-side focusing lens group in the telephoto end state at infinity object focusing Composite lateral magnification up to surface
 条件式(10)は、無限遠物体合焦時の広角端状態における物体側合焦レンズ群から像面までの合成横倍率と、無限遠物体合焦時の望遠端状態における物体側合焦レンズ群から像面までの合成横倍率との比を規定するものである。本実施形態の変倍光学系は、この条件式(10)を満足することにより、広角端状態における無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を効果的に抑えることができる。 Conditional expression (10) shows the combined lateral magnification from the object-side focusing lens unit to the image plane in the wide-angle end state at the time of infinity object focusing and the object-side focusing lens in the telephoto end state at infinity object focusing It defines the ratio to the combined lateral magnification from the group to the image plane. By satisfying the conditional expression (10), the variable magnification optical system according to the present embodiment causes fluctuations of various aberrations including the spherical aberration at the time of focusing from an infinite distance object to a close distance object in the wide-angle end state. Can be effectively suppressed.
 本実施形態の変倍光学系の条件式(10)の対応値が上限値を上回ると、無限遠物体合焦時の望遠端状態における物体側合焦レンズ群から像面までの合成横倍率に対して、無限遠物体合焦時の広角端状態における物体側合焦レンズ群から像面までの合成横倍率が大きくなり、広角端状態における無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることが困難となる。なお、条件式(10)の上限値を3.50に設定することで、本実施形態の効果をより確実なものとすることができる。また、本実施形態の効果をより確実にするために、条件式(10)の上限値を3.00にすることが好ましい。また、条件式(10)の上限値を2.60、更に2.20、更に1.90にすることが好ましい。 When the corresponding value of the conditional expression (10) of the variable magnification optical system of the present embodiment exceeds the upper limit value, in the combined lateral magnification from the object side focusing lens group to the image plane in the telephoto end state at the time of infinity object focusing On the other hand, the combined lateral magnification from the object-side focusing lens unit to the image plane in the wide-angle end state at the time of infinity object focusing becomes large, and the focusing from the infinity object to the near object in the wide-angle end state It becomes difficult to suppress fluctuations of various aberrations including spherical aberration. In addition, the effect of the present embodiment can be made more reliable by setting the upper limit value of the conditional expression (10) to 3.50. Moreover, in order to make the effect of the present embodiment more reliable, it is preferable to set the upper limit value of the conditional expression (10) to 3.00. Further, it is preferable to set the upper limit value of conditional expression (10) to 2.60, further 2.20, and further 1.90.
 また、本実施形態の変倍光学系は、以下の条件式(11)を満足することが望ましい。
(11)15.0°<ωw<85.0°
 ただし、
ωw:広角端状態における前記変倍光学系の半画角
Further, in the variable magnification optical system of the present embodiment, it is desirable that the following conditional expression (11) be satisfied.
(11) 15.0 ° <ωw <85.0 °
However,
ω w: half angle of view of the variable magnification optical system in the wide angle end state
 条件式(11)は、広角端状態における画角の最適な値を規定する条件である。本実施形態の変倍光学系は、この条件式(11)を満足することにより、広い画角を有しつつ、コマ収差、歪曲収差、像面湾曲等の諸収差を良好に補正することができる。 Conditional expression (11) defines the optimum value of the angle of view in the wide-angle end state. By satisfying the conditional expression (11), the variable magnification optical system according to the present embodiment can properly correct various aberrations such as coma aberration, distortion aberration, and field curvature while having a wide angle of view. it can.
 本実施形態の効果を確実なものとするために、条件式(11)の上限値を80.0°にすることが好ましい。また、条件式(11)の上限値を75.0°、更に70.0°、更に65.0°にすることが好ましい。
 本実施形態の効果を確実なものとするために、条件式(11)の下限値を16.0°にすることが好ましい。また、条件式(11)の下限値を17.0°、更に35.0°、更に37.0°、更に39.0°、更に40.0°、更に42.0°とすることが望ましい。
In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (11) to 80.0 °. Further, it is preferable to set the upper limit value of the conditional expression (11) to 75.0 °, more preferably 70.0 °, further preferably 65.0 °.
In order to secure the effect of the present embodiment, it is preferable to set the lower limit value of the conditional expression (11) to 16.0 °. Further, it is desirable to set the lower limit value of conditional expression (11) to 17.0 °, 35.0 °, 37.0 °, 39.0 °, 40.0 °, 42.0 °. .
 本実施形態の光学装置は、上述した構成の変倍光学系を有する。これにより、広角端状態から望遠端状態への変倍時の収差変動、ならびに無限遠物体から近距離物体への合焦時の収差変動を良好に抑えることができる光学装置を実現することができる。 The optical device of the present embodiment has the variable magnification optical system having the above-described configuration. As a result, it is possible to realize an optical device capable of favorably suppressing aberration fluctuation at the time of zooming from the wide-angle end state to the telephoto end state, and at the time of focusing from an infinite distance object to a near distance object. .
 本実施形態の変倍光学系の製造方法は、複数のレンズ群を有する変倍光学系の製造方法であって、変倍時に前記各レンズ群の間隔が変化するように構成し、前記複数のレンズ群が、合焦の際移動する物体側合焦レンズ群と、前記物体側合焦レンズ群より像側に配置され、合焦の際前記物体側合焦レンズ群とは異なる軌跡で移動する少なくとも1つの像側合焦レンズ群とを有するように構成し、以下の条件式(1)および(2)を満足するように構成する変倍光学系の製造方法である。
(1)MTF1/MTF2 < 5.0
(2)0.2 < BFw/fw < 2.0
 ただし、
MTF1:望遠端状態における無限遠物体から近距離物体への合焦の際の前記物体側合焦レンズ群の移動量の絶対値
MTF2:望遠端状態における無限遠物体から近距離物体への合焦の際の、前記像側合焦レンズ群のうち最も物体側に配置された合焦レンズ群の移動量の絶対値
BFw:広角端状態における前記変倍光学系のバックフォーカス
fw:広角端状態における前記変倍光学系の焦点距離
A method of manufacturing a variable magnification optical system according to the present embodiment is a method of manufacturing a variable magnification optical system having a plurality of lens groups, and is configured such that an interval between the lens groups changes at the time of zooming. The lens unit is disposed on the image side with respect to the object-side focusing lens unit that moves when focusing and the object-side focusing lens unit, and moves along a locus different from that of the object-side focusing lens unit when focusing. This is a manufacturing method of a variable power optical system configured to have at least one image side focusing lens group and configured to satisfy the following conditional expressions (1) and (2).
(1) MTF1 / MTF2 <5.0
(2) 0.2 <BFw / fw <2.0
However,
MTF1: absolute value of the amount of movement of the object-side focusing lens unit when focusing from an infinite distance object to a close distance object in the telephoto end state MTF2: focusing from an infinity object to a close object in the telephoto end state The absolute value BFw of the movement amount of the focusing lens unit disposed closest to the object side among the image-side focusing lens units at the time of: back focus fw of the variable magnification optical system in the wide angle end state: in the wide angle end state Focal length of the variable magnification optical system
 これにより、広角端状態から望遠端状態への変倍時の収差変動、ならびに無限遠物体から近距離物体への合焦時の収差変動を良好に抑えることができる変倍光学系を製造することができる。 Accordingly, it is possible to manufacture a variable power optical system capable of favorably suppressing aberration fluctuation at the time of zooming from the wide-angle end state to the telephoto end state, and at the time of focusing from an infinite distance object to a close distance object. Can.
 以下、本実施形態の数値実施例に係る変倍光学系を添付図面に基づいて説明する。
(第1実施例)
 図1は第1実施例に係る変倍光学系の断面図である。なお、図1および後述する図4、図7、図10、図13、図16、図19、図22、図25、図28、図31中の矢印は、広角端状態(W)から望遠端状態(T)への変倍時の各レンズ群の移動軌跡を示している。
 本実施例に係る変倍光学系は、物体側から順に、負屈折力を有する第1レンズ群G1と、正屈折力を有する第2レンズ群G2と、正屈折力を有する第3レンズ群G3と、開口絞りSと、負屈折力を有する第4レンズ群G4と、正屈折力を有する第5レンズ群G5と、正屈折力を有する第6レンズ群G6と、負屈折力を有する第7レンズ群G7とから構成されている。
Hereinafter, a variable magnification optical system according to a numerical example of the present embodiment will be described based on the attached drawings.
(First embodiment)
FIG. 1 is a cross-sectional view of the variable magnification optical system according to the first example. Arrows in FIG. 1 and FIGS. 4, 7, 10, 13, 16, 19, 22, 25, 28, and 31 described later indicate the wide-angle end state (W) to the telephoto end. The movement locus of each lens unit at the time of zooming to the state (T) is shown.
The variable magnification optical system according to the present embodiment includes, in order from the object side, a first lens group G1 having negative refractive power, a second lens group G2 having positive refractive power, and a third lens group G3 having positive refractive power. , An aperture stop S, a fourth lens group G4 having negative refracting power, a fifth lens group G5 having positive refracting power, a sixth lens group G6 having positive refracting power, and a seventh lens group having negative refracting power It is composed of a lens group G7.
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、両凹形状の負レンズL12と物体側に凸面を向けた正メニスカスレンズL13との接合負レンズとからなる。
 第2レンズ群G2は、両凸形状の正レンズL21と物体側に凹面を向けた負メニスカスレンズL22との接合正レンズからなる。
 第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合正レンズからなる。
The first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a convex surface facing the object side, and a cemented negative lens having a biconcave negative lens L12 and a positive meniscus lens L13 having a convex surface facing the object side It consists of
The second lens group G2 is composed of a positive cemented lens of a double convex positive lens L21 and a negative meniscus lens L22 having a concave surface facing the object side.
The third lens group G3 is composed of a positive cemented lens of a negative meniscus lens L31 with a convex surface facing the object side and a biconvex positive lens L32.
 第4レンズ群G4は、物体側から順に、両凹形状の負レンズL41と物体側に凸面を向けた正メニスカスレンズL42との接合負レンズと、物体側に凸面を向けた正メニスカスレンズL43とからなる。
 第5レンズ群G5は、両凸形状の正レンズL51と物体側に凹面を向けた負メニスカスレンズL52との接合正レンズからなる。
 第6レンズ群G6は、両凸形状の正レンズL61からなる。
 第7レンズ群G7は、物体側に凹面を向けた負メニスカスレンズL71からなる。
The fourth lens group G4 includes, in order from the object side, a cemented negative lens constructed of a double concave negative lens L41 and a positive meniscus lens L42 having a convex surface facing the object side, and a positive meniscus lens L43 having a convex surface facing the object side It consists of
The fifth lens group G5 is composed of a positive cemented lens of a biconvex positive lens L51 and a negative meniscus lens L52 having a concave surface facing the object side.
The sixth lens group G6 is composed of a biconvex positive lens L61.
The seventh lens group G7 is composed of a negative meniscus lens L71 with a concave surface facing the object side.
 本実施例に係る変倍光学系では、広角端状態と望遠端状態との間での変倍時に、第1レンズ群G1と第2レンズ群G2との間隔、第2レンズ群G2と第3レンズ群G3との間隔、第3レンズ群G3と第4レンズ群G4との間隔、第4レンズ群G4と第5レンズ群G5との間隔、第5レンズ群G5と第6レンズ群G6との間隔、および第6レンズ群G6と第7レンズ群G7との間隔が変化するように、第1レンズ群G1から第7レンズ群G7までの全てのレンズ群が光軸に沿って移動する。 In the variable magnification optical system according to the present embodiment, the distance between the first lens group G1 and the second lens group G2, the second lens group G2, and the third lens group G2 during zooming between the wide angle end state and the telephoto end state. The distance between the lens group G3, the distance between the third lens group G3 and the fourth lens group G4, the distance between the fourth lens group G4 and the fifth lens group G5, the distance between the fifth lens group G5 and the sixth lens group G6 All the lens units from the first lens unit G1 to the seventh lens unit G7 move along the optical axis such that the distance and the distance between the sixth lens unit G6 and the seventh lens unit G7 change.
 本実施例に係る光学系では、合焦レンズ群として、第5レンズ群G5を光軸に沿って物体側へ移動させるとともに、第6レンズ群G6を第5レンズ群G5とは異なる軌跡で光軸に沿って物体側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。 In the optical system according to the present embodiment, as the focusing lens group, the fifth lens group G5 is moved to the object side along the optical axis, and the sixth lens group G6 has a locus different from that of the fifth lens group G5. By moving to the object side along the axis, focusing from an infinite distance object to a near distance object is performed.
 以下の表1に、本実施例に係る変倍光学系の諸元の値を掲げる。
 表1において、fは焦点距離、BFはバックフォーカスすなわち最も像側のレンズ面から像面Iまでの光軸上の距離を示す。
 [面データ]において、mは物体側から数えた光学面の順番、rは曲率半径、dは面間隔(第n面(nは整数)と第n+1面との間隔)、ndはd線(波長587.6nm)に対する屈折率、νdはd線(波長587.6nm)に対するアッベ数をそれぞれ示している。また、OPは物体面、可変は可変の面間隔、Sは開口絞り、Iは像面をそれぞれ示している。なお、曲率半径r=∞は平面を示している。空気の屈折率nd=1.00000の記載は省略している。また、レンズ面が非球面である場合には面番号に*印を付して曲率半径rの欄には近軸曲率半径を示している。
Table 1 below presents values of specifications of the variable magnification optical system according to the present example.
In Table 1, f is the focal length, and BF is the back focus, that is, the distance on the optical axis from the lens surface closest to the image to the image plane I.
In [Plane data], m is the order of the optical surface counted from the object side, r is the radius of curvature, d is the surface distance (distance between the nth surface (n is an integer) and the n + 1th surface), nd is the d line The refractive index with respect to a wavelength of 587.6 nm) and d d respectively indicate Abbe numbers with respect to the d-line (wavelength of 587.6 nm). Further, OP indicates an object plane, variable indicates a variable surface interval, S indicates an aperture stop, and I indicates an image plane. The radius of curvature r = ∞ indicates a plane. The description of the refractive index nd = 1.00000 of air is omitted. When the lens surface is an aspheric surface, the surface number is marked with *, and the paraxial radius of curvature is shown in the column of radius of curvature r.
 [非球面データ]には、[面データ]に示した非球面について、その形状を次式で表した場合の非球面係数及び円錐定数を示す。
x=(h/r)/[1+{1-κ(h/r)1/2
  +A4h+A6h+A8h+A10h10
 ここで、hを光軸に垂直な方向の高さ、xを高さhにおける非球面の頂点の接平面から当該非球面までの光軸方向に沿った距離であるサグ量、κを円錐定数、A4,A6,A8,A10を非球面係数、rを基準球面の曲率半径である近軸曲率半径とする。なお、「E-n」(n:整数)は「×10-n」を示し、例えば「1.234E-05」は「1.234×10-5」を示す。2次の非球面係数A2は0であり、記載を省略している。
[Spherical surface data] shows the aspheric surface coefficient and the conical constant when the shape of the aspheric surface shown in [Surface data] is expressed by the following equation.
x = (h 2 / r) / [1+ {1-1 (h / r) 2 } 1/2 ]
+ A4h 4 + A6h 6 + A8h 8 + A10h 10
Here, h is the height in the direction perpendicular to the optical axis, x is the distance along the optical axis direction from the tangent plane of the apex of the aspheric surface at height h to the aspheric surface, κ is the conical constant , A4, A6, A8 and A10 are aspheric coefficients, and r is a paraxial radius of curvature which is a radius of curvature of the reference spherical surface. "E-n" (n: integer) indicates "x 10- n ", for example, "1.234 E-05" indicates "1.234 x 10 -5 ". The second-order aspheric coefficient A2 is 0, and the description is omitted.
 [各種データ]において、fはレンズ全系の焦点距離、FNOはFナンバー、2ωは画角(単位は「°」)、Ymaxは最大像高、TLは本実施例に係る変倍光学系の全長すなわち第1面から像面Iまでの光軸上の距離、βは物体と像間の結像倍率、d0は物体面OPから第1面までの光軸上の距離、d0=0.000は無限遠即ち無限遠物体への合焦時、d0=641.690等は近距離即ち近距離物体への合焦時、dnは第n面と第n+1面との可変の間隔をそれぞれ示す。なお、f,βは無限遠ではf、近距離ではβ、Wは広角端状態、Mは中間焦点距離状態、Tは望遠端状態をそれぞれ示す。
 [レンズ群データ]には、各レンズ群の始面番号STと焦点距離fを示す。
 [条件式対応値]には、本実施例に係る変倍光学系の各条件式の対応値を示す。
In [Various data], f is the focal length of the whole lens system, FNO is the f-number, 2ω is the angle of view (unit: “°”), Ymax is the maximum image height, TL is the variable power optical system according to this embodiment The total length, ie, the distance on the optical axis from the first surface to the image plane I, β is the imaging magnification between the object and the image, d0 is the distance on the optical axis from the object surface OP to the first surface, d0 = 0.000 is infinite When focusing on a distant or infinite distance object, d0 = 641.690, etc. indicate a variable distance between the nth surface and the (n + 1) th surface, respectively, when focusing on a short distance or near distance object. Note that f and β are f at infinity, β at short distance, W at the wide-angle end, M at the intermediate focal length, and T at the telephoto end.
In [Lens group data], the starting surface number ST of each lens group and the focal length f are shown.
In [Conditional Expression Correspondence Value], the correspondence values of the conditional expressions of the variable magnification optical system according to the present embodiment are shown.
 ここで、表1に掲載されている焦点距離f、曲率半径r及びその他の長さの単位は一般に「mm」が使われる。しかしながら光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるため、これに限られるものではない。
 なお、以上に述べた表1の符号は、後述する各実施例の表においても同様に用いるものとする。
Here, the unit of focal length f, radius of curvature r and other lengths listed in Table 1 is generally “mm”. However, the optical system is not limited to this because the same optical performance can be obtained by proportional enlargement or reduction.
In addition, the code | symbol of Table 1 described above shall be similarly used also in the table | surface of each Example mentioned later.
(表1)第1実施例
[面データ]
 m       r        d        nd       νd 
 OP     ∞ 
   1     270.0000    2.900     1.74389    49.53 
* 2      33.2562   13.215            
   3   -1900.2102    2.100     1.59349    67.00 
   4      35.8236    7.700     2.00100    29.12 
   5      79.6938    可変       
                        
   6     271.3181    7.400     1.83481    42.73 
   7     -36.9149    1.500     1.75520    27.57 
   8     164.0000    可変            
                        
   9      39.7511    1.500     1.85000    27.03 
 10      25.6246   10.800     1.59319    67.90 
 11    -134.6401    可変       
                        
 12(S)   ∞        2.350             
 13     -65.9523    1.300     1.80100    34.92 
 14      18.5797    4.700     1.90366    31.27 
 15      51.6074    0.919            
 16      45.9293    2.500     1.94595    17.98 
 17     120.0000    可変            
                        
 18      47.5350    7.100     1.48749    70.31 
 19     -24.2409    1.300     1.69895    30.13 
 20     -74.7188    可変            
                        
 21     113.0000    4.200     1.58913    61.15 
*22    -108.0000    可変       
                        
*23     -30.5616    1.500     1.58913    61.15 
 24     -81.9388    BF        
 I       ∞
 
[非球面データ]
m:2
κ  =   0.0000
A4  =   2.97162E-06
A6  =   1.62510E-09
A8  =   2.42658E-13
A10 =   4.56491E-16
A12 =   8.02650E-19
 
m:22 
κ  =   1.0000
A4  =   8.43912E-06
A6  =   6.68890E-10
A8  =   1.69267E-11
A10 =  -5.36609E-14
 
m:23 
κ  =   1.0000
A4  =   8.13845E-06
A6  =  -4.05875E-09
A8  =   1.66491E-11
A10 =  -5.84964E-14
 
[各種データ] 
変倍比      2.99
            W       M       T
f         22.7     50.0     67.9 
FNO      2.92     2.92     2.92
2ω       91.10    45.68    33.64
Ymax      19.32    21.60    21.60 
TL      188.45   157.95   163.95 
BF       11.75    20.19    25.26 
 
             W       M       T           W        M        T
f,β       22.700   50.000   67.900       -0.033    -0.033    -0.033
d0          0.000    0.000    0.000      641.690  1469.10   2002.79
d5         63.985   10.998    3.100       63.985    10.998     3.100 
d8          1.000    1.763    1.000        1.000     1.763     1.000
d11         1.900   12.973   26.707        1.900    12.973    26.707 
d17        20.431   12.752   12.052       20.013    11.839    10.654 
d20         8.701   16.480   16.780        8.112    16.125    16.831 
d22         7.699    9.815    6.069        8.705    11.084     7.415 
 
[レンズ群データ] 
群    ST         f 
1       1       -46.132 
2       6       102.733 
3       9        64.434 
4      12       -89.031
5      18        92.237
6      21        94.399
7      23       -83.639
 
[条件式対応値]
(1)   MTF1/MTF2 =1.038
(2)   BFw/fw =0.518
(3)  (-fFN)/|fF|= 0.563
(4)   nP/nN= 0.876
(5)   |fF1|/|f1| =1.999
(6)   |fF2|/|f1| =2.046
(7)   |fF1|/ft =1.358
(8)   |fF2|/ft =1.390
(9)   |βWF1|/|βWF2| =0.719
(10) |βRw|/|βRt| = 1.616
(11)  ωw = 45.55°
(Table 1) First embodiment [surface data]
m r d nd d d
OP ∞
1 270.0000 2.900 1.74389 49.53
* 2 33.2562 13.215
3 -1900.2102 2.100 1.59349 67.00
4 35.8236 7.700 2.00100 29.12
5 79.6938 Variable

6 271.3181 7.400 1.83481 42.73
7-36.9149 1.500 1.75520 27.57
8 164.0000 variable

9 39.7511 1.500 1.85000 27.03
10 25.6246 10.800 1.59319 67.90
11 -134.6401 Variable

12 (S) ∞ 2.350
13 -65.9523 1.300 1.80100 34.92
14 18.5797 4.700 1.90366 31.27
15 51.607 0.919
16 45.9293 2.500 1.94595 17.98
17 120.0000 Variable

18 47.5350 7.100 1.48749 70.31
19-24.2409 1.300 1.69895 30.13
20 -74.7188 Variable

21 113.0000 4.200 1.5891 13 61.15
* 22 -108.0000 variable

* 23-30.5616 1.500 1.58913 61.15
24-81.9388 BF
I ∞

[Aspheric surface data]
m: 2
κ = 0.0000
A4 = 2.97162E-06
A6 = 1.62510E-09
A8 = 2.42658E-13
A10 = 4.56491E-16
A12 = 8.02650E-19

m: 22
κ = 1.0000
A4 = 8.43912E-06
A6 = 6.68890E-10
A8 = 1.69267E-11
A10 = -5.36609E-14

m: 23
κ = 1.0000
A4 = 8.13845E-06
A6 = -4.05875E-09
A8 = 1.66491E-11
A10 = -5.84964E-14

[Various data]
Magnification 2.99
W M T
f 22.7 50.0 67.9
FNO 2.92 2.92 2.92
2ω 91.10 45.68 33.64
Ymax 19.32 21.60 21.60
TL 188.45 157.95 163.95
BF 11.75 20.19 25.26

W M T W M T
f, β 22.700 50.000 67.900 -0.033 -0.033 -0.033
d0 0.000 0.000 0.000 641.690 1469.10 2002.79
d5 639.985 0.9.98 3.100 63.985 10.99.3 100
d8 1.000 1.763 1.000 1.000 1.763 1.000
d11 1.900 12.973 26.707 1.900 12.973 26.707
d17 20.431 12.752 12.052 20.013 11.839 10.654
d20 8.701 16.480 16.780 8.112 16.125 16.831
d22 7.699 9.815 6.069 8.705 11.084 7.415

[Lens group data]
Group ST f
1 1 -46.132
2 6 102.733
3 9 64. 434
4 12-89.031
5 18 92.237
6 21 94.399
7 23 -83.639

[Conditional expression corresponding value]
(1) MTF1 / MTF2 = 1.038
(2) BFw / fw = 0.518
(3) (-fFN) / | fF | = 0.563
(4) nP / nN = 0.876
(5) | fF1 | / | f1 | = 1.999
(6) | fF2 | / | f1 | = 2.046
(7) | fF1 | / ft = 1.358
(8) | fF2 | /ft=1.390
(9) | βWF1 | / | βWF2 |
(10) | βRw | / | βRt | = 1.616
(11) ωw = 45.55 °
 図2A、図2B、および図2Cはそれぞれ、第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠物体合焦時の諸収差図である。
 図3A、図3B、および図3Cはそれぞれ、第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離物体合焦時の諸収差図である。
FIGS. 2A, 2B, and 2C are various aberration diagrams at the time of focusing on an infinity object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the first example, respectively.
FIGS. 3A, 3B, and 3C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the first example.
 図2、図3の各収差図において、FNOはFナンバー、NAは開口数、Yは像高をそれぞれ示す。なお、球面収差図では最大口径に対応するFナンバーまたは開口数の値を示し、非点収差図及び歪曲収差図では像高の最大値をそれぞれ示し、コマ収差図では各像高の値を示す。dはd線(λ=587.6nm)、gはg線(λ=435.8nm)をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、以下に示す各実施例の収差図においても、本実施例と同様の符号を用いる。 In each of the aberration diagrams of FIG. 2 and FIG. 3, FNO indicates an F number, NA indicates a numerical aperture, and Y indicates an image height. In the spherical aberration diagram, the f-number or numerical aperture value corresponding to the maximum aperture is shown, in the astigmatism diagram and the distortion diagram, the maximum value of the image height is shown, and in the coma aberration diagram, the value of each image height is shown. . d is d line (λ = 587.6 nm), g is g line (λ = 435.8 nm). In astigmatism diagrams, a solid line indicates a sagittal image plane, and a broken line indicates a meridional image plane. The same reference numerals as in this example are used also in the aberration diagrams of the examples below.
 各諸収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離合焦時にも優れた結像性能を有していることがわかる。 As shown in the various aberration diagrams, the variable magnification optical system according to the present embodiment has excellent imaging performance with excellent correction of various aberrations from the wide-angle end state to the telephoto end state, and also at the time of near distance focusing. It can be seen that it has excellent imaging performance.
(第2実施例)
 図4は、第2実施例に係る変倍光学系のレンズ構成を示す図である。
 本実施例に係る変倍光学系は、物体側から順に、負屈折力を有する第1レンズ群G1と、正屈折力を有する第2レンズ群G2と、開口絞りSと、負屈折力を有する第3レンズ群G3と、正屈折力を有する第4レンズ群G4と、正屈折力を有する第5レンズ群G5と、負屈折力を有する第6レンズ群G6とから構成されている。
Second Embodiment
FIG. 4 is a view showing a lens configuration of a variable magnification optical system according to a second example.
The variable magnification optical system according to the present embodiment includes, in order from the object side, a first lens group G1 having negative refractive power, a second lens group G2 having positive refractive power, an aperture stop S, and negative refractive power. The third lens group G3, the fourth lens group G4 having positive refracting power, the fifth lens group G5 having positive refracting power, and the sixth lens group G6 having negative refracting power.
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と物体側に凸面を向けた正メニスカスレンズL13との接合負レンズとからなる。
 第2レンズ群G2は、物体側から順に、両凸形状の正レンズL21と物体側に凹面を向けた負メニスカスレンズL22との接合正レンズと、物体側に凸面を向けた負メニスカスレンズL23と両凸形状の正レンズL24との接合正レンズとからなる。
The first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a convex surface on the object side, a negative meniscus lens L12 having a convex surface on the object side, and a positive meniscus lens L13 having a convex surface on the object side It consists of a cemented negative lens.
The second lens group G2 includes, in order from the object side, a double positive lens L21 cemented with a negative meniscus lens L22 having a concave surface facing the object side, and a negative meniscus lens L23 having a convex surface facing the object side And a cemented positive lens with a biconvex positive lens L24.
 第3レンズ群G3は、物体側から順に、両凹形状の負レンズL31と、両凹形状の負レンズL32と両凸形状の正レンズL33との接合正レンズとからなる。
 第4レンズ群G4は、両凸形状の正レンズL41と物体側に凹面を向けた負メニスカスレンズL42との接合正レンズからなる。
 第5レンズ群G5は、両凸形状の正レンズL51からなる。
 第6レンズ群G6は、物体側に凹面を向けた負メニスカスレンズL61からなる。
The third lens group G3 is composed of, in order from the object side, a biconcave negative lens L31, and a cemented positive lens constructed by a biconcave negative lens L32 and a biconvex positive lens L33.
The fourth lens group G4 is composed of a positive cemented lens of a biconvex positive lens L41 and a negative meniscus lens L42 having a concave surface facing the object side.
The fifth lens group G5 is composed of a biconvex positive lens L51.
The sixth lens group G6 is composed of a negative meniscus lens L61 with a concave surface facing the object side.
 本実施例に係る変倍光学系では、広角端状態と望遠端状態との間での変倍時に、第1レンズ群G1と第2レンズ群G2との間隔、第2レンズ群G2と第3レンズ群G3との間隔、第3レンズ群G3と第4レンズ群G4との間隔、第4レンズ群G4と第5レンズ群G5との間隔、および第5レンズ群G5と第6レンズ群G6との間隔が変化するように、第1レンズ群G1から第6レンズ群G6までの全てのレンズ群が光軸に沿って移動する。 In the variable magnification optical system according to the present embodiment, the distance between the first lens group G1 and the second lens group G2, the second lens group G2, and the third lens group G2 during zooming between the wide angle end state and the telephoto end state. The distance between the lens group G3, the distance between the third lens group G3 and the fourth lens group G4, the distance between the fourth lens group G4 and the fifth lens group G5, and the fifth lens group G5 and the sixth lens group G6 All the lens units from the first lens unit G1 to the sixth lens unit G6 move along the optical axis so that the interval between
 本実施例に係る光学系では、合焦レンズ群として、第4レンズ群G4を光軸に沿って物体側へ移動させるとともに、第5レンズ群G5を第4レンズ群G4とは異なる軌跡で光軸に沿って物体側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。 In the optical system according to the present embodiment, as the focusing lens group, the fourth lens group G4 is moved to the object side along the optical axis, and the fifth lens group G5 has a locus different from that of the fourth lens group G4. By moving to the object side along the axis, focusing from an infinite distance object to a near distance object is performed.
 以下の表2に、本実施例に係る変倍光学系の諸元の値を掲げる。 Table 2 below presents values of specifications of the variable magnification optical system according to the present example.
(表2)第2実施例
[面データ]
 m       r        d        nd       νd 
 OP     ∞ 
   1     217.2239    2.900     1.74389    49.53 
* 2      30.2414   13.112            
   3    1223.5572    2.100     1.59349    67.00 
   4      35.8181    6.436     2.00069    25.46 
   5      72.5839    可変       
                        
   6     128.9112    7.447     1.81600    46.59 
   7     -39.6982    1.500     1.85000    27.03 
   8    -142.9408    1.000            
   9      40.8283    1.500     1.80518    25.45 
 10      25.0719   10.948     1.60300    65.44 
 11     -92.3055    可変            
                        
 12(S)   ∞        2.486             
 13     -55.5201    1.300     1.90265    35.72 
 14     121.6217    1.190           
 15    -124.4061    1.300     1.67270    32.18 
 16      22.4038    6.400     1.80809    22.74 
 17     -97.2368    可変            
                        
 18      62.1388    6.900     1.48749    70.32 
 19     -23.2151    1.300     1.78472    25.64 
 20     -50.9732    可変            
                        
 21     186.2633    4.200     1.58913    61.15 
*22     -79.5614    可変       
                        
*23     -33.8149    1.500     1.58913    61.15 
 24    -131.2649    BF         
 I       ∞
 
[非球面データ]
m:2
κ  =   0.0000
A4  =   3.46899E-06
A6  =   3.81982E-09
A8  =  -6.40834E-12
A10 =   1.09738E-14
A12 =  -4.82160E-18
 
m:22 
κ  =   1.0000
A4  =   6.88818E-06
A6  =  -6.09818E-10
A8  =   8.44660E-12
A10 =  -2.63571E-14
 
m:23 
κ  =   1.0000
A4  =   8.06346E-06
A6  =  -8.60497E-09
A8  =   2.28581E-11
A10 =  -5.12367E-14
 
[各種データ] 
変倍比      2.99
            W       M       T
f         22.7     50.0     67.9 
FNO      2.92     2.92     2.92
2ω       91.24    45.92    33.78
Ymax   19.34    21.60    21.60 
TL      188.49   155.49   159.75 
BF       16.19    19.69    24.21 
 
             W       M       T           W        M        T
f,β       22.700   50.000   67.900       -0.033    -0.033    -0.033
d0          0.000    0.000    0.000      643.745  1470.35   2002.57
d5         63.857   10.035    2.501       63.857    10.035     2.501 
d11         2.202   10.972   22.702        2.202    10.972    22.702 
d17        19.524   10.852   10.688       19.122     9.959     9.322 
d20         8.007   19.445   19.346        7.507    19.082    19.339 
d22         5.193   10.974    6.787        6.095    12.231     8.161 
 
[レンズ群データ] 
群    ST         f 
1       1       -42.007 
2       6        36.073 
3      12       -74.292
4      18        96.221
5      21        95.186
6      23       -77.759
 
[条件式対応値]
(1)   MTF1/MTF2 =0.995
(2)   BFw/fw =0.713
(3)  (-fFN)/|fF|= 0.583
(4)   nP/nN= 0.833
(5)   |fF1|/|f1| =2.291
(6)   |fF2|/|f1| =2.266
(7)   |fF1|/ft = 1.417
(8)   |fF2|/ft = 1.402
(9)   |βWF1|/|βWF2| = 0.762
(10) |βRw|/|βRt| = 1.663
(11)  ωw = 45.62°
(Table 2) Second embodiment [surface data]
m r d nd d d
OP ∞
1 217.2239 2.900 1.74389 49.53
* 2 30.2414 13.112
3 1223.5572 2.100 1.59349 67.00
4 35.8181 6.436 2.00069 25.46
5 72.5839 Variable

6 128.9.112 7.447 1.81.600 46.59
7-39.6982 1.500 1.85000 27.03
8 -142.9408 1.000
9 40.8283 1.500 1.80518 25.45
10 25.0719 10.948 1.60300 65.44
11 -92.3055 Variable

12 (S) ∞ 2.486
13-55.5201 1.300 1.90265 35.72
14 121.6217 1.190
15 -124.4061 1.300 1.67270 32.18
16 22.4038 6.400 1.80809 22.74
17-97.2368 Variable

18 62.1388 6.900 1.48749 70.32
19-23.2151 1.300 1.78472 25.64
20-50.9732 Variable

21 186.2633 4.200 1.5891 13 61.15
* 22-79.5614 variable

* 23-33.8149 1.500 1.5891 13 61.15
24 -131.2649 BF
I ∞

[Aspheric surface data]
m: 2
κ = 0.0000
A4 = 3.46899E-06
A6 = 3.81982 E-09
A8 = -6.40834E-12
A10 = 1.09738E-14
A12 = -4.82160E-18

m: 22
κ = 1.0000
A4 = 6.88818E-06
A6 = -6.09818E-10
A8 = 8.44660E-12
A10 = -2.63571E-14

m: 23
κ = 1.0000
A4 = 8.06346E-06
A6 = -8.60497E-09
A8 = 2.28581E-11
A10 = -5.12367E-14

[Various data]
Magnification 2.99
W M T
f 22.7 50.0 67.9
FNO 2.92 2.92 2.92
2ω 91.24 45.92 33.78
Ymax 19.34 21.60 21.60
TL 188.49 155.49 159.75
BF 16.19 19.69 24.21

W M T W M T
f, β 22.700 50.000 67.900 -0.033 -0.033 -0.033
d0 0.000 0.000 0.000 643.745 147.35 2002.57
d5 63.857 10.035 2.501 63.857 10.035 2.501
d11 2.202 10.972 22.702 2.202 10.972 22.702
d17 19.524 10.852 10.688 19.122 9.959 9.322
d20 8.007 19.445 19.346 7.507 19.082 19.339
d22 5.193 10.974 6.787 6.095 12.231 8.161

[Lens group data]
Group ST f
1 1-42.007
2 6 36.073
3 12 -74.292
4 18 96.221
5 21 95.186
6 23-77.759

[Conditional expression corresponding value]
(1) MTF1 / MTF2 = 0.995
(2) BFw / fw = 0.713
(3) (-fFN) / | fF | = 0.583
(4) nP / nN = 0.833
(5) | fF1 | / | f1 | = 2.291
(6) | fF2 | / | f1 | = 2.266
(7) | fF1 | / ft = 1.417
(8) | fF2 | / ft = 1.402
(9) | βWF1 | / | βWF2 | = 0.762
(10) | βRw | / | βRt | = 1.663
(11) ωw = 45.62 °
 図5A、図5B、及び図5Cはそれぞれ、第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠物体合焦時の諸収差図である。
 図6A、図6B、及び図6Cはそれぞれ、第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離物体合焦時の諸収差図である。
FIGS. 5A, 5B, and 5C are various aberration diagrams at the time of focusing on an infinite distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the second example.
FIGS. 6A, 6B, and 6C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the second example.
 各諸収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離物体合焦時にも優れた結像性能を有していることがわかる。 As shown in the various aberration diagrams, the variable magnification optical system according to the present embodiment has excellent imaging performance with excellent correction of various aberrations from the wide-angle end state to the telephoto end state, and at the time of focusing on a short distance object. It can also be seen that they have excellent imaging performance.
(第3実施例)
 図7は、第3実施例に係る変倍光学系のレンズ構成を示す図である。
 本実施例に係る変倍光学系は、物体側から順に、負屈折力を有する第1レンズ群G1と、正屈折力を有する第2レンズ群G2と、正屈折力を有する第3レンズ群G3と、開口絞りSと、負屈折力を有する第4レンズ群G4と、正屈折力を有する第5レンズ群G5と、正屈折力を有する第6レンズ群G6と、負屈折力を有する第7レンズ群G7とから構成されている。
Third Embodiment
FIG. 7 is a diagram showing the lens configuration of the variable magnification optical system according to the third example.
The variable magnification optical system according to the present embodiment includes, in order from the object side, a first lens group G1 having negative refractive power, a second lens group G2 having positive refractive power, and a third lens group G3 having positive refractive power. , An aperture stop S, a fourth lens group G4 having negative refracting power, a fifth lens group G5 having positive refracting power, a sixth lens group G6 having positive refracting power, and a seventh lens group having negative refracting power It is composed of a lens group G7.
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と物体側に凸面を向けた正メニスカスレンズL13との接合負レンズとからなる。
 第2レンズ群G2は、両凸形状の正レンズL21と物体側に凹面を向けた負メニスカスレンズL22との接合正レンズからなる。
 第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合正レンズからなる。
The first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a convex surface on the object side, a negative meniscus lens L12 having a convex surface on the object side, and a positive meniscus lens L13 having a convex surface on the object side It consists of a cemented negative lens.
The second lens group G2 is composed of a positive cemented lens of a double convex positive lens L21 and a negative meniscus lens L22 having a concave surface facing the object side.
The third lens group G3 is composed of a positive cemented lens of a negative meniscus lens L31 with a convex surface facing the object side and a biconvex positive lens L32.
 第4レンズ群G4は、両凹形状の負レンズL41と物体側に凸面を向けた正メニスカスレンズL42との接合負レンズからなる。
 第5レンズ群G5は、両凸形状の正レンズL51と物体側に凹面を向けた負メニスカスレンズL52との接合正レンズからなる。
 第6レンズ群G6は、両凸形状の正レンズL61からなる。
 第7レンズ群G7は、物体側に凹面を向けた負メニスカスレンズL71からなる。
The fourth lens group G4 is composed of a cemented negative lens constructed by a double concave negative lens L41 and a positive meniscus lens L42 having a convex surface directed to the object side.
The fifth lens group G5 is composed of a positive cemented lens of a biconvex positive lens L51 and a negative meniscus lens L52 having a concave surface facing the object side.
The sixth lens group G6 is composed of a biconvex positive lens L61.
The seventh lens group G7 is composed of a negative meniscus lens L71 with a concave surface facing the object side.
 本実施例に係る変倍光学系では、広角端状態と望遠端状態との間での変倍時に、第1レンズ群G1と第2レンズ群G2との間隔、第2レンズ群G2と第3レンズ群G3との間隔、第3レンズ群G3と第4レンズ群G4との間隔、第4レンズ群G4と第5レンズ群G5との間隔、第5レンズ群G5と第6レンズ群G6との間隔、および第6レンズ群G6と第7レンズ群G7との間隔が変化するように、第1レンズ群G1から第7レンズ群G7までの全てのレンズ群が光軸に沿って移動する。 In the variable magnification optical system according to the present embodiment, the distance between the first lens group G1 and the second lens group G2, the second lens group G2, and the third lens group G2 during zooming between the wide angle end state and the telephoto end state. The distance between the lens group G3, the distance between the third lens group G3 and the fourth lens group G4, the distance between the fourth lens group G4 and the fifth lens group G5, the distance between the fifth lens group G5 and the sixth lens group G6 All the lens units from the first lens unit G1 to the seventh lens unit G7 move along the optical axis such that the distance and the distance between the sixth lens unit G6 and the seventh lens unit G7 change.
 本実施例に係る光学系では、合焦レンズ群として、第5レンズ群G5を光軸に沿って物体側へ移動させるとともに、第6レンズ群G6を第5レンズ群G5とは異なる軌跡で光軸に沿って物体側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。 In the optical system according to the present embodiment, as the focusing lens group, the fifth lens group G5 is moved to the object side along the optical axis, and the sixth lens group G6 has a locus different from that of the fifth lens group G5. By moving to the object side along the axis, focusing from an infinite distance object to a near distance object is performed.
 以下の表3に、本実施例に係る変倍光学系の諸元の値を掲げる。 Table 3 below presents values of specifications of the variable magnification optical system according to the present example.
(表3)第3実施例
[面データ]
 m       r        d        nd       νd 
 OP     ∞ 
   1     259.2015    2.900     1.74389    49.53 
* 2      30.9799   13.410            
   3    1201.6909    2.100     1.59349    66.99 
   4      36.4155    6.936     2.00100    29.14 
   5      81.5436    可変       
                        
   6     124.3745    6.555     1.80400    46.60 
   7     -55.7538    1.500     1.72825    28.38 
   8    -633.0468    可変       
                        
   9      44.9659    1.500     1.85000    27.03 
 10      27.3358   10.990     1.59319    67.90 
 11     -89.5168    可変            
                        
 12(S)   ∞        2.562             
 13     -58.2664    1.300     1.68893    31.16 
 14      20.8969    4.742     1.80809    22.74 
 15     201.5296    可変            
                        
 16      52.2605    6.900     1.48749    70.31 
 17     -26.1209    1.300     1.69895    30.13 
 18     -72.7540    可変            
                        
 19     130.0000    4.200     1.58913    61.15 
*20    -100.4826    可変       
                        
*21     -44.3630    1.500     1.58913    61.15 
 22    -412.9422    BF         
 I       ∞
 
[非球面データ]
m:2
κ  =   0.0000
A4  =   3.40299E-06
A6  =   1.78453E-09
A8  =  -2.01869E-13
A10 =   1.07948E-15
A12 =   2.74510E-19
 
m:20 
κ  =   1.0000
A4  =   8.80591E-06
A6  =  -1.07404E-09
A8  =   1.74456E-11
A10 =  -2.66494E-14
 
m:21 
κ  =   1.0000
A4  =   6.66893E-06
A6  =  -5.20154E-09
A8  =   5.00802E-12
A10 =  -7.75803E-15
 
[各種データ] 
変倍比      2.99
            W        M       T 
f         22.7     50.0     67.9 
FNO      2.92     2.92     2.92
2ω       91.30    45.88    33.64
Ymax   19.36    21.60    21.60 
TL      188.49   156.49   165.34 
BF       14.19    20.41    24.73 
 
