WO2019097582A1 - Dc power supply system - Google Patents
Dc power supply system Download PDFInfo
- Publication number
- WO2019097582A1 WO2019097582A1 PCT/JP2017/040967 JP2017040967W WO2019097582A1 WO 2019097582 A1 WO2019097582 A1 WO 2019097582A1 JP 2017040967 W JP2017040967 W JP 2017040967W WO 2019097582 A1 WO2019097582 A1 WO 2019097582A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- load
- predicted
- storage battery
- power generation
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J1/00—Circuit arrangements for dc mains or dc distribution networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
Definitions
- the present invention relates to a stand-alone DC power supply system not connected to a commercial power supply.
- the DC power feeding system includes a natural energy power generation device, a load device having a regulation load and operating with generated power from the natural energy power generation device, and a storage battery connected to the natural energy power generation device and the load device to perform charging and discharging.
- a stand-alone power supply system including a power storage device, wherein the stand-alone power supply system calculates demand forecast data of a load device and generation output forecast data of a natural energy power plant using the weather forecast data, and the demand When it is predicted by the prediction data and the power generation output prediction data that the storage battery is charged beyond the maximum charging power of the storage battery, the power generation output from the natural energy power generation device is suppressed.
- the power generation output from the solar power generation apparatus is Since the control is performed, it is possible to control so as not to exceed the maximum charging power of the storage battery.
- the direct current supply system when it is predicted that the storage battery is charged beyond the maximum charging power of the storage battery, the direct current supply system is configured to suppress the power generation output from the natural energy power generation apparatus.
- the feed system there is a problem to be solved that the suppressed power of the generated power that can be originally generated in the natural energy power generation apparatus is wasted.
- This invention is made in view of the said subject, and an object of this invention is to provide the direct current
- a direct current bus serving as a bus bar for direct current feed, a power generating device generating power based on natural energy, and the generated power of the power generating device is supplied to the DC bus.
- Bi-directional converter for supplying power from the DC bus to the storage battery or from the storage battery to the DC bus, and voltage converting DC power of at least one of the generated power and the charging power supplied to the DC bus
- a second converter for supplying the load equipment, a power generation log including a weather condition and generated power when the power generation apparatus is operated, and the load equipment is operated
- Control unit which acquires a load log including the current weather condition and load power, and sequentially acquires the chargeable power of the storage battery and the weather prediction information at a predetermined acquisition time, the control unit Charge power calculation processing for calculating, based on the chargeable power and the weather forecast information, scheduled charge power for the storage battery in a period until the acquisition time that arrives next, each time the chargeable power and the weather forecast information are acquired; Generated power prediction processing for calculating predicted power generation of the power generation apparatus in the period based
- Charging / discharging control processing for supplying power for scheduled charging power; and supplying the predicted load power to the load device for which the predicted load power of the load devices has been calculated by the second converter, A load device control process is performed to supply the difference power between the predicted generated power and the total power to the load device in a stopped state among the load devices.
- surplus power difference power between the predicted generated power and the total power generated in the predicted generated power is supplied to the load device which is normally in a stopped state. Because the power generation apparatus operates based on natural energy, the power generated by the power generation apparatus can be effectively used without suppressing the power generation of the power generation apparatus.
- ADVANTAGE OF THE INVENTION According to this invention, it can utilize effectively, without suppressing the electric power generation in a natural energy electric power generating apparatus.
- FIG. 1 is a block diagram of a DC power supply system 1;
- FIG. 10 is an explanatory diagram for describing first to fourth processing contents of charge / discharge control processing and load device control processing.
- FIG. 6 is an explanatory diagram for explaining an operation of the DC power supply system 1;
- FIG. 7 is another explanatory view for explaining the operation of the direct current feed system 1;
- direct current feed system is not limited to the following embodiments.
- components described below include those which can be easily conceived by those skilled in the art, and substantially the same components, and the components can be appropriately combined.
- the DC power supply system 1 includes a DC bus 2 and one or more power generation devices 3 (in this example, three power generation devices 3a, 3b, 3c as an example, hereinafter referred to as "power generation device 3" when not distinguished)
- the first converter 4 three power conditioners 4a, 4b and 4c described later as an example in this example) disposed corresponding to the three, and one or more load devices 71 (one or more load devices connected to the DC feeding system 1)
- load devices 71a, 71b, 71c as an example (hereinafter also referred to as “load device 71" when not distinguished)
- a second converter 5 in this example, three examples described later as an example) second converter 5a, 5b, 5c.
- second converter 5" a plurality of direct-current power supply 6 (DC power supply units 61 and 62 2, ..., 6 ), Third converter 7, and includes a power management apparatus 9 generates a DC voltage based on the power generated by the power generator 3, a stand-alone can be supplied to the load device 71 DC power supply system (commercial power supply ( It is configured as a DC power supply system not connected to a commercial AC power supply).
- DC power supply system commercial power supply ( It is configured as a DC power supply system not connected to a commercial AC power supply).
- the DC bus 2 is laid over the installation place of the power generation device 3, the installation place of each DC power supply 6, and the installation place of the load device 71, and functions as a bus bar of DC power supply. Further, DC bus 2 has a predetermined voltage including a nominal bus voltage as a result of control of charge / discharge operation of bidirectional DC / DC converter 14 in a plurality of DC power supply devices 6 described later by power management device 9.
- the bus voltage Vbs is defined within a range (for example, within a voltage range of DC 350 V or more and DC 400 V or less including DC 370 V as a nominal bus voltage).
- the power generation device 3 is configured of a distributed power supply device.
- the distributed power supply unit is configured of a power generation unit using natural renewable energy such as a solar power generation unit, a wind power generation unit, or a hydroelectric generation unit, or an engine type power generation unit using fossil energy such as light oil and gasoline. It is possible.
- it is configured by one engine type power generation device 3a and power generation devices 3b and 3c using natural regenerated energy.
- the power generation device 3a is started and stopped by an operation (manually) by the operator, and generates and outputs an AC voltage V1 of a predetermined voltage value in an operation state.
- the power management apparatus 9 can also control start / stop.
- the power generation device 3a is included in the plurality of DC power supply devices 6, such as at the time of the first startup of the DC power supply system 1, and at the time of restart after the DC power supply system 1 stops for a long time. When a large amount of charging power is temporarily required to charge the storage battery 11, the storage battery 11 is operated only for a predetermined period.
- the power generation device 3a is required for the load device 71 (two in the present embodiment, as an example, the load devices 71a and 71b) in each cycle T described later included in the fixed period. It is assumed that it is possible to generate sufficient power (predetermined known generated power Wgap) capable of charging the storage battery 11 while supplying various load powers. Further, for example, by adopting a configuration such as outputting to the power management device 9 a state signal indicating that the power generation device 3a is in operation in the operating state, the power management device 9 can detect the operation / stop of the power generation device 3a. Is configured.
- the power generation device 3b is configured of a solar power generation device as an example, and automatically generates generated power Wgbp (generated power in each cycle T) that changes according to the sunshine condition in the daytime, and direct current The voltage V2b is generated and output.
- the power generation device 3c is configured of a pumped storage hydroelectric power generation device as one example, and is controlled by the power management device 9 to execute one of the storage operation, the power generation operation, and the operation stop.
- the power generation device 3c performs an operation of pumping water from the lower pond to the upper pond dam by operating a pumping pump as a load device 71c described later, and in the power generation operation, the upper pond dam The water is dropped from the lower reservoir to the lower reservoir and the generator is operated to generate and output a DC voltage V2c.
- the first converter 4 is composed of three power conditioners 4a, 4b, 4c arranged corresponding to the two power generation devices 3a, 3b, 3c in this example.
- power conditioner 4a is configured to include an AC / DC converter, and is disposed corresponding to power generation device 3a.
- the power conditioner 4a operates with the DC voltage internally generated based on the AC voltage V1, and is controlled by the power management device 9 to generate the AC voltage V1 as the generated power output from the power generation device 3a as a bus.
- the voltage is converted into a voltage Vbs and supplied to the DC bus 2.
- Power conditioners 4b and 4c are configured to include, for example, a DC / DC converter, and are arranged corresponding to power generation devices 3b and 3c.
- the power conditioner 4b operates with the DC voltage generated internally based on the DC voltage V2b, and is controlled by the power management device 9 to control the power generation operation of the corresponding power generation device 3b to generate generated power. While being configured to be controllable, the DC voltage V2b as the generated power output from the power generation device 3b is converted into the bus voltage Vbs and supplied to the DC bus 2.
- the power conditioner 4c operates with the DC voltage internally generated based on the DC voltage V2c, converts the DC voltage V2c as the generated power output from the power generation device 3c into the bus voltage Vbs, Supply to 2.
- the second converter 5 is configured of, for example, a DC / DC converter that operates with a DC voltage generated internally based on the bus voltage Vbs.
- the load devices 71 DC loads
- the second converter 5 is a load
- the second converter 5a also referred to as DC / DC converter 5a
- the second converter 5b also referred to as DC / DC converter 5b
- the second converter 5c corresponding to the load device 71c
- it is comprised by three (it is also called DC / DC converter 5c).
- the DC / DC converter 5a is controlled by the power management device 9 to convert the bus voltage Vbs into a load voltage VLa which is a DC voltage used by the load device 71a (DC voltage conversion).
- Supply to The DC / DC converter 5a also has a current limiting function of limiting the load current supplied from the DC bus 2 to the load device 71a with the upper limit current value set from the power management unit 9.
- the DC / DC converters 5b and 5c are controlled by the power management device 9, respectively, and the bus voltage Vbs is a load voltage which is a DC voltage used by the corresponding load devices 71b and 71c. The voltage is converted into each of VLb and VLc (DC voltage conversion), and is supplied to the load devices 71b and 71c. Further, the DC / DC converters 5b and 5c have a current limiting function of limiting the load current supplied from the DC bus 2 to the load devices 71b and 71c with the upper limit current value set from the power management unit 9. .
- the load devices 71a, 71b, 71c are DC loads that operate by receiving the load voltages VLa, VLb, VLc (hereinafter, also referred to as load voltage VL unless otherwise specified), which are DC voltages.
- the load devices 71a and 71b include lighting devices operating with direct current voltage, household appliances such as a television and a refrigerator operating with direct current voltage, and information devices such as a personal computer and a portable terminal operating with direct current voltage.
- the load device 71c is configured by a pumping pump (an electric pump constituting a part of the power generation device 3c) for pumped storage power generation that operates with a direct current voltage.
- the load device 71 c is configured to be on / off controllable by the power management device 9.
- the load device 71 c is not limited to the pumping pump for the pumped storage power generation, and various devices (for example, direct current) may be used as long as the power management device 9 can control ON / OFF thereof. It is possible to set it as the cooling device etc. which cool the inside of the building in which the power supply device 6 was arrange
- DC power supply device 6 includes a DC power supply device 6 1, 6 2, ⁇ ⁇ ⁇ , n-number of 6 n (n is an integer of 2 or more. Or less, particularly when no distinction is also referred to as a DC power supply device 6) is disposed There is.
- Each DC power supply device 6 is configured to include a storage battery 11, a battery management unit (BMU (Battery Management Unit)) 12, a contactor 13 and a bidirectional DC / DC converter 14, respectively.
- the storage batteries 11 1 , 11 2 ,..., 11 n (hereinafter, also referred to as the storage battery 11 when not distinguished in particular) are formed of lithium ion batteries as an example, but are not limited thereto.
- Each storage battery 11 has a prescribed power capacity (nominal capacity), and is configured to be capable of charge operation and discharge operation within a predetermined working voltage range including a nominal voltage.
- one of the storage batteries 11 (in the example, the storage battery 11 1 in the example) is also used for supplying power to the DC bus 2, the BMU 12 of each of the DC power supply devices 6 1 to 6 n
- the battery mainly functions as a storage battery for supplying power (operation voltage Vop) for the operation of the contactor 13 and the power management apparatus 9. Therefore, the storage battery 11 1, corresponding bidirectional DC / DC converter 14 1 is in the operating state, and through the contactor 13 1 in the coupled state are connected to a bidirectional DC / DC converter 14 1 In the operating state, charge and discharge control is performed by power management device 9 such that charge voltage Vba is less than the upper limit value of the working voltage range and equal to or higher than the voltage threshold (predetermined voltage value) exceeding the lower limit value. .
- each storage battery 11 1, 11 2 corresponding, ..., are respectively disposed 11 n, later Operate with the operating voltage Vop.
- each BMU 12 measures the charge voltage Vba of the storage battery 11 as an example, and calculates the SOC (State of charge) by measuring the current value of the charge / discharge current of the storage battery 11 in the operating state. And the function of outputting information including the measured charging voltage Vba, the current value of the charging / discharging current, and the calculated SOC to the power management apparatus 9 as battery information.
- the BMU 12 executes the control contents indicated by the contactor control information to the contactor 13 (when the control content is a cutoff instruction, the contactor 13 shifts to the cutoff state).
- the control content is a connection instruction
- the contactor 13 is also brought into a connected state.
- Contactor 13 1, 13 2, ..., 13 n (hereinafter, when not particularly distinguished, also referred to as contactor 13), the corresponding storage battery 11 1, 11 2, ..., and positive and negative 11 n, corresponding .., 14 n are disposed between the storage batteries 11 1 , 11 2 ,..., 11 n on the side of the storage batteries 11 1 , 14 2 ,. Operate with the operating voltage Vop.
- Each contactor 13 is controlled by the corresponding BMU 12 to shift to any one of the blocking state and the coupling state, and in the blocking state, the positive electrode and the negative electrode, and the pair of input / output terminals Are cut off (disconnected), and in the connected state, the positive electrode and the negative electrode are connected to the pair of input / output terminals.
- the bi-directional DC / DC converters 14 1 , 14 2 ,..., 14 n are a pair of input / output of the storage battery 11 side as described above.
- the terminals (one pair of input / output terminals) are connected to the storage battery 11 via the contactor 13 and the other pair of input / output terminals are connected to the DC bus 2 so that the storage battery 11 and the DC bus 2 It is connected (arranged) between.
- the bidirectional DC / DC converter 14 performs CV operation (constant voltage charging / discharging operation) with a DC voltage generated internally based on the bus voltage Vbs, and is operation controlled by the power management device 9.
- bi-directional DC / DC converter 14 boosts or reduces (voltage conversion) bus voltage Vbs input from the other pair of input / output terminals. Then, the direct current constant current is supplied to the storage battery 11 for charging by performing output to the storage battery 11 from one pair of input / output terminals (charging operation is performed). Thereby, the bus voltage Vbs of the DC bus 2 is lowered.
- bidirectional DC / DC converter 14 boosts or lowers (converts voltage) the charging voltage Vba of storage battery 11 input from one pair of input / output terminals to set the other pair.
- the storage battery 11 is discharged with a DC constant current by performing output to the DC bus 2 from the input / output terminal of (a discharge operation is performed).
- the bus voltage Vbs of the DC bus 2 is raised.
- the bi-directional DC / DC converter 14 can be configured by, for example, a known bi-directional DC / DC converter disclosed in JP-A-2016-152641.
- the bidirectional DC / DC converter 14 also has a current limiting function of limiting each current value of the charging current supplied to the storage battery 11 and the discharge current discharged from the storage battery 11 to the maximum current value or less of the storage battery 11.
- the third converter 7 is configured of a DC / DC converter (hereinafter, also referred to as a DC / DC converter 7). Further, DC / DC converter 7, the positive electrode and the negative electrode thereof a pair of input terminals of the storage battery 11 1 of the DC power supply device 61, and is connected without passing through the contactor 13 1, the charging voltage Vba of the battery 11 1 Operate. In addition, DC / DC converter 7 boosts or lowers (converts voltage) the charging voltage Vba of storage battery 11 in the operating state, so that BMU 12 and contactor 13 of each DC power supply device 6 and power management device 9 The operation voltage Vop to be used is generated and output.
- a DC / DC converter hereinafter, also referred to as a DC / DC converter 7
- DC / DC converter 7 boosts or lowers (converts voltage) the charging voltage Vba of storage battery 11 in the operating state, so that BMU 12 and contactor 13 of each DC power supply device 6 and power management device 9
- the power management device 9 is configured by a computer operating at the operation voltage Vop and functions as a control unit. Further, the power management device 9 is a power generation log (a past log in which the weather condition when the power generation device 3b operates and the generated power at that time are associated) Drg1 for the power generation device 3b using natural regenerated energy Acquisition processing for acquiring load logs (the respective past logs in which the weather conditions when the load devices 71a, 71b operate and the load power at each time are associated with each other) for the load devices 71a, 71b (Hereafter, it is also referred to as first acquisition processing to distinguish).
- load logs the respective past logs in which the weather conditions when the load devices 71a, 71b operate and the load power at each time are associated with each other
- the power management apparatus 9 defines in advance an acquisition process (hereinafter, also referred to as a second acquisition process to distinguish) for acquiring weather prediction information Dwf for an area (area) including the installation place of the power generation device 3b. Execute at acquisition time.
- the acquisition time is defined as the time of arrival at a predetermined cycle T (one hour in this example) defined in advance, such as 1:00, 2:00,. Therefore, in the present example, the power management apparatus 9 executes the second acquisition process at a cycle T (for example, at an hour interval).
- the power management apparatus 9 includes a communication apparatus connectable to a network such as the Internet or a local area network, executes the first acquisition processing, and generates the above power generation log Drg1 and load log from an external server via the network.
- Drg2 is acquired and stored, and the second acquisition processing is executed to acquire and store the above-described weather prediction information Dwf from the weather data distribution site via the network.
- the weather forecast information Dwf is, for example, weather forecast data for one day starting from a cycle T arriving after the current cycle T (that is, the latest weather forecast data for one day starting from the next cycle T)
- Information that can predict the amount of solar radiation to the power generation device 3b for example, information indicating whether it is daytime or nighttime (is it a solar radiation period), and information indicating weather such as sunny, cloudy, or rain And the like, and together with the predicted amount of solar radiation, includes information (such as temperature) necessary to predict the power generated by the power generation device 3b. That is, the power management apparatus 9 acquires, at a cycle T, the weather prediction information Dwf including the latest information described above.
- the weather prediction information Dwf is configured to include information capable of predicting the amount of solar radiation, but the power generation device 3b is a wind power generation device.
- the weather prediction information Dwf is configured of information that can predict the power generated by the wind turbine generator, such as the wind volume (wind speed).
- the power management apparatus 9 executes an acquisition process (hereinafter also referred to as a third acquisition process to distinguish) for acquiring the chargeable electric power Wc of each storage battery 11 at a cycle T.
- the power management apparatus 9 acquires the latest chargeable power Wc for each storage battery 11 at a cycle T.
- the power management apparatus 9 executes charge power calculation processing, generated power prediction processing, load power prediction processing, and power comparison processing each time the weather prediction information Dwf and the chargeable power Wc are acquired (every cycle T).
- the power management device 9 calculates the scheduled charge power Wcp for each storage battery 11 in the cycle T that arrives next, based on the weather prediction information Dwf and the chargeable power Wc.
- the power management apparatus 9 first includes a solar radiation period (period from dawn to sunset) (daytime) included in the weather prediction information Dwf. It is detected whether the next period T is included in the solar radiation period based on the information on. Then, when the result of this detection is that the next cycle T is included in the solar radiation period, the power management apparatus 9 specifies a continuous period starting from the next cycle T and ending simultaneously with the end of the solar radiation period. Identified as a sunshine period.
- the power management apparatus 9 determines how many cycles T are included in the specific sunshine period (the number of specific sunshine periods is m (m is a positive integer)). Calculate that consists of T).
- the power management unit 9, the storage battery 11 1, 11 2, ..., chargeable power Wc 1, Wc 2 of 11 n, ..., by dividing each Wc n in this number m, the specific Scheduled charge powers Wcp 1 , Wcp 2 ,..., Wcp n for charging the storage batteries 11 1 , 11 2 ,..., 11 n in each cycle T (including the next cycle T) included in the sunshine period Calculate chargeable power Wc 1 / m, Wc 2 / m, ..., Wc n / m).
- chargeable power Wc 1, Wc 2, ⁇ for the Wc n, in particular, also referred to as a rechargeable electric power Wc when no distinction, planned charging power Wcp 1, Wcp 2, ⁇ , will also Wcp n, particularly distinguished Also referred to as scheduled charging power Wcp when not.
- the reason why the chargeable power Wc is dispersed in each cycle T included in the specific sunshine period in this manner is that the storage batteries 11 are completely filled at the end of the specific sunshine period as compared with the case where they are not dispersed. It is because the possibility that the current value of the charging current to the storage battery 11 can be made lower than the maximum current value can be increased while transitioning to the charging state.
- the SOCs of the respective storage batteries 111, 112, ..., 11n at the start of the specific sunshine period may differ depending on the storage battery 11 according to the respective charge / discharge states, whereby the rated capacities of the respective storage batteries 11 are the same. Even in this case, the chargeable powers Wc1, Wc2,..., Wcn may be different for each of the batteries 111, 112,.
- each chargeable power Wc is distributed to the same m periods T in a common specific sunshine period (divided into m), and the planned charge power Wcp (the planned charge power Wcp is the chargeable power Wc).
- the planned charge power Wcp is the chargeable power Wc.
- the scheduled charging power Wcp for each cycle T in the sunshine period has a substantially constant value for each storage battery 11.
- the planned charging power Wcp remains constant at 2 kW until the last period T of the sunshine period.
- the storage battery 11 is of a specification capable of charging 5 kWh in one hour at the maximum current value, for example, a total of 16 kWh of electric power can be stored in the storage battery 11 every one hour such as 5 kWh, 5 kWh, 5 kWh, 1 kWh.
- the charging current of the storage battery 11 can be suppressed to less than the maximum current value as compared to the case of charging (in this case, the battery will be fully charged in the first 4 hours of the daylight hours 8h). ing.
- the power management device 9 detects that the above-described next period T is included in the solar radiation period when the power generation device 3a is in the stopped state, the result is not included in the solar radiation period. Since there is no specific sunshine period of (ie, the specific sunshine period is zero), the planned charging power Wcp in the next cycle T is calculated as zero.
- the power management device 9 A period starting from T and ending simultaneously with the end of this fixed period is specified as a specific charging period (continuous period). Further, the power management apparatus 9 calculates how many cycles T are included in the specific charge period (the specific charge period is composed of m periods T).
- the power management device 9 adds the known generated power Wgap in the cycle T of the power generation device 3a to the above-mentioned predicted generated power Wgf (generated power Let Wgap and Wgbp be the predicted generated power Wgf in the generated power prediction process.
- the power management apparatus 9 calculates the predicted load powers Wlfa and Wlfb for the load devices 71a and 71b in the next cycle T, the load log Drg2 for the load devices 71a and 71b, and the weather prediction information Calculated based on Dwf.
- the power management apparatus 9 sums the predicted load power Wlf at each load device 71a, 71b (Wlfa + Wlfb) and the scheduled charge power Wcp at each storage battery 11 (Wcp 1 + Wcp 2 +. ⁇ Calculate the total power Wsm of + Wcp n ) and compare the calculated predicted generated power Wgf with the total power Wsm to obtain a comparison result (determine the magnitude relationship between the predicted generated power Wgf and the total power Wsm) . Further, in the power comparison process, the power management apparatus 9 compares the sum of the predicted load power Wlf and the predicted generated power Wgf to obtain the comparison result (size of predicted load power Wlf and predicted generated power Wgf Determine the relationship).
- the power management device 9 executes charge / discharge control processing for each DC power supply device 6 and load device control processing for each load device 71 from the beginning of the arriving cycle T.
- the power management device 9 also executes a voltage measurement process of measuring the bus voltage Vbs.
- the power management apparatus 9 can adopt a configuration in which the bus voltage Vbs is directly measured.
- the first converter 4 at least one of the power conditioners 4a, 4b, 4c
- a configuration in which the power management apparatus 9 indirectly measures the bus voltage Vbs via the first converter 4 may be employed so as to have a function of measuring the voltage Vbs and outputting the same to the power management apparatus 9.
- the charging voltage Vba is less than the upper limit of the voltage range, and more voltage threshold It shall be charged beforehand so that it may become. Also, each contactor 13 is initially in the disconnected state.
- the power conditioner 4 a operates by receiving the supply of the AC voltage V 1, converts the AC voltage V 1 into the bus voltage Vbs, and supplies the bus voltage V bs to the DC bus 2. Therefore, the bus voltage Vbs of the DC bus 2 rises within a predetermined voltage range (voltage range of DC 350 V or more and DC 400 V or less).
- the power generation device 3b automatically generates power and outputs the DC voltage V2.
- the power conditioner 4b operates by receiving the supply of the DC voltage V2, converts the DC voltage V2 into the bus voltage Vbs, and supplies the bus voltage Vbs to the DC bus 2.
- the generated power Wgap capable of sufficiently charging the storage battery 11 while supplying the necessary load power to the load device 71 in each cycle T included in the fixed period as the power generation device 3a. Therefore, during the power generation operation of the power generation device 3b, the power allocated to the charge of the storage battery 11 becomes too large.
- the bidirectional DC / DC converter 14 of this example is configured to perform the CV operation, the charging current to the storage battery 11 will be too large, and the deterioration of the storage battery 11 will be accelerated.
- the power management device 9 detects that the power generation device 3a is in operation based on the state signal output from the power generation device 3a, the above-mentioned surplus power (in addition, the power generation device 3b
- the load device control process is executed to cause the load device 71c to consume the generated power generated when the power generation operation is started, thereby reducing the power allocated to the charge of the storage battery 11.
- DC power supply system 1 DC / DC converter 7 from the storage battery 11 1 and is supplied with a charging voltage Vba is operated day and night, and BMU12 and contactor 13 of each DC power supply device 6, the power management apparatus 9 The operation voltage Vop is output (supplied) at the same time. Therefore, the BMU 12 and the contactor 13 of each DC power supply 6 and the power management unit 9 are in operation. Therefore, BMUs 12 1 to 12 n of DC power supply devices 6 1 to 6 n in the operating state periodically charge voltage Vba etc. for corresponding storage batteries 11 1 to 11 n (for example, a cycle shorter than cycle T) Or at the same cycle as cycle T) and output to the power management unit 9 as battery information.
- the power management apparatus 9 in the operating state executes, for example, the first acquisition process once at the time of the first activation of the DC power feeding system 1 to acquire and store the power generation log Drg1 and the load log Drg2.
- the configuration of the DC power feeding system 1 does not change, and the weather condition at the installation site does not change significantly.
- the power generation log Drg1 and the load log Drg2 acquired in the first acquisition processing executed only once at the time of startup can be used continuously even after the second year.
- the configuration for acquiring the power generation log Drg1 and the load log Drg2 is not limited to this configuration, and for example, a predetermined period such as several weeks, several months, or a year may be (1) Acquisition processing may be executed and acquired.
- the power management apparatus 9 defines the processing contents in the charge / discharge control processing and the load device control processing for each cycle T based on the information obtained in the immediately preceding cycle T, while the charge / discharge control processing and the load device Start an operation to execute control processing. Further, the power management apparatus 9 acquires information to acquire the above information for defining the contents of each process in the charge / discharge control process and the load device control process executed in the next coming cycle T (the next cycle T). The process is executed every cycle T.
- the power management apparatus 9 performs a second acquisition process of acquiring weather forecast information Dwf, a third acquisition process of acquiring chargeable power Wc for each storage battery 11, and the acquired chargeable power Wc.
- Generated power prediction processing for calculating predicted generated power Wgf of the entire power generation devices 3a and 3b based on charge power calculation processing for calculating scheduled charging power Wcp for each storage battery 11, acquired weather forecast information Dwf, power generation log Drg1, etc.
- a running power comparison process for obtaining a result of comparison between the predicted power generation WGF, acquires information for specifying the processing content in executing the next cycle T charge and discharge control process and the load device control.
- This information includes the cycle T in the solar radiation period together with the planned charging power Wcp in the incoming cycle T, the predicted generated power Wgf in the cycle T, and the predicted load power Wlf in the cycle T described above.
- the generated power Wgap of the power generation device 3a is included in the predicted generated power Wgf. Therefore, for information indicating the comparison result of the predicted generated power Wgf and the total power Wsm, The comparison shows that the predicted generated power Wgf is larger than the total power Wsm.
- the processing contents in the charge / discharge control processing and the load device control processing are divided into the following four processing contents from the first processing contents to the fourth processing contents based on the respective information acquired in the immediately preceding cycle T ((4) See Figure 2).
- the first processing content among them is the processing content when the comparison result of the predicted generated power Wgf and the total power Wsm is the comparison result that the predicted generated power Wgf is larger than the total power Wsm
- the second processing content Is the processing content when the comparison result between the predicted generated power Wgf and the total power Wsm is the comparison result that the predicted generated power Wgf matches the total power Wsm
- the third processing content is the total with the predicted generated power Wgf
- the comparison result with the power Wsm is a comparison result that the predicted generated power Wgf is smaller than the total power Wsm
- the comparison result between the predicted load power Wlf and the predicted generated power Wgf is a predicted generated power Wgf
- the power allocated to charging the storage battery 11 becomes too large (beyond the planned charging power Wcp), which causes the bi-directional DC / DC converter 14 to perform CV operation.
- the charging current becomes too large, which may accelerate the deterioration of the storage battery 11.
- the first process content is to charge the bi-directional DC / DC converter 14 by supplying the scheduled charging power Wcp to the corresponding storage battery 11 for charging. It is processing content.
- power management device 9 charges voltage Vba of each storage battery 11 included in the battery information acquired from BMU 12 of each DC power supply device 6 in the third acquisition process (for each storage battery 11 included in the battery information While specifying DC power supply device 6 having rechargeable storage battery 11 (storage battery 11 whose charge voltage Vba has not reached the upper limit value of the working voltage range) based on SOC, identified DC power supply device 6
- the contact control information indicating the connection instruction to the BMU 12 is output from the beginning to the end of the current cycle T, and the charge instruction to the bidirectional DC / DC converter 14 of the DC power supply 6 (scheduled charging power Wcp Control information indicating an instruction to average the battery over the entire cycle T and charge the storage battery 11 is output.
- the first processing content is a load voltage VLa, which is used by the corresponding load devices 71a and 71b for each DC / DC converter 5a and 5b.
- the processing content is to cause the load devices 71a and 71b to supply the predicted load powers Wlfa and Wlfb while converting and outputting the bus voltage Vbs so as to be VLb.
- the DC / DC converter 5c is further processed in the load device control process.
- the second process content is to charge the bi-directional DC / DC converter 14 by supplying the scheduled charge power Wcp to the corresponding storage battery 11 for charging. It is processing content. Further, in the load device control process, the bus voltage Vbs is converted and output to the DC / DC converters 5a and 5b so that the load voltages VLa and VLb used by the corresponding load devices 71a and 71b are obtained.
- the processing content is that the load devices 71a and 71b are supplied with the predicted load powers Wlfa and Wlfb. Further, since no surplus power is generated in the predicted generated power Wgf, in the load device control process, the operation of converting the bus voltage Vbs and outputting the load voltage VLc to the DC / DC converter 5c is stopped and The processing content is to cause the load device 71c to maintain the stopped state.
- the predicted generated power Wgf is larger than the total of the predicted load power Wlf
- the predicted load power Wlfa, Wlfb can be supplied to the load devices 71a, 71b. Since the generated power Wgf is smaller than the total power Wsm, when the predicted load powers Wlfa and Wlfb are supplied to the load devices 71a and 71b, the charging power that can be supplied to each storage battery 11 is smaller than the scheduled charging power Wcp. Therefore, as shown in FIG. 2, in the load device control process, the third process content is the load voltage VLa, which is used by the corresponding load devices 71a and 71b for each DC / DC converter 5a and 5b.
- the operation of converting the bus voltage Vbs and outputting the load voltage VLc to the DC / DC converter 5c is stopped, and the stopped state is maintained for the load device 71c.
- Processing content is, for example, evenly dividing and charging each storage battery 11 of the difference power of the sum of.
- the predicted generated power Wgf is less than or equal to the total of the predicted load power Wlf, so when trying to supply the predicted load power Wlfa, Wlfb to the load devices 71a, 71b, There is no electric power that can be used to charge the storage battery 11, and when the predicted generated power Wgf is less than the total of the predicted load power Wlf, it is necessary to discharge the storage batteries 11 in reverse. Therefore, as shown in FIG. 2, in the load device control process, the fourth processing content is the load voltage VLa, which is used by the corresponding load devices 71a and 71b for each DC / DC converter 5a and 5b.
- the processing content is to cause the load devices 71a and 71b to supply the predicted load powers Wlfa and Wlfb while converting and outputting the bus voltage Vbs so as to be VLb. Further, since the predicted generated power Wgf is equal to or less than the total of the predicted load power Wlf, there is no surplus power for charging each storage battery 11 or operating the load device 71c. Therefore, the DC / DC converter 5c is processed to stop the operation of converting the bus voltage Vbs and outputting the load voltage VLc and causing the load device 71c to maintain the stopped state.
- the processing content is to divide and discharge.
- the power management apparatus 9 determines the charge voltage Vba of each storage battery 11 included in the battery information acquired from the BMU 12 of each DC power supply 6 in the third acquisition process (for each storage battery 11 included in the battery information While specifying the DC power supply device 6 having the rechargeable storage battery 11 (the storage battery 11 in which the charging voltage Vba has not reached the lower limit value of the working voltage range) based on the SOC, Output contact control information indicating a connection instruction to the BMU 12 from the beginning to the end of the current cycle T, and a discharge instruction to the bi-directional DC / DC converter 14 of the DC power supply 6 (scheduled charging power Wcp Control information indicating an instruction to average and discharge the storage battery 11 over the entire cycle T is output.
- the power management apparatus 9 executes the charge / discharge control process and the load device control process with the first control content described above.
- the surplus power (surplus power generated in the predicted generated power Wgf) in each period T in a fixed period during which the power generation device 3a is operating refers to the surplus power generated mainly in the generated power Wgap generated by the power generation device 3a.
- the load device control process is executed with the process of supplying Wgf ⁇ total power Wsm) to the load device 71c.
- the surplus power generated in the predicted generated power Wgf can be used for the operation of the load device 71c, it is possible to effectively utilize the generated power in the power generation device 3a.
- the power generation device 3b is also in the power generation state, it is possible to effectively utilize the power generated by the power generation device 3b without suppressing the power generation by the power generation device 3b.
- the power management device 9 executes the charge / discharge control process with the process content of charging each storage battery 11 with the respective scheduled charging power Wcp.
- each storage battery 11 identified as being chargeable is charged at each period T corresponding to the corresponding planned charging power Wcp, that is, charged using the entire area for a fixed period, and at the end of the fixed period It is almost fully charged.
- Power management device 9 determines whether or not charging voltage Vba included in the battery information output in a cycle T from BMU 12 of each DC power supply device 6 has reached the upper limit value of the operating voltage range (or included in the battery information). Of the DC power supply device 6 including the storage battery 11 when it is determined that the fully charged state has been detected while detecting whether the storage battery 11 has reached the full charge state).
- the contact control information indicating a shutoff instruction is output to the BMU 12, and the storage battery 11 is disconnected from the bidirectional DC / DC converter 14 by shifting the contactor 13 to the shutoff state. Thereby, overcharging of the storage battery 11 is prevented.
- the storage battery 11 1 the charging voltage Vba is always charged to be the upper limit vicinity of the voltage range.
- the pumping pump which is the load device 71c, is operated for a certain period, so that the working period of the pumping pump (that is, for a certain period) from the lower pond to the upper pond dam. It is in a state where water of a corresponding amount of water is pumped up (a state where power storage corresponding to the length of a certain period is performed).
- the power management apparatus 9 performs the second acquisition process, the third acquisition process, the charge power calculation process, the generated power prediction process, the load power, and the charge / discharge control process and the load device control process described above.
- prediction processing and power comparison processing planned charging power Wcp in coming cycle T Information on whether or not this cycle T is included in the solar radiation period together with the predicted generated power Wgf in this cycle T, and the predicted load power Wlf in this cycle T, comparison
- the power generation device 3a is operated only for a fixed period and stopped.
- the power management device 9 detects the stop of the power generation device 3a, and shifts to the operation based on the power generated by the power generation devices 3b and 3c.
- the power management apparatus 9 performs the second acquisition process, the third acquisition process, the charge power calculation process, the generated power prediction process, and the load power prediction performed in the immediately preceding cycle T. Processing and information obtained by execution of the power comparison processing (the scheduled charge power Wcp in the current cycle T, the predicted generated power Wgf in this cycle T, and the predicted load power Wlf in this cycle T, this cycle T In the information on whether the solar radiation period is included, the information indicating the comparison result of the predicted generated power Wgf and the total power Wsm, and the information indicating the comparison result of the sum of the predicted load power Wlf and the predicted generated power Wgf)
- the control content in the charge / discharge control processing and the load device control processing is defined based on the above, and the charge / discharge control processing and the load device control processing are executed with the prescribed control content. .
- Planned charging power Wcp (total of) every day (every hour in this example) in the daytime (sunshine hour) and the period (nighttime) before and after that in one day, predicted generated power Wgf and predicted load power Wlf
- Wcp total of every day (every hour in this example) in the daytime (sunshine hour) and the period (nighttime) before and after that in one day
- predicted generated power Wgf and predicted load power Wlf For example, it is assumed that (sum of Wlfa and Wlfb) is calculated and predicted by the power management apparatus 9 as shown in FIG.
- the power management apparatus 9 may The predicted generated power Wgf becomes less than the total power Wsm at 16 o'clock and 17 o'clock, and the predicted generated power Wgf coincides with the total power Wsm at 9 o'clock and the predicted generated power at 10 o'clock to 15 o'clock When Wgf exceeds the total power Wsm, prediction is made in a time (period T) immediately before each time (period T).
- the power management apparatus 9 makes the predicted generated power Wgf equal to or less than the predicted load power Wlf at night, for example, at 7 o'clock and 17 o'clock (for example, 7) On a hourly basis, if the predicted generated power Wgf exceeds the predicted load power Wlf from 8:00 to 16:00, the predicted generated power Wgf matches the predicted load power Wlf), and the prediction is made in the cycle T immediately before each cycle T Do.
- the power management apparatus 9 predicts the estimated generated power Wgf to be less than the total electric power Wsm and predicts the estimated generated power Wgf at the 7 o'clock and 17 o'clock stages at the 6 o'clock and 16 o'clock stages. It is predicted that the load power Wlf will be less than or equal to (the predicted generated power Wgf coincides with the predicted load power Wlf for 7 o'clock), and based on the predicted information, the fourth mentioned above for this 7 o'clock and 17 o'clock Execute charge / discharge control processing and load device control processing according to the processing content.
- power management device 9 applies load voltages VLa and VLb used by corresponding load devices 71a and 71b to DC / DC converters 5a and 5b.
- the predicted load powers Wlfa and Wlfb are supplied as they are to the load devices 71a and 71b while the bus voltage Vbs is converted and output as they become (the same actual load power as the predicted load powers Wlfa and Wlfb (hereinafter referred to as actual load power Wlfa , Wlfb))).
- the power management apparatus 9 causes the DC / DC converter 5 c to stop the operation of converting the bus voltage Vbs and outputting the load voltage VLc, and causes the load device 71 c to maintain the stopped state. Execute control.
- the power management apparatus 9 determines the charge voltage Vba of each storage battery 11 included in the battery information acquired from the BMU 12 of each DC power supply 6 in the third acquisition process (for each storage battery 11 included in the battery information While specifying the DC power supply device 6 having the rechargeable storage battery 11 (the storage battery 11 in which the charging voltage Vba has not reached the lower limit value of the working voltage range) based on the SOC,
- the contact control information indicating the connection instruction is output to the BMU 12 and the control information indicating the discharge instruction is output to the bidirectional DC / DC converter 14 of the DC power supply device 6 (discharge operation is performed).
- the power management device 9 can execute the control for the power generation device 3c to perform the power generation operation.
- the predicted generated power Wgf becomes less than the total electric power Wsm and the predicted generated power Wgf is about the 8 o'clock and 16 o'clock coming next. It is predicted that the predicted load power W1f will be exceeded, and based on the predicted information, the charge / discharge control process and the load device control process according to the third process described above are executed at 8 o'clock and 16 o'clock.
- power management device 9 applies load voltages VLa and VLb used by corresponding load devices 71a and 71b to DC / DC converters 5a and 5b. Control is performed to supply the predicted load powers Wlfa and Wlfb to the load devices 71a and 71b as they are (to supply the actual load powers Wlfa and Wlfb) while converting the bus voltage Vbs so as to be output. Further, the power management apparatus 9 causes the DC / DC converter 5 c to stop the operation of converting the bus voltage Vbs and outputting the load voltage VLc, and causes the load device 71 c to maintain the stopped state. Execute control.
- the power management device 9 outputs contact control information indicating a connection instruction to the BMU 12 of the DC power supply 6 identified as having the rechargeable storage battery 11, and the DC power supply 6.
- the bidirectional DC / DC converter 14 By outputting control information indicating a charging instruction to the bidirectional DC / DC converter 14, the storage battery 11 of the DC power supply device 6 is charged (a charging operation is performed).
- the power management apparatus 9 predicts that the predicted generated power Wgf matches the total power Wsm at the next 9 o'clock, and based on the predicted information, the 9 o'clock In the above, the charge / discharge control process and the load device control process with the second process content described above are executed.
- power management device 9 applies load voltages VLa and VLb used by corresponding load devices 71a and 71b to DC / DC converters 5a and 5b. Control is performed to supply the predicted load powers Wlfa and Wlfb to the load devices 71a and 71b as they are (to supply the actual load powers Wlfa and Wlfb) while converting the bus voltage Vbs so as to be output. Further, the power management apparatus 9 causes the DC / DC converter 5 c to stop the operation of converting the bus voltage Vbs and outputting the load voltage VLc, and causes the load device 71 c to maintain the stopped state. Execute control.
- power management device 9 executes control similar to that in the charge / discharge control processing in the above-described third processing content to DC power supply 6, and charges planned charge power Wcp as it is. (The same actual charging power as the scheduled charging power Wcp (hereinafter, also referred to as the actual charging power Wcp) is charged).
- the power management apparatus 9 predicts that the predicted generated power Wgf will be larger than the total power Wsm in the next 10 o'clock to 15 o'clock range. Based on the predicted information, the charge / discharge control process and the load device control process in the first process described above are executed in the 10 to 15 o'clock range.
- power management device 9 applies load voltages VLa and VLb used by corresponding load devices 71a and 71b to DC / DC converters 5a and 5b. Control is performed to supply the predicted load powers Wlfa and Wlfb to the load devices 71a and 71b as they are (to supply the actual load powers Wlfa and Wlfb) while converting the bus voltage Vbs so as to be output. Further, the power management apparatus 9 executes control on the load device 71c in the stopped state to shift the load device 71c to the operating state, and the above-mentioned surplus power in the load device 71c with respect to the DC / DC converter 5c.
- the power management apparatus 9 executes the same control as that of the charge and discharge control process in the third process content described above on the DC power supply device 6. It becomes possible to charge the actual charging power Wcp having the same power value as the scheduled charging power Wcp. Therefore, the charging current of each storage battery 11 can be suppressed to less than the maximum current value.
- the power management apparatus 9 supplies each storage battery 11 with the same actual charging power Wcp as the corresponding planned charging power Wcp in a period in which the predicted generated power Wgf in the solar radiation period becomes larger than the total power Wsm.
- the generated power Wgbp of the power generation device 3b is effectively used to the storage batteries 11 While increasing the possibility that the current value of the charging current can be lowered as much as possible, the storage batteries 11 are almost fully charged using almost the entire sunshine period.
- the power management apparatus 9 executes the second acquisition process, the third acquisition process, the charge power calculation process, the generated power prediction process, the load power prediction process, and the power comparison process described above at each time (period T).
- Information for defining control contents in charge / discharge control processing and load device control processing to be executed in next coming cycle T (planned charging power Wcp in coming cycle T, predicted generated power Wgf in this cycle T Together with predicted load power Wlf at this cycle T, information on whether or not this cycle T is included in the solar radiation period, information indicating the comparison result of predicted generated power Wgf and total power Wsm, and predicted load power Wlf Information indicating the comparison result of the sum of the above and the predicted generated power Wgf).
- power management device 9 supplies power to bi-directional DC / DC converter 14 from direct current bus 2 to corresponding storage battery 11 for the same actual charging power Wcp as planned charging power Wcp.
- the charge / discharge control process of charging the storage battery 11 by supplying it is executed, and the same actual load power Wlfa, Wlfb as the predicted load power Wlfa, Wlfb is applied to the corresponding load devices 71a, 71b for each DC / DC converter 5a, 5b.
- the surplus power (the difference power between the predicted generated power Wgf and the total power Wsm) generated in the predicted generated power Wgf when the predicted generated power Wgf is larger than the total power Wsm is Can be supplied to the load device 71c in the stopped state and operated, so that the generated power in the power generation device 3b can be effectively used without suppressing the power generation in the power generation device 3b.
- the power supplied to each storage battery 11 can be reduced to the same as the planned charging power Wcp, so that the power allocated to charging the storage battery 11 becomes too large (that is, the charging current is at or near the maximum current value). It can be avoided that the current value becomes large), thereby avoiding the occurrence of a situation where the deterioration of the storage battery 11 is accelerated. Thereby, deterioration of the storage battery 11 can be delayed.
- the pumping equipment of the power generation device 3c as the pumping type hydroelectric power generation device configured to be able to supply power to the DC bus 2 is used as the load equipment 71c. Since it is possible to cause the power generation device 3c to perform the storage operation with the generated surplus power, the power generation device 3c is caused to perform the power generation operation even when the power generated by the power generation device 3b or the discharge power from the storage battery 11 is insufficient. As a result, it is possible to supply power to the DC bus 2 and to continue supply of the predicted load powers Wlfa and Wlfb to the load devices 71a and 71b.
- the acquisition time for acquiring the weather prediction information Dwf and the like arrives at a constant period T
- the present invention is not limited to this configuration, and a configuration that arrives at different time intervals (For example, it may be configured to arrive at a short time interval in a time zone in which the power generation device 3b using natural regenerative energy operates, and to arrive at a longer time interval in a time zone in which the power generation device 3b stops operation) .
- the DC power supply system 1 described above operates on the basis of the charging power of the storage battery 11 1, BMU12, contactors 13, and a configuration including the DC / DC converter 7 supplies an operating voltage Vop to the power management apparatus 9
- the bus voltage Vbs of the DC bus 2 is sufficiently set within a predetermined voltage range (voltage range of 350 V or more and 400 V or less of DC) by the DC power supply 6 after the power generation device 3b stops power generation and resumes power generation.
- BMU 12 and contactor 13 are configured such that the capacity of each storage battery 11 is sufficiently large and charging voltage Vba does not fall below the lower limit of the working voltage range.
- the power management device 9 operates with the charging voltage Vba of at least one of the storage batteries 11 and operates the charging voltage Vba of the corresponding storage battery 11. It can be omitted.
- the present invention can be widely applied to a stand-alone DC power supply system having a natural energy power generation device because the present invention can be effectively used without suppressing power generation in the natural energy power generation device.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
The present invention addresses the problem of effectively utilizing power generation in a natural energy power generation device without suppressing the power generation. Each time rechargeable electric power Wc and weather forecast information Dwf are acquired, a power management device 9 calculates, for the next cycle, an expected recharging electric power Wcp for a storage battery 11, a predicted generated electric power Wgf in a power generation device 3b, and predicted load electric powers Wlfa, Wlfb in load devices 71a, 71b, and compares the electric power sum Wsm of the electric powers Wlfa, Wlfb, Wcp with the predicted generated electric power Wgf. When it is determined that the predicted generated electric power Wgf is greater than the electric power sum Wsm, the power management device 9 operates a bidirectional DC/DC converter 14 in the current cycle to supply the storage battery 11 with electric power equal to the expected recharging electric power Wcp, and operates DC/DC converters 5a, 5b in the current cycle to supply the load devices 71a, 71b with electric power equal to the predicted load electric powers Wlfa, Wlfb, and supply a load device 71c in a stopped state with electric power equal to the difference between the predicted generated electric power Wgf and the electric power sum Wsm.
Description
本発明は、商用電源に接続されない独立型の直流給電システムに関するものである。
The present invention relates to a stand-alone DC power supply system not connected to a commercial power supply.
この種の直流給電システムとして、下記の特許文献1に開示された直流給電システムが知られている。この直流給電システムは、自然エネルギー発電装置と、調整用負荷を有すると共に自然エネルギー発電装置からの発電電力により動作する負荷装置と、自然エネルギー発電装置および負荷装置に接続されて充放電を行う蓄電池を有する蓄電装置とを備える独立型電力供給システムであって、この独立型電力供給システムは、気象予測データを用いて負荷装置の需要予測データおよび自然エネルギー発電装置の発電出力予測データを計算し、需要予測データおよび発電出力予測データにより、蓄電池の最大充電電力を超えて蓄電池に充電されることが予測される場合には自然エネルギー発電装置からの発電出力を抑制する。
As a direct current feed system of this type, a direct current feed system disclosed in Patent Document 1 below is known. The DC power feeding system includes a natural energy power generation device, a load device having a regulation load and operating with generated power from the natural energy power generation device, and a storage battery connected to the natural energy power generation device and the load device to perform charging and discharging. A stand-alone power supply system including a power storage device, wherein the stand-alone power supply system calculates demand forecast data of a load device and generation output forecast data of a natural energy power plant using the weather forecast data, and the demand When it is predicted by the prediction data and the power generation output prediction data that the storage battery is charged beyond the maximum charging power of the storage battery, the power generation output from the natural energy power generation device is suppressed.
この独立型電力供給システムによれば、需要予測データおよび発電出力予測データにより、蓄電池の最大充電電力を超えて蓄電池に充電されることが予測される場合には太陽光発電装置からの発電出力を抑制するようにしたので、蓄電池の最大充電電力を超えないように制御することが可能となっている。
According to this independent power supply system, when it is predicted that the storage battery is charged by exceeding the maximum charge power of the storage battery by the demand forecast data and the power generation output forecast data, the power generation output from the solar power generation apparatus is Since the control is performed, it is possible to control so as not to exceed the maximum charging power of the storage battery.
しかしながら、上記した従来の直流給電システムでは、蓄電池の最大充電電力を超えて蓄電池に充電されることが予測される場合には、自然エネルギー発電装置からの発電出力を抑制する構成のため、この直流給電システムには、自然エネルギー発電装置において本来発電し得る発電電力のうちの抑制された電力分が無駄になっているという解決すべき課題が存在している。
However, in the above-described conventional direct current feeding system, when it is predicted that the storage battery is charged beyond the maximum charging power of the storage battery, the direct current supply system is configured to suppress the power generation output from the natural energy power generation apparatus. In the feed system, there is a problem to be solved that the suppressed power of the generated power that can be originally generated in the natural energy power generation apparatus is wasted.
本発明は、上記課題に鑑みてなされたものであり、自然エネルギー発電装置での発電を抑制することなく有効に活用し得る直流給電システムを提供することを目的とする。
This invention is made in view of the said subject, and an object of this invention is to provide the direct current | flow electric power feeding system which can be effectively utilized, without suppressing the electric power generation in a natural energy electric power generating apparatus.
上記目的を達成すべく、本発明に係る直流給電システムでは、直流給電の母線となる直流バスと、自然エネルギーに基づいて発電する発電装置と、前記発電装置の発電電力を前記直流バスに供給する第1コンバータと、蓄電池と、前記蓄電池と前記直流バスとの間に接続されて、当該直流バスに供給されている前記発電電力と当該蓄電池の充電電力とを双方向に電力変換して、当該直流バスから当該蓄電池へ、または当該蓄電池から当該直流バスへ電力供給する双方向コンバータと、前記直流バスに供給されている前記発電電力および前記充電電力のうちの少なくとも一方の直流電力を電圧変換して負荷機器に供給する第2コンバータと、前記発電装置が動作したときの気象状況および発電電力を含む発電ログ、並びに前記負荷機器が動作したときの気象状況および負荷電力を含む負荷ログを取得すると共に、前記蓄電池の充電可能電力および気象予測情報を予め規定された取得時間に順次取得する制御部とを備え、前記制御部は、前記充電可能電力および前記気象予測情報を取得する都度、次に到来する前記取得時間までの期間における前記蓄電池に対する予定充電電力を前記充電可能電力および前記気象予測情報に基づいて算出する充電電力算出処理、前記期間における前記発電装置での予測発電電力を前記発電ログおよび前記気象予測情報に基づいて算出する発電電力予測処理、前記期間における前記負荷機器での予測負荷電力を前記負荷ログおよび前記気象予測情報に基づいて算出する負荷電力予測処理、並びに前記予測負荷電力および前記予定充電電力の合計電力と前記予測発電電力とを比較する電力比較処理を実行し、前記電力比較処理において前記予測発電電力が前記合計電力よりも大きいと判定したときには、前記期間において、前記双方向コンバータに対して前記蓄電池へ前記予定充電電力分を電力供給させる充放電制御処理と、前記第2コンバータに対して、前記負荷機器のうちの前記予測負荷電力を算出した負荷機器へ当該予測負荷電力分を電力供給させると共に、前記負荷機器のうちの停止状態の負荷機器へ前記予測発電電力と前記合計電力との差分電力分を電力供給させる負荷機器制御処理を実行する。
In order to achieve the above object, in the direct current feed system according to the present invention, a direct current bus serving as a bus bar for direct current feed, a power generating device generating power based on natural energy, and the generated power of the power generating device is supplied to the DC bus. It is connected between the first converter, the storage battery, the storage battery, and the DC bus, and the generated power supplied to the DC bus and the charging power of the storage battery are bi-directionally converted to power, Bi-directional converter for supplying power from the DC bus to the storage battery or from the storage battery to the DC bus, and voltage converting DC power of at least one of the generated power and the charging power supplied to the DC bus A second converter for supplying the load equipment, a power generation log including a weather condition and generated power when the power generation apparatus is operated, and the load equipment is operated Control unit which acquires a load log including the current weather condition and load power, and sequentially acquires the chargeable power of the storage battery and the weather prediction information at a predetermined acquisition time, the control unit Charge power calculation processing for calculating, based on the chargeable power and the weather forecast information, scheduled charge power for the storage battery in a period until the acquisition time that arrives next, each time the chargeable power and the weather forecast information are acquired; Generated power prediction processing for calculating predicted power generation of the power generation apparatus in the period based on the power generation log and the weather prediction information; predicted load power on the load device in the period is the load log and the weather prediction information Load power prediction processing calculated based on the total power of the predicted load power and the planned charging power and The electric power comparison process of comparing with the predicted generated power is executed, and when it is determined in the electric power comparison process that the predicted generated power is larger than the total power, the storage battery is sent to the storage battery with respect to the bidirectional converter in the period. Charging / discharging control processing for supplying power for scheduled charging power; and supplying the predicted load power to the load device for which the predicted load power of the load devices has been calculated by the second converter, A load device control process is performed to supply the difference power between the predicted generated power and the total power to the load device in a stopped state among the load devices.
本発明によれば、予測発電電力が合計電力よりも大きいときに、予測発電電力に生じる余剰電力(予測発電電力と合計電力との差分電力)を、通常は停止状態にある負荷機器に供給して動作させるため、自然エネルギーに基づいて発電する発電装置での発電を抑制することなく、この発電装置での発電電力を有効に活用することができる。
According to the present invention, when the predicted generated power is larger than the total power, surplus power (difference power between the predicted generated power and the total power) generated in the predicted generated power is supplied to the load device which is normally in a stopped state. Because the power generation apparatus operates based on natural energy, the power generated by the power generation apparatus can be effectively used without suppressing the power generation of the power generation apparatus.
本発明によれば、自然エネルギー発電装置での発電を抑制することなく有効に活用することができる。
ADVANTAGE OF THE INVENTION According to this invention, it can utilize effectively, without suppressing the electric power generation in a natural energy electric power generating apparatus.
以下、直流給電システムの実施の形態について、添付図面を参照して説明する。なお、直流給電システムは以下の実施形態に限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれると共に、その構成要素は、適宜組み合わせることが可能である。
Hereinafter, an embodiment of a direct current feed system will be described with reference to the attached drawings. The direct current feed system is not limited to the following embodiments. Further, the components described below include those which can be easily conceived by those skilled in the art, and substantially the same components, and the components can be appropriately combined.
最初に、直流給電システムとしての直流給電システム1の構成について説明する。
First, the configuration of the direct current feed system 1 as a direct current feed system will be described.
直流給電システム1は、直流バス2、1または2以上の発電装置3(本例では一例として3つの発電装置3a,3b,3c。以下、区別しないときには「発電装置3」ともいう)、発電装置3に対応して配設された第1コンバータ4(本例では一例として後述する3つのパワーコンディショナ4a,4b,4c)、直流給電システム1に接続される1または2以上の負荷機器71(本例では一例として3つの負荷機器71a,71b,71c。以下、区別しないときには「負荷機器71」ともいう)に対応して配設された第2コンバータ5(本例では一例として後述する3つの第2コンバータ5a,5b,5c。以下、区別しないときには「第2コンバータ5」ともいう)、複数の直流電源装置6(直流電源装置61,62,・・・,6n)、第3コンバータ7、および電力管理装置9を備え、発電装置3で発電された電力に基づいて直流電圧を生成して、負荷機器71に供給可能な独立型の直流給電システム(商用電源(商用交流電源)に接続されない直流給電システム)として構成されている。
The DC power supply system 1 includes a DC bus 2 and one or more power generation devices 3 (in this example, three power generation devices 3a, 3b, 3c as an example, hereinafter referred to as "power generation device 3" when not distinguished) The first converter 4 (three power conditioners 4a, 4b and 4c described later as an example in this example) disposed corresponding to the three, and one or more load devices 71 (one or more load devices connected to the DC feeding system 1) In this example, three load devices 71a, 71b, 71c as an example (hereinafter also referred to as "load device 71" when not distinguished), a second converter 5 (in this example, three examples described later as an example) second converter 5a, 5b, 5c. hereinafter, when no distinction is also referred to as "second converter 5"), a plurality of direct-current power supply 6 (DC power supply units 61 and 62 2, ..., 6 ), Third converter 7, and includes a power management apparatus 9 generates a DC voltage based on the power generated by the power generator 3, a stand-alone can be supplied to the load device 71 DC power supply system (commercial power supply ( It is configured as a DC power supply system not connected to a commercial AC power supply).
直流バス2は、発電装置3の設置場所、各直流電源装置6の設置場所および負荷機器71の設置場所に亘って敷設されて、直流給電の母線として機能する。また、直流バス2は、複数の直流電源装置6内の後述する双方向DC/DCコンバータ14の充放電動作が電力管理装置9によって制御されることにより、公称バス電圧を含む予め規定された電圧範囲内(例えば、公称バス電圧としてのDC370Vを含むDC350V以上DC400V以下の電圧範囲内)にバス電圧Vbsが規定される。
The DC bus 2 is laid over the installation place of the power generation device 3, the installation place of each DC power supply 6, and the installation place of the load device 71, and functions as a bus bar of DC power supply. Further, DC bus 2 has a predetermined voltage including a nominal bus voltage as a result of control of charge / discharge operation of bidirectional DC / DC converter 14 in a plurality of DC power supply devices 6 described later by power management device 9. The bus voltage Vbs is defined within a range (for example, within a voltage range of DC 350 V or more and DC 400 V or less including DC 370 V as a nominal bus voltage).
発電装置3は、分散型電源装置で構成されている。この場合、分散型電源装置は、太陽光発電装置、風力発電装置および水力発電装置などの自然再生エネルギーを利用した発電装置や、軽油およびガソリンなどの化石エネルギーを利用したエンジン方式の発電装置で構成することが可能である。本例では、理解の容易のため、一例として、エンジン方式の1つの発電装置3aと、自然再生エネルギーを利用した発電装置3b,3cとで構成されている。
The power generation device 3 is configured of a distributed power supply device. In this case, the distributed power supply unit is configured of a power generation unit using natural renewable energy such as a solar power generation unit, a wind power generation unit, or a hydroelectric generation unit, or an engine type power generation unit using fossil energy such as light oil and gasoline. It is possible. In this example, for easy understanding, as one example, it is configured by one engine type power generation device 3a and power generation devices 3b and 3c using natural regenerated energy.
発電装置3aは、オペレータによる操作(手動)によって起動・停止が行われて、動作状態において、所定の電圧値の交流電圧V1を生成して出力する。また、電力管理装置9により起動・停止を制御することもできる。また、発電装置3aは、直流給電システム1の最初の起動時や、直流給電システム1の長期停止後の再起動時などのときのように、複数の直流電源装置6に含まれている後述の蓄電池11に対する充電のために多くの充電電力が一時的に必要なときに予め規定された一定期間だけ動作させられる。このため、本例では一例として、発電装置3aは、この一定期間に含まれる後述の各周期Tにおいて、負荷機器71(本例では一例として、負荷機器71a,71bの2つ)に対して必要な負荷電力を供給しつつ、蓄電池11を十分に充電可能な電力(予め規定された既知の発電電力Wgap)を発電可能に構成されているものとする。また、例えば、発電装置3aが動作状態において動作中を示す状態信号を電力管理装置9に出力するなどの構成を採用することにより、電力管理装置9は、発電装置3aの動作・停止を検出可能に構成されている。
The power generation device 3a is started and stopped by an operation (manually) by the operator, and generates and outputs an AC voltage V1 of a predetermined voltage value in an operation state. The power management apparatus 9 can also control start / stop. In addition, the power generation device 3a is included in the plurality of DC power supply devices 6, such as at the time of the first startup of the DC power supply system 1, and at the time of restart after the DC power supply system 1 stops for a long time. When a large amount of charging power is temporarily required to charge the storage battery 11, the storage battery 11 is operated only for a predetermined period. Therefore, as an example in the present embodiment, the power generation device 3a is required for the load device 71 (two in the present embodiment, as an example, the load devices 71a and 71b) in each cycle T described later included in the fixed period. It is assumed that it is possible to generate sufficient power (predetermined known generated power Wgap) capable of charging the storage battery 11 while supplying various load powers. Further, for example, by adopting a configuration such as outputting to the power management device 9 a state signal indicating that the power generation device 3a is in operation in the operating state, the power management device 9 can detect the operation / stop of the power generation device 3a. Is configured.
また、発電装置3bは、一例として太陽光発電装置で構成されて、昼間には、日照状態に応じて変化する発電電力Wgbp(各周期Tでの発電電力)を自動的に発電して、直流電圧V2bを生成して出力する。また、発電装置3cは、一例として揚水式水力発電装置で構成されて、電力管理装置9によって制御されることにより、蓄電動作、発電動作および動作停止のうちの1つの動作を実行する。この場合、発電装置3cは、蓄電動作では、後述する負荷機器71cとしての揚水ポンプが動作させられることにより、下池から上池ダムへ水を汲み上げる動作を実行し、また発電動作では、上池ダムから下池へ水を落下させて発電機を動作させることにより、直流電圧V2cを生成して出力する。
In addition, the power generation device 3b is configured of a solar power generation device as an example, and automatically generates generated power Wgbp (generated power in each cycle T) that changes according to the sunshine condition in the daytime, and direct current The voltage V2b is generated and output. In addition, the power generation device 3c is configured of a pumped storage hydroelectric power generation device as one example, and is controlled by the power management device 9 to execute one of the storage operation, the power generation operation, and the operation stop. In this case, in the storage operation, the power generation device 3c performs an operation of pumping water from the lower pond to the upper pond dam by operating a pumping pump as a load device 71c described later, and in the power generation operation, the upper pond dam The water is dropped from the lower reservoir to the lower reservoir and the generator is operated to generate and output a DC voltage V2c.
第1コンバータ4は、本例では2つの発電装置3a,3b,3cに対応して配設された3つのパワーコンディショナ4a,4b,4cで構成されている。本例では一例として、パワーコンディショナ4aは、AC/DCコンバータを含んで構成されて、発電装置3aに対応して配設されている。また、パワーコンディショナ4aは、交流電圧V1に基づいて内部で生成した直流電圧で動作すると共に、電力管理装置9によって制御されて、発電装置3aから出力される発電電力としての交流電圧V1をバス電圧Vbsに変換して、直流バス2に供給する。
The first converter 4 is composed of three power conditioners 4a, 4b, 4c arranged corresponding to the two power generation devices 3a, 3b, 3c in this example. In the present embodiment, as an example, power conditioner 4a is configured to include an AC / DC converter, and is disposed corresponding to power generation device 3a. The power conditioner 4a operates with the DC voltage internally generated based on the AC voltage V1, and is controlled by the power management device 9 to generate the AC voltage V1 as the generated power output from the power generation device 3a as a bus. The voltage is converted into a voltage Vbs and supplied to the DC bus 2.
パワーコンディショナ4b,4cは、一例としてDC/DCコンバータを含んで構成されて、発電装置3b,3cに対応して配設されている。また、パワーコンディショナ4bは、直流電圧V2bに基づいて内部で生成した直流電圧で動作すると共に、電力管理装置9によって制御されて、対応する発電装置3bの発電動作を制御することで発電電力を制御可能に構成されると共に、発電装置3bから出力される発電電力としての直流電圧V2bをバス電圧Vbsに変換して、直流バス2に供給する。また、パワーコンディショナ4cは、直流電圧V2cに基づいて内部で生成した直流電圧で動作すると共に、発電装置3cから出力される発電電力としての直流電圧V2cをバス電圧Vbsに変換して、直流バス2に供給する。
Power conditioners 4b and 4c are configured to include, for example, a DC / DC converter, and are arranged corresponding to power generation devices 3b and 3c. The power conditioner 4b operates with the DC voltage generated internally based on the DC voltage V2b, and is controlled by the power management device 9 to control the power generation operation of the corresponding power generation device 3b to generate generated power. While being configured to be controllable, the DC voltage V2b as the generated power output from the power generation device 3b is converted into the bus voltage Vbs and supplied to the DC bus 2. Further, the power conditioner 4c operates with the DC voltage internally generated based on the DC voltage V2c, converts the DC voltage V2c as the generated power output from the power generation device 3c into the bus voltage Vbs, Supply to 2.
