WO2019097628A1 - 太陽光パネル除雪装置、太陽光パネル除雪機、および太陽光パネルの除雪方法 - Google Patents

太陽光パネル除雪装置、太陽光パネル除雪機、および太陽光パネルの除雪方法 Download PDF

Info

Publication number
WO2019097628A1
WO2019097628A1 PCT/JP2017/041268 JP2017041268W WO2019097628A1 WO 2019097628 A1 WO2019097628 A1 WO 2019097628A1 JP 2017041268 W JP2017041268 W JP 2017041268W WO 2019097628 A1 WO2019097628 A1 WO 2019097628A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar panel
snow
snow removal
removal device
air
Prior art date
Application number
PCT/JP2017/041268
Other languages
English (en)
French (fr)
Inventor
英明 溝渕
Original Assignee
株式会社Golden Leaf-Works
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Golden Leaf-Works filed Critical 株式会社Golden Leaf-Works
Priority to PCT/JP2017/041268 priority Critical patent/WO2019097628A1/ja
Priority to JP2019503369A priority patent/JPWO2019097628A1/ja
Publication of WO2019097628A1 publication Critical patent/WO2019097628A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/20Cleaning; Removing snow
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/10Cleaning arrangements
    • H02S40/12Means for removing snow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar panel snow removal apparatus, a solar panel snow remover, and a solar panel snow removal method capable of efficiently removing snow stacked on a panel surface of a solar panel.
  • Patent Document 1 includes a heat medium passage, a solar heat collecting unit and a feeding means, and supplies air warmed by the solar heat collecting unit to the lower edge portion of the solar panel, thereby a panel being formed.
  • a snow melting apparatus is disclosed which melts snow falling on a surface.
  • a method of preventing snow accumulation on the panel surface by increasing the inclination angle of the solar panel to, for example, about 45 ° to make it fall has been put to practical use (Non-Patent Document 1).
  • the present invention solves these practical problems, and can remove snow from a large-scale solar power generation facility such as mega solar efficiently and without fear of damage. Aircraft, and to provide a solar panel snow removal method.
  • the outside air is taken in to generate compressed air at a higher pressure and temperature than the outside air, and compressed air is pumped into the chamber and injected from the line slit to the outside. It is characterized by being within the range of more than 90 °.
  • the solar panel snow removal device of the present invention may include a contact avoiding means for avoiding contact between the air nozzle and the panel surface.
  • the avoiding means is a buffer guide projecting downward from the frame, the buffer guide includes a guide bar, and a caster attached to the tip of the guide bar, the buffer guide is a frame It may be telescopic.
  • the compressor may be a centrifugal compressor.
  • the solar panel snow removal device of the present invention may be provided with a wind direction lever capable of rotating the jet direction of the compressed air around the major axis of the air nozzle.
  • a solar panel snow removal machine comprises a solar panel snow removal device, and a traveling device capable of traveling on the ground along the continuous direction of the solar panel while holding the solar panel snow removal device. It features.
  • a solar panel snow removal device comprises a solar panel snow removal device, and a traveling device capable of traveling on the panel surface along a continuous direction of the solar panel while holding the solar panel snow removal device. It is characterized by
  • the solar panel snow removal method according to the present invention is characterized in that compressed air having a pressure and temperature higher than that of the outside air is jetted to the snow on the solar panel, and the snow on the panel surface is crushed and removed.
  • the solar panel snow removal apparatus, the solar panel snow removal apparatus, and the solar panel snow removal method of the present invention have the above configurations, they have the following effects.
  • the “width” of the solar panel is the length in the direction of inclination from the lower side to the upper side of the solar panel
  • the “length” of the solar panel is orthogonal to the width It is a length and represents the length in the continuous direction of the solar panel.
  • the solar panel snow removal apparatus 1 of the present invention is an apparatus capable of efficiently removing the snow S on the panel surface of the solar panel P.
  • the solar panel snow removal device 1 is used by attaching to a traveling device 2 such as a backhoe. Alternatively, it is used by self-propelled on the panel surface. These configurations will be described later.
  • the solar panel snow removal device 1 at least includes a frame 10, a long air nozzle 20, and a compressor 30 connected to the air nozzle 20.
  • a buffer guide 40 is further provided, which is a means for avoiding contact between the air nozzle 20 and the panel surface.
  • the frame 10 is a main structural member of the solar panel snow removal device 1.
  • the frame 10 is provided with a long plate-like frame main body 11.
  • the width in the longitudinal direction of the frame body 11 corresponds to the width in the inclination direction of the solar panel P.
  • a connection portion 12 for attaching the solar panel snow removal device 1 to an arm or the like of the traveling device 2 is provided on the upper surface of the frame main body 11.
  • the compressor 30 is attached to the upper surface of the frame main body 11.
  • buffer guides 40 are attached to both sides of the frame main body 11, respectively. Note that these configurations are merely examples, and the structure of the frame 10 can be changed as appropriate depending on the design convenience.
  • the air nozzle 20 is a member for ejecting the compressed air pressure-fed from the compressor 30 to the outside.
  • the air nozzle 20 is a long hollow cylindrical body.
  • the cross section of the air nozzle 20 adopts a Tear-Drop shape.
  • a linear line slit 21 is formed along the longitudinal direction of the air nozzle 20 at the distal end of the teardrop shaped shape of the air nozzle 20. Both ends of the air nozzle 20 are sealed, and a chamber 22 which is an air chamber corresponding to the outer shape of the air nozzle 20 is formed inside.
  • the line slit 21 communicates the chamber 22 with the outside.
  • the length of the line slit 21 corresponds to the width of the solar panel P.
  • the compressed air jetted from the line slit 21 has a length that extends to the entire width of the solar panel P.
  • the air nozzle 20 is provided between two buffer guides 40 described later. When the buffer guide 40 is not provided, the air nozzle 20 may be directly attached to the frame 10.
  • the pressure feed hose 31 of the compressor 30 is connected to the rear of the air nozzle 20, and the inside of the compressor 30 and the chamber 22 are communicated.
  • the compressor 30 is a member that generates high-pressure and high-temperature compressed air from the captured outside air and feeds the compressed air to the air nozzle 20.
  • a centrifugal compressor is employed as the compressor 30.
  • a centrifugal compressor is a compressor that compresses and feeds gas using centrifugal force of an impeller. The mechanism itself of the centrifugal compressor is known and will not be described in detail here. Centrifugal compressors are particularly suitable for the practice of the present invention as they can continuously pump large volumes of compressed air without pulsing.
  • the compressor 30 is not limited to the centrifugal type, and an axial flow type or another known compressor may be adopted as long as it can pump a large volume.
  • the compressor 30 is mounted on the top of the frame 10.
  • the present invention is not limited to this, and may be mounted on the traveling device 2.
  • the compressor 30 is connected to the air nozzle 20 by a pressure feed hose 31.
  • the power of the compressor 30 may be mounted on the frame body 11 or may be mounted on the traveling device 2 and may be transmitted to the compressor 30 via a wire.
  • the injection direction of the compressed air in the solar panel snow removal device 1 of the present invention is such that the injection angle ⁇ is in the range of more than 0 ° and less than 90 °.
  • the injection angle ⁇ is the crossing angle between the virtual extension line of the opening direction of the line slit 21 and the panel surface in the traveling direction in service. If the injection angle ⁇ is too large, the energy loss due to the collision of the compressed air with the panel surface increases, and the snow S can not be blown away far. On the other hand, if the injection angle ⁇ is too small, the energy transmitted to the snowfall S weakens, and the snow removal ability falls. From the above, it is desirable to set the injection angle ⁇ to approximately 40 ° to 50 °.
  • the buffer guide 40 is a contact avoiding means for preventing the air nozzle 20 from contacting the panel surface of the solar panel P.
  • the buffer guide 40 protrudes downward from both sides of the frame 10, and includes a guide bar 42 and a caster 41 attached to the tip of the guide bar 42.
  • the buffer guide 40 is structured so as to be extensible and contractible with respect to the frame body 11 as the guide bar 42 slides up and down along the guide member of the frame body 11. When the caster 41 does not contact the panel surface, the guide bar 42 extends to the maximum length by the load of the air nozzle 20.
  • the caster 41 contacts the panel surface, the caster 41 is pushed up to the panel surface, whereby the guide bar 42 is pulled into the frame main body 11 and shortened.
  • the air nozzle 20 contacts the panel surface by the buffer guide 40 first contacting and shortening the panel surface. Can be avoided.
  • the air nozzle 20 is attached to the buffer guide 40, the distance between the air nozzle 20 and the panel surface can be always kept constant in the snow removal operation.
  • a suspension 43 capable of elastic adjustment may be interposed between the guide bar 42 and the frame 10 with respect to the distance between the caster 41 and the frame 10.
  • the suspension 43 is made of an elastic body such as a spring.
  • the wind direction lever 50 is a member for changing the injection direction of the compressed air.
  • the air nozzle 20 is pivotally supported between the both buffer guides 40 about its long axis, and the long axis of the air nozzle 20 and the wind direction lever 50 are connected.
  • the wind direction lever 50 is rotated, the air nozzle 20 is rotated, and the direction of the line slit 21 is changed, so that the injection angle ⁇ can be changed.
  • the injection angle ⁇ can be changed to an optimum angle according to the output of the compressor 30, the amount of snow accumulation, the traveling speed, and the like.
  • the traveling direction can be reversed while the solar panel snow removal device 1 is installed on the panel surface.
  • the wind direction lever 50 is not an essential component of the present invention.
  • the solar panel snow removal machine A of the present invention is a device for removing snow from the snow S on the panel surface while traveling along the array of the solar panels P.
  • the solar panel snow removal machine A is configured by connecting the solar panel snow removal device 1 to the traveling device 2.
  • a backhoe is adopted as the traveling device 2. Since the solar panel snow removal device 1 is a unit type, the solar panel snow removal machine A must be replaced with the solar panel snow removal device 1 only by replacing the bucket portion of the existing backhoe with the solar panel snow removal machine A using the power and arms of the backhoe. Can.
  • traveling device 2 may adopt not only a backhoe but other construction vehicles etc.
  • the snow removal method of the present invention is a snow removal method in which the snow S is crushed by blowing compressed air onto the snow S on the panel surface, and is blown off and removed.
  • the compressor 30 is operated.
  • the compressor 30 compresses external air drawn from the suction pipe to generate high pressure compressed air.
  • the compressed air is pumped into the chamber 22 of the air nozzle 20 through the pumping hose 31, is pushed out to the line slit 21 along the internal shape of the teardrop shape of the chamber 22, and is jetted to the outside at high pressure.
  • the compressed air to be jetted has a gas temperature which rises when it is compressed by the compressor 30, so it has a high temperature of about 10 ° C. to 20 ° C. in comparison with the outside air.
  • the caster 41 contacts the panel surface with a flexible tire and rotates as it advances, there is no risk of damaging the panel surface of the solar panel P.
  • the buffer guide 40 includes the suspension 43, the operation stability can be further improved by elastically pressing the caster 41 against the panel surface by the suspension 43.
  • the traveling device 2 is advanced to the end of the solar panel P to complete snow removal. As needed, the direction of the solar panel snow removal device 1 is reversed to blow away the snow flakes remaining on the panel surface.
  • the solar panel snow removal method of the present invention is characterized in that snow is removed in a noncontact manner by high pressure and high temperature compressed air.
  • the surface layer partially melts due to the temperature rise in the daytime, and the surface layer hardens by repeating the process of freezing again at night.
  • the lower part of the snow is consolidated on the panel surface by refreezing the melted water. Because of this, snow removal was difficult.
  • the solar panel snow removal method of the present invention the surface layer of the snow S can be melted by high temperature compressed air, and the snow can be crushed from the inside and blown off at high pressure.
  • the solar panel snow removal device includes a distance sensor
  • the buffer guide 40 is employed as means for avoiding contact between the air nozzle 20 and the panel surface, but in the present embodiment, the distance sensor 60 is employed instead.
  • one distance sensor 60 is provided downward from both ends of the lower surface of the frame main body 11.
  • the air nozzle 20 may be directly attached.
  • the distance sensor 60 for example, an ultrasonic sensor, an infrared sensor, a laser sensor or the like can be employed.
  • the distance sensor 60 can transmit the measured distance from the panel surface as a distance signal by a wired or wireless method.
  • an alarm device 70 such as a warning light is provided on the frame main body 11, and based on a distance signal from the distance sensor 60, when the air nozzle 20 and the panel surface approach a predetermined distance or more, an alarm such as flashing or alarm is issued. It can be configured as follows.
  • a distance signal may be transmitted to a receiver in the traveling device 2 to display a warning on the display.
  • FIG. 6 Example of self-propelled on the panel surface
  • the solar panel snow removal machine A can self-propelled on the panel surface.
  • the heavy equipment such as a backhoe but a crawler provided at the lower part of the frame main body 11 is adopted as the traveling device 3.
  • the crawler is driven by the power of a motor, an engine or the like stored in the frame 10 to make the panel surface self-propelled.
  • the contact avoiding means is not necessary, and snow can be removed even when there is a narrow space between the solar panels P and there is no width for passing heavy machinery. , Etc. to exert further effects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

太陽光パネルのパネル面に積層した雪を効率的に除去可能な太陽光パネル除雪装置、太陽光パネル除雪機、および太陽光パネル方法を提供する。本発明の太陽光パネル除雪装置は、フレームと、フレームに付設した長尺状のエアノズルと、エアノズルと接続した圧縮機と、を備え、エアノズルは、内部空間たるチャンバーと、チャンバーと外部を連通するラインスリットと、を有し、ラインスリットは、エアノズルの長手方向に沿って、太陽光パネルの傾斜方向の幅に対応した長さに形成され、圧縮機は、外気を取り込んで、外気より高圧かつ高温の圧縮空気を生成し、圧縮空気をチャンバーに圧送してラインスリットから外部へ噴射し、圧縮空気の噴射方向は、進行方向下方に向かって、0°超90°未満の範囲内にあることを特徴とする。本発明の太陽光パネル除雪方法は、外気より高圧かつ高温の圧縮空気を太陽光パネル上の積雪に噴射し、パネル面上の積雪を粉砕して除雪することを特徴とする。

Description

太陽光パネル除雪装置、太陽光パネル除雪機、および太陽光パネルの除雪方法
 本発明は、太陽光パネルのパネル面に積層した雪を効率的に除雪可能な太陽光パネル除雪装置、太陽光パネル除雪機、および太陽光パネル除雪方法に関する。
 メガソーラーと呼ばれる大型太陽光発電施設は屋外に設置されるため、冬季にはパネル面に雪が積もって発電が妨げられる。また、積雪荷重によってパネルが架台ごと圧潰するおそれもある。
 特許文献1には、熱媒体通路と、太陽光集熱部と送給手段と、を備え、太陽光集熱部で温めた空気を太陽光パネルの下縁部に送給することで、パネル面上に降った雪を溶融させる融雪装置が開示されている。
 また、太陽光パネルの傾斜角を例えば45°程度まで大きくして落雪させることでパネル面への積雪を防ぐ方法が実用化されている(非特許文献1)。
特開2012-172950号公報
「大規模太陽光発電システム導入の手引書(平成23年3月:NEDO)」
 しかしながら、従来技術はいずれも積雪を予防するための技術であり、一度パネル面上に積もってしまった積雪を機械的に除雪する技術は現在まで実用化されていない。
 これは、機械的な除雪に次のような課題が内在するからである。
<1>積雪は寒暖差で再凍結を繰り返すことで表面が凍り付き硬化するため、除雪が難しい。硬化した積雪を破砕する為に大きなエネルギーを加えるとパネル面を破損させるおそれがある。
<2>ブラシなどの器具で直接こするとパネル面を傷つけるおそれがある。パネル面が傷つくとパネルメーカーによる出力補償が打ち切られることがある。
<3>ブラシなどの器具とパネル面との接触を保持したまま移動する操作が難しい。特に敷地内の積雪によって移動時に装置が揺れやすいため、パネル面を破損するおそれがある。
 また、手作業による除雪はいうまでもなく非効率で現実的でない。
 本発明は、これら実用上の課題を解決して、メガソーラーのような大規模な太陽光発電設備を効率的かつ損傷のおそれなく除雪することができる、太陽光パネル除雪装置、太陽光パネル除雪機、および太陽光パネル除雪方法を提供することにある。
 上記のような課題を解決するための、本発明の太陽光パネル除雪装置は、フレームと、フレームに付設した長尺状のエアノズルと、エアノズルと接続した圧縮機と、を備え、エアノズルは、内部空間たるチャンバーと、チャンバーと外部を連通するラインスリットと、を有し、ラインスリットは、エアノズルの長手方向に沿って、太陽光パネルの傾斜方向の幅に対応した長さに形成され、圧縮機は、外気を取り込んで、外気より高圧かつ高温の圧縮空気を生成し、圧縮空気をチャンバーに圧送してラインスリットから外部へ噴射し、圧縮空気の噴射方向は、進行方向下方に向かって、0°超90°未満の範囲内にあることを特徴とする。
 本発明の太陽光パネル除雪装置は、エアノズルとパネル面が接触することを回避するための接触回避手段を備えていてもよい。
 本発明の太陽光パネル除雪装置は、回避手段が、フレームから下方に突出した緩衝ガイドであり、緩衝ガイドは、ガイドバーと、ガイドバーの先端に付設したキャスタと、を備え、緩衝ガイドはフレームに対して伸縮自在であってもよい。
 本発明の太陽光パネル除雪装置は、圧縮機が、遠心式圧縮機であってもよい。
 本発明の太陽光パネル除雪装置は、エアノズルの長軸を中心に、圧縮空気の噴射方向を回動可能な風向レバーを備えていてもよい。
 本発明の太陽光パネル除雪機は、太陽光パネル除雪装置と、太陽光パネル除雪装置を保持しながら太陽光パネルの連続方向に沿って、地盤上を走行可能な走行装置と、を備えることを特徴とする。
 本発明の太陽光パネル除雪装置は、太陽光パネル除雪装置と、太陽光パネル除雪装置を保持しながら太陽光パネルの連続方向に沿って、パネル面上を走行可能な走行装置と、を備えることを特徴とする。
 本発明の太陽光パネル除雪方法は、外気より高圧かつ高温の圧縮空気を太陽光パネル上の積雪に噴射し、パネル面上の積雪を粉砕して除雪することを特徴とする。
 本発明の太陽光パネル除雪装置、太陽光パネル除雪機、および太陽光パネル除雪方法は以上の構成を有するため、次の効果を備える。
<1>一度の走行で太陽光パネル全面を除雪できるため、作業効率が非常に高い。
<2>積雪を溶かしながら破砕して高圧で吹き飛ばすため除雪能力が高く、凍った雪も容易に除雪することができる。
<3>太陽光パネルに直接接触せずに除雪できるため、パネル面を傷つけるおそれがない。
<4>太陽光パネルとノズルとの距離を常に一定に保持できるため、操作が容易で熟練を要しない。
本発明に係る太陽光パネル除雪装置の説明図。 エアノズルの説明図。 緩衝ガイドの説明図。 本発明に係る太陽光パネル除雪機の説明図。 実施例2の説明図。 実施例3の説明図。
 以下、図面を参照しながら本発明の太陽光パネル除雪装置、太陽光パネル除雪機、および太陽光パネル除雪方法について詳細に説明する。
 なお、本明細書において太陽光パネルの「幅」とは、太陽光パネルの傾斜した下辺から上辺に向かう傾斜方向の長さであり、太陽光パネルの「長さ」とは、幅に直交する長さであって、太陽光パネルの連続方向の長さを表す。
[太陽光パネル除雪装置]
<1>全体の構成(図1)。
 本発明の太陽光パネル除雪装置1は、太陽光パネルPのパネル面上の積雪Sを効率的に除雪可能な装置である。
 太陽光パネル除雪装置1は、バックホウなどの走行装置2に付設して用いる。あるいはパネル面上を自走させて用いる。これらの構成については後述する。
 太陽光パネル除雪装置1は、フレーム10と、長尺状のエアノズル20と、エアノズル20と接続した圧縮機30と、を少なくとも備える。
 本例では、さらにエアノズル20とパネル面の接触回避手段たる、緩衝ガイド40を備える。
<2>フレーム。
 フレーム10は、太陽光パネル除雪装置1の主構造部材である。フレーム10は、長尺板状のフレーム本体11を備える。フレーム本体11の長手方向の幅は、太陽光パネルPの傾斜方向の幅に対応させる。
 本例では、フレーム本体11の上面に、太陽光パネル除雪装置1を走行装置2のアームなどに取付けるための接続部12を備える。
 本例では、フレーム本体11の上面に、圧縮機30を付設する。
 本例では、フレーム本体11の両側部に、それぞれ緩衝ガイド40を付設する。
 なお、これらの構成は例示に過ぎず、フレーム10の構造は設計上の便宜に応じて適宜変更可能である。
<3>エアノズル(図2)。
 エアノズル20は、圧縮機30から圧送された圧縮空気を外部へ噴出するための部材である。
 エアノズル20は長尺の中空筒状体である。本例では、エアノズル20を断面が涙滴型(Tear-Drop)の形状を採用する。
 エアノズル20の涙滴型形状の突端部には、エアノズル20の長手方向に沿って線状のラインスリット21が形成される。
 エアノズル20の両端は封止され、内部にエアノズル20の外形に対応した気室であるチャンバー22が形成される。ラインスリット21はチャンバー22と外部を連通する。
 ラインスリット21の長さは太陽光パネルPの幅に対応する。すなわち、太陽光パネルPの全幅以上であるか、または全幅未満であっても、ラインスリット21から噴射する圧縮空気が太陽光パネルPの全幅に及ぶ程度の長さとする。
 エアノズル20は、後述する2本の緩衝ガイド40の間に付設する。なお、緩衝ガイド40を設けない場合には、フレーム10にエアノズル20を直接付設してもよい。
 エアノズル20の後部には圧縮機30の圧送ホース31を接続し、圧縮機30の内部とチャンバー22とを連通する。
<4>圧縮機。
 圧縮機30は、取り込んだ外気から高圧かつ高温の圧縮空気を生成してエアノズル20へ圧送する部材である。
 本例では、圧縮機30として、遠心式圧縮機を採用する。遠心式圧縮機は羽根車による遠心力を利用して気体を圧縮して送気する圧縮機である。遠心式圧縮機の機構自体は公知であるのでここでは詳述しない。
 遠心式圧縮機は、大容量の圧縮空気を脈動なく連続して圧送することができるため、本願発明の実施に特に適している。但し、圧縮機30は遠心式に限られず、大容量の圧送が可能であれば、軸流式や他の公知の圧縮機を採用してもよい。
 本例では、フレーム10の上部に圧縮機30を搭載する。但し、これに限られず、走行装置2に搭載してもよい。
 圧縮機30は圧送ホース31によってエアノズル20と接続する。
 圧縮機30の動力はフレーム本体11搭載してもよいし、走行装置2に搭載し電線を介して圧縮機30へ送電してもよい。
<5>噴射角(図2)。
 本発明の太陽光パネル除雪装置1における、圧縮空気の噴射方向は、噴射角θが0°超90°未満の範囲内とする。
 ここで、噴射角θは、供用時の進行方向におけるラインスリット21の開口方向の仮想延長線とパネル面との交角である。
 噴射角θが大きすぎると、圧縮空気のパネル面への衝突によるエネルギーロスが多くなり、積雪Sを遠くまで吹き飛ばすことができなくなる。一方、噴射角θが小さすぎると積雪Sへ伝達するエネルギーが弱まり、除雪能力が落ちる。
 以上より、噴射角θは概ね40°~50°程度に設定するのが望ましい。
<6>緩衝ガイド(図3)。
 緩衝ガイド40は、エアノズル20が太陽光パネルPのパネル面に接触することを回避するための、接触回避手段である。
 本例では、緩衝ガイド40は、フレーム10の両側部から下方へ突設し、ガイドバー42と、ガイドバー42の先端に付設したキャスタ41と、を備える。
 緩衝ガイド40は、ガイドバー42がフレーム本体11のガイド材に沿って上下に摺動することで、フレーム本体11に対して伸縮自在な構造とする。
 キャスタ41がパネル面に接触していないときは、ガイドバー42は、エアノズル20の荷重によって最大長に延びる。一方、キャスタ41がパネル面に接触すると、キャスタ41がパネル面に押し上げられることで、ガイドバー42がフレーム本体11内に引き込まれ短縮する。
 本発明の太陽光パネル除雪装置1は、操作時にエアノズル20がパネル面に近づきすぎても、緩衝ガイド40が先にパネル面に接触して短縮することで、エアノズル20がパネル面に接触するのを回避することができる。
 また、エアノズル20が緩衝ガイド40に付設されているため、除雪作業において、エアノズル20とパネル面との間隔を常に一定に保つことができる。
 なお、ガイドバー42とフレーム10との間に、キャスタ41とフレーム10との間隔を弾性調整可能なサスペンション43を介挿させてもよい。サスペンション43はバネなどの弾性体からなる。
<7>風向レバー(図3)。
 風向レバー50は、圧縮空気の噴射方向を変更するための部材である。
 本例では、エアノズル20をその長軸を中心に両緩衝ガイド40間に軸支し、エアノズル20の長軸と風向レバー50とを接続する。
 風向レバー50を回動させると、エアノズル20が回動し、ラインスリット21の向きが変わることで、噴射角θを変更することができる。
 風向レバー50を設けることによって、圧縮機30の出力や積雪量、進行速度などに応じて、噴射角θを最適の角度に変更することができる。
 また、ラインスリット21の向きを後方に反転させれば、太陽光パネル除雪装置1をパネル面上に設置したまま、進行方向を反転させることができる。
 なお、風向レバー50は、本願発明の必須の構成要素ではない。
<8>太陽光パネル除雪機(図4)
 本発明の太陽光パネル除雪機Aは、太陽光パネルPのアレイに沿って走行しながら、パネル面上の積雪Sを除雪する装置である。
 太陽光パネル除雪機Aは、太陽光パネル除雪装置1を走行装置2に接続してなる。
 本例では、走行装置2としてバックホウを採用する。
 太陽光パネル除雪装置1はユニットタイプであるため、既存のバックホウのバケット部分を太陽光パネル除雪装置1に付け替えるだけで、バックホウの動力とアームとを利用して、太陽光パネル除雪機Aとすることができる。
 なお、走行装置2はバックホウに限らず、他の建設作業車などを採用してもよい。
[太陽光パネル除雪方法]
 引き続き、本発明の太陽光パネル除雪方法について説明する。
 本発明の除雪方法は、パネル面上の積雪Sへ圧縮空気を噴射することによって積雪Sを破砕し、吹き飛ばして除去する除雪方法である。
<1>太陽光パネル除雪装置の定位。
 太陽光パネル除雪機Aのアームを調整して、太陽光パネル除雪装置1の前方、すなわちラインスリット21側を、太陽光パネルPの連続方向前方に向けて定位し、エアノズル20の底をパネル面と平行にする。
 この際、緩衝ガイド40のキャスタ41をパネル面に当接してガイドバー42を軽く沈ませ、エアノズル20とパネル面の間に所定間隔を確保する。積雪Sが厚い場合には、事前にパネル面におけるキャスタ41の接触場所の雪を除去しておく。
<2>圧縮機の作動。
 圧縮機30を作動させる。
 圧縮機30は吸入管より吸引した外気を圧縮して高圧の圧縮空気を生成する。
 圧縮空気は圧送ホース31を介してエアノズル20のチャンバー22内に圧送され、チャンバー22の涙滴型の内部形状に沿ってラインスリット21へ押し出され、高圧で外部へ噴射される。
 噴射される圧縮空気は、圧縮機30による圧縮時に気体温度が上昇するため、外気に比して10℃~20℃程度高温となる。
<3>積雪の破砕。
 圧縮空気がパネル面上の積雪Sに噴射されると、熱で積雪Sの表面を溶かしながら内部へ入りこみ、積雪Sを内部から破砕して高圧で吹き飛ばす。
<4>走行装置の進行。
 圧縮機30を作動させながら、走行装置2を太陽光パネルPの連続方向に沿って進行させて、パネル面上の積雪Sを除雪してゆく。
 進行の際、地盤の凹凸や積雪によって走行装置2が多少傾いても、ガイドバー42が傾きを吸収してフレーム本体11に対して伸縮するため、エアノズル20が太陽光パネルPに接触してパネル面を傷付けたり破損させるおそれがない。
 このため、作業者が安心して走行装置2を走行させることができるので、作業効率が非常によい。また、操作が容易なので、作業経験の少ない者でも操作することができる。
 また、キャスタ41はパネル面に柔軟なタイヤで接触し、前進に伴って回転するため、太陽光パネルPのパネル面を傷付けるおそれがない。
 なお、緩衝ガイド40がサスペンション43を備える場合、サスペンション43によってパネル面にキャスタ41を弾性的に押し付けることで、操作の安定性をさらに向上させることができる。
 走行装置2を太陽光パネルPの最後端まで進めて除雪を完了する。必要に応じて太陽光パネル除雪装置1の向きを反転させて、パネル面上に残った雪片を吹き飛ばす。
<5>太陽光パネル除雪方法の特徴。
 本発明の太陽光パネル除雪方法は、高圧かつ高温の圧縮空気によって積雪を非接触式で除雪する点に特徴を有する。
 太陽光パネルの積雪は、昼間の気温上昇によって表層が一部溶解し、夜間に再度凍結するプロセスを繰り返すことで、表層が硬化する。また、溶けた水の再凍結によって積雪の下部がパネル面に固結する。このため、除雪が困難であった。
 これに対し、本発明の太陽光パネル除雪方法は、高温の圧縮空気によって積雪Sの表層を溶かし、内側から積雪を破砕して高圧で吹き飛ばすことができる。
 また、積雪Sの下部とパネル面との凍結を溶かすことができる。
 このため、除雪能力が非常に高い。
 また、ブラシなどの道具を使って積雪を手作業で掻き落とす場合、除雪後にパネル面上に細かい雪片が残る。これらの雪片が溶けて水滴となることでその後の着雪が容易になり積雪を誘発していた。
 これに対し、本発明の太陽光パネル除雪方法は、高圧噴射によってパネル面上の雪片を残らず吹き飛ばすため、パネル面への再着雪を有効に防ぐことができる。
[距離センサを備える例]
 引き続き、太陽光パネル除雪装置が距離センサを備えた他の実施例について説明する(図5)。
 実施例1では、エアノズル20とパネル面との接触回避手段として緩衝ガイド40を採用したが、本例ではこれに代わって距離センサ60を採用する。
 本例では、フレーム本体11の下面両端から下方に向けて、距離センサ60を1つずつ設ける。このほか、エアノズル20に直接付設してもよい。
 距離センサ60として、例えば超音波センサ、赤外線センサ、レーザセンサなどを採用することができる。これらは、太陽光パネルPのパネル面に、超音波、赤外線、レーザなどを照射し、これが反射して戻るまでの時間に基づいてエアノズル20と太陽光パネルPとの距離を計測するものであるが、公知技術なのでここでは詳述しない。 
 距離センサ60は、計測したパネル面との距離を、距離信号として、有線、無線などの方法で送信することができる。
 例えば、フレーム本体11上に警告灯などの警報装置70を設け、距離センサ60からの距離信号に基づいて、エアノズル20とパネル面とが一定距離以上近づいた場合、点滅やアラームなどの警報を発するように構成することができる。
 その他、距離信号を走行装置2内の受信機に送信し、ディスプレイに警告を表示させてもよい。
[パネル面上を自走する例]
 引き続き、太陽光パネル除雪機Aがパネル面上を自走可能な他の実施例について説明する(図6)。
 本例では、走行装置3として、バックホウ等の重機ではなく、フレーム本体11の下部に設けたクローラを採用する。フレーム10に格納したモータやエンジン等の動力によってクローラを駆動してパネル面上を自走させる。
 本例の場合、エアノズル20とパネル面との間隔が一定に固定されるため、接触回避手段が不要となる、太陽光パネルPのアレイ間が狭くて重機が通る幅がない場合にも除雪できる、などの更なる効果を奏する。
 A  太陽光パネル除雪機
 1  太陽光パネル除雪装置
 10 フレーム
 11 フレーム本体
 12 接続部
 20 エアノズル
 21 ラインスリット
 22 チャンバー
 30 圧縮機
 31 圧送ホース
 40 緩衝ガイド
 41 キャスタ
 42 ガイドバー
 43 サスペンション
 50 風向レバー
 60 距離センサ
 70 警報装置
 2  走行装置
 3  走行装置
 P  太陽光パネル
 S  積雪
 θ  噴射角

Claims (8)

  1.  太陽光パネルの上部をその連続方向に沿って進行しながらパネル面上の積雪を除去する、太陽光パネル除雪装置であって、
     フレームと、
     前記フレームに付設した長尺状のエアノズルと、
     前記エアノズルと接続した圧縮機と、を備え、
     前記エアノズルは、内部空間たるチャンバーと、前記チャンバーと外部を連通するラインスリットと、を有し、
     前記ラインスリットは、前記エアノズルの長手方向に沿って、太陽光パネルの傾斜方向の幅に対応した長さに形成され、
     前記圧縮機は、外気を取り込んで、外気より高圧かつ高温の圧縮空気を生成し、前記圧縮空気を前記チャンバーに圧送して前記ラインスリットから外部へ噴射し、
     前記圧縮空気の噴射方向は、進行方向下方に向かって、0°超90°未満の範囲内にあることを特徴とする、
     太陽光パネル除雪装置。
  2.  前記エアノズルとパネル面が接触することを回避するための接触回避手段を備えることを特徴とする、請求項1に記載の太陽光パネル除雪装置。
  3.  前記回避手段は、前記フレームから下方に突出した緩衝ガイドであり、前記緩衝ガイドは、ガイドバーと、前記ガイドバーの先端に付設したキャスタと、を備え、前記緩衝ガイドは前記フレームに対して伸縮自在であることを特徴とする、請求項2に記載の太陽光パネル除雪装置。
  4.  前記圧縮機は、遠心式圧縮機であることを特徴とする、請求項1に記載の太陽光パネル除雪装置。
  5.  前記エアノズルの長軸を中心に、前記圧縮空気の噴射方向を回動可能な風向レバーを備えることを特徴とする、請求項1に記載の太陽光パネル除雪装置。
  6.  請求項1乃至5のいずれか一項に記載の太陽光パネル除雪装置と、
     前記太陽光パネル除雪装置を保持しながら太陽光パネルの連続方向に沿って、地盤上を走行可能な走行装置と、を備えることを特徴とする、
     太陽光パネル除雪機。
  7.  請求項1乃至5のいずれか一項に記載の太陽光パネル除雪装置と、
     前記太陽光パネル除雪装置を保持しながら太陽光パネルの連続方向に沿って、パネル面上を走行可能な走行装置と、を備えることを特徴とする、
     太陽光パネル除雪機。
  8.  太陽光パネルの除雪方法であって、
     外気より高圧かつ高温の圧縮空気を太陽光パネル上の積雪に噴射し、パネル面上の積雪を粉砕して除雪することを特徴とする、
     太陽光パネルの除雪方法。
PCT/JP2017/041268 2017-11-16 2017-11-16 太陽光パネル除雪装置、太陽光パネル除雪機、および太陽光パネルの除雪方法 WO2019097628A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/041268 WO2019097628A1 (ja) 2017-11-16 2017-11-16 太陽光パネル除雪装置、太陽光パネル除雪機、および太陽光パネルの除雪方法
JP2019503369A JPWO2019097628A1 (ja) 2017-11-16 2017-11-16 太陽光パネル除雪装置、太陽光パネル除雪機、および太陽光パネルの除雪方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/041268 WO2019097628A1 (ja) 2017-11-16 2017-11-16 太陽光パネル除雪装置、太陽光パネル除雪機、および太陽光パネルの除雪方法

Publications (1)

Publication Number Publication Date
WO2019097628A1 true WO2019097628A1 (ja) 2019-05-23

Family

ID=66538591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041268 WO2019097628A1 (ja) 2017-11-16 2017-11-16 太陽光パネル除雪装置、太陽光パネル除雪機、および太陽光パネルの除雪方法

Country Status (2)

Country Link
JP (1) JPWO2019097628A1 (ja)
WO (1) WO2019097628A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113458078A (zh) * 2021-05-13 2021-10-01 侯向芝 一种用双反转式智慧交通摄像头
CN113533778A (zh) * 2021-06-09 2021-10-22 南京信息职业技术学院 一种具有除雪功能的风速风向检测装置及其使用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321527A (ja) * 2006-06-05 2007-12-13 Sanyo Electric Co Ltd 雪降ロボット
US20120255585A1 (en) * 2011-04-07 2012-10-11 Mark Kowalczyk Portable System for Directing Pressurized Air Upon a Surface
JP2015038286A (ja) * 2013-08-19 2015-02-26 勲 伴 除雪装置
JP2015186313A (ja) * 2014-03-23 2015-10-22 中村 茂 ソーラーパネル堆積物除去装置、無端軌道、および堆積物除去構造

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321527A (ja) * 2006-06-05 2007-12-13 Sanyo Electric Co Ltd 雪降ロボット
US20120255585A1 (en) * 2011-04-07 2012-10-11 Mark Kowalczyk Portable System for Directing Pressurized Air Upon a Surface
JP2015038286A (ja) * 2013-08-19 2015-02-26 勲 伴 除雪装置
JP2015186313A (ja) * 2014-03-23 2015-10-22 中村 茂 ソーラーパネル堆積物除去装置、無端軌道、および堆積物除去構造

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113458078A (zh) * 2021-05-13 2021-10-01 侯向芝 一种用双反转式智慧交通摄像头
CN113533778A (zh) * 2021-06-09 2021-10-22 南京信息职业技术学院 一种具有除雪功能的风速风向检测装置及其使用方法
CN113533778B (zh) * 2021-06-09 2022-05-03 南京信息职业技术学院 一种具有除雪功能的风速风向检测装置及其使用方法

Also Published As

Publication number Publication date
JPWO2019097628A1 (ja) 2019-11-21

Similar Documents

Publication Publication Date Title
WO2019097628A1 (ja) 太陽光パネル除雪装置、太陽光パネル除雪機、および太陽光パネルの除雪方法
US7571557B2 (en) Ice-removing device
CN106245703B (zh) 一种基于高压水驱动的涵洞清淤机器人
CN205421131U (zh) 公路专用养护车
CN112196546B (zh) 一种利用微波和高压水射流破岩的无滚刀硬岩掘进机
CN113864138B (zh) 一种用于风电叶片除冰的系统与方法
CN103806401A (zh) 一种军用机场路面除冰装置
CN110707646A (zh) 一种330kV输电线路除冰装置
CN109808854A (zh) 一种船舶甲板用快速除雪除冰装置
CN104652342A (zh) 微波蒸汽除冰车
CN104420438A (zh) 一种新型超声波除冰装置
CN115000906A (zh) 一种输电线路的除冰方法
CN206070622U (zh) 一种基于高压水驱动的涵洞清淤机器人
CN102373688A (zh) 钛纳米电加热除冰车
CN202543851U (zh) 一种公路真空扫雪车
CN102632867A (zh) 自动竖立与卧下的雨刮器
CN205681077U (zh) 一种配网合环线路除冰装置
WO2019097723A1 (ja) 太陽光パネルの除雪方法、太陽光パネル除雪装置、および太陽光パネル除雪機
US2404287A (en) Apparatus for removing snow and the like
CN207608873U (zh) 道路桥梁用除冰装置
KR200487077Y1 (ko) 활주로용 열풍 제빙 장비
CN108716208A (zh) 等离子融雪车
CN204311400U (zh) 冰雪路面燃气火焰清洁车
CN210166362U (zh) 一种公路隧道检测装置
CN211571310U (zh) 一种公路工程铺膜装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019503369

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17931973

Country of ref document: EP

Kind code of ref document: A1