             W       M       T           W        M        T
f,β       22.700   50.000   67.900       -0.033    -0.033    -0.033
d0          0.000    0.000    0.000      643.522  1473.82   2010.17
d5         64.909   10.197    2.263       64.909    10.197     2.263 
d8          1.000    1.000    1.000        1.000     1.000     1.000
d11         2.200   12.573   28.831        2.200    12.573    28.831 
d15        22.896   13.304   11.893       22.388    12.281    10.318 
d18         8.047   19.430   19.884        7.707    19.294    20.259 
d20         6.853   11.181    8.344        7.701    12.340     9.543 
 
[レンズ群データ] 
群    ST         f 
1       1       -45.334 
2       6       112.275 
3       9        63.547 
4      12       -98.234
5      16        92.914
6      19        96.856
7      21       -84.494
 
[条件式対応値]
(1)   MTF1/MTF2 =1.313
(2)   BFw/fw =0.625
(3)  (-fFN)/|fF|= 0.635
(4)   nP/nN= 0.876
(5)   |fF1|/|f1| =2.050
(6)   |fF2|/|f1| =2.137
(7)   |fF1|/ft = 1.368
(8)   |fF2|/ft = 1.426
(9)   |βWF1|/|βWF2| = 0.723
(10) |βRw|/|βRt| = 2.084
(11)  ωw = 45.65°
(Table 3) Third Example [Plane Data]
m r d nd d d
OP ∞
1 259.2015 2.900 1.74389 49.53
* 2 30.9799 13.410
Three 1201.6909 2.100 1.59349 66.99
4 36.4155 6.936 2.00100 29.14
5 81.5436 Variable

6 124.3745 6.555 1.80400 46.60
7 -55.7538 1.500 1.72825 28.38
8-633.0468 Variable

9 44.9659 1.500 1.85000 27.03
10 27.3358 10.990 1.59319 67.90
11-89.5168 Variable

12 (S) ∞ 2.562
13-58. 2664 1. 300 1. 68893 31. 16
14 20.8969 4.742 1.80809 22.74
15 201.5296 Variable

16 52.2605 6.900 1.48749 70.31
17-26.1209 1.300 1.69895 30.13
18 -72.7540 variable

19 130.0000 4.200 1.5891 13 61.15
* 20-100.4826 Variable

* 21-44.3630 1.500 1.5891 3 61.15
22-412.9422 BF
I ∞

[Aspheric surface data]
m: 2
κ = 0.0000
A4 = 3.40299E-06
A6 = 1.78453 E-09
A8 = -2.01869E-13
A10 = 1.07948E-15
A12 = 2.74510E-19

m: 20
κ = 1.0000
A4 = 8.80591E-06
A6 = -1.07404E-09
A8 = 1.74456E-11
A10 = -2.66494E-14

m: 21
κ = 1.0000
A4 = 6.66893E-06
A6 = -5.20154E-09
A8 = 5.00802E-12
A10 = -7.75803E-15

[Various data]
Magnification 2.99
W M T
f 22.7 50.0 67.9
FNO 2.92 2.92 2.92
2ω 91.30 45.88 33.64
Ymax 19.36 21.60 21.60
TL 188.49 156.49 165.34
BF 14.19 20.41 24.73

W M T W M T
f, β 22.700 50.000 67.900 -0.033 -0.033 -0.033
d0 0.000 0.000 0.000 643.522 1473.82 2010.17
d5 64.909 10.197 2.263 64.909 10.197 2.263
d8 1.000 1.000 1.000 1.000 1.000
d11 2.200 12.573 28.831 2.200 12.573 28.831
d15 22.896 13.304 11.893 22.388 12.281 10.318
d18 8.047 19.430 19.884 7.707 19.294 20.25
d20 6.853 11.181 8.344 7.701 12.340 9.543

[Lens group data]
Group ST f
1 1 -45.334
2 6 112.275
3 9 63.547
4 12 -98.234
5 16 92.914
6 19 96.856
7 21 -84.494

[Conditional expression corresponding value]
(1) MTF1 / MTF2 = 1.313
(2) BFw / fw = 0.625
(3) (-fFN) / | fF | = 0.635
(4) nP / nN = 0.876
(5) | fF1 | / | f1 | = 2.050
(6) | fF2 | / | f1 | = 2.137
(7) | fF1 | / ft = 1.368
(8) | fF2 | / ft = 1.426
(9) | βWF1 | / | βWF2 | = 0.723
(10) | βRw | / | βRt | = 2.084
(11) ωw = 45.65 °
 図8A、図8B、及び図8Cはそれぞれ、第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠物体合焦時の諸収差図である。
 図9A、図9B、及び図9Cはそれぞれ、第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離物体合焦時の諸収差図である。
FIGS. 8A, 8B, and 8C are various aberration diagrams at the time of focusing on an infinity object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third example.
FIGS. 9A, 9B, and 9C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third example.
 各諸収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離物体合焦時にも優れた結像性能を有していることがわかる。 As shown in the various aberration diagrams, the variable magnification optical system according to the present embodiment has excellent imaging performance with excellent correction of various aberrations from the wide-angle end state to the telephoto end state, and at the time of focusing on a short distance object. It can also be seen that they have excellent imaging performance.
(第4実施例)
 図10は、第4実施例に係る変倍光学系のレンズ構成を示す図である。
 本実施例に係る変倍光学系は、物体側から順に、正屈折力を有する第1レンズ群G1と、負屈折力を有する第2レンズ群G2と、開口絞りSと、正屈折力を有する第3レンズ群G3と、正屈折力を有する第4レンズ群G4と、正屈折力を有する第5レンズ群G5と、負屈折力を有する第6レンズ群G6とから構成されている。
Fourth Embodiment
FIG. 10 is a diagram showing the lens configuration of the variable magnification optical system according to the fourth example.
The variable magnification optical system according to the present embodiment has, in order from the object side, a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, an aperture stop S, and positive refractive power. The third lens group G3, the fourth lens group G4 having positive refracting power, the fifth lens group G5 having positive refracting power, and the sixth lens group G6 having negative refracting power.
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合負レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
 第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、両凹形状の負レンズL24と両凸形状の正レンズL25との接合負レンズとからなる。
The first lens group G1 includes, in order from the object side, a negative meniscus lens L11 with a convex surface facing the object side and a negative cemented lens of a positive meniscus lens L12 with a convex surface facing the object side, and a positive lens It consists of a meniscus lens L13.
The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object, a biconcave negative lens L22, a biconvex positive lens L23, and a biconcave negative lens L24. And a cemented negative lens of a biconvex positive lens L25.
 第3レンズ群G3は、物体側から順に、両凸形状の正レンズL31と、物体側に凹面を向けた負メニスカスレンズL32と、両凸形状の正レンズL33と、両凹形状の負レンズL34とからなる。
 第4レンズ群G4は、両凸形状の正レンズL41と物体側に凹面を向けた負メニスカスレンズL42との接合正レンズからなる。
 第5レンズ群G5は、両凸形状の正レンズL51からなる。
 第6レンズ群G6は、物体側から順に、両凹形状の負レンズL61と、物体側に凸面を向けた正メニスカスレンズL62とからなる。
The third lens group G3 includes, in order from the object side, a biconvex positive lens L31, a negative meniscus lens L32 with a concave surface facing the object side, a biconvex positive lens L33, and a biconcave negative lens L34. It consists of
The fourth lens group G4 is composed of a positive cemented lens of a biconvex positive lens L41 and a negative meniscus lens L42 having a concave surface facing the object side.
The fifth lens group G5 is composed of a biconvex positive lens L51.
The sixth lens group G6 is composed of, in order from the object side, a biconcave negative lens L61, and a positive meniscus lens L62 having a convex surface facing the object side.
 本実施例に係る変倍光学系では、広角端状態と望遠端状態との間での変倍時に、第1レンズ群G1と第2レンズ群G2との間隔、第2レンズ群G2と第3レンズ群G3との間隔、第3レンズ群G3と第4レンズ群G4との間隔、第4レンズ群G4と第5レンズ群G5との間隔、および第5レンズ群G5と第6レンズ群G6との間隔が変化するように、第1レンズ群G1から第6レンズ群G6までの全てのレンズ群が光軸に沿って移動する。 In the variable magnification optical system according to the present embodiment, the distance between the first lens group G1 and the second lens group G2, the second lens group G2, and the third lens group G2 during zooming between the wide angle end state and the telephoto end state. The distance between the lens group G3, the distance between the third lens group G3 and the fourth lens group G4, the distance between the fourth lens group G4 and the fifth lens group G5, and the fifth lens group G5 and the sixth lens group G6 All the lens units from the first lens unit G1 to the sixth lens unit G6 move along the optical axis so that the interval between
 本実施例に係る光学系では、合焦レンズ群として、第4レンズ群G4を光軸に沿って像側へ移動させるとともに、第5レンズ群G5を光軸に沿って物体側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。 In the optical system according to the present embodiment, as the focusing lens group, the fourth lens group G4 is moved to the image side along the optical axis, and the fifth lens group G5 is moved to the object side along the optical axis. By this, focusing from an infinite distance object to a near distance object is performed.
 以下の表4に、本実施例に係る変倍光学系の諸元の値を掲げる。 Table 4 below presents values of specifications of the variable magnification optical system according to the present example.
(表4)第4実施例
[面データ]
 m       r        d        nd       νd 
 OP     ∞ 
   1    1059.3029    1.000     1.84666    23.80 
   2      88.2318    6.929     1.90265    35.72 
   3     403.3118    0.200           
   4      87.3429    6.677     1.81600    46.59 
   5     899.1448    可変            
                        
* 6     145.1405    1.000     1.81600    46.59 
   7      21.3498    7.013            
   8     -93.6905    1.000     1.77250    49.62 
   9      52.8889    0.200            
 10      40.8152    5.067     1.80518    25.45 
 11     -74.9610    1.472           
 12     -36.2791    1.000     1.80400    46.60 
 13     404.7262    2.056     2.00069    25.46 
 14    -319.9567    可変       
                        
 15(S)   ∞        0.200             
 16      88.2548    3.685     1.80400    46.60 
 17     -54.7142    1.284           
 18     -30.7175    1.000     1.68893    31.16 
 19     -74.0526    0.200           
 20      56.5407    4.903     1.71999    50.27 
 21     -44.3610    4.918           
 22     -36.9664    1.000     1.72342    38.03 
 23      80.5817    可変       
                        
 24     573.8232    6.525     1.59349    67.00 
 25     -22.0116    1.000     1.71736    29.57 
 26     -42.4849    可変            
                        
 27      50.5370    6.205     1.55332    71.68 
*28    -153.3313    可変       
                        
*29     -95.1749    3.228     1.59551    39.21 
 30      84.3183    7.544            
 31      40.5660    7.785     1.59551    39.21 
 32     180.7170    BF        
 I       ∞
 
[非球面データ]
m:6
κ  =   1.0000
A4  =   1.07708E-06
A6  =  -2.41884E-09
A8  =   5.80958E-12
A10 =  -5.58700E-15
 
m:28
κ  =   1.0000
A4  =   2.10709E-06
A6  =   4.40633E-09
A8  =  -1.52762E-11
A10 =   2.31569E-14
 
m:29
κ  =   1.0000
A4  =  -6.15448E-06
A6  =   7.32819E-09
A8  =  -2.45254E-11
A10 =   3.72863E-14
 
[各種データ] 
変倍比      2.99
            W        M       T 
f         22.7     50.3     67.9 
FNO      2.92     2.92     2.92
2ω       91.78    46.78    34.60
Ymax   19.23    21.60    21.60 
TL      155.45   174.13   187.93 
BF       13.25    21.65    20.92 
 
             W       M       T           W        M        T
f,β       22.700   50.288   67.900       -0.033    -0.033    -0.033
d0          0.000    0.000    0.000      638.473  1426.83   1927.07
d5          2.000   25.012   34.560        2.000    25.012    34.560 
d14        29.544    7.040    2.000       29.544     7.040     2.000
d23         6.941    4.850    4.000        8.321     5.940     5.254 
d26        12.867   12.278   14.712       10.219     9.978    12.178 
d28         7.757   20.212   28.652        9.025    21.422    29.932
 
[レンズ群データ] 
群    ST         f 
1       1       131.146 
2       6       -21.329 
3      15        56.760 
4      24        81.373
5      27        69.446
6      29     -1467.881
 
[条件式対応値]
(1)   MTF1/MTF2 =0.980
(2)   BFw/fw =0.584
(3)  (-fFN)/|fF|= 0.936
(4)   nP/nN= 0.928
(5)   |fF1|/|f1| =0.620
(6)   |fF2|/|f1| =0.530
(7)   |fF1|/ft = 1.198
(8)   |fF2|/ft = 1.023
(9)   |βWF1|/|βWF2| = 0.014
(10) |βRw|/|βRt| = 0.005
(11)  ωw = 45.89°
(Table 4) Fourth embodiment [surface data]
m r d nd d d
OP ∞
1 1059.302 1.000 1.84666 23.80
2 88.2318 6.929 1.90265 35.72
3 403.3118 0.200
4 87.3429 6.677 1.81600 46.59
5 899.1448 Variable

* 6 145.1405 1.000 1.81600 46.59
7 21.3498 7.013
8 -93.6005 1.000 1.77250 49.62
9 52.8889 0.200
10 40.8152 5.067 1.80518 25.45
11 -74.9610 1.472
12 -36.2791 1.000 1.80400 46.60
13 404.7262 2.056 2.00069 25.46
14-319.9567 Variable

15 (S) 0.2 0.200
16 88.2548 3.685 1.80400 46.60
17-54.7142 1.284
18 -30.7175 1.000 1.68893 31.16
19-74.0526 0.200
20 56.5407 4.903 1.71999 50.27
21-44. 3610 4. 918
22-36.9664 1.000 1.72342 38.03
23 80.5817 Variable

24 573.8232 6.525 1.59349 67.00
25 -22.0116 1.000 1.71736 29.57
26 -42.4849 Variable

27 50.5370 6.205 1.55332 71.68
* 28-153.3313 Variable

* 29-95.1749 3.228 1.59551 39.21
30 84.3183 7.544
31 40.5660 7.785 1.59551 39.21
32 180.7170 BF
I ∞

[Aspheric surface data]
m: 6
κ = 1.0000
A4 = 1.07708E-06
A6 = -2.41884E-09
A8 = 5.80958E-12
A10 = -5.58700E-15

m: 28
κ = 1.0000
A4 = 2.10709E-06
A6 = 4.40633E-09
A8 = -1.52762E-11
A10 = 2.31569E-14

m: 29
κ = 1.0000
A4 = -6.15448E-06
A6 = 7.32819E-09
A8 = -2.45254E-11
A10 = 3.72863E-14

[Various data]
Magnification 2.99
W M T
f 22.7 50.3 67.9
FNO 2.92 2.92 2.92
2ω 91.78 46.78 34.60
Ymax 19.23 21.60 21.60
TL 155.45 174.13 187.93
BF 13.25 21.65 20.92

W M T W M T
f, β 22.700 50.288 67.900 -0.033 -0.033 -0.033
d0 0.000 0.000 0.000 638.473 1426.83 1927.07
d5 2.000 25.012 34.560 2.000 25.012 34.560
d14 29.544 7.040 2.000 29.544 7.040 2.000
d23 6.941 4.850 4.000 8.321 5.940 5.254
d26 12.2.867 12.278 14.712 10.219 9.972.178
d28 7.757 20.212 28.652 9.025 21.422 29.932

[Lens group data]
Group ST f
1 1 131.146
2 6-21.329
3 15 56.760
4 24 81. 373
5 27 69.446
6 29 -1467.881

[Conditional expression corresponding value]
(1) MTF1 / MTF2 = 0.980
(2) BFw / fw = 0.584
(3) (-fFN) / | fF | = 0.936
(4) nP / nN = 0.928
(5) | fF1 | / | f1 |
(6) | fF2 | / | f1 |
(7) | fF1 | / ft = 1.198
(8) | fF2 | / ft = 1.023
(9) | βWF1 | / | βWF2 | = 0.014
(10) | βRw | / | βRt | = 0.005
(11) ωw = 45.89 °
 図11A、図11B、及び図11Cはそれぞれ、第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠物体合焦時の諸収差図である。
 図12A、図12B、及び図12Cはそれぞれ、第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離物体合焦時の諸収差図である。
11A, 11B, and 11C are various aberration diagrams at the time of focusing on an infinite distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fourth example.
12A, 12B, and 12C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fourth example.
 各諸収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離物体合焦時にも優れた結像性能を有していることがわかる。 As shown in the various aberration diagrams, the variable magnification optical system according to the present embodiment has excellent imaging performance with excellent correction of various aberrations from the wide-angle end state to the telephoto end state, and at the time of focusing on a short distance object. It can also be seen that they have excellent imaging performance.
(第5実施例)
 図13は、第5実施例に係る変倍光学系のレンズ構成を示す図である。
 本実施例に係る変倍光学系は、物体側から順に、正屈折力を有する第1レンズ群G1と、負屈折力を有する第2レンズ群G2と、開口絞りSと、正屈折力を有する第3レンズ群G3と、負屈折力を有する第4レンズ群G4と、正屈折力を有する第5レンズ群G5と、負屈折力を有する第6レンズ群G6とから構成されている。
Fifth Embodiment
FIG. 13 is a diagram showing the lens configuration of the variable magnification optical system according to the fifth example.
The variable magnification optical system according to the present embodiment has, in order from the object side, a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, an aperture stop S, and positive refractive power. The third lens group G3, the fourth lens group G4 having negative refractive power, the fifth lens group G5 having positive refractive power, and the sixth lens group G6 having negative refractive power.
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合正レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
 第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、物体側に凹面を向けた負メニスカスレンズL22と、物体側に凹面を向けた正メニスカスレンズL23と、物体側に凹面を向けた負メニスカスレンズL24とからなる。
The first lens group G1 includes, in order from the object side, a positive cemented lens of a negative meniscus lens L11 with a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 with a convex surface facing the object side It consists of
The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface on the object side, a negative meniscus lens L22 having a concave surface on the object side, and a positive meniscus lens L23 having a concave surface on the object side The negative meniscus lens L24 has a concave surface facing the object side.
 第3レンズ群G3は、物体側から順に、物体側に凸面を向けた正レメニスカスレンズL31と、両凸形状の正レンズL32と、両凸形状の正レンズL33と物体側に凹面を向けた負メニスカスレンズL34との接合正レンズとからなる。
 第4レンズ群G4は、物体側から順に、両凹形状の負レンズL41と、両凸形状の正レンズL42とからなる。
 第5レンズ群G5は、両凸形状の正レンズL51からなる。
 第6レンズ群G6は、物体側から順に、両凹形状の負レンズL61と、物体側に凸面を向けた正メニスカスレンズL62とからなる。
The third lens group G3 has a concave surface facing the object side, a positive meniscus lens L31 having a convex surface facing the object side, a biconvex positive lens L32, a biconvex positive lens L33, and a convex lens facing the object side in this order from the object side And a cemented positive lens with the negative meniscus lens L34.
The fourth lens group G4 is composed of, in order from the object side, a biconcave negative lens L41 and a biconvex positive lens L42.
The fifth lens group G5 is composed of a biconvex positive lens L51.
The sixth lens group G6 is composed of, in order from the object side, a biconcave negative lens L61, and a positive meniscus lens L62 having a convex surface facing the object side.
 本実施例に係る変倍光学系では、広角端状態と望遠端状態との間での変倍時に、第1レンズ群G1と第2レンズ群G2との間隔、第2レンズ群G2と第3レンズ群G3との間隔、第3レンズ群G3と第4レンズ群G4との間隔、第4レンズ群G4と第5レンズ群G5との間隔、および第5レンズ群G5と第6レンズ群G6との間隔が変化するように、第1レンズ群G1から第6レンズ群G6までの全てのレンズ群が光軸に沿って移動する。 In the variable magnification optical system according to the present embodiment, the distance between the first lens group G1 and the second lens group G2, the second lens group G2, and the third lens group G2 during zooming between the wide angle end state and the telephoto end state. The distance between the lens group G3, the distance between the third lens group G3 and the fourth lens group G4, the distance between the fourth lens group G4 and the fifth lens group G5, and the fifth lens group G5 and the sixth lens group G6 All the lens units from the first lens unit G1 to the sixth lens unit G6 move along the optical axis so that the interval between
 本実施例に係る光学系では、合焦レンズ群として、第4レンズ群G4を光軸に沿って物体側へ移動させるとともに、第5レンズ群G5を第4レンズ群G4とは異なる軌跡で光軸に沿って物体側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。 In the optical system according to the present embodiment, as the focusing lens group, the fourth lens group G4 is moved to the object side along the optical axis, and the fifth lens group G5 has a locus different from that of the fourth lens group G4. By moving to the object side along the axis, focusing from an infinite distance object to a near distance object is performed.
 以下の表5に、本実施例に係る変倍光学系の諸元の値を掲げる。 Table 5 below presents values of specifications of the variable magnification optical system according to the present example.
(表5)第5実施例
[面データ]
 m       r        d        nd       νd 
 OP     ∞ 
   1    3049.4158    2.000     1.84666    23.80 
   2     109.9340    7.861     1.81600    46.59 
   3   -1409.8119    0.200          
   4     101.3915    6.059     1.81600    46.59 
   5     503.4410    可変            
                        
* 6     239.3378    1.300     1.81600    46.59 
   7      22.0458    9.224            
   8     -40.1436    1.300     1.77250    49.62 
   9    -121.4951    0.200            
 10    -196.1454    4.421     1.95000    29.37 
 11     -34.6549    1.015           
 12     -29.7495    1.300     1.59349    67.00 
 13    -185.4662    可変       
                        
 14(S)   ∞        0.200             
 15      47.0680    3.025     1.88300    40.66 
 16     271.9137   10.130           
 17     176.7677    2.592     1.59319    67.90 
 18    -179.0400    0.200            
 19      86.4232    5.895     1.59319    67.90 
 20     -27.4209    1.000     1.95000    29.37 
 21     -41.6214    可変       
                        
 22     -33.9616    1.000     1.72825    28.38 
 23     151.3178    0.200           
 24      84.0645    3.506     1.71999    50.27 
 25    -174.4171    可変       
                        
 26     140.7071    4.753     1.54814    45.78 
*27     -72.5378    可変       
                        
*28     -60.3860    1.300     1.74950    35.25 
 29     326.8097    1.986           
 30      45.0000    7.770     1.64000    60.19 
 31     459.8861    BF        
 I       ∞
 
[非球面データ]
m:6
κ  =   1.0000
A4  =   8.90328E-07
A6  =  -2.96841E-09
A8  =   5.16084E-12
A10 =  -3.05458E-15
 
m:27
κ  =   1.0000
A4  =   2.61448E-06
A6  =   8.65353E-09
A8  =  -3.00982E-11
A10 =   4.50822E-14
 
m:28
κ  =   1.0000
A4  =  -6.11667E-06
A6  =   9.18242E-09
A8  =  -3.76607E-11
A10 =   4.75789E-14
 
[各種データ] 
変倍比      2.99
            W        M       T 
f         22.7     49.7     67.9 
FNO      2.92     2.92     2.92
2ω       91.48    45.84    32.90
Ymax   19.18    21.60    21.60 
TL      157.45   170.49   182.85 
BF       14.08    21.92    17.11 
 
             W       M       T           W        M        T
f,β       22.701   49.700   67.907       -0.033    -0.033    -0.033
d0          0.000    0.000    0.000      640.708  1420.26   1939.82
d5          2.000   24.596   37.406        2.000    24.596    37.406 
d13        35.154    8.040    2.000       35.154     8.040     2.000
d21         4.461    8.442   11.773        4.175     8.108    11.453 
d25        20.335   18.256   18.682       18.556    15.932    15.718 
d27         2.986   10.795   17.440        5.050    13.453    20.723
 
[レンズ群データ] 
群    ST         f 
1       1       141.872 
2       6       -24.424 
3      14        30.546 
4      22       -75.468
5      26        88.014
6      28      -713.321
 
[条件式対応値]
(1)   MTF1/MTF2 =0.098
(2)   BFw/fw =0.620
(3)  (-fFN)/|fF|= 0.504
(4)   nP/nN= 0.995
(5)   |fF1|/|f1| =0.532
(6)   |fF2|/|f1| =0.620
(7)   |fF1|/ft = 1.111
(8)   |fF2|/ft = 1.296
(9)   |βWF1|/|βWF2| = 2.449
(10) |βRw|/|βRt| = 1.034
(11)  ωw = 45.74°
(Table 5) Fifth embodiment [surface data]
m r d nd d d
OP ∞
1 3049.4158 2.000 1.84666 23.80
2 109.9340 7.861 1.81600 46.59
3-1409.8119 0.200
4 101.3915 6.059 1.81600 46.59
5 503.4410 Variable

* 6 239.3378 1.300 1.81600 46.59
7 22.0458 9.224
8 -40.1436 1.300 1.77250 49.62
9-121. 495 0.200
10 -196.1454 4.421 1.95000 29.37
11-34.6549 1.015
12-29.7495 1.300 1.59349 67.00
13-185.4662 Variable

14 (S) 0.2 0.200
15 47.0680 3.025 1.88300 40.66
16 271.9137 10.130
17 176.7677 2.592 1.59319 67.90
18 -179.0400 0.200
19 86.4232 5.895 1.59319 67.90
20-27.4209 1.000 1.95000 29.37
21-41.6214 Variable

22-33.9616 1.000 1.72825 28.38
23 151.3178 0.200
24 84.0645 3.506 1.71999 50.27
25 -174.4171 Variable

26 140.7071 4.753 1.54814 45.78
* 27-72.5378 variable

* 28 -60.3860 1.300 1.74950 35.25
29 326.8097 1.986
30 45.0000 7.770 1.64000 60.19
31 459.8861 BF
I ∞

[Aspheric surface data]
m: 6
κ = 1.0000
A4 = 8.90328E-07
A6 = -2.96841E-09
A8 = 5.16084 E-12
A10 = -3.05458E-15

m: 27
κ = 1.0000
A4 = 2.61448E-06
A6 = 8.65353 E-09
A8 = -3.00982E-11
A10 = 4.50822E-14

m: 28
κ = 1.0000
A4 = -6.11667E-06
A6 = 9.18242 E-09
A8 = -3.76607E-11
A10 = 4.75789E-14

[Various data]
Magnification 2.99
W M T
f 22.7 49.7 67.9
FNO 2.92 2.92 2.92
2ω 91.48 45.84 32.90
Ymax 19.18 21.60 21.60
TL 157.45 170.49 182.85
BF 14.08 21.92 17.11

W M T W M T
f, β 22. 701 49. 700 67. 907-0.033-0.033-0.033
d0 0.000 0.000 0.000 640.708 1420.26 1939.82
d5 2.000 24.596 37.406 2.000 24.596 37.406
d13 35.154 8.040 2.000 35.154 8.040 2.000
d21 4.461 8.442 11.773 4.175 8.108 11.453
d25 20.335 18.256 18.682 18.556 15.932 15.718
d27 2.986 10.795 17.440 5.050 13.453 20.723

[Lens group data]
Group ST f
1 1 141.872
2 6-24.424
3 14 30.546
4 22 -75.468
5 26 88.014
6 28-713.321

[Conditional expression corresponding value]
(1) MTF1 / MTF2 = 0.098
(2) BFw / fw = 0.620
(3) (-fFN) / | fF | = 0.504
(4) nP / nN = 0.995
(5) | fF1 | / | f1 | = 0.532
(6) | fF2 | / | f1 |
(7) | fF1 | / ft = 1.111
(8) | fF2 | / ft = 1.296
(9) | βWF1 | / | βWF2 | = 2.449
(10) | βRw | / | βRt | = 1.034
(11) ωw = 45.74 °
 図14A、図14B、及び図14Cはそれぞれ、第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠物体合焦時の諸収差図である。
 図15A、図15B、及び図15Cはそれぞれ、第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離物体合焦時の諸収差図である。
FIG. 14A, FIG. 14B, and FIG. 14C are various aberration diagrams at the time of infinity object focusing in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fifth example.
FIG. 15A, FIG. 15B, and FIG. 15C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fifth example.
 各諸収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離物体合焦時にも優れた結像性能を有していることがわかる。 As shown in the various aberration diagrams, the variable magnification optical system according to the present embodiment has excellent imaging performance with excellent correction of various aberrations from the wide-angle end state to the telephoto end state, and at the time of focusing on a short distance object. It can also be seen that they have excellent imaging performance.
(第6実施例)
 図16は、第6実施例に係る変倍光学系のレンズ構成を示す図である。
 本実施例に係る変倍光学系は、物体側から順に、正屈折力を有する第1レンズ群G1と、負屈折力を有する第2レンズ群G2と、正屈折力を有する第3レンズ群G3と、開口絞りSと、正屈折力を有する第4レンズ群G4と、負屈折力を有する第5レンズ群G5と、正屈折力を有する第6レンズ群G6と、負屈折力を有する第7レンズ群G7とから構成されている。
Sixth Embodiment
FIG. 16 is a diagram showing the lens configuration of the variable magnification optical system according to the sixth example.
The variable magnification optical system according to this embodiment includes, in order from the object side, a first lens group G1 having positive refracting power, a second lens group G2 having negative refracting power, and a third lens group G3 having positive refracting power. , An aperture stop S, a fourth lens group G4 having positive refracting power, a fifth lens group G5 having negative refracting power, a sixth lens group G6 having positive refracting power, and a seventh lens group having negative refracting power It is composed of a lens group G7.
 第1レンズ群G1は、物体側から順に、両凸形状の正レンズL11と、物体側に凸面を向けた負メニスカスレンズL12と両凸形状の正レンズL13との接合正レンズとからなる。
 第2レンズ群G2は、物体側から順に、両凹形状の負レンズL21と、物体側に凸面を向けた正メニスカスレンズL22と、両凹形状の負レンズL23と物体側に凸面を向けた正メニスカスレンズL24との接合負レンズとからなる。
 第3レンズ群G3は、物体側から順に、両凸形状の正レンズL31と、両凸形状の正レンズL32と両凹形状の負レンズL33との接合正レンズとからなる。
The first lens group G1 is composed of, in order from the object side, a biconvex positive lens L11, and a cemented positive lens of a negative meniscus lens L12 with a convex surface facing the object side and a biconvex positive lens L13.
The second lens group G2 includes, in order from the object side, a biconcave negative lens L21, a positive meniscus lens L22 with a convex surface facing the object side, and a biconcave negative lens L23 with a convex surface facing the object side And a cemented negative lens with the meniscus lens L24.
The third lens group G3 is composed of, in order from the object side, a biconvex positive lens L31, and a cemented positive lens of a biconvex positive lens L32 and a biconcave negative lens L33.
 第4レンズ群G4は、両凸形状の正レンズL41と物体側に凹面を向けた負メニスカスレンズL42との接合正レンズからなる。
 第5レンズ群G5は、物体側に凸面を向けた負メニスカスレンズL51からなる。
 第6レンズ群G6は、物体側に凹面を向けた正メニスカスレンズL61からなる。
 第7レンズ群G7は、物体側から順に、物体側に凹面を向けた負メニスカスレンズL71と、両凸形状の正レンズL72とからなる。
The fourth lens group G4 is composed of a positive cemented lens of a biconvex positive lens L41 and a negative meniscus lens L42 having a concave surface facing the object side.
The fifth lens group G5 is composed of a negative meniscus lens L51 having a convex surface facing the object side.
The sixth lens group G6 is composed of a positive meniscus lens L61 having a concave surface facing the object side.
The seventh lens group G7 is composed of, in order from the object side, a negative meniscus lens L71 having a concave surface facing the object side, and a biconvex positive lens L72.
 本実施例に係る変倍光学系では、広角端状態と望遠端状態との間での変倍時に、第1レンズ群G1と第2レンズ群G2との間隔、第2レンズ群G2と第3レンズ群G3との間隔、第3レンズ群G3と第4レンズ群G4との間隔、第4レンズ群G4と第5レンズ群G5との間隔、第5レンズ群G5と第6レンズ群G6との間隔、および第6レンズ群G6と第7レンズ群G7との間隔が変化するように、第1レンズ群G1から第7レンズ群G7までの全てのレンズ群が光軸に沿って移動する。 In the variable magnification optical system according to the present embodiment, the distance between the first lens group G1 and the second lens group G2, the second lens group G2, and the third lens group G2 during zooming between the wide angle end state and the telephoto end state. The distance between the lens group G3, the distance between the third lens group G3 and the fourth lens group G4, the distance between the fourth lens group G4 and the fifth lens group G5, the distance between the fifth lens group G5 and the sixth lens group G6 All the lens units from the first lens unit G1 to the seventh lens unit G7 move along the optical axis such that the distance and the distance between the sixth lens unit G6 and the seventh lens unit G7 change.
 本実施例に係る光学系では、合焦レンズ群として、第4レンズ群G4を光軸に沿って物体側へ移動させるとともに、第6レンズ群G6を第4レンズ群G4とは異なる軌跡で光軸に沿って物体側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。 In the optical system according to the present embodiment, as the focusing lens group, the fourth lens group G4 is moved to the object side along the optical axis, and the sixth lens group G6 has a locus different from that of the fourth lens group G4. By moving to the object side along the axis, focusing from an infinite distance object to a near distance object is performed.
 以下の表6に、本実施例に係る変倍光学系の諸元の値を掲げる。 Table 6 below presents values of specifications of the variable magnification optical system according to the present example.
(表6)第6実施例
[面データ]
 m       r        d        nd       νd 
 OP     ∞ 
   1     829.7998    3.542     1.48749    70.32 
   2    -352.7135    0.200            
   3     102.3920    1.700     1.67270    32.18 
   4      65.2892    8.627     1.49700    81.73 
   5   -4480.3970    可変       
                        
   6    -331.7733    1.000     1.77250    49.62 
   7      47.4606    2.120            
   8      45.4437    2.785     1.80518    25.45 
   9      90.1171    3.854            
 10     -70.4901    1.000     1.67003    47.14 
 11      34.7167    3.536     1.75520    27.57 
 12     116.6754    可変            
                        
 13     100.8918    3.650     1.80610    40.97 
 14     -72.8434    0.200           
 15      48.3355    4.843     1.49700    81.73 
 16     -53.3052    1.443     1.85026    32.35 
 17     226.4472    1.323           
 18(S)   ∞       可変              
                        
 19      56.3197    4.471     1.51680    63.88 
 20     -38.8956    1.000     1.80100    34.92 
 21     -92.0195    可変            
                        
 22     513.7755    3.255     1.85026    32.35 
 23      39.1334    可変       
                        
 24     -52.5225    4.182     1.71736    29.57 
 25     -30.1949    可変            
                        
 26     -25.8031    1.873     1.81600    46.59 
 27     -90.1071    0.200           
 28     139.7088    3.802     1.79504    28.69 
 29     -94.4559    BF        
 I       ∞
 
[各種データ] 
変倍比      4.05
            W        M       T 
f         72.1    100.0    292.0 
FNO      4.74     4.81     5.88
2ω       34.32    24.20     8.28
Ymax   21.60    21.60    21.60 
TL      193.32   211.66   248.32 
BF       38.32    39.78    62.52 
 
             W       M       T           W        M        T
f,β       72.100   99.963  292.002       -0.033    -0.033    -0.033
d0          0.000    0.000    0.000     2117.00   2908.95   8607.60
d5          2.000   28.621   75.058        2.000    28.621    75.058 
d12        43.058   34.009    2.000       43.058    34.009     2.000
d18        21.601   19.944   21.366       21.096    19.010    19.414 
d21         2.000    3.657    2.235        2.505     4.591     4.188 
d23        11.246   10.437   10.009       10.564    10.137     9.509
d25        16.489   16.614   16.522       17.171    16.914    17.022
 
[レンズ群データ] 
群    ST         f 
1       1       167.538 
2       6       -41.098 
3      13        50.455 
4      19        95.000
5      22       -49.977
6      24        91.830
7      26      -136.049
 
[条件式対応値]
(1)   MTF1/MTF2 =3.903
(2)   BFw/fw =0.531
(3)  (-fFN)/|fF|= 0.924
(4)   nP/nN= 0.842
(5)   |fF1|/|f1| = 0.567
(6)   |fF2|/|f1| = 0.548
(7)   |fF1|/ft = 0.325
(8)   |fF2|/ft = 0.314
(9)   |βWF1|/|βWF2| = 1.096
(10) |βRw|/|βRt| = 0.934
(11)  ωw = 17.16°
(Table 6) Sixth embodiment [surface data]
m r d nd d d
OP ∞
1 829.7998 3.542 1.48749 70.32
2-352.7135 0.200
3 102.3920 1.700 1.67270 32.18
4 65.2892 8.627 1.49700 81.73
5-4480.3970 Variable

6-331.7733 1.000 1.77250 49.62
7 47.4606 2.120
8 45.4437 2.785 1.80518 25.45
9 90.1171 3.854
10 -70.4901 1.000 1.67003 47.14
11 34.7167 3.536 1.75520 27.57
12 116.6754 Variable

13 100.8918 3.650 1.80610 40.97
14 -72.8434 0.200
15 48.3355 4.843 1.49700 81.73
16 -53.3052 1.443 1.85026 32.35
17 226.4472 1 .323
18 (S) ∞ variable

19 56.3197 4.471 1.51680 63.88
20-38.8956 1.000 1.80100 34.92
21 -92.0195 variable

22 513.7755 3.255 1.85026 32.35
23 39.1334 Variable

24 -52.5225 4.182 1.71736 29.57
25-30.1949 Variable

26-25.8031 1.873 1.81600 46.59
27--90.1071 0.200
28 139.7088 3.802 1.79504 28.69
29 -94.4559 BF
I ∞

[Various data]
Magnification ratio 4.05
W M T
f 72.1 100.0 292.0
FNO 4.74 4.81 5.88
2ω 34.32 24.20 8.28
Ymax 21.60 21.60 21.60
TL 193.32 211.66 248.32
BF 38.32 39.78 62.52

W M T W M T
f, β 72.100 99.963 292.002 -0.033 -0.033 -0.033
d0 0.000 0.000 0.000 211.07 2908.95 8607.60
d5 2.000 28.621 75.058 2.000 28.621 75.058
d12 43.058 34.009 2.000 43.058 34.009 2.000
d18 21.601 19.944 21.366 21.096 19.010 19.414
d21 2.000 3.657 2.235 2.505 4.591 4.188
d23 11.246 10.437 10.009 10.564 10.137 9.509
d25 16.489 16.614 16.522 17.171 16.914 17.022

[Lens group data]
Group ST f
1 1 167.538
2 6-41.098
3 13 50.455
4 19 95.000
5 22 -49.977
6 24 91.830
7 26-136.049

[Conditional expression corresponding value]
(1) MTF1 / MTF2 = 3.903
(2) BFw / fw = 0.531
(3) (-fFN) / | fF | = 0.924
(4) nP / nN = 0.842
(5) | fF1 | / | f1 | = 0.567
(6) | fF2 | / | f1 | = 0.548
(7) | fF1 | / ft = 0.325
(8) | fF2 | / ft = 0.314
(9) | βWF1 | / | βWF2 | = 1.096
(10) | βRw | / | βRt | = 0.934
(11) ωw = 17.16 °
 図17A、図17B、及び図17Cはそれぞれ、第6実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠物体合焦時の諸収差図である。
 図18A、図18B、及び図18Cはそれぞれ、第6実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離物体合焦時の諸収差図である。
FIGS. 17A, 17B, and 17C are various aberration diagrams at the time of focusing on an infinity object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the sixth example.
18A, 18B, and 18C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the sixth example.
 各諸収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離物体合焦時にも優れた結像性能を有していることがわかる。 As shown in the various aberration diagrams, the variable magnification optical system according to the present embodiment has excellent imaging performance with excellent correction of various aberrations from the wide-angle end state to the telephoto end state, and at the time of focusing on a short distance object. It can also be seen that they have excellent imaging performance.
(第7実施例)
 図19は、第7実施例に係る変倍光学系のレンズ構成を示す図である。
 本実施例に係る変倍光学系は、物体側から順に、正屈折力を有する第1レンズ群G1と、負屈折力を有する第2レンズ群G2と、開口絞りSと、正屈折力を有する第3レンズ群G3と、正屈折力を有する第4レンズ群G4と、正屈折力を有する第5レンズ群G5と、負屈折力を有する第6レンズ群G6と、正屈折力を有する第7レンズ群G7とから構成されている。
Seventh Embodiment
FIG. 19 is a diagram showing a lens configuration of a variable magnification optical system according to a seventh example.
The variable magnification optical system according to the present embodiment has, in order from the object side, a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, an aperture stop S, and positive refractive power. The third lens group G3, the fourth lens group G4 having positive refracting power, the fifth lens group G5 having positive refracting power, the sixth lens group G6 having negative refracting power, and the seventh lens group G6 having positive refracting power It is composed of a lens group G7.
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合正レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
 第2レンズ群G2は、物体側から順に、両凹形状の負レンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と両凹形状の負レンズL24との接合正レンズとからなる。
The first lens group G1 includes, in order from the object side, a positive cemented lens of a negative meniscus lens L11 with a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 with a convex surface facing the object side It consists of
The second lens group G2 includes, in order from the object side, a biconcave negative lens L21, a biconcave negative lens L22, and a cemented positive lens constructed by a biconvex positive lens L23 and a biconcave negative lens L24. It consists of
 第3レンズ群G3は、物体側から順に、両凸形状の正レンズL31と、両凸形状の正レンズL32と両凹形状の負レンズL33との接合正レンズとからなる。
 第4レンズ群G4は、物体側から順に、両凸形状の正レンズL41と、物体側に凹面を向けた負メニスカスレンズL42とからなる。
 第5レンズ群G5は、両凸形状の正レンズL51からなる。
 第6レンズ群G6は、物体側に凹面を向けた正メニスカスレンズL61と両凹形状の負レンズL62との接合負レンズからなる。
 第7レンズ群G7は、物体側に凹面を向けた正メニスカスレンズL71からなる。
The third lens group G3 is composed of, in order from the object side, a biconvex positive lens L31, and a cemented positive lens of a biconvex positive lens L32 and a biconcave negative lens L33.
The fourth lens group G4 is composed of, in order from the object side, a double convex positive lens L41 and a negative meniscus lens L42 having a concave surface facing the object side.
The fifth lens group G5 is composed of a biconvex positive lens L51.
The sixth lens group G6 is composed of a negative cemented lens of a positive meniscus lens L61 having a concave surface facing the object side and a biconcave negative lens L62.
The seventh lens group G7 is composed of a positive meniscus lens L71 having a concave surface facing the object side.
 本実施例に係る変倍光学系では、広角端状態と望遠端状態との間での変倍時に、第1レンズ群G1と第2レンズ群G2との間隔、第2レンズ群G2と第3レンズ群G3との間隔、第3レンズ群G3と第4レンズ群G4との間隔、第4レンズ群G4と第5レンズ群G5との間隔、第5レンズ群G5と第6レンズ群G6との間隔、および第6レンズ群G6と第7レンズ群G7との間隔が変化するように、第1レンズ群G1から第7レンズ群G7までの全てのレンズ群が光軸に沿って移動する。 In the variable magnification optical system according to the present embodiment, the distance between the first lens group G1 and the second lens group G2, the second lens group G2, and the third lens group G2 during zooming between the wide angle end state and the telephoto end state. The distance between the lens group G3, the distance between the third lens group G3 and the fourth lens group G4, the distance between the fourth lens group G4 and the fifth lens group G5, the distance between the fifth lens group G5 and the sixth lens group G6 All the lens units from the first lens unit G1 to the seventh lens unit G7 move along the optical axis such that the distance and the distance between the sixth lens unit G6 and the seventh lens unit G7 change.
 本実施例に係る光学系では、合焦レンズ群として、第4レンズ群G4を光軸に沿って像側へ移動させるとともに、第5レンズ群G5を光軸に沿って物体側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。 In the optical system according to the present embodiment, as the focusing lens group, the fourth lens group G4 is moved to the image side along the optical axis, and the fifth lens group G5 is moved to the object side along the optical axis. By this, focusing from an infinite distance object to a near distance object is performed.
 以下の表7に、本実施例に係る変倍光学系の諸元の値を掲げる。 Table 7 below presents values of specifications of the variable magnification optical system according to the present example.
(表7)第7実施例
[面データ]
 m       r        d        nd       νd 
 OP     ∞ 
   1     137.2611    2.000     1.85000    27.03 
   2      66.9538    6.897     1.59319    67.90 
   3    -677.5498    0.200            
   4     107.1491    4.136     1.61800    63.34 
   5    9353.1970    可変       
                        
* 6    -150.8738    2.000     1.90265    35.72 
   7      25.5606    4.779            
   8    -260.6181    1.000     1.81600    46.59 
   9      86.2883    0.200            
 10      41.4737    5.687     1.84666    23.78 
 11     -48.7116    1.000     1.81600    46.59 
 12      54.7043    可変       
                        
 13(S)   ∞        0.200             
 14      44.1680    2.899     1.77250    49.62 
 15    -280.6415    0.200            
 16      27.1646    4.022     1.59319    67.90 
 17    -146.4206    1.000     1.95000    29.37 
 18      51.2305    可変       
                        
 19      50.9241    2.999     1.83481    42.73 
 20    -182.3279    2.176            
 21     -80.2256    1.000     1.88300    40.66 
 22    -715.7217    可変       
                        
 23     101.2327    2.235     1.83481    42.73 
*24    -257.5032    可変       
                        
*25    -283.1336    4.085     1.58144    40.98 
 26     -18.4049    1.000     1.90366    31.27 
 27      87.0702    可変       
                        
 28    -136.5964    6.525     1.59319    67.90 
 29     -38.7359              
 I       ∞
 
[非球面データ]
m:6
κ  =   1.0000
A4  =   1.67289E-07
A6  =  -1.03260E-09
A8  =   5.37315E-12
A10 =  -4.58982E-15
 
m:24
κ  =   1.0000
A4  =   4.43454E-06
A6  =   2.09008E-08
A8  =  -1.49527E-10
A10 =   8.49155E-13
 
m:25
κ  =   1.0000
A4  =  -2.21915E-05
A6  =   1.15956E-07
A8  =  -1.94063E-09
A10 =   9.93961E-12
 
[各種データ] 
変倍比      8.50
            W        M       T 
f         24.7     70.0    210.0 
FNO      3.47     5.31     6.52
2ω       85.94    32.52    11.08
Ymax   19.90    21.60    21.60 
TL      141.66   173.63   194.45 
BF       23.35    32.36    13.26 
 
             W       M       T           W        M        T
f,β       24.700   70.005  209.991       -0.033    -0.033    -0.033
d0          0.000    0.000    0.000      706.534  2031.32   6175.90
d5          2.002   22.984   54.077        2.002    22.984    54.077 
d12        37.630   16.703    2.000       37.630    16.703     2.000
d18         9.388    7.991    4.000        9.688     8.290     4.039 
d22         7.722    6.619   11.160        6.491     5.369     9.139 
d24         2.215    7.801   20.136        3.147     8.752    21.938
d27         3.110   22.940   33.576        3.110    22.940    33.576
 
[レンズ群データ] 
群    ST         f 
1       1       113.050 
2       6       -19.624 
3      13        42.460 
4      19        84.928
5      23        87.292
6      25       -33.119
7      28        88.941
 
[条件式対応値]
(1)   MTF1/MTF2 =0.022
(2)   BFw/fw = 0.945
(3)  (-fFN)/|fF|= 1.206
(4)   nP/nN= 0.974
(5)   |fF1|/|f1| = 0.751
(6)   |fF2|/|f1| = 0.772
(7)   |fF1|/ft = 0.404
(8)   |fF2|/ft = 0.416
(9)   |βWF1|/|βWF2| = 0.616
(10) |βRw|/|βRt| = 1.858
(11)  ωw = 42.97°
(Table 7) Seventh embodiment [surface data]
m r d nd d d
OP ∞
1 137.2611 2.000 1.85000 27.03
2 66.9538 6.897 1.59319 67.90
3-677.5498 0.200
4 107.1491 4.136 1.61800 63.34
5 9353.1970 Variable

* 6-150.8738 2.000 1.90265 35.72
7 25.5606 4.779
8 -260.6181 1.000 1.81600 46.59
9 86.2883 0.200
10 41.4737 5.687 1.84666 23.78
11-48.7116 1.000 1.81600 46.59
12 54.7043 Variable

13 (S) ∞ 0.200
14 44.1680 2.899 1.77250 49.62
15-280.6415 0.200
16 27.1646 4.022 1.59319 67.90
17-146.4206 1.000 1.95000 29.37
18 51.2305 Variable

19 50.9241 2.999 1.83481 42.73
20 -182.3279 2.176
21 -80.2256 1.000 1.88300 40.66
22 -715.7217 Variable

23 101.2327 2.235 1.83481 42.73
* 24 -257.5032 Variable

* 25-283.1336 4.085 1.58144 40.98
26 -18.4049 1.000 1.90366 31.27
27 87.0702 Variable

28 -136.5964 6.525 1.59319 67.90
29-38.7359
I ∞

[Aspheric surface data]
m: 6
κ = 1.0000
A4 = 1.67289E-07
A6 = -1.03260E-09
A8 = 5.37315E-12
A10 = -4.58982E-15

m: 24
κ = 1.0000
A4 = 4.43454E-06
A6 = 2.09008E-08
A8 =-1.49527E-10
A10 = 8.49155E-13

m: 25
κ = 1.0000
A4 = -2.21915E-05
A6 = 1.15956E-07
A8 = -1.94063E-09
A10 = 9.93961 E-12

[Various data]
Magnification ratio 8.50
W M T
f 24.7 70.0 210.0
FNO 3.47 5.31 6.52
2 ω 85.94 32.52 11.08
Ymax 19.90 21.60 21.60
TL 141.66 173.63 194.45
BF 23.35 32.36 13.26

W M T W M T
f, β 24.700 70.005 209.991 -0.033 -0.033 -0.033
d0 0.000 0.000 0.000 706.534 2031.32 6175.90
d5 2.002 22.984 54.077 2.002 22.984 54.077
d12 37.630 16.703 2.000 37.630 16.703 2.000
d18 9.388 7.901 4.000 9.688 8.290 4.039
d22 7.722 6.619 11.160 6.491 5.369 9.139
d24 2.215 7.801 20.136 3.147 8.752 21.938
d27 3.110 22.940 33.576 3.110 22.940 33.576

[Lens group data]
Group ST f
1 1 113.050
2 6-19.624
3 13 42.460
4 19 84.928
5 23 87.292
6 25 -33.119
7 28 88.941

[Conditional expression corresponding value]
(1) MTF1 / MTF2 = 0.022
(2) BFw / fw = 0.945
(3) (-fFN) / | fF | = 1.206
(4) nP / nN = 0.974
(5) | fF1 | / | f1 | = 0.751
(6) | fF2 | / | f1 | = 0.772
(7) | fF1 | / ft = 0.404
(8) | fF2 | / ft = 0.416
(9) | βWF1 | / | βWF2 | = 0.616
(10) | βRw | / | βRt | = 1.858
(11) ωw = 42.97 °
 図20A、図20B、及び図20Cはそれぞれ、第7実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠物体合焦時の諸収差図である。
 図21A、図21B、及び図21Cはそれぞれ、第7実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離物体合焦時の諸収差図である。
FIGS. 20A, 20B, and 20C are various aberration diagrams at the time of focusing on an infinity object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the seventh example.
21A, 21B, and 21C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the seventh example.
 各諸収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離物体合焦時にも優れた結像性能を有していることがわかる。 As shown in the various aberration diagrams, the variable magnification optical system according to the present embodiment has excellent imaging performance with excellent correction of various aberrations from the wide-angle end state to the telephoto end state, and at the time of focusing on a short distance object. It can also be seen that they have excellent imaging performance.
(第8実施例)
 図22は、第8実施例に係る変倍光学系のレンズ構成を示す図である。
 本実施例に係る変倍光学系は、物体側から順に、負屈折力を有する第1レンズ群G1と、正屈折力を有する第2レンズ群G2と、開口絞りSと、負屈折力を有する第3レンズ群G3と、正屈折力を有する第4レンズ群G4と、負屈折力を有する第5レンズ群G5と、正屈折力を有する第6レンズ群G6と、負屈折力を有する第7レンズ群G7とから構成されている。
Eighth embodiment
FIG. 22 is a diagram showing a lens configuration of a variable magnification optical system according to an eighth example.
The variable magnification optical system according to the present embodiment includes, in order from the object side, a first lens group G1 having negative refractive power, a second lens group G2 having positive refractive power, an aperture stop S, and negative refractive power. A third lens group G3, a fourth lens group G4 having positive refracting power, a fifth lens group G5 having negative refracting power, a sixth lens group G6 having positive refracting power, and a seventh lens group having negative refracting power It is composed of a lens group G7.
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と物体側に凸面を向けた正メニスカスレンズL13との接合正レンズとからなる。
 第2レンズ群G2は、物体側から順に、両凸形状の正レンズL21と物体側に凹面を向けた負メニスカスレンズL22との接合正レンズと、物体側に凸面を向けた負メニスカスレンズL23と両凸形状の正レンズL24との接合正レンズとからなる。
The first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a convex surface on the object side, a negative meniscus lens L12 having a convex surface on the object side, and a positive meniscus lens L13 having a convex surface on the object side It consists of a cemented positive lens.
The second lens group G2 includes, in order from the object side, a double positive lens L21 cemented with a negative meniscus lens L22 having a concave surface facing the object side, and a negative meniscus lens L23 having a convex surface facing the object side And a cemented positive lens with a biconvex positive lens L24.
 第3レンズ群G3は、物体側から順に、物体側に凹面を向けた負メニスカスレンズL31と、両凹形状の負レンズL32と物体側に凸面を向けた正メニスカスレンズL33との接合正レンズとからなる。
 第4レンズ群G4は、両凸形状の正レンズL41からなる。
 第5レンズ群G5は、物体側に凹面を向けた負メニスカスレンズL51からなる。
 第6レンズ群G6は、両凸形状の正レンズL61からなる。
 第7レンズ群G7は、物体側に凹面を向けた負メニスカスレンズL71からなる。
The third lens group G3 includes, in order from the object side, a negative meniscus lens L31 having a concave surface facing the object side, and a cemented positive lens constructed by a biconcave negative lens L32 and a positive meniscus lens L33 having a convex surface facing the object side It consists of
The fourth lens group G4 is composed of a biconvex positive lens L41.
The fifth lens group G5 is composed of a negative meniscus lens L51 having a concave surface facing the object side.
The sixth lens group G6 is composed of a biconvex positive lens L61.
The seventh lens group G7 is composed of a negative meniscus lens L71 with a concave surface facing the object side.
 本実施例に係る変倍光学系では、広角端状態と望遠端状態との間での変倍時に、第1レンズ群G1と第2レンズ群G2との間隔、第2レンズ群G2と第3レンズ群G3との間隔、第3レンズ群G3と第4レンズ群G4との間隔、第4レンズ群G4と第5レンズ群G5との間隔、第5レンズ群G5と第6レンズ群G6との間隔、および第6レンズ群G6と第7レンズ群G7との間隔が変化するように、第1レンズ群G1から第7レンズ群G7までの全てのレンズ群が光軸に沿って移動する。 In the variable magnification optical system according to the present embodiment, the distance between the first lens group G1 and the second lens group G2, the second lens group G2, and the third lens group G2 during zooming between the wide angle end state and the telephoto end state. The distance between the lens group G3, the distance between the third lens group G3 and the fourth lens group G4, the distance between the fourth lens group G4 and the fifth lens group G5, the distance between the fifth lens group G5 and the sixth lens group G6 All the lens units from the first lens unit G1 to the seventh lens unit G7 move along the optical axis such that the distance and the distance between the sixth lens unit G6 and the seventh lens unit G7 change.
 本実施例に係る光学系では、合焦レンズ群として、第4レンズ群G4を光軸に沿って物体側へ移動させるとともに、第5レンズ群G5および第6レンズ群G6を、それぞれ第4レンズ群G4とは異なる軌跡で光軸に沿って物体側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。 In the optical system according to the present embodiment, as the focusing lens group, the fourth lens group G4 is moved to the object side along the optical axis, and the fifth lens group G5 and the sixth lens group G6 are each configured as a fourth lens. Focusing from an infinite distance object to a near distance object is performed by moving to the object side along the optical axis with a locus different from that of the group G4.
 以下の表8に、本実施例に係る変倍光学系の諸元の値を掲げる。 Table 8 below presents values of specifications of the variable magnification optical system according to the present example.
(表8)第8実施例
[面データ]
 m       r        d        nd       νd 
 OP     ∞ 
   1     250.0000    2.900     1.74389    49.53 
* 2      28.0269   12.424            
   3     154.1167    2.100     1.59349    67.00 
   4      32.5416    6.969     2.00069    25.46 
   5      61.8764    可変       
                        
   6     175.0869    5.997     1.81600    46.59 
   7     -52.8034    1.500     1.85000    27.03 
   8    -204.9882    1.000            
   9      45.2860    1.500     1.80518    25.45 
 10      26.6188   11.527     1.60300    65.44 
 11     -76.6492    可変            
                        
 12(S)   ∞        2.465             
 13     -64.5009    1.300     1.90265    35.72 
 14    -217.6883    0.200            
 15    -214.1041    1.300     1.67270    32.18 
 16      26.6878    6.400     1.80809    22.74 
 17     502.6822    可変            
                        
 18      65.6282    5.000     1.48749    70.32 
 19     -65.3105    可変            
                        
 20     -52.0851    1.300     1.84666    23.80 
 21    -201.9547    可変       
                        
 22     185.0000    5.300     1.58913    61.15 
*23     -50.5905    可変       
                        
*24     -27.3977    1.500     1.58913    61.15 
 25     -49.4756    BF        
 I       ∞
 
[非球面データ]
m:2
κ  =   0.0000
A4  =   3.95960E-06
A6  =   3.76748E-09
A8  =  -5.23494E-12
A10 =   1.04782E-14
A12 =  -4.82160E-18
 
m:23
κ  =   1.0000
A4  =   6.76320E-06
A6  =  -8.33082E-09
A8  =   3.88079E-11
A10 =  -7.09278E-14
 
m:24
κ  =   1.0000
A4  =   5.00393E-06
A6  =  -8.92918E-09
A8  =   2.86537E-11
A10 =  -5.32582E-14
 
[各種データ] 
変倍比      2.99
            W        M       T 
f         22.7     50.0     67.9 
FNO      3.03     3.00     3.03
2ω       91.04    45.96    33.62
Ymax   19.30    21.60    21.60 
TL      188.49   155.49   167.35 
BF       16.20    23.37    32.67 
 
             W       M       T           W        M        T
f,β       22.700   49.999   67.899       -0.033    -0.033    -0.033
d0          0.000    0.000    0.000      644.489  1474.05   2002.27
d5         64.883   10.266    5.946       64.883    10.266     5.946 
d11         2.200   12.775   27.038        2.200    12.775    27.038 
d17        20.035    8.462    6.571       19.026     7.439     4.593 
d19         2.030    3.706    4.816        1.360     3.164     4.349 
d21         4.601    9.046   14.467        4.908     8.936    15.092 
d23         7.862   17.178    5.159        9.234    18.853     6.979 
 
[レンズ群データ] 
群    ST         f 
1       1       -42.744 
2       6        40.599
3      12      -105.371
4      18        68.000
5      20       -83.229
6      22        68.000
7      24      -106.909
 
[条件式対応値]
(1)   MTF1/MTF2 =0.809
(2)   BFw/fw =0.713
(3)  (-fFN)/|fF|= 1.224
(4)   nP/nN= 0.806
(5)   |fF1|/|f1| =1.591
(6)   |fF2|/|f1| =1.591
(7)   |fF1|/ft =1.001
(8)   |fF2|/ft = 1.001
(9)   |βWF1|/|βWF2| = 0.350
(10) |βRw|/|βRt| = 1.387
(11)  ωw = 45.52°
(Table 8) Eighth Example [Plane Data]
m r d nd d d
OP ∞
1 250.0000 2.900 1.74389 49.53
* 2 28.0269 12.424
3 154.1167 2.100 1.59349 67.00
4 32.5416 6.969 2.00069 25.46
5 61.8764 Variable

6 175.0869 5.997 1.81600 46.59
7-52.8034 1.500 1.85000 27.03
8 -204.9882 1.000
9 45.2860 1.500 1.80518 25.45
10 26.6188 11.527 1.60300 65.44
11 -76.6492 Variable

12 (S) ∞ 2.465
13 -64.5009 1.300 1.90265 35.72
14 -217.6883 0.200
15 -214.1041 1.300 1.67270 32.18
16 26.6.878 6.400 1.80809 22.74
17 502.6822 Variable

18 65.6282 5.000 1.48749 70.32
19-65.3105 variable

20-52.0851 1.300 1.84666 23.80
21 -201.9547 variable

22 185.0000 5.300 1.5891 13 61.15
* 23-50.5905 Variable

* 24-27.3977 1.500 1.5891 3 61.15
25-49.4756 BF
I ∞

[Aspheric surface data]
m: 2
κ = 0.0000
A4 = 3.95960E-06
A6 = 3.76748E-09
A8 = -5.23494E-12
A10 = 1.04782E-14
A12 = -4.82160E-18

m: 23
κ = 1.0000
A4 = 6.76320E-06
A6 = -8.33082E-09
A8 = 3.88079E-11
A10 = -7.09278E-14

m: 24
κ = 1.0000
A4 = 5.00393E-06
A6 = -8.92918E-09
A8 = 2.86537E-11
A10 = -5.32582E-14

[Various data]
Magnification 2.99
W M T
f 22.7 50.0 67.9
FNO 3.03 3.00 3.03
2ω 91.04 45.96 33.62
Ymax 19.30 21.60 21.60
TL 188.49 155.49 167.35
BF 16.20 23.37 32.67

W M T W M T
f, β 22.700 49.999 67.899 -0.033 -0.033 -0.033
d0 0.000 0.000 0.000 644.489 1474.05 2002.27
d5 64.883 10.266 5.946 64.883 10.266 5.946
d11 2.200 12.775 27.038 2.200 12.775 27.038
d17 20.035 8.462 6.571 19.026 7.439 4.593
d19 2.030 3.706 4.816 1.360 3.164 4.349
d21 4.601 9.046 14.467 4.908 8.936 15.092
d23 7.862 17.178 5.159 9.234 18.853 6.997

[Lens group data]
Group ST f
1 1-42.744
2 6 40.599
3 12 -105.371
4 18 68.000
5 20 -83.229
6 22 68.000
7 24 -106.909

[Conditional expression corresponding value]
(1) MTF1 / MTF2 = 0.809
(2) BFw / fw = 0.713
(3) (-fFN) / | fF | = 1.224
(4) nP / nN = 0.806
(5) | fF1 | / | f1 | = 1.591
(6) | fF2 | / | f1 | = 1.591
(7) | fF1 | / ft = 1.001
(8) | fF2 | / ft = 1.001
(9) | βWF1 | / | βWF2 | = 0.350
(10) | βRw | / | βRt | = 1.387
(11) ωw = 45.52 °
 図23A、図23B、及び図23Cはそれぞれ、第8実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠物体合焦時の諸収差図である。
 図24A、図24B、及び図24Cはそれぞれ、第8実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離物体合焦時の諸収差図である。
FIGS. 23A, 23B, and 23C are various aberration diagrams at the time of focusing on an infinite distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the eighth example.
FIGS. 24A, 24B, and 24C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the eighth example.
 各諸収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離物体合焦時にも優れた結像性能を有していることがわかる。 As shown in the various aberration diagrams, the variable magnification optical system according to the present embodiment has excellent imaging performance with excellent correction of various aberrations from the wide-angle end state to the telephoto end state, and at the time of focusing on a short distance object. It can also be seen that they have excellent imaging performance.
(第9実施例)
 図25は、第9実施例に係る変倍光学系のレンズ構成を示す図である。
 本実施例に係る変倍光学系は、物体側から順に、正屈折力を有する第1レンズ群G1と、負屈折力を有する第2レンズ群G2と、開口絞りSと、正屈折力を有する第3レンズ群G3と、負屈折力を有する第4レンズ群G4と、正屈折力を有する第5レンズ群G5と、正屈折力を有する第6レンズ群G6と、負屈折力を有する第7レンズ群G7とから構成されている。
(9th embodiment)
FIG. 25 is a diagram showing a lens configuration of a variable magnification optical system according to a ninth example.
The variable magnification optical system according to the present embodiment has, in order from the object side, a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, an aperture stop S, and positive refractive power A third lens group G3, a fourth lens group G4 having negative refractive power, a fifth lens group G5 having positive refractive power, a sixth lens group G6 having positive refractive power, and a seventh lens having negative refractive power It is composed of a lens group G7.
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合負レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
 第2レンズ群G2は、物体側から順に、両凹形状の負レンズL21と、物体側に凹面を向けた負メニスカスレンズL22と物体側に凹面を向けた正メニスカスレンズL23と物体側に凹面を向けた負メニスカスレンズL24との接合負レンズとからなる。
The first lens group G1 includes, in order from the object side, a cemented negative lens of a negative meniscus lens L11 with a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 with a convex surface facing the object side It consists of
The second lens group G2 includes, in order from the object side, a biconcave negative lens L21, a negative meniscus lens L22 with a concave surface facing the object side, a positive meniscus lens L23 with a concave surface facing the object side, and a concave surface with the object side And a cemented negative lens with a negative meniscus lens L24 directed.
 第3レンズ群G3は、物体側から順に、物体側に凸面を向けた正メニスカスレンズL31と、物体側に凸面を向けた負メニスカスレンズL32と物体側に凸面を向けた正メニスカスレンズL33との接合正レンズと、両凸形状の正レンズL34とからなる。
 第4レンズ群G4は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL41と、両凹形状の負レンズL42とからなる。
 第5レンズ群G5は、両凸形状の正レンズL51と物体側に凹面を向けた負メニスカスレンズL52との接合正レンズからなる。
 第6レンズ群G6は、物体側に凹面を向けた正メニスカスレンズL61からなる。
 第7レンズ群G7は、両凹形状の負レンズL71からなる。
The third lens group G3 includes, in order from the object side, a positive meniscus lens L31 having a convex surface facing the object, a negative meniscus lens L32 having a convex surface facing the object, and a positive meniscus lens L33 having a convex surface facing the object It consists of a cemented positive lens and a biconvex positive lens L34.
The fourth lens group G4 is composed of, in order from the object side, a positive meniscus lens L41 having a concave surface facing the object side, and a biconcave negative lens L42.
The fifth lens group G5 is composed of a positive cemented lens of a biconvex positive lens L51 and a negative meniscus lens L52 having a concave surface facing the object side.
The sixth lens group G6 is composed of a positive meniscus lens L61 having a concave surface facing the object side.
The seventh lens group G7 is composed of a biconcave negative lens L71.
 本実施例に係る変倍光学系では、広角端状態と望遠端状態との間での変倍時に、第1レンズ群G1と第2レンズ群G2との間隔、第2レンズ群G2と第3レンズ群G3との間隔、第3レンズ群G3と第4レンズ群G4との間隔、第4レンズ群G4と第5レンズ群G5との間隔、第5レンズ群G5と第6レンズ群G6との間隔、および第6レンズ群G6と第7レンズ群G7との間隔が変化するように、第1レンズ群G1から第7レンズ群G7までの全てのレンズ群が光軸に沿って移動する。 In the variable magnification optical system according to the present embodiment, the distance between the first lens group G1 and the second lens group G2, the second lens group G2, and the third lens group G2 during zooming between the wide angle end state and the telephoto end state. The distance between the lens group G3, the distance between the third lens group G3 and the fourth lens group G4, the distance between the fourth lens group G4 and the fifth lens group G5, the distance between the fifth lens group G5 and the sixth lens group G6 All the lens units from the first lens unit G1 to the seventh lens unit G7 move along the optical axis such that the distance and the distance between the sixth lens unit G6 and the seventh lens unit G7 change.
 本実施例に係る光学系では、合焦レンズ群として、第5レンズ群G5を光軸に沿って物体側へ移動させるとともに、第6レンズ群G6を第5レンズ群G5とは異なる軌跡で光軸に沿って物体側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。 In the optical system according to the present embodiment, as the focusing lens group, the fifth lens group G5 is moved to the object side along the optical axis, and the sixth lens group G6 has a locus different from that of the fifth lens group G5. By moving to the object side along the axis, focusing from an infinite distance object to a near distance object is performed.
 以下の表9に、本実施例に係る変倍光学系の諸元の値を掲げる。 Table 9 below presents values of specifications of the variable magnification optical system according to the present example.
(表9)第9実施例
[面データ]
 m       r        d        nd       νd 
 OP     ∞ 
   1    3442.9453    2.000     2.00100    29.12 
   2      67.9723    9.758     1.59319    67.90 
   3    -152.3923    0.200            
   4      58.4962    5.618     1.81600    46.59 
   5     401.1678    可変            
                        
* 6    -290.9507    1.400     1.88300    40.66 
   7      23.9500    5.968            
   8     -85.0139    1.200     1.83481    42.73 
   9    -120.7468    5.617     1.84666    23.80 
 10     -22.1853    1.200     1.81600    46.59 
 11    -285.7763    可変       
                        
 12(S)   ∞        0.200             
 13      43.7782    3.108     1.69680    55.52 
 14     471.1855    0.200           
 15      32.7556    1.000     1.83481    42.73 
 16      21.7787    4.328     1.59319    67.90 
 17      90.7958    0.200            
 18      34.8267    4.022     1.58144    40.98 
 19    -155.1147    可変       
                        
*20     -30.2170    1.817     1.90200    25.26 
 21     -25.8045    0.200           
 22    -168.2619    1.000     1.90366    31.27 
 23      32.2596    可変       
                        
 24      38.3747    4.859     1.49700    81.73 
 25     -32.4370    1.000     2.00069    25.46 
 26     -70.7616    可変            
                        
 27     -63.4136    3.063     1.56732    42.58 
*28     -25.4716    可変            
                        
*29     -40.3736    1.500     1.81600    46.59 
 30     223.1585    BF        
 I       ∞
 
[非球面データ]
m:6
κ  =   1.0000
A4  =   1.12990E-06
A6  =  -1.48448E-09
A8  =   2.59485E-12
A10 =  -2.03608E-15
 
m:20
κ  =   1.0000
A4  =  -1.25538E-05
A6  =   2.12431E-08
A8  =  -1.35330E-10
A10 =   4.53472E-13
 
m:28
κ  =   1.0000
A4  =   2.57266E-05
A6  =   5.03605E-08
A8  =  -2.10329E-10
A10 =   3.98690E-13
 
m:29
κ  =   1.0000
A4  =   1.23110E-05
A6  =   2.00664E-08
A8  =  -1.99371E-10
A10 =   2.96093E-13
 
[各種データ] 
変倍比      8.97
            W        M       T 
f         24.8     70.0    222.0 
FNO      3.69     5.39     6.42
2ω       85.32    33.28    10.80
Ymax   20.30    21.60    21.60 
TL      152.38   168.67   204.50 
BF       13.25    40.90    75.50 
 
             W       M       T           W        M        T
f,β       24.750   70.000  222.000       -0.033    -0.033    -0.033
d0          0.000    0.000    0.000      708.545  2047.97   6602.17
d5          2.000   19.489   42.969        2.000    19.489    42.969 
d11        40.184   17.902    2.000       40.184    17.902     2.000
d19         2.003    3.971    9.577        2.003     3.971     9.577 
d23        10.844    6.751    7.946       10.369     6.000     6.221 
d26        15.034   12.261    4.050       14.947    12.499     5.206
d28         9.603    7.938    3.000       10.165     8.452     3.568
 
[レンズ群データ] 
群    ST         f 
1       1        93.169 
2       6       -21.680 
3      12        24.825 
4      20       -35.481
5      24        85.936
6      27        72.909
7      29       -41.791
 
[条件式対応値]
(1)   MTF1/MTF2 =3.034
(2)   BFw/fw =0.536
(3)  (-fFN)/|fF|= 0.832
(4)   nP/nN= 0.786
(5)   |fF1|/|f1| = 0.922
(6)   |fF2|/|f1| = 0.783
(7)   |fF1|/ft = 0.387
(8)   |fF2|/ft = 0.328
(9)   |βWF1|/|βWF2| = 0.607
(10) |βRw|/|βRt| = 0.815
(11)  ωw = 42.66°
(Table 9) Ninth Example [Plane Data]
m r d nd d d
OP ∞
1 3442.9453 2.000 2.00100 29.12
2 67.9723 9.758 1.59319 67.90
3-152.3923 0.200
4 58.4962 5.618 1.81600 46.59
5 401.1678 Variable

* 6-290.9507 1.400 1.88300 40.66
7 23.9500 5.968
8-85.0139 1. 200 1. 83481 42. 73
9-120.7468 5.617 1.84666 23.80
10 -22.1853 1.200 1.81600 46.59
11-285.7763 Variable

12 (S) ∞ 0.200
13 43.782. 3.108 1.69680 55.52
14 471.1855 0.200
15 32.7551 1.000 1.83481 42.73
16 21.7787 4.328 1.59319 67.90
17 90.7958 0.200
18 34.8267 4.022 1.58144 40.98
19-155.1147 Variable

* 20-30.2170 1.817 1.90200 25.26
21-25.8045 0.200
22 -168.2619 1.000 1.90366 31.27
23 32.2596 Variable

24 38.3747 4.859 1.49700 81.73
25-32.4370 1.000 2.00069 25.46
26-70.716 Variable

27 -63.4136 3.063 1.56732 42.58
* 28 -25.4716 Variable

* 29-40.3736 1.500 1.81600 46.59
30 223.1585 BF
I ∞

[Aspheric surface data]
m: 6
κ = 1.0000
A4 = 1.12990E-06
A6 = -1.48448E-09
A8 = 2.59485 E-12
A10 = -2.03608E-15

m: 20
κ = 1.0000
A4 = -1.25538E-05
A6 = 2.1423E-08
A8 = -1.35330E-10
A10 = 4.53472 E-13

m: 28
κ = 1.0000
A4 = 2.57266E-05
A6 = 5.03605E-08
A8 = -2.10329E-10
A10 = 3.98690E-13

m: 29
κ = 1.0000
A4 = 1.23110E-05
A6 = 2.00664E-08
A8 = -1.99371E-10
A10 = 2.96093E-13

[Various data]
Magnification ratio 8.97
W M T
f 24.8 70.0 222.0
FNO 3.69 5.39 6.42
2ω 85.32 33.28 10.80
Ymax 20.30 21.60 21.60
TL 152.38 168.67 204.50
BF 13.25 40.90 75.50

W M T W M T
f, β 24.750 70.000 222.000 -0.033 -0.033 -0.033
d0 0.000 0.000 0.0000 708.545 2047.97 6602.17
d5 2.000 19.489 42.969 2.000 19.489 42.969
d11 40.184 17.902 2.000 40.184 17.902 2.000
d19 2.003 3.971 9.577 2.003 3.971 9.577
d23 10.844 6.751 7.946 10.369 6.22
d26 15.034 12.261 4.050 14.9412 12.499 5.206
d28 9.603 7.938 3.000 10.165 8.452 3.568

[Lens group data]
Group ST f
1 1 93.169
2 6-21.680
3 12 24.825
4 20-35.481
5 24 85.936
6 27 72.909
7 29-41.791

[Conditional expression corresponding value]
(1) MTF1 / MTF2 = 3.034
(2) BFw / fw = 0.536
(3) (-fFN) / | fF | = 0.832
(4) nP / nN = 0.786
(5) | fF1 | / | f1 | = 0.922
(6) | fF2 | / | f1 | = 0.783
(7) | fF1 | / ft = 0.387
(8) | fF2 | / ft = 0.328
(9) | βWF1 | / | βWF2 | = 0.607
(10) | βRw | / | βRt | = 0.815
(11) ωw = 42.66 °
 図26A、図26B、及び図26Cはそれぞれ、第9実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠物体合焦時の諸収差図である。
 図27A、図27B、及び図27Cはそれぞれ、第9実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離物体合焦時の諸収差図である。
FIGS. 26A, 26B, and 26C show various aberrations of the variable magnification optical system of the ninth example when focusing on an infinite object at the wide-angle end, at an intermediate focal length, and at the telephoto end.
FIGS. 27A, 27B, and 27C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the ninth example.
 各諸収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離物体合焦時にも優れた結像性能を有していることがわかる。 As shown in the various aberration diagrams, the variable magnification optical system according to the present embodiment has excellent imaging performance with excellent correction of various aberrations from the wide-angle end state to the telephoto end state, and at the time of focusing on a short distance object. It can also be seen that they have excellent imaging performance.
(第10実施例)
 図28は、第10実施例に係る変倍光学系のレンズ構成を示す図である。
 本実施例に係る変倍光学系は、物体側から順に、正屈折力を有する第1レンズ群G1と、負屈折力を有する第2レンズ群G2と、正屈折力を有する第3レンズ群G3と、開口絞りSと、正屈折力を有する第4レンズ群G4と、負屈折力を有する第5レンズ群G5と、正屈折力を有する第6レンズ群G6とから構成されている。
Tenth Example
FIG. 28 is a diagram showing the lens configuration of a variable magnification optical system according to the tenth example.
The variable magnification optical system according to the present embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group G3 having a positive refractive power. An aperture stop S, a fourth lens group G4 having positive refracting power, a fifth lens group G5 having negative refracting power, and a sixth lens group G6 having positive refracting power.
 第1レンズ群G1は、物体側から順に、両凸形状の正レンズL11と、物体側に凸面を向けた負メニスカスレンズL12と両凸形状の正レンズL13との接合正レンズとからなる。
 第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、物体側に凸面を向けた正メニスカスレンズL22と、両凹形状の負レンズL23と物体側に凸面を向けた正メニスカスレンズL24との接合負レンズとからなる。
 第3レンズ群G3は、物体側から順に、両凸形状の正レンズL31と、両凸形状の正レンズL32と両凹形状の負レンズL33との接合正レンズとからなる。
The first lens group G1 is composed of, in order from the object side, a biconvex positive lens L11, and a cemented positive lens of a negative meniscus lens L12 with a convex surface facing the object side and a biconvex positive lens L13.
The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object, a positive meniscus lens L22 having a convex surface facing the object, a negative biconcave lens L23, and a convex surface And a cemented negative lens with a positive meniscus lens L24 facing the lens.
The third lens group G3 is composed of, in order from the object side, a biconvex positive lens L31, and a cemented positive lens of a biconvex positive lens L32 and a biconcave negative lens L33.
 第4レンズ群G4は、物体側に凸面を向けた負メニスカスレンズL41両凸形状の正レンズL42との接合正レンズからなる。
 第5レンズ群G5は、物体側から順に、両凸形状の正レンズL51と、両凹形状の負レンズL52とからなる。
 第6レンズ群G6は、物体側から順に、物体側に凹面を向けた負メニスカスレンズL61と、両凸形状の正レンズL62とからなる。
The fourth lens group G4 is composed of a negative meniscus lens L41 having a convex surface facing the object side and a positive lens cemented with a biconvex positive lens L42.
The fifth lens group G5 is composed of, in order from the object side, a biconvex positive lens L51 and a biconcave negative lens L52.
The sixth lens group G6 is composed of, in order from the object side, a negative meniscus lens L61 having a concave surface facing the object side, and a biconvex positive lens L62.
 本実施例に係る変倍光学系では、広角端状態と望遠端状態との間での変倍時に、第1レンズ群G1と第2レンズ群G2との間隔、第2レンズ群G2と第3レンズ群G3との間隔、第3レンズ群G3と第4レンズ群G4との間隔、第4レンズ群G4と第5レンズ群G5との間隔、および第5レンズ群G5と第6レンズ群G6との間隔が変化するように、第1レンズ群G1から第6レンズ群G6までの全てのレンズ群が光軸に沿って移動する。 In the variable magnification optical system according to the present embodiment, the distance between the first lens group G1 and the second lens group G2, the second lens group G2, and the third lens group G2 during zooming between the wide angle end state and the telephoto end state. The distance between the lens group G3, the distance between the third lens group G3 and the fourth lens group G4, the distance between the fourth lens group G4 and the fifth lens group G5, and the fifth lens group G5 and the sixth lens group G6 All the lens units from the first lens unit G1 to the sixth lens unit G6 move along the optical axis so that the interval between
 本実施例に係る光学系では、合焦レンズ群として、第4レンズ群G4を光軸に沿って物体側へ移動させるとともに、第5レンズ群G5を光軸に沿って像側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。 In the optical system according to the present embodiment, as the focusing lens group, the fourth lens group G4 is moved to the object side along the optical axis, and the fifth lens group G5 is moved to the image side along the optical axis. By this, focusing from an infinite distance object to a near distance object is performed.
 以下の表10に、本実施例に係る変倍光学系の諸元の値を掲げる。 Table 10 below presents values of specifications of the variable magnification optical system according to the present example.
(表10)第10実施例
[面データ]
 m       r        d        nd       νd 
 OP     ∞ 
   1     339.1302    3.342     1.48749    70.32 
   2   -1748.8042    0.200          
   3     113.3340    1.700     1.62004    36.40 
   4      62.3111    8.286     1.49700    81.73 
   5    -790.8224    可変       
                        
   6     452.0591    1.300     1.80400    46.60 
   7      41.1492    4.042            
   8      41.3304    3.091     1.68893    31.16 
   9      98.8092    4.158            
 10     -68.4923    1.000     1.70000    48.10 
 11      36.0772    3.318     1.80518    25.45 
 12     117.8747    可変            
                        
 13     180.8711    3.540     1.80400    46.60 
 14     -64.2101    0.200           
 15      40.7438    5.229     1.49700    81.73 
 16     -52.5435    1.200     1.85026    32.35 
 17     200.0407    1.376           
 18(S)   ∞       可変
                        
 19      68.3281    1.200     1.71736    29.57 
 20      20.1023    6.000     1.56732    42.58 
 21     -61.5874    可変            
                        
 22     188.7697    2.905     1.72825    28.38 
 23     -56.4394    0.719           
 24     -72.6983    1.000     1.80400    46.60 
 25      30.9300    可変       
                        
 26     -22.2025    1.300     1.69680    55.52 
 27     -38.2594    0.200           
 28      95.0769    3.373     1.80610    40.97 
 29    -205.8129    BF         
 I       ∞
 
[各種データ] 
変倍比      4.05
            W        M       T 
f         72.1    100.0    292.0 
FNO      4.68     4.86     5.88
2ω       33.86    24.02     8.26
Ymax   21.60    21.60    21.60 
TL      193.32   209.38   244.81 
BF       38.32    41.53    60.32 
 
             W       M       T           W        M        T
f,β       72.100  100.000  292.000       -0.033    -0.033    -0.033
d0          0.000    0.000    0.000     2108.51   2898.12   8529.76
d5          2.000   26.301   76.285        2.000    26.301    76.285 
d12        45.791   35.345    2.000       45.791    35.345     2.000
d18        29.471   29.387   29.007       28.880    29.181    28.801 
d21         2.000    3.362    2.000        2.786     4.328     3.858 
d25        16.057   14.780   16.521       15.862    14.019    14.868
 
[レンズ群データ] 
群    ST         f 
1       1       171.900 
2       6       -43.196 
3      13        51.979 
4      19        82.476
5      22       -51.000
6      26     48383.794
 
[条件式対応値]
(1)   MTF1/MTF2 =0.125
(2)   BFw/fw =0.531
(3)  (-fFN)/|fF|= 0.527
(4)   nP/nN= 0.913
(5)   |fF1|/|f1| =0.480
(6)   |fF2|/|f1| =0.297
(7)   |fF1|/ft =0.282
(8)   |fF2|/ft = 0.175
(9)   |βWF1|/|βWF2| = 0.288
(10) |βRw|/|βRt| = 0.911
(11)  ωw = 16.93°
(Table 10) Tenth Example [Plane Data]
m r d nd d d
OP ∞
1 339.1302 3.342 1.48749 70.32
2-1748.804 0.200
3 113.3340 1.700 1.62004 36.40
4 62.3111 8.286 1.49700 81.73
5-790.8224 Variable

6 452.0591 1.300 1.80400 46.60
7 41.1492 4.042
8 41.3304 3.091 1.68893 31.16
9 98.8092 4.158
10 -68.4923 1.000 1.70000 48.10
11 36.0772 3.318 1.80518 25.45
12 117.8747 Variable

13 180.8711 3.540 1.80400 46.60
14 -64.2101 0.200
15 40.7438 5.229 1.49700 81.73
16-52.5435 1.200 1.85026 32.35
17 200.0407 1.376
18 (S) ∞ variable
19 68.3281 1.200 1.71736 29.57
20 20.1023 6.000 1.56732 42.58
21 -61.5874 Variable

22 188.7697 2.905 1.72825 28.38
23-56.4394 0.719
24 -72.6983 1.000 1.80400 46.60
25 30.9300 Variable

26 -22.2025 1.300 1.69680 55.52
27-38.2594 0.200
28 95.0769 3.373 1.80610 40.97
29-205.8129 BF
I ∞

[Various data]
Magnification ratio 4.05
W M T
f 72.1 100.0 292.0
FNO 4.68 4.86 5.88
2ω 33.86 24.02 8.26
Ymax 21.60 21.60 21.60
TL 193.32 209.38 244.81
BF 38.32 41.53 60.32

W M T W M T
f, β 72.100 100.000 292.000 -0.033 -0.033 -0.033
d0 0.000 0.000 0.000 2108.51 2898.12 8259.76
d5 2.000 26.301 76.285 2.000 26.301 76.285
d12 45.791 35.345 2.000 45.791 35.345 2.000
d18 29.471 29.387 29.007 28.880 29.181 28.801
d21 2.000 3.362 2.000 2.786 4.328 3.858
d25 16.05 17.780 16.521 15.862 14.01 19 14.868

[Lens group data]
Group ST f
1 1 171.900
2 6 -43.196
3 13 51.979
4 19 82.476
5 22 -51.000
6 26 48383.794

[Conditional expression corresponding value]
(1) MTF1 / MTF2 = 0.125
(2) BFw / fw = 0.531
(3) (-fFN) / | fF | = 0.527
(4) nP / nN = 0.913
(5) | fF1 | / | f1 |
(6) | fF2 | / | f1 | = 0.297
(7) | fF 1 | / ft = 0.282
(8) | fF2 | / ft = 0.175
(9) | βWF1 | / | βWF2 | = 0.288
(10) | βRw | / | βRt | = 0.911
(11) ωw = 16.93 °
 図29A、図29B、及び図29Cはそれぞれ、第10実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠物体合焦時の諸収差図である。
 図30A、図30B、及び図30Cはそれぞれ、第10実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離物体合焦時の諸収差図である。
FIGS. 29A, 29B, and 29C are various aberration diagrams at the time of focusing on an infinity object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the tenth example.
FIGS. 30A, 30B, and 30C are various aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the tenth example.
 各諸収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離物体合焦時にも優れた結像性能を有していることがわかる。 As shown in the various aberration diagrams, the variable magnification optical system according to the present embodiment has excellent imaging performance with excellent correction of various aberrations from the wide-angle end state to the telephoto end state, and at the time of focusing on a short distance object. It can also be seen that they have excellent imaging performance.
(第11実施例)
 図31は、第11実施例に係る変倍光学系のレンズ構成を示す図である。
 本実施例に係る変倍光学系は、物体側から順に、負屈折力を有する第1レンズ群G1と、正屈折力を有する第2レンズ群G2と、正屈折力を有する第3レンズ群G3と、開口絞りSと、負屈折力を有する第4レンズ群G4と、正屈折力を有する第5レンズ群G5と、正屈折力を有する第6レンズ群G6と、負屈折力を有する第7レンズ群G7とから構成されている。
(Eleventh embodiment)
FIG. 31 shows a lens arrangement of a variable magnification optical system according to an eleventh example.
The variable magnification optical system according to the present embodiment includes, in order from the object side, a first lens group G1 having negative refractive power, a second lens group G2 having positive refractive power, and a third lens group G3 having positive refractive power. , An aperture stop S, a fourth lens group G4 having negative refracting power, a fifth lens group G5 having positive refracting power, a sixth lens group G6 having positive refracting power, and a seventh lens group having negative refracting power It is composed of a lens group G7.
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、両凹形状の負レンズL12と物体側に凸面を向けた正メニスカスレンズL13との接合正レンズとからなる。
 第2レンズ群G2は、両凸形状の正レンズL21と物体側に凹面を向けた負メニスカスレンズL22との接合正レンズからなる。
 第3レンズ群G3は、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合正レンズからなる。
The first lens group G1 is composed of, in order from the object side, a negative meniscus lens L11 having a convex surface facing the object side, and a cemented positive lens having a biconcave negative lens L12 and a positive meniscus lens L13 having a convex surface facing the object side It consists of
The second lens group G2 is composed of a positive cemented lens of a double convex positive lens L21 and a negative meniscus lens L22 having a concave surface facing the object side.
The third lens group G3 is composed of a positive cemented lens of a negative meniscus lens L31 with a convex surface facing the object side and a biconvex positive lens L32.
 第4レンズ群G4は、両凹形状の負レンズL41と物体側に凸面を向けた正メニスカスレンズL42との接合負レンズからなる。
 第5レンズ群G5は、両凸形状の正レンズL51からなる。
 第6レンズ群G6は、両凸形状の正レンズL61からなる。
 第7レンズ群G7は、物体側に凹面を向けた負メニスカスレンズL71からなる。
The fourth lens group G4 is composed of a cemented negative lens constructed by a double concave negative lens L41 and a positive meniscus lens L42 having a convex surface directed to the object side.
The fifth lens group G5 is composed of a biconvex positive lens L51.
The sixth lens group G6 is composed of a biconvex positive lens L61.
The seventh lens group G7 is composed of a negative meniscus lens L71 with a concave surface facing the object side.
 本実施例に係る変倍光学系では、広角端状態と望遠端状態との間での変倍時に、第1レンズ群G1と第2レンズ群G2との間隔、第2レンズ群G2と第3レンズ群G3との間隔、第3レンズ群G3と第4レンズ群G4との間隔、第4レンズ群G4と第5レンズ群G5との間隔、第5レンズ群G5と第6レンズ群G6との間隔、および第6レンズ群G6と第7レンズ群G7との間隔が変化するように、第1レンズ群G1から第7レンズ群G7までの全てのレンズ群が光軸に沿って移動する。 In the variable magnification optical system according to the present embodiment, the distance between the first lens group G1 and the second lens group G2, the second lens group G2, and the third lens group G2 during zooming between the wide angle end state and the telephoto end state. The distance between the lens group G3, the distance between the third lens group G3 and the fourth lens group G4, the distance between the fourth lens group G4 and the fifth lens group G5, the distance between the fifth lens group G5 and the sixth lens group G6 All the lens units from the first lens unit G1 to the seventh lens unit G7 move along the optical axis such that the distance and the distance between the sixth lens unit G6 and the seventh lens unit G7 change.
 本実施例に係る光学系では、合焦レンズ群として、第5レンズ群G5を光軸に沿って物体側へ移動させるとともに、第6レンズ群G6を第5レンズ群G5とは異なる軌跡で光軸に沿って物体側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。 In the optical system according to the present embodiment, as the focusing lens group, the fifth lens group G5 is moved to the object side along the optical axis, and the sixth lens group G6 has a locus different from that of the fifth lens group G5. By moving to the object side along the axis, focusing from an infinite distance object to a near distance object is performed.
 以下の表11に、本実施例に係る変倍光学系の諸元の値を掲げる。 Table 11 below presents values of specifications of the variable magnification optical system according to the present example.
(表11)第11実施例
[面データ]
 m       r        d        nd       νd 
 OP     ∞ 
   1     260.0000    2.900     1.74389    49.53 
* 2      30.1702   13.784            
   3   -1991.6463    2.100     1.59349    67.00 
   4      33.7055    8.364     2.00100    29.13 
   5      89.6077    可変       
                        
   6     108.4958    8.489     1.80100    34.92 
   7     -30.7757    1.500     1.80518    25.45 
   8    -204.3062    可変       
                        
   9      45.1018    1.500     1.85000    27.03 
 10      24.0000    9.603     1.59319    67.90 
 11     -88.4112    可変            
                        
 12(S)   ∞        1.733             
 13     -63.2999    1.300     1.65100    56.24 
 14      36.0420    2.727     1.90265    35.72 
 15      90.4648    可変       
                        
 16     139.2934    5.000     1.48749    70.32 
 17     -72.7540    可変            
                        
 18     554.8019    4.200     1.58913    61.15 
*19     -54.8898    可変       
                        
*20     -29.0077    1.500     1.84666    23.80 
 21     -45.1973    BF        
 I       ∞
 
[非球面データ]
m:2
κ  =   0.0000
A4  =   3.70839E-06
A6  =   7.95920E-10
A8  =   7.22303E-12
A10 =  -1.14971E-14
A12 =   9.51080E-18
 
m:19
κ  =   1.0000
A4  =   5.13891E-06
A6  =  -3.95654E-09
A8  =   1.36188E-11
A10 =  -1.64821E-14
 
m:20
κ  =   1.0000
A4  =   4.54393E-06
A6  =  -1.30549E-09
A8  =   6.99274E-13
A10 =   4.71450E-15
 
[各種データ] 
変倍比      2.99
            W        M       T 
f         22.7     50.0     67.9 
FNO      4.21     5.58     5.88
2ω       92.68    46.22    33.64
Ymax   19.70    21.60    21.60 
TL      188.49   156.49   166.42 
BF       14.19    21.35    26.73 
 
             W       M       T           W        M        T
f,β       22.700   50.000   67.900       -0.033    -0.033    -0.033
d0          0.000    0.000    0.000      642.626  1479.20   2020.08
d5         62.024    9.333    2.263       62.024     9.333     2.263 
d8          1.536    1.576    1.000        1.536     1.576     1.000
d11         2.200    6.706   19.808        2.200     6.706    19.808 
d15        25.740    8.889   12.359       25.733     7.830    10.488 
d17         3.523   29.546   31.736        2.523    29.489    32.585 
d19        14.577   14.391    7.819       15.584    15.506     8.840 
 
[レンズ群データ] 
群    ST         f 
1       1       -47.325 
2       6        90.647 
3       9        68.586 
4      12       -74.902
5      16        98.800
6      18        85.000
7      20       -99.892
 
[条件式対応値]
(1)   MTF1/MTF2 =1.831
(2)   BFw/fw =0.625
(5)   |fF1|/|f1| =2.088
(6)   |fF2|/|f1| =1.796
(7)   |fF1|/ft =1.455
(8)   |fF2|/ft = 1.252
(9)   |βWF1|/|βWF2| = 0.764
(10) |βRw|/|βRt| = 2.455
(11)  ωw = 46.34°
(Table 11) Eleventh embodiment [surface data]
m r d nd d d
OP ∞
1 260.0000 2.900 1.74389 49.53
* 2 30.1702 13.784
3-191.6463 2.100 1.59349 67.00
4 33.7055 8.364 2.00100 29.13
5 89.6077 Variable

6 108.4958 8.489 1.80100 34.92
7-30.7757 1.500 1.80518 25.45
8 -204.3062 Variable

9 45.1018 1.500 1.85000 27.03
10 24.0000 9.603 1.59319 67.90
11-88.4112 Variable

12 (S) ∞ 1.733
13 -63.2999 1.300 1.65100 56.24
14 36.0420 2.727 1.90265 35.72
15 90.4648 Variable

16 139.2934 5.000 1.48749 70.32
17-72.7540 variable

18 554.8019 4.200 1.5891 13 61.15
* 19-54.8898 Variable

* 20 -29.0077 1.500 1.84666 23.80
21 -45.1973 BF
I ∞

[Aspheric surface data]
m: 2
κ = 0.0000
A4 = 3.70839E-06
A6 = 7.95920 E-10
A8 = 7.22303 E-12
A10 = -1.14971E-14
A12 = 9.51080 E-18

m: 19
κ = 1.0000
A4 = 5.13891E-06
A6 = -3.95654E-09
A8 = 1.36188E-11
A10 = -1.64821E-14

m: 20
κ = 1.0000
A4 = 4.54393E-06
A6 = -1.30549E-09
A8 = 6.99274E-13
A10 = 4.71450E-15

[Various data]
Magnification 2.99
W M T
f 22.7 50.0 67.9
FNO 4.21 5.58 5.88
2ω 92.68 46.22 33.64
Ymax 19.70 21.60 21.60
TL 188.49 156.49 166.42
BF 14.19 21.35 26.73

W M T W M T
f, β 22.700 50.000 67.900 -0.033 -0.033 -0.033
d0 0.000 0.000 0.000 642.626 1479.20 2020.08
d5 62.024 9.333 2.263 62.024 9.333 2.263
d8 1.536 1.576 1.000 1.536 1.576 1.000
d11 2.200 6.706 19.808 2.200 6.706 19.808
d15 25.740 8.889 12.359 25.733 7.830 10.488
d17 3.523 29.546 31.736 2.523 29.489 32.585
d19 14.577 14.391 7.819 15.584 15.506 8.840

[Lens group data]
Group ST f
1 1 -47.325
2 6 90.647
3 9 68.586
4 12 -74.902
5 16 98.800
6 18 85.000
7 20-99.892

[Conditional expression corresponding value]
(1) MTF1 / MTF2 = 1.831
(2) BFw / fw = 0.625
(5) | fF1 | / | f1 | = 2.088
(6) | fF2 | / | f1 | = 1.796
(7) | fF1 | /ft=1.455
(8) | fF2 | / ft = 1.252
(9) | βWF1 | / | βWF2 | = 0.764
(10) | βRw | / | βRt | = 2.455
(11) ωw = 46.34 °
 図32A、図32B、及び図32Cはそれぞれ、第11実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠物体合焦時の諸収差図である。
 図33A、図33B、及び図33Cはそれぞれ、第11実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離物体合焦時の諸収差図である。
32A, 32B, and 32C are various aberration diagrams at the time of focusing on an infinite distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to Example 11.
FIGS. 33A, 33B, and 33C are aberration diagrams at the time of focusing on a short distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to Example 11.
 各諸収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに近距離物体合焦時にも優れた結像性能を有していることがわかる。 As shown in the various aberration diagrams, the variable magnification optical system according to the present embodiment has excellent imaging performance with excellent correction of various aberrations from the wide-angle end state to the telephoto end state, and at the time of focusing on a short distance object. It can also be seen that they have excellent imaging performance.
 上記各実施例によれば、広角端状態から望遠端状態への変倍時の収差変動、および無限遠物体から近距離物体への合焦時の収差変動を良好に抑える高い光学性能を備えた変倍光学系を実現することができる。さらに上記各実施例によれば、合焦レンズ群の軽量化および小型化を実現することができるので、合焦レンズ群の駆動機構を小型化し、鏡筒の大型化を招くことなく高速で静粛性の高い合焦動作を実現することができる。 According to each of the above-described embodiments, high optical performance is provided to well suppress aberration fluctuation during zooming from the wide-angle end state to the telephoto end state, and when focusing from an infinity object to a near distance object. A variable magnification optical system can be realized. Further, according to each of the above-described embodiments, since the weight reduction and size reduction of the focusing lens group can be realized, the drive mechanism of the focusing lens group can be miniaturized and the lens barrel can be made quiet at high speed without increasing the size of the lens barrel. It is possible to realize high-quality focusing operation.
 なお、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。以下の内容は、本実施形態の変倍光学系の光学性能を損なわない範囲で適宜採用することが可能である。 The above-described embodiments show one specific example of the present invention, and the present invention is not limited thereto. The following contents can be adopted appropriately as long as the optical performance of the variable magnification optical system of this embodiment is not impaired.
 本実施形態の変倍光学系の数値実施例として6群構成又は7群構成のものを示したが、本実施形態はこれに限られず、その他の群構成(例えば、8群等)の変倍光学系を構成することもできる。具体的には、上記各実施例の変倍光学系の最も物体側や最も像側にレンズ又はレンズ群を追加した構成でも構わない。或いは、隣り合うレンズ群とレンズ群との間にレンズ又はレンズ群を追加しても良い。 Although a six-group configuration or a seven-group configuration is shown as a numerical example of the variable magnification optical system according to the present embodiment, the present embodiment is not limited to this, and the magnification variation of other group configurations (for example, eight groups etc.) An optical system can also be configured. Specifically, a lens or lens group may be added to the most object side or the most image side of the variable magnification optical system of each of the above embodiments. Alternatively, a lens or a lens group may be added between the adjacent lens group and the lens group.
 また、上記各実施例では、2つ又は3つのレンズ群を合焦レンズ群としたが、レンズ群の一部或いは4つ以上のレンズ群を合焦レンズ群としても良い。また、各合焦レンズ群は、1つ又は2つのレンズ成分から構成されていればよく、1つのレンズ成分からなる構成がより好ましい。斯かる合焦レンズ群は、オートフォーカスに適用することも可能であり、オートフォーカス用のモータ、例えば超音波モータ、ステッピングモータ、VCMモータ等による駆動にも適している。 In each of the above embodiments, two or three lens groups are used as focusing lens groups. However, a part of the lens groups or four or more lens groups may be used as focusing lens groups. In addition, each focusing lens group may be configured of one or two lens components, and a configuration including one lens component is more preferable. Such a focusing lens group can also be applied to auto focusing, and is also suitable for driving by a motor for auto focusing, such as an ultrasonic motor, a stepping motor, a VCM motor or the like.
 また、上記各実施例の変倍光学系において、いずれかのレンズ群全体又はその一部を、防振群として光軸に対して垂直な方向の成分を含むように移動させ、又は光軸を含む面内方向へ回転移動(揺動)させることにより、防振を行う構成とすることもできる。 Further, in the variable magnification optical system of each of the above-described embodiments, the entire lens group or a part thereof is moved as a vibration reduction group so as to include a component in a direction perpendicular to the optical axis, or It is also possible to adopt a configuration in which vibration isolation is performed by rotational movement (swinging) in the in-plane direction including.
 また、上記各実施例の変倍光学系を構成するレンズのレンズ面は、球面又は平面としてもよく、或いは非球面としてもよい。レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防ぐことができるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。 The lens surface of the lens constituting the variable magnification optical system of each of the above embodiments may be a spherical surface, a flat surface, or an aspheric surface. When the lens surface is spherical or flat, it is preferable because lens processing and assembly adjustment can be facilitated, and deterioration of optical performance due to lens processing and assembly adjustment errors can be prevented. In addition, even when the image plane shifts, it is preferable because the deterioration of the imaging performance is small. When the lens surface is aspheric, any of aspheric aspheric surfaces by grinding, a glass mold aspheric surface formed by shaping a glass into aspheric surface shape, or a composite aspheric surface formed by forming a resin on a glass surface into an aspheric surface shape Good. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
 また、上記各実施例の変倍光学系において、開口絞りSは第2レンズ群G2と第3レンズ群G3との間、或いは第3レンズ群G3と第4レンズ群G4との間に配置されることが好ましいが、開口絞りとして部材を設けずにレンズ枠でその役割を代用する構成としてもよい。 In the variable magnification optical system of each of the above embodiments, the aperture stop S is disposed between the second lens group G2 and the third lens group G3 or between the third lens group G3 and the fourth lens group G4. However, the lens frame may substitute for the role without providing a member as the aperture stop.
 また、上記各実施例の変倍光学系を構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。 Further, an antireflective film having high transmittance over a wide wavelength range may be provided on the lens surface of the lens constituting the variable magnification optical system of each of the above embodiments. This can reduce flare and ghost and achieve high contrast and high optical performance.
 次に、本実施形態の変倍光学系を備えたカメラを図34に基づいて説明する。
 図34は本実施形態の変倍光学系を備えたカメラの構成を示す図である。
 図34に示すようにカメラ1は、撮影レンズ2として上記第1実施例に係る変倍光学系を備えたレンズ交換式の所謂ミラーレスカメラである。
Next, a camera provided with the variable magnification optical system of the present embodiment will be described based on FIG.
FIG. 34 is a view showing the configuration of a camera provided with the variable magnification optical system of the present embodiment.
As shown in FIG. 34, the camera 1 is a so-called mirrorless camera of a lens interchangeable type provided with the variable magnification optical system according to the first embodiment as the photographing lens 2.
 本カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子によって被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF(Electronic view finder:電子ビューファインダ)4に表示される。これにより撮影者は、EVF4を介して被写体を観察することができる。
 また、撮影者によって不図示のレリーズボタンが押されると、撮像部3で生成された被写体の画像が不図示のメモリに記憶される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。
In the present camera 1, light from an object (not shown) from the object (not shown) is collected by the photographing lens 2 and passes through an OLPF (Optical Low Pass Filter) (not shown) on the imaging surface of the imaging unit 3 Form an image of the subject. Then, the subject image is photoelectrically converted by the photoelectric conversion element provided in the imaging unit 3 to generate the image of the subject. This image is displayed on an EVF (Electronic view finder) 4 provided in the camera 1. Thereby, the photographer can observe the subject via the EVF 4.
When the photographer presses a release button (not shown), the image of the subject generated by the imaging unit 3 is stored in a memory (not shown). In this way, the photographer can shoot a subject with the main camera 1.
 ここで、本カメラ1に撮影レンズ2として搭載した上記第1実施例に係る変倍光学系は、上述のように良好な光学性能を備え、合焦レンズ群の軽量化および小型化が図られている。すなわち本カメラ1は、広角端状態から望遠端状態への変倍時の収差変動と、無限遠物体から近距離物体への合焦時の収差変動とを良好に抑える高い光学性能を実現するとともに、合焦レンズ群の小型軽量化を図ることにより合焦動作の高速化を実現することができる。なお、上記第2~第11実施例に係る変倍光学系を撮影レンズ2として搭載したカメラを構成しても、上記カメラ1と同様の効果を奏することができる。また、クイックリターンミラーを有し、ファインダ光学系によって被写体を観察する一眼レフタイプのカメラに上記各実施例に係る変倍光学系を搭載した場合でも、上記カメラ1と同様の効果を奏することができる。 Here, the variable magnification optical system according to the first embodiment mounted as the photographing lens 2 in the present camera 1 has good optical performance as described above, and weight reduction and downsizing of the focusing lens group are achieved. ing. That is, the camera 1 realizes high optical performance that well suppresses aberration fluctuation during zooming from the wide-angle end state to the telephoto end state, and when focusing from an infinite distance object to a near distance object. By reducing the size and weight of the focusing lens unit, it is possible to realize high-speed focusing operation. Even if a camera mounted with the variable magnification optical system according to the second to eleventh examples as the taking lens 2 is configured, the same effect as the camera 1 can be obtained. Even when the variable magnification optical system according to each of the above embodiments is mounted on a single-lens reflex camera having a quick return mirror and observing a subject by a finder optical system, the same effect as that of the camera 1 can be obtained. it can.
 次に、本実施形態の変倍光学系の製造方法の概略を図35に基づいて説明する。
 図35は本実施形態の変倍光学系の製造方法の概略を示すフロー図である。
Next, an outline of a method of manufacturing the variable magnification optical system of the present embodiment will be described based on FIG.
FIG. 35 is a flowchart showing an outline of a method of manufacturing a variable magnification optical system according to this embodiment.
 図35に示す本実施形態の変倍光学系の製造方法は、複数のレンズ群を有する変倍光学系の製造方法であって、以下のステップS1~S3を含むものである。 The method of manufacturing a variable magnification optical system according to this embodiment shown in FIG. 35 is a method of manufacturing a variable magnification optical system having a plurality of lens groups, and includes the following steps S1 to S3.
 ステップS1:複数のレンズ群を準備し、変倍時に各レンズ群の間隔が変化するように構成する。
 ステップS2:複数のレンズ群が、合焦の際移動する物体側合焦レンズ群と、物体側合焦レンズ群より像側に配置され、合焦の際物体側合焦レンズ群とは異なる軌跡で移動する少なくとも一つの像側合焦レンズ群とを有するように構成する。
 ステップS3:変倍光学系が以下の条件式(1)および(2)を満足するようにする。
(1)MTF1/MTF2 < 5.0
(2)0.2 < BFw/fw < 2.0
 ただし、
MTF1:望遠端状態における無限遠物体から近距離物体への合焦の際の前記物体側合焦レンズ群の移動量の絶対値
MTF2:望遠端状態における無限遠物体から近距離物体への合焦の際の、前記像側合焦レンズ群のうち最も物体側に配置された合焦レンズ群の移動量の絶対値
BFw:広角端状態における前記変倍光学系のバックフォーカス
fw:広角端状態における前記変倍光学系の焦点距離
Step S1: A plurality of lens groups are prepared, and the intervals between the lens groups are changed at the time of zooming.
Step S2: A plurality of lens units are disposed on the image side of the object-side focusing lens unit that moves during focusing and the object-side focusing lens unit, and a locus different from the object-side focusing lens unit during focusing And at least one image-side focusing lens group that moves in
Step S3: A variable magnification optical system is made to satisfy the following conditional expressions (1) and (2).
(1) MTF1 / MTF2 <5.0
(2) 0.2 <BFw / fw <2.0
However,
MTF1: absolute value of the amount of movement of the object-side focusing lens unit when focusing from an infinite distance object to a close distance object in the telephoto end state MTF2: focusing from an infinity object to a close object in the telephoto end state The absolute value BFw of the movement amount of the focusing lens unit disposed closest to the object side among the image-side focusing lens units at the time of: back focus fw of the variable magnification optical system in the wide angle end state: in the wide angle end state Focal length of the variable magnification optical system
 斯かる本実施形態の変倍光学系の製造方法によれば、広角端状態から望遠端状態への変倍時の収差変動と、無限遠物体から近距離物体への合焦時の収差変動とを良好に抑える高い光学性能を実現するとともに、合焦レンズ群の小型軽量化を図ることにより合焦動作の高速化を実現する変倍光学系を製造することができる。 According to the manufacturing method of the variable magnification optical system of the present embodiment, aberration fluctuation at the time of zooming from the wide-angle end state to the telephoto end state, and aberration fluctuation at the time of focusing from an infinite distance object to a near distance object As a result of realizing high optical performance that well suppresses the lens size and reducing the size and weight of the focusing lens group, it is possible to manufacture a variable power optical system that realizes speeding up of the focusing operation.
G1   第1レンズ群
G2   第2レンズ群
G3   第3レンズ群
G4   第4レンズ群
G5   第5レンズ群
G6   第6レンズ群
G7   第7レンズ群
S    開口絞り
I    像面
1    カメラ
2    撮影レンズ
G1 first lens group G2 second lens group G3 third lens group G4 fourth lens group G5 fifth lens group G6 sixth lens group G7 seventh lens group S aperture stop I image plane 1 camera 2 photographing lens

Claims (19)

  1.  複数のレンズ群を有し、
     変倍時に前記各レンズ群の間隔が変化し、
     前記複数のレンズ群は、合焦の際移動する物体側合焦レンズ群と、前記物体側合焦レンズ群より像側に配置され、合焦の際前記物体側合焦レンズ群とは異なる軌跡で移動する少なくとも一つの像側合焦レンズ群とを有し、
     以下の条件式を満足する変倍光学系。
      MTF1/MTF2 < 5.0
      0.2 < BFw/fw < 2.0
     ただし、
    MTF1:望遠端状態における無限遠物体から近距離物体への合焦の際の前記物体側合焦レンズ群の移動量の絶対値
    MTF2:望遠端状態における無限遠物体から近距離物体への合焦の際の、前記像側合焦レンズ群のうち最も物体側に配置された合焦レンズ群の移動量の絶対値
    BFw:広角端状態における前記変倍光学系のバックフォーカス
    fw:広角端状態における前記変倍光学系の焦点距離
    Have multiple lens groups,
    During zooming, the distance between the lens units changes,
    The plurality of lens units are disposed on the image side of the object-side focusing lens unit that moves when focusing and the object-side focusing lens unit, and a locus that is different from the object-side focusing lens unit when focusing And at least one image-side focusing lens group that moves
    Variable-magnification optical system that satisfies the following conditional expressions.
    MTF1 / MTF2 <5.0
    0.2 <BFw / fw <2.0
    However,
    MTF1: absolute value of the amount of movement of the object-side focusing lens unit when focusing from an infinite distance object to a close distance object in the telephoto end state MTF2: focusing from an infinity object to a close object in the telephoto end state The absolute value BFw of the movement amount of the focusing lens unit disposed closest to the object side among the image-side focusing lens units at the time of: back focus fw of the variable magnification optical system in the wide angle end state: in the wide angle end state Focal length of the variable magnification optical system
  2.  前記物体側合焦レンズ群および前記像側合焦レンズ群の少なくとも一つの合焦レンズ群は、少なくとも一つの負の屈折力を有するレンズを有し、
     以下の条件式を満足する変倍光学系。
      0.45 < (-fFN)/|fF| < 1.70
     ただし、
    fFN:前記物体側合焦レンズ群および前記像側合焦レンズ群内にあるレンズのうち、最も負の屈折力が強いレンズの焦点距離
    fF:前記物体側合焦レンズ群および前記像側合焦レンズ群のうち、最も屈折力が強い合焦レンズ群の焦点距離
    The at least one focusing lens group of the object side focusing lens group and the image side focusing lens group has a lens having at least one negative refractive power,
    Variable-magnification optical system that satisfies the following conditional expressions.
    0.45 <(-fFN) / | fF | <1.70
    However,
    fFN: Of the lenses in the object-side focusing lens group and the image-side focusing lens group, the focal length fF of the lens having the strongest negative refractive power: the object-side focusing lens group and the image-side focusing Of the lens units, the focal length of the focusing lens unit with the highest refractive power
  3.  前記物体側合焦レンズ群は正の屈折力を有する請求項1又は2に記載の変倍光学系。 The variable magnification optical system according to claim 1, wherein the object side focusing lens group has positive refractive power.
  4.  前記像側合焦レンズ群のうち最も像側に配置された合焦レンズ群は正の屈折力を有する請求項1から請求項3のいずれか一項に記載の変倍光学系。 The variable magnification optical system according to any one of claims 1 to 3, wherein a focusing lens group disposed closest to the image among the image side focusing lens groups has positive refractive power.
  5.  前記物体側合焦レンズ群は、一つまたは二つのレンズ成分で構成されている請求項1から請求項4のいずれか一項に記載の変倍光学系。 The variable magnification optical system according to any one of claims 1 to 4, wherein the object side focusing lens group is configured of one or two lens components.
  6.  前記像側合焦レンズ群は、一つまたは二つのレンズ成分で構成されている請求項1から請求項5のいずれか一項に記載の変倍光学系。 The variable magnification optical system according to any one of claims 1 to 5, wherein the image side focusing lens group is configured of one or two lens components.
  7.  最も物体側に、合焦の際固定の第1レンズ群を有する請求項1から請求項6の何れか一項に記載の変倍光学系。 The variable magnification optical system according to any one of claims 1 to 6, further comprising a first lens unit which is fixed at the time of focusing on the most object side.
  8.  前記物体側合焦レンズ群および前記像側合焦レンズ群の少なくとも一つの合焦レンズ群は、少なくとも一つの負の屈折力を有するレンズを有し、
     以下の条件式を満足する請求項1から請求項7の何れか一項に記載の変倍光学系。
      0.65 < nP/nN < 1.10
     ただし、
    nP:前記物体側合焦レンズ群および前記像側合焦レンズ群内にあるレンズのうち、最も正の屈折力が強いレンズの屈折率
    nN:前記物体側合焦レンズ群および前記像側合焦レンズ群内にあるレンズのうち、最も負の屈折力が強いレンズの屈折率
    The at least one focusing lens group of the object side focusing lens group and the image side focusing lens group has a lens having at least one negative refractive power,
    The variable magnification optical system according to any one of claims 1 to 7, which satisfies the following conditional expression.
    0.65 <nP / nN <1.10
    However,
    nP: Of the lenses in the object side focusing lens group and the image side focusing lens group, the refractive index nN of the lens having the most positive refractive power: the object side focusing lens group and the image side focusing Of the lenses in the lens group, the refractive index of the lens with the strongest negative refractive power
  9.  以下の条件式を満足する請求項7又は請求項8の何れか一項に記載の変倍光学系。
      0.40 < |fF1|/|f1| < 2.60
     ただし、
    fF1:前記物体側合焦レンズ群の焦点距離
    f1:前記第1レンズ群の焦点距離
    The variable magnification optical system according to any one of claims 7 and 8, wherein the following conditional expression is satisfied.
    0.40 <| fF1 | / | f1 | <2.60
    However,
    fF1: focal length of the object side focusing lens unit f1: focal length of the first lens unit
  10.  以下の条件式を満足する請求項7から請求項9の何れか一項に記載の変倍光学系。
      0.20 < |fF2|/|f1| < 3.80
     ただし、
    fF2:前記像側合焦レンズ群のうち最も像側に配置された合焦レンズ群の焦点距離
    f1:前記第1レンズ群の焦点距離
    The variable magnification optical system according to any one of claims 7 to 9, which satisfies the following conditional expression.
    0.20 <| fF2 | / | f1 | <3.80
    However,
    fF2: Focal length f1 of the focusing lens group disposed closest to the image side among the image-side focusing lens groups f1: Focal length of the first lens group
  11.  前記物体側合焦レンズ群は、物体側から順に、正の屈折力を有するレンズと、負の屈折力を有するレンズから成る請求項1から請求項10の何れか一項に記載の変倍光学系。 The variable magnification optical system according to any one of claims 1 to 10, wherein the object side focusing lens group comprises, in order from the object side, a lens having a positive refractive power and a lens having a negative refractive power. system.
  12.  開口絞りを有し、
     前記物体側合焦レンズ群は、前記開口絞りより像側に配置されている請求項1から請求項11の何れか一項に記載の変倍光学系。
    With an aperture stop,
    The variable magnification optical system according to any one of claims 1 to 11, wherein the object side focusing lens group is disposed on the image side of the aperture stop.
  13.  以下の条件式を満足する請求項1から請求項12の何れか一項に記載の変倍光学系。
      0.10 < |fF1|/ft < 3.00
     ただし、
    fF1:前記物体側合焦レンズ群の焦点距離
    ft:望遠端状態における前記変倍光学系の焦点距離
    The variable magnification optical system according to any one of claims 1 to 12, which satisfies the following conditional expression.
    0.10 <| fF1 | / ft <3.00
    However,
    fF1: focal length ft of the object-side focusing lens unit focal length of the variable magnification optical system in the telephoto end state
  14.  以下の条件式を満足する請求項1から請求項13の何れか一項に記載の変倍光学系。
      0.10 < |fF2|/ft < 3.00
     ただし、
    fF2:前記像側合焦レンズ群のうち最も像側に配置された合焦レンズ群の焦点距離
    ft:望遠端状態における前記変倍光学系の焦点距離
    The variable magnification optical system according to any one of claims 1 to 13, which satisfies the following conditional expression.
    0.10 <| fF2 | / ft <3.00
    However,
    fF2: focal length ft of the focusing lens group disposed closest to the image side among the image-side focusing lens groups ft: focal length of the variable magnification optical system in the telephoto end state
  15.  以下の条件式を満足する請求項1から請求項14の何れか一項に記載の変倍光学系。
      |βWF1|/|βWF2| < 4.00
     ただし、
    βWF1:無限遠物体合焦時の広角端状態における前記物体側合焦レンズ群の横倍率
    βWF2:無限遠物体合焦時の広角端状態における、前記像側合焦レンズ群のうち最も物体側に配置された合焦レンズ群の横倍率
    The variable magnification optical system according to any one of claims 1 to 14, wherein the following conditional expressions are satisfied.
    | ΒWF1 | / | βWF2 | <4.00
    However,
    βWF1: lateral magnification of the object-side focusing lens unit in the wide-angle end state when focusing on an infinite object βWF2: to the most object side of the image-side focusing lens units in the wide-angle end state when focusing on an infinite object Lateral magnification of the focusing lens unit arranged
  16.  以下の条件式を満足する請求項1から請求項15の何れか一項に記載の変倍光学系。
      |βRw|/|βRt| < 4.00
     ただし、
    βRw:無限遠物体合焦時の広角端状態における前記物体側合焦レンズ群から像面までの合成横倍率
    βRt:無限遠物体合焦時の望遠端状態における前記物体側合焦レンズ群から像面までの合成横倍率
    The variable magnification optical system according to any one of claims 1 to 15, which satisfies the following conditional expression.
    | ΒRw | / | βRt | <4.00
    However,
    βRw: composite lateral magnification from the object-side focusing lens unit to the image plane in the wide-angle end state at the time of infinity object focusing βRt: an image from the object-side focusing lens group in the telephoto end state at infinity object focusing Composite lateral magnification up to surface
  17.  以下の条件式を満足する請求項1から請求項16の何れか一項に記載の変倍光学系。
      15.0°<ωw<85.0°
     ただし、
    ωw:広角端状態における前記変倍光学系の半画角
    The variable magnification optical system according to any one of claims 1 to 16, which satisfies the following conditional expression.
    15.0 ° <ωw <85.0 °
    However,
    ω w: half angle of view of the variable magnification optical system in the wide angle end state
  18.  請求項1から請求項17の何れか一項に記載の変倍光学系を有する光学装置。 An optical apparatus comprising the variable magnification optical system according to any one of claims 1 to 17.
  19.  複数のレンズ群を有する変倍光学系の製造方法であって、
     変倍時に前記各レンズ群の間隔が変化するように構成し、
     前記複数のレンズ群が、合焦の際移動する物体側合焦レンズ群と、前記物体側合焦レンズ群より像側に配置され、合焦の際前記物体側合焦レンズ群とは異なる軌跡で移動する少なくとも一つの像側合焦レンズ群とを有するように構成し、
     以下の条件式を満足するように構成する変倍光学系の製造方法。
      MTF1/MTF2 < 5.0
      0.2 < BFw/fw < 2.0
     ただし、
    MTF1:望遠端状態における無限遠物体から近距離物体への合焦の際の前記物体側合焦レンズ群の移動量の絶対値
    MTF2:望遠端状態における無限遠物体から近距離物体への合焦の際の、前記像側合焦レンズ群のうち最も物体側に配置された合焦レンズ群の移動量の絶対値
    BFw:広角端状態における前記変倍光学系のバックフォーカス
    fw:広角端状態における前記変倍光学系の焦点距離
    A method of manufacturing a variable magnification optical system having a plurality of lens groups, comprising:
    The distance between the lens units is changed during zooming.
    The plurality of lens units are disposed on the image side of the object-side focusing lens unit moving in focusing and the image-side focusing lens unit, and a locus different from the object-side focusing lens unit in focusing And at least one image-side focusing lens group that moves at
    A manufacturing method of a variable magnification optical system configured to satisfy the following conditional expression.
    MTF1 / MTF2 <5.0
    0.2 <BFw / fw <2.0
    However,
    MTF1: absolute value of the amount of movement of the object-side focusing lens unit when focusing from an infinite distance object to a close distance object in the telephoto end state MTF2: focusing from an infinity object to a close object in the telephoto end state The absolute value BFw of the movement amount of the focusing lens unit disposed closest to the object side among the image-side focusing lens units at the time of: back focus fw of the variable magnification optical system in the wide angle end state: in the wide angle end state Focal length of the variable magnification optical system
PCT/JP2017/041637 2017-11-20 2017-11-20 Variable magnification optical system, optical device, and manufacturing method of variable magnification optical system WO2019097717A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2017/041637 WO2019097717A1 (en) 2017-11-20 2017-11-20 Variable magnification optical system, optical device, and manufacturing method of variable magnification optical system
JP2019553667A JPWO2019097717A1 (en) 2017-11-20 2017-11-20 Magnification optics, optics, and methods of manufacturing variable magnification optics
JP2022150242A JP7351390B2 (en) 2017-11-20 2022-09-21 Variable magnification optical system, optical device, and manufacturing method of variable magnification optical system
JP2023143590A JP2023164939A (en) 2017-11-20 2023-09-05 Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/041637 WO2019097717A1 (en) 2017-11-20 2017-11-20 Variable magnification optical system, optical device, and manufacturing method of variable magnification optical system

Publications (1)

Publication Number Publication Date
WO2019097717A1 true WO2019097717A1 (en) 2019-05-23

Family

ID=66540128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041637 WO2019097717A1 (en) 2017-11-20 2017-11-20 Variable magnification optical system, optical device, and manufacturing method of variable magnification optical system

Country Status (2)

Country Link
JP (3) JPWO2019097717A1 (en)
WO (1) WO2019097717A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021076817A (en) * 2019-11-12 2021-05-20 横浜リーディングデザイン合資会社 Projection lens
CN114286960A (en) * 2019-08-26 2022-04-05 株式会社尼康 Variable power optical system, optical apparatus, and method for manufacturing variable power optical system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61169808A (en) * 1985-01-22 1986-07-31 Nippon Kogaku Kk <Nikon> Zoom lens
JPH02256011A (en) * 1988-12-08 1990-10-16 Nikon Corp Zoom lens system
JPH0329912A (en) * 1989-06-27 1991-02-07 Nikon Corp Zoom lens
JPH10268194A (en) * 1997-03-26 1998-10-09 Tochigi Nikon:Kk Zoom lens
JP2006251529A (en) * 2005-03-11 2006-09-21 Nikon Corp Zoom lens
JP2007086307A (en) * 2005-09-21 2007-04-05 Olympus Imaging Corp Zoom optical system and imaging apparatus equipped with the same
JP2015197655A (en) * 2014-04-03 2015-11-09 キヤノン株式会社 Zoom lens and image capturing device having the same
JP2016139125A (en) * 2015-01-21 2016-08-04 パナソニックIpマネジメント株式会社 Zoom lens system, interchangeable lens device, and camera system
JP2017173680A (en) * 2016-03-25 2017-09-28 キヤノン株式会社 Zoom lens and image capturing device having the same
JP2018005165A (en) * 2016-07-08 2018-01-11 キヤノン株式会社 Zoom lens and imaging apparatus having the same

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014212A (en) * 1983-07-04 1985-01-24 Canon Inc Zoom lens
JP2791162B2 (en) * 1990-01-31 1998-08-27 キヤノン株式会社 Rear focus zoom lens
JPH04114116A (en) * 1990-09-04 1992-04-15 Minolta Camera Co Ltd Zoom lens
JPH04317020A (en) * 1991-04-16 1992-11-09 Minolta Camera Co Ltd Zoom lens
JPH07306363A (en) * 1994-05-13 1995-11-21 Nikon Corp Zoom lens
JP3144192B2 (en) * 1993-11-29 2001-03-12 キヤノン株式会社 Zoom lens
JP3526182B2 (en) * 1997-09-02 2004-05-10 キヤノン株式会社 Zoom lens and camera having the same
JPH11133304A (en) * 1997-10-30 1999-05-21 Canon Inc Zoom lens
JP4006073B2 (en) * 1997-12-25 2007-11-14 キヤノン株式会社 Zoom lens
JP2004334185A (en) * 2003-04-18 2004-11-25 Canon Inc Zoom lens
JP2005084647A (en) 2003-09-11 2005-03-31 Fujinon Corp Zoom lens
JP5051844B2 (en) * 2007-12-26 2012-10-17 オリンパスイメージング株式会社 Zoom lens and imaging apparatus using the same
JP2012189840A (en) * 2011-03-11 2012-10-04 Hoya Corp Zoom lens system
JP2013200543A (en) * 2012-02-22 2013-10-03 Olympus Imaging Corp Zoom lens and imaging device including the same
JP5972020B2 (en) * 2012-04-19 2016-08-17 Hoya株式会社 Zoom lens system
JP5922474B2 (en) * 2012-04-20 2016-05-24 Hoya株式会社 Zoom lens system
JP5892020B2 (en) * 2012-09-27 2016-03-23 ソニー株式会社 Zoom lens and imaging device
JP6467769B2 (en) * 2013-11-21 2019-02-13 株式会社ニコン Zoom lens and optical device
JP6312518B2 (en) 2014-05-09 2018-04-18 キヤノン株式会社 Zoom lens and imaging apparatus having the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61169808A (en) * 1985-01-22 1986-07-31 Nippon Kogaku Kk <Nikon> Zoom lens
JPH02256011A (en) * 1988-12-08 1990-10-16 Nikon Corp Zoom lens system
JPH0329912A (en) * 1989-06-27 1991-02-07 Nikon Corp Zoom lens
JPH10268194A (en) * 1997-03-26 1998-10-09 Tochigi Nikon:Kk Zoom lens
JP2006251529A (en) * 2005-03-11 2006-09-21 Nikon Corp Zoom lens
JP2007086307A (en) * 2005-09-21 2007-04-05 Olympus Imaging Corp Zoom optical system and imaging apparatus equipped with the same
JP2015197655A (en) * 2014-04-03 2015-11-09 キヤノン株式会社 Zoom lens and image capturing device having the same
JP2016139125A (en) * 2015-01-21 2016-08-04 パナソニックIpマネジメント株式会社 Zoom lens system, interchangeable lens device, and camera system
JP2017173680A (en) * 2016-03-25 2017-09-28 キヤノン株式会社 Zoom lens and image capturing device having the same
JP2018005165A (en) * 2016-07-08 2018-01-11 キヤノン株式会社 Zoom lens and imaging apparatus having the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114286960A (en) * 2019-08-26 2022-04-05 株式会社尼康 Variable power optical system, optical apparatus, and method for manufacturing variable power optical system
JP2021076817A (en) * 2019-11-12 2021-05-20 横浜リーディングデザイン合資会社 Projection lens
JP7394446B2 (en) 2019-11-12 2023-12-08 横浜リーディングデザイン合資会社 projection lens

Also Published As

Publication number Publication date
JP2023164939A (en) 2023-11-14
JPWO2019097717A1 (en) 2020-10-22
JP7351390B2 (en) 2023-09-27
JP2022174298A (en) 2022-11-22

Similar Documents

Publication Publication Date Title
JP7111224B2 (en) Variable-magnification optical system, optical device, and method for manufacturing variable-magnification optical system
JP5581730B2 (en) Variable magnification optical system, optical device
JP7092147B2 (en) Magnification optical system, optical device, and manufacturing method of variable magnification optical system
JP7351390B2 (en) Variable magnification optical system, optical device, and manufacturing method of variable magnification optical system
JP6806238B2 (en) Magnification optics, optics, and methods of manufacturing variable magnification optics
JP2011107269A (en) Lens system, optical equipment, and method of manufacturing lens system
JP5344291B2 (en) Zoom lens, optical device, and method of manufacturing zoom lens
JP2020112808A (en) Zoom lens, optical device, and method of manufacturing zoom lens
JP6787485B2 (en) Magnification optics, optics, and methods of manufacturing variable magnification optics
WO2018185868A1 (en) Variable magnification optical system, optical device, and production method for variable magnification optical system
JPWO2018074413A1 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP7095706B2 (en) Magnification optical system, optical device, and manufacturing method of variable magnification optical system
JP7063340B2 (en) Magnification optical system, optical device, and manufacturing method of variable magnification optical system
JP6806239B2 (en) Magnification optics, optics, and methods of manufacturing variable magnification optics
JP6281200B2 (en) Variable magnification optical system and optical apparatus
WO2015136988A1 (en) Zoom lens, optical device, and method for manufacturing zoom lens
JP7243884B2 (en) Variable magnification optical system, optical equipment and imaging equipment using the same
JP2018045261A (en) Variable magnification optical system, and optical device
JP5338865B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP7163974B2 (en) Variable Magnification Optical System and Optical Equipment
JPWO2016194811A1 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP2023058744A (en) Variable power optical system, and optical instrument using the same
WO2020136745A1 (en) Variable power optical system, optical device, and method for manufacturing variable power optical system
WO2020136744A1 (en) Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
WO2020012638A1 (en) Variable power optical system, optical apparatus, and production method for variable power optical system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932462

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019553667

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17932462

Country of ref document: EP

Kind code of ref document: A1