WO2016185660A1 - Distributed power supply system, and control method of distributed power supply system - Google Patents

Distributed power supply system, and control method of distributed power supply system Download PDF

Info

Publication number
WO2016185660A1
WO2016185660A1 PCT/JP2016/001981 JP2016001981W WO2016185660A1 WO 2016185660 A1 WO2016185660 A1 WO 2016185660A1 JP 2016001981 W JP2016001981 W JP 2016001981W WO 2016185660 A1 WO2016185660 A1 WO 2016185660A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
natural energy
output
engine generator
Prior art date
Application number
PCT/JP2016/001981
Other languages
French (fr)
Japanese (ja)
Inventor
田米 正樹
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016185660A1 publication Critical patent/WO2016185660A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells

Definitions

  • the present invention relates to a distributed power supply system and the like for supplying power to a load.
  • a secondary battery is connected between a power generation facility and a load, and excess or deficiency of generated power and load demand power is compensated by charge and discharge of the secondary battery to cause the power generation facility to operate at rated output for high fuel efficiency
  • the power supply system which obtains is proposed (refer to patent documents 1).
  • a distributed power supply system is a distributed power supply system that supplies power to a load, wherein the natural energy generation apparatus generates power using natural energy;
  • a power supply circuit for generating power of a predetermined voltage from power generated by a natural energy power generation apparatus, a storage battery for charging the power obtained from the power supply circuit and discharging the charged power, the power supply circuit and the storage battery
  • a natural energy power supply device comprising: an inverter for converting the electric power obtained from the electric power into an AC electric power, the natural energy power supply device outputting the electric power converted by the inverter to a power line to which the load is connected;
  • An engine generator that generates electric power using the engine and outputs the electric power generated using the internal combustion engine to the power line;
  • An output amount of the natural energy power supply device such that an output amount of the engine generator is maintained within a predetermined limited range as a range for making the power generation efficiency of the power generator higher than a predetermined power generation efficiency,
  • a controller that controls an output of
  • a control method of a distributed power supply system is a control method of a distributed power supply system supplying power to a load, wherein the distributed power supply system generates power using natural energy.
  • An energy generation apparatus a power supply circuit generating electric power of a predetermined voltage from the electric power generated by the natural energy generation apparatus, and a storage battery charged with the electric power obtained from the power supply circuit and discharged from the electric power.
  • a natural energy power supply device comprising the power supply circuit and an inverter for converting power obtained from the storage battery into AC power, wherein the natural energy power supply outputs the power converted by the inverter to a power line to which the load is connected.
  • a control method of the distributed power supply system wherein the control method of the distributed power supply system includes the engine generator within a limited range predetermined as a range for making the power generation efficiency of the engine generator higher than a predetermined power generation efficiency.
  • the distributed power supply system and the like can maintain high power generation efficiency of the engine generator while suppressing loss of power generated by the engine generator such as a diesel generator.
  • FIG. 1 is a block diagram showing the configuration of the distributed power supply system according to the embodiment.
  • FIG. 2 is a graph showing the output amount of the engine generator in the embodiment.
  • FIG. 3 is a graph showing the power generation efficiency of the engine generator in the embodiment.
  • FIG. 4 is a graph showing the time change of the output amount of the natural energy power supply device and the engine generator in the embodiment.
  • FIG. 5 is a graph showing the time change of the output amount of the engine generator in the embodiment.
  • FIG. 6 is a graph showing the time change of the power demand amount and the power supply amount in the embodiment.
  • FIG. 7 is a flowchart showing the operation of the natural energy power supply device according to the embodiment.
  • FIG. 8 is a flow chart showing the operation of the engine generator in the embodiment.
  • FIG. 9 is a flowchart showing the operation of the controller in the embodiment.
  • FIG. 10 is a block diagram showing the configuration of the distributed power supply system in the reference example.
  • FIG. 11 is a graph showing temporal changes in output amounts of the natural energy power supply and the engine generator in the reference example.
  • FIG. 12 is a flowchart showing the operation of the controller in the first modification of the embodiment.
  • FIG. 13 is a graph showing temporal changes in output amounts of the natural energy power supply and the engine generator according to the first modification of the embodiment.
  • FIG. 14 is a graph showing the time change of the output amount of the engine generator in the first modification of the embodiment.
  • FIG. 15 is a graph showing the time change of the remaining capacity in the first modification of the embodiment.
  • FIG. 16 is a graph showing the time change of the amount of power generation in the second modification of the embodiment.
  • FIG. 17 is a graph showing temporal changes in output amounts of the natural energy power supply and the engine generator according to the third modification of the embodiment.
  • FIG. 18 is a graph showing the time change of the power demand amount and the power supply amount in the third modification of the embodiment.
  • FIG. 1 is a block diagram showing a distributed power supply system according to the present embodiment.
  • the distributed power supply system 100 shown in FIG. 1 includes a natural energy power supply 110, an engine generator 120, and a controller 130 to supply power to the load 200.
  • the natural energy power supply device 110 includes a natural energy power generation device 111, a power supply circuit 112, a storage battery 113, and an inverter 114. Moreover, the natural energy power supply device 110 outputs power to the power line to which the load 200 is connected.
  • the natural energy power generation apparatus 111 generates electric power using natural energy such as solar light, wind power or geothermal heat.
  • the natural energy power generation device 111 may be a solar cell that generates electric power using sunlight, or may be a solar power generation device including a solar cell.
  • the amount of power generation of the natural energy power generation apparatus 111 fluctuates depending on the state of natural energy. Therefore, the fluctuation of the power generation amount of the natural energy power generation apparatus 111 is large.
  • the natural energy power generation apparatus 111 generates DC power and outputs the generated DC power.
  • the power supply circuit 112 is a power supply circuit that generates power of a predetermined voltage, and specifically, is a DC power supply circuit that generates DC power of a predetermined voltage.
  • the power supply circuit 112 may be a DC-DC converter that generates DC power of a predetermined voltage by converting DC power into DC power of a predetermined voltage.
  • the power supply circuit 112 may be a charger that suppresses DC current and generates DC power of a predetermined voltage whose DC current is suppressed.
  • the power supply circuit 112 generates DC power of a predetermined voltage (for example, DC power of 12 V) from DC power (for example, DC power of 24 V) generated by the natural energy power generation apparatus 111.
  • a predetermined voltage for example, DC power of 12 V
  • DC power for example, DC power of 24 V
  • the predetermined voltage may not necessarily be a constant voltage.
  • the predetermined voltage may be, for example, a voltage included in a predetermined voltage range, such as a voltage included in a range of 11V to 13V.
  • Storage battery 113 is a secondary battery for charging and discharging electric power.
  • the storage battery 113 is charged with the power generated by the power supply circuit 112. Further, the power charged in storage battery 113 is discharged from storage battery 113.
  • the storage battery 113 has a role of storing the power generated by the natural energy power generation apparatus 111 having a large fluctuation in the amount of power generation, and stably supplying power according to the demand.
  • the inverter 114 converts power into alternating current power.
  • inverter 114 converts the power (DC power) obtained from power supply circuit 112 and storage battery 113 into AC power, and outputs AC power to the power line to which load 200 is connected.
  • the power generated by the power supply circuit 112 is larger than the power to be converted by the inverter 114, among the power generated by the power supply circuit 112, the power to be converted by the inverter 114 is input to the inverter 114, The remaining power is charged to storage battery 113. If the power generated by power supply circuit 112 is smaller than the power to be converted by inverter 114, the power corresponding to the shortage is discharged from storage battery 113 and the power generated by power supply circuit 112 and discharged from storage battery 113 Power is input to the inverter 114.
  • the power generated by the power supply circuit 112 is equal to the power to be converted by the inverter 114
  • the power generated by the power supply circuit 112 is input to the inverter 114.
  • the power input to the inverter 114 is converted to AC power and output.
  • the inverter 114 may be a bidirectional inverter. In this case, the inverter 114 converts the power (AC power) obtained from the power line to which the load 200 is connected into DC power.
  • the engine generator 120 is connected to the power line to which the load 200 is connected, and the inverter 114 converts the power obtained from the engine generator 120 via the power line into direct current power. Then, inverter 114 charges storage battery 113 with direct current power. Thereby, the surplus power of the engine generator 120 with respect to the demand power of the load 200 is charged to the storage battery 113.
  • the inverter 114 may also operate as a voltage source that generates a voltage and outputs the power of the generated voltage. That is, the inverter 114 may operate as a voltage source inverter. Thus, the inverter 114 can perform a self-sustaining operation without depending on other power systems or the like.
  • the inverter 114 may operate as a virtual synchronous generator by simulating the output characteristics of the synchronous generator and outputting electric power. Specifically, the inverter 114 calculates the phase of the rotor in the virtual synchronous generator based on the output amount of the inverter 114, and uses the calculated phase as the phase of the AC voltage to output AC power.
  • the inverter 114 changes the difference between the output amount of the power actually output by the inverter 114 and the output amount of the power to be output by the inverter 114 as a change in the angular velocity of the rotor in the virtual synchronous generator.
  • the angular velocity of the rotor is calculated using the quantity as a value.
  • the inverter 114 integrates the angular velocity of the rotor to calculate the angular phase of the rotor.
  • the inverter 114 uses the calculated angular phase as the phase of the voltage of the AC power.
  • the inverter 114 can operate like a synchronous generator. Then, in parallel operation of the inverter 114 and the engine generator 120, the inverter 114 can output power stably in synchronization with the engine generator 120.
  • the inverter 114 may also output power according to the droop control. That is, the inverter 114 may output AC power according to the correspondence between the increase in the output amount and the decrease in the frequency or the voltage (at least one of the frequency and the voltage). Specifically, the inverter 114 may adapt the output amount and the frequency or voltage to a predetermined correspondence. More specifically, the inverter 114 may match the output amount with the frequency or voltage in a predetermined correspondence.
  • the engine generator 120 may have an output characteristic in which the frequency or voltage of the AC power output by the engine generator 120 decreases as the output amount of the AC power output by the engine generator 120 increases.
  • the inverter 114 may detect the frequency or voltage of the AC power output from the engine generator 120 from the power line to which the engine generator 120 is connected. Then, the inverter 114 may output power corresponding to the output amount associated with the detected frequency or voltage.
  • the output amount of the inverter 114 increases with the increase of the output amount of the engine generator 120. Therefore, the inverter 114 and the engine generator 120 can output power in coordination with the power demand of the load 200.
  • the engine generator 120 may have an output characteristic in which the output amount of AC power output from the engine generator 120 increases with the decrease in frequency or voltage of AC power output from the engine generator 120. is there.
  • the inverter 114 may lower the frequency or voltage of the AC power output from the inverter 114 as the output amount of AC power output from the inverter 114 increases.
  • the inverter 114 and the engine generator 120 can output power in coordination with the power demand of the load 200.
  • the inverter 114 can adjust the output amount and the voltage or frequency based on a predetermined correspondence relationship by the droop control, and can output the power in cooperation with the engine generator 120.
  • the increase in the output amount is associated with the decrease in frequency or voltage in the above description, the increase in the output amount may be associated with the increase in frequency or voltage.
  • Engine generator 120 generates power using an internal combustion engine (not shown).
  • the engine generator 120 is a diesel engine generator, a gas engine generator, a gas turbine engine generator, or the like.
  • the engine generator 120 outputs power to the power line to which the load 200 is connected.
  • the controller 130 controls the amount of output of the natural energy power supply 110 and the amount of output of the engine generator 120. That is, the controller 130 adjusts the output amount of the natural energy power supply device 110 and the output amount of the engine generator 120. Then, the controller 130 adapts the total power demand, which is the sum of the power demand of the natural energy power supply 110 and the power demand of the engine generator 120, to the power demand of the load 200.
  • the controller 130 controls the output amount of the natural energy power supply 110 and the output amount of the engine generator 120 by transmitting output command values to the natural energy power supply 110 and the engine generator 120. .
  • the controller 130 transmits an output command value indicating the output amount of the natural energy power supply device 110 to the natural energy power supply device 110 via the communication line.
  • the natural energy power supply device 110 receives an output command value, and outputs power according to the output amount indicated by the output command value. Thereby, the controller 130 controls the output amount of the natural energy power supply device 110.
  • the controller 130 transmits an output command value indicating the output amount of the engine generator 120 to the engine generator 120 via the communication line.
  • the engine generator 120 receives the output command value, and outputs power according to the output amount indicated by the output command value. Thereby, the controller 130 controls the output amount of the engine generator 120.
  • the controller 130 may transmit the output command value to the inverter 114 included in the natural energy power supply device 110. Then, the inverter 114 may receive the output command value and output power in accordance with the output amount indicated by the output command value. Thereby, the controller 130 can control the output amount of the natural energy power supply device 110.
  • the controller 130 may control the other by controlling one of the output amount of the natural energy power supply 110 and the output amount of the engine generator 120.
  • the controller 130 controls the output amount of the natural energy power supply 110 by transmitting an output command value to the natural energy power supply 110. Then, the engine generator 120 outputs power corresponding to the difference between the output amount (power supply amount) of the natural energy power supply device 110 and the power demand amount of the load 200. Specifically, the engine generator 120 outputs a shortage of power that has not been filled with the power supply amount of the natural energy power supply 110 with respect to the power demand of the load 200.
  • the controller 130 can control the amount of output of the engine generator 120 by controlling the amount of output of the natural energy power supply device 110.
  • the controller 130 maintains the output amount of the natural energy power supply 110 within the output allowable range of the natural energy power supply 110.
  • the output allowable range of the natural energy power supply device 110 is determined based on the capabilities of the storage battery 113 and the inverter 114.
  • the controller 130 maintains the output amount of the engine generator 120 within a predetermined limit range as a range where high power generation efficiency can be obtained in the engine generator 120. Thereby, in the engine generator 120, the state where the power generation efficiency is high is maintained.
  • the controller 130 may be, for example, a dedicated or general-purpose information processing circuit. Also, the controller 130 may be a processor or a computer including a processor.
  • the load 200 is one or more electrical devices that consume power.
  • the load 200 is connected to a power line to which the natural energy power supply 110 and the engine generator 120 are connected. Then, the power output from the natural energy power supply 110 and the engine generator 120 is supplied to the load 200.
  • the electric power demand amount of the load 200 basically, the electric power demand amount larger than the lower limit of the restriction range with respect to the output amount of the engine generator 120 is assumed.
  • FIG. 2 is a graph showing the output of the engine generator 120 shown in FIG.
  • the maximum output amount and the minimum output amount are predetermined as ratings.
  • the maximum output amount is the maximum output amount in the output allowable range
  • the minimum output amount is the minimum output amount in the output allowable range.
  • the maximum output amount is 10 kW and the minimum output amount is 0 kW.
  • the maximum output amount and the minimum output amount of the engine generator 120 are not limited to this example, and may be other values.
  • the limited range shown in FIG. 2 is a range in which the controller 130 maintains the amount of output of the engine generator 120.
  • the upper limit of the limit range is lower than the maximum output amount, and the lower limit of the limit range is higher than the minimum output amount.
  • the limited range is a range predetermined as a range for making the power generation efficiency of the engine generator 120 higher than a predetermined power generation efficiency.
  • the predetermined power generation efficiency may be, for example, an average of the power generation efficiency of the engine generator 120.
  • the predetermined power generation efficiency may not be defined as a specific numerical value, and may be, for example, the power generation efficiency at 60% of the maximum output amount.
  • the limited range may be a range in which the power generation efficiency is estimated to be high based on the maximum output amount. Specifically, when it is assumed that the power generation efficiency of the engine generator 120 is higher than a predetermined power generation efficiency (for example, the power generation efficiency at the maximum power amount) in the range of 60% to 80% of the maximum power amount
  • the limited range may be in the range of 60% to 80% of the maximum output amount.
  • the limited range may be a range defined as the vicinity of the output amount at which the maximum power generation efficiency can be obtained, such as 10% before and after the output amount at which the maximum power generation efficiency can be obtained.
  • the upper limit of the limit range is 8 kW
  • the lower limit of the limit range is 6 kW.
  • the upper limit and the lower limit of the limit range are not limited to this example, and may be other values.
  • FIG. 3 is a graph showing the power generation efficiency of the engine generator 120 shown in FIG.
  • the power generation efficiency of the engine generator 120 increases.
  • the maximum power generation efficiency can be obtained with an output of 7 kW.
  • the power generation efficiency at a maximum output of 10 kW is about 30%.
  • a power generation efficiency of 40% or more can be obtained with an output amount of 6 kW to 8 kW included in the restricted range.
  • the limited range is defined so that high power generation efficiency can be obtained in engine generator 120.
  • FIG. 4 is a graph showing temporal changes in the output amounts of the natural energy power supply device 110 and the engine generator 120 shown in FIG.
  • the output amount of the engine generator 120 is stacked on the output amount of the natural energy power supply device 110. That is, FIG. 4 shows the total output amount of the output amount of the natural energy power supply device 110 and the output amount of the engine generator 120.
  • the load 200 is supplied with power corresponding to this total output amount.
  • the controller 130 controls the output of the natural energy power supply 110 so that the total output of the natural energy power supply 110 and the output of the engine generator 120 match the power demand of the load 200, and the engine The amount of output of the generator 120 is controlled. In addition, the controller 130 maintains the output amount of the natural energy power supply 110 within the output allowable range of the natural energy power supply 110, and the engine generator within a predetermined limited range where high power generation efficiency can be obtained in the engine generator 120. Maintain an output of 120.
  • the upper limit of the allowable output range of the natural energy power supply 110 is 2 kW
  • the lower limit of the allowable output range of the natural energy power supply 110 is 0 kW. Therefore, the controller 130 maintains the output amount of the natural energy power supply 110 within the range of 0 kW to 2 kW.
  • the upper limit and the lower limit of the output allowable range of the natural energy power supply device 110 are not limited to this example, and may be other values.
  • a negative output amount may be used as an output amount of the natural energy power supply device 110.
  • the negative output amount corresponds to the amount of power that the inverter 114 converts from AC power to DC power, and corresponds to the amount of power that the inverter 114 charges the storage battery 113. Therefore, when the inverter 114 is a bidirectional inverter, the lower limit of the output allowable range of the natural energy power supply 110 may be a negative output amount.
  • FIG. 5 is a graph showing the time change of the output amount of the engine generator 120 shown in FIG.
  • the output amount of the engine generator 120 shown in FIG. 5 corresponds to the output amount of the engine generator 120 shown in FIG.
  • the output amount of the engine generator 120 is maintained within a predetermined limit range.
  • the controller 130 maintains the output of the engine generator 120 within the limited range of 6 kW to 8 kW.
  • FIG. 6 shows the power demand of the load 200 shown in FIG. 1, the power supply of the natural energy power supply 110 shown in FIG. 1, and the power supply of the engine generator 120 shown in FIG. It is a graph which shows a time change.
  • the power supply amount of the natural energy power supply device 110 shown in FIG. 6 corresponds to the output amount of the natural energy power supply device 110 shown in FIG. 4.
  • the power supply amount of the engine generator 120 shown in FIG. 6 corresponds to the output amount of the engine generator 120 shown in FIG.
  • the power demand of the load 200 shown in FIG. 6 corresponds to the sum of the power supply of the natural energy power supply 110 and the power supply of the engine generator 120. That is, the power demand of the load 200 corresponds to the total output of the natural energy power supply 110 and the output of the engine generator 120.
  • the controller 130 maintains the output amount (power supply amount) of the engine generator 120 within a predetermined limit range. In addition, the controller 130 maintains the output amount (power supply amount) of the natural energy power supply device 110 within the output allowable range of the natural energy power supply device 110. Then, the controller 130 matches the total output amount of the output amount of the natural energy power supply 110 and the output amount of the engine generator 120 with the power demand amount of the load 200.
  • the controller 130 maintains the output of the natural energy power supply 110 within the range of 0 kW to 2 kW, and maintains the output of the engine generator 120 within the range of 6 kW to 8 kW. Then, the controller 130 matches the total output amount of the output amount of the engine generator 120 and the output amount of the natural energy power supply device 110 with the power demand of the load 200 in the range from 6 kW to 10 kW.
  • the controller 130 distributes the total output amount to the power demand of the load 200 to the natural energy power supply 110 and the engine generator 120 according to the output allowable range of the natural energy power supply 110 and the limited range of the engine generator 120.
  • the power demand amount of the load 200 is represented by L (kW)
  • the output amount of the natural energy power source 110 is represented by R (kW)
  • the output amount of the engine generator 120 is When expressed by E (kW), R and E are derived by Equation 1 below.
  • the controller 130 distributes the total output amount to the power demand of the load 200 to the natural energy power supply 110 and the engine generator 120 based on the above equation.
  • the controller 130 maintains the output of the natural energy power supply 110 within the allowable output range, and maintains the output of the engine generator 120 within the restricted range, while the total output of the generator 200 is required for the load 200. Can be adapted to Therefore, the controller 130 can maintain the power generation efficiency of the engine generator 120 in a high state.
  • controller 130 can suppress deterioration of storage battery 113 and the like.
  • the controller 130 may cause the natural energy power supply 110 to output the excess power only when the power demand of the load 200 exceeds the limited range of the engine generator 120.
  • the frequency of use of storage battery 113 is reduced, and deterioration of storage battery 113 is suppressed.
  • the controller 130 may maintain the output amount of the engine generator 120 constant, and make the output amount of the natural energy power supply 110 follow the fluctuation of the power demand amount of the load 200. Then, the controller 130 may change the output amount of the engine generator 120 only when the power demand amount of the load 200 fluctuates beyond the allowable output range of the natural energy power supply device 110. Thereby, the controller 130 can maintain the power generation efficiency of the engine generator 120 in a higher state when the fluctuation of the power demand of the load 200 is small.
  • the power demand of the load 200 is within the range covered by both the allowable output range of the natural energy power supply 110 and the limited range of the engine generator 120.
  • the power generation efficiency of the engine generator 120 is maintained high, and the loss of the power generated by the engine generator 120 is suppressed.
  • the controller 130 may not maintain the output of the engine generator 120 within the limited range. That is, in this case, the controller 130 may cause the engine generator 120 to output power corresponding to the output amount within the allowable output range of the engine generator 120, not limited to the limited range.
  • the controller 130 can largely change the power supply amount with respect to the large fluctuation of the power demand of the load 200.
  • FIG. 7 is a flow chart showing the operation of the natural energy power supply device 110 shown in FIG.
  • the natural energy power generation apparatus 111 generates electric power using natural energy (S111).
  • the power supply circuit 112 generates power of a predetermined voltage from the power generated by the natural energy power generation apparatus 111 (S112).
  • the power generated by the power supply circuit 112 is charged to the storage battery 113, and the charged power is discharged from the storage battery 113 (S113).
  • the inverter 114 converts the power discharged from the storage battery 113 into AC power (S114).
  • the power generated by the power supply circuit 112 may be converted into AC power by the inverter 114 without charging the storage battery 113.
  • the inverter 114 outputs the converted power to the power line to which the load 200 is connected (S115).
  • FIG. 8 is a flow chart showing the operation of the engine generator 120 shown in FIG.
  • the engine generator 120 generates electric power using the internal combustion engine provided in the engine generator 120 (S121). Then, the engine generator 120 outputs the generated power to the power line to which the load 200 is connected (S122).
  • FIG. 9 is a flowchart showing the operation of the controller 130 shown in FIG.
  • the controller 130 controls the output amount of the natural energy power supply device 110 and the output amount of the engine generator 120 (S131). That is, the controller 130 adjusts the output amount of the natural energy power supply device 110 and the output amount of the engine generator 120.
  • the controller 130 maintains the output amount of the natural energy power supply device 110 within the output allowable range of the natural energy power supply device 110.
  • the controller 130 maintains the output amount of the engine generator 120 within a predetermined limit range (S131). Then, the controller 130 matches the total output amount of the output amount of the natural energy power supply 110 and the output amount of the engine generator 120 with the power demand amount of the load 200.
  • the power demand amount of the load 200 may reflect the power supply amount of another power source different from the natural energy power supply device 110 and the engine generator 120. That is, when power is supplied to the load 200 from another power source, the power supply amount of the other power source may be deducted from the power demand amount of the load 200. And, in this case, the controller 130 adapts the total output amount of the natural energy power supply device 110 and the engine generator 120 to the power demand amount from which the power supply amount of the other power source is subtracted.
  • the natural energy power supply 110 and the engine generator 120 are connected in parallel to the load 200. Then, by controlling the output amount of the natural energy power supply device 110 and the output amount of the engine generator 120, the output amount of the engine generator 120 is maintained within the limit range. As a result, the loss of the power generated by the engine generator 120 is small, and the power generation efficiency of the engine generator 120 is maintained high.
  • FIG. 10 is a block diagram showing a distributed power supply system in a reference example.
  • the distributed power supply system 100a illustrated in FIG. 10 includes a natural energy power supply 110a, an engine generator 120a, a controller 130a, and a switch 140a.
  • the natural energy power supply device 110a, the engine generator 120a and the controller 130a are components equivalent to the natural energy power supply device 110, the engine generator 120 and the controller 130 in FIG.
  • the natural energy power supply device 110a includes a natural energy power generation device 111a, a power supply circuit 112a, a storage battery 113a, and an inverter 114a.
  • the natural energy power generation apparatus 111a, the power supply circuit 112a, the storage battery 113a, and the inverter 114a are components corresponding to the natural energy power generation apparatus 111, the power supply circuit 112, the storage battery 113, and the inverter 114 in FIG.
  • the distributed power supply system 100a in the present reference example switches the power supply from the natural energy power supply 110a to the load 200 and the power supply from the engine generator 120a to the load 200 by the switch 140a.
  • the natural energy power supply apparatus 110a supplies power to the load 200.
  • the engine generator 120 a supplies power to the load 200.
  • the power supply circuit 112a charges the storage battery 113a with the power generated by the natural energy power generation apparatus 111a. Then, when the remaining capacity of the storage battery 113a becomes large, the switch 140a switches the power supply source to the load 200 from the engine generator 120a to the natural energy power supply 110a.
  • the natural energy power supply device 110 a when the natural energy power supply device 110 a can supply sufficient power to the load 200, the natural energy power supply device 110 a supplies power to the load 200. Then, when the natural energy power supply device 110 a can not supply sufficient power to the load 200, the natural energy power supply device 110 a accumulates power for supplying the load 200. Meanwhile, the engine generator 120a supplies power to the load 200.
  • the natural energy power supply device 110a and the engine generator 120a can cooperate to supply power to the load 200.
  • FIG. 11 is a graph showing temporal changes in output amounts of the natural energy power supply device 110a and the engine generator 120a shown in FIG.
  • power is supplied from one of the natural energy power supply 110a and the engine generator 120a. That is, the natural energy power supply device 110a and the engine generator 120a do not supply power simultaneously. Therefore, the amount of power supplied to the load 200 is reduced.
  • the natural energy power supply device 110 a and the engine generator 120 a can not share the power supply to the load 200. Therefore, it is difficult to control the output amount of the natural energy power supply 110a within the output allowable range and to control the output amount of the engine generator 120a within the predetermined limit range.
  • the power generation efficiency of the engine generator 120a is not maintained high. In addition, sufficient power is not supplied to the load 200. Furthermore, a momentary stoppage occurs at the time of switching.
  • the power generation efficiency of the engine generator 120 is maintained high. In addition, sufficient power is supplied to the load 200. Furthermore, no momentary interruption due to switching does not occur.
  • Modification 1 First, Modification 1 will be described.
  • the basic configuration of this modification is the same as that of the distributed power supply system 100 shown in FIG. Therefore, the configuration of the distributed power supply system 100 shown in FIG.
  • the output of the engine generator 120 is maintained within the limited range only when the predetermined condition is satisfied. If the predetermined condition is not satisfied, the output of the engine generator 120 is not maintained within the limited range. That is, the restriction is released.
  • FIG. 12 is a flowchart showing the operation of the controller 130 in the present modification.
  • the controller 130 acquires an evaluation target value (S141).
  • the evaluation target value is, for example, the remaining capacity of the storage battery 113 or the amount of power generation of the natural energy power generation apparatus 111 or the like.
  • controller 130 acquires the remaining capacity of storage battery 113 as an evaluation target value.
  • the remaining capacity of storage battery 113 corresponds to the state of charge of storage battery 113 (SOC: State Of Charge).
  • the storage battery 113 or the natural energy power supply device 110 measures the remaining capacity of the storage battery 113 based on the charge / discharge amount of the storage battery 113.
  • the storage battery 113 or the natural energy power supply 110 may measure the remaining capacity of the storage battery 113 based on the voltage of the storage battery 113.
  • the controller 130 communicates with the storage battery 113 or the natural energy power supply 110 to acquire the remaining capacity of the storage battery 113.
  • controller 130 determines whether the evaluation target value satisfies a predetermined condition (S142). Specifically, in the present modification, controller 130 determines whether or not the remaining capacity of storage battery 113 satisfies a predetermined condition. More specifically, the predetermined condition is that the remaining capacity of storage battery 113 is larger than the predetermined remaining capacity.
  • the controller 130 maintains the output amount of the engine generator 120 within the predetermined limited range (S143). This operation is the same as S131 of FIG.
  • the controller 130 does not maintain the output amount of the engine generator 120 within the predetermined limit range. Then, in this case, the controller 130 reduces the output amount of the natural energy power supply device 110 (S 144).
  • the controller 130 reduces the output amount of the natural energy power supply device 110 by stopping the output of the natural energy power supply device 110.
  • controller 130 stops the output of natural energy power supply device 110.
  • the natural energy power supply 110 when it is assumed that the natural energy power supply 110 can supply sufficient power to the load 200, the natural energy power supply 110 supplies power to the load 200. Then, when it is assumed that the natural energy power supply device 110 can not supply sufficient power to the load 200, the natural energy power supply device 110 stops the power supply to the load 200 and supplies it to the load 200. Accumulate power for. Meanwhile, the engine generator 120 supplies power to the load 200, not limited to the limited range.
  • the natural energy power supply device 110 can not supply sufficient power to the load 200.
  • the remaining capacity of storage battery 113 is small, storage battery 113 may be degraded due to overdischarge.
  • the controller 130 stops the power supply from the natural energy power supply device 110 to the load 200. Instead, the controller 130 releases the limitation of the output of the engine generator 120 to increase the output of the engine generator 120. Thereby, sufficient power is supplied to the load 200.
  • FIG. 13 is a graph showing the time change of the output amounts of the natural energy power supply device 110 and the engine generator 120 shown in FIG.
  • the period from time T1 to time T2 is a period in which the evaluation object value does not satisfy the predetermined condition.
  • the remaining capacity of storage battery 113 is less than or equal to a predetermined remaining capacity. Therefore, in this period, the output amount of the natural energy power supply device 110 is reduced.
  • the controller 130 stops the output of the natural energy power supply device 110. Instead, the controller 130 releases the limitation of the output of the engine generator 120 to increase the output of the engine generator 120.
  • FIG. 14 is a graph showing the time change of the output amount of the engine generator 120 shown in FIG.
  • the output amount of the engine generator 120 shown in FIG. 14 corresponds to the output amount of the engine generator 120 shown in FIG.
  • the period from time T1 to time T2 is a period in which the evaluation object value does not satisfy the predetermined condition. In this period, the limitation of the output amount of the engine generator 120 is released.
  • FIG. 15 is a graph showing the time change of the remaining capacity of storage battery 113 shown in FIG. 1.
  • the remaining capacity of storage battery 113 is used as an evaluation target value for determining whether or not the output amount of engine generator 120 is maintained within the limited range.
  • the remaining capacity of storage battery 113 is expressed in a charged state.
  • power is supplied from the natural energy power supply device 110 to the load 200 until time T1.
  • the remaining capacity of storage battery 113 decreases.
  • the remaining capacity of the storage battery 113 becomes 50% or less, so the power supply from the natural energy power supply device 110 to the load 200 is stopped.
  • the remaining capacity of the storage battery 113 is increased by the power generated by the natural energy power generation apparatus 111. Then, at time T2, since the remaining capacity of the storage battery 113 is greater than 75%, the power supply from the natural energy power supply device 110 to the load 200 is resumed.
  • 50% is used as a threshold value for the remaining capacity of the storage battery 113 when power is supplied from the natural energy power supply device 110 to the load 200.
  • 75% is used as a threshold for the remaining capacity of the storage battery 113.
  • the threshold for the remaining capacity of storage battery 113 may be changed according to the situation. The frequency of occurrence of switching between restriction and cancellation is suppressed, and the power supply operation is stably performed.
  • the output amount of the engine generator 120 is limited when the predetermined condition is satisfied, and the restriction of the output amount of the engine generator 120 is released when the predetermined condition is not satisfied.
  • the output amount of engine generator 120 is limited, and when the remaining capacity of storage battery 113 does not satisfy a predetermined condition, engine generator 120 The limitation of the output amount is released.
  • the distributed power supply system 100 adaptively releases the load based on the condition of the natural energy power supply 110 while limiting the output of the engine generator 120 within the range of high power generation efficiency. Sufficient power can be supplied to 200.
  • the predetermined condition for the remaining capacity of storage battery 113 is not limited to the condition that the remaining capacity of storage battery 113 is larger than a predetermined threshold (lower limit).
  • the predetermined condition for the remaining capacity of storage battery 113 may be a condition that the remaining capacity of storage battery 113 is smaller than a predetermined threshold (upper limit).
  • the output amount of engine generator 120 may be maintained within the limit range.
  • the output amount of engine generator 120 may not be maintained within the limit range.
  • the controller 130 can make the output amount of the engine generator 120 smaller than the lower limit of the limitation range.
  • the controller 130 can suppress the consumption of fuel in the engine generator 120.
  • Modification 2 Next, modified example 2 will be described.
  • the basic configuration of this modification is the same as that of the distributed power supply system 100 shown in FIG. Therefore, the configuration of the distributed power supply system 100 shown in FIG. Also, the basic operation of this modification is the same as the operation of the modification 1 shown in FIGS. 12 to 14. In this modification, the amount of power generation of the natural energy power generation device 111 is used as the evaluation target value.
  • the controller 130 acquires the evaluation target value (S141)
  • the amount of power generation of the natural energy power generation apparatus 111 is acquired as the evaluation target value.
  • the natural energy power generation device 111 or the natural energy power supply device 110 measures the amount of power generation of the natural energy power generation device 111 using a power sensor.
  • the controller 130 communicates with the natural energy power generation device 111 or the natural energy power supply device 110 to acquire the amount of power generation of the natural energy power generation device 111.
  • the controller 130 is a natural energy power generation device based on the amount of solar radiation or the date (at least one of the amount of solar radiation and the date).
  • the amount of power generation of 111 may be predicted.
  • the controller 130 measures the amount of solar radiation via a solar radiation sensor. Then, when the measured amount of solar radiation is large, the controller 130 may predict that the amount of power generation of the natural energy power generation apparatus 111 is large.
  • the controller 130 may predict that the amount of power generation of the natural energy power generation device 111 is large in summer based on the date, and may predict that the amount of power generation of the natural energy power generation device 111 is small in winter.
  • the controller 130 determines whether or not the amount of power generation of the natural energy power generation device 111 satisfies the predetermined condition in the determination (S142) whether or not the evaluation target value satisfies the predetermined condition. More specifically, the predetermined condition is that the amount of power generation of the natural energy power generation device 111 is larger than the predetermined amount of power generation.
  • the natural energy power supply device 110 can not supply sufficient power to the load 200.
  • the controller 130 reduces the output amount of the natural energy power supply device 110 (S144). Basically, in this case, the controller 130 stops the output of the natural energy power supply 110. And, in this case, the controller 130 does not limit the output amount of the engine generator 120 within the limit range. As a result, the output (power supply) of the engine generator 120 is allocated to the power demand of the load 200.
  • the natural energy power supply device 110 can supply sufficient power to the load 200.
  • the controller 130 causes the natural energy power supply device 110 to output power to maintain the output amount of the engine generator 120 within the limited range. (S143). Thereby, high power generation efficiency is maintained in the engine generator 120.
  • FIG. 16 is a graph showing the time change of the amount of power generation of the natural energy power generation device 111 shown in FIG.
  • the power generation amount shown in FIG. 16 may be a measured power generation amount or a predicted power generation amount. Moreover, in the example of FIG. 16, 1 kW is used as a threshold value.
  • the controller 130 causes the natural energy power supply device 110 to output power to maintain the output amount of the engine generator 120 within the limited range.
  • the controller 130 stops the output of the natural energy power supply device 110 and cancels the limitation of the output amount of the engine generator 120.
  • the controller 130 causes the natural energy power supply device 110 to output power to maintain the output amount of the engine generator 120 within the limited range.
  • 1 kW is used as the threshold in the example of FIG.
  • the threshold is not limited to this example, and may be another value. Also, like the threshold described in FIG. 15, the threshold may be changed according to the situation.
  • the output amount of the engine generator 120 is limited, and when the power generation amount of the natural energy power generation device 111 does not satisfy the predetermined condition, the engine The restriction of the output amount of the generator 120 is released.
  • the distributed power supply system 100 adaptively limits the amount of output of the engine generator 120 within the range of high power generation efficiency based on the condition of the natural energy power supply 110. Release Thereby, sufficient power is supplied to the load 200.
  • the natural energy power supply device 110 may be able to supply sufficient power to the load 200. Therefore, in such a case, distributed power supply system 100 in the present modification maintains the power generation efficiency of engine generator 120 in a high state by maintaining the output amount of engine generator 120 within the predetermined limit range. be able to.
  • the predetermined condition for the amount of power generation of the natural energy power generation device 111 is not limited to the condition that the amount of power generation of the natural energy power generation device 111 is larger than a predetermined threshold (lower limit).
  • the predetermined condition for the power generation amount of the natural energy power generation device 111 may be a condition that the power generation amount of the natural energy power generation device 111 is smaller than a predetermined threshold (upper limit).
  • the output amount of the engine generator 120 may be maintained within the limit range. Then, when the power generation amount of the natural energy power generation device 111 is equal to or more than a predetermined threshold (upper limit), the output amount of the engine generator 120 may not be maintained within the limit range.
  • the controller 130 can make the output amount of the engine generator 120 smaller than the lower limit of the limitation range.
  • the controller 130 can suppress the consumption of fuel in the engine generator 120.
  • Modification 3 Next, modified example 3 will be described.
  • the basic configuration and operation of this modification are similar to the configuration and operation of distributed power supply system 100 shown in FIG. Therefore, the configuration and operation of the distributed power supply system 100 shown in FIG.
  • the output amount of the engine generator 120 is larger than the output amount of the natural energy power supply 110.
  • the output amount of the natural energy power supply 110 may be larger than the output amount of the engine generator 120.
  • the upper limit of the allowable output range of the natural energy power supply 110 is 12 kW, and the lower limit is 0 kW. Therefore, the controller 130 maintains the output amount of the natural energy power supply 110 within the range of 0 kW to 12 kW.
  • FIG. 17 is a graph showing temporal changes in output amounts of the natural energy power supply device 110 and the engine generator 120 in the present modification.
  • FIG. 17 shows the same content as FIG. 4, but in the example of FIG. 17, the output amount of the natural energy power supply 110 fluctuates within the range of 0 kW to 12 kW. That is, the controller 130 can largely change the output amount of the natural energy power supply device 110 as compared with the example of FIG. 4.
  • FIG. 18 is a graph showing the time change of the power demand amount and the power supply amount in the present modification. Specifically, FIG. 18 shows the time change of the power demand of the load 200, the power supply of the natural energy power supply 110, and the power supply of the engine generator 120, as in FIG.
  • the power supply amount of the natural energy power supply device 110 shown in FIG. 18 corresponds to the output amount of the natural energy power supply device 110 shown in FIG.
  • the power supply amount of the engine generator 120 shown in FIG. 18 corresponds to the output amount of the engine generator 120 shown in FIG.
  • the power demand of the load 200 shown in FIG. 18 corresponds to the sum of the power supply of the natural energy power supply 110 and the power of the engine generator 120, as in the example of FIG. That is, the power demand of the load 200 corresponds to the total output of the natural energy power supply 110 and the output of the engine generator 120.
  • the controller 130 maintains the output amount (power supply amount) of the engine generator 120 within a predetermined limit range. In addition, the controller 130 maintains the output amount (power supply amount) of the natural energy power supply device 110 within the output allowable range of the natural energy power supply device 110. Then, the controller 130 matches the total output amount of the output amount of the natural energy power supply 110 and the output amount of the engine generator 120 with the power demand amount of the load 200.
  • the controller 130 maintains the output of the natural energy power supply 110 within the range of 0 kW to 12 kW, and maintains the output of the engine generator 120 within the range of 6 kW to 8 kW. Then, the controller 130 matches the total output amount of the output amount of the engine generator 120 and the output amount of the natural energy power supply device 110 with the power demand of the load 200 in the range of 6 kW to 20 kW.
  • the controller 130 changes the output amount of the natural energy power supply device 110 to a large fluctuation of the power demand of the load 200.
  • the entire output amount can be made to follow.
  • the output amount of the natural energy power supply 110 may be reduced according to predetermined conditions.
  • the output of the natural energy power supply device 110 is stopped, even if the restriction of the output amount of the engine generator 120 is released, sufficient power is not supplied to the load 200 due to the output allowable range of the engine generator 120. there is a possibility.
  • the output amount of the natural energy power supply 110 may be reduced based on the amount by which the engine generator 120 can newly output electric power by releasing the restriction.
  • an engine generator 120 having a large output tolerance may be used.
  • an engine generator 120 having a predetermined limit range with high power generation efficiency from 6 kW to 8 kW and an allowable output range from 0 kW to 20 kW may be used. As a result, sufficient power is supplied to the load 200.
  • the present invention is not limited to an embodiment.
  • the present invention also includes embodiments obtained by applying variations that will occur to those skilled in the art with respect to the embodiment, and other embodiments realized by arbitrarily combining a plurality of components in the embodiment.
  • another component may perform the processing that a particular component performs. Further, the order of executing the processing may be changed, or a plurality of processing may be executed in parallel.
  • the present invention can be realized not only as the distributed power supply system 100 but also as a method including steps (processes) performed by each component constituting the distributed power supply system 100.
  • those steps may be performed by a computer (computer system) included in the distributed power supply system 100.
  • this invention can be implement
  • the present invention can be realized as a non-transitory computer readable recording medium such as a CD-ROM or the like recording the program.
  • each step is executed by executing the program using hardware resources such as a CPU of a computer, a memory, and an input / output circuit. . That is, each step is executed by the CPU acquiring data from the memory or the input / output circuit and performing an operation, or outputting the operation result to the memory or the input / output circuit or the like.
  • the plurality of components included in distributed power supply system 100 and the like may be realized as dedicated or general-purpose circuits, respectively. These components may be realized as one circuit or as a plurality of circuits.
  • the plurality of components included in the distributed power supply system 100 and the like may be realized as a large scale integration (LSI) which is an integrated circuit (IC: Integrated Circuit). These components may be individually made into one chip, or may be made into one chip so as to include some or all.
  • the LSI may be called a system LSI, a super LSI, or an ultra LSI depending on the degree of integration.
  • the integrated circuit is not limited to the LSI, and may be realized by a dedicated circuit or a general purpose processor.
  • a programmable field programmable gate array (FPGA) or a reconfigurable processor in which connection and setting of circuit cells in the LSI can be reconfigured may be used.
  • a distributed power supply system 100 includes a natural energy power supply device 110, an engine generator 120, and a controller 130, and supplies power to a load 200.
  • the natural energy power supply device 110 includes a natural energy power generation device 111, a power supply circuit 112, a storage battery 113, and an inverter 114, and outputs the power converted by the inverter 114 to the power line to which the load 200 is connected.
  • the natural energy power generation apparatus 111 generates electric power using natural energy.
  • the power supply circuit 112 generates power of a predetermined voltage from the power generated by the natural energy power generation apparatus 111.
  • the storage battery 113 is charged with the power obtained from the power supply circuit 112, and the power charged in the storage battery 113 is discharged from the storage battery 113.
  • Inverter 114 converts the power obtained from power supply circuit 112 and storage battery 113 into alternating current power.
  • the engine generator 120 generates power using an internal combustion engine.
  • the engine generator 120 also outputs the power generated using the internal combustion engine to the power line to which the load 200 is connected.
  • the controller 130 controls the output amount of the natural energy power supply 110 and the output amount of the engine generator 120 so that the output amount of the engine generator 120 is maintained within the limited range.
  • the limited range is a range predetermined as a range for making the power generation efficiency of the engine generator 120 higher than a predetermined power generation efficiency.
  • the distributed power supply system 100 can maintain the power generation efficiency of the engine generator 120 high. Furthermore, the distributed power supply system 100 can adjust both the output amount of the natural energy power supply 110 and the output amount of the engine generator 120 with respect to the power demand of the load 200. Therefore, the distributed power supply system 100 can supply the load 200 with the power output from the engine generator 120 without charging it, and therefore, the loss of the power output from the engine generator 120 can be suppressed.
  • the controller 130 controls the output of the natural energy power supply 110 and the engine generator 120 such that the output of the engine generator 120 is maintained within the limited range only when the remaining capacity of the storage battery 113 satisfies a predetermined condition.
  • the ability level may be controlled.
  • the distributed power supply system 100 sets the output amount of the engine generator 120 only when it is assumed that the natural energy power supply device 110 can appropriately output power based on the remaining capacity of the storage battery 113. It can be maintained within the limits. And distributed power system 100 can release restriction of the amount of output of engine generator 120, when it is assumed that natural energy power supply device 110 can not output electric power appropriately.
  • the distributed power supply system 100 can supply sufficient power to the load 200 even when it is assumed that the natural energy power supply device 110 can not appropriately output power.
  • the predetermined condition may be that the remaining capacity of storage battery 113 is larger than the predetermined remaining capacity.
  • controller 130 causes natural energy power supply device 110 and engine generator 120 to maintain the output of engine generator 120 within the restricted range only when the remaining capacity of storage battery 113 is larger than the predetermined remaining capacity. You may control the output amount of.
  • the distributed power supply system 100 maintains the power generation efficiency of the engine generator 120 high, when the remaining capacity of the storage battery 113 is large and it is assumed that the natural energy power supply device 110 can appropriately output the power. can do.
  • the distributed power supply system 100 can supply sufficient power to the load 200 even when it is assumed that the remaining capacity of the storage battery 113 is small and the natural energy power supply device 110 can not appropriately output power. it can.
  • the controller 130 controls the natural energy power supply device 110 and the engine generator such that the output amount of the engine generator 120 is maintained within the limited range only when the power generation amount of the natural energy power generation device 111 satisfies a predetermined condition.
  • the output amount of 120 may be controlled.
  • the distributed power supply system 100 generates the engine generator 120 only when it is assumed that the natural energy power supply device 110 can appropriately output power based on the amount of power generation of the natural energy power generation apparatus 111.
  • the amount of output can be maintained within the limit range.
  • distributed power system 100 can release restriction of the amount of output of engine generator 120, when it is assumed that natural energy power supply device 110 can not output electric power appropriately.
  • the distributed power supply system 100 can supply sufficient power to the load 200 even when it is assumed that the natural energy power supply device 110 can not appropriately output power.
  • the predetermined condition may be that the amount of power generation of the natural energy power generation device 111 is larger than the predetermined amount of power generation. Then, the controller 130 may control the output amount such that the output amount is maintained within the limited range only when the power generation amount of the natural energy power generation apparatus 111 is larger than the predetermined power generation amount. Specifically, controller 130 may control the output amounts of natural energy power supply 110 and engine generator 120 such that the output amount of engine generator 120 is maintained within the limited range only in this case. .
  • the distributed power supply system 100 when it is assumed that the amount of power generation of the natural energy power generation apparatus 111 is large and the natural energy power supply apparatus 110 can appropriately output power, the power generation efficiency of the engine generator 120 Can be kept high. Then, the distributed power supply system 100 supplies sufficient power to the load 200 even when it is assumed that the amount of power generation of the natural energy power generation apparatus 111 is small and the natural energy power supply apparatus 110 can not appropriately output power. can do.
  • the natural energy power generation apparatus 111 may generate electricity using sunlight. Then, the controller 130 may predict the amount of power generation of the natural energy power generation apparatus 111 based on the amount of solar radiation or the date. Then, the controller 130 controls the natural energy power supply 110 and the engine generator 120 so that the output of the engine generator 120 is maintained within the limited range only when the predicted amount of power generation is larger than the predetermined power generation amount. You may control the output amount of.
  • the distributed power supply system 100 maintains the power generation efficiency of the engine generator 120 high, when it is assumed that the natural energy power supply device 110 can appropriately output the power based on the prediction of the amount of power generation. can do. Then, the distributed power supply system 100 may supply sufficient power to the load 200 even if it is assumed that the natural energy power supply device 110 can not appropriately output power based on the prediction of the amount of power generation. it can.
  • the control method according to an aspect of the present invention is a control method of the distributed power supply system 100 that supplies power to the load 200.
  • the distributed power supply system 100 includes a natural energy power supply 110 and an engine generator 120.
  • the natural energy power supply device 110 includes a natural energy power generation device 111, a power supply circuit 112, a storage battery 113, and an inverter 114, and outputs the power converted by the inverter 114 to the power line to which the load 200 is connected.
  • the natural energy power generation apparatus 111 generates electric power using natural energy.
  • the power supply circuit 112 generates power of a predetermined voltage from the power generated by the natural energy power generation apparatus 111.
  • the storage battery 113 is charged with the power obtained from the power supply circuit 112, and the power charged in the storage battery 113 is discharged from the storage battery 113.
  • Inverter 114 converts the power obtained from power supply circuit 112 and storage battery 113 into alternating current power.
  • the engine generator 120 generates power using an internal combustion engine. Then, the engine generator 120 outputs the power generated using the internal combustion engine to the power line to which the load 200 is connected.
  • the control method of the distributed power supply system 100 controls the output amount of the natural energy power supply 110 and the output amount of the engine generator 120 so that the output amount of the engine generator 120 is maintained within the limited range. (S131) is included.
  • the limited range is a range predetermined as a range for making the power generation efficiency of the engine generator 120 higher than a predetermined power generation efficiency.
  • the power generation efficiency of the engine generator 120 is maintained high. Further, it is possible to adjust both the output amount of the natural energy power supply 110 and the output amount of the engine generator 120 with respect to the power demand of the load 200. Therefore, it is possible to supply the load 200 without charging the power output from the engine generator 120, and it is possible to suppress the loss of the power output from the engine generator 120.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

This distributed power supply system (100) is provided with: a natural energy power supply device (110) comprising a natural energy power generation device (111) which generates power using natural energy, a power supply circuit (112), a storage battery (113), and an inverter (114), wherein power converted by the inverter (114) is outputted to a power cable to which a load (200) is connected; an engine generator (120) which generates power using an internal combustion engine and outputs the power generated using the internal combustion engine to the power cable; and a controller (130) which controls output of the natural energy power supply device (110) and output of the engine generator (120) such that output of the engine generator (120) is kept within a limited range.

Description

分散電源システム、および、分散電源システムの制御方法Distributed power supply system and control method of distributed power supply system
 本発明は、負荷へ電力を供給する分散電源システム等に関する。 The present invention relates to a distributed power supply system and the like for supplying power to a load.
 従来、発電設備と負荷との間に二次電池を接続して発電電力と負荷需要電力との過不足を二次電池の充電放電で補填することにより発電設備を定格出力運転させて高い燃料効率を得る電源システムが提案されている(特許文献1参照)。 Conventionally, a secondary battery is connected between a power generation facility and a load, and excess or deficiency of generated power and load demand power is compensated by charge and discharge of the secondary battery to cause the power generation facility to operate at rated output for high fuel efficiency The power supply system which obtains is proposed (refer to patent documents 1).
 また、電力貯蔵部の充放電を制御することで、発電機用ガバナが追従できる範囲内に電力変動を抑えることが提案されている(特許文献2参照)。 Further, it has been proposed to suppress power fluctuation within a range that can be followed by a generator governor by controlling charging / discharging of the power storage unit (see Patent Document 2).
 また、太陽電池からの余剰電力、および、ディーゼル発電機からの余剰電力を充電し、それらの充電電力を必要に応じて放電することが提案されている(特許文献3参照)。 Further, it has been proposed to charge surplus power from a solar cell and surplus power from a diesel generator and discharge the charged power as needed (see Patent Document 3).
特開2007-82311号公報JP 2007-82311 A 特開2007-228737号公報JP 2007-228737 A 特開平3-74147号公報Unexamined-Japanese-Patent No. 3-74147
 しかしながら、特許文献1に記載の技術において、高い燃料効率で発電が行われても、二次電池を介して負荷に電力を供給する際に、AC-DC変換、充電、放電、および、DC-AC変換などによって、電力に損失が生じる。 However, even if power generation is performed with high fuel efficiency in the technology described in Patent Document 1, when power is supplied to the load via the secondary battery, AC-DC conversion, charge, discharge, and DC- Loss of power occurs due to AC conversion and the like.
 また、特許文献2に記載の技術では、発電機用ガバナが追従できる範囲内に電力変動が抑えられるが、発電機が低い発電効率で電力を発電する可能性がある。 Further, in the technology described in Patent Document 2, although the power fluctuation is suppressed within the range that the governor for the generator can follow, there is a possibility that the generator generates the power with low power generation efficiency.
 また、特許文献3に記載の技術では、ディーゼル発電機の発電量が一定の範囲内に維持されず、発電効率が低下する可能性がある。 Further, in the technology described in Patent Document 3, the amount of power generation of the diesel generator is not maintained within a certain range, and power generation efficiency may be reduced.
 そこで、本発明は、ディーゼル発電機等のエンジン発電機で発電された電力の損失を抑制しつつ、エンジン発電機の発電効率を高く維持することができる分散電源システム等を提供することを目的とする。 Therefore, it is an object of the present invention to provide a distributed power supply system or the like capable of maintaining high power generation efficiency of an engine generator while suppressing loss of electric power generated by the engine generator such as a diesel generator. Do.
 上記目的を達成するために、本発明の一態様に係る分散電源システムは、負荷に電力を供給する分散電源システムであって、自然エネルギーを利用して電力を発電する自然エネルギー発電装置と、前記自然エネルギー発電装置で発電された電力から所定の電圧の電力を生成する電源回路と、前記電源回路から得られる電力が充電され、充電された電力が放電される蓄電池と、前記電源回路および前記蓄電池から得られる電力を交流の電力に変換するインバータとを備える自然エネルギー電源装置であって、前記インバータで変換された電力を前記負荷が接続された電力線に出力する自然エネルギー電源装置と、内燃機関を利用して電力を発電し、前記内燃機関を利用して発電された電力を前記電力線に出力するエンジン発電機と、前記エンジン発電機の発電効率を所定の発電効率よりも高くするための範囲として予め定められた制限範囲内に前記エンジン発電機の出力量が維持されるように、前記自然エネルギー電源装置の出力量、および、前記エンジン発電機の出力量を制御するコントローラとを備える。 In order to achieve the above object, a distributed power supply system according to an aspect of the present invention is a distributed power supply system that supplies power to a load, wherein the natural energy generation apparatus generates power using natural energy; A power supply circuit for generating power of a predetermined voltage from power generated by a natural energy power generation apparatus, a storage battery for charging the power obtained from the power supply circuit and discharging the charged power, the power supply circuit and the storage battery A natural energy power supply device comprising: an inverter for converting the electric power obtained from the electric power into an AC electric power, the natural energy power supply device outputting the electric power converted by the inverter to a power line to which the load is connected; An engine generator that generates electric power using the engine and outputs the electric power generated using the internal combustion engine to the power line; An output amount of the natural energy power supply device such that an output amount of the engine generator is maintained within a predetermined limited range as a range for making the power generation efficiency of the power generator higher than a predetermined power generation efficiency, And a controller that controls an output of the engine generator.
 また、本発明の一態様に係る分散電源システムの制御方法は、負荷に電力を供給する分散電源システムの制御方法であって、前記分散電源システムは、自然エネルギーを利用して電力を発電する自然エネルギー発電装置と、前記自然エネルギー発電装置で発電された電力から所定の電圧の電力を生成する電源回路と、前記電源回路から得られる電力が充電され、充電された電力が放電される蓄電池と、前記電源回路および前記蓄電池から得られる電力を交流の電力に変換するインバータとを備える自然エネルギー電源装置であって、前記インバータで変換された電力を前記負荷が接続された電力線に出力する自然エネルギー電源装置と、内燃機関を利用して電力を発電し、前記内燃機関を利用して発電された電力を前記電力線に出力するエンジン発電機とを備え、前記分散電源システムの制御方法は、前記エンジン発電機の発電効率を所定の発電効率よりも高くするための範囲として予め定められた制限範囲内に前記エンジン発電機の出力量が維持されるように、前記自然エネルギー電源装置の出力量、および、前記エンジン発電機の出力量を制御する制御ステップを含む。 A control method of a distributed power supply system according to an aspect of the present invention is a control method of a distributed power supply system supplying power to a load, wherein the distributed power supply system generates power using natural energy. An energy generation apparatus, a power supply circuit generating electric power of a predetermined voltage from the electric power generated by the natural energy generation apparatus, and a storage battery charged with the electric power obtained from the power supply circuit and discharged from the electric power. A natural energy power supply device comprising the power supply circuit and an inverter for converting power obtained from the storage battery into AC power, wherein the natural energy power supply outputs the power converted by the inverter to a power line to which the load is connected. A device for generating electric power using an internal combustion engine, and outputting the electric power generated using the internal combustion engine to the power line And a control method of the distributed power supply system, wherein the control method of the distributed power supply system includes the engine generator within a limited range predetermined as a range for making the power generation efficiency of the engine generator higher than a predetermined power generation efficiency. The control step of controlling the output amount of the natural energy power supply and the output amount of the engine generator so as to maintain the power amount.
 本発明の一態様に係る分散電源システム等は、ディーゼル発電機等のエンジン発電機で発電された電力の損失を抑制しつつ、エンジン発電機の発電効率を高く維持することができる。 The distributed power supply system and the like according to one aspect of the present invention can maintain high power generation efficiency of the engine generator while suppressing loss of power generated by the engine generator such as a diesel generator.
図1は、実施の形態における分散電源システムの構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of the distributed power supply system according to the embodiment. 図2は、実施の形態におけるエンジン発電機の出力量を示すグラフ図である。FIG. 2 is a graph showing the output amount of the engine generator in the embodiment. 図3は、実施の形態におけるエンジン発電機の発電効率を示すグラフ図である。FIG. 3 is a graph showing the power generation efficiency of the engine generator in the embodiment. 図4は、実施の形態における自然エネルギー電源装置およびエンジン発電機の出力量の時間変化を示すグラフ図である。FIG. 4 is a graph showing the time change of the output amount of the natural energy power supply device and the engine generator in the embodiment. 図5は、実施の形態におけるエンジン発電機の出力量の時間変化を示すグラフ図である。FIG. 5 is a graph showing the time change of the output amount of the engine generator in the embodiment. 図6は、実施の形態における電力需要量および電力供給量の時間変化を示すグラフ図である。FIG. 6 is a graph showing the time change of the power demand amount and the power supply amount in the embodiment. 図7は、実施の形態における自然エネルギー電源装置の動作を示すフローチャートである。FIG. 7 is a flowchart showing the operation of the natural energy power supply device according to the embodiment. 図8は、実施の形態におけるエンジン発電機の動作を示すフローチャートである。FIG. 8 is a flow chart showing the operation of the engine generator in the embodiment. 図9は、実施の形態におけるコントローラの動作を示すフローチャートである。FIG. 9 is a flowchart showing the operation of the controller in the embodiment. 図10は、参考例における分散電源システムの構成を示すブロック図である。FIG. 10 is a block diagram showing the configuration of the distributed power supply system in the reference example. 図11は、参考例における自然エネルギー電源装置およびエンジン発電機の出力量の時間変化を示すグラフ図である。FIG. 11 is a graph showing temporal changes in output amounts of the natural energy power supply and the engine generator in the reference example. 図12は、実施の形態の変形例1におけるコントローラの動作を示すフローチャートである。FIG. 12 is a flowchart showing the operation of the controller in the first modification of the embodiment. 図13は、実施の形態の変形例1における自然エネルギー電源装置およびエンジン発電機の出力量の時間変化を示すグラフ図である。FIG. 13 is a graph showing temporal changes in output amounts of the natural energy power supply and the engine generator according to the first modification of the embodiment. 図14は、実施の形態の変形例1におけるエンジン発電機の出力量の時間変化を示すグラフ図である。FIG. 14 is a graph showing the time change of the output amount of the engine generator in the first modification of the embodiment. 図15は、実施の形態の変形例1における残容量の時間変化を示すグラフ図である。FIG. 15 is a graph showing the time change of the remaining capacity in the first modification of the embodiment. 図16は、実施の形態の変形例2における発電量の時間変化を示すグラフ図である。FIG. 16 is a graph showing the time change of the amount of power generation in the second modification of the embodiment. 図17は、実施の形態の変形例3における自然エネルギー電源装置およびエンジン発電機の出力量の時間変化を示すグラフ図である。FIG. 17 is a graph showing temporal changes in output amounts of the natural energy power supply and the engine generator according to the third modification of the embodiment. 図18は、実施の形態の変形例3における電力需要量および電力供給量の時間変化を示すグラフ図である。FIG. 18 is a graph showing the time change of the power demand amount and the power supply amount in the third modification of the embodiment.
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示す。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態、動作の順序等は、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素は、任意の構成要素として説明される。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The embodiments described below all show comprehensive or specific examples. Numerical values, shapes, materials, components, arrangement positions and connection forms of components, order of operations, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. In addition, among the components in the following embodiments, components that are not described in the independent claim indicating the highest concept are described as arbitrary components.
 (実施の形態)
 図1は、本実施の形態における分散電源システムを示すブロック図である。図1に示された分散電源システム100は、自然エネルギー電源装置110、エンジン発電機120、および、コントローラ130を備え、負荷200に電力を供給する。
Embodiment
FIG. 1 is a block diagram showing a distributed power supply system according to the present embodiment. The distributed power supply system 100 shown in FIG. 1 includes a natural energy power supply 110, an engine generator 120, and a controller 130 to supply power to the load 200.
 自然エネルギー電源装置110は、自然エネルギー発電装置111、電源回路112、蓄電池113、および、インバータ114を備える。また、自然エネルギー電源装置110は、負荷200が接続された電力線に電力を出力する。 The natural energy power supply device 110 includes a natural energy power generation device 111, a power supply circuit 112, a storage battery 113, and an inverter 114. Moreover, the natural energy power supply device 110 outputs power to the power line to which the load 200 is connected.
 自然エネルギー発電装置111は、太陽光、風力または地熱等の自然エネルギーを利用して電力を発電する。例えば、自然エネルギー発電装置111は、太陽光を利用して電力を発電する太陽電池でもよいし、太陽電池を含む太陽光発電装置でもよい。自然エネルギー発電装置111の発電量は、自然エネルギーの状態によって変動する。したがって、自然エネルギー発電装置111の発電量の変動は大きい。本実施の形態において、自然エネルギー発電装置111は、直流電力を生成し、生成された直流電力を出力する。 The natural energy power generation apparatus 111 generates electric power using natural energy such as solar light, wind power or geothermal heat. For example, the natural energy power generation device 111 may be a solar cell that generates electric power using sunlight, or may be a solar power generation device including a solar cell. The amount of power generation of the natural energy power generation apparatus 111 fluctuates depending on the state of natural energy. Therefore, the fluctuation of the power generation amount of the natural energy power generation apparatus 111 is large. In the present embodiment, the natural energy power generation apparatus 111 generates DC power and outputs the generated DC power.
 電源回路112は、所定の電圧の電力を生成する電源回路であり、具体的には、所定の電圧の直流電力を生成する直流電源回路である。例えば、電源回路112は、直流電力を所定の電圧の直流電力に変換することにより、所定の電圧の直流電力を生成するDC-DCコンバータでもよい。また、電源回路112は、過電流を抑制して、過電流が抑制された、所定の電圧の直流電力を生成する充電器でもよい。 The power supply circuit 112 is a power supply circuit that generates power of a predetermined voltage, and specifically, is a DC power supply circuit that generates DC power of a predetermined voltage. For example, the power supply circuit 112 may be a DC-DC converter that generates DC power of a predetermined voltage by converting DC power into DC power of a predetermined voltage. Further, the power supply circuit 112 may be a charger that suppresses DC current and generates DC power of a predetermined voltage whose DC current is suppressed.
 本実施の形態では、電源回路112は、自然エネルギー発電装置111で発電された直流電力(例えば、24Vの直流電力)から、所定の電圧の直流電力(例えば、12Vの直流電力)を生成する。 In the present embodiment, the power supply circuit 112 generates DC power of a predetermined voltage (for example, DC power of 12 V) from DC power (for example, DC power of 24 V) generated by the natural energy power generation apparatus 111.
 所定の電圧は、必ずしも一定の電圧でなくてもよい。所定の電圧は、例えば、11Vから13Vまでの範囲内に含まれる電圧等のように、所定の電圧範囲内に含まれる電圧でもよい。 The predetermined voltage may not necessarily be a constant voltage. The predetermined voltage may be, for example, a voltage included in a predetermined voltage range, such as a voltage included in a range of 11V to 13V.
 蓄電池113は、電力を充放電するための二次電池である。蓄電池113には、電源回路112で生成された電力が充電される。また、蓄電池113において充電された電力が、蓄電池113から放電される。蓄電池113は、発電量の変動が大きい自然エネルギー発電装置111で発電された電力を蓄積し、需要に従って安定的に電力を供給するための役割を有する。 Storage battery 113 is a secondary battery for charging and discharging electric power. The storage battery 113 is charged with the power generated by the power supply circuit 112. Further, the power charged in storage battery 113 is discharged from storage battery 113. The storage battery 113 has a role of storing the power generated by the natural energy power generation apparatus 111 having a large fluctuation in the amount of power generation, and stably supplying power according to the demand.
 インバータ114は、電力を交流の電力に変換する。本実施の形態において、インバータ114は、電源回路112および蓄電池113から得られる電力(直流の電力)を交流の電力に変換して、負荷200が接続された電力線に交流電力を出力する。 The inverter 114 converts power into alternating current power. In the present embodiment, inverter 114 converts the power (DC power) obtained from power supply circuit 112 and storage battery 113 into AC power, and outputs AC power to the power line to which load 200 is connected.
 例えば、電源回路112で生成された電力がインバータ114で変換されるべき電力よりも大きい場合、電源回路112で生成された電力のうち、インバータ114で変換されるべき電力がインバータ114に入力され、残りの電力は蓄電池113に充電される。電源回路112で生成された電力がインバータ114で変換されるべき電力よりも小さい場合、不足分に相当する電力が蓄電池113から放電され、電源回路112で生成された電力と、蓄電池113から放電された電力とがインバータ114に入力される。 For example, when the power generated by the power supply circuit 112 is larger than the power to be converted by the inverter 114, among the power generated by the power supply circuit 112, the power to be converted by the inverter 114 is input to the inverter 114, The remaining power is charged to storage battery 113. If the power generated by power supply circuit 112 is smaller than the power to be converted by inverter 114, the power corresponding to the shortage is discharged from storage battery 113 and the power generated by power supply circuit 112 and discharged from storage battery 113 Power is input to the inverter 114.
 電源回路112で生成された電力がインバータ114で変換されるべき電力に等しい場合、電源回路112で生成された電力がインバータ114に入力される。インバータ114に入力された電力は、交流の電力に変換されて出力される。 When the power generated by the power supply circuit 112 is equal to the power to be converted by the inverter 114, the power generated by the power supply circuit 112 is input to the inverter 114. The power input to the inverter 114 is converted to AC power and output.
 また、インバータ114は、双方向インバータでもよい。この場合、インバータ114は、負荷200が接続された電力線から得られる電力(交流の電力)を直流の電力に変換する。 Moreover, the inverter 114 may be a bidirectional inverter. In this case, the inverter 114 converts the power (AC power) obtained from the power line to which the load 200 is connected into DC power.
 例えば、負荷200が接続された電力線にはエンジン発電機120が接続され、インバータ114は、エンジン発電機120から電力線を介して得られる電力を直流の電力に変換する。そして、インバータ114は、直流の電力を蓄電池113に充電する。これにより、負荷200の需要電力に対するエンジン発電機120の余剰電力が蓄電池113に充電される。 For example, the engine generator 120 is connected to the power line to which the load 200 is connected, and the inverter 114 converts the power obtained from the engine generator 120 via the power line into direct current power. Then, inverter 114 charges storage battery 113 with direct current power. Thereby, the surplus power of the engine generator 120 with respect to the demand power of the load 200 is charged to the storage battery 113.
 また、インバータ114は、電圧を生成し、生成された電圧の電力を出力する電圧源として動作してもよい。すなわち、インバータ114は、電圧形インバータとして動作してもよい。これにより、インバータ114は、他の電力系統などに依存せず、自立運転を行うことができる。 The inverter 114 may also operate as a voltage source that generates a voltage and outputs the power of the generated voltage. That is, the inverter 114 may operate as a voltage source inverter. Thus, the inverter 114 can perform a self-sustaining operation without depending on other power systems or the like.
 さらに、インバータ114は、同期発電機の出力特性を模擬して電力を出力することにより、仮想同期発電機として動作してもよい。具体的には、インバータ114は、インバータ114の出力量に基づいて、仮想同期発電機における回転子の位相を算出し、算出された位相を交流電圧の位相として用いて、交流電力を出力する。 Furthermore, the inverter 114 may operate as a virtual synchronous generator by simulating the output characteristics of the synchronous generator and outputting electric power. Specifically, the inverter 114 calculates the phase of the rotor in the virtual synchronous generator based on the output amount of the inverter 114, and uses the calculated phase as the phase of the AC voltage to output AC power.
 より具体的には、インバータ114は、インバータ114によって実際に出力されている電力の出力量と、インバータ114が出力すべき電力の出力量との差を仮想同期発電機における回転子の角速度の変化量を示す値として用いて、回転子の角速度を算出する。そして、インバータ114は、回転子の角速度を積分して、回転子の角位相を算出する。そして、インバータ114は、算出された角位相を交流電力の電圧の位相として用いる。 More specifically, the inverter 114 changes the difference between the output amount of the power actually output by the inverter 114 and the output amount of the power to be output by the inverter 114 as a change in the angular velocity of the rotor in the virtual synchronous generator. The angular velocity of the rotor is calculated using the quantity as a value. Then, the inverter 114 integrates the angular velocity of the rotor to calculate the angular phase of the rotor. Then, the inverter 114 uses the calculated angular phase as the phase of the voltage of the AC power.
 これにより、インバータ114は、同期発電機のように動作することができる。そして、インバータ114とエンジン発電機120との並列運転において、インバータ114は、エンジン発電機120と同期し、安定的に電力を出力することができる。 Thus, the inverter 114 can operate like a synchronous generator. Then, in parallel operation of the inverter 114 and the engine generator 120, the inverter 114 can output power stably in synchronization with the engine generator 120.
 また、インバータ114は、ドループ制御に従って、電力を出力してもよい。すなわち、インバータ114は、出力量の増加と、周波数または電圧(周波数および電圧のうち少なくとも一方)の低下との対応関係に従って、交流電力を出力してもよい。具体的には、インバータ114は、所定の対応関係に出力量と周波数または電圧とを適合させてもよい。より具体的には、インバータ114は、所定の対応関係に出力量と周波数または電圧とを一致させてもよい。 The inverter 114 may also output power according to the droop control. That is, the inverter 114 may output AC power according to the correspondence between the increase in the output amount and the decrease in the frequency or the voltage (at least one of the frequency and the voltage). Specifically, the inverter 114 may adapt the output amount and the frequency or voltage to a predetermined correspondence. More specifically, the inverter 114 may match the output amount with the frequency or voltage in a predetermined correspondence.
 例えば、エンジン発電機120は、エンジン発電機120が出力する交流電力の出力量の増加に伴って、エンジン発電機120が出力する交流電力の周波数または電圧が低下する出力特性を有する場合がある。この場合、インバータ114は、エンジン発電機120が接続された電力線から、エンジン発電機120が出力する交流電力の周波数または電圧を検出してもよい。そして、インバータ114は、検出された周波数または電圧に対応付けられた出力量に相当する電力を出力してもよい。 For example, the engine generator 120 may have an output characteristic in which the frequency or voltage of the AC power output by the engine generator 120 decreases as the output amount of the AC power output by the engine generator 120 increases. In this case, the inverter 114 may detect the frequency or voltage of the AC power output from the engine generator 120 from the power line to which the engine generator 120 is connected. Then, the inverter 114 may output power corresponding to the output amount associated with the detected frequency or voltage.
 これにより、エンジン発電機120の出力量の増加に伴って、インバータ114の出力量が増加する。したがって、インバータ114とエンジン発電機120とが、負荷200の電力需要量に対して、協調して電力を出力することができる。 Thus, the output amount of the inverter 114 increases with the increase of the output amount of the engine generator 120. Therefore, the inverter 114 and the engine generator 120 can output power in coordination with the power demand of the load 200.
 また、例えば、エンジン発電機120は、エンジン発電機120が出力する交流電力の周波数または電圧の低下に伴って、エンジン発電機120が出力する交流電力の出力量が増加する出力特性を有する場合がある。この場合、インバータ114は、インバータ114が出力する交流電力の出力量の増加に伴って、インバータ114が出力する交流電力の周波数または電圧を低下させてもよい。 Also, for example, the engine generator 120 may have an output characteristic in which the output amount of AC power output from the engine generator 120 increases with the decrease in frequency or voltage of AC power output from the engine generator 120. is there. In this case, the inverter 114 may lower the frequency or voltage of the AC power output from the inverter 114 as the output amount of AC power output from the inverter 114 increases.
 これにより、インバータ114の出力量の増加に伴って、エンジン発電機120の出力量が増加する。したがって、インバータ114とエンジン発電機120とが、負荷200の電力需要量に対して、協調して電力を出力することができる。 As a result, with the increase of the output amount of the inverter 114, the output amount of the engine generator 120 increases. Therefore, the inverter 114 and the engine generator 120 can output power in coordination with the power demand of the load 200.
 すなわち、インバータ114は、ドループ制御によって、所定の対応関係に基づいて出力量と電圧または周波数とを調整し、エンジン発電機120と協調して電力を出力することができる。なお、上記では、出力量の増加と、周波数または電圧の低下とが対応付けられているが、出力量の増加と、周波数または電圧の上昇とが対応付けられていてもよい。 That is, the inverter 114 can adjust the output amount and the voltage or frequency based on a predetermined correspondence relationship by the droop control, and can output the power in cooperation with the engine generator 120. Although the increase in the output amount is associated with the decrease in frequency or voltage in the above description, the increase in the output amount may be associated with the increase in frequency or voltage.
 エンジン発電機120は、内燃機関(図示せず)を利用して電力を発電する。例えば、エンジン発電機120は、ディーゼルエンジン発電機、ガスエンジン発電機、または、ガスタービンエンジン発電機等である。エンジン発電機120は、負荷200が接続された電力線に電力を出力する。 Engine generator 120 generates power using an internal combustion engine (not shown). For example, the engine generator 120 is a diesel engine generator, a gas engine generator, a gas turbine engine generator, or the like. The engine generator 120 outputs power to the power line to which the load 200 is connected.
 コントローラ130は、自然エネルギー電源装置110の出力量、および、エンジン発電機120の出力量を制御する。すなわち、コントローラ130は、自然エネルギー電源装置110の出力量、および、エンジン発電機120の出力量を調整する。そして、コントローラ130は、負荷200の電力需要量に、自然エネルギー電源装置110の出力量とエンジン発電機120の出力量との合計である総出力量を適合させる。 The controller 130 controls the amount of output of the natural energy power supply 110 and the amount of output of the engine generator 120. That is, the controller 130 adjusts the output amount of the natural energy power supply device 110 and the output amount of the engine generator 120. Then, the controller 130 adapts the total power demand, which is the sum of the power demand of the natural energy power supply 110 and the power demand of the engine generator 120, to the power demand of the load 200.
 例えば、コントローラ130は、自然エネルギー電源装置110およびエンジン発電機120に対して、出力指令値を送信することにより、自然エネルギー電源装置110の出力量、および、エンジン発電機120の出力量を制御する。 For example, the controller 130 controls the output amount of the natural energy power supply 110 and the output amount of the engine generator 120 by transmitting output command values to the natural energy power supply 110 and the engine generator 120. .
 具体的には、コントローラ130は、通信線を介して、自然エネルギー電源装置110に対して、自然エネルギー電源装置110の出力量を示す出力指令値を送信する。自然エネルギー電源装置110は、出力指令値を受信し、出力指令値に示される出力量に従って電力を出力する。これにより、コントローラ130は、自然エネルギー電源装置110の出力量を制御する。 Specifically, the controller 130 transmits an output command value indicating the output amount of the natural energy power supply device 110 to the natural energy power supply device 110 via the communication line. The natural energy power supply device 110 receives an output command value, and outputs power according to the output amount indicated by the output command value. Thereby, the controller 130 controls the output amount of the natural energy power supply device 110.
 同様に、コントローラ130は、通信線を介して、エンジン発電機120に対して、エンジン発電機120の出力量を示す出力指令値を送信する。エンジン発電機120は、出力指令値を受信し、出力指令値に示される出力量に従って電力を出力する。これにより、コントローラ130は、エンジン発電機120の出力量を制御する。 Similarly, the controller 130 transmits an output command value indicating the output amount of the engine generator 120 to the engine generator 120 via the communication line. The engine generator 120 receives the output command value, and outputs power according to the output amount indicated by the output command value. Thereby, the controller 130 controls the output amount of the engine generator 120.
 コントローラ130は、自然エネルギー電源装置110に含まれるインバータ114に対して、出力指令値を送信してもよい。そして、インバータ114が、出力指令値を受信し、出力指令値に示される出力量に従って電力を出力してもよい。これにより、コントローラ130は、自然エネルギー電源装置110の出力量を制御することができる。 The controller 130 may transmit the output command value to the inverter 114 included in the natural energy power supply device 110. Then, the inverter 114 may receive the output command value and output power in accordance with the output amount indicated by the output command value. Thereby, the controller 130 can control the output amount of the natural energy power supply device 110.
 また、コントローラ130は、自然エネルギー電源装置110の出力量、および、エンジン発電機120の出力量のうち一方を制御することにより、他方を制御してもよい。 The controller 130 may control the other by controlling one of the output amount of the natural energy power supply 110 and the output amount of the engine generator 120.
 例えば、コントローラ130は、自然エネルギー電源装置110に出力指令値を送信することにより、自然エネルギー電源装置110の出力量を制御する。そして、エンジン発電機120は、自然エネルギー電源装置110の出力量(電力供給量)と負荷200の電力需要量との差に対応する電力を出力する。具体的には、エンジン発電機120は、負荷200の電力需要量に対して、自然エネルギー電源装置110の電力供給量で充当されなかった不足分の電力を出力する。 For example, the controller 130 controls the output amount of the natural energy power supply 110 by transmitting an output command value to the natural energy power supply 110. Then, the engine generator 120 outputs power corresponding to the difference between the output amount (power supply amount) of the natural energy power supply device 110 and the power demand amount of the load 200. Specifically, the engine generator 120 outputs a shortage of power that has not been filled with the power supply amount of the natural energy power supply 110 with respect to the power demand of the load 200.
 上記の動作に基づいて、コントローラ130は、自然エネルギー電源装置110の出力量を制御することにより、エンジン発電機120の出力量を制御することができる。 Based on the above operation, the controller 130 can control the amount of output of the engine generator 120 by controlling the amount of output of the natural energy power supply device 110.
 さらに、コントローラ130は、自然エネルギー電源装置110の出力許容範囲内に、自然エネルギー電源装置110の出力量を維持する。例えば、自然エネルギー電源装置110の出力許容範囲は、蓄電池113およびインバータ114の能力に基づいて定められる。また、コントローラ130は、エンジン発電機120において高い発電効率が得られる範囲として予め定められた制限範囲内にエンジン発電機120の出力量を維持する。これにより、エンジン発電機120において、発電効率が高い状態が維持される。 Furthermore, the controller 130 maintains the output amount of the natural energy power supply 110 within the output allowable range of the natural energy power supply 110. For example, the output allowable range of the natural energy power supply device 110 is determined based on the capabilities of the storage battery 113 and the inverter 114. In addition, the controller 130 maintains the output amount of the engine generator 120 within a predetermined limit range as a range where high power generation efficiency can be obtained in the engine generator 120. Thereby, in the engine generator 120, the state where the power generation efficiency is high is maintained.
 コントローラ130は、例えば、専用または汎用の情報処理回路でもよい。また、コントローラ130は、プロセッサでもよいし、プロセッサを備えるコンピュータでもよい。 The controller 130 may be, for example, a dedicated or general-purpose information processing circuit. Also, the controller 130 may be a processor or a computer including a processor.
 負荷200は、電力を消費する1以上の電気機器である。負荷200は、自然エネルギー電源装置110およびエンジン発電機120が接続される電力線に接続される。そして、負荷200には、自然エネルギー電源装置110およびエンジン発電機120から出力された電力が供給される。なお、負荷200の電力需要量に関して、基本的に、エンジン発電機120の出力量に対する制限範囲の下限よりも大きい電力需要量が想定されている。 The load 200 is one or more electrical devices that consume power. The load 200 is connected to a power line to which the natural energy power supply 110 and the engine generator 120 are connected. Then, the power output from the natural energy power supply 110 and the engine generator 120 is supplied to the load 200. In addition, regarding the electric power demand amount of the load 200, basically, the electric power demand amount larger than the lower limit of the restriction range with respect to the output amount of the engine generator 120 is assumed.
 図2は、図1に示されたエンジン発電機120の出力量を示すグラフ図である。エンジン発電機120に対して、最大出力量および最小出力量が定格として予め定められている。例えば、最大出力量は、出力許容範囲における最大出力量であり、最小出力量は、出力許容範囲における最小出力量である。本実施の形態において、最大出力量は10kWであり、最小出力量は0kWである。エンジン発電機120の最大出力量および最小出力量は、この例に限られず、別の値でもよい。 FIG. 2 is a graph showing the output of the engine generator 120 shown in FIG. For the engine generator 120, the maximum output amount and the minimum output amount are predetermined as ratings. For example, the maximum output amount is the maximum output amount in the output allowable range, and the minimum output amount is the minimum output amount in the output allowable range. In the present embodiment, the maximum output amount is 10 kW and the minimum output amount is 0 kW. The maximum output amount and the minimum output amount of the engine generator 120 are not limited to this example, and may be other values.
 図2に示された制限範囲は、コントローラ130がエンジン発電機120の出力量を維持する範囲である。例えば、制限範囲の上限は、最大出力量よりも低く、制限範囲の下限は、最小出力量よりも高い。 The limited range shown in FIG. 2 is a range in which the controller 130 maintains the amount of output of the engine generator 120. For example, the upper limit of the limit range is lower than the maximum output amount, and the lower limit of the limit range is higher than the minimum output amount.
 具体的には、制限範囲は、エンジン発電機120の発電効率を所定の発電効率よりも高くするための範囲として予め定められた範囲である。言い換えれば、エンジン発電機120において所定の発電効率よりも高い発電効率が得られると想定される範囲である。所定の発電効率は、例えば、エンジン発電機120の発電効率の平均でもよい。また、所定の発電効率は、具体的な数値として定められていなくてもよく、例えば、最大出力量の60%における発電効率でもよい。 Specifically, the limited range is a range predetermined as a range for making the power generation efficiency of the engine generator 120 higher than a predetermined power generation efficiency. In other words, in the range where it is assumed that the power generation efficiency higher than the predetermined power generation efficiency can be obtained in the engine generator 120. The predetermined power generation efficiency may be, for example, an average of the power generation efficiency of the engine generator 120. Further, the predetermined power generation efficiency may not be defined as a specific numerical value, and may be, for example, the power generation efficiency at 60% of the maximum output amount.
 さらに、制限範囲は、最大出力量に基づいて発電効率が高いと推定される範囲でもよい。具体的には、最大出力量の60%から80%までの範囲において、所定の発電効率(例えば、最大出力量における発電効率)よりもエンジン発電機120の発電効率が高いと想定される場合、制限範囲は、最大出力量の60%から80%までの範囲でもよい。また、制限範囲は、最大の発電効率が得られる出力量の前後10%等のように、最大の発電効率が得られる出力量の近傍として定められる範囲でもよい。 Furthermore, the limited range may be a range in which the power generation efficiency is estimated to be high based on the maximum output amount. Specifically, when it is assumed that the power generation efficiency of the engine generator 120 is higher than a predetermined power generation efficiency (for example, the power generation efficiency at the maximum power amount) in the range of 60% to 80% of the maximum power amount The limited range may be in the range of 60% to 80% of the maximum output amount. Further, the limited range may be a range defined as the vicinity of the output amount at which the maximum power generation efficiency can be obtained, such as 10% before and after the output amount at which the maximum power generation efficiency can be obtained.
 本実施の形態において、制限範囲の上限は8kWであり、制限範囲の下限は6kWである。制限範囲の上限および下限は、この例に限られず、別の値でもよい。 In the present embodiment, the upper limit of the limit range is 8 kW, and the lower limit of the limit range is 6 kW. The upper limit and the lower limit of the limit range are not limited to this example, and may be other values.
 図3は、図1に示されたエンジン発電機120の発電効率を示すグラフ図である。本実施の形態において、エンジン発電機120の出力量が0kWから増大するにつれて、エンジン発電機120の発電効率が上昇する。そして、7kWの出力量において、最大の発電効率が得られる。その後、出力量が増大するにつれて、発電効率が下降する。10kWの最大出力量における発電効率は約30%である。 FIG. 3 is a graph showing the power generation efficiency of the engine generator 120 shown in FIG. In the present embodiment, as the amount of output of the engine generator 120 increases from 0 kW, the power generation efficiency of the engine generator 120 increases. And, the maximum power generation efficiency can be obtained with an output of 7 kW. After that, as the amount of output increases, the power generation efficiency decreases. The power generation efficiency at a maximum output of 10 kW is about 30%.
 本実施の形態では、制限範囲に含まれる6kWから8kWまでの出力量において、40%以上の発電効率が得られる。このように、エンジン発電機120において高い発電効率が得られるように、制限範囲が定められる。 In the present embodiment, a power generation efficiency of 40% or more can be obtained with an output amount of 6 kW to 8 kW included in the restricted range. In this manner, the limited range is defined so that high power generation efficiency can be obtained in engine generator 120.
 図4は、図1に示された自然エネルギー電源装置110およびエンジン発電機120の出力量の時間変化を示すグラフ図である。図4には、自然エネルギー電源装置110の出力量に、エンジン発電機120の出力量が積み上げられている。すなわち、図4には、自然エネルギー電源装置110の出力量と、エンジン発電機120の出力量との総出力量が示されている。負荷200には、この総出力量に相当する電力が供給される。 FIG. 4 is a graph showing temporal changes in the output amounts of the natural energy power supply device 110 and the engine generator 120 shown in FIG. In FIG. 4, the output amount of the engine generator 120 is stacked on the output amount of the natural energy power supply device 110. That is, FIG. 4 shows the total output amount of the output amount of the natural energy power supply device 110 and the output amount of the engine generator 120. The load 200 is supplied with power corresponding to this total output amount.
 コントローラ130は、自然エネルギー電源装置110の出力量と、エンジン発電機120の出力量との総出力量が、負荷200の電力需要量に適合するように、自然エネルギー電源装置110の出力量と、エンジン発電機120の出力量とを制御する。また、コントローラ130は、自然エネルギー電源装置110の出力許容範囲内に、自然エネルギー電源装置110の出力量を維持し、エンジン発電機120において高い発電効率が得られる所定の制限範囲内にエンジン発電機120の出力量を維持する。 The controller 130 controls the output of the natural energy power supply 110 so that the total output of the natural energy power supply 110 and the output of the engine generator 120 match the power demand of the load 200, and the engine The amount of output of the generator 120 is controlled. In addition, the controller 130 maintains the output amount of the natural energy power supply 110 within the output allowable range of the natural energy power supply 110, and the engine generator within a predetermined limited range where high power generation efficiency can be obtained in the engine generator 120. Maintain an output of 120.
 本実施の形態において、自然エネルギー電源装置110の出力許容範囲の上限は2kWであり、自然エネルギー電源装置110の出力許容範囲の下限は0kWである。したがって、コントローラ130は、0kWから2kWまでの範囲内に自然エネルギー電源装置110の出力量を維持する。自然エネルギー電源装置110の出力許容範囲の上限および下限は、この例に限られず、別の値でもよい。 In the present embodiment, the upper limit of the allowable output range of the natural energy power supply 110 is 2 kW, and the lower limit of the allowable output range of the natural energy power supply 110 is 0 kW. Therefore, the controller 130 maintains the output amount of the natural energy power supply 110 within the range of 0 kW to 2 kW. The upper limit and the lower limit of the output allowable range of the natural energy power supply device 110 are not limited to this example, and may be other values.
 また、インバータ114が双方向インバータである場合、負の出力量が、自然エネルギー電源装置110の出力量として用いられてもよい。負の出力量は、インバータ114が交流電力から直流電力に変換する電力の量に相当し、インバータ114が蓄電池113に充電する電力の量に相当する。したがって、インバータ114が双方向インバータである場合、自然エネルギー電源装置110の出力許容範囲の下限は、負の出力量でもよい。 Further, when the inverter 114 is a bidirectional inverter, a negative output amount may be used as an output amount of the natural energy power supply device 110. The negative output amount corresponds to the amount of power that the inverter 114 converts from AC power to DC power, and corresponds to the amount of power that the inverter 114 charges the storage battery 113. Therefore, when the inverter 114 is a bidirectional inverter, the lower limit of the output allowable range of the natural energy power supply 110 may be a negative output amount.
 図5は、図1に示されたエンジン発電機120の出力量の時間変化を示すグラフ図である。図5に示されたエンジン発電機120の出力量は、図4に示されたエンジン発電機120の出力量に相当する。図5のように、エンジン発電機120の出力量は、所定の制限範囲内に維持される。 FIG. 5 is a graph showing the time change of the output amount of the engine generator 120 shown in FIG. The output amount of the engine generator 120 shown in FIG. 5 corresponds to the output amount of the engine generator 120 shown in FIG. As shown in FIG. 5, the output amount of the engine generator 120 is maintained within a predetermined limit range.
 すなわち、コントローラ130は、6kWから8kWまでの制限範囲内にエンジン発電機120の出力量を維持する。 That is, the controller 130 maintains the output of the engine generator 120 within the limited range of 6 kW to 8 kW.
 図6は、図1に示された負荷200の電力需要量、図1に示された自然エネルギー電源装置110の電力供給量、および、図1に示されたエンジン発電機120の電力供給量の時間変化を示すグラフ図である。図6に示された自然エネルギー電源装置110の電力供給量は、図4に示された自然エネルギー電源装置110の出力量に相当する。図6に示されたエンジン発電機120の電力供給量は、図4に示されたエンジン発電機120の出力量に相当する。 6 shows the power demand of the load 200 shown in FIG. 1, the power supply of the natural energy power supply 110 shown in FIG. 1, and the power supply of the engine generator 120 shown in FIG. It is a graph which shows a time change. The power supply amount of the natural energy power supply device 110 shown in FIG. 6 corresponds to the output amount of the natural energy power supply device 110 shown in FIG. 4. The power supply amount of the engine generator 120 shown in FIG. 6 corresponds to the output amount of the engine generator 120 shown in FIG.
 また、図6に示された負荷200の電力需要量は、自然エネルギー電源装置110の電力供給量とエンジン発電機120の電力供給量との合計に相当する。すなわち、負荷200の電力需要量は、自然エネルギー電源装置110の出力量とエンジン発電機120の出力量との総出力量に相当する。 Further, the power demand of the load 200 shown in FIG. 6 corresponds to the sum of the power supply of the natural energy power supply 110 and the power supply of the engine generator 120. That is, the power demand of the load 200 corresponds to the total output of the natural energy power supply 110 and the output of the engine generator 120.
 図6のように、コントローラ130は、エンジン発電機120の出力量(電力供給量)を所定の制限範囲内に維持する。また、コントローラ130は、自然エネルギー電源装置110の出力量(電力供給量)を自然エネルギー電源装置110の出力許容範囲内に維持する。そして、コントローラ130は、自然エネルギー電源装置110の出力量とエンジン発電機120の出力量との総出力量を負荷200の電力需要量に適合させる。 As shown in FIG. 6, the controller 130 maintains the output amount (power supply amount) of the engine generator 120 within a predetermined limit range. In addition, the controller 130 maintains the output amount (power supply amount) of the natural energy power supply device 110 within the output allowable range of the natural energy power supply device 110. Then, the controller 130 matches the total output amount of the output amount of the natural energy power supply 110 and the output amount of the engine generator 120 with the power demand amount of the load 200.
 例えば、コントローラ130は、自然エネルギー電源装置110の出力量を0kWから2kWまでの範囲内に維持し、エンジン発電機120の出力量を6kWから8kWまでの範囲内に維持する。そして、コントローラ130は、エンジン発電機120の出力量と自然エネルギー電源装置110の出力量との総出力量を6kWから10kWまでの範囲で負荷200の電力需要量に適合させる。 For example, the controller 130 maintains the output of the natural energy power supply 110 within the range of 0 kW to 2 kW, and maintains the output of the engine generator 120 within the range of 6 kW to 8 kW. Then, the controller 130 matches the total output amount of the output amount of the engine generator 120 and the output amount of the natural energy power supply device 110 with the power demand of the load 200 in the range from 6 kW to 10 kW.
 コントローラ130は、自然エネルギー電源装置110の出力許容範囲、および、エンジン発電機120の制限範囲に従って、負荷200の電力需要量に対する総出力量を自然エネルギー電源装置110およびエンジン発電機120に配分する。例えば、本実施の形態の例において、負荷200の電力需要量がL(kW)で表現され、自然エネルギー電源装置110の出力量がR(kW)で表現され、エンジン発電機120の出力量がE(kW)で表現される場合、RおよびEは、以下の式1で導出される。 The controller 130 distributes the total output amount to the power demand of the load 200 to the natural energy power supply 110 and the engine generator 120 according to the output allowable range of the natural energy power supply 110 and the limited range of the engine generator 120. For example, in the example of the present embodiment, the power demand amount of the load 200 is represented by L (kW), the output amount of the natural energy power source 110 is represented by R (kW), and the output amount of the engine generator 120 is When expressed by E (kW), R and E are derived by Equation 1 below.
 <式1>
 R=(L-6)/2
 E=(L-6)/2+6
 (ただし、6≦L≦10)
<Formula 1>
R = (L-6) / 2
E = (L-6) / 2 + 6
(However, 6 ≦ L ≦ 10)
 さらに、自然エネルギー電源装置110の出力許容範囲の下限がRa、上限がRb、エンジン発電機120の制限範囲の下限がEa、上限がEbで表現される場合、式1は、以下の式2のように表現される。 Furthermore, when the lower limit of the output allowable range of the natural energy power supply 110 is represented by Ra, the upper limit is Rb, the lower limit of the limitation range of the engine generator 120 is Ea, and the upper limit is Eb, equation 1 is equation 2 below. It is expressed as
 <式2>
 R=(L-Ra-Ea)×(Rb-Ra)/(Rb-Ra+Eb-Ea)+Ra
 E=(L-Ra-Ea)×(Eb-Ea)/(Rb-Ra+Eb-Ea)+Ea
 (ただし、Ra+Ea≦L≦Rb+Eb)
<Formula 2>
R = (L-Ra-Ea) x (Rb-Ra) / (Rb-Ra + Eb-Ea) + Ra
E = (L-Ra-Ea) x (Eb-Ea) / (Rb-Ra + Eb-Ea) + Ea
(However, Ra + Ea ≦ L ≦ Rb + Eb)
 コントローラ130は、上記の式に基づいて、負荷200の電力需要量に対する総出力量を自然エネルギー電源装置110およびエンジン発電機120に配分する。 The controller 130 distributes the total output amount to the power demand of the load 200 to the natural energy power supply 110 and the engine generator 120 based on the above equation.
 これにより、コントローラ130は、自然エネルギー電源装置110の出力許容範囲内に維持し、かつ、エンジン発電機120の出力量を制限範囲内に維持しつつ、それらの総出力量を負荷200の電力需要量に適合させることができる。したがって、コントローラ130は、エンジン発電機120の発電効率を高い状態に維持することができる。 As a result, the controller 130 maintains the output of the natural energy power supply 110 within the allowable output range, and maintains the output of the engine generator 120 within the restricted range, while the total output of the generator 200 is required for the load 200. Can be adapted to Therefore, the controller 130 can maintain the power generation efficiency of the engine generator 120 in a high state.
 また、負荷200の電力需要量の変動に対して、自然エネルギー電源装置110の出力量の変動、および、エンジン発電機120の出力量の変動を抑制することができる。したがって、コントローラ130は、蓄電池113等の劣化を抑制することができる。 Further, with respect to the fluctuation of the power demand of the load 200, the fluctuation of the output of the natural energy power supply 110 and the fluctuation of the output of the engine generator 120 can be suppressed. Therefore, controller 130 can suppress deterioration of storage battery 113 and the like.
 上記の配分方法は、一例であり、他の配分方法が適用されてもよい。例えば、負荷200の電力需要量がエンジン発電機120の制限範囲を超えた場合のみ、コントローラ130は、自然エネルギー電源装置110に超過分の電力を出力させてもよい。これにより、蓄電池113の使用頻度が減少し、蓄電池113の劣化が抑制される。 The above allocation method is an example, and other allocation methods may be applied. For example, the controller 130 may cause the natural energy power supply 110 to output the excess power only when the power demand of the load 200 exceeds the limited range of the engine generator 120. Thus, the frequency of use of storage battery 113 is reduced, and deterioration of storage battery 113 is suppressed.
 また、コントローラ130は、エンジン発電機120の出力量を一定に維持し、負荷200の電力需要量の変動に、自然エネルギー電源装置110の出力量を追従させてもよい。そして、負荷200の電力需要量が自然エネルギー電源装置110の出力許容範囲を超えて変動した場合のみ、コントローラ130は、エンジン発電機120の出力量を変動させてもよい。これにより、コントローラ130は、負荷200の電力需要量の変動が小さい場合、エンジン発電機120の発電効率をより高い状態に維持することができる。 In addition, the controller 130 may maintain the output amount of the engine generator 120 constant, and make the output amount of the natural energy power supply 110 follow the fluctuation of the power demand amount of the load 200. Then, the controller 130 may change the output amount of the engine generator 120 only when the power demand amount of the load 200 fluctuates beyond the allowable output range of the natural energy power supply device 110. Thereby, the controller 130 can maintain the power generation efficiency of the engine generator 120 in a higher state when the fluctuation of the power demand of the load 200 is small.
 本実施の形態では、負荷200の電力需要量が、自然エネルギー電源装置110の出力許容範囲と、エンジン発電機120の制限範囲との両方でカバーされる範囲内であると想定されている。負荷200の電力需要量が、この想定範囲内である場合において、エンジン発電機120の発電効率が高い状態に維持され、エンジン発電機120で発電された電力の損失が抑制される。 In the present embodiment, it is assumed that the power demand of the load 200 is within the range covered by both the allowable output range of the natural energy power supply 110 and the limited range of the engine generator 120. When the power demand of the load 200 is within this assumed range, the power generation efficiency of the engine generator 120 is maintained high, and the loss of the power generated by the engine generator 120 is suppressed.
 負荷200の電力需要量が、上記の想定範囲内でない場合、コントローラ130は、エンジン発電機120の出力量を制限範囲内に維持しなくてもよい。つまり、この場合、コントローラ130は、制限範囲内に限らず、エンジン発電機120の出力許容範囲内の出力量に相当する電力をエンジン発電機120に出力させてもよい。 If the power demand of the load 200 is not within the above-described assumed range, the controller 130 may not maintain the output of the engine generator 120 within the limited range. That is, in this case, the controller 130 may cause the engine generator 120 to output power corresponding to the output amount within the allowable output range of the engine generator 120, not limited to the limited range.
 これにより、コントローラ130は、負荷200の電力需要量の大きな変動に対して、電力供給量を大きく変動させることができる。 Thus, the controller 130 can largely change the power supply amount with respect to the large fluctuation of the power demand of the load 200.
 次に、図1に示された分散電源システム100に含まれる自然エネルギー電源装置110、エンジン発電機120およびコントローラ130の動作を図7~図9を用いて説明する。 Next, operations of the natural energy power supply device 110, the engine generator 120, and the controller 130 included in the distributed power supply system 100 shown in FIG. 1 will be described with reference to FIGS.
 図7は、図1に示された自然エネルギー電源装置110の動作を示すフローチャートである。 FIG. 7 is a flow chart showing the operation of the natural energy power supply device 110 shown in FIG.
 まず、自然エネルギー発電装置111が自然エネルギーを利用して電力を発電する(S111)。次に、電源回路112は、自然エネルギー発電装置111で発電された電力から所定の電圧の電力を生成する(S112)。 First, the natural energy power generation apparatus 111 generates electric power using natural energy (S111). Next, the power supply circuit 112 generates power of a predetermined voltage from the power generated by the natural energy power generation apparatus 111 (S112).
 次に、電源回路112で生成された電力が蓄電池113に充電され、充電された電力が蓄電池113から放電される(S113)。インバータ114は、蓄電池113から放電された電力を交流の電力に変換する(S114)。電源回路112で生成された電力は、蓄電池113に充電されずに、インバータ114によって交流の電力へ変換されてもよい。そして、インバータ114は、変換された電力を負荷200が接続された電力線に出力する(S115)。 Next, the power generated by the power supply circuit 112 is charged to the storage battery 113, and the charged power is discharged from the storage battery 113 (S113). The inverter 114 converts the power discharged from the storage battery 113 into AC power (S114). The power generated by the power supply circuit 112 may be converted into AC power by the inverter 114 without charging the storage battery 113. Then, the inverter 114 outputs the converted power to the power line to which the load 200 is connected (S115).
 図8は、図1に示されたエンジン発電機120の動作を示すフローチャートである。まず、エンジン発電機120は、エンジン発電機120が備える内燃機関を利用して、電力を発電する(S121)。そして、エンジン発電機120は、発電された電力を負荷200が接続された電力線に出力する(S122)。 FIG. 8 is a flow chart showing the operation of the engine generator 120 shown in FIG. First, the engine generator 120 generates electric power using the internal combustion engine provided in the engine generator 120 (S121). Then, the engine generator 120 outputs the generated power to the power line to which the load 200 is connected (S122).
 図9は、図1に示されたコントローラ130の動作を示すフローチャートである。コントローラ130は、自然エネルギー電源装置110の出力量、および、エンジン発電機120の出力量を制御する(S131)。すなわち、コントローラ130は、自然エネルギー電源装置110の出力量、および、エンジン発電機120の出力量を調整する。 FIG. 9 is a flowchart showing the operation of the controller 130 shown in FIG. The controller 130 controls the output amount of the natural energy power supply device 110 and the output amount of the engine generator 120 (S131). That is, the controller 130 adjusts the output amount of the natural energy power supply device 110 and the output amount of the engine generator 120.
 そして、コントローラ130は、自然エネルギー電源装置110の出力量を自然エネルギー電源装置110の出力許容範囲内に維持する。また、コントローラ130は、エンジン発電機120の出力量を所定の制限範囲内に維持する(S131)。そして、コントローラ130は、自然エネルギー電源装置110の出力量とエンジン発電機120の出力量との総出力量を負荷200の電力需要量に適合させる。 Then, the controller 130 maintains the output amount of the natural energy power supply device 110 within the output allowable range of the natural energy power supply device 110. In addition, the controller 130 maintains the output amount of the engine generator 120 within a predetermined limit range (S131). Then, the controller 130 matches the total output amount of the output amount of the natural energy power supply 110 and the output amount of the engine generator 120 with the power demand amount of the load 200.
 なお、負荷200の電力需要量には、自然エネルギー電源装置110およびエンジン発電機120とは異なる他の電源の電力供給量が反映されていてもよい。すなわち、他の電源から負荷200に電力が供給されている場合、他の電源の電力供給量が、負荷200の電力需要量から差し引かれてもよい。そして、この場合、コントローラ130は、他の電源の電力供給量が差し引かれた電力需要量に対して、自然エネルギー電源装置110およびエンジン発電機120の総出力量を適合させる。 Note that the power demand amount of the load 200 may reflect the power supply amount of another power source different from the natural energy power supply device 110 and the engine generator 120. That is, when power is supplied to the load 200 from another power source, the power supply amount of the other power source may be deducted from the power demand amount of the load 200. And, in this case, the controller 130 adapts the total output amount of the natural energy power supply device 110 and the engine generator 120 to the power demand amount from which the power supply amount of the other power source is subtracted.
 本実施の形態では、自然エネルギー電源装置110とエンジン発電機120とが負荷200に対して並列に接続される。そして、自然エネルギー電源装置110の出力量とエンジン発電機120の出力量とが制御されることで、エンジン発電機120の出力量が制限範囲内に維持される。これにより、エンジン発電機120で発電された電力の損失が少なく、エンジン発電機120の発電効率が高く維持される。 In the present embodiment, the natural energy power supply 110 and the engine generator 120 are connected in parallel to the load 200. Then, by controlling the output amount of the natural energy power supply device 110 and the output amount of the engine generator 120, the output amount of the engine generator 120 is maintained within the limit range. As a result, the loss of the power generated by the engine generator 120 is small, and the power generation efficiency of the engine generator 120 is maintained high.
 次に、本実施の形態における例とは別の例を参考例として説明する。以下の参考例は、高い発電効率が得られない例である。 Next, another example different from the example in the present embodiment will be described as a reference example. The following reference examples are examples in which high power generation efficiency can not be obtained.
 図10は、参考例における分散電源システムを示すブロック図である。図10に示された分散電源システム100aは、自然エネルギー電源装置110a、エンジン発電機120a、コントローラ130a、および、スイッチ140aを備える。自然エネルギー電源装置110a、エンジン発電機120aおよびコントローラ130aは、図1における自然エネルギー電源装置110、エンジン発電機120およびコントローラ130に相当する構成要素である。 FIG. 10 is a block diagram showing a distributed power supply system in a reference example. The distributed power supply system 100a illustrated in FIG. 10 includes a natural energy power supply 110a, an engine generator 120a, a controller 130a, and a switch 140a. The natural energy power supply device 110a, the engine generator 120a and the controller 130a are components equivalent to the natural energy power supply device 110, the engine generator 120 and the controller 130 in FIG.
 また、自然エネルギー電源装置110aは、自然エネルギー発電装置111a、電源回路112a、蓄電池113a、および、インバータ114aを備える。自然エネルギー発電装置111a、電源回路112a、蓄電池113a、および、インバータ114aは、図1における自然エネルギー発電装置111、電源回路112、蓄電池113、および、インバータ114に相当する構成要素である。 In addition, the natural energy power supply device 110a includes a natural energy power generation device 111a, a power supply circuit 112a, a storage battery 113a, and an inverter 114a. The natural energy power generation apparatus 111a, the power supply circuit 112a, the storage battery 113a, and the inverter 114a are components corresponding to the natural energy power generation apparatus 111, the power supply circuit 112, the storage battery 113, and the inverter 114 in FIG.
 本参考例における分散電源システム100aは、スイッチ140aによって、自然エネルギー電源装置110aから負荷200への電力供給と、エンジン発電機120aから負荷200への電力供給とを切り替える。 The distributed power supply system 100a in the present reference example switches the power supply from the natural energy power supply 110a to the load 200 and the power supply from the engine generator 120a to the load 200 by the switch 140a.
 例えば、自然エネルギー発電装置111aの発電量が大きい場合、または、蓄電池113aの残容量が大きい場合、自然エネルギー電源装置110aが負荷200へ電力を供給する。逆に、自然エネルギー発電装置111aの発電量が小さく、かつ、蓄電池113aの残容量が小さい場合、エンジン発電機120aが負荷200へ電力を供給する。 For example, when the amount of power generation of the natural energy power generation apparatus 111a is large, or when the remaining capacity of the storage battery 113a is large, the natural energy power supply apparatus 110a supplies power to the load 200. Conversely, when the amount of power generation of the natural energy power generation apparatus 111 a is small and the remaining capacity of the storage battery 113 a is small, the engine generator 120 a supplies power to the load 200.
 そして、エンジン発電機120aが負荷200へ電力を供給している間に、自然エネルギー発電装置111aで発電された電力を電源回路112aが蓄電池113aに充電する。そして、蓄電池113aの残容量が大きくなれば、スイッチ140aによって、負荷200への電力供給元が、エンジン発電機120aから自然エネルギー電源装置110aへ切り替えられる。 Then, while the engine generator 120a supplies power to the load 200, the power supply circuit 112a charges the storage battery 113a with the power generated by the natural energy power generation apparatus 111a. Then, when the remaining capacity of the storage battery 113a becomes large, the switch 140a switches the power supply source to the load 200 from the engine generator 120a to the natural energy power supply 110a.
 すなわち、自然エネルギー電源装置110aが負荷200に十分な電力を供給することが可能である場合、自然エネルギー電源装置110aが負荷200に電力を供給する。そして、自然エネルギー電源装置110aが負荷200に十分な電力を供給することが可能でない場合、自然エネルギー電源装置110aは負荷200に供給するための電力を蓄積する。その間、エンジン発電機120aが負荷200に電力を供給する。 That is, when the natural energy power supply device 110 a can supply sufficient power to the load 200, the natural energy power supply device 110 a supplies power to the load 200. Then, when the natural energy power supply device 110 a can not supply sufficient power to the load 200, the natural energy power supply device 110 a accumulates power for supplying the load 200. Meanwhile, the engine generator 120a supplies power to the load 200.
 これにより、自然エネルギー電源装置110aとエンジン発電機120aとが連携して負荷200に電力を供給することができる。 As a result, the natural energy power supply device 110a and the engine generator 120a can cooperate to supply power to the load 200.
 図11は、図10に示された自然エネルギー電源装置110aおよびエンジン発電機120aの出力量の時間変化を示すグラフ図である。本参考例では、自然エネルギー電源装置110aおよびエンジン発電機120aのうち一方から電力が供給される。すなわち、自然エネルギー電源装置110aおよびエンジン発電機120aが同時に電力を供給しない。したがって、負荷200に供給される電力の量が小さくなる。 FIG. 11 is a graph showing temporal changes in output amounts of the natural energy power supply device 110a and the engine generator 120a shown in FIG. In the present embodiment, power is supplied from one of the natural energy power supply 110a and the engine generator 120a. That is, the natural energy power supply device 110a and the engine generator 120a do not supply power simultaneously. Therefore, the amount of power supplied to the load 200 is reduced.
 また、自然エネルギー電源装置110aおよびエンジン発電機120aが負荷200への電力供給を分担することができない。そのため、自然エネルギー電源装置110aの出力量を出力許容範囲内に制御すること、および、エンジン発電機120aの出力量を所定の制限範囲内に制御することが困難である。 Moreover, the natural energy power supply device 110 a and the engine generator 120 a can not share the power supply to the load 200. Therefore, it is difficult to control the output amount of the natural energy power supply 110a within the output allowable range and to control the output amount of the engine generator 120a within the predetermined limit range.
 さらに、自然エネルギー電源装置110aから負荷200への電力供給と、エンジン発電機120aから負荷200への電力供給との切り替えにおいて、瞬停が発生する。 Furthermore, in switching between the power supply from the natural energy power supply device 110a to the load 200 and the power supply from the engine generator 120a to the load 200, a momentary power failure occurs.
 上記の通り、本参考例の分散電源システム100aでは、エンジン発電機120aの発電効率が高い状態に維持されない。また、負荷200に対して、十分な電力が供給されない。さらに、切り替え時に瞬停が発生する。 As described above, in the distributed power supply system 100a of the present reference example, the power generation efficiency of the engine generator 120a is not maintained high. In addition, sufficient power is not supplied to the load 200. Furthermore, a momentary stoppage occurs at the time of switching.
 これに対して、本実施の形態の分散電源システム100では、エンジン発電機120の発電効率が高い状態に維持される。また、負荷200に対して、十分な電力が供給される。さらに、切り替えに伴う瞬停が発生しない。 On the other hand, in the distributed power supply system 100 of the present embodiment, the power generation efficiency of the engine generator 120 is maintained high. In addition, sufficient power is supplied to the load 200. Furthermore, no momentary interruption due to switching does not occur.
 次に、本実施の形態の複数の変形例を説明する。以下において説明される複数の変形例では、本実施の形態に対して一部の動作が変更される。 Next, a plurality of modified examples of the present embodiment will be described. In a plurality of modifications described below, some operations are modified with respect to the present embodiment.
 (変形例1)
 まず、変形例1を説明する。本変形例の基本的な構成は、図1等に示された分散電源システム100の構成と同様である。したがって、本変形例の説明には、図1等に示された分散電源システム100の構成を用いる。
(Modification 1)
First, Modification 1 will be described. The basic configuration of this modification is the same as that of the distributed power supply system 100 shown in FIG. Therefore, the configuration of the distributed power supply system 100 shown in FIG.
 本変形例では、所定の条件が満たされる場合のみ、エンジン発電機120の出力量が制限範囲内に維持される。所定の条件が満たされない場合、エンジン発電機120の出力量が制限範囲内に維持されない。すなわち、制限が解除される。 In this modification, the output of the engine generator 120 is maintained within the limited range only when the predetermined condition is satisfied. If the predetermined condition is not satisfied, the output of the engine generator 120 is not maintained within the limited range. That is, the restriction is released.
 図12は、本変形例におけるコントローラ130の動作を示すフローチャートである。まず、コントローラ130は、評価対象値を取得する(S141)。評価対象値は、例えば、蓄電池113の残容量、または、自然エネルギー発電装置111の発電量等である。 FIG. 12 is a flowchart showing the operation of the controller 130 in the present modification. First, the controller 130 acquires an evaluation target value (S141). The evaluation target value is, for example, the remaining capacity of the storage battery 113 or the amount of power generation of the natural energy power generation apparatus 111 or the like.
 具体的には、本変形例において、コントローラ130は、蓄電池113の残容量を評価対象値として取得する。蓄電池113の残容量は、蓄電池113の充電状態(SOC:State Of Charge)に相当する。 Specifically, in the present modification, controller 130 acquires the remaining capacity of storage battery 113 as an evaluation target value. The remaining capacity of storage battery 113 corresponds to the state of charge of storage battery 113 (SOC: State Of Charge).
 例えば、蓄電池113または自然エネルギー電源装置110は、蓄電池113の充放電量に基づいて、蓄電池113の残容量を計測する。あるいは、蓄電池113または自然エネルギー電源装置110は、蓄電池113の電圧に基づいて、蓄電池113の残容量を計測してもよい。コントローラ130は、蓄電池113または自然エネルギー電源装置110と通信して、蓄電池113の残容量を取得する。 For example, the storage battery 113 or the natural energy power supply device 110 measures the remaining capacity of the storage battery 113 based on the charge / discharge amount of the storage battery 113. Alternatively, the storage battery 113 or the natural energy power supply 110 may measure the remaining capacity of the storage battery 113 based on the voltage of the storage battery 113. The controller 130 communicates with the storage battery 113 or the natural energy power supply 110 to acquire the remaining capacity of the storage battery 113.
 次に、コントローラ130は、評価対象値が所定の条件を満たすか否かを判定する(S142)。具体的には、本変形例では、コントローラ130は、蓄電池113の残容量が所定の条件を満たすか否かを判定する。より具体的には、所定の条件は、蓄電池113の残容量が所定の残容量よりも大きいことである。 Next, the controller 130 determines whether the evaluation target value satisfies a predetermined condition (S142). Specifically, in the present modification, controller 130 determines whether or not the remaining capacity of storage battery 113 satisfies a predetermined condition. More specifically, the predetermined condition is that the remaining capacity of storage battery 113 is larger than the predetermined remaining capacity.
 評価対象値が所定の条件を満たす場合(S142でYes)、コントローラ130は、エンジン発電機120の出力量を所定の制限範囲内に維持する(S143)。この動作は、図9のS131と同様である。 When the evaluation target value satisfies the predetermined condition (Yes in S142), the controller 130 maintains the output amount of the engine generator 120 within the predetermined limited range (S143). This operation is the same as S131 of FIG.
 一方、評価対象値が所定の条件を満たさない場合(S142でNo)、コントローラ130は、エンジン発電機120の出力量を所定の制限範囲内に維持しない。そして、この場合、コントローラ130は、自然エネルギー電源装置110の出力量を削減する(S144)。 On the other hand, when the evaluation target value does not satisfy the predetermined condition (No in S142), the controller 130 does not maintain the output amount of the engine generator 120 within the predetermined limit range. Then, in this case, the controller 130 reduces the output amount of the natural energy power supply device 110 (S 144).
 例えば、評価対象値が所定の条件を満たしていない場合、コントローラ130は、自然エネルギー電源装置110の出力を停止することにより、自然エネルギー電源装置110の出力量を削減する。具体的には、コントローラ130は、蓄電池113の残容量が所定の残容量よりも大きくない場合、自然エネルギー電源装置110の出力を停止する。 For example, when the evaluation target value does not satisfy the predetermined condition, the controller 130 reduces the output amount of the natural energy power supply device 110 by stopping the output of the natural energy power supply device 110. Specifically, when the remaining capacity of storage battery 113 is not larger than the predetermined remaining capacity, controller 130 stops the output of natural energy power supply device 110.
 すなわち、自然エネルギー電源装置110が負荷200に十分な電力を供給することが可能であると想定される場合、自然エネルギー電源装置110が負荷200に電力を供給する。そして、自然エネルギー電源装置110が負荷200に十分な電力を供給することが可能でないと想定される場合、自然エネルギー電源装置110は、負荷200への電力供給を停止して、負荷200に供給するための電力を蓄積する。その間、エンジン発電機120は、制限範囲に限らず、負荷200に電力を供給する。 That is, when it is assumed that the natural energy power supply 110 can supply sufficient power to the load 200, the natural energy power supply 110 supplies power to the load 200. Then, when it is assumed that the natural energy power supply device 110 can not supply sufficient power to the load 200, the natural energy power supply device 110 stops the power supply to the load 200 and supplies it to the load 200. Accumulate power for. Meanwhile, the engine generator 120 supplies power to the load 200, not limited to the limited range.
 例えば、蓄電池113の残容量が小さい場合、自然エネルギー電源装置110が負荷200に十分な電力を供給することが可能でないと想定される。また、蓄電池113の残容量が小さい場合、過放電により蓄電池113が劣化する可能性がある。 For example, when the remaining capacity of the storage battery 113 is small, it is assumed that the natural energy power supply device 110 can not supply sufficient power to the load 200. In addition, when the remaining capacity of storage battery 113 is small, storage battery 113 may be degraded due to overdischarge.
 したがって、この場合、コントローラ130は、自然エネルギー電源装置110から負荷200への電力供給を停止させる。その代わりに、コントローラ130は、エンジン発電機120の出力量の制限を解除して、エンジン発電機120の出力量を増加させる。これにより、負荷200に対して、十分な電力が供給される。 Therefore, in this case, the controller 130 stops the power supply from the natural energy power supply device 110 to the load 200. Instead, the controller 130 releases the limitation of the output of the engine generator 120 to increase the output of the engine generator 120. Thereby, sufficient power is supplied to the load 200.
 図13は、図1に示された自然エネルギー電源装置110およびエンジン発電機120の出力量の時間変化を示すグラフ図である。この例において、時刻T1から時刻T2までの期間は、評価対象値が所定の条件を満たしていない期間である。例えば、この期間において、蓄電池113の残容量が所定の残容量以下になっている。したがって、この期間において、自然エネルギー電源装置110の出力量が削減される。 FIG. 13 is a graph showing the time change of the output amounts of the natural energy power supply device 110 and the engine generator 120 shown in FIG. In this example, the period from time T1 to time T2 is a period in which the evaluation object value does not satisfy the predetermined condition. For example, in this period, the remaining capacity of storage battery 113 is less than or equal to a predetermined remaining capacity. Therefore, in this period, the output amount of the natural energy power supply device 110 is reduced.
 具体的には、時刻T1から時刻T2までの期間において、コントローラ130は、自然エネルギー電源装置110の出力を停止する。その代わりに、コントローラ130は、エンジン発電機120の出力量の制限を解除して、エンジン発電機120の出力量を増加させる。 Specifically, in a period from time T1 to time T2, the controller 130 stops the output of the natural energy power supply device 110. Instead, the controller 130 releases the limitation of the output of the engine generator 120 to increase the output of the engine generator 120.
 図14は、図1に示されたエンジン発電機120の出力量の時間変化を示すグラフ図である。図14に示されたエンジン発電機120の出力量は、図13に示されたエンジン発電機120の出力量に相当する。上記の通り、時刻T1から時刻T2までの期間は、評価対象値が所定の条件を満たしていない期間である。この期間において、エンジン発電機120の出力量の制限が解除される。 FIG. 14 is a graph showing the time change of the output amount of the engine generator 120 shown in FIG. The output amount of the engine generator 120 shown in FIG. 14 corresponds to the output amount of the engine generator 120 shown in FIG. As described above, the period from time T1 to time T2 is a period in which the evaluation object value does not satisfy the predetermined condition. In this period, the limitation of the output amount of the engine generator 120 is released.
 図14の例では、特に、時刻T1から時刻T2までの期間のうち前半において、制限範囲を超えて、エンジン発電機120から電力が出力される。これにより、十分な電力が負荷200に供給される。 In the example of FIG. 14, in the first half of the period from time T1 to time T2, power is output from the engine generator 120 beyond the limited range. Thereby, sufficient power is supplied to the load 200.
 図15は、図1に示された蓄電池113の残容量の時間変化を示すグラフ図である。本変形例では、エンジン発電機120の出力量を制限範囲内に維持するか否かを判定ための評価対象値として蓄電池113の残容量が用いられる。図15では、蓄電池113の残容量が充電状態で表現されている。 FIG. 15 is a graph showing the time change of the remaining capacity of storage battery 113 shown in FIG. 1. In this modification, the remaining capacity of storage battery 113 is used as an evaluation target value for determining whether or not the output amount of engine generator 120 is maintained within the limited range. In FIG. 15, the remaining capacity of storage battery 113 is expressed in a charged state.
 例えば、時刻T1まで、自然エネルギー電源装置110から負荷200へ電力が供給される。この電力供給に伴って、蓄電池113の残容量が減少する。そして、時刻T1において、蓄電池113の残容量が50%以下になったため、自然エネルギー電源装置110から負荷200への電力供給が停止される。 For example, power is supplied from the natural energy power supply device 110 to the load 200 until time T1. Along with this power supply, the remaining capacity of storage battery 113 decreases. Then, at time T1, the remaining capacity of the storage battery 113 becomes 50% or less, so the power supply from the natural energy power supply device 110 to the load 200 is stopped.
 電力供給が停止された後、自然エネルギー発電装置111が発電する電力によって、蓄電池113の残容量は増加する。そして、時刻T2において、蓄電池113の残容量が75%よりも大きくなったため、自然エネルギー電源装置110から負荷200への電力供給が再開される。 After the power supply is stopped, the remaining capacity of the storage battery 113 is increased by the power generated by the natural energy power generation apparatus 111. Then, at time T2, since the remaining capacity of the storage battery 113 is greater than 75%, the power supply from the natural energy power supply device 110 to the load 200 is resumed.
 この例では、自然エネルギー電源装置110から負荷200への電力供給が行われている場合、50%が蓄電池113の残容量に対する閾値として用いられている。また、自然エネルギー電源装置110から負荷200への電力供給が行われていない場合、75%が蓄電池113の残容量に対する閾値として用いられている。このように、蓄電池113の残容量に対する閾値は、状況に応じて変更されてもよい。制限と解除との切り替えの発生頻度が抑制され、安定的に電力供給の動作が行われる。 In this example, 50% is used as a threshold value for the remaining capacity of the storage battery 113 when power is supplied from the natural energy power supply device 110 to the load 200. In addition, when the power supply from the natural energy power supply device 110 to the load 200 is not performed, 75% is used as a threshold for the remaining capacity of the storage battery 113. Thus, the threshold for the remaining capacity of storage battery 113 may be changed according to the situation. The frequency of occurrence of switching between restriction and cancellation is suppressed, and the power supply operation is stably performed.
 本変形例では、所定の条件が満たされる場合、エンジン発電機120の出力量が制限され、所定の条件が満たされない場合、エンジン発電機120の出力量の制限が解除される。特に、本変形例では、蓄電池113の残容量が所定の条件を満たす場合、エンジン発電機120の出力量が制限され、蓄電池113の残容量が所定の条件を満たさない場合、エンジン発電機120の出力量の制限が解除される。 In this modification, the output amount of the engine generator 120 is limited when the predetermined condition is satisfied, and the restriction of the output amount of the engine generator 120 is released when the predetermined condition is not satisfied. In particular, in this modification, when the remaining capacity of storage battery 113 satisfies a predetermined condition, the output amount of engine generator 120 is limited, and when the remaining capacity of storage battery 113 does not satisfy a predetermined condition, engine generator 120 The limitation of the output amount is released.
 したがって、自然エネルギー電源装置110から電力を十分に供給することが可能であると想定される場合、エンジン発電機120の出力量が制限される。一方、自然エネルギー電源装置110から電力を十分に供給することが可能でないと想定される場合、エンジン発電機120の出力量の制限が解除される。 Therefore, when it is assumed that sufficient power can be supplied from natural energy power supply device 110, the amount of output of engine generator 120 is limited. On the other hand, when it is assumed that sufficient power can not be supplied from the natural energy power supply device 110, the restriction on the output amount of the engine generator 120 is released.
 本変形例における分散電源システム100は、エンジン発電機120の出力量を高い発電効率の範囲内に制限しつつ、自然エネルギー電源装置110の状況に基づいて適応的に制限を解除することで、負荷200に対して十分な電力を供給することができる。 The distributed power supply system 100 according to the present modification adaptively releases the load based on the condition of the natural energy power supply 110 while limiting the output of the engine generator 120 within the range of high power generation efficiency. Sufficient power can be supplied to 200.
 なお、蓄電池113の残容量に対する所定の条件は、蓄電池113の残容量が所定の閾値(下限)よりも大きいという条件に限られない。蓄電池113の残容量に対する所定の条件は、蓄電池113の残容量が所定の閾値(上限)よりも小さいという条件でもよい。 The predetermined condition for the remaining capacity of storage battery 113 is not limited to the condition that the remaining capacity of storage battery 113 is larger than a predetermined threshold (lower limit). The predetermined condition for the remaining capacity of storage battery 113 may be a condition that the remaining capacity of storage battery 113 is smaller than a predetermined threshold (upper limit).
 すなわち、蓄電池113の残容量が所定の閾値(上限)よりも小さい場合、エンジン発電機120の出力量が制限範囲内に維持されてもよい。そして、蓄電池113の残容量が所定の閾値(上限)以上である場合、エンジン発電機120の出力量が制限範囲内に維持されなくてもよい。 That is, when the remaining capacity of storage battery 113 is smaller than a predetermined threshold (upper limit), the output amount of engine generator 120 may be maintained within the limit range. When the remaining capacity of storage battery 113 is equal to or greater than a predetermined threshold (upper limit), the output amount of engine generator 120 may not be maintained within the limit range.
 これにより、例えば、自然エネルギー電源装置110が十分な電力を供給することができる場合に、コントローラ130は、エンジン発電機120の出力量を制限範囲の下限よりも小さくすることができる。これにより、コントローラ130は、エンジン発電機120における燃料の消費を抑制することができる。 Thereby, for example, when the natural energy power supply device 110 can supply sufficient power, the controller 130 can make the output amount of the engine generator 120 smaller than the lower limit of the limitation range. Thus, the controller 130 can suppress the consumption of fuel in the engine generator 120.
 (変形例2)
 次に、変形例2を説明する。本変形例の基本的な構成は、図1等に示された分散電源システム100の構成と同様である。したがって、本変形例の説明には、図1等に示された分散電源システム100の構成を用いる。また、本変形例の基本的な動作は、図12~図14に示された変形例1の動作と同様である。本変形例では、評価対象値に自然エネルギー発電装置111の発電量が用いられる。
(Modification 2)
Next, modified example 2 will be described. The basic configuration of this modification is the same as that of the distributed power supply system 100 shown in FIG. Therefore, the configuration of the distributed power supply system 100 shown in FIG. Also, the basic operation of this modification is the same as the operation of the modification 1 shown in FIGS. 12 to 14. In this modification, the amount of power generation of the natural energy power generation device 111 is used as the evaluation target value.
 具体的には、図12において、コントローラ130が、評価対象値を取得する際(S141)、自然エネルギー発電装置111の発電量を評価対象値として取得する。例えば、自然エネルギー発電装置111または自然エネルギー電源装置110は、電力センサーを用いて、自然エネルギー発電装置111の発電量を計測する。コントローラ130は、自然エネルギー発電装置111または自然エネルギー電源装置110と通信して、自然エネルギー発電装置111の発電量を取得する。 Specifically, in FIG. 12, when the controller 130 acquires the evaluation target value (S141), the amount of power generation of the natural energy power generation apparatus 111 is acquired as the evaluation target value. For example, the natural energy power generation device 111 or the natural energy power supply device 110 measures the amount of power generation of the natural energy power generation device 111 using a power sensor. The controller 130 communicates with the natural energy power generation device 111 or the natural energy power supply device 110 to acquire the amount of power generation of the natural energy power generation device 111.
 あるいは、自然エネルギー発電装置111が太陽光を利用して発電する太陽光発電装置である場合、コントローラ130は、日射量または日付(日射量および日付のうち少なくとも一方)に基づいて、自然エネルギー発電装置111の発電量を予測してもよい。例えば、コントローラ130は、日射センサーを介して日射量を計測する。そして、計測された日射量が大きい場合、コントローラ130は、自然エネルギー発電装置111の発電量が大きいと予測してもよい。 Alternatively, when the natural energy power generation device 111 is a solar power generation device that generates electricity using sunlight, the controller 130 is a natural energy power generation device based on the amount of solar radiation or the date (at least one of the amount of solar radiation and the date). The amount of power generation of 111 may be predicted. For example, the controller 130 measures the amount of solar radiation via a solar radiation sensor. Then, when the measured amount of solar radiation is large, the controller 130 may predict that the amount of power generation of the natural energy power generation apparatus 111 is large.
 また、例えば、コントローラ130は、日付に基づいて、夏において自然エネルギー発電装置111の発電量が大きいと予測し、冬において自然エネルギー発電装置111の発電量が小さいと予測してもよい。 Also, for example, the controller 130 may predict that the amount of power generation of the natural energy power generation device 111 is large in summer based on the date, and may predict that the amount of power generation of the natural energy power generation device 111 is small in winter.
 そして、コントローラ130は、評価対象値が所定の条件を満たすか否かの判定(S142)において、自然エネルギー発電装置111の発電量が所定の条件を満たすか否かを判定する。より具体的には、所定の条件は、自然エネルギー発電装置111の発電量が所定の発電量よりも大きいことである。 Then, the controller 130 determines whether or not the amount of power generation of the natural energy power generation device 111 satisfies the predetermined condition in the determination (S142) whether or not the evaluation target value satisfies the predetermined condition. More specifically, the predetermined condition is that the amount of power generation of the natural energy power generation device 111 is larger than the predetermined amount of power generation.
 自然エネルギー発電装置111の発電量が小さい場合、蓄電池113の残容量も小さいと想定される。したがって、自然エネルギー電源装置110は、負荷200に対して十分な電力を供給することが可能でないと想定される。 When the amount of power generation of the natural energy power generation apparatus 111 is small, it is assumed that the remaining capacity of the storage battery 113 is also small. Therefore, it is assumed that the natural energy power supply device 110 can not supply sufficient power to the load 200.
 したがって、自然エネルギー発電装置111の発電量が所定の発電量以下である場合、コントローラ130は、自然エネルギー電源装置110の出力量を削減する(S144)。基本的には、この場合、コントローラ130は、自然エネルギー電源装置110の出力を停止する。そして、この場合、コントローラ130は、エンジン発電機120の出力量を制限範囲内に制限しない。これにより、負荷200の電力需要に対してエンジン発電機120の出力(電力供給)が充当される。 Therefore, when the power generation amount of the natural energy power generation apparatus 111 is less than or equal to the predetermined power generation amount, the controller 130 reduces the output amount of the natural energy power supply device 110 (S144). Basically, in this case, the controller 130 stops the output of the natural energy power supply 110. And, in this case, the controller 130 does not limit the output amount of the engine generator 120 within the limit range. As a result, the output (power supply) of the engine generator 120 is allocated to the power demand of the load 200.
 一方、自然エネルギー発電装置111の発電量が大きい場合、蓄電池113の残容量も大きいと想定される。したがって、自然エネルギー電源装置110は、負荷200に対して十分な電力を供給することが可能であると想定される。 On the other hand, when the amount of power generation of the natural energy power generation apparatus 111 is large, it is assumed that the remaining capacity of the storage battery 113 is also large. Therefore, it is assumed that the natural energy power supply device 110 can supply sufficient power to the load 200.
 したがって、自然エネルギー発電装置111の発電量が所定の発電量よりも大きい場合、コントローラ130は、自然エネルギー電源装置110に電力を出力させて、エンジン発電機120の出力量を制限範囲内に維持する(S143)。これにより、エンジン発電機120において高い発電効率が維持される。 Therefore, when the power generation amount of the natural energy power generation apparatus 111 is larger than the predetermined power generation amount, the controller 130 causes the natural energy power supply device 110 to output power to maintain the output amount of the engine generator 120 within the limited range. (S143). Thereby, high power generation efficiency is maintained in the engine generator 120.
 図16は、図1に示された自然エネルギー発電装置111の発電量の時間変化を示すグラフ図である。図16に示された発電量は、測定された発電量でもよいし、予測された発電量でもよい。また、図16の例では、閾値として1kWが用いられる。 FIG. 16 is a graph showing the time change of the amount of power generation of the natural energy power generation device 111 shown in FIG. The power generation amount shown in FIG. 16 may be a measured power generation amount or a predicted power generation amount. Moreover, in the example of FIG. 16, 1 kW is used as a threshold value.
 例えば、時刻T1まで、自然エネルギー発電装置111の発電量は、1kWよりも大きい。そのため、時刻T1まで、コントローラ130は、自然エネルギー電源装置110に電力を出力させ、エンジン発電機120の出力量を制限範囲内に維持する。 For example, until time T1, the amount of power generation of the natural energy power generation apparatus 111 is larger than 1 kW. Therefore, until time T1, the controller 130 causes the natural energy power supply device 110 to output power to maintain the output amount of the engine generator 120 within the limited range.
 時刻T1から時刻T2までの期間では、自然エネルギー発電装置111の発電量が1kW以下である。そのため、時刻T1から時刻T2までの期間では、コントローラ130は、自然エネルギー電源装置110の出力を停止し、エンジン発電機120の出力量の制限を解除する。 In the period from time T1 to time T2, the amount of power generation of the natural energy power generation device 111 is 1 kW or less. Therefore, in a period from time T1 to time T2, the controller 130 stops the output of the natural energy power supply device 110 and cancels the limitation of the output amount of the engine generator 120.
 時刻T2の後の期間では、自然エネルギー発電装置111の発電量は、1kWよりも大きい。そのため、時刻T2の後の期間では、コントローラ130は、自然エネルギー電源装置110に電力を出力させ、エンジン発電機120の出力量を制限範囲内に維持する。 In a period after time T2, the amount of power generation of the natural energy power generation device 111 is larger than 1 kW. Therefore, in a period after time T2, the controller 130 causes the natural energy power supply device 110 to output power to maintain the output amount of the engine generator 120 within the limited range.
 上記の通り、図16の例では、閾値として1kWが用いられる。閾値は、この例に限られず、別の値でもよい。また、図15で説明された閾値のように、閾値は状況に応じて変更されてもよい。 As described above, 1 kW is used as the threshold in the example of FIG. The threshold is not limited to this example, and may be another value. Also, like the threshold described in FIG. 15, the threshold may be changed according to the situation.
 本変形例では、自然エネルギー発電装置111の発電量が所定の条件を満たす場合、エンジン発電機120の出力量が制限され、自然エネルギー発電装置111の発電量が所定の条件を満たさない場合、エンジン発電機120の出力量の制限が解除される。 In this modification, when the power generation amount of the natural energy power generation device 111 satisfies the predetermined condition, the output amount of the engine generator 120 is limited, and when the power generation amount of the natural energy power generation device 111 does not satisfy the predetermined condition, the engine The restriction of the output amount of the generator 120 is released.
 したがって、自然エネルギー電源装置110から電力を十分に供給することが可能であると想定される場合、エンジン発電機120の出力量が制限される。一方、自然エネルギー電源装置110から電力を十分に供給することが可能でないと想定される場合、エンジン発電機120の出力量の制限が解除される。 Therefore, when it is assumed that sufficient power can be supplied from natural energy power supply device 110, the amount of output of engine generator 120 is limited. On the other hand, when it is assumed that sufficient power can not be supplied from the natural energy power supply device 110, the restriction on the output amount of the engine generator 120 is released.
 本変形例における分散電源システム100は、変形例1と同様に、エンジン発電機120の出力量を高い発電効率の範囲内に制限しつつ、自然エネルギー電源装置110の状況に基づいて適応的に制限を解除する。これにより、負荷200に対して十分な電力が供給される。 The distributed power supply system 100 according to the present modification, as in the first modification, adaptively limits the amount of output of the engine generator 120 within the range of high power generation efficiency based on the condition of the natural energy power supply 110. Release Thereby, sufficient power is supplied to the load 200.
 また、蓄電池113の残容量が小さい場合でも、自然エネルギー発電装置111の発電量が大きい場合がある。このような場合、自然エネルギー電源装置110は負荷200に対して電力を十分に供給することができる可能性がある。したがって、本変形例における分散電源システム100は、このような場合において、エンジン発電機120の出力量を所定の制限範囲内に維持することで、エンジン発電機120の発電効率を高い状態に維持することができる。 Further, even when the remaining capacity of the storage battery 113 is small, the amount of power generation of the natural energy power generation apparatus 111 may be large. In such a case, the natural energy power supply device 110 may be able to supply sufficient power to the load 200. Therefore, in such a case, distributed power supply system 100 in the present modification maintains the power generation efficiency of engine generator 120 in a high state by maintaining the output amount of engine generator 120 within the predetermined limit range. be able to.
 なお、自然エネルギー発電装置111の発電量に対する所定の条件は、自然エネルギー発電装置111の発電量が所定の閾値(下限)よりも大きいという条件に限られない。自然エネルギー発電装置111の発電量に対する所定の条件は、自然エネルギー発電装置111の発電量が所定の閾値(上限)よりも小さいという条件でもよい。 Note that the predetermined condition for the amount of power generation of the natural energy power generation device 111 is not limited to the condition that the amount of power generation of the natural energy power generation device 111 is larger than a predetermined threshold (lower limit). The predetermined condition for the power generation amount of the natural energy power generation device 111 may be a condition that the power generation amount of the natural energy power generation device 111 is smaller than a predetermined threshold (upper limit).
 すなわち、自然エネルギー発電装置111の発電量が所定の閾値(上限)よりも小さい場合、エンジン発電機120の出力量が制限範囲内に維持されてもよい。そして、自然エネルギー発電装置111の発電量が所定の閾値(上限)以上である場合、エンジン発電機120の出力量が制限範囲内に維持されなくてもよい。 That is, when the amount of power generation of the natural energy power generation device 111 is smaller than a predetermined threshold (upper limit), the output amount of the engine generator 120 may be maintained within the limit range. Then, when the power generation amount of the natural energy power generation device 111 is equal to or more than a predetermined threshold (upper limit), the output amount of the engine generator 120 may not be maintained within the limit range.
 これにより、例えば、自然エネルギー電源装置110が十分な電力を供給することができる場合に、コントローラ130は、エンジン発電機120の出力量を制限範囲の下限よりも小さくすることができる。これにより、コントローラ130は、エンジン発電機120における燃料の消費を抑制することができる。 Thereby, for example, when the natural energy power supply device 110 can supply sufficient power, the controller 130 can make the output amount of the engine generator 120 smaller than the lower limit of the limitation range. Thus, the controller 130 can suppress the consumption of fuel in the engine generator 120.
 (変形例3)
 次に、変形例3を説明する。本変形例の基本的な構成および動作は、図1等に示された分散電源システム100の構成および動作と同様である。したがって、本変形例の説明には、図1等に示された分散電源システム100の構成および動作を用いる。
(Modification 3)
Next, modified example 3 will be described. The basic configuration and operation of this modification are similar to the configuration and operation of distributed power supply system 100 shown in FIG. Therefore, the configuration and operation of the distributed power supply system 100 shown in FIG.
 上記の実施の形態では、基本的にエンジン発電機120の出力量が自然エネルギー電源装置110の出力量よりも大きい。しかしながら、自然エネルギー電源装置110の出力量がエンジン発電機120の出力量よりも大きくてもよい。 In the above embodiment, basically, the output amount of the engine generator 120 is larger than the output amount of the natural energy power supply 110. However, the output amount of the natural energy power supply 110 may be larger than the output amount of the engine generator 120.
 本変形例では、自然エネルギー電源装置110の出力許容範囲の上限は12kWであり、下限は0kWである。したがって、コントローラ130は、0kWから12kWまでの範囲内に自然エネルギー電源装置110の出力量を維持する。 In the present modification, the upper limit of the allowable output range of the natural energy power supply 110 is 12 kW, and the lower limit is 0 kW. Therefore, the controller 130 maintains the output amount of the natural energy power supply 110 within the range of 0 kW to 12 kW.
 図17は、本変形例における自然エネルギー電源装置110およびエンジン発電機120の出力量の時間変化を示すグラフ図である。図17は、図4と同様の内容を示すが、図17の例では、自然エネルギー電源装置110の出力量が0kWから12kWまでの範囲内で変動する。すなわち、コントローラ130は、図4の例に比べて、自然エネルギー電源装置110の出力量を大きく変動させることができる。 FIG. 17 is a graph showing temporal changes in output amounts of the natural energy power supply device 110 and the engine generator 120 in the present modification. FIG. 17 shows the same content as FIG. 4, but in the example of FIG. 17, the output amount of the natural energy power supply 110 fluctuates within the range of 0 kW to 12 kW. That is, the controller 130 can largely change the output amount of the natural energy power supply device 110 as compared with the example of FIG. 4.
 図18は、本変形例における電力需要量および電力供給量の時間変化を示すグラフ図である。具体的には、図18は、図6と同様に、負荷200の電力需要量、自然エネルギー電源装置110の電力供給量、および、エンジン発電機120の電力供給量の時間変化を示す。 FIG. 18 is a graph showing the time change of the power demand amount and the power supply amount in the present modification. Specifically, FIG. 18 shows the time change of the power demand of the load 200, the power supply of the natural energy power supply 110, and the power supply of the engine generator 120, as in FIG.
 図18に示された自然エネルギー電源装置110の電力供給量は、図17に示された自然エネルギー電源装置110の出力量に相当する。図18に示されたエンジン発電機120の電力供給量は、図17に示されたエンジン発電機120の出力量に相当する。 The power supply amount of the natural energy power supply device 110 shown in FIG. 18 corresponds to the output amount of the natural energy power supply device 110 shown in FIG. The power supply amount of the engine generator 120 shown in FIG. 18 corresponds to the output amount of the engine generator 120 shown in FIG.
 また、図18に示された負荷200の電力需要量は、図6の例と同様に、自然エネルギー電源装置110の電力供給量とエンジン発電機120の電力供給量との合計に相当する。すなわち、負荷200の電力需要量は、自然エネルギー電源装置110の出力量とエンジン発電機120の出力量との総出力量に相当する。 Further, the power demand of the load 200 shown in FIG. 18 corresponds to the sum of the power supply of the natural energy power supply 110 and the power of the engine generator 120, as in the example of FIG. That is, the power demand of the load 200 corresponds to the total output of the natural energy power supply 110 and the output of the engine generator 120.
 また、図6の例と同様に、コントローラ130は、エンジン発電機120の出力量(電力供給量)を所定の制限範囲内に維持する。また、コントローラ130は、自然エネルギー電源装置110の出力量(電力供給量)を自然エネルギー電源装置110の出力許容範囲内に維持する。そして、コントローラ130は、自然エネルギー電源装置110の出力量とエンジン発電機120の出力量との総出力量を負荷200の電力需要量に適合させる。 Further, as in the example of FIG. 6, the controller 130 maintains the output amount (power supply amount) of the engine generator 120 within a predetermined limit range. In addition, the controller 130 maintains the output amount (power supply amount) of the natural energy power supply device 110 within the output allowable range of the natural energy power supply device 110. Then, the controller 130 matches the total output amount of the output amount of the natural energy power supply 110 and the output amount of the engine generator 120 with the power demand amount of the load 200.
 本変形例において、コントローラ130は、自然エネルギー電源装置110の出力量を0kWから12kWまでの範囲内に維持し、エンジン発電機120の出力量を6kWから8kWまでの範囲内に維持する。そして、コントローラ130は、エンジン発電機120の出力量と自然エネルギー電源装置110の出力量との総出力量を6kWから20kWまでの範囲で負荷200の電力需要量に適合させる。 In the present modification, the controller 130 maintains the output of the natural energy power supply 110 within the range of 0 kW to 12 kW, and maintains the output of the engine generator 120 within the range of 6 kW to 8 kW. Then, the controller 130 matches the total output amount of the output amount of the engine generator 120 and the output amount of the natural energy power supply device 110 with the power demand of the load 200 in the range of 6 kW to 20 kW.
 つまり、自然エネルギー電源装置110の出力量(出力許容範囲)が大きい場合、コントローラ130は、自然エネルギー電源装置110の出力量を大きく変動させることで、負荷200の電力需要量の大きな変動に対して全体の出力量を追従させることができる。 That is, when the output amount (permissible output range) of the natural energy power supply device 110 is large, the controller 130 changes the output amount of the natural energy power supply device 110 to a large fluctuation of the power demand of the load 200. The entire output amount can be made to follow.
 なお、本変形例において、変形例1または変形例2のように所定の条件に従って、自然エネルギー電源装置110の出力量が削減されてもよい。ただし、自然エネルギー電源装置110の出力が停止された場合において、エンジン発電機120の出力量の制限が解除されても、エンジン発電機120の出力許容範囲によって、負荷200に十分な電力が供給されない可能性がある。 In the present modification, as in the first modification or the second modification, the output amount of the natural energy power supply 110 may be reduced according to predetermined conditions. However, when the output of the natural energy power supply device 110 is stopped, even if the restriction of the output amount of the engine generator 120 is released, sufficient power is not supplied to the load 200 due to the output allowable range of the engine generator 120. there is a possibility.
 したがって、制限の解除によってエンジン発電機120が電力を新たに出力することが可能な量に基づいて、自然エネルギー電源装置110の出力量が削減されてもよい。あるいは、出力許容範囲が大きいエンジン発電機120が用いられてもよい。例えば、発電効率が高い所定の制限範囲が6kWから8kWまでの範囲であり、出力許容範囲が0kWから20kWまでのエンジン発電機120が用いられてもよい。これにより、負荷200に十分な電力が供給される。 Therefore, the output amount of the natural energy power supply 110 may be reduced based on the amount by which the engine generator 120 can newly output electric power by releasing the restriction. Alternatively, an engine generator 120 having a large output tolerance may be used. For example, an engine generator 120 having a predetermined limit range with high power generation efficiency from 6 kW to 8 kW and an allowable output range from 0 kW to 20 kW may be used. As a result, sufficient power is supplied to the load 200.
 以上、本発明に係る分散電源システム100について、実施の形態(変形例を含む)に基づいて説明したが、本発明は、実施の形態に限定されない。実施の形態に対して当業者が思いつく変形を施して得られる形態、および、実施の形態における複数の構成要素を任意に組み合わせて実現される別の形態も本発明に含まれる。 As mentioned above, although distributed power supply system 100 concerning the present invention was explained based on an embodiment (a modification is included), the present invention is not limited to an embodiment. The present invention also includes embodiments obtained by applying variations that will occur to those skilled in the art with respect to the embodiment, and other embodiments realized by arbitrarily combining a plurality of components in the embodiment.
 例えば、特定の構成要素が実行する処理を別の構成要素が実行してもよい。また、処理を実行する順番が変更されてもよいし、複数の処理が並行して実行されてもよい。 For example, another component may perform the processing that a particular component performs. Further, the order of executing the processing may be changed, or a plurality of processing may be executed in parallel.
 また、本発明は、分散電源システム100として実現できるだけでなく、分散電源システム100を構成する各構成要素が行うステップ(処理)を含む方法として実現できる。 Further, the present invention can be realized not only as the distributed power supply system 100 but also as a method including steps (processes) performed by each component constituting the distributed power supply system 100.
 例えば、それらのステップは、分散電源システム100に含まれるコンピュータ(コンピュータシステム)によって実行されてもよい。そして、本発明は、それらの方法に含まれるステップを、コンピュータに実行させるためのプログラムとして実現できる。さらに、本発明は、そのプログラムを記録したCD-ROM等である非一時的なコンピュータ読み取り可能な記録媒体として実現できる。 For example, those steps may be performed by a computer (computer system) included in the distributed power supply system 100. And this invention can be implement | achieved as a program for making a computer perform the step contained in those methods. Furthermore, the present invention can be realized as a non-transitory computer readable recording medium such as a CD-ROM or the like recording the program.
 例えば、本発明が、プログラム(ソフトウェア)で実現される場合には、コンピュータのCPU、メモリおよび入出力回路等のハードウェア資源を利用してプログラムが実行されることによって、各ステップが実行される。つまり、CPUがデータをメモリまたは入出力回路等から取得して演算したり、演算結果をメモリまたは入出力回路等に出力したりすることによって、各ステップが実行される。 For example, when the present invention is realized by a program (software), each step is executed by executing the program using hardware resources such as a CPU of a computer, a memory, and an input / output circuit. . That is, each step is executed by the CPU acquiring data from the memory or the input / output circuit and performing an operation, or outputting the operation result to the memory or the input / output circuit or the like.
 また、分散電源システム100等に含まれる複数の構成要素は、それぞれ、専用または汎用の回路として実現されてもよい。これらの構成要素は、1つの回路として実現されてもよいし、複数の回路として実現されてもよい。 In addition, the plurality of components included in distributed power supply system 100 and the like may be realized as dedicated or general-purpose circuits, respectively. These components may be realized as one circuit or as a plurality of circuits.
 また、分散電源システム100等に含まれる複数の構成要素は、集積回路(IC:Integrated Circuit)であるLSI(Large Scale Integration)として実現されてもよい。これらの構成要素は、個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。LSIは、集積度の違いにより、システムLSI、スーパーLSIまたはウルトラLSIと呼称される場合がある。 In addition, the plurality of components included in the distributed power supply system 100 and the like may be realized as a large scale integration (LSI) which is an integrated circuit (IC: Integrated Circuit). These components may be individually made into one chip, or may be made into one chip so as to include some or all. The LSI may be called a system LSI, a super LSI, or an ultra LSI depending on the degree of integration.
 また、集積回路はLSIに限られず、専用回路または汎用プロセッサで実現されてもよい。プログラム可能なFPGA(Field Programmable Gate Array)、または、LSI内部の回路セルの接続および設定が再構成可能なリコンフィギュラブル・プロセッサが、利用されてもよい。 Further, the integrated circuit is not limited to the LSI, and may be realized by a dedicated circuit or a general purpose processor. A programmable field programmable gate array (FPGA) or a reconfigurable processor in which connection and setting of circuit cells in the LSI can be reconfigured may be used.
 さらに、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて、分散電源システム100に含まれる複数の構成要素の集積回路化が行われてもよい。 Further, if integrated circuit technology comes out to replace LSI's as a result of the advancement of semiconductor technology or a derivative other technology, it is naturally possible to carry out integrated circuitization of the plurality of components included in distributed power supply system 100 using this technology. It may be
 最後に、分散電源システム100等の複数の態様を例として示す。これらの態様は、適宜、組み合わされてもよい。また、上記の実施の形態(変形例を含む)に示された任意の構成等が追加されてもよい。 Finally, a plurality of aspects of the distributed power supply system 100 etc. are shown as an example. These aspects may be combined as appropriate. In addition, any configuration or the like shown in the above embodiment (including the modification) may be added.
 (第1態様)
 本発明の一態様に係る分散電源システム100は、自然エネルギー電源装置110と、エンジン発電機120と、コントローラ130とを備え、負荷200に電力を供給する。自然エネルギー電源装置110は、自然エネルギー発電装置111と、電源回路112と、蓄電池113と、インバータ114とを備え、インバータ114で変換された電力を負荷200が接続された電力線に出力する。
(First aspect)
A distributed power supply system 100 according to an aspect of the present invention includes a natural energy power supply device 110, an engine generator 120, and a controller 130, and supplies power to a load 200. The natural energy power supply device 110 includes a natural energy power generation device 111, a power supply circuit 112, a storage battery 113, and an inverter 114, and outputs the power converted by the inverter 114 to the power line to which the load 200 is connected.
 自然エネルギー発電装置111は、自然エネルギーを利用して電力を発電する。電源回路112は、自然エネルギー発電装置111で発電された電力から所定の電圧の電力を生成する。蓄電池113には、電源回路112から得られる電力が充電され、蓄電池113において充電された電力が蓄電池113から放電される。インバータ114は、電源回路112および蓄電池113から得られる電力を交流の電力に変換する。 The natural energy power generation apparatus 111 generates electric power using natural energy. The power supply circuit 112 generates power of a predetermined voltage from the power generated by the natural energy power generation apparatus 111. The storage battery 113 is charged with the power obtained from the power supply circuit 112, and the power charged in the storage battery 113 is discharged from the storage battery 113. Inverter 114 converts the power obtained from power supply circuit 112 and storage battery 113 into alternating current power.
 エンジン発電機120は、内燃機関を利用して電力を発電する。また、エンジン発電機120は、内燃機関を利用して発電された電力を負荷200が接続された電力線に出力する。コントローラ130は、制限範囲内にエンジン発電機120の出力量が維持されるように、自然エネルギー電源装置110の出力量、および、エンジン発電機120の出力量を制御する。ここで、制限範囲は、エンジン発電機120の発電効率を所定の発電効率よりも高くするための範囲として予め定められた範囲である。 The engine generator 120 generates power using an internal combustion engine. The engine generator 120 also outputs the power generated using the internal combustion engine to the power line to which the load 200 is connected. The controller 130 controls the output amount of the natural energy power supply 110 and the output amount of the engine generator 120 so that the output amount of the engine generator 120 is maintained within the limited range. Here, the limited range is a range predetermined as a range for making the power generation efficiency of the engine generator 120 higher than a predetermined power generation efficiency.
 これにより、分散電源システム100は、エンジン発電機120の発電効率を高く維持することができる。さらに、分散電源システム100は、負荷200の電力需要量に対して、自然エネルギー電源装置110の出力量、および、エンジン発電機120の出力量の両方を調整することができる。したがって、分散電源システム100は、エンジン発電機120から出力された電力を充電せずに負荷200に供給することができるため、エンジン発電機120から出力された電力の損失を抑制することができる。 Thereby, the distributed power supply system 100 can maintain the power generation efficiency of the engine generator 120 high. Furthermore, the distributed power supply system 100 can adjust both the output amount of the natural energy power supply 110 and the output amount of the engine generator 120 with respect to the power demand of the load 200. Therefore, the distributed power supply system 100 can supply the load 200 with the power output from the engine generator 120 without charging it, and therefore, the loss of the power output from the engine generator 120 can be suppressed.
 (第2態様)
 例えば、コントローラ130は、蓄電池113の残容量が所定の条件を満たす場合のみ、制限範囲内にエンジン発電機120の出力量が維持されるように、自然エネルギー電源装置110およびエンジン発電機120の出力量を制御してもよい。
(Second aspect)
For example, the controller 130 controls the output of the natural energy power supply 110 and the engine generator 120 such that the output of the engine generator 120 is maintained within the limited range only when the remaining capacity of the storage battery 113 satisfies a predetermined condition. The ability level may be controlled.
 これにより、分散電源システム100は、蓄電池113の残容量に基づいて、自然エネルギー電源装置110が適切に電力を出力することが可能であると想定される場合のみ、エンジン発電機120の出力量を制限範囲内に維持することができる。そして、分散電源システム100は、自然エネルギー電源装置110が適切に電力を出力することが可能でないと想定される場合、エンジン発電機120の出力量の制限を解除することができる。 Thereby, the distributed power supply system 100 sets the output amount of the engine generator 120 only when it is assumed that the natural energy power supply device 110 can appropriately output power based on the remaining capacity of the storage battery 113. It can be maintained within the limits. And distributed power system 100 can release restriction of the amount of output of engine generator 120, when it is assumed that natural energy power supply device 110 can not output electric power appropriately.
 したがって、分散電源システム100は、自然エネルギー電源装置110が適切に電力を出力することが可能でないと想定される場合でも、負荷200に十分な電力を供給することができる。 Therefore, the distributed power supply system 100 can supply sufficient power to the load 200 even when it is assumed that the natural energy power supply device 110 can not appropriately output power.
 (第3態様)
 例えば、所定の条件は、蓄電池113の残容量が所定の残容量よりも大きいことでもよい。そして、コントローラ130は、蓄電池113の残容量が所定の残容量よりも大きい場合のみ、制限範囲内にエンジン発電機120の出力量が維持されるように、自然エネルギー電源装置110およびエンジン発電機120の出力量を制御してもよい。
(Third aspect)
For example, the predetermined condition may be that the remaining capacity of storage battery 113 is larger than the predetermined remaining capacity. Then, controller 130 causes natural energy power supply device 110 and engine generator 120 to maintain the output of engine generator 120 within the restricted range only when the remaining capacity of storage battery 113 is larger than the predetermined remaining capacity. You may control the output amount of.
 これにより、分散電源システム100は、蓄電池113の残容量が大きく、自然エネルギー電源装置110が適切に電力を出力することが可能であると想定される場合、エンジン発電機120の発電効率を高く維持することができる。そして、分散電源システム100は、蓄電池113の残容量が小さく、自然エネルギー電源装置110が適切に電力を出力することが可能でないと想定される場合でも、負荷200に十分な電力を供給することができる。 Thereby, the distributed power supply system 100 maintains the power generation efficiency of the engine generator 120 high, when the remaining capacity of the storage battery 113 is large and it is assumed that the natural energy power supply device 110 can appropriately output the power. can do. The distributed power supply system 100 can supply sufficient power to the load 200 even when it is assumed that the remaining capacity of the storage battery 113 is small and the natural energy power supply device 110 can not appropriately output power. it can.
 (第4態様)
 例えば、コントローラ130は、自然エネルギー発電装置111の発電量が所定の条件を満たす場合のみ、制限範囲内にエンジン発電機120の出力量が維持されるように、自然エネルギー電源装置110およびエンジン発電機120の出力量を制御してもよい。
(Fourth aspect)
For example, the controller 130 controls the natural energy power supply device 110 and the engine generator such that the output amount of the engine generator 120 is maintained within the limited range only when the power generation amount of the natural energy power generation device 111 satisfies a predetermined condition. The output amount of 120 may be controlled.
 これにより、分散電源システム100は、自然エネルギー発電装置111の発電量に基づいて、自然エネルギー電源装置110が適切に電力を出力することが可能であると想定される場合のみ、エンジン発電機120の出力量を制限範囲内に維持することができる。そして、分散電源システム100は、自然エネルギー電源装置110が適切に電力を出力することが可能でないと想定される場合、エンジン発電機120の出力量の制限を解除することができる。 As a result, the distributed power supply system 100 generates the engine generator 120 only when it is assumed that the natural energy power supply device 110 can appropriately output power based on the amount of power generation of the natural energy power generation apparatus 111. The amount of output can be maintained within the limit range. And distributed power system 100 can release restriction of the amount of output of engine generator 120, when it is assumed that natural energy power supply device 110 can not output electric power appropriately.
 したがって、分散電源システム100は、自然エネルギー電源装置110が適切に電力を出力することが可能でないと想定される場合でも、負荷200に十分な電力を供給することができる。 Therefore, the distributed power supply system 100 can supply sufficient power to the load 200 even when it is assumed that the natural energy power supply device 110 can not appropriately output power.
 (第5態様)
 例えば、所定の条件は、自然エネルギー発電装置111の発電量が所定の発電量よりも大きいことでもよい。そして、コントローラ130は、自然エネルギー発電装置111の発電量が所定の発電量よりも大きい場合のみ、制限範囲内に出力量が維持されるように出力量を制御してもよい。具体的には、コントローラ130は、この場合のみ、制限範囲内にエンジン発電機120の出力量が維持されるように、自然エネルギー電源装置110およびエンジン発電機120の出力量を制御してもよい。
(Fifth aspect)
For example, the predetermined condition may be that the amount of power generation of the natural energy power generation device 111 is larger than the predetermined amount of power generation. Then, the controller 130 may control the output amount such that the output amount is maintained within the limited range only when the power generation amount of the natural energy power generation apparatus 111 is larger than the predetermined power generation amount. Specifically, controller 130 may control the output amounts of natural energy power supply 110 and engine generator 120 such that the output amount of engine generator 120 is maintained within the limited range only in this case. .
 これにより、分散電源システム100は、自然エネルギー発電装置111の発電量が大きく、自然エネルギー電源装置110が適切に電力を出力することが可能であると想定される場合、エンジン発電機120の発電効率を高く維持することができる。そして、分散電源システム100は、自然エネルギー発電装置111の発電量が小さく、自然エネルギー電源装置110が適切に電力を出力することが可能でないと想定される場合でも、負荷200に十分な電力を供給することができる。 Thereby, in the distributed power supply system 100, when it is assumed that the amount of power generation of the natural energy power generation apparatus 111 is large and the natural energy power supply apparatus 110 can appropriately output power, the power generation efficiency of the engine generator 120 Can be kept high. Then, the distributed power supply system 100 supplies sufficient power to the load 200 even when it is assumed that the amount of power generation of the natural energy power generation apparatus 111 is small and the natural energy power supply apparatus 110 can not appropriately output power. can do.
 (第6態様)
 例えば、自然エネルギー発電装置111は、太陽光を利用して発電してもよい。そして、コントローラ130は、日射量または日付に基づいて、自然エネルギー発電装置111の発電量を予測してもよい。そして、コントローラ130は、予測された発電量が所定の発電量よりも大きい場合のみ、制限範囲内にエンジン発電機120の出力量が維持されるように、自然エネルギー電源装置110およびエンジン発電機120の出力量を制御してもよい。
(Sixth aspect)
For example, the natural energy power generation apparatus 111 may generate electricity using sunlight. Then, the controller 130 may predict the amount of power generation of the natural energy power generation apparatus 111 based on the amount of solar radiation or the date. Then, the controller 130 controls the natural energy power supply 110 and the engine generator 120 so that the output of the engine generator 120 is maintained within the limited range only when the predicted amount of power generation is larger than the predetermined power generation amount. You may control the output amount of.
 これにより、分散電源システム100は、発電量の予測に基づいて、自然エネルギー電源装置110が適切に電力を出力することが可能であると想定される場合、エンジン発電機120の発電効率を高く維持することができる。そして、分散電源システム100は、発電量の予測に基づいて、自然エネルギー電源装置110が適切に電力を出力することが可能でないと想定される場合でも、負荷200に十分な電力を供給することができる。 Thereby, the distributed power supply system 100 maintains the power generation efficiency of the engine generator 120 high, when it is assumed that the natural energy power supply device 110 can appropriately output the power based on the prediction of the amount of power generation. can do. Then, the distributed power supply system 100 may supply sufficient power to the load 200 even if it is assumed that the natural energy power supply device 110 can not appropriately output power based on the prediction of the amount of power generation. it can.
 (第7態様)
 本発明の一態様に係る制御方法は、負荷200に電力を供給する分散電源システム100の制御方法である。
(7th aspect)
The control method according to an aspect of the present invention is a control method of the distributed power supply system 100 that supplies power to the load 200.
 分散電源システム100は、自然エネルギー電源装置110と、エンジン発電機120とを備える。自然エネルギー電源装置110は、自然エネルギー発電装置111と、電源回路112と、蓄電池113と、インバータ114とを備え、インバータ114で変換された電力を負荷200が接続された電力線に出力する。 The distributed power supply system 100 includes a natural energy power supply 110 and an engine generator 120. The natural energy power supply device 110 includes a natural energy power generation device 111, a power supply circuit 112, a storage battery 113, and an inverter 114, and outputs the power converted by the inverter 114 to the power line to which the load 200 is connected.
 自然エネルギー発電装置111は、自然エネルギーを利用して電力を発電する。電源回路112は、自然エネルギー発電装置111で発電された電力から所定の電圧の電力を生成する。蓄電池113には、電源回路112から得られる電力が充電され、蓄電池113において充電された電力が蓄電池113から放電される。インバータ114は、電源回路112および蓄電池113から得られる電力を交流の電力に変換する。 The natural energy power generation apparatus 111 generates electric power using natural energy. The power supply circuit 112 generates power of a predetermined voltage from the power generated by the natural energy power generation apparatus 111. The storage battery 113 is charged with the power obtained from the power supply circuit 112, and the power charged in the storage battery 113 is discharged from the storage battery 113. Inverter 114 converts the power obtained from power supply circuit 112 and storage battery 113 into alternating current power.
 エンジン発電機120は、内燃機関を利用して電力を発電する。そして、エンジン発電機120は、内燃機関を利用して発電された電力を負荷200が接続された電力線に出力する。 The engine generator 120 generates power using an internal combustion engine. Then, the engine generator 120 outputs the power generated using the internal combustion engine to the power line to which the load 200 is connected.
 分散電源システム100の制御方法は、制限範囲内にエンジン発電機120の出力量が維持されるように、自然エネルギー電源装置110の出力量、および、エンジン発電機120の出力量を制御する制御ステップ(S131)を含む。制限範囲は、エンジン発電機120の発電効率を所定の発電効率よりも高くするための範囲として予め定められた範囲である。 The control method of the distributed power supply system 100 controls the output amount of the natural energy power supply 110 and the output amount of the engine generator 120 so that the output amount of the engine generator 120 is maintained within the limited range. (S131) is included. The limited range is a range predetermined as a range for making the power generation efficiency of the engine generator 120 higher than a predetermined power generation efficiency.
 これにより、エンジン発電機120の発電効率が高く維持される。さらに、負荷200の電力需要量に対して、自然エネルギー電源装置110の出力量、および、エンジン発電機120の出力量の両方を調整することが可能である。したがって、エンジン発電機120から出力された電力を充電せずに負荷200に供給することが可能であり、エンジン発電機120から出力された電力の損失を抑制することが可能である。 Thus, the power generation efficiency of the engine generator 120 is maintained high. Further, it is possible to adjust both the output amount of the natural energy power supply 110 and the output amount of the engine generator 120 with respect to the power demand of the load 200. Therefore, it is possible to supply the load 200 without charging the power output from the engine generator 120, and it is possible to suppress the loss of the power output from the engine generator 120.
  100 分散電源システム
  110 自然エネルギー電源装置
  111 自然エネルギー発電装置
  112 電源回路
  113 蓄電池
  114 インバータ
  120 エンジン発電機
  130 コントローラ
  200 負荷
DESCRIPTION OF SYMBOLS 100 Distributed power supply system 110 Natural energy power supply device 111 Natural energy power generation device 112 Power supply circuit 113 Storage battery 114 Inverter 120 Engine generator 130 Controller 200 load

Claims (7)

  1.  負荷に電力を供給する分散電源システムであって、
     自然エネルギーを利用して電力を発電する自然エネルギー発電装置と、前記自然エネルギー発電装置で発電された電力から所定の電圧の電力を生成する電源回路と、前記電源回路から得られる電力が充電され、充電された電力が放電される蓄電池と、前記電源回路および前記蓄電池から得られる電力を交流の電力に変換するインバータとを備える自然エネルギー電源装置であって、前記インバータで変換された電力を前記負荷が接続された電力線に出力する自然エネルギー電源装置と、
     内燃機関を利用して電力を発電し、前記内燃機関を利用して発電された電力を前記電力線に出力するエンジン発電機と、
     前記エンジン発電機の発電効率を所定の発電効率よりも高くするための範囲として予め定められた制限範囲内に前記エンジン発電機の出力量が維持されるように、前記自然エネルギー電源装置の出力量、および、前記エンジン発電機の出力量を制御するコントローラとを備える
     分散電源システム。
    A distributed power system for supplying power to a load,
    A natural energy power generation device that generates power using natural energy, a power supply circuit that generates power of a predetermined voltage from the power generated by the natural energy power generation device, and power obtained from the power supply circuit; A natural energy power supply device comprising: a storage battery in which charged power is discharged; and an inverter for converting the power obtained from the power supply circuit and the storage battery into AC power, the power converted by the inverter being the load A natural energy power supply that outputs power to the connected power line,
    An engine generator that generates electric power using an internal combustion engine and outputs the electric power generated using the internal combustion engine to the power line;
    An output amount of the natural energy power supply device such that an output amount of the engine generator is maintained within a predetermined limit range as a range for making the power generation efficiency of the engine generator higher than a predetermined power generation efficiency And a controller that controls an output amount of the engine generator.
  2.  前記コントローラは、前記蓄電池の残容量が所定の条件を満たす場合のみ、前記制限範囲内に前記エンジン発電機の出力量が維持されるように、前記自然エネルギー電源装置の出力量、および、前記エンジン発電機の出力量を制御する
     請求項1に記載の分散電源システム。
    The controller controls the output of the natural energy power supply so that the output of the engine generator is maintained within the limited range only when the remaining capacity of the storage battery satisfies a predetermined condition. The distributed power supply system according to claim 1, which controls an output amount of a generator.
  3.  前記所定の条件は、前記蓄電池の残容量が所定の残容量よりも大きいことであり、
     前記コントローラは、前記蓄電池の残容量が前記所定の残容量よりも大きい場合のみ、前記制限範囲内に前記エンジン発電機の出力量が維持されるように、前記自然エネルギー電源装置の出力量、および、前記エンジン発電機の出力量を制御する
     請求項2に記載の分散電源システム。
    The predetermined condition is that the remaining capacity of the storage battery is larger than a predetermined remaining capacity,
    The controller is configured to maintain the output of the engine generator within the limited range only when the remaining capacity of the storage battery is greater than the predetermined remaining capacity; The distributed power supply system according to claim 2, controlling an amount of output of the engine generator.
  4.  前記コントローラは、前記自然エネルギー発電装置の発電量が所定の条件を満たす場合のみ、前記制限範囲内に前記エンジン発電機の出力量が維持されるように、前記自然エネルギー電源装置の出力量、および、前記エンジン発電機の出力量を制御する
     請求項1に記載の分散電源システム。
    The controller controls the output of the natural energy power supply such that the output of the engine generator is maintained within the restricted range only when the power generation of the natural energy generator satisfies a predetermined condition. The distributed power supply system according to claim 1, wherein an output amount of the engine generator is controlled.
  5.  前記所定の条件は、前記自然エネルギー発電装置の発電量が所定の発電量よりも大きいことであり、
     前記コントローラは、前記自然エネルギー発電装置の発電量が前記所定の発電量よりも大きい場合のみ、前記制限範囲内に前記エンジン発電機の出力量が維持されるように、前記自然エネルギー電源装置の出力量、および、前記エンジン発電機の出力量を制御する
     請求項4に記載の分散電源システム。
    The predetermined condition is that the amount of power generation of the natural energy power generation device is larger than the predetermined amount of power generation,
    The controller outputs the output of the natural energy power supply device such that the output amount of the engine generator is maintained within the restricted range only when the amount of power generation of the natural energy power generation device is larger than the predetermined amount of power generation. The distributed power supply system according to claim 4, which controls a capacity and an output of the engine generator.
  6.  前記自然エネルギー発電装置は、太陽光を利用して発電し、
     前記コントローラは、
     日射量または日付に基づいて、前記自然エネルギー発電装置の発電量を予測し、
     予測された前記発電量が前記所定の発電量よりも大きい場合のみ、前記制限範囲内に前記エンジン発電機の出力量が維持されるように、前記自然エネルギー電源装置の出力量、および、前記エンジン発電機の出力量を制御する
     請求項5に記載の分散電源システム。
    The natural energy generator generates electricity using sunlight,
    The controller
    Predicting the power generation of the renewable energy generator based on the amount of solar radiation or date;
    An output amount of the natural energy power supply device such that the output amount of the engine generator is maintained within the limited range only when the predicted amount of power generation is larger than the predetermined amount of power generation; The distributed power supply system according to claim 5, which controls an output amount of a generator.
  7.  負荷に電力を供給する分散電源システムの制御方法であって、
     前記分散電源システムは、
     自然エネルギーを利用して電力を発電する自然エネルギー発電装置と、前記自然エネルギー発電装置で発電された電力から所定の電圧の電力を生成する電源回路と、前記電源回路から得られる電力が充電され、充電された電力が放電される蓄電池と、前記電源回路および前記蓄電池から得られる電力を交流の電力に変換するインバータとを備える自然エネルギー電源装置であって、前記インバータで変換された電力を前記負荷が接続された電力線に出力する自然エネルギー電源装置と、
     内燃機関を利用して電力を発電し、前記内燃機関を利用して発電された電力を前記電力線に出力するエンジン発電機とを備え、
     前記分散電源システムの制御方法は、
     前記エンジン発電機の発電効率を所定の発電効率よりも高くするための範囲として予め定められた制限範囲内に前記エンジン発電機の出力量が維持されるように、前記自然エネルギー電源装置の出力量、および、前記エンジン発電機の出力量を制御する制御ステップを含む
     分散電源システムの制御方法。
    A control method of a distributed power supply system for supplying power to a load, comprising:
    The distributed power system is
    A natural energy power generation device that generates power using natural energy, a power supply circuit that generates power of a predetermined voltage from the power generated by the natural energy power generation device, and power obtained from the power supply circuit; A natural energy power supply device comprising: a storage battery in which charged power is discharged; and an inverter for converting the power obtained from the power supply circuit and the storage battery into AC power, the power converted by the inverter being the load A natural energy power supply that outputs power to the connected power line,
    And an engine generator that generates electric power using an internal combustion engine and outputs the electric power generated using the internal combustion engine to the power line.
    The control method of the distributed power system is
    An output amount of the natural energy power supply device such that an output amount of the engine generator is maintained within a predetermined limit range as a range for making the power generation efficiency of the engine generator higher than a predetermined power generation efficiency And a control step of controlling an output amount of the engine generator.
PCT/JP2016/001981 2015-05-20 2016-04-12 Distributed power supply system, and control method of distributed power supply system WO2016185660A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-102906 2015-05-20
JP2015102906A JP2016220396A (en) 2015-05-20 2015-05-20 Distributed power supply system and distributed power supply system control method

Publications (1)

Publication Number Publication Date
WO2016185660A1 true WO2016185660A1 (en) 2016-11-24

Family

ID=57319781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001981 WO2016185660A1 (en) 2015-05-20 2016-04-12 Distributed power supply system, and control method of distributed power supply system

Country Status (2)

Country Link
JP (1) JP2016220396A (en)
WO (1) WO2016185660A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019097380A (en) * 2017-11-21 2019-06-20 シュネーデル、エレクトリック、インダストリーズ、エスアーエスSchneider Electric Industries Sas Method for controlling micro grid
WO2020158027A1 (en) * 2019-02-01 2020-08-06 三菱重工エンジン&ターボチャージャ株式会社 Command generation device and command generation method in multiple power generation power supply system
WO2020158028A1 (en) * 2019-02-01 2020-08-06 三菱重工エンジン&ターボチャージャ株式会社 Droop characteristic control in multiple power generation power supply facility

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6796029B2 (en) * 2017-06-13 2020-12-02 株式会社日立製作所 New energy source integrated power converter
KR101908375B1 (en) * 2017-08-17 2018-10-17 한국전력공사 Apparauts and computer readable recording medium for controlling energy storage system
JP6401882B1 (en) * 2018-05-18 2018-10-10 株式会社日立パワーソリューションズ Power management system, management apparatus, and output target value setting method
JP6493609B1 (en) * 2018-07-23 2019-04-03 富士電機株式会社 Power generation control system and control program
JP7112973B2 (en) * 2019-02-01 2022-08-04 三菱重工エンジン&ターボチャージャ株式会社 Command generation device and command generation method
JP7324653B2 (en) * 2019-08-09 2023-08-10 三菱重工エンジン&ターボチャージャ株式会社 Command generation device and command generation method
CN116018740A (en) * 2020-08-05 2023-04-25 三菱电机株式会社 Distributed power management device
WO2022195872A1 (en) * 2021-03-19 2022-09-22 三菱電機株式会社 Control device and power conversion device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63294222A (en) * 1987-05-25 1988-11-30 Sharp Corp Composite type optical power generating system
JP2006288002A (en) * 2005-03-31 2006-10-19 Honda Motor Co Ltd Power supply device and its control method
JP2012034514A (en) * 2010-07-30 2012-02-16 Toshiba Corp Output distribution control device
JP2014045544A (en) * 2012-08-24 2014-03-13 Tokyo Gas Co Ltd Power generation system and power generation variation compensation system
JP2014221004A (en) * 2010-06-16 2014-11-20 トランスオーシャン セドコフォレックスベンチャーズリミテッド Hybrid power plant for improved efficiency and dynamic performance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63294222A (en) * 1987-05-25 1988-11-30 Sharp Corp Composite type optical power generating system
JP2006288002A (en) * 2005-03-31 2006-10-19 Honda Motor Co Ltd Power supply device and its control method
JP2014221004A (en) * 2010-06-16 2014-11-20 トランスオーシャン セドコフォレックスベンチャーズリミテッド Hybrid power plant for improved efficiency and dynamic performance
JP2012034514A (en) * 2010-07-30 2012-02-16 Toshiba Corp Output distribution control device
JP2014045544A (en) * 2012-08-24 2014-03-13 Tokyo Gas Co Ltd Power generation system and power generation variation compensation system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019097380A (en) * 2017-11-21 2019-06-20 シュネーデル、エレクトリック、インダストリーズ、エスアーエスSchneider Electric Industries Sas Method for controlling micro grid
JP7161922B2 (en) 2017-11-21 2022-10-27 シュネーデル、エレクトリック、インダストリーズ、エスアーエス How to control microgrids
WO2020158027A1 (en) * 2019-02-01 2020-08-06 三菱重工エンジン&ターボチャージャ株式会社 Command generation device and command generation method in multiple power generation power supply system
WO2020158028A1 (en) * 2019-02-01 2020-08-06 三菱重工エンジン&ターボチャージャ株式会社 Droop characteristic control in multiple power generation power supply facility
JP2020127273A (en) * 2019-02-01 2020-08-20 三菱重工エンジン&ターボチャージャ株式会社 Command generation device and command generation method in system of multiple power generation sources
JP2020127272A (en) * 2019-02-01 2020-08-20 三菱重工エンジン&ターボチャージャ株式会社 Droop characteristic control in multi-generation power plant
JP7351620B2 (en) 2019-02-01 2023-09-27 三菱重工エンジン&ターボチャージャ株式会社 Command generation device and command generation method in multiple generation power supply system
JP7365123B2 (en) 2019-02-01 2023-10-19 三菱重工エンジン&ターボチャージャ株式会社 Droop characteristic control in combined power generation equipment

Also Published As

Publication number Publication date
JP2016220396A (en) 2016-12-22

Similar Documents

Publication Publication Date Title
WO2016185660A1 (en) Distributed power supply system, and control method of distributed power supply system
WO2016185661A1 (en) Distributed power system, and control method of distributed power system
JP4369450B2 (en) Power supply system
JP6544356B2 (en) Control device, power storage device, control support device, control method, control support method, and recording medium
KR101980687B1 (en) Energy Management System
US10084314B2 (en) Storage battery equipment
KR20090042794A (en) Power accumulator and hybrid distributed power supply system
JP6192531B2 (en) Power management system, power management apparatus, power management method, and program
JP5994027B2 (en) Power supply system and energy management system used therefor
US20160359342A1 (en) Energy management system
Luna et al. Generation-side power scheduling in a grid-connected DC microgrid
JP2020018108A (en) Power storage system
JP5995804B2 (en) Storage system management device and control target value determination method
JP2016116428A (en) Autonomous operation system for distributed power source
JP5946983B1 (en) Supply and demand control device, supply and demand control method
JP6386536B2 (en) Supply and demand control device, supply and demand control method
JP5899479B2 (en) Power converter
JP5899478B2 (en) Power converter
JP6783581B2 (en) Power supply system
JP7203325B2 (en) power system
WO2017061048A1 (en) Power conditioning system and power conditioning method
WO2013099957A1 (en) Power conversion apparatus
JP7303692B2 (en) POWER MANAGEMENT SYSTEM, POWER MANAGEMENT METHOD, POWER MANAGEMENT APPARATUS, AND PROGRAM
JP6875888B2 (en) Power supply system
US20220302703A1 (en) Methods and systems for power management in a microgrid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16796057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16796057

Country of ref document: EP

Kind code of ref document: A1