第2コンバータ5は、例えば、バス電圧Vbsに基づいて内部で生成した直流電圧で動作するDC/DCコンバータで構成されている。本例では、理解の容易のため、一例として、直流給電システム1に接続される負荷機器71(直流負荷)は負荷機器71a,71b,71cの3つであるとして、第2コンバータ5は、負荷機器71aに対応する第2コンバータ5a(DC/DCコンバータ5aともいう)と、負荷機器71bに対応する第2コンバータ5b(DC/DCコンバータ5bともいう)、負荷機器71cに対応する第2コンバータ5c(DC/DCコンバータ5cともいう)の3つで構成されているものとする。この場合、DC/DCコンバータ5aは、電力管理装置9によって制御されて、バス電圧Vbsを負荷機器71aで使用される直流電圧である負荷電圧VLaに変換(直流電圧変換)して、負荷機器71aに供給する。また、DC/DCコンバータ5aは、直流バス2から負荷機器71aに供給される負荷電流について、電力管理装置9から設定された上限電流値で制限する電流制限機能を有している。
The second converter 5 is configured of, for example, a DC / DC converter that operates with a DC voltage generated internally based on the bus voltage Vbs. In this example, for easy understanding, it is assumed that the load devices 71 (DC loads) connected to the DC power feeding system 1 are three load devices 71a, 71b and 71c, and the second converter 5 is a load The second converter 5a (also referred to as DC / DC converter 5a) corresponding to the device 71a, the second converter 5b (also referred to as DC / DC converter 5b) corresponding to the load device 71b, and the second converter 5c corresponding to the load device 71c Suppose that it is comprised by three (it is also called DC / DC converter 5c). In this case, the DC / DC converter 5a is controlled by the power management device 9 to convert the bus voltage Vbs into a load voltage VLa which is a DC voltage used by the load device 71a (DC voltage conversion). Supply to The DC / DC converter 5a also has a current limiting function of limiting the load current supplied from the DC bus 2 to the load device 71a with the upper limit current value set from the power management unit 9.
DC/DCコンバータ5b,5cは、DC/DCコンバータ5aと同様に、電力管理装置9によってそれぞれ制御されて、バス電圧Vbsを、対応する負荷機器71b,71cで使用される直流電圧である負荷電圧VLb,VLcにそれぞれ変換(直流電圧変換)して、負荷機器71b,71cに供給する。また、DC/DCコンバータ5b,5cは、直流バス2から負荷機器71b,71cに供給される負荷電流について、電力管理装置9から設定された上限電流値で制限する電流制限機能を有している。
Similar to the DC / DC converter 5a, the DC / DC converters 5b and 5c are controlled by the power management device 9, respectively, and the bus voltage Vbs is a load voltage which is a DC voltage used by the corresponding load devices 71b and 71c. The voltage is converted into each of VLb and VLc (DC voltage conversion), and is supplied to the load devices 71b and 71c. Further, the DC / DC converters 5b and 5c have a current limiting function of limiting the load current supplied from the DC bus 2 to the load devices 71b and 71c with the upper limit current value set from the power management unit 9. .
なお、負荷機器71a,71b,71cは、直流電圧である負荷電圧VLa,VLb,VLc(以下、特に区別しないときには、負荷電圧VLともいう)の供給を受けて動作する直流負荷であって、例えば、負荷機器71a,71bは、直流電圧で動作する照明機器、直流電圧で動作するテレビおよび冷蔵庫などの家電製品、並びに直流電圧で動作するパソコンや携帯端末などの情報機器などで構成されている。また、負荷機器71cは、直流電圧で動作する揚水発電用の揚水ポンプ(発電装置3cの一部を構成する電動式ポンプ)で構成されている。また、負荷機器71cは、そのオン・オフが電力管理装置9によって制御可能に構成されている。なお、負荷機器71cは、揚水発電用の揚水ポンプに限定されるものではなく、そのオン・オフが電力管理装置9によって制御可能に構成されている機器であれば、種々の機器(例えば、直流電源装置6が配設された建物内を冷却する冷却装置など)とすることが可能である。
The load devices 71a, 71b, 71c are DC loads that operate by receiving the load voltages VLa, VLb, VLc (hereinafter, also referred to as load voltage VL unless otherwise specified), which are DC voltages, The load devices 71a and 71b include lighting devices operating with direct current voltage, household appliances such as a television and a refrigerator operating with direct current voltage, and information devices such as a personal computer and a portable terminal operating with direct current voltage. In addition, the load device 71c is configured by a pumping pump (an electric pump constituting a part of the power generation device 3c) for pumped storage power generation that operates with a direct current voltage. In addition, the load device 71 c is configured to be on / off controllable by the power management device 9. The load device 71 c is not limited to the pumping pump for the pumped storage power generation, and various devices (for example, direct current) may be used as long as the power management device 9 can control ON / OFF thereof. It is possible to set it as the cooling device etc. which cool the inside of the building in which the power supply device 6 was arrange | positioned.
直流電源装置6は、直流電源装置61,62,・・・,6nのn個(nは2以上の整数。以下、特に区別しないときには、直流電源装置6ともいう)配設されている。各直流電源装置6は、蓄電池11、電池管理装置(BMU(Battery Management Unit ))12、コンタクタ13および双方向DC/DCコンバータ14をそれぞれ備えて構成されている。蓄電池111,112,・・・,11n(以下、特に区別しないときには、蓄電池11ともいう)は、一例としてリチウムイオン電池で構成されているが、これに限定されず、鉛蓄電池、ニッケル水素電池およびNAS電池(ナトリウム硫黄電池)などで構成することもできる。また、各蓄電池11は、規定の電力容量(公称容量)をそれぞれ有して、公称電圧を含む所定の使用電圧範囲内で、充電動作および放電動作が可能に構成されている。
DC power supply device 6 includes a DC power supply device 6 1, 6 2, · · ·, n-number of 6 n (n is an integer of 2 or more. Or less, particularly when no distinction is also referred to as a DC power supply device 6) is disposed There is. Each DC power supply device 6 is configured to include a storage battery 11, a battery management unit (BMU (Battery Management Unit)) 12, a contactor 13 and a bidirectional DC / DC converter 14, respectively. The storage batteries 11 1 , 11 2 ,..., 11 n (hereinafter, also referred to as the storage battery 11 when not distinguished in particular) are formed of lithium ion batteries as an example, but are not limited thereto. It can also be configured with a hydrogen battery and a NAS battery (sodium-sulfur battery). Each storage battery 11 has a prescribed power capacity (nominal capacity), and is configured to be capable of charge operation and discharge operation within a predetermined working voltage range including a nominal voltage.
また、蓄電池11のうちの1つ(一例として本例では、蓄電池111)は、直流バス2への電力の供給のためにも使用されるものの、各直流電源装置61~6nのBMU12およびコンタクタ13と、電力管理装置9との動作のための電力(動作用電圧Vop)の供給を行う蓄電池として主として機能する。このため、この蓄電池111は、対応する双方向DC/DCコンバータ141が動作状態にあり、かつ連結状態にあるコンタクタ131を介してこの双方向DC/DCコンバータ141と接続されている動作状態において、その充電電圧Vbaがその使用電圧範囲の上限値未満で、かつ下限値を上回る電圧閾値(予め規定された電圧値)以上となるように、電力管理装置9によって充放電制御される。
Further, although one of the storage batteries 11 (in the example, the storage battery 11 1 in the example) is also used for supplying power to the DC bus 2, the BMU 12 of each of the DC power supply devices 6 1 to 6 n The battery mainly functions as a storage battery for supplying power (operation voltage Vop) for the operation of the contactor 13 and the power management apparatus 9. Therefore, the storage battery 11 1, corresponding bidirectional DC / DC converter 14 1 is in the operating state, and through the contactor 13 1 in the coupled state are connected to a bidirectional DC / DC converter 14 1 In the operating state, charge and discharge control is performed by power management device 9 such that charge voltage Vba is less than the upper limit value of the working voltage range and equal to or higher than the voltage threshold (predetermined voltage value) exceeding the lower limit value. .
BMU121,122,・・・,12n(以下、特に区別しないときには、BMU12ともいう)は、対応する各蓄電池111,112,・・・,11nにそれぞれ配設されて、後述する動作用電圧Vopで動作する。また、各BMU12は、動作状態において、一例として蓄電池11の充電電圧Vbaを計測する機能と、蓄電池11の充放電電流の電流値を計測してSOC(State of charge :残容量)を演算する機能と、計測した充電電圧Vbaや充放電電流の電流値や算出したSOCを含む情報を電池情報として電力管理装置9に出力する機能とを有している。また、BMU12は、電力管理装置9からコンタクタ制御情報を入力したときには、このコンタクタ制御情報で示される制御内容をコンタクタ13に対して実行する(制御内容が遮断指示のときにはコンタクタ13を遮断状態に移行させ、制御内容が連結指示のときにはコンタクタ13を連結状態に移行させる)機能も有している。
BMU12 1, 12 2, ···, 12 n ( hereinafter, especially when no distinction is also referred to as BMU12), each storage battery 11 1, 11 2 corresponding, ..., are respectively disposed 11 n, later Operate with the operating voltage Vop. In addition, each BMU 12 measures the charge voltage Vba of the storage battery 11 as an example, and calculates the SOC (State of charge) by measuring the current value of the charge / discharge current of the storage battery 11 in the operating state. And the function of outputting information including the measured charging voltage Vba, the current value of the charging / discharging current, and the calculated SOC to the power management apparatus 9 as battery information. Further, when the BMU 12 receives the contactor control information from the power management apparatus 9, the BMU 12 executes the control contents indicated by the contactor control information to the contactor 13 (when the control content is a cutoff instruction, the contactor 13 shifts to the cutoff state). When the control content is a connection instruction, the contactor 13 is also brought into a connected state.
コンタクタ131,132,・・・,13n(以下、特に区別しないときには、コンタクタ13ともいう)は、対応する蓄電池111,112,・・・,11nの正極および負極と、対応する双方向DC/DCコンバータ141,142,・・・,14nにおける蓄電池111,112,・・・,11n側の一対の入出力端子との間に配設されて、後述する動作用電圧Vopで動作する。また、各コンタクタ13は、対応するBMU12によって制御されて、遮断状態および連結状態のうちの任意の一方の状態に移行し、遮断状態のときには、この正極および負極と、この一対の入出力端子とを遮断し(切り離し)、連結状態のときには、この正極および負極と、この一対の入出力端子とを連結する。
Contactor 13 1, 13 2, ..., 13 n (hereinafter, when not particularly distinguished, also referred to as contactor 13), the corresponding storage battery 11 1, 11 2, ..., and positive and negative 11 n, corresponding .., 14 n are disposed between the storage batteries 11 1 , 11 2 ,..., 11 n on the side of the storage batteries 11 1 , 14 2 ,. Operate with the operating voltage Vop. Each contactor 13 is controlled by the corresponding BMU 12 to shift to any one of the blocking state and the coupling state, and in the blocking state, the positive electrode and the negative electrode, and the pair of input / output terminals Are cut off (disconnected), and in the connected state, the positive electrode and the negative electrode are connected to the pair of input / output terminals.
双方向DC/DCコンバータ141,142,・・・,14n(以下、特に区別しないときには、双方向DC/DCコンバータ14ともいう)は、上記したように蓄電池11側の一対の入出力端子(一方の一対の入出力端子)がコンタクタ13を介して蓄電池11に接続されると共に、他方の一対の入出力端子が直流バス2に接続されることで、蓄電池11と直流バス2との間に接続(配設)されている。また、双方向DC/DCコンバータ14は、バス電圧Vbsに基づいて内部で生成した直流電圧でCV動作(定電圧充電・放電動作)すると共に、電力管理装置9によって動作制御される。具体的には、双方向DC/DCコンバータ14は、電力管理装置9から受信した制御情報が充電指示のときには、他方の一対の入出力端子から入力したバス電圧Vbsを昇圧または降圧(電圧変換)して一方の一対の入出力端子から蓄電池11に出力することにより、蓄電池11に直流定電流を供給して充電する(充電動作を実行する)。これにより、直流バス2のバス電圧Vbsが低下させられる。一方、双方向DC/DCコンバータ14は、受信した制御情報が放電指示のときには、一方の一対の入出力端子から入力した蓄電池11の充電電圧Vbaを昇圧または降圧(電圧変換)して他方の一対の入出力端子から直流バス2に出力することにより、蓄電池11を直流定電流で放電させる(放電動作を実行する)。これにより、直流バス2のバス電圧Vbsが上昇させられる。双方向DC/DCコンバータ14としては、例えば特開2016-152641号公報に開示の公知の双方向DC/DCコンバータで構成することができる。
The bi-directional DC / DC converters 14 1 , 14 2 ,..., 14 n (hereinafter also referred to as bi-directional DC / DC converter 14 when not particularly distinguished) are a pair of input / output of the storage battery 11 side as described above. The terminals (one pair of input / output terminals) are connected to the storage battery 11 via the contactor 13 and the other pair of input / output terminals are connected to the DC bus 2 so that the storage battery 11 and the DC bus 2 It is connected (arranged) between. In addition, the bidirectional DC / DC converter 14 performs CV operation (constant voltage charging / discharging operation) with a DC voltage generated internally based on the bus voltage Vbs, and is operation controlled by the power management device 9. Specifically, when the control information received from power management device 9 indicates a charge instruction, bi-directional DC / DC converter 14 boosts or reduces (voltage conversion) bus voltage Vbs input from the other pair of input / output terminals. Then, the direct current constant current is supplied to the storage battery 11 for charging by performing output to the storage battery 11 from one pair of input / output terminals (charging operation is performed). Thereby, the bus voltage Vbs of the DC bus 2 is lowered. On the other hand, when the received control information is a discharge instruction, bidirectional DC / DC converter 14 boosts or lowers (converts voltage) the charging voltage Vba of storage battery 11 input from one pair of input / output terminals to set the other pair. The storage battery 11 is discharged with a DC constant current by performing output to the DC bus 2 from the input / output terminal of (a discharge operation is performed). Thus, the bus voltage Vbs of the DC bus 2 is raised. The bi-directional DC / DC converter 14 can be configured by, for example, a known bi-directional DC / DC converter disclosed in JP-A-2016-152641.
また、双方向DC/DCコンバータ14は、蓄電池11に供給する充電電流および蓄電池11から放電する放電電流の各電流値を蓄電池11の最大電流値以下に制限する電流制限機能を有している。
The bidirectional DC / DC converter 14 also has a current limiting function of limiting each current value of the charging current supplied to the storage battery 11 and the discharge current discharged from the storage battery 11 to the maximum current value or less of the storage battery 11.
第3コンバータ7は、DC/DCコンバータで構成されている(以下、DC/DCコンバータ7ともいう)。また、DC/DCコンバータ7は、その一対の入力端子が直流電源装置61の蓄電池111における正極および負極に、コンタクタ131を介することなく接続されて、この蓄電池111の充電電圧Vbaで動作する。また、DC/DCコンバータ7は、動作状態において、この蓄電池11の充電電圧Vbaを昇圧または降圧(電圧変換)することにより、各直流電源装置6のBMU12およびコンタクタ13と、電力管理装置9とで使用される動作用電圧Vopを生成して出力する。
The third converter 7 is configured of a DC / DC converter (hereinafter, also referred to as a DC / DC converter 7). Further, DC / DC converter 7, the positive electrode and the negative electrode thereof a pair of input terminals of the storage battery 11 1 of the DC power supply device 61, and is connected without passing through the contactor 13 1, the charging voltage Vba of the battery 11 1 Operate. In addition, DC / DC converter 7 boosts or lowers (converts voltage) the charging voltage Vba of storage battery 11 in the operating state, so that BMU 12 and contactor 13 of each DC power supply device 6 and power management device 9 The operation voltage Vop to be used is generated and output.
電力管理装置9は、動作用電圧Vopで動作するコンピュータで構成されて、制御部として機能する。また、電力管理装置9は、自然再生エネルギーを利用した発電装置3bについての発電ログ(発電装置3bが動作したときの気象状況とそのときの発電電力とが対応付けられた過去ログ)Drg1と、各負荷機器71a,71bについての負荷ログ(負荷機器71a,71bが動作したときの気象状況とそのときのそれぞれでの負荷電力とが対応付けられたそれぞれの過去ログ)Drg2とを取得する取得処理(以下、区別するため、第1取得処理ともいう)を実行する。また、電力管理装置9は、発電装置3bの設置場所を含む領域(地域)についての気象予測情報Dwfを取得する取得処理(以下、区別するため、第2取得処理ともいう)を予め規定された取得時間に実行する。なお、本例では一例として、この取得時間は、1時、2時、・・・のように予め規定された一定の周期T(この例では1時間)で到来する時刻に規定されている。このため、本例では、電力管理装置9は、第2取得処理を周期T(例えば1時間間隔)で実行する。
The power management device 9 is configured by a computer operating at the operation voltage Vop and functions as a control unit. Further, the power management device 9 is a power generation log (a past log in which the weather condition when the power generation device 3b operates and the generated power at that time are associated) Drg1 for the power generation device 3b using natural regenerated energy Acquisition processing for acquiring load logs (the respective past logs in which the weather conditions when the load devices 71a, 71b operate and the load power at each time are associated with each other) for the load devices 71a, 71b (Hereafter, it is also referred to as first acquisition processing to distinguish). In addition, the power management apparatus 9 defines in advance an acquisition process (hereinafter, also referred to as a second acquisition process to distinguish) for acquiring weather prediction information Dwf for an area (area) including the installation place of the power generation device 3b. Execute at acquisition time. In this example, as an example, the acquisition time is defined as the time of arrival at a predetermined cycle T (one hour in this example) defined in advance, such as 1:00, 2:00,. Therefore, in the present example, the power management apparatus 9 executes the second acquisition process at a cycle T (for example, at an hour interval).
一例として、電力管理装置9は、インターネットやローカルエリアネットワークなどのネットワークに接続可能な通信装置を備え、第1取得処理を実行して、外部サーバからネットワークを介して上記の発電ログDrg1および負荷ログDrg2を取得して記憶すると共に、第2取得処理を実行して、気象データ配信サイトからネットワークを介して上記の気象予測情報Dwfを取得して記憶する。
As an example, the power management apparatus 9 includes a communication apparatus connectable to a network such as the Internet or a local area network, executes the first acquisition processing, and generates the above power generation log Drg1 and load log from an external server via the network. Drg2 is acquired and stored, and the second acquisition processing is executed to acquire and store the above-described weather prediction information Dwf from the weather data distribution site via the network.
この気象予測情報Dwfは、例えば、現在の周期Tの次に到来する周期Tを始期とする1日分の気象予報データ(つまり、この次の周期Tから始まる1日分の最新の気象予報データ)であって、発電装置3bに対する日射量を予測可能な情報(例えば、昼間となるか夜間となるか(日射期間となるか)を示す情報、および晴れや曇りや雨などの天候を示す情報など)が含まれると共に、この予測した日射量と併せて発電装置3bでの発電電力を予測するために必要な情報(気温など)が含まれているものとする。つまり、電力管理装置9は、最新の上記の情報を含む気象予測情報Dwfを周期Tで取得する。なお、本例では、発電装置3bが太陽光発電装置で構成されているため、気象予測情報Dwfが日射量を予測可能な情報を含んで構成されているが、発電装置3bが風力発電装置で構成されているときには、気象予測情報Dwfは風量(風速)などの風力発電装置での発電電力を予測可能な情報で構成される。
The weather forecast information Dwf is, for example, weather forecast data for one day starting from a cycle T arriving after the current cycle T (that is, the latest weather forecast data for one day starting from the next cycle T) Information that can predict the amount of solar radiation to the power generation device 3b (for example, information indicating whether it is daytime or nighttime (is it a solar radiation period), and information indicating weather such as sunny, cloudy, or rain And the like, and together with the predicted amount of solar radiation, includes information (such as temperature) necessary to predict the power generated by the power generation device 3b. That is, the power management apparatus 9 acquires, at a cycle T, the weather prediction information Dwf including the latest information described above. In this example, since the power generation device 3b is configured by a solar power generation device, the weather prediction information Dwf is configured to include information capable of predicting the amount of solar radiation, but the power generation device 3b is a wind power generation device. When configured, the weather prediction information Dwf is configured of information that can predict the power generated by the wind turbine generator, such as the wind volume (wind speed).
また、電力管理装置9は、各蓄電池11についての充電可能電力Wcを取得するための取得処理(以下、区別するため、第3取得処理ともいう)を周期Tで実行する。この第3取得処理では、電力管理装置9は、まず、各BMU12から出力されている電池情報を取得し、次いで、取得した電池情報に含まれる各蓄電池11のSOCと既知の各蓄電池11の定格容量とに基づいて、各蓄電池11についての充電可能電力Wc(=定格容量-SOC)を算出して取得する。このようにして電力管理装置9は、各蓄電池11についての最新の充電可能電力Wcを周期Tで取得する。
In addition, the power management apparatus 9 executes an acquisition process (hereinafter also referred to as a third acquisition process to distinguish) for acquiring the chargeable electric power Wc of each storage battery 11 at a cycle T. In the third acquisition process, the power management apparatus 9 first acquires the battery information output from each BMU 12, and then, the SOC of each storage battery 11 included in the acquired battery information and the rating of each known storage battery 11 Based on the capacity, the chargeable power Wc (= rated capacity-SOC) of each storage battery 11 is calculated and acquired. Thus, the power management apparatus 9 acquires the latest chargeable power Wc for each storage battery 11 at a cycle T.
また、電力管理装置9は、気象予測情報Dwfおよび充電可能電力Wcを取得する都度(周期T毎に)、充電電力算出処理、発電電力予測処理、負荷電力予測処理および電力比較処理を実行する。
The power management apparatus 9 executes charge power calculation processing, generated power prediction processing, load power prediction processing, and power comparison processing each time the weather prediction information Dwf and the chargeable power Wc are acquired (every cycle T).
この場合、充電電力算出処理では、電力管理装置9は、次に到来する周期Tにおける各蓄電池11に対する予定充電電力Wcpを、気象予測情報Dwfおよび充電可能電力Wcに基づいて算出する。
In this case, in the charge power calculation process, the power management device 9 calculates the scheduled charge power Wcp for each storage battery 11 in the cycle T that arrives next, based on the weather prediction information Dwf and the chargeable power Wc.
具体的には、電力管理装置9は、発電装置3aの停止状態での充電電力算出処理においては、まず、気象予測情報Dwfに含まれている日射期間(夜明けから日の入りまでの期間(昼間))についての情報に基づいて、次の周期Tが日射期間に含まれるか否かを検出する。次いで、この検出の結果が、次の周期Tが日射期間に含まれるとの結果のときには、電力管理装置9は、この次の周期Tから始まり、日射期間の終了と同時に終了する連続期間を特定日照期間として特定する。
Specifically, in the charging power calculation process in the stopped state of the power generation device 3a, the power management apparatus 9 first includes a solar radiation period (period from dawn to sunset) (daytime) included in the weather prediction information Dwf. It is detected whether the next period T is included in the solar radiation period based on the information on. Then, when the result of this detection is that the next cycle T is included in the solar radiation period, the power management apparatus 9 specifies a continuous period starting from the next cycle T and ending simultaneously with the end of the solar radiation period. Identified as a sunshine period.
また、このように特定日照期間を特定したときには、電力管理装置9は、この特定日照期間内に、周期Tが何周期含まれるか(特定日照期間がm個(mは正の整数)の周期Tからなること)を計算する。また、電力管理装置9は、各蓄電池111,112,・・・,11nの充電可能電力Wc1,Wc2,・・・,Wcnをこの個数mでそれぞれ除算することにより、特定日照期間に含まれる各周期T(次の周期Tを含む)において各蓄電池111,112,・・・,11nを充電する予定充電電力Wcp1,Wcp2,・・・,Wcpn(=充電可能電力Wc1/m,Wc2/m,・・・,Wcn/m)を算出する。以下、充電可能電力Wc1,Wc2,・・・,Wcnについて、特に区別しないときには充電可能電力Wcともいい、予定充電電力Wcp1,Wcp2,・・・,Wcpnについても、特に区別しないときには予定充電電力Wcpともいう。
Also, when the specific sunshine period is specified in this way, the power management apparatus 9 determines how many cycles T are included in the specific sunshine period (the number of specific sunshine periods is m (m is a positive integer)). Calculate that consists of T). The power management unit 9, the storage battery 11 1, 11 2, ..., chargeable power Wc 1, Wc 2 of 11 n, ..., by dividing each Wc n in this number m, the specific Scheduled charge powers Wcp 1 , Wcp 2 ,..., Wcp n for charging the storage batteries 11 1 , 11 2 ,..., 11 n in each cycle T (including the next cycle T) included in the sunshine period = Calculate chargeable power Wc 1 / m, Wc 2 / m, ..., Wc n / m). Below, chargeable power Wc 1, Wc 2, ···, for the Wc n, in particular, also referred to as a rechargeable electric power Wc when no distinction, planned charging power Wcp 1, Wcp 2, ···, will also Wcp n, particularly distinguished Also referred to as scheduled charging power Wcp when not.
このようにして充電可能電力Wcを特定日照期間に含まれる各周期Tに予定充電電力Wcpずつ分散させる理由は、分散させないときと比較して、各蓄電池11を特定日照期間の終期において丁度、満充電状態に移行させるようにしつつ、蓄電池11への充電電流の電流値を、最大電流値よりもできるだけ低くし得る可能性を高められるからである。特定日照期間の始期における各蓄電池111,112,・・・,11nのSOCはそれぞれの充放電状態に応じて蓄電池11毎に異なっている場合があり、これにより、各蓄電池11の定格容量が同一であっても、充電可能電力Wc1,Wc2,・・・,Wcnが電池111,112,・・・,11n毎に異なる場合がある。本例では、各充電可能電力Wcを共通の特定日照時間において同じm個の周期Tに分散させて(m個に分割して)、予定充電電力Wcp(予定充電電力Wcpは充電可能電力Wcに比例する)ずつ充電することで、SOCの異なることのある各蓄電池11を共通の特定日照時間で徐々に満充電状態に移行させる。
The reason why the chargeable power Wc is dispersed in each cycle T included in the specific sunshine period in this manner is that the storage batteries 11 are completely filled at the end of the specific sunshine period as compared with the case where they are not dispersed. It is because the possibility that the current value of the charging current to the storage battery 11 can be made lower than the maximum current value can be increased while transitioning to the charging state. The SOCs of the respective storage batteries 111, 112, ..., 11n at the start of the specific sunshine period may differ depending on the storage battery 11 according to the respective charge / discharge states, whereby the rated capacities of the respective storage batteries 11 are the same. Even in this case, the chargeable powers Wc1, Wc2,..., Wcn may be different for each of the batteries 111, 112,. In this example, each chargeable power Wc is distributed to the same m periods T in a common specific sunshine period (divided into m), and the planned charge power Wcp (the planned charge power Wcp is the chargeable power Wc). By proportionally charging, each storage battery 11 which may have a different SOC is gradually shifted to a fully charged state in a common specific sunshine period.
このため、日照時間が8hの場合、特定日照時間は8h,7h,・・・というように周期Tずつ(1時間ずつ)減少していくものの、1周期Tが経過する都度、各蓄電池11のSOCも予定充電電力Wcpずつ増加していくことから、日照時間における周期T毎の予定充電電力Wcpは、蓄電池11毎にほぼ一定の値になる。例えば、1つの蓄電池11の日照時間(一例として8h)開始当初の充電可能電力Wcが16kWhであった場合、最初の1周期T(1時間)での予定充電電力Wcpは、特定日照時間が8hであることから2kW(=16/8)となり、次の1周期T(1時間)での予定充電電力Wcpは、特定日照時間が7hとなるものの2kWh分だけ充電されたことから、2kW(=14/7)となり、その次の1周期T(1時間)での予定充電電力Wcpは、特定日照時間が6hとなるものの2kWh分だけさらに充電されたことから、2kW(=12/6)となる、というように、日照時間の最後の周期Tまで、予定充電電力Wcpは2kWのまま一定となる。
Therefore, when the sunshine duration is 8 h, although the specific sunshine duration decreases by one cycle T (one hour each) like 8 h, 7 h, ..., each time one cycle T elapses, Since the SOC also increases by the scheduled charging power Wcp, the scheduled charging power Wcp for each cycle T in the sunshine period has a substantially constant value for each storage battery 11. For example, when the chargeable power Wc at the start of the sunshine period (8 h as an example) of one storage battery 11 is 16 kWh, the scheduled charge power Wcp in the first one cycle T (1 hour) is the specific sunshine period 8 h Therefore, the planned charging power Wcp in the next one cycle T (one hour) is 2 kW (= 16/8), but the specific sunshine time is 7 h, but only 2 kWh is charged, so 2 kW (= 14/7), and the planned charging power Wcp in the next one cycle T (1 hour) is 2 kW (= 12/6) because it is further charged by 2 kWh although the specific sunshine time is 6 h. The planned charging power Wcp remains constant at 2 kW until the last period T of the sunshine period.
したがって、蓄電池11が例えば最大電流値で1時間に5kWhを充電し得る仕様のものであったとしても、5kWh,5kWh,5kWh,1kWhというように1時間ずつ、全部で16kWhの電力を蓄電池11に充電する場合(この場合、日照時間8hのうちの最初の4時間で満充電に充電されることになる)と比較して、蓄電池11の充電電流を最大電流値未満に抑えることが可能となっている。
Therefore, even if the storage battery 11 is of a specification capable of charging 5 kWh in one hour at the maximum current value, for example, a total of 16 kWh of electric power can be stored in the storage battery 11 every one hour such as 5 kWh, 5 kWh, 5 kWh, 1 kWh. The charging current of the storage battery 11 can be suppressed to less than the maximum current value as compared to the case of charging (in this case, the battery will be fully charged in the first 4 hours of the daylight hours 8h). ing.
また、電力管理装置9は、発電装置3aの停止状態において、上記した次の周期Tが日射期間に含まれるか否かの検出の結果が、日射期間に含まれないとの結果のときには、上記の特定日照期間は存在しないため(つまり特定日照期間はゼロとなるため)、次の周期Tでの予定充電電力Wcpはゼロと算出する。
In addition, when the power management device 9 detects that the above-described next period T is included in the solar radiation period when the power generation device 3a is in the stopped state, the result is not included in the solar radiation period. Since there is no specific sunshine period of (ie, the specific sunshine period is zero), the planned charging power Wcp in the next cycle T is calculated as zero.
一方、発電装置3aの動作状態における各周期T(つまり、発電装置3aを動作させる上記の一定期間に含まれる各周期T)での充電電力算出処理では、電力管理装置9は、この次の周期Tから始まり、この一定期間の終了と同時に終了する期間を特定充電期間(連続する期間)として特定する。また、電力管理装置9は、この特定充電期間内に、周期Tが何周期含まれるか(特定充電期間がm個の周期Tからなること)を計算する。また、電力管理装置9は、各蓄電池111,112,・・・,11nの充電可能電力Wc1,Wc2,・・・,Wcnをこの個数mでそれぞれ除算することにより、特定充電期間に含まれる各周期T(次の周期Tを含む)において各蓄電池111,112,・・・,11nを充電する予定充電電力Wcp1,Wcp2,・・・,Wcpn(=充電可能電力Wc1/m,Wc2/m,・・・,Wcn/m)を算出する。このようにして充電可能電力Wcを特定充電期間に含まれる各周期Tに予定充電電力Wcpずつ分散させる理由は、上記した発電装置3aの停止状態のときと同様に、分散させないときと比較して、各蓄電池11を特定充電期間の終期において丁度、満充電状態に移行させるようにしつつ、蓄電池11への充電電流の電流値を、最大電流値よりもできるだけ低くし得る可能性を高められるからである。
On the other hand, in the charge power calculation process in each cycle T (that is, each cycle T included in the above-described fixed period for operating the power generation device 3a) in the operation state of the power generation device 3a, the power management device 9 A period starting from T and ending simultaneously with the end of this fixed period is specified as a specific charging period (continuous period). Further, the power management apparatus 9 calculates how many cycles T are included in the specific charge period (the specific charge period is composed of m periods T). The power management unit 9, the storage battery 11 1, 11 2, ..., chargeable power Wc 1, Wc 2 of 11 n, ..., by dividing each Wc n in this number m, the specific Scheduled charging powers Wcp 1 , Wcp 2 ,..., Wcp n for charging the storage batteries 11 1 , 11 2 ,..., 11 n in each cycle T (including the next cycle T) included in the charging period = Calculate chargeable power Wc 1 / m, Wc 2 / m, ..., Wc n / m). The reason why the chargeable power Wc is dispersed in each period T included in the specific charge period in this manner is the same as in the stop state of the power generation device 3a described above, as compared with the time when it is not dispersed. Because it is possible to increase the possibility that the current value of the charging current to the storage battery 11 can be made lower than the maximum current value while making each storage battery 11 shift to the full charge state just at the end of the specific charging period. is there.
また、発電電力予測処理では、電力管理装置9は、上記した次の周期Tにおける発電装置3bでの予測発電電力Wgf(=発電電力Wgbp)を発電ログDrg1および気象予測情報Dwfに基づいて予測して算出する。この場合、上記の充電電力算出処理において、次の周期Tが日射期間に含まれるか否かを検出した結果が、日射期間に含まれないとの結果のとき、つまり、上記の特定日照期間が存在しないときには、予測発電電力Wgfはゼロと算出される。ただし、発電装置3aの動作状態での発電電力予測処理では、電力管理装置9は、発電装置3aの周期Tでの既知の発電電力Wgapを、上記の予測発電電力Wgfに加算した電力(発電電力Wgap,Wgbpの総和)を、発電電力予測処理での予測発電電力Wgfとするものとする。
Further, in the generated power prediction process, the power management device 9 predicts the predicted generated power Wgf (= generated power Wgbp) of the power generation device 3b in the next cycle T based on the power generation log Drg1 and the weather prediction information Dwf. Calculate. In this case, if the result of detecting whether the next cycle T is included in the solar radiation period in the above charging power calculation process is not included in the solar radiation period, that is, the above-mentioned specific sunshine period is If not present, the predicted generated power Wgf is calculated to be zero. However, in the generated power prediction process in the operating state of the power generation device 3a, the power management device 9 adds the known generated power Wgap in the cycle T of the power generation device 3a to the above-mentioned predicted generated power Wgf (generated power Let Wgap and Wgbp be the predicted generated power Wgf in the generated power prediction process.
また、負荷電力予測処理では、電力管理装置9は、次の周期Tにおける負荷機器71a,71bでの各予測負荷電力Wlfa,Wlfbを、負荷機器71a,71bについての各負荷ログDrg2および気象予測情報Dwfに基づいて算出する。
Further, in the load power prediction process, the power management apparatus 9 calculates the predicted load powers Wlfa and Wlfb for the load devices 71a and 71b in the next cycle T, the load log Drg2 for the load devices 71a and 71b, and the weather prediction information Calculated based on Dwf.
また、電力比較処理では、電力管理装置9は、各負荷機器71a,71bでの予測負荷電力Wlfの総和(Wlfa+Wlfb)と各蓄電池11での予定充電電力Wcpの総和(Wcp1+Wcp2+・・・+Wcpn)の合計電力Wsmを算出すると共に、算出した予測発電電力Wgfと合計電力Wsmとを比較して、比較結果を取得する(予測発電電力Wgfと合計電力Wsmの大小関係を判定する)。また、電力管理装置9は、この電力比較処理において、予測負荷電力Wlfの総和と予測発電電力Wgfとについても比較して、その比較結果を取得する(予測負荷電力Wlfと予測発電電力Wgfの大小関係を判定する)。
Further, in the power comparison process, the power management apparatus 9 sums the predicted load power Wlf at each load device 71a, 71b (Wlfa + Wlfb) and the scheduled charge power Wcp at each storage battery 11 (Wcp 1 + Wcp 2 +. · Calculate the total power Wsm of + Wcp n ) and compare the calculated predicted generated power Wgf with the total power Wsm to obtain a comparison result (determine the magnitude relationship between the predicted generated power Wgf and the total power Wsm) . Further, in the power comparison process, the power management apparatus 9 compares the sum of the predicted load power Wlf and the predicted generated power Wgf to obtain the comparison result (size of predicted load power Wlf and predicted generated power Wgf Determine the relationship).
また、電力管理装置9は、各直流電源装置6に対する充放電制御処理、および各負荷機器71に対する負荷機器制御処理を、到来した周期Tの始期から実行する。また、電力管理装置9は、バス電圧Vbsを計測する電圧計測処理を実行する。この場合、電力管理装置9は、バス電圧Vbsを直接的に計測する構成を採用することもできるし、例えば、第1コンバータ4(パワーコンディショナ4a,4b,4cのうちの少なくとも一方)がバス電圧Vbsを計測して電力管理装置9に出力する機能を有するようにして、電力管理装置9が第1コンバータ4を介してバス電圧Vbsを間接的に計測する構成を採用することもできる。
Further, the power management device 9 executes charge / discharge control processing for each DC power supply device 6 and load device control processing for each load device 71 from the beginning of the arriving cycle T. The power management device 9 also executes a voltage measurement process of measuring the bus voltage Vbs. In this case, the power management apparatus 9 can adopt a configuration in which the bus voltage Vbs is directly measured. For example, the first converter 4 (at least one of the power conditioners 4a, 4b, 4c) A configuration in which the power management apparatus 9 indirectly measures the bus voltage Vbs via the first converter 4 may be employed so as to have a function of measuring the voltage Vbs and outputting the same to the power management apparatus 9.
次に、直流給電システム1の動作について説明する。なお、蓄電池111については、電力管理装置9等の構成要素への電力供給に用いられるものであるため、上記したように、充電電圧Vbaが使用電圧範囲の上限値未満で、かつ電圧閾値以上となるように予め充電されているものとする。また、各コンタクタ13は、当初、遮断状態にあるものとする。
Next, the operation of the DC power supply system 1 will be described. Note that the storage battery 11 1, since they are used to power components, such as power management apparatus 9, as described above, the charging voltage Vba is less than the upper limit of the voltage range, and more voltage threshold It shall be charged beforehand so that it may become. Also, each contactor 13 is initially in the disconnected state.
この直流給電システム1では、例えば、直流給電システム1の最初の起動時や、直流給電システム1の長期停止後の再起動時などのように、蓄電池111を除く他の蓄電池112~11nが過放電状態(充電電圧Vbaが使用電圧範囲の下限値を下回る状態)であると想定されるときには、まず、発電装置3aを一定期間だけ動作させて、交流電圧V1を出力させる。
In this DC power feeding system 1, for example, at the time of the first start of the DC power feeding system 1 or at the time of restarting after the long-term stop of the DC power feeding system 1, other storage batteries 11 2 to 11 n excluding the storage battery 11 1 When it is assumed that the battery is in the overdischarged state (the state where the charging voltage Vba is lower than the lower limit value of the working voltage range), first, the generator 3a is operated for a certain period to output the AC voltage V1.
このため、まず、発電装置3aを動作させているときの直流給電システム1の動作について説明する。この場合、パワーコンディショナ4aが、交流電圧V1の供給を受けて動作して、この交流電圧V1をバス電圧Vbsに変換して直流バス2に供給する。したがって、直流バス2のバス電圧Vbsが所定の電圧範囲(DC350V以上DC400V以下の電圧範囲)内に上昇する。
For this reason, first, the operation of the DC power feeding system 1 when operating the power generation device 3a will be described. In this case, the power conditioner 4 a operates by receiving the supply of the AC voltage V 1, converts the AC voltage V 1 into the bus voltage Vbs, and supplies the bus voltage V bs to the DC bus 2. Therefore, the bus voltage Vbs of the DC bus 2 rises within a predetermined voltage range (voltage range of DC 350 V or more and DC 400 V or less).
また、昼間であれば、発電装置3bが自動的に発電して、直流電圧V2を出力している。これにより、パワーコンディショナ4bが、直流電圧V2の供給を受けて動作して、この直流電圧V2をバス電圧Vbsに変換して直流バス2に供給する。本例では上記したように、発電装置3aが、この一定期間に含まれる各周期Tにおいて、負荷機器71に対して必要な負荷電力を供給しつつ、蓄電池11を十分に充電可能な発電電力Wgapを発電可能に構成されているため、発電装置3bの発電動作時には、蓄電池11の充電に割り振られる電力が大きくなり過ぎる。この場合、本例の双方向DC/DCコンバータ14はCV動作する構成のため、蓄電池11への充電電流も大きくなり過ぎることになり、蓄電池11の劣化を早めることになる。
In the daytime, the power generation device 3b automatically generates power and outputs the DC voltage V2. Thus, the power conditioner 4b operates by receiving the supply of the DC voltage V2, converts the DC voltage V2 into the bus voltage Vbs, and supplies the bus voltage Vbs to the DC bus 2. In the present example, as described above, the generated power Wgap capable of sufficiently charging the storage battery 11 while supplying the necessary load power to the load device 71 in each cycle T included in the fixed period as the power generation device 3a. Therefore, during the power generation operation of the power generation device 3b, the power allocated to the charge of the storage battery 11 becomes too large. In this case, since the bidirectional DC / DC converter 14 of this example is configured to perform the CV operation, the charging current to the storage battery 11 will be too large, and the deterioration of the storage battery 11 will be accelerated.
これを回避するため、電力管理装置9は、発電装置3aから出力される状態信号に基づいて発電装置3aが動作中であることを検出しているときには、上記の余剰電力(さらに発電装置3bが発電動作を開始したときに生じる発電電力も含める)を、負荷機器制御処理を実行して、負荷機器71cで消費させることで、蓄電池11の充電に割り振られる電力を低減する。
In order to avoid this, when the power management device 9 detects that the power generation device 3a is in operation based on the state signal output from the power generation device 3a, the above-mentioned surplus power (in addition, the power generation device 3b The load device control process is executed to cause the load device 71c to consume the generated power generated when the power generation operation is started, thereby reducing the power allocated to the charge of the storage battery 11.
この直流給電システム1では、蓄電池111から充電電圧Vbaの供給を受けているDC/DCコンバータ7が昼夜を問わず動作して、各直流電源装置6のBMU12およびコンタクタ13と、電力管理装置9とに動作用電圧Vopを出力(供給)している。このため、各直流電源装置6のBMU12およびコンタクタ13と、電力管理装置9はそれぞれ動作状態にある。したがって、動作状態にある各直流電源装置61~6nのBMU121~12nは、対応する蓄電池111~11nについての充電電圧Vba等を定期的に(例えば、周期Tよりも短い周期、または周期Tと同じ周期で)計測して、電池情報として電力管理装置9に出力している。
In the DC power supply system 1, DC / DC converter 7 from the storage battery 11 1 and is supplied with a charging voltage Vba is operated day and night, and BMU12 and contactor 13 of each DC power supply device 6, the power management apparatus 9 The operation voltage Vop is output (supplied) at the same time. Therefore, the BMU 12 and the contactor 13 of each DC power supply 6 and the power management unit 9 are in operation. Therefore, BMUs 12 1 to 12 n of DC power supply devices 6 1 to 6 n in the operating state periodically charge voltage Vba etc. for corresponding storage batteries 11 1 to 11 n (for example, a cycle shorter than cycle T) Or at the same cycle as cycle T) and output to the power management unit 9 as battery information.
また、動作状態にある電力管理装置9は、例えば、直流給電システム1の最初の起動時に第1取得処理を1回実行して、発電ログDrg1および負荷ログDrg2を取得して記憶する。本例では一例として、発電ログDrg1および負荷ログDrg2は1年分の過去ログで構成されていることから、直流給電システム1の構成が変化せず、また設置場所の気象状況に大きな変化がない限りは、例えば、起動時に1回だけ実行した第1取得処理において取得した発電ログDrg1および負荷ログDrg2を2年目以降も継続して使用することが可能となっている。なお、発電ログDrg1および負荷ログDrg2を取得する構成については、この構成に限定されず、例えば、数週間や数ヶ月や1年などの予め規定された期間のものを、この期間の周期で第1取得処理を実行して取得する構成とすることもできる。
Further, the power management apparatus 9 in the operating state executes, for example, the first acquisition process once at the time of the first activation of the DC power feeding system 1 to acquire and store the power generation log Drg1 and the load log Drg2. In this example, as an example, since the power generation log Drg1 and the load log Drg2 are configured of past logs for one year, the configuration of the DC power feeding system 1 does not change, and the weather condition at the installation site does not change significantly. As long as it is possible, for example, the power generation log Drg1 and the load log Drg2 acquired in the first acquisition processing executed only once at the time of startup can be used continuously even after the second year. The configuration for acquiring the power generation log Drg1 and the load log Drg2 is not limited to this configuration, and for example, a predetermined period such as several weeks, several months, or a year may be (1) Acquisition processing may be executed and acquired.
その後、電力管理装置9は、充放電制御処理および負荷機器制御処理での各処理内容を、直前の周期Tにおいて求めた情報に基づいて周期T毎に規定しつつ、充放電制御処理および負荷機器制御処理を実行する動作を開始する。また、電力管理装置9は、次に到来する周期T(次の周期T)において実行する充放電制御処理および負荷機器制御処理での各処理内容を規定するための上記の情報を取得する情報取得処理を周期T毎に実行する。
Thereafter, the power management apparatus 9 defines the processing contents in the charge / discharge control processing and the load device control processing for each cycle T based on the information obtained in the immediately preceding cycle T, while the charge / discharge control processing and the load device Start an operation to execute control processing. Further, the power management apparatus 9 acquires information to acquire the above information for defining the contents of each process in the charge / discharge control process and the load device control process executed in the next coming cycle T (the next cycle T). The process is executed every cycle T.
この情報取得処理では、電力管理装置9は、気象予測情報Dwfを取得する第2取得処理、各蓄電池11についての充電可能電力Wcを取得する第3取得処理、取得した充電可能電力Wcに基づいて各蓄電池11についての予定充電電力Wcpを算出する充電電力算出処理、取得した気象予測情報Dwfおよび発電ログDrg1などに基づいて発電装置3a,3b全体での予測発電電力Wgfを算出する発電電力予測処理、取得した気象予測情報Dwfおよび負荷ログDrg2に基づいて各負荷機器71a,71bでの予測負荷電力Wlfを算出する負荷電力予測処理、並びに合計電力Wsm(=予測負荷電力Wlfの総和+各蓄電池11での予定充電電力Wcpの総和)と予測発電電力Wgfとの比較結果および予測負荷電力Wlfの総和と予測発電電力Wgfとの比較結果を取得する電力比較処理を実行して、次の周期Tにおいて実行する充放電制御処理および負荷機器制御処理での処理内容を規定するための情報を取得する。
In this information acquisition process, the power management apparatus 9 performs a second acquisition process of acquiring weather forecast information Dwf, a third acquisition process of acquiring chargeable power Wc for each storage battery 11, and the acquired chargeable power Wc. Generated power prediction processing for calculating predicted generated power Wgf of the entire power generation devices 3a and 3b based on charge power calculation processing for calculating scheduled charging power Wcp for each storage battery 11, acquired weather forecast information Dwf, power generation log Drg1, etc. Load power prediction processing for calculating the predicted load power Wlf in each load device 71a, 71b based on the acquired weather prediction information Dwf and the load log Drg2, and total power Wsm (= total of predicted load power Wlf + each storage battery 11 Of the estimated charging power Wcp at the time of comparison with the predicted generated power Wgf and the total of the predicted load power Wlf A running power comparison process for obtaining a result of comparison between the predicted power generation WGF, acquires information for specifying the processing content in executing the next cycle T charge and discharge control process and the load device control.
この情報とは、上記したこの到来する周期Tでの予定充電電力Wcp、この周期Tでの予測発電電力Wgf、およびこの周期Tでの予測負荷電力Wlfと共に、この周期Tが日射期間に含まれているか否かの情報、予測発電電力Wgfと合計電力Wsmとの比較結果を示す情報、および予測負荷電力Wlfの総和と予測発電電力Wgfとの比較結果を示す情報である。なお、発電装置3aが動作しているときには、発電装置3aでの発電電力Wgapが予測発電電力Wgfに含まれていることから、予測発電電力Wgfと合計電力Wsmとの比較結果を示す情報については、予測発電電力Wgfが合計電力Wsmよりも大きいとの比較結果を示すものとなる。
This information includes the cycle T in the solar radiation period together with the planned charging power Wcp in the incoming cycle T, the predicted generated power Wgf in the cycle T, and the predicted load power Wlf in the cycle T described above. Information indicating the comparison result of the predicted generated power Wgf and the total power Wsm, and the information indicating the comparison result of the sum of the predicted load power Wlf and the predicted generated power Wgf. When the power generation device 3a is in operation, the generated power Wgap of the power generation device 3a is included in the predicted generated power Wgf. Therefore, for information indicating the comparison result of the predicted generated power Wgf and the total power Wsm, The comparison shows that the predicted generated power Wgf is larger than the total power Wsm.
この充放電制御処理および負荷機器制御処理での処理内容は、直前の周期Tにおいて取得した上記の各情報に基づき、以下の第1処理内容~第4処理内容の4つに場合分けされる(図2参照)。このうちの第1処理内容は、予測発電電力Wgfと合計電力Wsmとの比較結果が、予測発電電力Wgfが合計電力Wsmよりも大きいとの比較結果のときの処理内容であり、第2処理内容は、予測発電電力Wgfと合計電力Wsmとの比較結果が、予測発電電力Wgfが合計電力Wsmと一致するとの比較結果のときの処理内容であり、第3処理内容は、予測発電電力Wgfと合計電力Wsmとの比較結果が、予測発電電力Wgfが合計電力Wsmよりも小さいとの比較結果であって、かつ予測負荷電力Wlfの総和と予測発電電力Wgfとの比較結果が、予測発電電力Wgfが予測負荷電力Wlfの総和よりも大きいとの比較結果のときの処理内容であり、第4処理内容は、予測発電電力Wgfと合計電力Wsmとの比較結果が、予測発電電力Wgfが合計電力Wsmよりも小さいとの比較結果であって、かつ予測負荷電力Wlfの総和と予測発電電力Wgfとの比較結果が、予測発電電力Wgfが予測負荷電力Wlfの総和以下になるとの比較結果のときの処理内容である。
The processing contents in the charge / discharge control processing and the load device control processing are divided into the following four processing contents from the first processing contents to the fourth processing contents based on the respective information acquired in the immediately preceding cycle T ((4) See Figure 2). The first processing content among them is the processing content when the comparison result of the predicted generated power Wgf and the total power Wsm is the comparison result that the predicted generated power Wgf is larger than the total power Wsm, and the second processing content Is the processing content when the comparison result between the predicted generated power Wgf and the total power Wsm is the comparison result that the predicted generated power Wgf matches the total power Wsm, and the third processing content is the total with the predicted generated power Wgf The comparison result with the power Wsm is a comparison result that the predicted generated power Wgf is smaller than the total power Wsm, and the comparison result between the predicted load power Wlf and the predicted generated power Wgf is a predicted generated power Wgf The processing content in the case of the comparison result of being larger than the total of the predicted load power Wlf, and the fourth processing content is that the comparison result of the predicted generated power Wgf and the total power Wsm is the predicted generation The comparison result that the power Wgf is smaller than the total power Wsm, and the comparison result between the sum of the predicted load power Wlf and the predicted generated power Wgf is that the predicted generated power Wgf is less than or equal to the total of the predicted load power Wlf It is the processing content at the time of a comparison result.
具体的には、上記の第1処理内容に該当する場合には、予測発電電力Wgfが合計電力Wsmよりも大きいことから、予測発電電力Wgfには余剰電力(予測発電電力Wgfと合計電力Wsmの差分電力(=予測発電電力Wgf-合計電力Wsm))が生じている。このため、この状態のままでは、蓄電池11の充電に割り振られる電力が大きくなり過ぎて(予定充電電力Wcpを超えて)、双方向DC/DCコンバータ14がCV動作する構成であることとも相まって、充電電流が大きくなり過ぎる状態になり、蓄電池11の劣化を早める虞が生じる。
Specifically, when the first processing content corresponds to the above, since the predicted power generation Wgf is larger than the total power Wsm, the surplus power (the predicted power generation Wgf and the total power Wsm Differential power (= predicted generated power Wgf−total power Wsm) is generated. For this reason, in this state, the power allocated to charging the storage battery 11 becomes too large (beyond the planned charging power Wcp), which causes the bi-directional DC / DC converter 14 to perform CV operation. The charging current becomes too large, which may accelerate the deterioration of the storage battery 11.
したがって、第1処理内容とは、図2に示すように、充放電制御処理においては、双方向DC/DCコンバータ14に対して、対応する蓄電池11に予定充電電力Wcpを供給して充電させるという処理内容である。電力管理装置9は、この充放電制御処理では、第3取得処理において各直流電源装置6のBMU12から取得した電池情報に含まれる各蓄電池11の充電電圧Vba(電池情報に含まれる各蓄電池11のSOCであってもよい)に基づいて充電可能な蓄電池11(充電電圧Vbaが使用電圧範囲の上限値に達していない蓄電池11)を有する直流電源装置6を特定すると共に、特定した直流電源装置6のBMU12に対して連結指示を示すコンタクト制御情報を現在の周期Tの始期から終期まで出力し、かつこの直流電源装置6の双方向DC/DCコンバータ14に対して充電指示(予定充電電力Wcpを周期T全体に亘って平均化して蓄電池11に充電させる指示)を示す制御情報を出力する。
Therefore, as shown in FIG. 2, in the charge / discharge control process, the first process content is to charge the bi-directional DC / DC converter 14 by supplying the scheduled charging power Wcp to the corresponding storage battery 11 for charging. It is processing content. In this charge / discharge control process, power management device 9 charges voltage Vba of each storage battery 11 included in the battery information acquired from BMU 12 of each DC power supply device 6 in the third acquisition process (for each storage battery 11 included in the battery information While specifying DC power supply device 6 having rechargeable storage battery 11 (storage battery 11 whose charge voltage Vba has not reached the upper limit value of the working voltage range) based on SOC, identified DC power supply device 6 The contact control information indicating the connection instruction to the BMU 12 is output from the beginning to the end of the current cycle T, and the charge instruction to the bidirectional DC / DC converter 14 of the DC power supply 6 (scheduled charging power Wcp Control information indicating an instruction to average the battery over the entire cycle T and charge the storage battery 11 is output.
また、第1処理内容とは、図2に示すように、負荷機器制御処理においては、各DC/DCコンバータ5a,5bに対して、対応する負荷機器71a,71bで使用される負荷電圧VLa,VLbとなるようにバス電圧Vbsを変換して出力させつつ、負荷機器71a,71bに予測負荷電力Wlfa,Wlfbを供給させるという処理内容である。また、上記したように予測発電電力Wgfには余剰電力(差分電力(=予測発電電力Wgf-合計電力Wsm))が生じているため、さらに、負荷機器制御処理において、DC/DCコンバータ5cに対して、対応する負荷機器71cで使用される負荷電圧VLcとなるようにバス電圧Vbsを変換して出力させつつ、停止状態の負荷機器71cに対する制御を実行して負荷機器71cを動作状態に移行させて、かつDC/DCコンバータ5cに対して、負荷機器71cに上記の余剰電力を供給させるという処理内容である。これにより、各蓄電池11に供給される電力(蓄電池11の充電に割り振られる電力)を予定充電電力Wcpにすることが可能となる。
Further, as shown in FIG. 2, in the load device control process, the first processing content is a load voltage VLa, which is used by the corresponding load devices 71a and 71b for each DC / DC converter 5a and 5b. The processing content is to cause the load devices 71a and 71b to supply the predicted load powers Wlfa and Wlfb while converting and outputting the bus voltage Vbs so as to be VLb. Further, as described above, since surplus power (differential power (= predicted power generation Wgf−total power Wsm)) is generated in the predicted generated power Wgf, the DC / DC converter 5c is further processed in the load device control process. Control the load device 71c in the stopped state to shift the load device 71c to the operating state while converting and outputting the bus voltage Vbs to the load voltage VLc used by the corresponding load device 71c. And the above-described surplus power is supplied to the load device 71c with respect to the DC / DC converter 5c. As a result, the power supplied to each storage battery 11 (power allocated to charging the storage battery 11) can be made the scheduled charging power Wcp.
また、上記の第2処理内容に該当する場合には、予測発電電力Wgfが合計電力Wsmと一致することから、予測発電電力Wgfには上記の余剰電力が生じていない。したがって、第2処理内容とは、図2に示すように、充放電制御処理においては、双方向DC/DCコンバータ14に対して、対応する蓄電池11に予定充電電力Wcpを供給して充電させるという処理内容である。また、負荷機器制御処理においては、各DC/DCコンバータ5a,5bに対して、対応する負荷機器71a,71bで使用される負荷電圧VLa,VLbとなるようにバス電圧Vbsを変換して出力させつつ、負荷機器71a,71bに予測負荷電力Wlfa,Wlfbを供給させるという処理内容である。また、予測発電電力Wgfには余剰電力が生じていないため、負荷機器制御処理において、DC/DCコンバータ5cに対して、バス電圧Vbsを変換して負荷電圧VLcを出力させる動作を停止させ、かつ負荷機器71cに対して、停止状態を維持させるという処理内容である。
Further, when the content of the second process is satisfied, since the predicted generated power Wgf matches the total power Wsm, the above-described surplus power is not generated in the predicted generated power Wgf. Therefore, as shown in FIG. 2, in the charge / discharge control process, the second process content is to charge the bi-directional DC / DC converter 14 by supplying the scheduled charge power Wcp to the corresponding storage battery 11 for charging. It is processing content. Further, in the load device control process, the bus voltage Vbs is converted and output to the DC / DC converters 5a and 5b so that the load voltages VLa and VLb used by the corresponding load devices 71a and 71b are obtained. In addition, the processing content is that the load devices 71a and 71b are supplied with the predicted load powers Wlfa and Wlfb. Further, since no surplus power is generated in the predicted generated power Wgf, in the load device control process, the operation of converting the bus voltage Vbs and outputting the load voltage VLc to the DC / DC converter 5c is stopped and The processing content is to cause the load device 71c to maintain the stopped state.
また、上記の第3処理内容に該当する場合には、予測発電電力Wgfが予測負荷電力Wlfの総和よりも大きいため、負荷機器71a,71bに予測負荷電力Wlfa,Wlfbを供給し得るものの、予測発電電力Wgfが合計電力Wsmよりも小さいことから、負荷機器71a,71bに予測負荷電力Wlfa,Wlfbを供給した場合、各蓄電池11に供給し得る充電電力は予定充電電力Wcpを下回るものとなる。したがって、第3処理内容とは、図2に示すように、負荷機器制御処理においては、各DC/DCコンバータ5a,5bに対して、対応する負荷機器71a,71bで使用される負荷電圧VLa,VLbとなるようにバス電圧Vbsを変換して出力させつつ、負荷機器71a,71bに予測負荷電力Wlfa,Wlfbを供給させるという処理内容である。また、予測発電電力Wgfが合計電力Wsmよりも小さいことから、予測発電電力Wgfと予測負荷電力Wlfの総和の差分電力(=予測発電電力Wgf-予測負荷電力Wlfの総和)を各蓄電池11の充電に使用した場合、予測発電電力Wgfには余剰電力が生じない。このため、負荷機器制御処理において、DC/DCコンバータ5cに対して、バス電圧Vbsを変換して負荷電圧VLcを出力させる動作を停止させ、かつ負荷機器71cに対しては、停止状態を維持させるという処理内容である。また、充放電制御処理においては、各蓄電池11に対してそれぞれの予定充電電力Wcpを充電することはできないものの、各双方向DC/DCコンバータ14に対して、予測発電電力Wgfと予測負荷電力Wlfの総和の差分電力を、例えば、各蓄電池11に均等に分けて充電させるという処理内容である。
Further, in the case where the above-described third processing content is applied, since the predicted generated power Wgf is larger than the total of the predicted load power Wlf, the predicted load power Wlfa, Wlfb can be supplied to the load devices 71a, 71b. Since the generated power Wgf is smaller than the total power Wsm, when the predicted load powers Wlfa and Wlfb are supplied to the load devices 71a and 71b, the charging power that can be supplied to each storage battery 11 is smaller than the scheduled charging power Wcp. Therefore, as shown in FIG. 2, in the load device control process, the third process content is the load voltage VLa, which is used by the corresponding load devices 71a and 71b for each DC / DC converter 5a and 5b. The processing content is to cause the load devices 71a and 71b to supply the predicted load powers Wlfa and Wlfb while converting and outputting the bus voltage Vbs so as to be VLb. Further, since the predicted generated power Wgf is smaller than the total power Wsm, the difference power of the total of the predicted generated power Wgf and the predicted load power Wlf (= the total of the predicted generated power Wgf−the predicted load power Wlf) is charged to each storage battery 11 In the case of using it, the surplus power does not occur in the predicted generated power Wgf. Therefore, in the load device control process, the operation of converting the bus voltage Vbs and outputting the load voltage VLc to the DC / DC converter 5c is stopped, and the stopped state is maintained for the load device 71c. Processing content. Further, in the charge / discharge control process, although each scheduled storage power Wcp can not be charged to each storage battery 11, predicted generated power Wgf and predicted load power Wlf for each bidirectional DC / DC converter 14 are obtained. The processing content is, for example, evenly dividing and charging each storage battery 11 of the difference power of the sum of.
また、上記の第4処理内容に該当する場合には、予測発電電力Wgfが予測負荷電力Wlfの総和以下のため、負荷機器71a,71bに予測負荷電力Wlfa,Wlfbを供給しようとした場合、各蓄電池11の充電に差し向け得る電力は存在せず、予測発電電力Wgfが予測負荷電力Wlfの総和未満のときには、逆に、各蓄電池11を放電させる必要が生じる。したがって、第4処理内容とは、図2に示すように、負荷機器制御処理においては、各DC/DCコンバータ5a,5bに対して、対応する負荷機器71a,71bで使用される負荷電圧VLa,VLbとなるようにバス電圧Vbsを変換して出力させつつ、負荷機器71a,71bに予測負荷電力Wlfa,Wlfbを供給させるという処理内容である。また、予測発電電力Wgfが予測負荷電力Wlfの総和以下であることから、各蓄電池11を充電したり、負荷機器71cを動作させたりするための余剰電力が存在しない。このため、DC/DCコンバータ5cに対しては、バス電圧Vbsを変換して負荷電圧VLcを出力させる動作を停止させ、かつ負荷機器71cに対して、停止状態を維持させるという処理内容である。
Further, in the case where the above-described fourth processing content is applied, the predicted generated power Wgf is less than or equal to the total of the predicted load power Wlf, so when trying to supply the predicted load power Wlfa, Wlfb to the load devices 71a, 71b, There is no electric power that can be used to charge the storage battery 11, and when the predicted generated power Wgf is less than the total of the predicted load power Wlf, it is necessary to discharge the storage batteries 11 in reverse. Therefore, as shown in FIG. 2, in the load device control process, the fourth processing content is the load voltage VLa, which is used by the corresponding load devices 71a and 71b for each DC / DC converter 5a and 5b. The processing content is to cause the load devices 71a and 71b to supply the predicted load powers Wlfa and Wlfb while converting and outputting the bus voltage Vbs so as to be VLb. Further, since the predicted generated power Wgf is equal to or less than the total of the predicted load power Wlf, there is no surplus power for charging each storage battery 11 or operating the load device 71c. Therefore, the DC / DC converter 5c is processed to stop the operation of converting the bus voltage Vbs and outputting the load voltage VLc and causing the load device 71c to maintain the stopped state.
また、上記したように、予測発電電力Wgfが予測負荷電力Wlfの総和未満のときには、予測発電電力Wgfだけでは予測負荷電力Wlfの総和を賄えない。このため、上記の第4制御内容とは、充放電制御処理においては、予測発電電力Wgfに生じる不足電力分(=予測負荷電力Wlfの総和-予測発電電力Wgf)を、各蓄電池11に均等に分けて放電させるという処理内容である。この充放電制御処理では、電力管理装置9は、第3取得処理において各直流電源装置6のBMU12から取得した電池情報に含まれる各蓄電池11の充電電圧Vba(電池情報に含まれる各蓄電池11のSOCであってもよい)に基づいて放電可能な蓄電池11(充電電圧Vbaが使用電圧範囲の下限値に達していない蓄電池11)を有する直流電源装置6を特定すると共に、特定した直流電源装置6のBMU12に対して連結指示を示すコンタクト制御情報を現在の周期Tの始期から終期まで出力し、かつこの直流電源装置6の双方向DC/DCコンバータ14に対して放電指示(予定充電電力Wcpを周期T全体に亘って平均化して蓄電池11から放電させる指示)を示す制御情報を出力する。
Further, as described above, when the predicted generated power Wgf is less than the total of the predicted load power Wlf, the total of the predicted load power Wlf can not be equaled with the predicted generated power Wgf alone. For this reason, in the above-described fourth control content, in the charge and discharge control process, the shortage of power (= sum of predicted load power Wlf−predicted generated power Wgf) generated in predicted generated power Wgf is equally applied to each storage battery 11 The processing content is to divide and discharge. In the charge / discharge control process, the power management apparatus 9 determines the charge voltage Vba of each storage battery 11 included in the battery information acquired from the BMU 12 of each DC power supply 6 in the third acquisition process (for each storage battery 11 included in the battery information While specifying the DC power supply device 6 having the rechargeable storage battery 11 (the storage battery 11 in which the charging voltage Vba has not reached the lower limit value of the working voltage range) based on the SOC, Output contact control information indicating a connection instruction to the BMU 12 from the beginning to the end of the current cycle T, and a discharge instruction to the bi-directional DC / DC converter 14 of the DC power supply 6 (scheduled charging power Wcp Control information indicating an instruction to average and discharge the storage battery 11 over the entire cycle T is output.
発電装置3aが動作している一定期間では、予測発電電力Wgfと合計電力Wsmとの比較結果を示す情報は、上記したように、予測発電電力Wgfが合計電力Wsmよりも大きいとの比較結果を示すものとなっている。このため、電力管理装置9は、この比較結果に基づき、充放電制御処理および負荷機器制御処理を上記の第1制御内容で実行する。ここで、発電装置3aが動作している一定期間における各周期Tでの余剰電力(予測発電電力Wgfにおいて生じている余剰電力)とは、主として発電装置3aが発電する発電電力Wgapにおいて生じる余剰電力であるが、発電装置3bが動作するとの予測のときには発電装置3bでの予測発電電力Wgf(=発電電力Wgbp)が加算された電力となる。
As described above, the information indicating the comparison result of the predicted generated power Wgf and the total power Wsm during the fixed period in which the power generation device 3a is operating is the comparison result that the predicted generated power Wgf is larger than the total power Wsm It is shown. Therefore, based on the comparison result, the power management apparatus 9 executes the charge / discharge control process and the load device control process with the first control content described above. Here, the surplus power (surplus power generated in the predicted generated power Wgf) in each period T in a fixed period during which the power generation device 3a is operating refers to the surplus power generated mainly in the generated power Wgap generated by the power generation device 3a. However, when it is predicted that the power generation device 3b is operated, the predicted power generation Wgf (= generated power Wgbp) of the power generation device 3b is added.
したがって、電力管理装置9は、負荷機器71a,71bに予測負荷電力Wlfa,Wlfbを供給するという処理内容、および停止状態の負荷機器71cを動作状態に移行させると共に余剰電力(差分電力=予測発電電力Wgf-合計電力Wsm)を負荷機器71cに供給するという処理内容で、負荷機器制御処理を実行する。これにより、予測発電電力Wgfにおいて生じている余剰電力を負荷機器71cの動作のために使用することができるため、発電装置3aでの発電電力を有効に活用することが可能となっている。また、発電装置3bも発電状態のときには、この発電装置3bでの発電を抑制することなく、発電装置3bでの発電電力についても有効に活用することが可能となっている。
Therefore, the power management apparatus 9 changes the processing contents of supplying the predicted load powers Wlfa and Wlfb to the load devices 71a and 71b and shifts the load device 71c in the stopped state to the operating state and surplus power (differential power = predicted generated power The load device control process is executed with the process of supplying Wgf−total power Wsm) to the load device 71c. Thereby, since the surplus power generated in the predicted generated power Wgf can be used for the operation of the load device 71c, it is possible to effectively utilize the generated power in the power generation device 3a. Further, when the power generation device 3b is also in the power generation state, it is possible to effectively utilize the power generated by the power generation device 3b without suppressing the power generation by the power generation device 3b.
また、このようにしてこの余剰電力(差分電力)が負荷機器71cに供給される結果、各蓄電池11の充電に割り振られる総電力を、それぞれの予定充電電力Wcpの総和に揃えることが可能となることから、電力管理装置9は、各蓄電池11にそれぞれの予定充電電力Wcpを充電するという処理内容で充放電制御処理を実行する。
Also, as a result of this surplus power (differential power) being supplied to the load device 71c, it becomes possible to make the total power allocated to charge of each storage battery 11 equal to the sum of the respective scheduled charge powers Wcp. Therefore, the power management device 9 executes the charge / discharge control process with the process content of charging each storage battery 11 with the respective scheduled charging power Wcp.
これにより、充電可能であると特定された各蓄電池11は、対応する予定充電電力Wcpずつ周期T毎に充電されて、つまり、一定期間の全域を使って充電されて、一定期間の終了時点においてほぼ満充電状態に移行させられる。なお、電力管理装置9は、各直流電源装置6のBMU12から周期Tで出力される電池情報に含まれる充電電圧Vbaが使用電圧範囲の上限値に達したか否か(または、電池情報に含まれるSOCが公称容量に達しか否か。つまり、蓄電池11が満充電状態になったか否か)を検出しつつ、満充電状態になったと判別したときには、その蓄電池11を含む直流電源装置6のBMU12に対して遮断指示を示すコンタクト制御情報を出力して、コンタクタ13を遮断状態に移行させることでこの蓄電池11を双方向DC/DCコンバータ14から切り離す。これにより、蓄電池11に対する過充電が防止される。また、電力管理装置9は、各蓄電池111~11nに対する充電に際して、動作用電圧Vopの生成に用いられる充電電圧Vbaを出力する蓄電池111に対する充電を優先的に実行する。これにより、蓄電池111は、その充電電圧Vbaが使用電圧範囲の上限値近傍になるように常時充電される。
Thus, each storage battery 11 identified as being chargeable is charged at each period T corresponding to the corresponding planned charging power Wcp, that is, charged using the entire area for a fixed period, and at the end of the fixed period It is almost fully charged. Power management device 9 determines whether or not charging voltage Vba included in the battery information output in a cycle T from BMU 12 of each DC power supply device 6 has reached the upper limit value of the operating voltage range (or included in the battery information). Of the DC power supply device 6 including the storage battery 11 when it is determined that the fully charged state has been detected while detecting whether the storage battery 11 has reached the full charge state). The contact control information indicating a shutoff instruction is output to the BMU 12, and the storage battery 11 is disconnected from the bidirectional DC / DC converter 14 by shifting the contactor 13 to the shutoff state. Thereby, overcharging of the storage battery 11 is prevented. The power management unit 9, upon charging of each battery 11 1 ~ 11 n, which perform the charging of the battery 11 1 for outputting a charging voltage Vba to be used in generating operating voltage Vop preferentially. Thus, the storage battery 11 1, the charging voltage Vba is always charged to be the upper limit vicinity of the voltage range.
また、発電装置3cでは、負荷機器71cであるその揚水ポンプが一定期間に亘って動作させられたことにより、下池から上池ダムへ、揚水ポンプの動作期間(つまり、一定期間)の長さに応じた水量の水を汲み上げた状態(一定期間の長さに応じた電力の蓄電が行われた状態)となっている。
In addition, in the power generation device 3c, the pumping pump, which is the load device 71c, is operated for a certain period, so that the working period of the pumping pump (that is, for a certain period) from the lower pond to the upper pond dam. It is in a state where water of a corresponding amount of water is pumped up (a state where power storage corresponding to the length of a certain period is performed).
また、電力管理装置9は、各周期Tにおいて、上記した充放電制御処理および負荷機器制御処理と共に、上記した第2取得処理、第3取得処理、充電電力算出処理、発電電力予測処理、負荷電力予測処理および電力比較処理を実行して、次に到来する周期Tにおいて実行する充放電制御処理および負荷機器制御処理での制御内容を規定するための情報(到来する周期Tでの予定充電電力Wcp、この周期Tでの予測発電電力Wgf、およびこの周期Tでの予測負荷電力Wlfと共に、この周期Tが日射期間に含まれているか否かの情報、予測発電電力Wgfと合計電力Wsmとの比較結果を示す情報、および予測負荷電力Wlfの総和と予測発電電力Wgfとの比較結果を示す情報)を取得する。
In each cycle T, the power management apparatus 9 performs the second acquisition process, the third acquisition process, the charge power calculation process, the generated power prediction process, the load power, and the charge / discharge control process and the load device control process described above. Information for defining the control content in charge / discharge control processing and load device control processing to be executed in the next coming cycle T by executing prediction processing and power comparison processing (planned charging power Wcp in coming cycle T Information on whether or not this cycle T is included in the solar radiation period together with the predicted generated power Wgf in this cycle T, and the predicted load power Wlf in this cycle T, comparison between the predicted generated power Wgf and the total power Wsm Information indicating the result, and information indicating the comparison result of the sum of the predicted load power Wlf and the predicted generated power Wgf) is acquired.
発電装置3aは、一定期間だけ動作させられて、停止される。この場合、電力管理装置9は、発電装置3aの停止を検出して、発電装置3b,3cでの発電電力に基づく動作に移行する。
The power generation device 3a is operated only for a fixed period and stopped. In this case, the power management device 9 detects the stop of the power generation device 3a, and shifts to the operation based on the power generated by the power generation devices 3b and 3c.
この発電装置3aの非動作時における各周期Tでは、電力管理装置9は、直前の周期Tにおいて実行した第2取得処理、第3取得処理、充電電力算出処理、発電電力予測処理、負荷電力予測処理、および電力比較処理の実行によって得られた情報(現在の周期Tでの予定充電電力Wcp、この周期Tでの予測発電電力Wgf、およびこの周期Tでの予測負荷電力Wlfと共に、この周期Tが日射期間に含まれているか否かの情報、予測発電電力Wgfと合計電力Wsmとの比較結果を示す情報、および予測負荷電力Wlfの総和と予測発電電力Wgfとの比較結果を示す情報)に基づいて、充放電制御処理および負荷機器制御処理での制御内容を規定すると共に、この規定された制御内容で充放電制御処理および負荷機器制御処理を実行する。
In each cycle T when the power generation apparatus 3a is not operating, the power management apparatus 9 performs the second acquisition process, the third acquisition process, the charge power calculation process, the generated power prediction process, and the load power prediction performed in the immediately preceding cycle T. Processing and information obtained by execution of the power comparison processing (the scheduled charge power Wcp in the current cycle T, the predicted generated power Wgf in this cycle T, and the predicted load power Wlf in this cycle T, this cycle T In the information on whether the solar radiation period is included, the information indicating the comparison result of the predicted generated power Wgf and the total power Wsm, and the information indicating the comparison result of the sum of the predicted load power Wlf and the predicted generated power Wgf) The control content in the charge / discharge control processing and the load device control processing is defined based on the above, and the charge / discharge control processing and the load device control processing are executed with the prescribed control content. .
次に、具体例を挙げて説明する。ある一日における昼間(日照時間)、およびその前後の期間(夜間)での周期T毎(本例では1時間毎)の予定充電電力Wcp(の総和)、予測発電電力Wgfおよび予測負荷電力Wlf(Wlfa,Wlfbの総和)が、例えば、図3に示すように、電力管理装置9によって算出および予測されたものとする。この場合、電力管理装置9は、予測発電電力Wgfと合計電力Wsm(=予測負荷電力Wlf+各蓄電池11での予定充電電力Wcp)との関係に関しては、例えば、夜間、7時台、8時台、16時台および17時台において、予測発電電力Wgfが合計電力Wsm未満となり、9時台において、予測発電電力Wgfが合計電力Wsmと一致し、10時台~15時台において、予測発電電力Wgfが合計電力Wsmを超えると、各時間(周期T)の直前の時間(周期T)において予測する。また、電力管理装置9は、予測発電電力Wgfと予測負荷電力Wlfとの関係に関しては、例えば、夜間、7時台および17時台において、予測発電電力Wgfが予測負荷電力Wlf以下となり(特に7時台では、予測発電電力Wgfが予測負荷電力Wlfと一致し)、8時台~16時台において、予測発電電力Wgfが予測負荷電力Wlfを超えると、各周期Tの直前の周期Tにおいて予測する。
Next, a specific example is given and demonstrated. Planned charging power Wcp (total of) every day (every hour in this example) in the daytime (sunshine hour) and the period (nighttime) before and after that in one day, predicted generated power Wgf and predicted load power Wlf For example, it is assumed that (sum of Wlfa and Wlfb) is calculated and predicted by the power management apparatus 9 as shown in FIG. In this case, regarding the relationship between the predicted generated power Wgf and the total power Wsm (= the predicted load power Wlf + the scheduled charging power Wcp in each storage battery 11), the power management apparatus 9 may The predicted generated power Wgf becomes less than the total power Wsm at 16 o'clock and 17 o'clock, and the predicted generated power Wgf coincides with the total power Wsm at 9 o'clock and the predicted generated power at 10 o'clock to 15 o'clock When Wgf exceeds the total power Wsm, prediction is made in a time (period T) immediately before each time (period T). Further, regarding the relationship between the predicted generated power Wgf and the predicted load power Wlf, the power management apparatus 9 makes the predicted generated power Wgf equal to or less than the predicted load power Wlf at night, for example, at 7 o'clock and 17 o'clock (for example, 7) On a hourly basis, if the predicted generated power Wgf exceeds the predicted load power Wlf from 8:00 to 16:00, the predicted generated power Wgf matches the predicted load power Wlf), and the prediction is made in the cycle T immediately before each cycle T Do.
このため、電力管理装置9は、6時台および16時台においては、次に到来する7時台および17時台について、予測発電電力Wgfが合計電力Wsm未満となり、かつ予測発電電力Wgfが予測負荷電力Wlf以下となる(7時台については、予測発電電力Wgfが予測負荷電力Wlfと一致する)と予測し、この予測した情報に基づき、この7時台および17時台において上記した第4処理内容での充放電制御処理および負荷機器制御処理を実行する。
Therefore, the power management apparatus 9 predicts the estimated generated power Wgf to be less than the total electric power Wsm and predicts the estimated generated power Wgf at the 7 o'clock and 17 o'clock stages at the 6 o'clock and 16 o'clock stages. It is predicted that the load power Wlf will be less than or equal to (the predicted generated power Wgf coincides with the predicted load power Wlf for 7 o'clock), and based on the predicted information, the fourth mentioned above for this 7 o'clock and 17 o'clock Execute charge / discharge control processing and load device control processing according to the processing content.
すなわち、電力管理装置9は、図4に示すように、負荷機器制御処理においては、各DC/DCコンバータ5a,5bに対して、対応する負荷機器71a,71bで使用される負荷電圧VLa,VLbとなるようにバス電圧Vbsを変換して出力させつつ、負荷機器71a,71bに予測負荷電力Wlfa,Wlfbをそのまま供給させる(予測負荷電力Wlfa,Wlfbと同じ実負荷電力(以下、実負荷電力Wlfa,Wlfbともいう)を供給させる)制御を実行する。また、電力管理装置9は、DC/DCコンバータ5cに対しては、バス電圧Vbsを変換して負荷電圧VLcを出力させる動作を停止させ、かつ負荷機器71cに対して、停止状態を維持させるという制御を実行する。
That is, as shown in FIG. 4, in the load device control process, power management device 9 applies load voltages VLa and VLb used by corresponding load devices 71a and 71b to DC / DC converters 5a and 5b. The predicted load powers Wlfa and Wlfb are supplied as they are to the load devices 71a and 71b while the bus voltage Vbs is converted and output as they become (the same actual load power as the predicted load powers Wlfa and Wlfb (hereinafter referred to as actual load power Wlfa , Wlfb))). Further, the power management apparatus 9 causes the DC / DC converter 5 c to stop the operation of converting the bus voltage Vbs and outputting the load voltage VLc, and causes the load device 71 c to maintain the stopped state. Execute control.
また、電力管理装置9は、充放電制御処理においては、予測発電電力Wgfに生じる不足電力分(=予測負荷電力Wlf-予測発電電力Wgf)を、各蓄電池11に均等に分けて放電させる。なお、7時台では、予測負荷電力Wlfが予測発電電力Wgfと一致しており、上記の不足電力分がゼロであるため、放電量はゼロである。この充放電制御処理では、電力管理装置9は、第3取得処理において各直流電源装置6のBMU12から取得した電池情報に含まれる各蓄電池11の充電電圧Vba(電池情報に含まれる各蓄電池11のSOCであってもよい)に基づいて放電可能な蓄電池11(充電電圧Vbaが使用電圧範囲の下限値に達していない蓄電池11)を有する直流電源装置6を特定すると共に、特定した直流電源装置6のBMU12に対して連結指示を示すコンタクト制御情報を出力し、かつこの直流電源装置6の双方向DC/DCコンバータ14に対して放電指示を示す制御情報を出力する(放電動作を実行する)。
Further, in the charge and discharge control process, the power management device 9 equally divides the insufficient power (= predicted load power Wlf−predicted generated power Wgf) generated in the predicted generated power Wgf into each storage battery 11 and discharges it. At around 7 o'clock, since the predicted load power Wlf matches the predicted generated power Wgf and the above-mentioned insufficient power is zero, the discharge amount is zero. In the charge / discharge control process, the power management apparatus 9 determines the charge voltage Vba of each storage battery 11 included in the battery information acquired from the BMU 12 of each DC power supply 6 in the third acquisition process (for each storage battery 11 included in the battery information While specifying the DC power supply device 6 having the rechargeable storage battery 11 (the storage battery 11 in which the charging voltage Vba has not reached the lower limit value of the working voltage range) based on the SOC, The contact control information indicating the connection instruction is output to the BMU 12 and the control information indicating the discharge instruction is output to the bidirectional DC / DC converter 14 of the DC power supply device 6 (discharge operation is performed).
さらに、このようにして蓄電池11を放電させても予測負荷電力Wlfの総和を賄えない場合には、電力管理装置9は、発電装置3cに対する制御を実行して、発電動作させることもできる。
Furthermore, even if the storage battery 11 is discharged in this way, if the total of the predicted load powers Wlf can not be obtained, the power management device 9 can execute the control for the power generation device 3c to perform the power generation operation.
また、電力管理装置9は、例えば、7時台および15時台においては、次に到来する8時台および16時台について、予測発電電力Wgfが合計電力Wsm未満となり、かつ予測発電電力Wgfが予測負荷電力Wlfを超えると予測し、この予測した情報に基づき、この8時台および16時台において上記した第3処理内容での充放電制御処理および負荷機器制御処理を実行する。
Further, in the power management apparatus 9, for example, at the 7 o'clock and 15 o'clock stages, the predicted generated power Wgf becomes less than the total electric power Wsm and the predicted generated power Wgf is about the 8 o'clock and 16 o'clock coming next. It is predicted that the predicted load power W1f will be exceeded, and based on the predicted information, the charge / discharge control process and the load device control process according to the third process described above are executed at 8 o'clock and 16 o'clock.
すなわち、電力管理装置9は、図4に示すように、負荷機器制御処理においては、各DC/DCコンバータ5a,5bに対して、対応する負荷機器71a,71bで使用される負荷電圧VLa,VLbとなるようにバス電圧Vbsを変換して出力させつつ、負荷機器71a,71bに予測負荷電力Wlfa,Wlfbをそのまま供給させる(実負荷電力Wlfa,Wlfb)を供給させる)制御を実行する。また、電力管理装置9は、DC/DCコンバータ5cに対しては、バス電圧Vbsを変換して負荷電圧VLcを出力させる動作を停止させ、かつ負荷機器71cに対して、停止状態を維持させるという制御を実行する。
That is, as shown in FIG. 4, in the load device control process, power management device 9 applies load voltages VLa and VLb used by corresponding load devices 71a and 71b to DC / DC converters 5a and 5b. Control is performed to supply the predicted load powers Wlfa and Wlfb to the load devices 71a and 71b as they are (to supply the actual load powers Wlfa and Wlfb) while converting the bus voltage Vbs so as to be output. Further, the power management apparatus 9 causes the DC / DC converter 5 c to stop the operation of converting the bus voltage Vbs and outputting the load voltage VLc, and causes the load device 71 c to maintain the stopped state. Execute control.
また、電力管理装置9は、充放電制御処理においては、予定充電電力Wcpよりは少なくなるものの、差分電力(=予測発電電力Wgf-予測負荷電力Wlf)を均等に分けた電力を各蓄電池11に充電させる。この充放電制御処理では、電力管理装置9は、充電可能な蓄電池11を有すると特定した直流電源装置6のBMU12に対して連結指示を示すコンタクト制御情報を出力し、かつこの直流電源装置6の双方向DC/DCコンバータ14に対して充電指示を示す制御情報を出力することで、この直流電源装置6の蓄電池11に対する充電を実行する(充電動作を実行する)。
In addition, although the power management device 9 is smaller than the planned charging power Wcp in the charge and discharge control processing, the power obtained by evenly dividing the differential power (= the predicted generated power Wgf-the predicted load power Wlf) into each storage battery 11 Charge it. In this charge / discharge control process, the power management device 9 outputs contact control information indicating a connection instruction to the BMU 12 of the DC power supply 6 identified as having the rechargeable storage battery 11, and the DC power supply 6. By outputting control information indicating a charging instruction to the bidirectional DC / DC converter 14, the storage battery 11 of the DC power supply device 6 is charged (a charging operation is performed).
また、電力管理装置9は、例えば、8時台においては、次に到来する9時台について、予測発電電力Wgfが合計電力Wsmと一致すると予測し、この予測した情報に基づき、この9時台において上記した第2処理内容での充放電制御処理および負荷機器制御処理を実行する。
Further, for example, at 8 o'clock, the power management apparatus 9 predicts that the predicted generated power Wgf matches the total power Wsm at the next 9 o'clock, and based on the predicted information, the 9 o'clock In the above, the charge / discharge control process and the load device control process with the second process content described above are executed.
すなわち、電力管理装置9は、図4に示すように、負荷機器制御処理においては、各DC/DCコンバータ5a,5bに対して、対応する負荷機器71a,71bで使用される負荷電圧VLa,VLbとなるようにバス電圧Vbsを変換して出力させつつ、負荷機器71a,71bに予測負荷電力Wlfa,Wlfbをそのまま供給させる(実負荷電力Wlfa,Wlfb)を供給させる)制御を実行する。また、電力管理装置9は、DC/DCコンバータ5cに対しては、バス電圧Vbsを変換して負荷電圧VLcを出力させる動作を停止させ、かつ負荷機器71cに対して、停止状態を維持させるという制御を実行する。
That is, as shown in FIG. 4, in the load device control process, power management device 9 applies load voltages VLa and VLb used by corresponding load devices 71a and 71b to DC / DC converters 5a and 5b. Control is performed to supply the predicted load powers Wlfa and Wlfb to the load devices 71a and 71b as they are (to supply the actual load powers Wlfa and Wlfb) while converting the bus voltage Vbs so as to be output. Further, the power management apparatus 9 causes the DC / DC converter 5 c to stop the operation of converting the bus voltage Vbs and outputting the load voltage VLc, and causes the load device 71 c to maintain the stopped state. Execute control.
また、電力管理装置9は、充放電制御処理においては、上記した第3処理内容での充放電制御処理のときと同様の制御を直流電源装置6に実行して、予定充電電力Wcpをそのまま充電させる(予定充電電力Wcpと同じ実充電電力(以下、実充電電力Wcpともいう)を充電させる)。
Further, in charge / discharge control processing, power management device 9 executes control similar to that in the charge / discharge control processing in the above-described third processing content to DC power supply 6, and charges planned charge power Wcp as it is. (The same actual charging power as the scheduled charging power Wcp (hereinafter, also referred to as the actual charging power Wcp) is charged).
また、電力管理装置9は、例えば、9時台~14時台においては、次に到来する10時台~15時台について、予測発電電力Wgfが合計電力Wsmよりも大きくなると予測して、この予測した情報に基づき、この10時台~15時台において上記した第1処理内容での充放電制御処理および負荷機器制御処理を実行する。
Also, for example, in the 9 o'clock to 14 o'clock range, the power management apparatus 9 predicts that the predicted generated power Wgf will be larger than the total power Wsm in the next 10 o'clock to 15 o'clock range. Based on the predicted information, the charge / discharge control process and the load device control process in the first process described above are executed in the 10 to 15 o'clock range.
すなわち、電力管理装置9は、図4に示すように、負荷機器制御処理においては、各DC/DCコンバータ5a,5bに対して、対応する負荷機器71a,71bで使用される負荷電圧VLa,VLbとなるようにバス電圧Vbsを変換して出力させつつ、負荷機器71a,71bに予測負荷電力Wlfa,Wlfbをそのまま供給させる(実負荷電力Wlfa,Wlfb)を供給させる)制御を実行する。また、電力管理装置9は、停止状態の負荷機器71cに対する制御を実行して負荷機器71cを動作状態に移行させて、かつDC/DCコンバータ5cに対して、負荷機器71cに上記の余剰電力(差分電力=予測発電電力Wgf-合計電力Wsm。図4において白抜き矢印で示す電力)を負荷電力Wlfcとして供給させる制御を実行する。このようにして余剰電力を負荷機器71cで消費させることにより、各蓄電池11に供給される電力を予定充電電力Wcpにすることが可能となる。また、電力管理装置9は、充放電制御処理においては、上記した第3処理内容での充放電制御処理のときと同様の制御を直流電源装置6に実行して、各蓄電池11に対して、予定充電電力Wcpと同じ電力値の実充電電力Wcpを充電することが可能となる。したがって、各蓄電池11の充電電流を最大電流値未満に抑えることが可能となる。
That is, as shown in FIG. 4, in the load device control process, power management device 9 applies load voltages VLa and VLb used by corresponding load devices 71a and 71b to DC / DC converters 5a and 5b. Control is performed to supply the predicted load powers Wlfa and Wlfb to the load devices 71a and 71b as they are (to supply the actual load powers Wlfa and Wlfb) while converting the bus voltage Vbs so as to be output. Further, the power management apparatus 9 executes control on the load device 71c in the stopped state to shift the load device 71c to the operating state, and the above-mentioned surplus power in the load device 71c with respect to the DC / DC converter 5c. The control is executed to supply the difference power = predicted power generation Wgf−total power Wsm (power indicated by a white arrow in FIG. 4) as the load power Wlfc. Thus, by causing the load device 71c to consume the surplus power, it is possible to make the power supplied to each storage battery 11 be the scheduled charging power Wcp. In addition, in the charge and discharge control process, the power management apparatus 9 executes the same control as that of the charge and discharge control process in the third process content described above on the DC power supply device 6. It becomes possible to charge the actual charging power Wcp having the same power value as the scheduled charging power Wcp. Therefore, the charging current of each storage battery 11 can be suppressed to less than the maximum current value.
以上のようにして、電力管理装置9は、日射期間における予測発電電力Wgfが合計電力Wsmよりも大きくなる期間においては、各蓄電池11に、対応する予定充電電力Wcpと同じ実充電電力Wcpが供給されるように、負荷機器71cに上記の差分電力(余剰電力)を負荷電力Wlfcとして供給して動作させることで、発電装置3bでの発電電力Wgbpを有効に使用して、各蓄電池11への充電電流の電流値を、最大電流値よりもできるだけ低くし得る可能性を高めつつ、日照期間のほぼ全域を使って各蓄電池11をほぼ満充電状態に移行させる。
As described above, the power management apparatus 9 supplies each storage battery 11 with the same actual charging power Wcp as the corresponding planned charging power Wcp in a period in which the predicted generated power Wgf in the solar radiation period becomes larger than the total power Wsm. As described above, by supplying the above-mentioned differential power (surplus power) to the load device 71c as the load power Wlfc and operating it, the generated power Wgbp of the power generation device 3b is effectively used to the storage batteries 11 While increasing the possibility that the current value of the charging current can be lowered as much as possible, the storage batteries 11 are almost fully charged using almost the entire sunshine period.
また、電力管理装置9は、各時間(周期T)において、上記した第2取得処理、第3取得処理、充電電力算出処理、発電電力予測処理、負荷電力予測処理および電力比較処理を実行して、次に到来する周期Tにおいて実行する充放電制御処理および負荷機器制御処理での制御内容を規定するための情報(到来する周期Tでの予定充電電力Wcp、この周期Tでの予測発電電力Wgf、およびこの周期Tでの予測負荷電力Wlfと共に、この周期Tが日射期間に含まれているか否かの情報、予測発電電力Wgfと合計電力Wsmとの比較結果を示す情報、および予測負荷電力Wlfの総和と予測発電電力Wgfとの比較結果を示す情報)を取得する。
Further, the power management apparatus 9 executes the second acquisition process, the third acquisition process, the charge power calculation process, the generated power prediction process, the load power prediction process, and the power comparison process described above at each time (period T). Information for defining control contents in charge / discharge control processing and load device control processing to be executed in next coming cycle T (planned charging power Wcp in coming cycle T, predicted generated power Wgf in this cycle T Together with predicted load power Wlf at this cycle T, information on whether or not this cycle T is included in the solar radiation period, information indicating the comparison result of predicted generated power Wgf and total power Wsm, and predicted load power Wlf Information indicating the comparison result of the sum of the above and the predicted generated power Wgf).
このように、この直流給電システム1では、電力管理装置9は、次の周期Tが到来する以前に(この周期Tの直前の周期Tに)実行した電力比較処理での比較の結果が、予測発電電力Wgfが合計電力Wsm(=予測負荷電力Wlfa,Wlfbの総和+各蓄電池11での予定充電電力Wcpの総和)よりも大きいとの結果のとき(予測発電電力Wgfが合計電力Wsmよりも大きいと判定したとき)には、次の周期Tにおいて、充放電制御処理および負荷機器制御処理での制御内容を上記の第1制御内容に規定して実行する。具体的には、電力管理装置9は、次の周期Tにおいて、双方向DC/DCコンバータ14に対して、直流バス2から対応する蓄電池11へ予定充電電力Wcpと同じ実充電電力Wcp分だけ電力供給させて蓄電池11を充電させる充放電制御処理を実行し、各DC/DCコンバータ5a,5bに対して、対応する負荷機器71a,71bに予測負荷電力Wlfa,Wlfbと同じ実負荷電力Wlfa,Wlfbを供給させると共に、DC/DCコンバータ5cに対して、対応する負荷機器71cに予測発電電力Wgfと合計電力Wsmとの差分電力分を負荷電力Wlfcとして供給して作動させる負荷機器制御処理を実行する。
As described above, in the DC power feeding system 1, the power management apparatus 9 predicts the result of the comparison in the power comparison process executed before the next cycle T (in the cycle T immediately before this cycle T). If the result is that the generated power Wgf is larger than the total power Wsm (= the sum of the predicted load powers Wlfa and Wlfb + the total of the scheduled charging power Wcp in each storage battery 11) (the predicted generated power Wgf is larger than the total power Wsm In the next cycle T, when it is determined that the control content in the charge / discharge control processing and the load device control processing is defined as the first control content described above, it is executed. Specifically, in the next cycle T, power management device 9 supplies power to bi-directional DC / DC converter 14 from direct current bus 2 to corresponding storage battery 11 for the same actual charging power Wcp as planned charging power Wcp. The charge / discharge control process of charging the storage battery 11 by supplying it is executed, and the same actual load power Wlfa, Wlfb as the predicted load power Wlfa, Wlfb is applied to the corresponding load devices 71a, 71b for each DC / DC converter 5a, 5b. Is executed to supply the DC / DC converter 5c with the difference power between the predicted generated power Wgf and the total power Wsm as the load power Wlfc to operate the corresponding load device 71c. .
したがって、この直流給電システム1によれば、予測発電電力Wgfが合計電力Wsmよりも大きいときに、予測発電電力Wgfに生じる余剰電力(予測発電電力Wgfと合計電力Wsmとの差分電力)を、通常は停止状態にある負荷機器71cに供給して動作させるため、発電装置3bでの発電を抑制することなく、発電装置3bでの発電電力を有効に活用することができる。また、各蓄電池11に供給される電力を予定充電電力Wcpと同じに抑えることができる結果、蓄電池11の充電に割り振られる電力が大きくなり過ぎること(つまり、充電電流が最大電流値またはその近傍の大きな電流値になること)を回避でき、これによって蓄電池11の劣化が早まるという事態の発生を回避することができる。これにより、蓄電池11の劣化を遅くすることができる。
Therefore, according to this DC feeding system 1, the surplus power (the difference power between the predicted generated power Wgf and the total power Wsm) generated in the predicted generated power Wgf when the predicted generated power Wgf is larger than the total power Wsm is Can be supplied to the load device 71c in the stopped state and operated, so that the generated power in the power generation device 3b can be effectively used without suppressing the power generation in the power generation device 3b. Further, the power supplied to each storage battery 11 can be reduced to the same as the planned charging power Wcp, so that the power allocated to charging the storage battery 11 becomes too large (that is, the charging current is at or near the maximum current value). It can be avoided that the current value becomes large), thereby avoiding the occurrence of a situation where the deterioration of the storage battery 11 is accelerated. Thereby, deterioration of the storage battery 11 can be delayed.
また、この直流給電システム1によれば、直流バス2に電力を供給可能に構成された揚水式水力発電装置としての発電装置3cの揚水ポンプを負荷機器71cとしたことにより、予測発電電力Wgfに生じる余剰電力で発電装置3cに蓄電動作させることが可能となるため、発電装置3bでの発電電力や蓄電池11からの放電電力に不足が生じたときであっても、発電装置3cを発電動作させることで、直流バス2に電力を供給すること、ひいては、負荷機器71a,71bへの予測負荷電力Wlfa,Wlfbの供給を継続させることができる。また、上記の例では、気象予測情報Dwf等を取得するための取得時間が、一定の周期Tで到来する構成としたが、この構成に限定されるものではなく、異なる時間間隔で到来する構成(例えば、自然再生エネルギーを利用した発電装置3bが動作する時間帯では短い時間間隔で到来し、発電装置3bが動作を停止する時間帯ではより長い時間間隔で到来する構成)であってもよい。
Further, according to the DC power feeding system 1, the pumping equipment of the power generation device 3c as the pumping type hydroelectric power generation device configured to be able to supply power to the DC bus 2 is used as the load equipment 71c. Since it is possible to cause the power generation device 3c to perform the storage operation with the generated surplus power, the power generation device 3c is caused to perform the power generation operation even when the power generated by the power generation device 3b or the discharge power from the storage battery 11 is insufficient. As a result, it is possible to supply power to the DC bus 2 and to continue supply of the predicted load powers Wlfa and Wlfb to the load devices 71a and 71b. In the above example, although the acquisition time for acquiring the weather prediction information Dwf and the like arrives at a constant period T, the present invention is not limited to this configuration, and a configuration that arrives at different time intervals (For example, it may be configured to arrive at a short time interval in a time zone in which the power generation device 3b using natural regenerative energy operates, and to arrive at a longer time interval in a time zone in which the power generation device 3b stops operation) .
また、上記の直流給電システム1では、蓄電池111の充電電力に基づいて動作して、BMU12、コンタクタ13、および電力管理装置9へ動作用電圧Vopを供給するDC/DCコンバータ7を備える構成を採用しているが、これに限定されるものではない。例えば、発電装置3bが発電を停止してから発電を再開するまでの間に、直流電源装置6によって直流バス2のバス電圧Vbsを所定の電圧範囲(DC350V以上DC400V以下の電圧範囲)内に十分に維持し得る構成のとき(具体的には、各蓄電池11の容量が十分に大きく、充電電圧Vbaが使用電圧範囲の下限値を下回ることのない構成のとき)には、BMU12およびコンタクタ13は、対応する蓄電池11の充電電圧Vbaで動作し、また電力管理装置9は、各蓄電池11のうちの少なくとも1つの蓄電池11の充電電圧Vbaで動作する構成として、DC/DCコンバータ7の配設を省略することもできる。
Further, the DC power supply system 1 described above operates on the basis of the charging power of the storage battery 11 1, BMU12, contactors 13, and a configuration including the DC / DC converter 7 supplies an operating voltage Vop to the power management apparatus 9 Although employed, it is not limited to this. For example, the bus voltage Vbs of the DC bus 2 is sufficiently set within a predetermined voltage range (voltage range of 350 V or more and 400 V or less of DC) by the DC power supply 6 after the power generation device 3b stops power generation and resumes power generation. BMU 12 and contactor 13 are configured such that the capacity of each storage battery 11 is sufficiently large and charging voltage Vba does not fall below the lower limit of the working voltage range. The power management device 9 operates with the charging voltage Vba of at least one of the storage batteries 11 and operates the charging voltage Vba of the corresponding storage battery 11. It can be omitted.
本願発明によれば、自然エネルギー発電装置での発電を抑制することなく有効に活用できるため、本発明は、自然エネルギー発電装置を有する独立型の直流給電システムに広く適用することができる。
According to the present invention, the present invention can be widely applied to a stand-alone DC power supply system having a natural energy power generation device because the present invention can be effectively used without suppressing power generation in the natural energy power generation device.
1 直流給電システム
2 直流バス
3 発電装置
4 第1コンバータ
5 第2コンバータ
8 温度計測部
9 電力管理装置
11 蓄電池
14 双方向DC/DCコンバータ
71 負荷機器
Drg1 発電ログ
Drg2 負荷ログ
Dwf 気象予測情報
VLa,VLb 負荷電圧 DESCRIPTION OFSYMBOLS 1 DC electric power feeding system 2 DC bus 3 Electric power generation apparatus 4 1st converter 5 2nd converter 8 Temperature measurement part 9 Power management apparatus 11 Storage battery 14 Bidirectional DC / DC converter 71 Load apparatus Drg1 Power generation log Drg2 Load log Dwf Weather forecast information VLa, VLb load voltage
2 直流バス
3 発電装置
4 第1コンバータ
5 第2コンバータ
8 温度計測部
9 電力管理装置
11 蓄電池
14 双方向DC/DCコンバータ
71 負荷機器
Drg1 発電ログ
Drg2 負荷ログ
Dwf 気象予測情報
VLa,VLb 負荷電圧 DESCRIPTION OF
Claims (1)
- 直流給電の母線となる直流バスと、
自然エネルギーに基づいて発電する発電装置と、
前記発電装置の発電電力を前記直流バスに供給する第1コンバータと、
蓄電池と、
前記蓄電池と前記直流バスとの間に接続されて、当該直流バスに供給されている前記発電電力と当該蓄電池の充電電力とを双方向に電力変換して、当該直流バスから当該蓄電池へ、または当該蓄電池から当該直流バスへ電力供給する双方向コンバータと、
前記直流バスに供給されている前記発電電力および前記充電電力のうちの少なくとも一方の直流電力を電圧変換して負荷機器に供給する第2コンバータと、
前記発電装置が動作したときの気象状況および発電電力を含む発電ログ、並びに前記負荷機器が動作したときの気象状況および負荷電力を含む負荷ログを取得すると共に、前記蓄電池の充電可能電力および気象予測情報を予め規定された取得時間に順次取得する制御部とを備え、
前記制御部は、前記充電可能電力および前記気象予測情報を取得する都度、次に到来する前記取得時間までの期間における前記蓄電池に対する予定充電電力を前記充電可能電力および前記気象予測情報に基づいて算出する充電電力算出処理、前記期間における前記発電装置での予測発電電力を前記発電ログおよび前記気象予測情報に基づいて算出する発電電力予測処理、前記期間における前記負荷機器での予測負荷電力を前記負荷ログおよび前記気象予測情報に基づいて算出する負荷電力予測処理、並びに前記予測負荷電力および前記予定充電電力の合計電力と前記予測発電電力とを比較する電力比較処理を実行し、
前記電力比較処理において前記予測発電電力が前記合計電力よりも大きいと判定したときには、前記期間において、前記双方向コンバータに対して前記蓄電池へ前記予定充電電力分を電力供給させる充放電制御処理と、前記第2コンバータに対して、前記負荷機器のうちの前記予測負荷電力を算出した負荷機器へ当該予測負荷電力分を電力供給させると共に、前記負荷機器のうちの停止状態の負荷機器へ前記予測発電電力と前記合計電力との差分電力分を電力供給させる負荷機器制御処理を実行する直流給電システム。 A DC bus which is a bus bar of DC power supply,
A generator that generates electricity based on natural energy,
A first converter for supplying power generated by the power generation device to the DC bus;
A storage battery,
Connected between the storage battery and the DC bus, the generated power supplied to the DC bus and the charging power of the storage battery are bi-directionally converted to power from the DC bus to the storage battery, or A bi-directional converter that supplies power from the storage battery to the DC bus;
A second converter for converting the DC power of at least one of the generated power and the charging power supplied to the DC bus, and supplying the converted power to a load device;
A power generation log including weather conditions and generated power when the power generating apparatus operates, and a load log including weather conditions and load power when the load device operates, and chargeable power and weather prediction of the storage battery And a control unit that sequentially acquires information at a predetermined acquisition time,
The control unit calculates, on the basis of the chargeable power and the weather prediction information, the scheduled charging power for the storage battery in the period up to the acquisition time that arrives next, each time the chargeable power and the weather prediction information are acquired. Charge power calculation processing, power generation prediction processing for calculating predicted power generation of the power generation apparatus in the period based on the power generation log and the weather prediction information, predicted load power of the load device in the period during the load Load power prediction processing calculated based on a log and the weather prediction information, and power comparison processing for comparing the total power of the predicted load power and the planned charging power with the predicted generated power
Charge / discharge control processing for supplying the planned charging power to the storage battery with respect to the bi-directional converter during the period when it is determined in the power comparison processing that the predicted generated power is larger than the total power; The predicted load power is supplied to the load device for which the predicted load power of the load devices has been calculated with respect to the second converter, and the predicted power generation is performed on the load devices in the stopped state of the load devices. A DC power supply system that executes a load device control process of supplying power of a difference power between power and the total power.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/040967 WO2019097582A1 (en) | 2017-11-14 | 2017-11-14 | Dc power supply system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/040967 WO2019097582A1 (en) | 2017-11-14 | 2017-11-14 | Dc power supply system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019097582A1 true WO2019097582A1 (en) | 2019-05-23 |
Family
ID=66538603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/040967 WO2019097582A1 (en) | 2017-11-14 | 2017-11-14 | Dc power supply system |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019097582A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008017652A (en) * | 2006-07-07 | 2008-01-24 | Mitsubishi Electric Corp | Power supply system |
JP2008148442A (en) * | 2006-12-08 | 2008-06-26 | Daiwa House Ind Co Ltd | Charging/discharging control system of power storage section in natural energy utilizing power generation system |
WO2011016273A1 (en) * | 2009-08-04 | 2011-02-10 | 日本電気株式会社 | Energy system |
WO2013128731A1 (en) * | 2012-02-27 | 2013-09-06 | 株式会社 日立製作所 | Independent power supply system |
JP2016189691A (en) * | 2015-03-27 | 2016-11-04 | 株式会社九電工 | Power supply system using power generation facility utilizing renewable energy |
-
2017
- 2017-11-14 WO PCT/JP2017/040967 patent/WO2019097582A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008017652A (en) * | 2006-07-07 | 2008-01-24 | Mitsubishi Electric Corp | Power supply system |
JP2008148442A (en) * | 2006-12-08 | 2008-06-26 | Daiwa House Ind Co Ltd | Charging/discharging control system of power storage section in natural energy utilizing power generation system |
WO2011016273A1 (en) * | 2009-08-04 | 2011-02-10 | 日本電気株式会社 | Energy system |
WO2013128731A1 (en) * | 2012-02-27 | 2013-09-06 | 株式会社 日立製作所 | Independent power supply system |
JP2016189691A (en) * | 2015-03-27 | 2016-11-04 | 株式会社九電工 | Power supply system using power generation facility utilizing renewable energy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2587623B1 (en) | Dc power distribution system | |
EP3206276B1 (en) | Energy storage system and management method thereof | |
US8901876B2 (en) | Charge/discharge determining apparatus and computer-readable medium | |
US9331512B2 (en) | Power control device and power control method for measuring open-circuit voltage of battery | |
US10084314B2 (en) | Storage battery equipment | |
JP5738212B2 (en) | Power storage type power generation system | |
US11791501B2 (en) | Direct current power supplying system | |
US9876391B2 (en) | Power conversion apparatus, control system, and control method | |
WO2016185660A1 (en) | Distributed power supply system, and control method of distributed power supply system | |
US20200366101A1 (en) | Energy storage system | |
US10044191B2 (en) | Method for operating a battery converter and bidirectional battery converter | |
US20190052085A1 (en) | Power management system | |
WO2015111144A1 (en) | Power supply system and energy management system used in same | |
CN102097820A (en) | Solar peak and valley power regulating system | |
JP5946983B1 (en) | Supply and demand control device, supply and demand control method | |
JP6386536B2 (en) | Supply and demand control device, supply and demand control method | |
JP6677186B2 (en) | DC power supply system | |
JP2016015803A (en) | Load leveler | |
WO2019097582A1 (en) | Dc power supply system | |
WO2019087322A1 (en) | Dc power feeding system | |
JP2018038157A (en) | Storage battery system and control method for storage battery | |
WO2020161766A1 (en) | Direct-current power supply system | |
JP2019030162A (en) | Distribution-type power supply system | |
JP2019030161A (en) | Distribution-type power supply system | |
JP6090532B2 (en) | Supply and demand control device, supply and demand control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17931881 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17931881 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |