JP2011107269A - Lens system, optical equipment, and method of manufacturing lens system - Google Patents

Lens system, optical equipment, and method of manufacturing lens system Download PDF

Info

Publication number
JP2011107269A
JP2011107269A JP2009260145A JP2009260145A JP2011107269A JP 2011107269 A JP2011107269 A JP 2011107269A JP 2009260145 A JP2009260145 A JP 2009260145A JP 2009260145 A JP2009260145 A JP 2009260145A JP 2011107269 A JP2011107269 A JP 2011107269A
Authority
JP
Japan
Prior art keywords
lens
lens group
lens system
object side
focusing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009260145A
Other languages
Japanese (ja)
Other versions
JP5463865B2 (en
Inventor
Toshinori Take
俊典 武
Akira Yamagami
陽 山上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2009260145A priority Critical patent/JP5463865B2/en
Priority to US12/917,778 priority patent/US8934176B2/en
Priority to EP10190749A priority patent/EP2325682A3/en
Priority to CN201010548591.8A priority patent/CN102062934B/en
Publication of JP2011107269A publication Critical patent/JP2011107269A/en
Application granted granted Critical
Publication of JP5463865B2 publication Critical patent/JP5463865B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide: a lens system which satisfies both of internal focusing system and a decentering lens group with obtaining compactness and excellent imaging performance; optical equipment having the lens system; and a method of manufacturing the lens system. <P>SOLUTION: The lens system includes a plurality of lens groups. The lens group to an image side of the lens group closest to an object has a positive refractive power. The lens group to the image side of the lens group closest to the object has a focusing lens group Gf for focusing from an infinite distance object to a near distance object, and the decentering lens group Gs which can move to have components vertical to the optical axis, and the focusing lens group Gf is arranged to the image side of the decentering lens group Gs. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、レンズ系とこれを有する光学機器、レンズ系の製造方法に関する。   The present invention relates to a lens system, an optical apparatus having the lens system, and a method for manufacturing the lens system.

従来、デジタルスチルカメラやビデオカメラ等に適したレンズ系が提案されている(例えば、特許文献1を参照)。   Conventionally, a lens system suitable for a digital still camera, a video camera, or the like has been proposed (see, for example, Patent Document 1).

特開平8−234102号公報JP-A-8-234102

従来のレンズ系では、最も物体側のレンズ群で合焦する構成の場合、レンズ系が大型化するという問題がある。   In the conventional lens system, there is a problem that the lens system becomes large in the case where the lens group closest to the object side is focused.

本発明は、上記問題に鑑みてなされたものであり、内焦方式及び偏心レンズ群を両立させ、小型で高い結像性能を有するレンズ系とこれを有する光学機器、レンズ系の製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and provides a lens system that has both an in-focus method and a decentered lens group and that has a small size and high imaging performance, an optical apparatus having the lens system, and a method for manufacturing the lens system. The purpose is to do.

上記課題を解決するために、本発明は、複数のレンズ群で構成され、最も物体側のレンズ群の像側にあるレンズ群は正屈折力を有し、前記最も物体側のレンズ群の像側にあるレンズ群は、無限遠物体から近距離物体への合焦を行う合焦レンズ群と、光軸に垂直な方向の成分を持つように移動することが可能な偏心レンズ群とを有し、前記合焦レンズ群は前記偏心レンズ群の像側に配置されることを特徴とするレンズ系を提供する。   In order to solve the above-described problem, the present invention includes a plurality of lens groups, and the lens group on the image side of the most object side lens group has a positive refractive power, and the image of the lens group on the most object side. The lens group on the side has a focusing lens group that focuses from an object at infinity to a near object, and a decentered lens group that can move so as to have a component in a direction perpendicular to the optical axis. The focusing lens group is disposed on the image side of the decentered lens group.

また、本発明は、前記レンズ系を有することを特徴とする光学機器を提供する。   The present invention also provides an optical apparatus comprising the lens system.

また、本発明は、複数のレンズ群で構成され、最も物体側のレンズ群の像側にあるレンズ群は正屈折力を有するレンズ系の製造方法であって、無限遠物体から近距離物体への合焦を行う合焦レンズ群と、光軸に垂直な方向の成分を持つように移動することが可能な偏心レンズ群とを前記最も物体側のレンズ群の像側にあるレンズ群に配置し、前記合焦レンズ群を前記偏心レンズ群の像側に配置することを特徴とするレンズ系の製造方法を提供する。   Further, the present invention is a method of manufacturing a lens system that includes a plurality of lens groups, and the lens group closest to the image side of the lens group closest to the object side has a positive refractive power. A focusing lens group that performs focusing and an eccentric lens group that can move so as to have a component in a direction perpendicular to the optical axis are arranged in the lens group on the image side of the most object side lens group And providing a method of manufacturing a lens system, wherein the focusing lens group is disposed on the image side of the decentered lens group.

本発明によれば、内焦方式及び偏心レンズ群を両立させ、小型で高い結像性能を有するレンズ系とこれを有する光学機器、レンズ系の製造方法を提供することができる。   According to the present invention, it is possible to provide a lens system that has both an in-focus method and a decentered lens group and that has a small size and high imaging performance, an optical apparatus having the lens system, and a method for manufacturing the lens system.

第1実施例に係るレンズ系の構成を示す断面図である。It is sectional drawing which shows the structure of the lens system which concerns on 1st Example. 第1実施例に係るレンズ系の無限遠合焦状態での諸収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。The aberration diagrams of the lens system according to Example 1 in the infinite focus state are shown, (a) shows the wide-angle end state, (b) shows the intermediate focal length state, and (c) shows the telephoto end state. 第1実施例に係るレンズ系の近距離合焦状態(撮影倍率−0.01倍)での諸収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 4A illustrates various aberration diagrams of the lens system according to Example 1 in a short distance in-focus state (imaging magnification: −0.01 ×), where (a) is a wide-angle end state, (b) is an intermediate focal length state, and (c) ) Indicates the telephoto end state. 第1実施例に係るレンズ系の無限遠合焦状態のレンズシフト状態(0.2mm)でのコマ収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。The coma aberration figure in the lens shift state (0.2 mm) of the infinity focusing state of the lens system which concerns on 1st Example is shown, (a) is a wide angle end state, (b) is an intermediate | middle focal-distance state, (c ) Indicates the telephoto end state. 第2実施例に係るレンズ系の構成を示す断面図である。It is sectional drawing which shows the structure of the lens system which concerns on 2nd Example. 第2実施例に係るレンズ系の無限遠合焦状態での諸収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。The aberration diagrams in the infinite focus state of the lens system according to Example 2 are shown, (a) shows the wide-angle end state, (b) shows the intermediate focal length state, and (c) shows the telephoto end state. 第2実施例に係るレンズ系の近距離合焦状態(撮影倍率−0.01倍)での諸収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 5A illustrates various aberration diagrams of the lens system according to Example 2 in a short-distance in-focus state (shooting magnification—0.01 times), where (a) is a wide-angle end state, (b) is an intermediate focal length state, and (c ) Indicates the telephoto end state. 第2実施例に係るレンズ系の無限遠合焦状態のレンズシフト状態(0.2mm)でのコマ収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。The coma aberration figure in the lens shift state (0.2 mm) of the infinite focus state of the lens system which concerns on 2nd Example is shown, (a) is a wide angle end state, (b) is an intermediate | middle focal distance state, (c ) Indicates the telephoto end state. 第3実施例に係るレンズ系の構成を示す断面図である。It is sectional drawing which shows the structure of the lens system which concerns on 3rd Example. 第3実施例に係るレンズ系の無限遠合焦状態での諸収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 5A illustrates aberrations of the lens system according to Example 3 in an infinitely focused state, where FIG. 10A illustrates a wide-angle end state, FIG. 9B illustrates an intermediate focal length state, and FIG. 9C illustrates a telephoto end state. 第3実施例に係るレンズ系の近距離合焦状態(撮影倍率−0.01倍)での諸収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 5A illustrates various aberration diagrams of the lens system according to Example 3 in a short-distance in-focus state (imaging magnification: 0.01 times), where (a) is a wide-angle end state, (b) is an intermediate focal length state, and (c ) Indicates the telephoto end state. 第3実施例に係るレンズ系の無限遠合焦状態のレンズシフト状態(0.2mm)でのコマ収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。The coma aberration figure in the lens shift state (0.2 mm) of the infinity focusing state of the lens system which concerns on 3rd Example is shown, (a) is a wide angle end state, (b) is an intermediate | middle focal distance state, (c ) Indicates the telephoto end state. 第4実施例に係るレンズ系の構成を示す断面図である。It is sectional drawing which shows the structure of the lens system which concerns on 4th Example. 第4実施例に係るレンズ系の無限遠合焦状態での諸収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。The aberration diagrams of the lens system according to Example 4 in the infinite focus state are shown, (a) shows the wide-angle end state, (b) shows the intermediate focal length state, and (c) shows the telephoto end state. 第4実施例に係るレンズ系の近距離合焦状態(撮影倍率−0.01倍)での諸収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 9A illustrates various aberration diagrams of the lens system according to Example 4 in a short-distance in-focus state (shooting magnification—0.01 times), where (a) is a wide-angle end state, (b) is an intermediate focal length state, and (c ) Indicates the telephoto end state. 第4実施例に係るレンズ系の無限遠合焦状態のレンズシフト状態(0.2mm)でのコマ収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。The coma aberration figure in the lens shift state (0.2 mm) of the infinite focus state of the lens system which concerns on 4th Example is shown, (a) is a wide angle end state, (b) is an intermediate | middle focal distance state, (c ) Indicates the telephoto end state. 第5実施例に係るレンズ系の構成を示す断面図である。It is sectional drawing which shows the structure of the lens system which concerns on 5th Example. 第5実施例に係るレンズ系の無限遠合焦状態での諸収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。The aberration diagrams of the lens system according to Example 5 in the infinite focus state are shown, (a) shows the wide-angle end state, (b) shows the intermediate focal length state, and (c) shows the telephoto end state. 第5実施例に係るレンズ系の近距離合焦状態(撮影倍率−0.01倍)での諸収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 5A illustrates various aberration diagrams of the lens system according to Example 5 in a short-distance in-focus state (imaging magnification: −0.01 ×), where (a) is a wide-angle end state, (b) is an intermediate focal length state, and (c ) Indicates the telephoto end state. 第5実施例に係るレンズ系の無限遠合焦状態のレンズシフト状態(0.2mm)でのコマ収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。The coma aberration figure in the lens shift state (0.2 mm) of the infinity focusing state of the lens system which concerns on 5th Example is shown, (a) is a wide angle end state, (b) is an intermediate | middle focal-distance state, (c ) Indicates the telephoto end state. 第6実施例に係るレンズ系の構成を示す断面図である。It is sectional drawing which shows the structure of the lens system which concerns on 6th Example. 第6実施例に係るレンズ系の無限遠合焦状態での諸収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。The aberration diagrams of the lens system according to Example 6 in the infinite focus state are shown, (a) shows the wide-angle end state, (b) shows the intermediate focal length state, and (c) shows the telephoto end state. 第6実施例に係るレンズ系の近距離合焦状態(撮影倍率−0.01倍)での諸収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 9A illustrates various aberration diagrams of the lens system according to Example 6 in a short-distance in-focus state (imaging magnification: 0.01 ×), where (a) is a wide-angle end state, (b) is an intermediate focal length state, and (c ) Indicates the telephoto end state. 第6実施例に係るレンズ系の無限遠合焦状態のレンズシフト状態(0.2mm)でのコマ収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。The coma aberration figure in the lens shift state (0.2 mm) of the infinite focus state of the lens system which concerns on 6th Example is shown, (a) is a wide angle end state, (b) is an intermediate | middle focal distance state, (c ) Indicates the telephoto end state. 第7実施例に係るレンズ系の構成を示す断面図である。It is sectional drawing which shows the structure of the lens system which concerns on 7th Example. 第7実施例に係るレンズ系の無限遠合焦状態での諸収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。The aberration diagrams of the lens system according to Example 7 in the infinite focus state are shown, (a) shows the wide-angle end state, (b) shows the intermediate focal length state, and (c) shows the telephoto end state. 第7実施例に係るレンズ系の近距離合焦状態(撮影倍率−0.01倍)での諸収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。The aberrational view in the short distance focusing state (imaging magnification -0.01 time) of the lens system which concerns on 7th Example is shown, (a) is a wide angle end state, (b) is an intermediate | middle focal distance state, (c ) Indicates the telephoto end state. 第7実施例に係るレンズ系の無限遠合焦状態のレンズシフト状態(0.2mm)でのコマ収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。The coma aberration figure in the lens shift state (0.2 mm) of the infinite focus state of the lens system which concerns on 7th Example is shown, (a) is a wide angle end state, (b) is an intermediate | middle focal-distance state, (c ) Indicates the telephoto end state. 第8実施例に係るレンズ系の構成を示す断面図である。It is sectional drawing which shows the structure of the lens system which concerns on 8th Example. 第8実施例に係るレンズ系の無限遠合焦状態での諸収差図を示す。FIG. 10 shows various aberration diagrams of the lens system according to Example 8 in the infinite focus state. 第8実施例に係るレンズ系の近距離合焦状態(撮影倍率−0.01倍)での諸収差図を示す。FIG. 10 shows various aberration diagrams of the lens system according to Example 8 in a short-distance in-focus state (imaging magnification: -0.01 times). 第8実施例に係るレンズ系の無限遠合焦状態のレンズシフト状態(0.2mm)でのコマ収差図を示す。The coma aberration figure in the lens shift state (0.2 mm) of the infinite focus state of the lens system which concerns on 8th Example is shown. 第1実施例に係るレンズ系を備えたカメラの構成を示す図である。It is a figure which shows the structure of the camera provided with the lens system which concerns on 1st Example. 本願のレンズ系の製造方法を示す図である。It is a figure which shows the manufacturing method of the lens system of this application.

以下、本願の一実施形態に係るレンズ系について説明する。   Hereinafter, a lens system according to an embodiment of the present application will be described.

本実施形態に係るレンズ系は、複数のレンズ群で構成され、最も物体側のレンズ群の像側にあるレンズ群は正屈折力を有し、最も物体側のレンズ群の像側にあるレンズ群は、無限遠物体から近距離物体への合焦を行う合焦レンズ群と、光軸に垂直な方向の成分を持つように移動することが可能な偏心レンズ群とを有し、合焦レンズ群は偏心レンズ群の像側に配置される構成である。なお、偏心レンズ群とは、シフトレンズ群またはチルトレンズ群を示す。   The lens system according to the present embodiment includes a plurality of lens groups, the lens group on the image side of the most object side lens group has a positive refractive power, and the lens on the image side of the most object side lens group. The group includes a focusing lens group that focuses from an object at infinity to a near object, and an eccentric lens group that can move so as to have a component in a direction perpendicular to the optical axis. The lens group is arranged on the image side of the decentered lens group. The decentering lens group refers to a shift lens group or a tilt lens group.

偏心レンズ群の像側に合焦レンズ群を配置することにより、偏心レンズ群の偏心時に発生したコマ収差や像面湾曲の劣化を無限遠状態から近距離撮影状態まで合焦レンズ群で良好に緩和することが可能である。   By placing the focusing lens group on the image side of the decentered lens group, coma aberration and field curvature degradation caused by decentering of the decentered lens group can be improved in the focusing lens group from infinity to close-up shooting conditions. It can be mitigated.

また、本実施形態に係るレンズ系は、広角端状態から望遠端状態への変倍に際し、最も物体側のレンズ群と最も物体側のレンズ群の像側にあるレンズ群との間隔が変化し、最も物体側のレンズ群の像側にあるレンズ群が物体側へ移動することが望ましい。   In the lens system according to the present embodiment, the distance between the most object-side lens unit and the most object-side lens unit on the image side changes during zooming from the wide-angle end state to the telephoto end state. It is desirable that the lens group on the image side of the lens group closest to the object side moves to the object side.

最も物体側のレンズ群の像側にあるレンズ群は、被写体の像を拡大する作用をなし、広角端状態から望遠端状態に向かうに従い、最も物体側のレンズ群と最も物体側のレンズ群の像側にあるレンズ群との間隔を変化させることにより拡大率を高めて、焦点距離を変化させることが可能である。   The lens group on the image side of the most object side lens group has an action of enlarging the image of the subject, and as it goes from the wide-angle end state to the telephoto end state, the most object side lens group and the most object side lens group By changing the distance from the lens group on the image side, it is possible to increase the enlargement ratio and change the focal length.

また、本実施形態に係るレンズ系は、最も物体側のレンズ群は負屈折力を有することが望ましい。   In the lens system according to the present embodiment, it is desirable that the lens unit closest to the object side has a negative refractive power.

最も物体側のレンズ群を負屈折力とすることで、ズーミングに伴う像面の変動を補正することが可能である。   By setting the lens unit closest to the object side to have a negative refractive power, it is possible to correct the fluctuation of the image plane due to zooming.

また、本実施形態に係るレンズ系は、最も物体側のレンズ群と最も物体側のレンズ群の像側にあるレンズ群とは隣接していることが望ましい。   In the lens system according to the present embodiment, it is desirable that the most object side lens unit and the lens unit located on the image side of the most object side lens unit are adjacent to each other.

最も物体側のレンズ群と最も物体側のレンズ群の像側にあるレンズ群を隣接させることにより、変倍時のコマ収差及び像面湾曲の性能劣化を抑制することが可能である。   By adjoining the most object-side lens group and the lens group on the image side of the most object-side lens group, it is possible to suppress coma aberration and field curvature degradation during zooming.

また、本実施形態に係るレンズ系は、合焦レンズ群と偏心レンズ群の間に開口絞りが配置されることが望ましい。   In the lens system according to this embodiment, it is desirable that an aperture stop be disposed between the focusing lens group and the decentering lens group.

像シフト可能なレンズ群は、レンズシフト時の性能劣化を最低限に抑えるために、ズーミングの際に、軸外光束が光軸の近くを通過する絞りに近いレンズ群でレンズシフトを行うことで結像性能を良好に保つことが可能である。また合焦レンズ群を開口絞りの近くに配置することで、無限遠から至近距離までのフォーカシング時における像面変動を抑制することが可能である。   In order to minimize the performance degradation during lens shift, the lens group capable of image shift is designed to shift the lens with a lens group close to the stop where the off-axis light beam passes near the optical axis during zooming. It is possible to maintain good imaging performance. Further, by disposing the focusing lens group near the aperture stop, it is possible to suppress image plane fluctuations during focusing from infinity to the closest distance.

また、本実施形態に係るレンズ系は、偏心レンズ群の物体側と像側の少なくとも一方には、補助レンズ群を有することが望ましい。   In addition, the lens system according to the present embodiment desirably has an auxiliary lens group on at least one of the object side and the image side of the decentered lens group.

補助レンズ群を配置することにより、レンズシフト時の防振時の偏心コマ発生の抑制や像面湾曲の劣化を緩和することが可能である。   By arranging the auxiliary lens group, it is possible to suppress the occurrence of eccentric coma during the image stabilization at the time of lens shift and to alleviate the deterioration of the field curvature.

また、本実施形態に係るレンズ系は、以下の条件式(1)を満足することが望ましい。
(1) −11.00<fa/fs<11.00
但し、faは補助レンズ群の焦点距離、fsは偏心レンズ群の焦点距離である。
In addition, it is desirable that the lens system according to the present embodiment satisfies the following conditional expression (1).
(1) -11.00 <fa / fs <11.00
Here, fa is the focal length of the auxiliary lens group, and fs is the focal length of the eccentric lens group.

条件式(1)は、補助レンズ群と偏心レンズ群の焦点距離比について適切な範囲を規定するための条件式である。   Conditional expression (1) is a conditional expression for defining an appropriate range for the focal length ratio of the auxiliary lens group and the decentered lens group.

条件式(1)の上限値を上回った場合、偏心レンズ群の屈折力が強くなってしまい、偏心レンズ群の光軸に垂直方向の位置制御が困難となってしまう。結果として、偏心コマやコマ収差の補正が困難となってしまい、好ましくない。   If the upper limit of conditional expression (1) is exceeded, the refractive power of the decentered lens group becomes strong, and position control in the direction perpendicular to the optical axis of the decentered lens group becomes difficult. As a result, it is difficult to correct decentration coma and coma aberration, which is not preferable.

逆に、条件式(1)の下限値を下回った場合、偏心レンズ群の屈折力が弱くなってしまい、所望の像シフト量を得るのに、より多くのレンズシフト量が必要となってしまう。また、コマ収差や像面湾曲の補正不足となってしまい、好ましくない。   On the other hand, if the lower limit of conditional expression (1) is not reached, the refractive power of the decentered lens group becomes weak, and a larger amount of lens shift is required to obtain a desired image shift amount. . Further, the correction of coma aberration and field curvature is insufficient, which is not preferable.

なお、実施形態の効果を確実にするために、条件式(1)の上限値を9.22にすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(1)の上限値を7.35にすることが更に好ましい。また、実施形態の効果を更に確実にするために、条件式(1)の上限値を5.48にすることが更に好ましい。   In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (1) to 9.22. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit of conditional expression (1) to 7.35. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit of conditional expression (1) to 5.48.

また、実施形態の効果を確実にするために、条件式(1)の下限値を−9.18にすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(1)の下限値を−7.35にすることが更に好ましい。また、実施形態の効果を更に確実にするために、条件式(1)の下限値を−5.48にすることが更に好ましい。   In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (1) to −9.18. In order to further secure the effect of the embodiment, it is more preferable to set the lower limit of conditional expression (1) to −7.35. In order to further secure the effect of the embodiment, it is more preferable to set the lower limit of conditional expression (1) to −5.48.

また、本実施形態に係るレンズ系は、以下の条件式(2)を満足することが望ましい。
(2) 0.05<|f/ff|<0.65
但し、fはレンズ全系の焦点距離、ffは合焦レンズ群の焦点距離である。
In addition, it is desirable that the lens system according to the present embodiment satisfies the following conditional expression (2).
(2) 0.05 <| f / ff | <0.65
Here, f is the focal length of the entire lens system, and ff is the focal length of the focusing lens group.

条件式(2)は、レンズ全系の焦点距離と合焦レンズ群の焦点距離の比について適切な範囲を規定するための条件式である。   Conditional expression (2) is a conditional expression for defining an appropriate range for the ratio of the focal length of the entire lens system to the focal length of the focusing lens group.

条件式(2)の上限値を上回った場合、合焦レンズ群の屈折力が強くなってしまい、合焦レンズ群の光軸上の位置制御が困難となってしまう。また、無限遠から近距離撮影時の像面湾曲やコマ収差の変動が大きくなってしまい、好ましくない。   When the upper limit of conditional expression (2) is exceeded, the refractive power of the focusing lens group becomes strong, and position control on the optical axis of the focusing lens group becomes difficult. In addition, the field curvature and coma change during close-up shooting from infinity increase, which is not preferable.

逆に、条件式(2)の下限値を下回った場合、合焦レンズ群の屈折力が弱くなってしまい、合焦レンズ群の移動量が多大に必要となってしまう。また、コマ収差や像面湾曲の補正不足となってしまい、好ましくない。   On the other hand, if the lower limit value of conditional expression (2) is not reached, the refractive power of the focusing lens group becomes weak, and the amount of movement of the focusing lens group becomes very large. Further, the correction of coma aberration and field curvature is insufficient, which is not preferable.

なお、実施形態の効果を確実にするために、条件式(2)の上限値を0.60にすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(2)の上限値を0.54にすることが更に好ましい。また、実施形態の効果を更に確実にするために、条件式(2)の上限値を0.48にすることが更に好ましい。   In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (2) to 0.60. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit of conditional expression (2) to 0.54. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit of conditional expression (2) to 0.48.

また、実施形態の効果を確実にするために、条件式(2)の下限値を0.09にすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(2)の下限値を0.12にすることが更に好ましい。また、実施形態の効果を更に確実にするために、条件式(2)の下限値を0.16にすることが更に好ましい。   In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (2) to 0.09. In order to further secure the effect of the embodiment, it is more preferable to set the lower limit of conditional expression (2) to 0.12. In order to further secure the effect of the embodiment, it is more preferable to set the lower limit of conditional expression (2) to 0.16.

また、本実施形態に係るレンズ系は、以下の条件式(3)を満足することが望ましい。
(3) 0.05<|fγ|<2.75
但し、fγは合焦レンズ群の像面移動係数(合焦レンズ群の移動量に対する像面の移動量の比率)である。
In addition, it is desirable that the lens system according to the present embodiment satisfies the following conditional expression (3).
(3) 0.05 <| fγ | <2.75
However, fγ is an image plane movement coefficient of the focusing lens group (ratio of the moving amount of the image plane to the moving amount of the focusing lens group).

条件式(3)は、合焦レンズ群の像面移動係数について適切な範囲を規定するための条件式である。   Conditional expression (3) is a conditional expression for defining an appropriate range for the image plane movement coefficient of the focusing lens group.

条件式(3)の上限値を上回った場合、合焦レンズ群の屈折力が弱くなってしまい、合焦レンズ群の光軸上の位置制御が困難となってしまう。また、コマ収差や像面湾曲の補正不足となってしまい、好ましくない。   When the upper limit of conditional expression (3) is exceeded, the refractive power of the focusing lens group becomes weak, and position control on the optical axis of the focusing lens group becomes difficult. Further, the correction of coma aberration and field curvature is insufficient, which is not preferable.

逆に、条件式(3)の下限値を下回った場合、合焦レンズ群の屈折力が強くなってしまい、合焦レンズ群単体で球面収差及びコマ収差が発生してしまう。更には近距離撮影時の性能劣化が大きくなってしまい、好ましくない。   On the other hand, when the lower limit value of conditional expression (3) is not reached, the refractive power of the focusing lens group becomes strong, and spherical aberration and coma aberration occur in the focusing lens group alone. Furthermore, the performance degradation during close-up shooting becomes large, which is not preferable.

なお、実施形態の効果を確実にするために、条件式(3)の上限値を2.55にすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(3)の上限値を2.30にすることが更に好ましい。また、実施形態の効果を更に確実にするために、条件式(3)の上限値を2.00にすることが更に好ましい。   In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (3) to 2.55. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit of conditional expression (3) to 2.30. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit of conditional expression (3) to 2.00.

また、実施形態の効果を確実にするために、条件式(3)の下限値を0.15にすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(3)の下限値を0.25にすることが更に好ましい。また、実施形態の効果を更に確実にするために、条件式(3)の下限値を0.45にすることが更に好ましい。   In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (3) to 0.15. In order to further secure the effect of the embodiment, it is more preferable to set the lower limit of conditional expression (3) to 0.25. In order to further secure the effect of the embodiment, it is more preferable to set the lower limit of conditional expression (3) to 0.45.

また、本実施形態に係るレンズ系は、以下の条件式(4)を満足することが望ましい。
(4) 0.05<|fw/ff|<0.65
但し、fwは広角端状態におけるレンズ全系の焦点距離、ffは合焦レンズ群の焦点距離である。
In addition, it is desirable that the lens system according to the present embodiment satisfies the following conditional expression (4).
(4) 0.05 <| fw / ff | <0.65
Here, fw is the focal length of the entire lens system in the wide-angle end state, and ff is the focal length of the focusing lens group.

条件式(4)は、広角端状態におけるレンズ全系の焦点距離と合焦レンズ群の焦点距離の比について適切な範囲を規定するための条件式である。   Conditional expression (4) is a conditional expression for defining an appropriate range for the ratio of the focal length of the entire lens system to the focal length of the focusing lens group in the wide-angle end state.

条件式(4)の上限値を上回った場合、合焦レンズ群の屈折力が強くなってしまい、合焦レンズ群の光軸上の位置制御が困難となってしまう。また、無限遠から近距離撮影時の像面湾曲やコマ収差の変動が大きくなってしまい、好ましくない。   When the upper limit of conditional expression (4) is exceeded, the refractive power of the focusing lens group becomes strong, and position control on the optical axis of the focusing lens group becomes difficult. In addition, the field curvature and coma change during close-up shooting from infinity increase, which is not preferable.

逆に、条件式(4)の下限値を下回った場合、合焦レンズ群の屈折力が弱くなってしまい、合焦レンズ群の移動量が多大に必要となってしまう。また、コマ収差や像面湾曲の補正不足となってしまい、好ましくない。   On the other hand, if the lower limit value of conditional expression (4) is not reached, the refractive power of the focusing lens group becomes weak, and a large amount of movement of the focusing lens group is required. Further, the correction of coma aberration and field curvature is insufficient, which is not preferable.

なお、実施形態の効果を確実にするために、条件式(4)の上限値を0.60にすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(4)の上限値を0.54にすることが更に好ましい。また、実施形態の効果を更に確実にするために、条件式(4)の上限値を0.48にすることが更に好ましい。   In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (4) to 0.60. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit of conditional expression (4) to 0.54. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit of conditional expression (4) to 0.48.

また、実施形態の効果を確実にするために、条件式(4)の下限値を0.09にすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(4)の下限値を0.12にすることが更に好ましい。また、実施形態の効果を更に確実にするために、条件式(4)の下限値を0.16にすることが更に好ましい。   In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (4) to 0.09. In order to further secure the effect of the embodiment, it is more preferable to set the lower limit of conditional expression (4) to 0.12. In order to further secure the effect of the embodiment, it is more preferable to set the lower limit of conditional expression (4) to 0.16.

また、本実施形態に係るレンズ系は、以下の条件式(5)を満足することが望ましい。
(5) 0.05<|fγw|<2.75
但し、fγwは合焦レンズ群の広角端状態における像面移動係数(合焦レンズ群の移動量に対する像面の移動量の比率)である。
In addition, it is desirable that the lens system according to the present embodiment satisfies the following conditional expression (5).
(5) 0.05 <| fγw | <2.75
However, fγw is an image plane movement coefficient (ratio of the moving amount of the image plane to the moving amount of the focusing lens group) in the wide-angle end state of the focusing lens group.

条件式(5)は、合焦レンズ群の広角端状態における像面移動係数について適切な範囲を規定するための条件式である。   Conditional expression (5) is a conditional expression for defining an appropriate range for the image plane movement coefficient in the wide-angle end state of the focusing lens group.

条件式(5)の上限値を上回った場合、合焦レンズ群の屈折力が弱くなってしまい、合焦レンズ群の光軸上の位置制御が困難となってしまう。また、コマ収差や像面湾曲の補正不足となってしまい、好ましくない。   When the upper limit of conditional expression (5) is exceeded, the refractive power of the focusing lens group becomes weak, and position control on the optical axis of the focusing lens group becomes difficult. Further, the correction of coma aberration and field curvature is insufficient, which is not preferable.

逆に、条件式(5)の下限値を下回った場合、合焦レンズ群の屈折力が強くなってしまい、合焦レンズ群単体で球面収差及びコマ収差が発生してしまう。更には近距離撮影時の性能劣化が大きくなってしまい、好ましくない。   On the other hand, when the lower limit of conditional expression (5) is not reached, the refractive power of the focusing lens group becomes strong, and spherical aberration and coma aberration occur in the focusing lens group alone. Furthermore, the performance degradation during close-up shooting becomes large, which is not preferable.

なお、実施形態の効果を確実にするために、条件式(5)の上限値を2.55にすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(5)の上限値を2.30にすることが更に好ましい。また、実施形態の効果を更に確実にするために、条件式(5)の上限値を2.00にすることが更に好ましい。   In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (5) to 2.55. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit of conditional expression (5) to 2.30. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit of conditional expression (5) to 2.00.

また、実施形態の効果を確実にするために、条件式(5)の下限値を0.15にすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(5)の下限値を0.25にすることが更に好ましい。また、実施形態の効果を更に確実にするために、条件式(5)の下限値を0.45にすることが更に好ましい。   In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (5) to 0.15. In order to further secure the effect of the embodiment, it is more preferable to set the lower limit of conditional expression (5) to 0.25. In order to further secure the effect of the embodiment, it is more preferable to set the lower limit of conditional expression (5) to 0.45.

また、本実施形態に係るレンズ系は、以下の条件式(6)を満足することが望ましい。
(6) −4.00<ff/fs<4.00
但し、ffは合焦レンズ群の焦点距離、fsは偏心レンズ群の焦点距離である。
In addition, it is desirable that the lens system according to the present embodiment satisfies the following conditional expression (6).
(6) -4.00 <ff / fs <4.00
Here, ff is the focal length of the focusing lens group, and fs is the focal length of the eccentric lens group.

条件式(6)は、合焦レンズ群と偏心レンズ群の焦点距離比について適切な範囲を規定するための条件式である。   Conditional expression (6) is a conditional expression for defining an appropriate range for the focal length ratio between the focusing lens group and the decentering lens group.

条件式(6)の上限値を上回った場合、合焦レンズ群の屈折力が弱くなってしまい、合焦レンズ群の光軸上の位置制御が困難となってしまう。また、コマ収差や像面湾曲の補正不足となってしまい、好ましくない。また、偏心レンズ群の屈折力が強くなってしまい、偏心レンズ群の光軸に垂直方向の位置制御が困難となってしまう。結果として、偏心コマやコマ収差の補正が困難となってしまい、好ましくない。   When the upper limit of conditional expression (6) is exceeded, the refractive power of the focusing lens group becomes weak, and position control on the optical axis of the focusing lens group becomes difficult. Further, the correction of coma aberration and field curvature is insufficient, which is not preferable. Further, the refractive power of the decentered lens group becomes strong, and position control in the direction perpendicular to the optical axis of the decentered lens group becomes difficult. As a result, it is difficult to correct decentration coma and coma aberration, which is not preferable.

逆に、条件式(6)の下限値を下回った場合、合焦レンズ群の屈折力が強くなってしまい、合焦レンズ群単体で球面収差及びコマ収差が発生してしまう。更には近距離撮影時の性能劣化が大きくなってしまい、好ましくない。また、偏心レンズ群の屈折力が弱くなってしまい、所望の像シフト量を得るのに、より多くのレンズシフト量が必要となってしまう。また、コマ収差や像面湾曲の補正不足となってしまい、好ましくない。   Conversely, when the lower limit of conditional expression (6) is not reached, the refractive power of the focusing lens group becomes strong, and spherical aberration and coma aberration occur in the focusing lens group alone. Furthermore, the performance degradation during close-up shooting becomes large, which is not preferable. Further, the refractive power of the decentered lens group becomes weak, and a larger amount of lens shift is required to obtain a desired image shift amount. Further, the correction of coma aberration and field curvature is insufficient, which is not preferable.

なお、実施形態の効果を確実にするために、条件式(6)の上限値を3.32にすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(6)の上限値を2.66にすることが更に好ましい。また、実施形態の効果を更に確実にするために、条件式(6)の上限値を2.00にすることが更に好ましい。   In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (6) to 3.32. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit of conditional expression (6) to 2.66. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit of conditional expression (6) to 2.00.

また、実施形態の効果を確実にするために、条件式(6)の下限値を−3.34にすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(6)の下限値を−2.67にすることが更に好ましい。また、実施形態の効果を更に確実にするために、条件式(6)の下限値を−2.00にすることが更に好ましい。   In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (6) to −3.34. In order to further secure the effect of the embodiment, it is more preferable to set the lower limit of conditional expression (6) to −2.67. In order to further secure the effect of the embodiment, it is more preferable to set the lower limit of conditional expression (6) to −2.00.

また、本実施形態に係るレンズ系は、以下の条件式(7)を満足することが望ましい。
(7) 0.00<(d1−2)/ft<1.50
但し、d1−2は、レンズ全系の最も物体側のレンズの像側のレンズ面から、その直後のレンズの物体側のレンズ面までの光軸上空気間隔、ftは望遠端状態におけるレンズ全系の焦点距離である。
In addition, it is desirable that the lens system according to the present embodiment satisfies the following conditional expression (7).
(7) 0.00 <(d1-2) / ft <1.50
However, d1-2 is the air space on the optical axis from the lens surface on the image side of the lens closest to the object side in the entire lens system to the lens surface on the object side of the lens immediately after that, and ft is the total lens distance in the telephoto end state. The focal length of the system.

条件式(7)は、レンズ全系の最も物体側のレンズの像側のレンズ面から、その直後のレンズの物体側のレンズ面までの光軸上空気間隔に関する条件式である。   Conditional expression (7) is a conditional expression regarding the air space on the optical axis from the lens surface on the image side of the lens closest to the object side in the entire lens system to the lens surface on the object side of the lens immediately after that.

条件式(7)の上限値を上回った場合、レンズ全系の最も物体側のレンズの像側のレンズ面から、その直後のレンズの物体側のレンズ面までの光軸上空気間隔が大きくなってしまう。結果として、レンズ全系の最も物体側のレンズ群が厚肉化してしまう。結果として、コマ収差及び像面湾曲の十分な補正が困難となってしまい、好ましくない。   When the upper limit value of conditional expression (7) is exceeded, the air space on the optical axis from the lens surface on the image side of the lens closest to the object side in the entire lens system to the lens surface on the object side of the lens immediately thereafter increases. End up. As a result, the lens unit closest to the object side in the entire lens system becomes thick. As a result, it is difficult to sufficiently correct coma and curvature of field, which is not preferable.

逆に、条件式(7)の下限値を下回った場合、最も物体側のレンズの屈折力が弱くなってしまい、歪曲収差及びズーミングによる像面湾曲の補正が不十分となってしまい、好ましくない。   On the other hand, if the lower limit value of conditional expression (7) is not reached, the refractive power of the lens closest to the object side becomes weak, and correction of curvature of field and curvature of field due to zooming becomes insufficient, which is not preferable. .

なお、実施形態の効果を確実にするために、条件式(7)の上限値を1.30にすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(7)の上限値を1.15にすることが更に好ましい。また、実施形態の効果を更に確実にするために、条件式(7)の上限値を1.00にすることが更に好ましい。   In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (7) to 1.30. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit of conditional expression (7) to 1.15. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit of conditional expression (7) to 1.00.

また、実施形態の効果を確実にするために、条件式(7)の下限値を0.04にすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(7)の下限値を0.09にすることが更に好ましい。また、実施形態の効果を更に確実にするために、条件式(7)の下限値を0.13にすることが更に好ましい。   In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (7) to 0.04. In order to further secure the effect of the embodiment, it is more preferable to set the lower limit of conditional expression (7) to 0.09. In order to further secure the effect of the embodiment, it is more preferable to set the lower limit of conditional expression (7) to 0.13.

また、本実施形態に係るレンズ系は、偏心レンズ群は非球面を有することが望ましい。   In the lens system according to this embodiment, it is desirable that the decentered lens group has an aspherical surface.

この構成により、偏心レンズ群単体で発生する球面収差及びコマ収差を良好に補正し、特に偏心によるコマ収差の性能低下を軽減することができる。   With this configuration, it is possible to satisfactorily correct spherical aberration and coma generated by the decentered lens unit alone, and particularly to reduce performance degradation of coma due to decentration.

なお、本実施形態に係るレンズ系は、高変倍ズームレンズで発生しがちな手ブレ等に起因する像ブレによる撮影の失敗を防ぐために、レンズ系のブレを検出するブレ検出系と駆動手段とをレンズ系に組み合わせ、レンズ系を構成するレンズ群のうち1つのレンズ群の全体または一部を偏心レンズ群として偏心させることが可能である。つまり、ブレ検出系により検出されたレンズ系のブレに起因する像ブレ(像面位置の変動)を補正するように、駆動手段により偏心レンズ群を駆動し、像をシフトさせることが可能である。上述のように、本実施形態に係るレンズ系は、いわゆる防振光学系として機能させることが可能である。   In addition, the lens system according to the present embodiment includes a blur detection system and a driving unit that detect a blur of the lens system in order to prevent a shooting failure due to an image blur caused by a camera shake or the like that is likely to occur in a high-magnification zoom lens. Can be combined with the lens system, and all or a part of one lens group among the lens groups constituting the lens system can be decentered as an eccentric lens group. In other words, it is possible to drive the decentered lens group by the driving means and shift the image so as to correct image blur (fluctuation in image plane position) caused by the blur of the lens system detected by the blur detection system. . As described above, the lens system according to the present embodiment can function as a so-called vibration-proof optical system.

(実施例)
以下、本実施形態に係る各実施例について図面を参照しつつ説明する。
(Example)
Hereinafter, each example according to the present embodiment will be described with reference to the drawings.

(第1実施例)
図1は、第1実施例に係るレンズ系の構成を示す断面図である。
(First embodiment)
FIG. 1 is a cross-sectional view showing a configuration of a lens system according to the first example.

図1に示すように、第1実施例に係るレンズ系は、光軸に沿って物体側から順に、負屈折力を有する第1レンズ群G1と、正屈折力を有する第2レンズ群G2とから構成され、広角端状態Wから望遠端状態Tへの変倍に際し、第1レンズ群G1と第2レンズ群G2との空気間隔が減少するように、第1レンズ群G1と第2レンズ群G2が移動する。   As shown in FIG. 1, the lens system according to the first example includes a first lens group G1 having negative refractive power and a second lens group G2 having positive refractive power in order from the object side along the optical axis. And the first lens group G1 and the second lens group so that the air gap between the first lens group G1 and the second lens group G2 is reduced upon zooming from the wide-angle end state W to the telephoto end state T. G2 moves.

第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、両凹レンズL12と、物体側に凸面を向けた正メニスカスレンズL13とから構成されている。第1レンズ群G1の最も物体側に位置する負メニスカスレンズL11は、像面I側に非球面を形成した非球面レンズである。   The first lens group G1 includes, in order from the object side along the optical axis, a negative meniscus lens L11 having a convex surface facing the object side, a biconcave lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. ing. The negative meniscus lens L11 located closest to the object side of the first lens group G1 is an aspheric lens having an aspheric surface on the image plane I side.

第2レンズ群G2は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と両凸レンズL22との接合正レンズと、開口絞りSと、両凸レンズL23と物体側に凹面を向けた負メニスカスレンズL24との接合正レンズと、物体側に凸面を向けた負メニスカスレンズL25と、物体側に凸面を向けた負メニスカスレンズL26と両凸レンズL27との接合正レンズとから構成されている。第2レンズ群G2の最も物体側に位置する負メニスカスレンズL21は、物体側に非球面を形成した非球面レンズである。第2レンズ群G2の最も像面I側に位置する両凸レンズL27は、像面I側に非球面を形成した非球面レンズである。   The second lens group G2 includes, in order from the object side along the optical axis, a cemented positive lens of a negative meniscus lens L21 having a convex surface facing the object side and a biconvex lens L22, an aperture stop S, a biconvex lens L23, and the object side. A cemented positive lens with a negative meniscus lens L24 having a concave surface facing the lens, a negative meniscus lens L25 with a convex surface facing the object side, and a cemented positive lens with a negative meniscus lens L26 having a convex surface facing the object side and a biconvex lens L27. It is composed of The negative meniscus lens L21 located closest to the object side in the second lens group G2 is an aspheric lens having an aspheric surface on the object side. The biconvex lens L27 located closest to the image plane I in the second lens group G2 is an aspherical lens in which an aspheric surface is formed on the image plane I side.

像面Iは、不図示の撮像素子上に形成され、該撮像素子はCCDやCMOS等から構成されている(以降の実施例についても同様である)。   The image plane I is formed on an image sensor (not shown), and the image sensor is composed of a CCD, a CMOS, or the like (the same applies to the following embodiments).

第2レンズ群G2の群内に配置された開口絞りSは、広角端状態Wから望遠端状態Tへの変倍に際し、第2レンズ群G2と一体に物体側へ移動する。   The aperture stop S arranged in the second lens group G2 moves together with the second lens group G2 toward the object side during zooming from the wide-angle end state W to the telephoto end state T.

両凸レンズL23と負メニスカスレンズL24との接合正レンズは合焦レンズ群Gfであり、合焦レンズ群Gfを物体側に移動させることにより、無限遠物体から近距離物体への合焦を行う。   The cemented positive lens of the biconvex lens L23 and the negative meniscus lens L24 is a focusing lens group Gf. By moving the focusing lens group Gf to the object side, focusing from an object at infinity to a near object is performed.

負メニスカスレンズL21と両凸レンズL22との接合正レンズは偏心レンズ群Gsであり、偏心レンズ群Gsを光軸に略垂直な方向に移動させることにより、手ぶれ補正(防振)を行う。   The cemented positive lens of the negative meniscus lens L21 and the biconvex lens L22 is a decentered lens group Gs, and camera shake correction (anti-vibration) is performed by moving the decentered lens group Gs in a direction substantially perpendicular to the optical axis.

負メニスカスレンズL25と、負メニスカスレンズL26と両凸レンズL27との接合正レンズとは、負屈折力を有する補助レンズ群Gaである。   The negative meniscus lens L25 and the cemented positive lens of the negative meniscus lens L26 and the biconvex lens L27 are the auxiliary lens group Ga having negative refractive power.

以下の表1に第1実施例に係るレンズ系の諸元値を掲げる。   Table 1 below lists specifications of the lens system according to the first example.

表中の(面データ)において、物面は物体面、面番号は物体側からの面の番号、rは曲率半径、dは面間隔、ndはd線(波長λ=587.6nm)における屈折率、νdはd線(波長λ=587.6nm)におけるアッベ数、(可変)は可変面間隔、(絞り)は開口絞りS、像面は像面Iをそれぞれ表している。なお、空気の屈折率nd=1.00000は記載を省略している。また、曲率半径r欄の「∞」は平面を示している。   In (surface data) in the table, the object surface is the object surface, the surface number is the surface number from the object side, r is the radius of curvature, d is the surface spacing, and nd is the refraction at the d-line (wavelength λ = 587.6 nm). The ratio, νd represents the Abbe number in the d-line (wavelength λ = 587.6 nm), (variable) represents the variable surface interval, (diaphragm) represents the aperture stop S, and the image plane represents the image plane I. Note that the description of the refractive index nd of air = 1.000 is omitted. Further, “∞” in the radius of curvature r column indicates a plane.

(非球面データ)において、非球面は以下の式で表される。
X(y)=(y/r)/[1+[1−κ(y/r)]1/2
+A4×y+A6×y+A8×y+A10×y10
ここで、光軸に垂直な方向の高さをy、高さyにおける光軸方向の変位量(各非球面の頂点の接平面から各非球面までの光軸に沿った距離)をX(y)、基準球面の曲率半径(近軸曲率半径)をr、円錐係数をκ、n次の非球面係数をAnとする。なお、「E-n」は「×10−n」を示し、例えば「1.234E-05」は「1.234×10−5」を示す。また、各非球面は、(面データ)において、面番号の右側に「*」を付して示している。
In (Aspheric data), the aspheric surface is expressed by the following equation.
X (y) = (y 2 / r) / [1+ [1-κ (y 2 / r 2 )] 1/2 ]
+ A4 × y 4 + A6 × y 6 + A8 × y 8 + A10 × y 10
Here, the height in the direction perpendicular to the optical axis is y, and the amount of displacement in the optical axis direction at the height y (the distance along the optical axis from the tangential plane of each aspheric surface to each aspheric surface) is X ( y) Let r be the radius of curvature (paraxial radius of curvature) of the reference sphere, κ be the conic coefficient, and An be the n-th aspherical coefficient. “En” represents “× 10 −n ”, for example “1.234E-05” represents “1.234 × 10 −5 ”. Each aspherical surface is indicated with “*” on the right side of the surface number in (surface data).

(各種データ)において、ズーム比はレンズ系の変倍比、Wは広角端状態、Mは中間焦点距離状態、Tは望遠端状態、fは焦点距離、FNOはFナンバー、2ωは画角(単位:「°」)、Yは像高、TLはレンズ系全長、Bfはバックフォーカス、diは面番号iでの可変面間隔値を表している。   (Various data), the zoom ratio is the zoom ratio of the lens system, W is the wide angle end state, M is the intermediate focal length state, T is the telephoto end state, f is the focal length, FNO is the F number, 2ω is the angle of view ( (Unit: “°”), Y is the image height, TL is the entire length of the lens system, Bf is the back focus, and di is the variable surface interval value at surface number i.

(合焦レンズ群移動量データ)において、Wは広角端状態、Mは中間焦点距離状態、Tは望遠端状態、fは焦点距離、ΔFxは近距離撮影時の合焦レンズ群の移動量を表している(なお、物体側への移動を正とする)。   In (focusing lens group movement amount data), W is the wide-angle end state, M is the intermediate focal length state, T is the telephoto end state, f is the focal length, and ΔFx is the movement amount of the focusing lens group during close-up shooting. (Movement to the object side is positive).

(ズームレンズ群データ)は、各レンズ群の始面番号とレンズ群の焦点距離をそれぞれ示す。   (Zoom lens group data) indicates the start surface number of each lens group and the focal length of the lens group.

(条件式対応値)は、各条件式の対応値をそれぞれ示す。   (Conditional expression corresponding value) indicates the corresponding value of each conditional expression.

なお、以下の全ての諸元値において、掲載されている焦点距離f、曲率半径r、面間隔dその他の長さ等は、特記の無い場合一般に「mm」が使われるが、光学系は比例拡大または比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、単位は「mm」に限定されること無く他の適当な単位を用いることもできる。さらに、これらの記号の説明は、以降の他の実施例においても同様とし説明を省略する。   In all the following specification values, “mm” is generally used as the focal length f, radius of curvature r, surface interval d and other lengths, etc. unless otherwise specified, but the optical system is proportional. Even if it is enlarged or proportionally reduced, the same optical performance can be obtained. Further, the unit is not limited to “mm”, and other appropriate units may be used. Further, the explanation of these symbols is the same in the other embodiments, and the explanation is omitted.

(表1)

(面データ)
面番号 r d nd νd
物面 ∞ ∞
1 18.6779 1.30 1.85135 40.10
2* 7.8525 7.25
3 -94.6821 1.00 1.83481 42.72
4 34.1506 0.31
5 18.6651 2.51 1.86074 23.06
6 78.9142 (可変)

7* 18.1125 1.30 1.83441 37.28
8 12.2772 1.76 1.59319 67.87
9 -2494.0282 3.99
10(絞り) ∞ 1.00
11 23.3375 1.67 1.74400 44.78
12 -19.5626 1.00 1.67270 32.11
13 -219.6865 2.59
14 106.9379 1.53 1.80486 24.73
15 28.0039 1.36
16 352.0524 0.83 1.79952 42.24
17 10.0128 2.17 1.69350 53.20
18* -38.1016 (Bf)
像面 ∞

(非球面データ)
第2面
κ = 0.6460
A4 = 1.2719E-05
A6 = 5.3251E-07
A8 = -4.7392E-09
A10 = 4.5963E-11
第7面
κ = -1.0893
A4 = 3.0467E-05
A6 = 9.8555E-08
A8 = -1.0556E-08
A10 = 2.2926E-10
第18面
κ = 1.0000
A4 = 6.6102E-05
A6 = 5.9125E-08
A8 = 3.8159E-08
A10 = -1.1681E-09

(各種データ)
ズーム比 2.825
W M T
f = 10.30 17.30 29.10
FNO = 3.31 4.22 5.78
2ω = 77.59 49.65 30.52
Y = 7.96 7.96 7.96
TL = 73.80 67.53 72.19
Bf = 18.7255 26.4381 39.4394

d6 23.5020 9.5180 1.1743

(合焦レンズ群移動量データ)
W M T
f = 10.3000 17.3000 29.0999
ΔFx = 0.0669 0.0967 0.1445

(ズームレンズ群データ)
群 始面 焦点距離
1 1 −17.9744
2 7 19.8044

(条件式対応値)
fw=10.3000
ft=29.0999
ff=26.0978
fs=36.6504
fa=−98.3425
d1−2=7.2500
fγw=1.5400
(1) fa/fs=−2.6833
(4) |fw/ff|=0.3947
(5) |fγw|=1.5400
(6) ff/fs=0.7121
(7) (d1−2)/ft=0.2491
(Table 1)

(Surface data)
Surface number rd nd νd
Object ∞ ∞
1 18.6779 1.30 1.85135 40.10
2 * 7.8525 7.25
3 -94.6821 1.00 1.83481 42.72
4 34.1506 0.31
5 18.6651 2.51 1.86074 23.06
6 78.9142 (variable)

7 * 18.1125 1.30 1.83441 37.28
8 12.2772 1.76 1.59319 67.87
9 -2494.0282 3.99
10 (Aperture) ∞ 1.00
11 23.3375 1.67 1.74400 44.78
12 -19.5626 1.00 1.67270 32.11
13 -219.6865 2.59
14 106.9379 1.53 1.80486 24.73
15 28.0039 1.36
16 352.0524 0.83 1.79952 42.24
17 10.0128 2.17 1.69350 53.20
18 * -38.1016 (Bf)
Image plane ∞

(Aspheric data)
Second side κ = 0.6460
A4 = 1.2719E-05
A6 = 5.3251E-07
A8 = -4.7392E-09
A10 = 4.5963E-11
7th surface κ = -1.0893
A4 = 3.0467E-05
A6 = 9.8555E-08
A8 = -1.0556E-08
A10 = 2.2926E-10
18th surface κ = 1.0000
A4 = 6.6102E-05
A6 = 5.9125E-08
A8 = 3.8159E-08
A10 = -1.1681E-09

(Various data)
Zoom ratio 2.825
W M T
f = 10.30 17.30 29.10
FNO = 3.31 4.22 5.78
2ω = 77.59 49.65 30.52
Y = 7.96 7.96 7.96
TL = 73.80 67.53 72.19
Bf = 18.7255 26.4381 39.4394

d6 23.5020 9.5180 1.1743

(Focus lens group movement data)
W M T
f = 10.3000 17.3000 29.0999
ΔFx = 0.0669 0.0967 0.1445

(Zoom lens group data)
Group Start surface Focal length 1 1 -17.744
2 7 19.8044

(Values for conditional expressions)
fw = 10.3000
ft = 29.0999
ff = 26.0978
fs = 36.6504
fa = −98.3425
d1-2 = 7.2500
fγw = 1.5400
(1) fa / fs = −2.6833
(4) | fw / ff | = 0.3947
(5) | fγw | = 1.5400
(6) ff / fs = 0.7121
(7) (d1-2) /ft=0.2491

図2は、第1実施例に係るレンズ系の無限遠合焦状態での諸収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   2A and 2B are graphs showing various aberrations of the lens system according to Example 1 in an infinitely focused state, where FIG. 2A is a wide-angle end state, FIG. 2B is an intermediate focal length state, and FIG. 2C is a telephoto end state. Respectively.

図3は、第1実施例に係るレンズ系の近距離合焦状態(撮影倍率−0.01倍)での諸収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   FIGS. 3A and 3B are graphs showing various aberrations of the lens system according to Example 1 in a short-distance in-focus state (shooting magnification—0.01 times), where (a) is a wide-angle end state and (b) is an intermediate focal length. The state (c) shows the telephoto end state.

図4は、第1実施例に係るレンズ系の無限遠合焦状態のレンズシフト状態(0.2mm)でのコマ収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   4A and 4B are coma aberration diagrams in the lens shift state (0.2 mm) in the infinitely focused state of the lens system according to Example 1. FIG. 4A is a wide-angle end state, and FIG. 4B is an intermediate focal length. The state (c) shows the telephoto end state.

各収差図において、FNOはFナンバー、Aは半画角(単位:「°」)、NAは開口数、H0は物体高(単位:「mm」)をそれぞれ示す。そして非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。   In each aberration diagram, FNO is an F number, A is a half angle of view (unit: “°”), NA is a numerical aperture, and H0 is an object height (unit: “mm”). In the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane.

なお、以降の実施例においても同様の記号を使用し、以降の説明を省略する。   In the following examples, the same symbols are used, and the following description is omitted.

各収差図から、第1実施例に係るレンズ系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、優れた結像性能を有していることがわかる。   From each aberration diagram, it can be seen that the lens system according to the first example has excellent imaging performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.

(第2実施例)
図5は、第2実施例に係るレンズ系の構成を示す断面図である。
(Second embodiment)
FIG. 5 is a cross-sectional view showing a configuration of a lens system according to the second example.

図5に示すように、第2実施例に係るレンズ系は、光軸に沿って物体側から順に、負屈折力を有する第1レンズ群G1と、正屈折力を有する第2レンズ群G2とから構成され、広角端状態Wから望遠端状態Tへの変倍に際し、第1レンズ群G1と第2レンズ群G2との空気間隔が減少するように、第1レンズ群G1と第2レンズ群G2が移動する。   As shown in FIG. 5, the lens system according to the second example includes a first lens group G1 having negative refractive power and a second lens group G2 having positive refractive power in order from the object side along the optical axis. And the first lens group G1 and the second lens group so that the air gap between the first lens group G1 and the second lens group G2 is reduced upon zooming from the wide-angle end state W to the telephoto end state T. G2 moves.

第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、両凹レンズL12と、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた正メニスカスレンズL14とから構成されている。第1レンズ群G1の最も物体側に位置する負メニスカスレンズL11は、像面I側に非球面を形成した非球面レンズである。   The first lens group G1 includes, in order from the object side along the optical axis, a negative meniscus lens L11 having a convex surface directed toward the object side, a biconcave lens L12, a positive meniscus lens L13 having a convex surface directed toward the object side, and an object side And a positive meniscus lens L14 having a convex surface. The negative meniscus lens L11 located closest to the object side of the first lens group G1 is an aspheric lens having an aspheric surface on the image plane I side.

第2レンズ群G2は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と物体側に凸面を向けた正メニスカスレンズL22との接合正レンズと、開口絞りSと、両凸レンズL23と物体側に凹面を向けた負メニスカスレンズL24との接合正レンズと、物体側に凸面を向けた正メニスカスレンズL25と、両凹レンズL26と両凸レンズL27との接合負レンズとから構成されている。第2レンズ群G2の最も物体側に位置する負メニスカスレンズL21は、物体側に非球面を形成した非球面レンズである。第2レンズ群G2の偏心レンズ群Gsの像面I側に位置する正メニスカスレンズL25は、物体側に非球面を形成した非球面レンズである。第2レンズ群G2の最も像面I側に位置する両凸レンズL27は、像面I側に非球面を形成した非球面レンズである。   The second lens group G2 includes, in order from the object side along the optical axis, a cemented positive lens of a negative meniscus lens L21 having a convex surface facing the object side and a positive meniscus lens L22 having a convex surface facing the object side, and an aperture stop S A cemented positive lens of a biconvex lens L23 and a negative meniscus lens L24 having a concave surface facing the object side, a positive meniscus lens L25 having a convex surface facing the object side, and a cemented negative lens of a biconcave lens L26 and a biconvex lens L27. It is composed of The negative meniscus lens L21 located closest to the object side in the second lens group G2 is an aspheric lens having an aspheric surface on the object side. The positive meniscus lens L25 located on the image plane I side of the decentered lens group Gs of the second lens group G2 is an aspheric lens having an aspheric surface on the object side. The biconvex lens L27 located closest to the image plane I in the second lens group G2 is an aspherical lens in which an aspheric surface is formed on the image plane I side.

第2レンズ群G2の群内に配置された開口絞りSは、広角端状態Wから望遠端状態Tへの変倍に際し、第2レンズ群G2と一体に物体側へ移動する。   The aperture stop S arranged in the second lens group G2 moves together with the second lens group G2 toward the object side during zooming from the wide-angle end state W to the telephoto end state T.

正メニスカスレンズL25は合焦レンズ群Gfであり、合焦レンズ群Gfを物体側に移動させることにより、無限遠物体から近距離物体への合焦を行う。   The positive meniscus lens L25 is a focusing lens group Gf, and the focusing lens group Gf is moved to the object side, thereby focusing from an infinite object to a short distance object.

両凸レンズL23と負メニスカスレンズL24との接合正レンズは偏心レンズ群Gsであり、偏心レンズ群Gsを光軸に略垂直な方向に移動させることにより、手ぶれ補正(防振)を行う。   The cemented positive lens of the biconvex lens L23 and the negative meniscus lens L24 is a decentered lens group Gs, and camera shake correction (anti-vibration) is performed by moving the decentered lens group Gs in a direction substantially perpendicular to the optical axis.

負メニスカスレンズL21と正メニスカスレンズL22との接合正レンズは補助レンズ群Gaである。   The cemented positive lens of the negative meniscus lens L21 and the positive meniscus lens L22 is the auxiliary lens group Ga.

以下の表2に第2実施例に係るレンズ系の諸元値を掲げる。   Table 2 below lists specifications of the lens system according to the second example.

(表2)

(面データ)
面番号 r d nd νd
物面 ∞ ∞
1 16.2784 1.30 1.85135 40.10
2* 8.9447 5.30
3 -301.3986 1.00 1.88300 40.76
4 12.6615 1.06
5 18.9306 1.56 1.76346 26.38
6 27.0707 1.36
7 18.2904 2.18 1.86074 23.06
8 58.5517 (可変)

9* 16.7318 1.39 1.85135 40.10
10 11.1081 1.81 1.58090 57.73
11 676.4968 4.01
12(絞り) ∞ 1.00
13 134.3575 1.83 1.75197 47.49
14 -10.0350 1.00 1.83781 31.56
15 -34.0385 1.80
16* 13.9946 1.35 1.77377 47.17
17 24.7571 2.13
18 -54.0166 0.80 1.89370 35.17
19 9.5527 1.80 1.73077 40.50
20* -53.9739 (Bf)
像面 ∞

(非球面データ)
第2面
κ = 0.1601
A4 = 9.1340E-05
A6 = 4.5205E-07
A8 = 5.5818E-09
A10 = -2.4977E-11
第9面
κ = -3.5386
A4 = 1.0402E-04
A6 = -8.0989E-07
A8 = 1.5095E-08
A10 = -1.1446E-10
第16面
κ = -0.0568
A4 = 1.5624E-04
A6 = 1.5318E-06
A8 = 1.2547E-08
A10 = 0.0000E+00
第20面
κ = 1.0000
A4 = 1.9868E-04
A6 = 1.8409E-06
A8 = 9.4693E-08
A10 = -1.4396E-09

(各種データ)
ズーム比 2.825
W M T
f = 10.30 17.30 29.10
FNO = 3.51 4.14 5.77
2ω = 78.05 49.64 30.55
Y = 7.96 7.96 7.96
TL = 74.56 70.81 77.93
Bf = 20.7334 29.3225 43.8013

d8 21.1546 8.8150 1.4524

(合焦レンズ群移動量データ)
W M T
f = 10.3000 17.3001 29.1002
ΔFx = 0.0672 0.0808 0.0889

(ズームレンズ群データ)
群 始面 焦点距離
1 1 −16.0000
2 9 19.6321

(条件式対応値)
fw=10.3000
ft=29.1002
ff=39.4493
fs=49.2923
fa=37.5001
d1−2=5.2957
fγw=1.5310
(1) fa/fs=0.7608
(4) |fw/ff|=0.2611
(5) |fγw|=1.5310
(6) ff/fs=0.8003
(7) (d1−2)/ft=0.1820
(Table 2)

(Surface data)
Surface number rd nd νd
Object ∞ ∞
1 16.2784 1.30 1.85135 40.10
2 * 8.9447 5.30
3 -301.3986 1.00 1.88300 40.76
4 12.6615 1.06
5 18.9306 1.56 1.76346 26.38
6 27.0707 1.36
7 18.2904 2.18 1.86074 23.06
8 58.5517 (variable)

9 * 16.7318 1.39 1.85135 40.10
10 11.1081 1.81 1.58090 57.73
11 676.4968 4.01
12 (Aperture) ∞ 1.00
13 134.3575 1.83 1.75197 47.49
14 -10.0350 1.00 1.83781 31.56
15 -34.0385 1.80
16 * 13.9946 1.35 1.77377 47.17
17 24.7571 2.13
18 -54.0166 0.80 1.89370 35.17
19 9.5527 1.80 1.73077 40.50
20 * -53.9739 (Bf)
Image plane ∞

(Aspheric data)
Second side κ = 0.1601
A4 = 9.1340E-05
A6 = 4.5205E-07
A8 = 5.5818E-09
A10 = -2.4977E-11
9th surface κ = -3.5386
A4 = 1.0402E-04
A6 = -8.0989E-07
A8 = 1.5095E-08
A10 = -1.1446E-10
16th surface κ = -0.0568
A4 = 1.5624E-04
A6 = 1.5318E-06
A8 = 1.2547E-08
A10 = 0.0000E + 00
20th surface κ = 1.0000
A4 = 1.9868E-04
A6 = 1.8409E-06
A8 = 9.4693E-08
A10 = -1.4396E-09

(Various data)
Zoom ratio 2.825
W M T
f = 10.30 17.30 29.10
FNO = 3.51 4.14 5.77
2ω = 78.05 49.64 30.55
Y = 7.96 7.96 7.96
TL = 74.56 70.81 77.93
Bf = 20.7334 29.3225 43.8013

d8 21.1546 8.8150 1.4524

(Focus lens group movement data)
W M T
f = 10.3000 17.3001 29.1002
ΔFx = 0.0672 0.0808 0.0889

(Zoom lens group data)
Group Start surface Focal length 1 1-16.0000
2 9 19.6321

(Values for conditional expressions)
fw = 10.3000
ft = 29.1002
ff = 39.4493
fs = 49.2923
fa = 37.5001
d1-2 = 5.2957
fγw = 1.5310
(1) fa / fs = 0.7608
(4) | fw / ff | = 0.2611
(5) | fγw | = 1.5310
(6) ff / fs = 0.003
(7) (d1-2) /ft=0.1820

図6は、第2実施例に係るレンズ系の無限遠合焦状態での諸収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   6A and 6B are graphs showing various aberrations of the lens system according to Example 2 in an infinitely focused state, where FIG. 6A is a wide-angle end state, FIG. 6B is an intermediate focal length state, and FIG. 6C is a telephoto end state. Respectively.

図7は、第2実施例に係るレンズ系の近距離合焦状態(撮影倍率−0.01倍)での諸収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   FIG. 7 is a diagram illustrating various aberrations of the lens system according to Example 2 in a short distance in-focus state (imaging magnification: −0.01 times), where (a) is a wide-angle end state and (b) is an intermediate focal length. The state (c) shows the telephoto end state.

図8は、第2実施例に係るレンズ系の無限遠合焦状態のレンズシフト状態(0.2mm)でのコマ収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   8A and 8B show coma aberration diagrams in the lens shift state (0.2 mm) in the infinitely focused state of the lens system according to Example 2. FIG. 8A is a wide-angle end state, and FIG. 8B is an intermediate focal length. The state (c) shows the telephoto end state.

各収差図から、第2実施例に係るレンズ系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、優れた結像性能を有していることがわかる。   From each aberration diagram, it can be seen that the lens system according to the second example has excellent imaging performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.

(第3実施例)
図9は、第3実施例に係るレンズ系の構成を示す断面図である。
(Third embodiment)
FIG. 9 is a cross-sectional view showing a configuration of a lens system according to the third example.

図9に示すように、第3実施例に係るレンズ系は、光軸に沿って物体側から順に、負屈折力を有する第1レンズ群G1と、正屈折力を有する第2レンズ群G2とから構成され、広角端状態Wから望遠端状態Tへの変倍に際し、第1レンズ群G1と第2レンズ群G2との空気間隔が減少するように、第1レンズ群G1と第2レンズ群G2が移動する。   As shown in FIG. 9, the lens system according to the third example includes, in order from the object side along the optical axis, a first lens group G1 having negative refractive power, and a second lens group G2 having positive refractive power. And the first lens group G1 and the second lens group so that the air gap between the first lens group G1 and the second lens group G2 is reduced upon zooming from the wide-angle end state W to the telephoto end state T. G2 moves.

第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた正メニスカスレンズL14とから構成されている。第1レンズ群G1の最も物体側に位置する負メニスカスレンズL11は、像面I側に非球面を形成した非球面レンズである。   The first lens group G1 has, in order from the object side along the optical axis, a negative meniscus lens L11 having a convex surface facing the object side, a negative meniscus lens L12 having a convex surface facing the object side, and a convex surface facing the object side. It is composed of a positive meniscus lens L13 and a positive meniscus lens L14 having a convex surface facing the object side. The negative meniscus lens L11 located closest to the object side of the first lens group G1 is an aspheric lens having an aspheric surface on the image plane I side.

第2レンズ群G2は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と物体側に凸面を向けた正メニスカスレンズL22との接合正レンズと、物体側に凸面を向けた正メニスカスレンズL23と、開口絞りSと、両凸レンズL24と物体側に凹面を向けた負メニスカスレンズL25との接合正レンズと、両凹レンズL26と両凸レンズL27との接合負レンズとから構成されている。第2レンズ群G2の最も物体側に位置する負メニスカスレンズL21は、物体側に非球面を形成した非球面レンズである。第2レンズ群G2の開口絞りSの物体側に位置する正メニスカスレンズL23は、物体側に非球面を形成した非球面レンズである。第2レンズ群G2の最も像面I側に位置する両凸レンズL27は、像面I側に非球面を形成した非球面レンズである。   The second lens group G2 includes, in order from the object side along the optical axis, a cemented positive lens of a negative meniscus lens L21 having a convex surface facing the object side and a positive meniscus lens L22 having a convex surface facing the object side, A positive meniscus lens L23 having a convex surface, an aperture stop S, a cemented positive lens having a biconvex lens L24 and a negative meniscus lens L25 having a concave surface facing the object side, and a cemented negative lens having a biconcave lens L26 and a biconvex lens L27 It is composed of The negative meniscus lens L21 located closest to the object side in the second lens group G2 is an aspheric lens having an aspheric surface on the object side. The positive meniscus lens L23 located on the object side of the aperture stop S of the second lens group G2 is an aspheric lens having an aspheric surface on the object side. The biconvex lens L27 located closest to the image plane I in the second lens group G2 is an aspherical lens in which an aspheric surface is formed on the image plane I side.

第2レンズ群G2の群内に配置された開口絞りSは、広角端状態Wから望遠端状態Tへの変倍に際し、第2レンズ群G2と一体に物体側へ移動する。   The aperture stop S arranged in the second lens group G2 moves together with the second lens group G2 toward the object side during zooming from the wide-angle end state W to the telephoto end state T.

両凹レンズL26と両凸レンズL27との接合負レンズは合焦レンズ群Gfであり、合焦レンズ群Gfを像面I側に移動させることにより、無限遠物体から近距離物体への合焦を行う。   The cemented negative lens of the biconcave lens L26 and the biconvex lens L27 is a focusing lens group Gf. By moving the focusing lens group Gf to the image plane I side, focusing from an infinite object to a short-distance object is performed. .

両凸レンズL24と負メニスカスレンズL25との接合正レンズは偏心レンズ群Gsであり、偏心レンズ群Gsを光軸に略垂直な方向に移動させることにより、手ぶれ補正(防振)を行う。   The cemented positive lens of the biconvex lens L24 and the negative meniscus lens L25 is a decentered lens group Gs, and camera shake correction (anti-vibration) is performed by moving the decentered lens group Gs in a direction substantially perpendicular to the optical axis.

正メニスカスレンズL23は補助レンズ群Gaである。   The positive meniscus lens L23 is the auxiliary lens group Ga.

以下の表3に第3実施例に係るレンズ系の諸元値を掲げる。   Table 3 below lists specifications of the lens system according to the third example.

(表3)

(面データ)
面番号 r d nd νd
物面 ∞ ∞
1 18.4021 1.30 1.85135 40.10
2* 9.4660 5.19
3 106.6621 1.00 1.88300 40.76
4 12.4920 1.75
5 18.3528 1.77 1.84666 23.78
6 28.9480 0.65
7 17.1399 2.08 1.80809 22.79
8 32.7787 (可変)

9* 15.0062 0.80 1.83441 37.28
10 9.9310 1.70 1.74100 52.67
11 36.5917 4.24
12* 20.2806 1.24 1.58913 61.25
13 519.9944 0.80
14(絞り) ∞ 1.00
15 33.1718 2.09 1.61720 54.01
16 -13.7000 1.00 1.74077 27.78
17 -47.2996 0.81
18 ∞ 1.00
19 -12.0144 0.80 1.83400 37.16
20 10.7146 3.37 1.73077 40.50
21* -14.3627 (Bf)
像面 ∞

(非球面データ)
第2面
κ = -0.8688
A4 = 2.2426E-04
A6 = -1.1858E-07
A8 = 2.0865E-09
A10 = 0.0000E+00
第9面
κ = 1.5382
A4 = -4.3414E-05
A6 = 1.8507E-08
A8 = -3.1873E-08
A10 = 9.2225E-10
第12面
κ = 1.0000
A4 = 6.9511E-05
A6 = 8.0932E-07
A8 = -2.7525E-09
A10 = 0.0000E+00
第21面
κ = 1.0000
A4 = 7.5377E-05
A6 = 6.6313E-07
A8 = 0.0000E+00
A10 = 0.0000E+00

(各種データ)
ズーム比 2.825
W M T
f = 10.30 17.30 29.10
FNO = 3.57 4.27 5.80
2ω = 77.45 49.72 30.58
Y = 7.96 7.96 7.96
TL = 74.59 69.93 76.27
Bf = 19.7396 28.1183 42.2423

d8 22.2705 9.2305 1.4500

(合焦レンズ群移動量データ)
W M T
f = 10.3000 17.3001 29.1002
ΔFx = -0.0718 -0.0883 -0.0984

(ズームレンズ群データ)
群 始面 焦点距離
1 1 −16.6530
2 9 19.9329

(条件式対応値)
fw=10.3000
ft=29.0999
ff=−52.4471
fs=40.0000
fa=35.7888
d1−2=5.1881
fγw=−1.4369
(1) fa/fs=0.8947
(4) |fw/ff|=0.1964
(5) |fγw|=1.4369
(6) ff/fs=−1.3112
(7) (d1−2)/ft=0.1783
(Table 3)

(Surface data)
Surface number rd nd νd
Object ∞ ∞
1 18.4021 1.30 1.85135 40.10
2 * 9.4660 5.19
3 106.6621 1.00 1.88300 40.76
4 12.4920 1.75
5 18.3528 1.77 1.84666 23.78
6 28.9480 0.65
7 17.1399 2.08 1.80809 22.79
8 32.7787 (variable)

9 * 15.0062 0.80 1.83441 37.28
10 9.9310 1.70 1.74100 52.67
11 36.5917 4.24
12 * 20.2806 1.24 1.58913 61.25
13 519.9944 0.80
14 (Aperture) ∞ 1.00
15 33.1718 2.09 1.61720 54.01
16 -13.7000 1.00 1.74077 27.78
17 -47.2996 0.81
18 ∞ 1.00
19 -12.0144 0.80 1.83400 37.16
20 10.7146 3.37 1.73077 40.50
21 * -14.3627 (Bf)
Image plane ∞

(Aspheric data)
Second side κ = -0.8688
A4 = 2.2426E-04
A6 = -1.1858E-07
A8 = 2.0865E-09
A10 = 0.0000E + 00
9th surface κ = 1.5382
A4 = -4.3414E-05
A6 = 1.8507E-08
A8 = -3.1873E-08
A10 = 9.2225E-10
12th surface κ = 1.0000
A4 = 6.9511E-05
A6 = 8.0932E-07
A8 = -2.7525E-09
A10 = 0.0000E + 00
21st surface κ = 1.0000
A4 = 7.5377E-05
A6 = 6.6313E-07
A8 = 0.0000E + 00
A10 = 0.0000E + 00

(Various data)
Zoom ratio 2.825
W M T
f = 10.30 17.30 29.10
FNO = 3.57 4.27 5.80
2ω = 77.45 49.72 30.58
Y = 7.96 7.96 7.96
TL = 74.59 69.93 76.27
Bf = 19.7396 28.1183 42.2423

d8 22.2705 9.2305 1.4500

(Focus lens group movement data)
W M T
f = 10.3000 17.3001 29.1002
ΔFx = -0.0718 -0.0883 -0.0984

(Zoom lens group data)
Group Start surface Focal length 1 1-16.6530
2 9 19.9329

(Values for conditional expressions)
fw = 10.3000
ft = 29.0999
ff = −52.4471
fs = 40.0000
fa = 35.7888
d1-2 = 5.1881
fγw = −1.4369
(1) fa / fs = 0.8947
(4) | fw / ff | = 0.1964
(5) | fγw | = 1.4369
(6) ff / fs = −1.3112
(7) (d1-2) /ft=0.1783

図10は、第3実施例に係るレンズ系の無限遠合焦状態での諸収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   FIGS. 10A and 10B are graphs showing various aberrations of the lens system according to Example 3 in an infinitely focused state, where FIG. 10A is a wide-angle end state, FIG. 10B is an intermediate focal length state, and FIG. 10C is a telephoto end state. Respectively.

図11は、第3実施例に係るレンズ系の近距離合焦状態(撮影倍率−0.01倍)での諸収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   FIG. 11 is a diagram illustrating various aberrations of the lens system according to Example 3 in a short distance in-focus state (imaging magnification: -0.01 times), where (a) is a wide-angle end state and (b) is an intermediate focal length. The state (c) shows the telephoto end state.

図12は、第3実施例に係るレンズ系の無限遠合焦状態のレンズシフト状態(0.2mm)でのコマ収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   12A and 12B are coma aberration diagrams in the lens shift state (0.2 mm) in the infinitely focused state of the lens system according to Example 3, wherein FIG. 12A is a wide-angle end state, and FIG. 12B is an intermediate focal length. The state (c) shows the telephoto end state.

各収差図から、第3実施例に係るレンズ系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、優れた結像性能を有していることがわかる。   From each aberration diagram, it can be seen that the lens system according to Example 3 has excellent imaging performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.

(第4実施例)
図13は、第4実施例に係るレンズ系の構成を示す断面図である。
(Fourth embodiment)
FIG. 13 is a cross-sectional view showing a configuration of a lens system according to the fourth example.

図13に示すように、第4実施例に係るレンズ系は、光軸に沿って物体側から順に、負屈折力を有する第1レンズ群G1と、正屈折力を有する第2レンズ群G2とから構成され、広角端状態Wから望遠端状態Tへの変倍に際し、第1レンズ群G1と第2レンズ群G2との空気間隔が減少するように、第1レンズ群G1と第2レンズ群G2が移動する。   As shown in FIG. 13, the lens system according to the fourth example includes, in order from the object side along the optical axis, a first lens group G1 having negative refractive power, and a second lens group G2 having positive refractive power. And the first lens group G1 and the second lens group so that the air gap between the first lens group G1 and the second lens group G2 is reduced upon zooming from the wide-angle end state W to the telephoto end state T. G2 moves.

第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、両凹レンズL12と、物体側に凸面を向けた正メニスカスレンズL13とから構成されている。第1レンズ群G1の最も物体側に位置する負メニスカスレンズL11は、両面に非球面を形成した非球面レンズである。第1レンズ群G1の両凹レンズL12は、像面I側に非球面を形成した非球面レンズである。   The first lens group G1 includes, in order from the object side along the optical axis, a negative meniscus lens L11 having a convex surface facing the object side, a biconcave lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. ing. The negative meniscus lens L11 located closest to the object side of the first lens group G1 is an aspheric lens in which aspheric surfaces are formed on both surfaces. The biconcave lens L12 of the first lens group G1 is an aspheric lens in which an aspheric surface is formed on the image plane I side.

第2レンズ群G2は、光軸に沿って物体側から順に、物体側に凸面を向けた正メニスカスレンズL21と、開口絞りSと、両凸レンズL22と物体側に凹面を向けた負メニスカスレンズL23との接合正レンズと、物体側に凸面を向けた負メニスカスレンズL24と両凸レンズL25との接合正レンズと、像面I側に凸面を向けた正メニスカスレンズL26と、像面I側に凸面を向けた負メニスカスレンズL27とから構成されている。第2レンズ群G2の最も像面I側に位置する負メニスカスレンズL27は、像面I側に非球面を形成した非球面レンズである。   The second lens group G2 includes, in order from the object side along the optical axis, a positive meniscus lens L21 having a convex surface facing the object side, an aperture stop S, a biconvex lens L22, and a negative meniscus lens L23 having a concave surface facing the object side. A cemented positive lens, a cemented positive lens of a negative meniscus lens L24 having a convex surface facing the object side and a biconvex lens L25, a positive meniscus lens L26 having a convex surface facing the image surface I, and a convex surface facing the image surface I. And a negative meniscus lens L27. The negative meniscus lens L27 located closest to the image plane I in the second lens group G2 is an aspheric lens having an aspheric surface formed on the image plane I side.

第2レンズ群G2の群内に配置された開口絞りSは、広角端状態Wから望遠端状態Tへの変倍に際し、第2レンズ群G2と一体に物体側へ移動する。   The aperture stop S arranged in the second lens group G2 moves together with the second lens group G2 toward the object side during zooming from the wide-angle end state W to the telephoto end state T.

負メニスカスレンズL24と両凸レンズL25との接合正レンズは合焦レンズ群Gfであり、合焦レンズ群Gfを物体側に移動させることにより、無限遠物体から近距離物体への合焦を行う。   The cemented positive lens of the negative meniscus lens L24 and the biconvex lens L25 is a focusing lens group Gf. By moving the focusing lens group Gf to the object side, focusing from an object at infinity to a near object is performed.

正メニスカスレンズL21は偏心レンズ群Gsであり、偏心レンズ群Gsを光軸に略垂直な方向に移動させることにより、手ぶれ補正(防振)を行う。   The positive meniscus lens L21 is a decentered lens group Gs, and performs camera shake correction (anti-vibration) by moving the decentered lens group Gs in a direction substantially perpendicular to the optical axis.

正メニスカスレンズL26と、負メニスカスレンズL27とは、正屈折力を有する補助レンズ群Gaである。   The positive meniscus lens L26 and the negative meniscus lens L27 are an auxiliary lens group Ga having a positive refractive power.

以下の表4に第4実施例に係るレンズ系の諸元値を掲げる。   Table 4 below lists specifications of the lens system according to the fourth example.

(表4)

(面データ)
面番号 r d nd νd
物面 ∞ ∞
1* 65.6582 1.80 1.76802 49.23
2* 11.1606 10.60
3 -41.8065 3.20 1.76802 49.23
4* 17.5136 3.80
5 14.4408 2.30 1.92286 20.88
6 23.0940 (可変)

7 13.2190 1.50 1.75500 52.32
8 37.9290 1.60
9(絞り) ∞ 1.50
10 21.6826 6.50 1.49782 82.56
11 -9.3713 1.00 1.88300 40.77
12 -50.0183 1.42
13 11.9486 1.20 1.90366 31.31
14 7.9899 2.50 1.49782 82.56
15 -409.7597 1.25
16 -5817.7134 1.80 1.49782 82.56
17 -17.3100 0.40
18 -13.7854 1.20 1.76802 49.23
19* -21.3255 (Bf)
像面 ∞

(非球面データ)
第1面
κ = 11.2695
A4 = 6.5208E-08
A6 = 4.5111E-09
A8 = 0.0000E+00
A10 = 0.0000E+00
第2面
κ = -0.6591
A4 = 0.0000E+00
A6 = 0.0000E+00
A8 = 0.0000E+00
A10 = 0.0000E+00
第4面
κ = 2.7380
A4 = 1.5432E-04
A6 = 3.8186E-07
A8 = 0.0000E+00
A10 = 0.0000E+00
第19面
κ =-21.6774
A4 = -1.3542E-04
A6 = 5.0739E-06
A8 = -6.2280E-08
A10 = 0.0000E+00

(各種データ)
ズーム比 1.828
W M T
f = 6.90 9.50 12.61
FNO = 3.62 4.52 5.77
2ω = 98.83 79.61 63.97
Y = 7.96 7.96 7.96
TL = 70.23 68.58 69.98
Bf = 14.6644 19.2561 24.7483

d6 11.9986 5.7487 1.6581

(合焦レンズ群移動量データ)
W M T
f = 6.9000 9.5000 12.6100
ΔFx = 0.1039 0.1452 0.2194

(ズームレンズ群データ)
群 始面 焦点距離
1 1 −9.4458
2 7 16.6813

(条件式対応値)
fw=6.9000
ft=12.6100
ff=35.2637
fs=26.1912
fa=101.5495
d1−2=10.6000
fγw=0.6637
(1) fa/fs=3.8772
(4) |fw/ff|=0.1957
(5) |fγw|=0.6637
(6) ff/fs=1.3464
(7) (d1−2)/ft=0.8406
(Table 4)

(Surface data)
Surface number rd nd νd
Object ∞ ∞
1 * 65.6582 1.80 1.76802 49.23
2 * 11.1606 10.60
3 -41.8065 3.20 1.76802 49.23
4 * 17.5136 3.80
5 14.4408 2.30 1.92286 20.88
6 23.0940 (variable)

7 13.2190 1.50 1.75500 52.32
8 37.9290 1.60
9 (Aperture) ∞ 1.50
10 21.6826 6.50 1.49782 82.56
11 -9.3713 1.00 1.88300 40.77
12 -50.0183 1.42
13 11.9486 1.20 1.90366 31.31
14 7.9899 2.50 1.49782 82.56
15 -409.7597 1.25
16 -5817.7134 1.80 1.49782 82.56
17 -17.3100 0.40
18 -13.7854 1.20 1.76802 49.23
19 * -21.3255 (Bf)
Image plane ∞

(Aspheric data)
First side κ = 11.2695
A4 = 6.5208E-08
A6 = 4.5111E-09
A8 = 0.0000E + 00
A10 = 0.0000E + 00
Second side κ = -0.6591
A4 = 0.0000E + 00
A6 = 0.0000E + 00
A8 = 0.0000E + 00
A10 = 0.0000E + 00
4th surface κ = 2.7380
A4 = 1.5432E-04
A6 = 3.8186E-07
A8 = 0.0000E + 00
A10 = 0.0000E + 00
19th surface κ = -21.6774
A4 = -1.3542E-04
A6 = 5.0739E-06
A8 = -6.2280E-08
A10 = 0.0000E + 00

(Various data)
Zoom ratio 1.828
W M T
f = 6.90 9.50 12.61
FNO = 3.62 4.52 5.77
2ω = 98.83 79.61 63.97
Y = 7.96 7.96 7.96
TL = 70.23 68.58 69.98
Bf = 14.6644 19.2561 24.7483

d6 11.9986 5.7487 1.6581

(Focus lens group movement data)
W M T
f = 6.9000 9.5000 12.6100
ΔFx = 0.1039 0.1452 0.2194

(Zoom lens group data)
Group Start surface Focal length 1 1 -9.4458
2 7 16.6813

(Values for conditional expressions)
fw = 6.9000
ft = 12.6100
ff = 35.2637
fs = 26.1912
fa = 101.5495
d1-2 = 10.6000
fγw = 0.6637
(1) fa / fs = 3.88772
(4) | fw / ff | = 0.1957
(5) | fγw | = 0.6637
(6) ff / fs = 1.3464
(7) (d1-2) /ft=0.8406

図14は、第4実施例に係るレンズ系の無限遠合焦状態での諸収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   FIGS. 14A and 14B show various aberration diagrams of the lens system according to Example 4 in an infinitely focused state, where FIG. 14A is a wide-angle end state, FIG. 14B is an intermediate focal length state, and FIG. 14C is a telephoto end state. Respectively.

図15は、第4実施例に係るレンズ系の近距離合焦状態(撮影倍率−0.01倍)での諸収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   FIGS. 15A and 15B are graphs showing various aberrations of the lens system according to Example 4 in a short-distance in-focus state (shooting magnification—0.01 times), where (a) is a wide-angle end state and (b) is an intermediate focal length. The state (c) shows the telephoto end state.

図16は、第4実施例に係るレンズ系の無限遠合焦状態のレンズシフト状態(0.2mm)でのコマ収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   16A and 16B are coma aberration diagrams in the lens shift state (0.2 mm) in the infinitely focused state of the lens system according to Example 4, wherein FIG. 16A is a wide-angle end state, and FIG. 16B is an intermediate focal length. The state (c) shows the telephoto end state.

各収差図から、第4実施例に係るレンズ系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、優れた結像性能を有していることがわかる。   From each aberration diagram, it can be seen that the lens system according to the fourth example has excellent imaging performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.

(第5実施例)
図17は、第5実施例に係るレンズ系の構成を示す断面図である。
(5th Example)
FIG. 17 is a sectional view showing the structure of a lens system according to the fifth example.

図17に示すように、第5実施例に係るレンズ系は、光軸に沿って物体側から順に、負屈折力を有する第1レンズ群G1と、正屈折力を有する第2レンズ群G2とから構成され、広角端状態Wから望遠端状態Tへの変倍に際し、第1レンズ群G1と第2レンズ群G2との空気間隔が減少するように、第1レンズ群G1と第2レンズ群G2が移動する。   As shown in FIG. 17, the lens system according to Example 5 includes, in order from the object side along the optical axis, a first lens group G1 having negative refractive power, and a second lens group G2 having positive refractive power. And the first lens group G1 and the second lens group so that the air gap between the first lens group G1 and the second lens group G2 is reduced upon zooming from the wide-angle end state W to the telephoto end state T. G2 moves.

第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、物体側に凸面を向けた正メニスカスレンズL13とから構成されている。第1レンズ群G1の最も物体側に位置する負メニスカスレンズL11は、像面I側に非球面を形成した非球面レンズである。   The first lens group G1 has, in order from the object side along the optical axis, a negative meniscus lens L11 having a convex surface facing the object side, a negative meniscus lens L12 having a convex surface facing the object side, and a convex surface facing the object side. It comprises a positive meniscus lens L13. The negative meniscus lens L11 located closest to the object side of the first lens group G1 is an aspheric lens having an aspheric surface on the image plane I side.

第2レンズ群G2は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と両凸レンズL22との接合正レンズと、物体側に凸面を向けた正メニスカスレンズL23と、開口絞りSと、両凹レンズL24と、両凸レンズL25と両凹レンズL26との接合負レンズと、両凸レンズL27とから構成されている。第2レンズ群G2の両凹レンズL24は、像面I側に非球面を形成した非球面レンズである。第2レンズ群G2の最も像面I側に位置する両凸レンズL27は、像面I側に非球面を形成した非球面レンズである。   The second lens group G2 includes, in order from the object side along the optical axis, a cemented positive lens of a negative meniscus lens L21 having a convex surface directed toward the object side and a biconvex lens L22, and a positive meniscus lens L23 having a convex surface directed toward the object side. And an aperture stop S, a biconcave lens L24, a cemented negative lens of a biconvex lens L25 and a biconcave lens L26, and a biconvex lens L27. The biconcave lens L24 of the second lens group G2 is an aspheric lens in which an aspheric surface is formed on the image plane I side. The biconvex lens L27 located closest to the image plane I in the second lens group G2 is an aspherical lens in which an aspheric surface is formed on the image plane I side.

第2レンズ群G2の群内に配置された開口絞りSは、広角端状態Wから望遠端状態Tへの変倍に際し、第2レンズ群G2と一体に物体側へ移動する。   The aperture stop S arranged in the second lens group G2 moves together with the second lens group G2 toward the object side during zooming from the wide-angle end state W to the telephoto end state T.

正メニスカスレンズL23は合焦レンズ群Gfであり、合焦レンズ群Gfを物体側に移動させることにより、無限遠物体から近距離物体への合焦を行う。   The positive meniscus lens L23 is a focusing lens group Gf, and the focusing lens group Gf is moved to the object side, thereby focusing from an infinite object to a short distance object.

負メニスカスレンズL21と両凸レンズL22との接合正レンズは偏心レンズ群Gsであり、偏心レンズ群Gsを光軸に略垂直な方向に移動させることにより、手ぶれ補正(防振)を行う。   The cemented positive lens of the negative meniscus lens L21 and the biconvex lens L22 is a decentered lens group Gs, and camera shake correction (anti-vibration) is performed by moving the decentered lens group Gs in a direction substantially perpendicular to the optical axis.

両凹レンズL24と、両凸レンズL25と両凹レンズL26との接合負レンズと、両凸レンズL27とは、負屈折力を有する補助レンズ群Gaである。   The biconcave lens L24, the cemented negative lens of the biconvex lens L25 and the biconcave lens L26, and the biconvex lens L27 are an auxiliary lens group Ga having negative refractive power.

以下の表5に第5実施例に係るレンズ系の諸元値を掲げる。   Table 5 below lists specifications of the lens system according to Example 5.

(表5)

(面データ)
面番号 r d nd νd
物面 ∞ ∞
1 25.0000 1.80 1.77377 47.17
2* 8.2000 5.44
3 195.9606 0.80 1.75500 52.32
4 27.4972 1.32
5 16.4792 2.39 1.84666 23.78
6 33.0474 (可変)

7 48.1225 0.80 1.80810 22.76
8 29.9061 1.89 1.65160 58.55
9 -48.2389 2.96
10 9.6847 1.93 1.60300 65.44
11 26.0017 1.00
12(絞り) ∞ 1.30
13 -34215.1520 0.80 1.82080 42.71
14* 16.7358 1.76
15 20.3058 1.72 1.49700 81.54
16 -90.6802 0.80 1.83400 37.16
17 17.5527 0.44
18 12.3817 2.16 1.66910 55.42
19* -74.1839 (Bf)
像面 ∞

(非球面データ)
第2面
κ = 0.6129
A4 = 1.9233E-05
A6 = 1.4470E-07
A8 = 1.3914E-09
A10 = 1.5950E-12
第14面
κ = 0.1365
A4 = -3.4023E-05
A6 = 1.6026E-06
A8 = -2.1064E-07
A10 = 7.1553E-09
第19面
κ = -8.5088
A4 = 2.4559E-04
A6 = 2.7667E-06
A8 = -3.1696E-08
A10 = 4.6513E-10

(各種データ)
ズーム比 2.825
W M T
f = 10.30 18.75 29.10
FNO = 3.64 4.59 5.86
2ω = 78.83 46.51 30.69
Y = 7.96 7.96 7.96
TL = 73.78 67.23 71.78
Bf = 20.0062 29.3544 40.8045

d6 23.7984 7.8948 1.0000

(合焦レンズ群移動量データ)
W M T
f = 10.3000 18.7500 29.1000
ΔFx = 0.0603 0.0996 0.1542

(ズームレンズ群データ)
群 始面 焦点距離
1 1 −18.1260
2 7 20.0528

(条件式対応値)
fw=10.3000
ft=29.1000
ff=24.5020
fs=40.2798
fa=−149.0129
d1−2=5.4400
fγw=1.7079
(1) fa/fs=−3.6994
(4) |fw/ff|=0.4204
(5) |fγw|=1.7079
(6) ff/fs=0.6083
(7) (d1−2)/ft=0.1869
(Table 5)

(Surface data)
Surface number rd nd νd
Object ∞ ∞
1 25.0000 1.80 1.77377 47.17
2 * 8.2000 5.44
3 195.9606 0.80 1.75500 52.32
4 27.4972 1.32
5 16.4792 2.39 1.84666 23.78
6 33.0474 (variable)

7 48.1225 0.80 1.80810 22.76
8 29.9061 1.89 1.65160 58.55
9 -48.2389 2.96
10 9.6847 1.93 1.60300 65.44
11 26.0017 1.00
12 (Aperture) ∞ 1.30
13 -34215.1520 0.80 1.82080 42.71
14 * 16.7358 1.76
15 20.3058 1.72 1.49700 81.54
16 -90.6802 0.80 1.83400 37.16
17 17.5527 0.44
18 12.3817 2.16 1.66910 55.42
19 * -74.1839 (Bf)
Image plane ∞

(Aspheric data)
Second side κ = 0.6129
A4 = 1.9233E-05
A6 = 1.4470E-07
A8 = 1.3914E-09
A10 = 1.5950E-12
14th surface κ = 0.1365
A4 = -3.4023E-05
A6 = 1.6026E-06
A8 = -2.1064E-07
A10 = 7.1553E-09
19th surface κ = -8.5088
A4 = 2.4559E-04
A6 = 2.7667E-06
A8 = -3.1696E-08
A10 = 4.6513E-10

(Various data)
Zoom ratio 2.825
W M T
f = 10.30 18.75 29.10
FNO = 3.64 4.59 5.86
2ω = 78.83 46.51 30.69
Y = 7.96 7.96 7.96
TL = 73.78 67.23 71.78
Bf = 20.0062 29.3544 40.8045

d6 23.7984 7.8948 1.0000

(Focus lens group movement data)
W M T
f = 10.3000 18.7500 29.1000
ΔFx = 0.0603 0.0996 0.1542

(Zoom lens group data)
Group Start surface Focal length 1 1-18.1260
2 7 20.0528

(Values for conditional expressions)
fw = 10.3000
ft = 29.1000
ff = 24.5050
fs = 40.2798
fa = -149.0129
d1-2 = 5.4400
fγw = 1.7079
(1) fa / fs = −3.6994
(4) | fw / ff | = 0.4204
(5) | fγw | = 1.7079
(6) ff / fs = 0.6083
(7) (d1-2) /ft=0.1869

図18は、第5実施例に係るレンズ系の無限遠合焦状態での諸収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   FIG. 18 is a diagram illustrating various aberrations of the lens system according to Example 5 in the infinitely focused state, where (a) is a wide-angle end state, (b) is an intermediate focal length state, and (c) is a telephoto end state. Respectively.

図19は、第5実施例に係るレンズ系の近距離合焦状態(撮影倍率−0.01倍)での諸収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   FIGS. 19A and 19B are graphs showing various aberrations of the lens system according to Example 5 in a short-distance in-focus state (shooting magnification—0.01 times), where (a) is a wide-angle end state and (b) is an intermediate focal length. The state (c) shows the telephoto end state.

図20は、第5実施例に係るレンズ系の無限遠合焦状態のレンズシフト状態(0.2mm)でのコマ収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   FIG. 20 is a coma aberration diagram of the lens system according to Example 5 in a lens shift state (0.2 mm) in an infinitely focused state, where (a) is a wide-angle end state and (b) is an intermediate focal length. The state (c) shows the telephoto end state.

各収差図から、第5実施例に係るレンズ系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、優れた結像性能を有していることがわかる。   From each aberration diagram, it can be seen that the lens system according to Example 5 has excellent imaging performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.

(第6実施例)
図21は、第6実施例に係るレンズ系の構成を示す断面図である。
(Sixth embodiment)
FIG. 21 is a sectional view showing the structure of a lens system according to the sixth example.

図21に示すように、第6実施例に係るレンズ系は、光軸に沿って物体側から順に、負屈折力を有する第1レンズ群G1と、正屈折力を有する第2レンズ群G2とから構成され、広角端状態Wから望遠端状態Tへの変倍に際し、第1レンズ群G1と第2レンズ群G2との空気間隔が減少するように、第1レンズ群G1と第2レンズ群G2が移動する。   As shown in FIG. 21, the lens system according to Example 6 includes, in order from the object side along the optical axis, a first lens group G1 having negative refractive power, and a second lens group G2 having positive refractive power. And the first lens group G1 and the second lens group so that the air gap between the first lens group G1 and the second lens group G2 is reduced upon zooming from the wide-angle end state W to the telephoto end state T. G2 moves.

第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、両凹レンズL12と、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた正メニスカスレンズL14とから構成されている。第1レンズ群G1の最も物体側に位置する負メニスカスレンズL11は、像面I側に非球面を形成した非球面レンズである。   The first lens group G1 includes, in order from the object side along the optical axis, a negative meniscus lens L11 having a convex surface directed toward the object side, a biconcave lens L12, a positive meniscus lens L13 having a convex surface directed toward the object side, and an object side And a positive meniscus lens L14 having a convex surface. The negative meniscus lens L11 located closest to the object side of the first lens group G1 is an aspheric lens having an aspheric surface on the image plane I side.

第2レンズ群G2は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と両凸レンズL22との接合正レンズと、開口絞りSと、物体側に凸面を向けた正メニスカスレンズL23と、物体側に凸面を向けた正メニスカスレンズL24と、物体側に凹面を向けた正メニスカスレンズL25と両凹レンズL26との接合負レンズと、両凸レンズL27とから構成されている。第2レンズ群G2の正メニスカスレンズL24は、像面I側に非球面を形成した非球面レンズである。第2レンズ群G2の最も像面I側に位置する両凸レンズL27は、像面I側に非球面を形成した非球面レンズである。   The second lens group G2, in order from the object side along the optical axis, a cemented positive lens of a negative meniscus lens L21 having a convex surface facing the object side and a biconvex lens L22, an aperture stop S, and a convex surface facing the object side. A positive meniscus lens L23, a positive meniscus lens L24 having a convex surface facing the object side, a cemented negative lens of a positive meniscus lens L25 having a concave surface facing the object side and a biconcave lens L26, and a biconvex lens L27. Yes. The positive meniscus lens L24 of the second lens group G2 is an aspheric lens having an aspheric surface on the image plane I side. The biconvex lens L27 located closest to the image plane I in the second lens group G2 is an aspherical lens in which an aspheric surface is formed on the image plane I side.

第2レンズ群G2の群内に配置された開口絞りSは、広角端状態Wから望遠端状態Tへの変倍に際し、第2レンズ群G2と一体に物体側へ移動する。   The aperture stop S arranged in the second lens group G2 moves together with the second lens group G2 toward the object side during zooming from the wide-angle end state W to the telephoto end state T.

正メニスカスレンズL24は合焦レンズ群Gfであり、合焦レンズ群Gfを物体側に移動させることにより、無限遠物体から近距離物体への合焦を行う。   The positive meniscus lens L24 is a focusing lens group Gf, and the focusing lens group Gf is moved to the object side, thereby focusing from an infinite object to a short-distance object.

負メニスカスレンズL21と両凸レンズL22との接合正レンズは偏心レンズ群Gsであり、偏心レンズ群Gsを光軸に略垂直な方向に移動させることにより、手ぶれ補正(防振)を行う。   The cemented positive lens of the negative meniscus lens L21 and the biconvex lens L22 is a decentered lens group Gs, and camera shake correction (anti-vibration) is performed by moving the decentered lens group Gs in a direction substantially perpendicular to the optical axis.

正メニスカスレンズL23は、補助レンズ群Gaである。   The positive meniscus lens L23 is the auxiliary lens group Ga.

以下の表6に第6実施例に係るレンズ系の諸元値を掲げる。   Table 6 below provides specifications of the lens system according to the sixth example.

(表6)

(面データ)
面番号 r d nd νd
物面 ∞ ∞
1 21.5900 1.80 1.77377 47.17
2* 8.3834 5.81
3 -330.2204 0.80 1.75500 52.32
4 20.4287 0.90
5 34.6426 1.58 1.69895 30.13
6 56.8065 0.20
7 17.3398 2.42 1.80518 25.42
8 40.5926 (可変)

9 38.9358 0.80 1.84666 23.78
10 20.3696 2.02 1.64000 60.08
11 -52.1553 3.41
12(絞り) ∞ 0.40
13 8.7558 2.14 1.60300 65.44
14 11.3294 2.22
15 25.7295 1.53 1.77377 47.17
16* 836.1941 1.70
17 -63.5509 1.90 1.49700 81.54
18 -10.3135 0.80 1.83481 42.71
19 12.9668 0.50
20 13.3653 2.59 1.66910 55.42
21* -20.7258 (Bf)
像面 ∞

(非球面データ)
第2面
κ = 0.6895
A4 = 2.9268E-06
A6 = 5.0186E-08
A8 = 2.0720E-09
A10 = -2.1936E-11
第16面
κ = 11.0000
A4 = 1.1167E-05
A6 = 1.2804E-06
A8 = -9.7386E-08
A10 = 2.7299E-09
第21面
κ = 3.1942
A4 = 1.5565E-04
A6 = 1.5752E-06
A8 = 1.9610E-08
A10 = 9.0671E-11

(各種データ)
ズーム比 2.825
W M T
f = 10.30 18.75 29.10
FNO = 3.64 4.57 5.86
2ω = 78.82 46.27 30.58
Y = 7.96 7.96 7.96
TL = 75.78 69.22 73.78
Bf = 18.4425 27.8042 39.2710

d8 23.8288 7.9040 1.0000

(合焦レンズ群移動量データ)
W M T
f = 10.3000 18.7500 29.1000
ΔFx = 0.0661 0.0871 0.1004

(ズームレンズ群データ)
群 始面 焦点距離
1 1 −18.1250
2 9 20.0807

(条件式対応値)
fw=10.3000
ft=29.1000
ff=34.2797
fs=42.2410
fa=48.6750
d1−2=5.8071
fγw=1.5555
(1) fa/fs=1.1523
(4) |fw/ff|=0.3005
(5) |fγw|=1.5555
(6) ff/fs=0.8115
(7) (d1−2)/ft=0.1996
(Table 6)

(Surface data)
Surface number rd nd νd
Object ∞ ∞
1 21.5900 1.80 1.77377 47.17
2 * 8.3834 5.81
3 -330.2204 0.80 1.75500 52.32
4 20.4287 0.90
5 34.6426 1.58 1.69895 30.13
6 56.8065 0.20
7 17.3398 2.42 1.80518 25.42
8 40.5926 (variable)

9 38.9358 0.80 1.84666 23.78
10 20.3696 2.02 1.64000 60.08
11 -52.1553 3.41
12 (Aperture) ∞ 0.40
13 8.7558 2.14 1.60300 65.44
14 11.3294 2.22
15 25.7295 1.53 1.77377 47.17
16 * 836.1941 1.70
17 -63.5509 1.90 1.49700 81.54
18 -10.3135 0.80 1.83481 42.71
19 12.9668 0.50
20 13.3653 2.59 1.66910 55.42
21 * -20.7258 (Bf)
Image plane ∞

(Aspheric data)
Second side κ = 0.6895
A4 = 2.9268E-06
A6 = 5.0186E-08
A8 = 2.0720E-09
A10 = -2.1936E-11
16th surface κ = 11.0000
A4 = 1.1167E-05
A6 = 1.2804E-06
A8 = -9.7386E-08
A10 = 2.7299E-09
21st surface κ = 3.1942
A4 = 1.5565E-04
A6 = 1.5752E-06
A8 = 1.9610E-08
A10 = 9.0671E-11

(Various data)
Zoom ratio 2.825
W M T
f = 10.30 18.75 29.10
FNO = 3.64 4.57 5.86
2ω = 78.82 46.27 30.58
Y = 7.96 7.96 7.96
TL = 75.78 69.22 73.78
Bf = 18.4425 27.8042 39.2710

d8 23.8288 7.9040 1.0000

(Focus lens group movement data)
W M T
f = 10.3000 18.7500 29.1000
ΔFx = 0.0661 0.0871 0.1004

(Zoom lens group data)
Group Start surface Focal length 1 1-18.1250
2 9 20.0807

(Values for conditional expressions)
fw = 10.3000
ft = 29.1000
ff = 34.2797
fs = 42.2410
fa = 48.6750
d1-2 = 5.8071
fγw = 1.5555
(1) fa / fs = 1.1523
(4) | fw / ff | = 0.005
(5) | fγw | = 1.5555
(6) ff / fs = 0.8115
(7) (d1-2) /ft=0.1996

図22は、第6実施例に係るレンズ系の無限遠合焦状態での諸収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   22A and 22B show various aberration diagrams of the lens system according to Example 6 in the infinitely focused state, where FIG. 22A is a wide-angle end state, FIG. 22B is an intermediate focal length state, and FIG. 22C is a telephoto end state. Respectively.

図23は、第6実施例に係るレンズ系の近距離合焦状態(撮影倍率−0.01倍)での諸収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   23A and 23B are graphs showing various aberrations of the lens system according to Example 6 in a short-distance in-focus state (shooting magnification—0.01 times), where (a) is a wide-angle end state and (b) is an intermediate focal length. The state (c) shows the telephoto end state.

図24は、第6実施例に係るレンズ系の無限遠合焦状態のレンズシフト状態(0.2mm)でのコマ収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   FIGS. 24A and 24B show coma aberration diagrams of the lens system according to Example 6 in a lens shift state (0.2 mm) in an infinite focus state, where FIG. 24A is a wide-angle end state, and FIG. 24B is an intermediate focal length. The state (c) shows the telephoto end state.

各収差図から、第6実施例に係るレンズ系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、優れた結像性能を有していることがわかる。   From each aberration diagram, it can be seen that the lens system according to Example 6 has excellent imaging performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.

(第7実施例)
図25は、第7実施例に係るレンズ系の構成を示す断面図である。
(Seventh embodiment)
FIG. 25 is a sectional view showing the structure of a lens system according to the seventh example.

図25に示すように、第7実施例に係るレンズ系は、光軸に沿って物体側から順に、負屈折力を有する第1レンズ群G1と、正屈折力を有する第2レンズ群G2と、正屈折力を有する第3レンズ群G3とから構成され、広角端状態Wから望遠端状態Tへの変倍に際し、第1レンズ群G1と第2レンズ群G2との空気間隔が減少するように、また第2レンズ群G2と第3レンズ群G3との空気間隔が減少するように、第1レンズ群G1と第2レンズ群G2と第3レンズ群G3が移動する。   As shown in FIG. 25, the lens system according to Example 7 includes, in order from the object side along the optical axis, a first lens group G1 having negative refractive power, and a second lens group G2 having positive refractive power. The third lens group G3 having positive refracting power is configured so that the air gap between the first lens group G1 and the second lens group G2 is reduced upon zooming from the wide-angle end state W to the telephoto end state T. In addition, the first lens group G1, the second lens group G2, and the third lens group G3 move so that the air gap between the second lens group G2 and the third lens group G3 decreases.

第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、両凹レンズL12と、物体側に凸面を向けた正メニスカスレンズL13とから構成されている。第1レンズ群G1の最も物体側に位置する負メニスカスレンズL11は、像面I側に非球面を形成した非球面レンズである。   The first lens group G1 includes, in order from the object side along the optical axis, a negative meniscus lens L11 having a convex surface facing the object side, a biconcave lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. ing. The negative meniscus lens L11 located closest to the object side of the first lens group G1 is an aspheric lens having an aspheric surface on the image plane I side.

第2レンズ群G2は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と両凸レンズL22との接合正レンズと、物体側に凸面を向けた正メニスカスレンズL23と、開口絞りSと、物体側に凹面を向けた正メニスカスレンズL24と両凹レンズL25との接合負レンズとから構成されている。第2レンズ群G2の正メニスカスレンズL24は、物体側に非球面を形成した非球面レンズである。   The second lens group G2 includes, in order from the object side along the optical axis, a cemented positive lens of a negative meniscus lens L21 having a convex surface directed toward the object side and a biconvex lens L22, and a positive meniscus lens L23 having a convex surface directed toward the object side. And an aperture stop S, and a cemented negative lens composed of a positive meniscus lens L24 having a concave surface facing the object side and a biconcave lens L25. The positive meniscus lens L24 of the second lens group G2 is an aspheric lens having an aspheric surface on the object side.

第3レンズ群G3は、光軸に沿って物体側から順に、両凸レンズL31と、物体側に凸面を向けた負メニスカスレンズL32と両凸レンズL33との接合負レンズとから構成されている。第3レンズ群G3の両凸レンズL31は、像面I側に非球面を形成した非球面レンズである。   The third lens group G3 includes, in order from the object side along the optical axis, a biconvex lens L31, and a negative meniscus lens L32 having a convex surface facing the object side and a cemented negative lens of the biconvex lens L33. The biconvex lens L31 of the third lens group G3 is an aspheric lens having an aspheric surface on the image plane I side.

第2レンズ群G2の群内に配置された開口絞りSは、広角端状態Wから望遠端状態Tへの変倍に際し、第2レンズ群G2と一体に物体側へ移動する。   The aperture stop S arranged in the second lens group G2 moves together with the second lens group G2 toward the object side during zooming from the wide-angle end state W to the telephoto end state T.

正メニスカスレンズL23は合焦レンズ群Gfであり、合焦レンズ群Gfを物体側に移動させることにより、無限遠物体から近距離物体への合焦を行う。   The positive meniscus lens L23 is a focusing lens group Gf, and the focusing lens group Gf is moved to the object side, thereby focusing from an infinite object to a short distance object.

負メニスカスレンズL21と両凸レンズL22との接合正レンズは偏心レンズ群Gsであり、偏心レンズ群Gsを光軸に略垂直な方向に移動させることにより、手ぶれ補正(防振)を行う。   The cemented positive lens of the negative meniscus lens L21 and the biconvex lens L22 is a decentered lens group Gs, and camera shake correction (anti-vibration) is performed by moving the decentered lens group Gs in a direction substantially perpendicular to the optical axis.

正メニスカスレンズL24と両凹レンズL25との接合負レンズは、補助レンズ群Gaである。   The cemented negative lens of the positive meniscus lens L24 and the biconcave lens L25 is the auxiliary lens group Ga.

以下の表7に第7実施例に係るレンズ系の諸元値を掲げる。   Table 7 below provides specifications of the lens system according to the seventh example.

(表7)

(面データ)
面番号 r d nd νd
物面 ∞ ∞
1 25.0000 1.80 1.74330 49.32
2* 8.5722 5.23
3 -31.9974 0.80 1.49700 81.54
4 25.7099 0.15
5 16.2678 2.16 1.84666 23.78
6 33.0579 (可変)

7 27.3560 0.80 1.79504 28.69
8 12.7778 2.62 1.60300 65.44
9 -27.7840 3.04
10 10.6214 2.34 1.60300 65.44
11 28.5797 1.86
12(絞り) ∞ 1.10
13* -27.4165 1.37 1.82115 24.06
14 -17.0648 0.80 1.75500 52.32
15 21.3149 (可変)

16 18.9858 2.05 1.67790 54.89
17* -30.4460 0.15
18 155.5536 0.80 1.85026 32.35
19 12.8042 2.38 1.60300 65.44
20 -74.1840 (Bf)
像面 ∞

(非球面データ)
第2面
κ = 0.8028
A4 = -2.1183E-06
A6 = -2.6605E-09
A8 = 1.1966E-09
A10 = -3.0855E-11
第13面
κ = -7.4148
A4 = 2.7745E-05
A6 = -2.0384E-06
A8 = -2.7176E-07
A10 = -9.6003E-09
第17面
κ = 0.2983
A4 = 1.5880E-04
A6 = 1.8851E-06
A8 = -5.0971E-08
A10 = 8.8426E-10

(各種データ)
ズーム比 2.825
W M T
f = 10.30 18.75 29.10
FNO = 3.64 4.23 5.86
2ω = 78.78 46.56 30.67
Y = 7.96 7.96 7.96
TL = 66.55 62.74 68.78
Bf = 15.4801 25.2812 36.7848

d6 17.8651 5.8489 1.0000
d15 3.7597 2.1640 1.5500

(合焦レンズ群移動量データ)
W M T
f = 10.3000 18.7500 29.1000
ΔFx = 0.0719 0.1246 0.1964

(ズームレンズ群データ)
群 始面 焦点距離
1 1 −15.3542
2 7 26.5552
3 16 19.4757

(条件式対応値)
fw=10.3000
ft=29.1000
ff=26.7219
fs=28.4536
fa=−15.9679
d1−2=5.2284
fγw=1.4308
(1) fa/fs=−0.5612
(4) |fw/ff|=0.3855
(5) |fγw|=1.4308
(6) ff/fs=0.9391
(7) (d1−2)/ft=0.1797
(Table 7)

(Surface data)
Surface number rd nd νd
Object ∞ ∞
1 25.0000 1.80 1.74330 49.32
2 * 8.5722 5.23
3 -31.9974 0.80 1.49700 81.54
4 25.7099 0.15
5 16.2678 2.16 1.84666 23.78
6 33.0579 (variable)

7 27.3560 0.80 1.79504 28.69
8 12.7778 2.62 1.60300 65.44
9 -27.7840 3.04
10 10.6214 2.34 1.60300 65.44
11 28.5797 1.86
12 (Aperture) ∞ 1.10
13 * -27.4165 1.37 1.82115 24.06
14 -17.0648 0.80 1.75500 52.32
15 21.3149 (variable)

16 18.9858 2.05 1.67790 54.89
17 * -30.4460 0.15
18 155.5536 0.80 1.85026 32.35
19 12.8042 2.38 1.60300 65.44
20 -74.1840 (Bf)
Image plane ∞

(Aspheric data)
Second surface κ = 0.8028
A4 = -2.1183E-06
A6 = -2.6605E-09
A8 = 1.1966E-09
A10 = -3.0855E-11
13th surface κ = -7.4148
A4 = 2.7745E-05
A6 = -2.0384E-06
A8 = -2.7176E-07
A10 = -9.6003E-09
17th surface κ = 0.2983
A4 = 1.5880E-04
A6 = 1.8851E-06
A8 = -5.0971E-08
A10 = 8.8426E-10

(Various data)
Zoom ratio 2.825
W M T
f = 10.30 18.75 29.10
FNO = 3.64 4.23 5.86
2ω = 78.78 46.56 30.67
Y = 7.96 7.96 7.96
TL = 66.55 62.74 68.78
Bf = 15.4801 25.2812 36.7848

d6 17.8651 5.8489 1.0000
d15 3.7597 2.1640 1.5500

(Focus lens group movement data)
W M T
f = 10.3000 18.7500 29.1000
ΔFx = 0.0719 0.1246 0.1964

(Zoom lens group data)
Group Start surface Focal length 1 1 -15.542
2 7 26.5552
3 16 19.4757

(Values for conditional expressions)
fw = 10.3000
ft = 29.1000
ff = 26.7219
fs = 28.4536
fa = −15.9679
d1-2 = 5.2284
fγw = 1.4308
(1) fa / fs = −0.5612
(4) | fw / ff | = 0.3855
(5) | fγw | = 1.4308
(6) ff / fs = 0.9391
(7) (d1-2) /ft=0.1797

図26は、第7実施例に係るレンズ系の無限遠合焦状態での諸収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   FIG. 26 is a diagram illustrating various aberrations of the lens system according to Example 7 in an infinitely focused state, where (a) is a wide-angle end state, (b) is an intermediate focal length state, and (c) is a telephoto end state. Respectively.

図27は、第7実施例に係るレンズ系の近距離合焦状態(撮影倍率−0.01倍)での諸収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   FIGS. 27A and 27B are graphs showing various aberrations of the lens system according to Example 7 in a short-distance in-focus state (shooting magnification—0.01 times), where (a) is a wide-angle end state and (b) is an intermediate focal length. The state (c) shows the telephoto end state.

図28は、第7実施例に係るレンズ系の無限遠合焦状態のレンズシフト状態(0.2mm)でのコマ収差図を示し、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。   28A and 28B are coma aberration diagrams in the lens shift state (0.2 mm) in the infinite focus state in the lens system according to Example 7. FIG. 28A is a wide-angle end state, and FIG. 28B is an intermediate focal length. The state (c) shows the telephoto end state.

各収差図から、第7実施例に係るレンズ系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、優れた結像性能を有していることがわかる。   From the respective aberration diagrams, it can be seen that the lens system according to Example 7 has excellent imaging performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.

(第8実施例)
図29は、第8実施例に係るレンズ系の構成を示す断面図である。
(Eighth embodiment)
FIG. 29 is a sectional view showing the structure of a lens system according to the eighth example.

図29に示すように、第8実施例に係るレンズ系は、単焦点レンズであり、光軸に沿って物体側から順に、負屈折力を有する第1レンズ群G1と、正屈折力を有する第2レンズ群G2とから構成されている。   As shown in FIG. 29, the lens system according to Example 8 is a single focus lens, and has a first lens group G1 having negative refractive power and positive refractive power in order from the object side along the optical axis. The second lens group G2.

第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、両凹レンズL12と、物体側に凸面を向けた正メニスカスレンズL13とから構成されている。第1レンズ群G1の最も物体側に位置する負メニスカスレンズL11は、像面I側に非球面を形成した非球面レンズである。   The first lens group G1 includes, in order from the object side along the optical axis, a negative meniscus lens L11 having a convex surface facing the object side, a biconcave lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. ing. The negative meniscus lens L11 located closest to the object side of the first lens group G1 is an aspheric lens having an aspheric surface on the image plane I side.

第2レンズ群G2は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と両凸レンズL22との接合正レンズと、開口絞りSと、両凸レンズL23と物体側に凹面を向けた負メニスカスレンズL24との接合正レンズと、物体側に凸面を向けた負メニスカスレンズL25と、物体側に凸面を向けた負メニスカスレンズL26と両凸レンズL27との接合正レンズとから構成されている。第2レンズ群G2の最も物体側に位置する負メニスカスレンズL21は、物体側に非球面を形成した非球面レンズである。第2レンズ群G2の最も像面I側に位置する両凸レンズL27は、像面I側に非球面を形成した非球面レンズである。   The second lens group G2 includes, in order from the object side along the optical axis, a cemented positive lens of a negative meniscus lens L21 having a convex surface facing the object side and a biconvex lens L22, an aperture stop S, a biconvex lens L23, and the object side. A cemented positive lens with a negative meniscus lens L24 having a concave surface facing the lens, a negative meniscus lens L25 with a convex surface facing the object side, and a cemented positive lens with a negative meniscus lens L26 having a convex surface facing the object side and a biconvex lens L27. It is composed of The negative meniscus lens L21 located closest to the object side in the second lens group G2 is an aspheric lens having an aspheric surface on the object side. The biconvex lens L27 located closest to the image plane I in the second lens group G2 is an aspherical lens in which an aspheric surface is formed on the image plane I side.

両凸レンズL23と負メニスカスレンズL24との接合正レンズは合焦レンズ群Gfであり、合焦レンズ群Gfを物体側に移動させることにより、無限遠物体から近距離物体への合焦を行う。   The cemented positive lens of the biconvex lens L23 and the negative meniscus lens L24 is a focusing lens group Gf. By moving the focusing lens group Gf to the object side, focusing from an object at infinity to a near object is performed.

負メニスカスレンズL21と両凸レンズL22との接合正レンズは偏心レンズ群Gsであり、偏心レンズ群Gsを光軸に略垂直な方向に移動させることにより、手ぶれ補正(防振)を行う。   The cemented positive lens of the negative meniscus lens L21 and the biconvex lens L22 is a decentered lens group Gs, and camera shake correction (anti-vibration) is performed by moving the decentered lens group Gs in a direction substantially perpendicular to the optical axis.

負メニスカスレンズL25と、負メニスカスレンズL26と両凸レンズL27との接合正レンズとは、負屈折力を有する補助レンズ群Gaである。   The negative meniscus lens L25 and the cemented positive lens of the negative meniscus lens L26 and the biconvex lens L27 are the auxiliary lens group Ga having negative refractive power.

以下の表8に第8実施例に係るレンズ系の諸元値を掲げる。なお、条件式対応値の条件式(7)のftは、レンズ全系の焦点距離fと同じである。   Table 8 below provides specification values of the lens system according to the eighth example. It should be noted that ft in conditional expression (7) corresponding to the conditional expression is the same as the focal length f of the entire lens system.

(表8)

(面データ)
面番号 r d nd νd
物面 ∞ ∞
1 18.6779 1.30 1.85135 40.10
2* 7.8525 7.25
3 -94.6821 1.00 1.83481 42.72
4 34.1506 0.31
5 18.6651 2.51 1.86074 23.06
6 78.9142 23.50
7* 18.1125 1.30 1.83441 37.28
8 12.2772 1.76 1.59319 67.87
9 -2494.0282 3.99
10(絞り) ∞ 1.00
11 23.3375 1.67 1.74400 44.78
12 -19.5626 1.00 1.67270 32.11
13 -219.6865 2.59
14 106.9379 1.53 1.80486 24.73
15 28.0039 1.36
16 352.0524 0.83 1.79952 42.24
17 10.0128 2.17 1.69350 53.20
18* -38.1016 18.73
像面 ∞

(非球面データ)
第2面
κ = 0.6460
A4 = 1.2719E-05
A6 = 5.3251E-07
A8 = -4.7392E-09
A10 = 4.5963E-11
第7面
κ = -1.0893
A4 = 3.0467E-05
A6 = 9.8555E-08
A8 = -1.0556E-08
A10 = 2.2926E-10
第18面
κ = 1.0000
A4 = 6.6102E-05
A6 = 5.9125E-08
A8 = 3.8159E-08
A10 = -1.1681E-09

(各種データ)
f = 10.30
FNO = 3.31
2ω = 77.59
Y = 7.96
TL = 73.80

(合焦レンズ群移動量データ)
f = 10.3000
ΔFx = 0.0669

(条件式対応値)
f=10.3000
ff=26.0978
fs=36.6504
fa=−98.3425
d1−2=7.2500
fγ=1.5400
(1) fa/fs=−2.6833
(2) |f/ff|=0.3947
(3) |fγ|=1.5400
(6) ff/fs=0.7121
(7) (d1−2)/ft=0.7039
(Table 8)

(Surface data)
Surface number rd nd νd
Object ∞ ∞
1 18.6779 1.30 1.85135 40.10
2 * 7.8525 7.25
3 -94.6821 1.00 1.83481 42.72
4 34.1506 0.31
5 18.6651 2.51 1.86074 23.06
6 78.9142 23.50
7 * 18.1125 1.30 1.83441 37.28
8 12.2772 1.76 1.59319 67.87
9 -2494.0282 3.99
10 (Aperture) ∞ 1.00
11 23.3375 1.67 1.74400 44.78
12 -19.5626 1.00 1.67270 32.11
13 -219.6865 2.59
14 106.9379 1.53 1.80486 24.73
15 28.0039 1.36
16 352.0524 0.83 1.79952 42.24
17 10.0128 2.17 1.69350 53.20
18 * -38.1016 18.73
Image plane ∞

(Aspheric data)
Second side κ = 0.6460
A4 = 1.2719E-05
A6 = 5.3251E-07
A8 = -4.7392E-09
A10 = 4.5963E-11
7th surface κ = -1.0893
A4 = 3.0467E-05
A6 = 9.8555E-08
A8 = -1.0556E-08
A10 = 2.2926E-10
18th surface κ = 1.0000
A4 = 6.6102E-05
A6 = 5.9125E-08
A8 = 3.8159E-08
A10 = -1.1681E-09

(Various data)
f = 10.30
FNO = 3.31
2ω = 77.59
Y = 7.96
TL = 73.80

(Focus lens group movement data)
f = 10.3000
ΔFx = 0.0669

(Values for conditional expressions)
f = 10.3000
ff = 26.0978
fs = 36.6504
fa = −98.3425
d1-2 = 7.2500
fγ = 1.5400
(1) fa / fs = −2.6833
(2) | f / ff | = 0.3947
(3) | fγ | = 1.5400
(6) ff / fs = 0.7121
(7) (d1-2) /ft=0.7039

図30は、第8実施例に係るレンズ系の無限遠合焦状態での諸収差図を示す。   FIG. 30 shows various aberration diagrams of the lens system according to Example 8 in the infinite focus state.

図31は、第8実施例に係るレンズ系の近距離合焦状態(撮影倍率−0.01倍)での諸収差図を示す。   FIG. 31 is a diagram illustrating various aberrations of the lens system according to Example 8 in a short-distance in-focus state (imaging magnification: -0.01 times).

図32は、第8実施例に係るレンズ系の無限遠合焦状態のレンズシフト状態(0.2mm)でのコマ収差図を示す。   FIG. 32 is a coma aberration diagram of the lens system according to Example 8 in the lens shift state (0.2 mm) in the infinite focus state.

各収差図から、第8実施例に係るレンズ系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。   From each aberration diagram, it can be seen that the lens system according to the eighth example has excellent image forming performance with various aberrations corrected well.

以上のように、本実施形態によれば、内焦方式及び偏心レンズ群を両立させ、広画角かつ小型で高い結像性能を有するレンズ系を提供することができる。   As described above, according to the present embodiment, it is possible to provide a lens system having a wide field angle, a small size, and high imaging performance by making the inner focusing method and the decentered lens group compatible.

次に、本実施形態に係るレンズ系を搭載したカメラについて説明する。なお、第1実施例に係るレンズ系を搭載した場合について説明するが、他の実施例でも同様である。   Next, a camera equipped with the lens system according to this embodiment will be described. Although the case where the lens system according to the first example is mounted will be described, the same applies to other examples.

図33は、第1実施例に係るレンズ系を備えたカメラの構成を示す図である。   FIG. 33 is a diagram illustrating a configuration of a camera including the lens system according to the first example.

図33において、カメラ1は、撮影レンズ2として第1実施例に係るレンズ系を備えたデジタル一眼レフカメラである。カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、クイックリターンミラー3を介して焦点板4に結像される。そして焦点板4に結像されたこの光は、ペンタプリズム5中で複数回反射されて接眼レンズ6へ導かれる。これにより撮影者は、被写体像を接眼レンズ6を介して正立像として観察することができる。   In FIG. 33, the camera 1 is a digital single-lens reflex camera provided with the lens system according to the first embodiment as the photographing lens 2. In the camera 1, light from an object (subject) (not shown) is collected by the taking lens 2 and is focused on the focusing screen 4 via the quick return mirror 3. The light imaged on the focusing screen 4 is reflected in the pentaprism 5 a plurality of times and guided to the eyepiece lens 6. Thus, the photographer can observe the subject image as an erect image through the eyepiece 6.

また、撮影者によって不図示のレリーズボタンが押されると、クイックリターンミラー3が光路外へ退避し、不図示の被写体からの光は撮像素子7へ到達する。これにより被写体からの光は、撮像素子7によって撮像されて、被写体画像として不図示のメモリに記録される。このようにして、撮影者はカメラ1による被写体の撮影を行うことができる。   When the release button (not shown) is pressed by the photographer, the quick return mirror 3 is retracted out of the optical path, and light from the subject (not shown) reaches the image sensor 7. As a result, light from the subject is picked up by the image sensor 7 and recorded as a subject image in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.

カメラ1に撮影レンズ2として第1実施例に係るレンズ系を搭載することにより、高い性能を有するカメラを実現することができる。   By mounting the lens system according to the first embodiment as the photographing lens 2 on the camera 1, a camera having high performance can be realized.

以下、本願のレンズ系の製造方法の概略を説明する。   The outline of the manufacturing method of the lens system of the present application will be described below.

図34は、本願のレンズ系の製造方法を示す図である。   FIG. 34 is a diagram showing a manufacturing method of the lens system of the present application.

本願のレンズ系の製造方法は、複数のレンズ群で構成され、最も物体側のレンズ群の像側にあるレンズ群は正屈折力を有するレンズ系の製造方法であって、図34に示すステップS1,S2を含むものである。   The lens system manufacturing method of the present application is a method of manufacturing a lens system that includes a plurality of lens groups, and the lens group on the image side of the lens group closest to the object side has a positive refractive power, and is shown in FIG. Includes S1 and S2.

ステップS1:無限遠物体から近距離物体への合焦を行う合焦レンズ群と、光軸に垂直な方向の成分を持つように移動することが可能な偏心レンズ群とを最も物体側のレンズ群の像側にあるレンズ群に配置する。   Step S1: A lens on the most object side includes a focusing lens group that performs focusing from an object at infinity to an object at a short distance, and an eccentric lens group that can move so as to have a component in a direction perpendicular to the optical axis. The lens group is located on the image side of the group.

ステップS2:合焦レンズ群を偏心レンズ群の像側に配置する。   Step S2: The focusing lens group is disposed on the image side of the decentered lens group.

本願のレンズ系の製造方法によれば、内焦方式及び偏心レンズ群を両立させ、小型で高い結像性能を有するレンズ系を製造することができる。   According to the manufacturing method of the lens system of the present application, it is possible to manufacture a lens system that is compact and has high imaging performance by making the inner focusing method and the eccentric lens group compatible.

なお、以下に記載の内容は、光学性能を損なわない範囲で適宜採用可能である。   The contents described below can be appropriately adopted as long as the optical performance is not impaired.

実施例では、2群、3群構成を示したが、4群等の他の群構成にも適用可能である。また、最も物体側にレンズまたはレンズ群を追加した構成や、最も像側にレンズまたはレンズ群を追加した構成でも構わない。また、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。   In the embodiment, the two-group and three-group configurations are shown, but the present invention can also be applied to other group configurations such as the four groups. Further, a configuration in which a lens or a lens group is added to the most object side or a configuration in which a lens or a lens group is added to the most image side may be used. The lens group refers to a portion having at least one lens separated by an air interval that changes during zooming.

単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としても良い。前記合焦レンズ群は、オートフォーカスにも適用でき、オートフォーカス用の(超音波モータ等を用いた)モータ駆動にも適している。特に、第2レンズ群の少なくとも一部を合焦レンズ群とするのが好ましい。   A single lens group, a plurality of lens groups, or a partial lens group may be moved in the optical axis direction to be a focusing lens group that performs focusing from an object at infinity to a near object. The focusing lens group can be applied to autofocus, and is also suitable for driving a motor for autofocus (using an ultrasonic motor or the like). In particular, it is preferable that at least a part of the second lens group is a focusing lens group.

また、レンズ群または部分レンズ群を光軸に垂直な方向の成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手ブレによって生じる像ブレを補正する偏心レンズ群としても良い。特に、第2レンズ群の少なくとも一部を偏心レンズ群とするのが好ましい。   In addition, the lens group or the partial lens group is moved so as to have a component in a direction perpendicular to the optical axis, or is rotated (swayed) in the in-plane direction including the optical axis to reduce image blur caused by camera shake. It may be a decentered lens group to be corrected. In particular, it is preferable that at least a part of the second lens group is an eccentric lens group.

また、レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。   Further, the lens surface may be formed as a spherical surface, a flat surface, or an aspheric surface.

レンズ面が球面または平面の場合、レンズ加工及び組立調整が容易になり、加工及び組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。   When the lens surface is a spherical surface or a flat surface, lens processing and assembly adjustment are facilitated, and optical performance deterioration due to errors in processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance.

レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としても良く、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしても良い。   When the lens surface is an aspheric surface, the aspheric surface is an aspheric surface by grinding, a glass mold aspheric surface made of glass with an aspheric shape, or a composite aspheric surface made of resin with an aspheric shape on the glass surface. Any aspherical surface may be used. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

また、開口絞りは第2レンズ群中に配置されるのが好ましいが、開口絞りとしての部材を設けずに、レンズ枠でその役割を代用しても良い。   The aperture stop is preferably disposed in the second lens group, but the role may be substituted by a lens frame without providing a member as the aperture stop.

また、各レンズ面には、フレアやゴーストを軽減し高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施しても良い。   Further, each lens surface may be provided with an antireflection film having a high transmittance in a wide wavelength region in order to reduce flare and ghost and achieve high optical performance with high contrast.

また、本実施形態のレンズ系は、変倍比が2〜5程度である。   The lens system of the present embodiment has a zoom ratio of about 2-5.

また、本実施形態のレンズ系は、第1レンズ群が正のレンズ成分を1つと負のレンズ成分を2つ、または正のレンズ成分を2つと負のレンズ成分を2つ有するのが好ましい。また、第1レンズ群は、物体側から順に、負負正または負負正正の順番にレンズ成分を、空気間隔を介在させて配置するのが好ましい。   In the lens system of the present embodiment, it is preferable that the first lens group has one positive lens component and two negative lens components, or two positive lens components and two negative lens components. In the first lens group, it is preferable that lens components are arranged in the order of negative / negative / positive / negative / positive / positive in order from the object side with an air gap interposed therebetween.

また、本実施形態のレンズ系は、第2レンズ群が少なくとも正のレンズ成分を1つと負のレンズ成分を1つ有するのが好ましい。   In the lens system of the present embodiment, it is preferable that the second lens group has at least one positive lens component and one negative lens component.

また、本実施形態に係るレンズ系(ズームレンズor単焦点レンズ)は、最も像側に配置されるレンズ成分の像側面から像面までの光軸上の距離(バックフォーカス)が最も小さい状態で、10〜30mm程度とするのが好ましい。   In addition, the lens system (zoom lens or single focus lens) according to the present embodiment has the smallest distance (back focus) on the optical axis from the image side surface to the image surface of the lens component arranged closest to the image side. The thickness is preferably about 10 to 30 mm.

また、本実施形態に係るレンズ系(ズームレンズor単焦点レンズ)は、像高を5〜12.5mmとするのが好ましく、5〜9.5mmとするのがより好ましい。   In the lens system (zoom lens or single focus lens) according to the present embodiment, the image height is preferably 5 to 12.5 mm, and more preferably 5 to 9.5 mm.

なお、本発明を分かり易く説明するために実施形態の構成要件を付して説明したが、本発明はこれに限定されるものでない。   In addition, in order to explain the present invention in an easy-to-understand manner, the configuration requirements of the embodiment have been described, but the present invention is not limited to this.

G1 第1レンズ群
G2 第2レンズ群
Gf 合焦レンズ群
Gs 偏心レンズ群
Ga 補助レンズ群
S 開口絞り
L11 負メニスカスレンズ
I 像面
1 カメラ
G1 First lens group G2 Second lens group Gf Focusing lens group Gs Decentered lens group Ga Auxiliary lens group S Aperture stop L11 Negative meniscus lens I Image plane 1 Camera

Claims (16)

複数のレンズ群で構成され、最も物体側のレンズ群の像側にあるレンズ群は正屈折力を有し、
前記最も物体側のレンズ群の像側にあるレンズ群は、無限遠物体から近距離物体への合焦を行う合焦レンズ群と、光軸に垂直な方向の成分を持つように移動することが可能な偏心レンズ群とを有し、
前記合焦レンズ群は前記偏心レンズ群の像側に配置されることを特徴とするレンズ系。
Consists of a plurality of lens groups, the lens group on the image side of the most object side lens group has positive refractive power,
The lens group located on the image side of the lens group closest to the object side moves so as to have a component in a direction perpendicular to the optical axis and a focusing lens group that performs focusing from an object at infinity to a near object. A decentered lens group capable of
The lens system, wherein the focusing lens group is disposed on the image side of the decentered lens group.
広角端状態から望遠端状態への変倍に際し、前記最も物体側のレンズ群と前記最も物体側のレンズ群の像側にあるレンズ群との間隔が変化し、前記最も物体側のレンズ群の像側にあるレンズ群が物体側へ移動することを特徴とする請求項1に記載のレンズ系。   During zooming from the wide-angle end state to the telephoto end state, the distance between the lens unit closest to the object side and the lens unit located on the image side of the lens unit closest to the object side changes, and the lens group closest to the object side changes. The lens system according to claim 1, wherein the lens group on the image side moves toward the object side. 前記最も物体側のレンズ群は負屈折力を有することを特徴とする請求項1又は2に記載のレンズ系。   The lens system according to claim 1, wherein the lens group closest to the object has a negative refractive power. 前記最も物体側のレンズ群と前記最も物体側のレンズ群の像側にあるレンズ群とは隣接していることを特徴とする請求項1から3のいずれか1項に記載のレンズ系。   4. The lens system according to claim 1, wherein the most object side lens group and the lens group on the image side of the most object side lens group are adjacent to each other. 5. 前記合焦レンズ群と前記偏心レンズ群の間に開口絞りが配置されることを特徴とする請求項1から4のいずれか1項に記載のレンズ系。   The lens system according to any one of claims 1 to 4, wherein an aperture stop is disposed between the focusing lens group and the decentered lens group. 前記偏心レンズ群の物体側と像側の少なくとも一方には、補助レンズ群を有することを特徴とする請求項1から5のいずれか1項に記載のレンズ系。   6. The lens system according to claim 1, further comprising an auxiliary lens group on at least one of the object side and the image side of the decentered lens group. 以下の条件を満足することを特徴とする請求項6に記載のレンズ系。
−11.00<fa/fs<11.00
但し、
fa:前記補助レンズ群の焦点距離
fs:前記偏心レンズ群の焦点距離
The lens system according to claim 6, wherein the following condition is satisfied.
-11.00 <fa / fs <11.00
However,
fa: focal length of the auxiliary lens group fs: focal length of the decentered lens group
以下の条件を満足することを特徴とする請求項1から7のいずれか1項に記載のレンズ系。
0.05<|f/ff|<0.65
但し、
f:レンズ全系の焦点距離
ff:前記合焦レンズ群の焦点距離
The lens system according to claim 1, wherein the following condition is satisfied.
0.05 <| f / ff | <0.65
However,
f: focal length of the entire lens system ff: focal length of the focusing lens group
以下の条件を満足することを特徴とする請求項1から8のいずれか1項に記載のレンズ系。
0.05<|fγ|<2.75
但し、
fγ:前記合焦レンズ群の像面移動係数
The lens system according to claim 1, wherein the following condition is satisfied.
0.05 <| fγ | <2.75
However,
fγ: image plane movement coefficient of the focusing lens group
以下の条件を満足することを特徴とする請求項2から7のいずれか1項に記載のレンズ系。
0.05<|fw/ff|<0.65
但し、
fw:広角端状態におけるレンズ全系の焦点距離
ff:前記合焦レンズ群の焦点距離
The lens system according to claim 2, wherein the following condition is satisfied.
0.05 <| fw / ff | <0.65
However,
fw: focal length of the entire lens system in the wide-angle end state ff: focal length of the focusing lens group
以下の条件を満足することを特徴とする請求項2から7と10のいずれか1項に記載のレンズ系。
0.05<|fγw|<2.75
但し、
fγw:前記合焦レンズ群の広角端状態における像面移動係数
The lens system according to claim 2, wherein the following condition is satisfied.
0.05 <| fγw | <2.75
However,
fγw: an image plane movement coefficient in the wide-angle end state of the focusing lens group
以下の条件を満足することを特徴とする請求項1から11のいずれか1項に記載のレンズ系。
−4.00<ff/fs<4.00
但し、
ff:前記合焦レンズ群の焦点距離
fs:前記偏心レンズ群の焦点距離
The lens system according to claim 1, wherein the following condition is satisfied.
-4.00 <ff / fs <4.00
However,
ff: focal length of the focusing lens group fs: focal length of the decentering lens group
以下の条件を満足することを特徴とする請求項2から12のいずれか1項に記載のレンズ系。
0.00<(d1−2)/ft<1.50
但し、
d1−2:レンズ全系の最も物体側のレンズの像側のレンズ面から、その直後のレンズの物体側のレンズ面までの光軸上空気間隔
ft:望遠端状態におけるレンズ全系の焦点距離
The lens system according to claim 2, wherein the following condition is satisfied.
0.00 <(d1-2) / ft <1.50
However,
d1-2: Air space on the optical axis from the lens surface on the image side of the lens closest to the object side of the entire lens system to the lens surface on the object side of the lens immediately after that ft: Focal length of the entire lens system in the telephoto end state
前記偏心レンズ群は非球面を有することを特徴とする請求項1から13のいずれか1項に記載のレンズ系。   The lens system according to claim 1, wherein the decentered lens group has an aspherical surface. 請求項1から14のいずれか1項に記載のレンズ系を有することを特徴とする光学機器。   An optical apparatus comprising the lens system according to claim 1. 複数のレンズ群で構成され、最も物体側のレンズ群の像側にあるレンズ群は正屈折力を有するレンズ系の製造方法であって、
無限遠物体から近距離物体への合焦を行う合焦レンズ群と、光軸に垂直な方向の成分を持つように移動することが可能な偏心レンズ群とを前記最も物体側のレンズ群の像側にあるレンズ群に配置し、
前記合焦レンズ群を前記偏心レンズ群の像側に配置することを特徴とするレンズ系の製造方法。
The lens group which is composed of a plurality of lens groups and which is on the image side of the most object side lens group is a method for manufacturing a lens system having positive refractive power,
The focusing lens group for focusing from an object at infinity to an object at a short distance and an eccentric lens group capable of moving so as to have a component in a direction perpendicular to the optical axis Placed in the lens group on the image side,
A method of manufacturing a lens system, wherein the focusing lens group is disposed on the image side of the decentered lens group.
JP2009260145A 2009-11-13 2009-11-13 Lens system, optical equipment Expired - Fee Related JP5463865B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009260145A JP5463865B2 (en) 2009-11-13 2009-11-13 Lens system, optical equipment
US12/917,778 US8934176B2 (en) 2009-11-13 2010-11-02 Optical system, optical apparatus and method for manufacturing optical system
EP10190749A EP2325682A3 (en) 2009-11-13 2010-11-10 Optical system, optical apparatus and method for manufacturing optical system
CN201010548591.8A CN102062934B (en) 2009-11-13 2010-11-15 Optical system, optical apparatus and method for manufacturing optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009260145A JP5463865B2 (en) 2009-11-13 2009-11-13 Lens system, optical equipment

Publications (2)

Publication Number Publication Date
JP2011107269A true JP2011107269A (en) 2011-06-02
JP5463865B2 JP5463865B2 (en) 2014-04-09

Family

ID=44230831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009260145A Expired - Fee Related JP5463865B2 (en) 2009-11-13 2009-11-13 Lens system, optical equipment

Country Status (1)

Country Link
JP (1) JP5463865B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031188A1 (en) * 2011-08-29 2013-03-07 富士フイルム株式会社 Zoom lens and imaging device
JP2013054269A (en) * 2011-09-06 2013-03-21 Canon Inc Optical system and imaging apparatus having the same
JP2014178388A (en) * 2013-03-13 2014-09-25 Tamron Co Ltd Super wide angle zoom lens
JP2014235271A (en) * 2013-05-31 2014-12-15 株式会社ニコン Zoom lens, optical device, and method for manufacturing the zoom lens
WO2014208367A1 (en) * 2013-06-28 2014-12-31 リコーイメージング株式会社 Zoom lens system
JP2015028530A (en) * 2013-07-30 2015-02-12 キヤノン株式会社 Zoom lens and imaging apparatus including the same
JP2016009113A (en) * 2014-06-25 2016-01-18 キヤノン株式会社 Zoom lens and imaging apparatus having the same
TWI556006B (en) * 2015-09-04 2016-11-01 中強光電股份有限公司 Projection apparatus and projection lens
JP2017068114A (en) * 2015-09-30 2017-04-06 株式会社ニコン Fisheye zoom lens, optical device, method for manufacturing the fisheye zoom lens
WO2019220614A1 (en) * 2018-05-18 2019-11-21 株式会社ニコン Optical system, optical device, and method for manufacturing optical system
JP7433875B2 (en) 2019-12-11 2024-02-20 キヤノン株式会社 Optical system and imaging device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08179205A (en) * 1994-12-26 1996-07-12 Nikon Corp Wide-angle zoom lens
JP2004333572A (en) * 2003-04-30 2004-11-25 Nikon Corp Variable focal length lens system
WO2007010862A1 (en) * 2005-07-19 2007-01-25 Matsushita Electric Industrial Co., Ltd. Zoom lens system and imaging optical device with the same
JP2007156078A (en) * 2005-12-05 2007-06-21 Pentax Corp Zoom lens system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08179205A (en) * 1994-12-26 1996-07-12 Nikon Corp Wide-angle zoom lens
JP2004333572A (en) * 2003-04-30 2004-11-25 Nikon Corp Variable focal length lens system
WO2007010862A1 (en) * 2005-07-19 2007-01-25 Matsushita Electric Industrial Co., Ltd. Zoom lens system and imaging optical device with the same
JP2007156078A (en) * 2005-12-05 2007-06-21 Pentax Corp Zoom lens system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031188A1 (en) * 2011-08-29 2013-03-07 富士フイルム株式会社 Zoom lens and imaging device
JPWO2013031188A1 (en) * 2011-08-29 2015-03-23 富士フイルム株式会社 Zoom lens and imaging device
JP2013054269A (en) * 2011-09-06 2013-03-21 Canon Inc Optical system and imaging apparatus having the same
JP2014178388A (en) * 2013-03-13 2014-09-25 Tamron Co Ltd Super wide angle zoom lens
JP2014235271A (en) * 2013-05-31 2014-12-15 株式会社ニコン Zoom lens, optical device, and method for manufacturing the zoom lens
WO2014208367A1 (en) * 2013-06-28 2014-12-31 リコーイメージング株式会社 Zoom lens system
JP2015011156A (en) * 2013-06-28 2015-01-19 リコーイメージング株式会社 Zoom lens system
JP2015028530A (en) * 2013-07-30 2015-02-12 キヤノン株式会社 Zoom lens and imaging apparatus including the same
JP2016009113A (en) * 2014-06-25 2016-01-18 キヤノン株式会社 Zoom lens and imaging apparatus having the same
TWI556006B (en) * 2015-09-04 2016-11-01 中強光電股份有限公司 Projection apparatus and projection lens
US9791680B2 (en) 2015-09-04 2017-10-17 Coretronic Corporation Projection apparatus and projection lens
JP2017068114A (en) * 2015-09-30 2017-04-06 株式会社ニコン Fisheye zoom lens, optical device, method for manufacturing the fisheye zoom lens
WO2019220614A1 (en) * 2018-05-18 2019-11-21 株式会社ニコン Optical system, optical device, and method for manufacturing optical system
JPWO2019220614A1 (en) * 2018-05-18 2021-04-22 株式会社ニコン Optical systems, optical instruments, and methods of manufacturing optical systems
JP7433875B2 (en) 2019-12-11 2024-02-20 キヤノン株式会社 Optical system and imaging device
US11971607B2 (en) 2019-12-11 2024-04-30 Canon Kabushiki Kaisha Optical system and image pickup apparatus

Also Published As

Publication number Publication date
JP5463865B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5463865B2 (en) Lens system, optical equipment
JP5288238B2 (en) Magnifying optical system, optical apparatus equipped with the magnifying optical system, and magnifying method of the magnifying optical system
JP5609072B2 (en) Lens system, optical device, and manufacturing method of lens system
JP5458477B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system magnification method
JP5641680B2 (en) Zoom lens and optical apparatus having the same
JP5582303B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
JP5309553B2 (en) Zoom lens and optical apparatus provided with the zoom lens
JP2010145759A (en) Zoom lens, optical apparatus with the zoom lens and method for producing the zoom lens
WO2010004806A1 (en) Zoom lens, optical device having same, and zoom lens manufacturing method
JP5273167B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP5110127B2 (en) Zoom lens, optical device, and zoom lens manufacturing method
JP2011069889A (en) Zoom lens, optical equipment and method for manufacturing the zoom lens
JP2010117677A (en) Zoom lens, optical apparatus, and method for manufacturing zoom lens
WO2016194774A1 (en) Variable-power optical system, optical device, and method for manufacturing variable-power optical system
JP5354326B2 (en) Zoom lens and optical apparatus having the same
JP5201460B2 (en) Zoom lens, optical apparatus having the same, and zooming method
JP5245321B2 (en) Lens system and optical apparatus using the same
JP5212813B2 (en) Zoom lens, optical device including the same, and manufacturing method
JP5459587B2 (en) Zoom lens, optical apparatus including the same, and manufacturing method
JP5278799B2 (en) Zoom lens, optical device including the same, and manufacturing method
JP5407365B2 (en) Variable magnification optical system, imaging device, and variable magnification optical system manufacturing method
JP5333915B2 (en) Zoom lens and optical equipment
JP5333903B2 (en) Zoom lens and optical equipment
JP5115871B2 (en) Zoom lens, optical device, and method of manufacturing zoom lens
JP5736651B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140106

R150 Certificate of patent or registration of utility model

Ref document number: 5463865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees