WO2020158028A1 - Droop characteristic control in multiple power generation power supply facility - Google Patents

Droop characteristic control in multiple power generation power supply facility Download PDF

Info

Publication number
WO2020158028A1
WO2020158028A1 PCT/JP2019/033894 JP2019033894W WO2020158028A1 WO 2020158028 A1 WO2020158028 A1 WO 2020158028A1 JP 2019033894 W JP2019033894 W JP 2019033894W WO 2020158028 A1 WO2020158028 A1 WO 2020158028A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
inverter
target value
value
voltage
Prior art date
Application number
PCT/JP2019/033894
Other languages
French (fr)
Japanese (ja)
Inventor
中北 治
政之 田中
鈴木 博幸
弘嵩 上原
三橋 真人
江口 富士雄
Original Assignee
三菱重工エンジン&ターボチャージャ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工エンジン&ターボチャージャ株式会社 filed Critical 三菱重工エンジン&ターボチャージャ株式会社
Publication of WO2020158028A1 publication Critical patent/WO2020158028A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Definitions

  • the present invention relates to a combined power supply system for self-sustaining operation.
  • the present application claims priority to Japanese Patent Application No. 2019-017467 filed in Japan on February 1, 2019, the contents of which are incorporated herein by reference.
  • Patent Document 1 discloses a distributed power supply system including a plurality of generators that perform grid interconnection or independent operation. According to Patent Document 1, in the distributed power supply system, one generator controls the rotation speed with the isochronous characteristic and the remaining generators control the rotation speed with the droop characteristic during the self-sustained operation.
  • a power supply system in which a combination of a DC power supply device such as a power storage device or a renewable energy power generation device and an inverter (power conditioner) is connected to a bus bar provided with an AC generator that operates independently.
  • the alternator controls the rotation speed with a droop characteristic.
  • An object of the present invention is, in a power supply system including an AC generator and a DC power supply device, an inverter, an inverter control device, and an inverter control method capable of suppressing the occurrence of disconnection of the DC power supply device due to load fluctuations. , And to provide the program.
  • a control device for an inverter is a control device for controlling an inverter of a DC power supply device, which is connected to the same bus bar as an AC generator that supplies electric power in a self-sustaining operation.
  • a target determining unit that determines a target value of the voltage frequency that monotonically increases with respect to the voltage value and a target value of active power that monotonically decreases with respect to the voltage value, based on the voltage value of the bus bar;
  • a modulation control unit that performs pulse width modulation control of the inverter based on a target value of voltage frequency and a target value of active power.
  • the target determining unit determines an active power droop function indicating a relationship in which active power monotonically decreases with respect to a voltage frequency, and a determination.
  • the target value of the active power may be determined based on the target value of the voltage frequency.
  • the amount of change in active power with respect to the voltage frequency of the active power droop function matches the active power droop characteristic of the alternator. It may be one.
  • the target determination unit is based on the voltage value of the bus bar with respect to the voltage value.
  • the target value of the reactive power that monotonically decreases is determined, and the modulation control unit, based on the determined target value of the voltage frequency, the target value of the active power, and the target value of the reactive power, the pulse width of the inverter. Modulation control may be performed.
  • the target determining unit determines a reactive power droop function indicating a relationship in which the reactive power monotonously decreases with respect to a voltage value, and The target value of the reactive power may be determined based on the voltage value of the busbar.
  • the intercept of the voltage value of the reactive power droop function and the intercept of the reactive power are the voltages of the reactive power droop characteristic of the alternator. It may be less than or equal to the value intercept and the intercept of the reactive power, and the amount of change in the reactive power with respect to the voltage value of the reactive power droop function may match the reactive power droop characteristic of the alternator.
  • the inverter is a DC power supply inverter connected to the same bus as an AC generator that supplies power by self-sustaining operation, and based on the voltage value of the bus,
  • a target determining unit that determines a target value of the voltage frequency that monotonically increases with respect to the voltage value and a target value of active power that monotonically decreases with respect to the voltage value, and a target value of the determined voltage frequency and the effective value.
  • a modulation control unit that performs pulse width modulation control based on a target value of electric power.
  • a method for controlling an inverter is a method for controlling an inverter of a DC power supply device, which is connected to the same bus as an AC generator that supplies electric power by self-sustaining operation. Determining a target value of the voltage frequency that monotonically increases with respect to the voltage value and a target value of active power that monotonically decreases with respect to the voltage value based on the voltage value; and the target of the determined voltage frequency. A pulse width modulation control of the inverter based on the value and the target value of the active power.
  • a program is a computer of an inverter of a DC power supply device, which is connected to the same bus as an AC generator that supplies power by self-sustaining operation, based on the voltage value of the bus, A step of determining a target value of the voltage frequency that monotonically increases with respect to the voltage value and a step of determining a target value of the active power that monotonically decreases with respect to the voltage value, and the determined target value of the voltage frequency and the active power A step of performing pulse width modulation control of the inverter based on the target value.
  • the inverter can suppress the occurrence of disconnection of the DC power supply device due to load fluctuations in the power supply system including the AC generator and the DC power supply device.
  • FIG. 1 is a schematic block diagram showing the configuration of the power supply system according to the first embodiment.
  • the power supply system 1 includes an engine generator 10, a solar power generator 20, a power storage device 30, and a power control device 40.
  • the power supply system 1 supplies power to the load L by self-sustained operation. That is, the power supply system 1 is a so-called micro grid system or an off grid system.
  • the engine generator 10, the solar power generator 20, and the power storage device 30 are connected to a bus bar and supply electric power to the load L via the bus bar.
  • the engine generator 10 includes an engine 11, a generator 12, a governor 13, and an AVR 14 (Automatic Voltage Regulator).
  • the engine generator 10 is an AC generator that generates AC power by driving the generator 12 by the rotation of the engine 11.
  • the governor 13 controls the rotation speed of the engine 11 by the Hz-kW droop characteristic (active power droop characteristic).
  • the Hz-kW droop characteristic of the engine generator 10 is, for example, a first order link between a plot relating to the rated output and the rated frequency and a plot relating to the settling frequency that is settled in the unloaded state when the load is cut off from the zero output and the rated output. It is represented by the slope of the function.
  • the Hz-kW droop characteristic is a characteristic in which the output decreases as the frequency increases.
  • the governor characteristic may be realized by PID (Proportional Integral Differential) control.
  • the AVR 14 adjusts the terminal voltage of the generator 12 by controlling the current supplied to the field winding of the generator 12 by the V-kbar droop characteristic (reactive power droop characteristic).
  • the V-kbar droop characteristic is a characteristic in which the reactive power decreases as the voltage increases.
  • another AC generator may be used instead of the engine generator 10.
  • the solar power generator 20 includes a solar cell 21 and an inverter 22.
  • the solar cell 21 is a DC power supply device that converts sunlight into DC power.
  • the inverter 22 converts the DC power generated by the solar cell 21 into AC power.
  • the inverter 22 is, for example, a current control type inverter.
  • the inverter 22 and the solar cell 21 do not necessarily have to be provided in a one-to-one relationship.
  • a plurality of solar cells 21 may be connected to one inverter 22.
  • it may replace with the solar cell 21 and may use other renewable energy generators, such as a wind power generator, for example.
  • the power storage device 30 includes a secondary battery 31 and an inverter 32.
  • the inverter 32 converts the DC power output from the secondary battery 31 into AC power based on a command from the power control device 40 and supplies the AC power to the bus bar. Further, inverter 32 converts a part of the AC power flowing through the bus bar into DC power based on a command from power control device 40 to charge secondary battery 31.
  • the secondary battery 31 for example, a lithium ion secondary battery can be used.
  • the inverter 32 and the secondary battery 31 do not necessarily have to be provided in a one-to-one relationship. For example, a plurality of secondary batteries 31 may be connected to one inverter 32.
  • Power control device 40 monitors the power value of the bus, outputs a generated power command to engine generator 10, and outputs a charge/discharge command to power storage device 30. For example, the power control device 40 outputs a generated power command to the engine generator 10 to reduce or stop the generated power when the power generated by the solar power generator 20 is equal to or higher than a predetermined threshold, such as during the daytime. In addition, the power control device 40 outputs a generated power command to the engine generator 10 when the power generated by the solar power generator 20 is less than a predetermined threshold, such as at night or in bad weather.
  • the power control device 40 outputs, to the inverter 32, a charge/discharge command for smoothing the fluctuation of the power generated by the solar power generator 20, based on the fluctuation. Further, power control device 40 compares the sum of the power values supplied to the bus bar with the power demand value of load L, and outputs a charge/discharge command to inverter 32 based on the power difference.
  • FIG. 2 is a schematic block diagram showing the configuration of the inverter of the power storage device according to the first embodiment.
  • the inverter 32 according to the first embodiment includes an inverter body 321, an ammeter 322, a voltmeter 323, and a control device 324.
  • the ammeter 322 measures the current at the output end of the inverter body 321.
  • the voltmeter 323 measures the bus bar voltage.
  • the control device 324 controls the inverter main body 321 based on the measured values of the ammeter 322 and the voltmeter 323.
  • the control device 324 includes a control function storage unit 3241, a measurement value acquisition unit 3242, a target frequency determination unit 3243, a target active power determination unit 3244, a target reactive power determination unit 3245, a modulation control unit 3246, and a command reception unit 3247.
  • the control function storage unit 3241 includes a target frequency function F1 indicating the relationship between the bus voltage and the bus voltage frequency, an active power droop function F2 indicating the relationship between the bus voltage frequency and the active power, and a relationship between the bus voltage and the reactive power. And a reactive power droop function F3 indicating The target frequency function F1 is a function in which the bus voltage frequency monotonically increases with respect to the bus voltage.
  • “monotonically increasing” means that when one value increases, the other value always increases or does not change (monotonically non-decreasing).
  • “monotonically decreasing” means that when one value increases, the other value always decreases or does not change (monotonically non-increasing).
  • the target frequency function F1 is a function that represents a change in the bus voltage frequency output by the engine generator 10 with respect to a change in the bus voltage.
  • the active power droop function F2 is a function in which the active power monotonically decreases with respect to the bus voltage frequency.
  • the slope of the active power droop function F2 (the amount of change in active power with respect to the bus voltage frequency) is equal to the slope related to the Hz-kW droop characteristic of the governor 13 of the engine generator 10.
  • the reactive power droop function F3 is a function in which the reactive power monotonically decreases with respect to the bus voltage.
  • the slope of the reactive power droop function F3 (the amount of change in the reactive power with respect to the bus voltage) is equal to the slope of the V-kbar droop characteristic of the AVR 14 of the engine generator 10.
  • the intercept of the bus voltage and the intercept of the reactive power of the reactive power droop function F3 are equal to or less than the intercept of the bus voltage and the intercept of the reactive power according to the V-kbar droop characteristic of the AVR 14 of the engine generator 10. That is, the reactive power calculated by the reactive power droop function F3 is always less than or equal to the reactive power output by the engine generator 10 due to the V-kbar droop characteristic of the AVR 14.
  • the terms “equal” and “matched” do not necessarily have to be completely matched, and include a substantially matched range.
  • the measurement value acquisition unit 3242 acquires the measurement values of the ammeter 322 and the voltmeter 323.
  • the target frequency determination unit 3243 determines the target value of the voltage frequency by substituting the measured value of the bus voltage into the target frequency function F1 stored in the control function storage unit 3241.
  • the target active power determination unit 3244 determines the target value of active power by substituting the target value of the voltage frequency determined by the target frequency determination unit 3243 into the active power droop function F2 stored in the control function storage unit 3241. ..
  • the target reactive power determination unit 3245 substitutes the measured value of the bus voltage into the reactive power droop function F3 stored in the control function storage unit 3241 to determine the target value of the reactive power.
  • the modulation control unit 3246 includes a target value of the voltage frequency determined by the target frequency determination unit 3243, a target value of active power determined by the target active power determination unit 3244, and a target value of reactive power determined by the target reactive power determination unit 3245.
  • the pulse width modulation control of the inverter main body 321 is performed based on the above. Specifically, the modulation control unit 3246 determines the modulation and duty ratio of the pulse width modulation control based on the voltage frequency and phase detected by a PLL circuit (not shown) that detects the voltage frequency of the bus.
  • the modulation control unit 3246 controls on/off of a switching element (not shown) of the inverter main body 321 based on the determined modulation of the pulse width modulation control, the duty ratio, and the output voltage frequency.
  • the command receiving unit 3247 receives the power command from the power control device 40, and updates the active power droop function F2 and the reactive power droop function F3 stored in the control function storage unit 3241 based on the power command. Specifically, command accepting unit 3247 accepts a power command indicating the maximum values of active power and reactive power output from power storage device 30. The power command is generated based on the power generation capacities of the engine generator 10 and the solar power generator 20. The command receiving unit 3247 updates the active power droop function F2 so that the intercept value of the active power axis becomes the maximum value of the active power indicated by the power command without changing the slope of the active power droop function F2. In addition, the command receiving unit 3247 updates the reactive power droop function F3 so that the intercept value of the reactive power axis becomes the maximum value of the reactive power indicated by the power command without changing the slope of the reactive power droop function F3. To do.
  • FIG. 3 is a flowchart showing the operation of the inverter of the power storage device according to the first embodiment.
  • the measured value acquisition unit 3242 of the control device 324 acquires the measured value of the bus current from the ammeter 322, and acquires the measured value of the bus voltage from the voltmeter 323 (step S1).
  • the target frequency determination unit 3243 determines the target value of the voltage frequency by substituting the measured value of the bus voltage acquired in step S1 into the target frequency function F1 stored in the control function storage unit 3241 (step S2). That is, the target frequency determination unit 3243 reduces the target frequency when the bus voltage decreases due to the increase in the load L.
  • the target frequency determination unit 3243 increases the target frequency when the bus voltage increases due to the decrease in the load L.
  • the voltage frequency output by the inverter 32 changes similarly to the voltage frequency output by the engine generator 10. That is, in the engine generator 10, the generated power increases as the load L increases, the generated voltage decreases, and the voltage frequency decreases, but the target frequency determining unit 3243 also targets the target voltage when the bus voltage decreases. By reducing the frequency, it is possible to realize the same voltage frequency change as that of the engine generator 10.
  • the target active power determination unit 3244 determines the target value of active power by substituting the target value of the voltage frequency determined in step S2 into the active power droop function F2 stored in the control function storage unit 3241. (Step S3).
  • the active power droop function F2 has the same slope as the droop characteristic of the engine generator 10. Therefore, by determining the target value of active power from the target value of voltage frequency by the active power droop function F2 in step S3, the inverter 32 can output active power according to the droop characteristic of the engine generator 10. .. As a result, active power can be shared between the engine generator 10 and the power storage device 30.
  • the target reactive power determination unit 3245 determines the target value of reactive power by substituting the measured value of the bus voltage acquired in step S1 into the reactive power droop function F3 stored in the control function storage unit 3241 (step S4). ).
  • the bus voltage intercept and the reactive power intercept of the reactive power droop function F3 are less than or equal to the bus voltage intercept and the reactive power intercept related to the V-kbar droop characteristic of the AVR 14 of the engine generator 10. That is, the reactive power calculated by the reactive power droop function F3 is always less than or equal to the reactive power output by the engine generator 10 due to the V-kbar droop characteristic of the AVR 14. Accordingly, the engine generator 10 and the power storage device 30 can share the reactive power, while the engine generator 10 having a power factor lower than that of the inverter 32 can share the relatively large amount of the reactive power.
  • the modulation control unit 3246 determines the modulation and duty ratio of the pulse width modulation control based on the target value of the active power determined in step S3 and the target value of the reactive power determined in step S4 (step S5). Further, the modulation control unit 3246 determines the frequency of the pulse width modulation control based on the voltage frequency and the phase detected by the PLL circuit (not shown) that detects the voltage frequency of the bus (step S6). The modulation control unit 3246 controls on/off of a switching element (not shown) of the inverter main body 321 based on the determined modulation, duty ratio, and frequency of the pulse width modulation control (step S7). As a result, the inverter 32 can output power with the target value of the voltage frequency determined in step S2, the target value of active power determined in step S3, and the target value of reactive power determined in step S4.
  • the control device 324 determines the target value of the voltage frequency and the target value of the active power based on the voltage value of the bus bar. At this time, the higher the bus voltage, the higher the target value of voltage frequency and the lower the target value of active power. As a result, the voltage frequency and active power of power storage device 30 can be changed without delay with respect to changes in engine generator 10 that operates due to droop characteristics. Therefore, according to the control device 324, in the power supply system 1 that includes the engine generator 10 that is an AC generator and the power storage device 30 that is a DC power supply device, the fluctuation of the load L is caused by Can be burdened with each.
  • control device 324 determines the target value of the active power based on the active power droop function F2 indicating the relationship that the active power monotonously decreases with respect to the voltage frequency.
  • the amount of change in active power with respect to the voltage frequency of the active power droop function F2 matches the active power droop characteristic of the engine generator 10.
  • the control device 324 can change the active power output by the inverter 32 according to the droop characteristic of the engine generator 10.
  • it is not limited to this.
  • the amount of change in active power with respect to the voltage frequency of the active power droop function F2 of the control device 324 may not match the active power droop characteristic of the engine generator 10.
  • the control device 324 according to another embodiment instead of the active power droop function F2, uses a function indicating a relationship in which the active power monotonously decreases with respect to the bus voltage, and calculates the active power from the measured value of the bus voltage. You may decide.
  • control device 324 determines the target value of the reactive power based on the bus voltage.
  • the inverter 32 can cause the engine generator 10 and the power storage device 30 to bear the reactive power generated as the load L changes.
  • control device 324 according to the first embodiment determines the target value of the reactive power based on the reactive power droop function F3 indicating the relationship that the reactive power monotonously decreases with respect to the voltage value.
  • the intercept of the voltage value and the intercept of the reactive power of the reactive power droop function F3 are below the intercept of the voltage value and the intercept of the reactive power of the reactive power droop characteristic of engine generator 10.
  • control device 324 can allow engine generator 10 having a power factor lower than that of inverter 32 to share a relatively large amount of reactive power while allowing engine generator 10 and power storage device 30 to share the reactive power. ..
  • the present invention is not limited to this in other embodiments.
  • the control device 324 may control so that the inverter 32 does not bear the reactive power but only the active power.
  • the inverter 32 of the power storage device 30 performs the above control, but the other embodiments are not limited to this.
  • the inverter 22 of the solar power generator 20 may perform the same control.
  • some of the plurality of inverters 32 may be controlled as described above, and the other inverters 32 may be controlled as usual.
  • FIG. 4 is a schematic block diagram showing the configuration of a computer according to at least one embodiment.
  • the computer 90 includes a processor 91, a main memory 92, a storage 93, and an interface 94.
  • the control device 324 described above is implemented in the computer 90.
  • the operation of each processing unit described above is stored in the storage 93 in the form of a program.
  • the processor 91 reads out the program from the storage 93, expands it in the main memory 92, and executes the above processing in accordance with the program. Further, the processor 91 reserves a storage area corresponding to the above-mentioned control function storage unit 3241 in the main memory 92 according to the program.
  • the program may be for realizing some of the functions that the computer 90 is caused to perform.
  • the program may exert a function by a combination with another program already stored in the storage 93 or a combination with another program installed in another device.
  • the computer 90 may include a custom LSI (Large Scale Integrated Circuit) such as a PLD (Programmable Logic Device) in addition to or instead of the above configuration.
  • PLD Programmable Logic Device
  • Examples of PLD include PAL (Programmable Array Logic), GAL (Generic Array Logic), CPLD (Complex Programmable Logic Device), and FPGA (Field Programmable Gate Array).
  • PLD Programmable Logic Device
  • PAL Programmable Array Logic
  • GAL Generic Array Logic
  • CPLD Complex Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • Examples of the storage 93 are HDD (Hard Disk Drive), SSD (Solid State Drive), magnetic disk, magneto-optical disk, CD-ROM (Compact Disc Read Only Memory), DVD-ROM (Digital Versatile Disc Read Only Memory). , Semiconductor memory, and the like.
  • the storage 93 may be an internal medium directly connected to the bus of the computer 90 or an external medium connected to the computer 90 via the interface 94 or a communication line. Further, when this program is distributed to the computer 90 through a communication line, the computer 90 that receives the distribution may expand the program in the main memory 92 and execute the above processing.
  • storage 93 is a non-transitory, tangible storage medium.
  • the program may be for realizing some of the functions described above.
  • the program may be a so-called difference file (difference program) that realizes the above-described function in combination with another program already stored in the storage 93.
  • the inverter can suppress the occurrence of disconnection of the DC power supply device due to load fluctuations in the power supply system including the AC generator and the DC power supply device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

A target determination unit determines, on the basis of the voltage value of a bus line, a target value of voltage frequency monotonously increasing with respect to the voltage value and a target value of active power monotonously decreasing with respect to voltage value. A modulation control unit controls the pulse width modulation of an inverter on the basis of the determined target values of the voltage frequency and active power.

Description

複合発電電源設備におけるドループ特性制御Droop characteristic control in combined power generation equipment
 本発明は、自立運転における複合発電電源システムに関する。
 本願は、2019年2月1日に日本に出願された特願2019-017467号について優先権を主張し、その内容をここに援用する。
The present invention relates to a combined power supply system for self-sustaining operation.
The present application claims priority to Japanese Patent Application No. 2019-017467 filed in Japan on February 1, 2019, the contents of which are incorporated herein by reference.
 特許文献1には、系統連系または自立運転を行う複数の発電機を備える分散電源システムが開示されている。特許文献1によれば、分散電源システムは、自立運転時に、1台の発電機がアイソクロナス特性で回転数制御を行い、残りの発電機がドループ特性にて回転数制御を行う。 [Patent Document 1] discloses a distributed power supply system including a plurality of generators that perform grid interconnection or independent operation. According to Patent Document 1, in the distributed power supply system, one generator controls the rotation speed with the isochronous characteristic and the remaining generators control the rotation speed with the droop characteristic during the self-sustained operation.
特開2009-081942号公報Japanese Patent Laid-Open No. 2009-081942
 ところで、蓄電装置や再生可能エネルギー発電装置などの直流電源装置とインバータ(パワーコンディショナ)の組み合わせを、自立運転する交流発電機が設けられた母線に接続する電力供給システムが知られている。交流発電機は、ドループ特性で回転数制御を行う。しかしながら、交流発電機を有する電力供給システムを自立運転させる場合、負荷の変動に伴い、母線電圧の周波数の変動が生じやすい。そのため、交流発電機の電圧周波数の変動が生じたときに、インバータが連携状態から解列しやすい。 By the way, a power supply system is known in which a combination of a DC power supply device such as a power storage device or a renewable energy power generation device and an inverter (power conditioner) is connected to a bus bar provided with an AC generator that operates independently. The alternator controls the rotation speed with a droop characteristic. However, when the power supply system having the AC generator is operated independently, fluctuations in the frequency of the bus voltage are likely to occur due to fluctuations in the load. Therefore, when the voltage frequency of the AC generator fluctuates, the inverter is likely to disconnect from the linked state.
 本発明の目的は、交流発電機と直流電源装置とを備える電力供給システムにおいて、負荷の変動による直流電源装置の解列の発生を抑制することができるインバータ、インバータの制御装置、インバータの制御方法、およびプログラムを提供することにある。 An object of the present invention is, in a power supply system including an AC generator and a DC power supply device, an inverter, an inverter control device, and an inverter control method capable of suppressing the occurrence of disconnection of the DC power supply device due to load fluctuations. , And to provide the program.
 本発明の第1の態様によれば、インバータの制御装置は、自立運転によって電力を供給する交流発電機と同じ母線に接続された、直流電源装置のインバータを制御する制御装置であって、前記母線の電圧値に基づいて、前記電圧値に対して単調増加する電圧周波数の目標値と、前記電圧値に対して単調減少する有効電力の目標値とを決定する目標決定部と、決定した前記電圧周波数の目標値および前記有効電力の目標値に基づいて、前記インバータのパルス幅変調制御を行う変調制御部とを備える。 According to a first aspect of the present invention, a control device for an inverter is a control device for controlling an inverter of a DC power supply device, which is connected to the same bus bar as an AC generator that supplies electric power in a self-sustaining operation. A target determining unit that determines a target value of the voltage frequency that monotonically increases with respect to the voltage value and a target value of active power that monotonically decreases with respect to the voltage value, based on the voltage value of the bus bar; A modulation control unit that performs pulse width modulation control of the inverter based on a target value of voltage frequency and a target value of active power.
 本発明の第2の態様によれば、第1の態様に係るインバータの制御装置において、前記目標決定部は、電圧周波数に対して有効電力が単調減少する関係を示す有効電力ドループ関数と、決定した前記電圧周波数の目標値とに基づいて、前記有効電力の目標値を決定するものであってよい。 According to a second aspect of the present invention, in the inverter control device according to the first aspect, the target determining unit determines an active power droop function indicating a relationship in which active power monotonically decreases with respect to a voltage frequency, and a determination. The target value of the active power may be determined based on the target value of the voltage frequency.
 本発明の第3の態様によれば、第2の態様に係るインバータの制御装置において、前記有効電力ドループ関数の電圧周波数に対する有効電力の変化量が前記交流発電機の有効電力ドループ特性と一致するものであってよい。 According to a third aspect of the present invention, in the inverter control device according to the second aspect, the amount of change in active power with respect to the voltage frequency of the active power droop function matches the active power droop characteristic of the alternator. It may be one.
 本発明の第4の態様によれば、第1から第3の何れかの態様に係るインバータの制御装置において、前記目標決定部は、前記母線の電圧値に基づいて、前記電圧値に対して単調減少する無効電力の目標値を決定し、前記変調制御部は、決定した前記電圧周波数の目標値、前記有効電力の目標値、および前記無効電力の目標値に基づいて、前記インバータのパルス幅変調制御を行うものであってよい。 According to a fourth aspect of the present invention, in the inverter control device according to any one of the first to third aspects, the target determination unit is based on the voltage value of the bus bar with respect to the voltage value. The target value of the reactive power that monotonically decreases is determined, and the modulation control unit, based on the determined target value of the voltage frequency, the target value of the active power, and the target value of the reactive power, the pulse width of the inverter. Modulation control may be performed.
 本発明の第5の態様によれば、第4の態様に係るインバータの制御装置において、前記目標決定部は、電圧値に対して無効電力が単調減少する関係を示す無効電力ドループ関数と、決定した前記母線の電圧値とに基づいて、前記無効電力の目標値を決定するものであってよい。 According to a fifth aspect of the present invention, in the inverter control device according to the fourth aspect, the target determining unit determines a reactive power droop function indicating a relationship in which the reactive power monotonously decreases with respect to a voltage value, and The target value of the reactive power may be determined based on the voltage value of the busbar.
 本発明の第6の態様によれば、第5の態様に係るインバータの制御装置において、前記無効電力ドループ関数の電圧値の切片および無効電力の切片が前記交流発電機の無効電力ドループ特性の電圧値の切片および無効電力の切片以下であり、前記無効電力ドループ関数の電圧値に対する無効電力の変化量が前記交流発電機の無効電力ドループ特性と一致するものであってよい。 According to a sixth aspect of the present invention, in the inverter control device according to the fifth aspect, the intercept of the voltage value of the reactive power droop function and the intercept of the reactive power are the voltages of the reactive power droop characteristic of the alternator. It may be less than or equal to the value intercept and the intercept of the reactive power, and the amount of change in the reactive power with respect to the voltage value of the reactive power droop function may match the reactive power droop characteristic of the alternator.
 本発明の第7の態様によれば、インバータは、自立運転によって電力を供給する交流発電機と同じ母線に接続された、直流電源装置のインバータであって、前記母線の電圧値に基づいて、前記電圧値に対して単調増加する電圧周波数の目標値と、前記電圧値に対して単調減少する有効電力の目標値とを決定する目標決定部と、決定した前記電圧周波数の目標値および前記有効電力の目標値に基づいてパルス幅変調制御を行う変調制御部とを備える。 According to a seventh aspect of the present invention, the inverter is a DC power supply inverter connected to the same bus as an AC generator that supplies power by self-sustaining operation, and based on the voltage value of the bus, A target determining unit that determines a target value of the voltage frequency that monotonically increases with respect to the voltage value and a target value of active power that monotonically decreases with respect to the voltage value, and a target value of the determined voltage frequency and the effective value. A modulation control unit that performs pulse width modulation control based on a target value of electric power.
 本発明の第8の態様によれば、インバータの制御方法は、自立運転によって電力を供給する交流発電機と同じ母線に接続された、直流電源装置のインバータの制御方法であって、前記母線の電圧値に基づいて、前記電圧値に対して単調増加する電圧周波数の目標値と、前記電圧値に対して単調減少する有効電力の目標値とを決定するステップと、決定した前記電圧周波数の目標値および前記有効電力の目標値に基づいて、前記インバータのパルス幅変調制御を行うステップとを備える。 According to an eighth aspect of the present invention, a method for controlling an inverter is a method for controlling an inverter of a DC power supply device, which is connected to the same bus as an AC generator that supplies electric power by self-sustaining operation. Determining a target value of the voltage frequency that monotonically increases with respect to the voltage value and a target value of active power that monotonically decreases with respect to the voltage value based on the voltage value; and the target of the determined voltage frequency. A pulse width modulation control of the inverter based on the value and the target value of the active power.
 本発明の第9の態様によれば、プログラムは、自立運転によって電力を供給する交流発電機と同じ母線に接続された、直流電源装置のインバータのコンピュータに、前記母線の電圧値に基づいて、前記電圧値に対して単調増加する電圧周波数の目標値と、前記電圧値に対して単調減少する有効電力の目標値とを決定するステップと、決定した前記電圧周波数の目標値および前記有効電力の目標値に基づいて、前記インバータのパルス幅変調制御を行うステップとを実行させる。 According to a ninth aspect of the present invention, a program is a computer of an inverter of a DC power supply device, which is connected to the same bus as an AC generator that supplies power by self-sustaining operation, based on the voltage value of the bus, A step of determining a target value of the voltage frequency that monotonically increases with respect to the voltage value and a step of determining a target value of the active power that monotonically decreases with respect to the voltage value, and the determined target value of the voltage frequency and the active power A step of performing pulse width modulation control of the inverter based on the target value.
 上記態様のうち少なくとも1つの態様によれば、インバータは、交流発電機と直流電源装置とを備える電力供給システムにおいて、負荷の変動による直流電源装置の解列の発生を抑制することができる。 According to at least one of the above aspects, the inverter can suppress the occurrence of disconnection of the DC power supply device due to load fluctuations in the power supply system including the AC generator and the DC power supply device.
第1の実施形態に係る電力供給システムの構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the electric power supply system which concerns on 1st Embodiment. 第1の実施形態に係る蓄電装置のインバータの構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the inverter of the electrical storage apparatus which concerns on 1st Embodiment. 第1の実施形態に係る蓄電装置のインバータの動作を示すフローチャートである。3 is a flowchart showing the operation of the inverter of the power storage device according to the first embodiment. 少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。It is a schematic block diagram which shows the structure of the computer which concerns on at least 1 embodiment.
〈第1の実施形態〉
 図1は、第1の実施形態に係る電力供給システムの構成を示す概略ブロック図である。
<First Embodiment>
FIG. 1 is a schematic block diagram showing the configuration of the power supply system according to the first embodiment.
《電力供給システムの構成》
 第1の実施形態に係る電力供給システム1は、エンジン発電機10、太陽光発電機20、蓄電装置30、および電力制御装置40を備える。電力供給システム1は、自立運転により負荷Lに電力を供給する。すなわち、電力供給システム1は、いわゆるマイクログリッドシステム、またはオフグリッドシステムである。エンジン発電機10、太陽光発電機20および蓄電装置30は、母線に接続され、母線を介して負荷Lに電力を供給する。
<<Power supply system configuration>>
The power supply system 1 according to the first embodiment includes an engine generator 10, a solar power generator 20, a power storage device 30, and a power control device 40. The power supply system 1 supplies power to the load L by self-sustained operation. That is, the power supply system 1 is a so-called micro grid system or an off grid system. The engine generator 10, the solar power generator 20, and the power storage device 30 are connected to a bus bar and supply electric power to the load L via the bus bar.
 エンジン発電機10は、エンジン11、発電機12、ガバナ13、AVR14(Automatic Voltage Regulator:自動電圧調整器)を備える。エンジン発電機10は、エンジン11の回転によって発電機12を駆動することで、交流電力を発生させる交流発電機である。
 ガバナ13は、Hz-kWドループ特性(有効電力ドループ特性)によりエンジン11の回転数を制御する。エンジン発電機10のHz-kWドループ特性は、例えば、定格出力および定格周波数に係るプロットと、ゼロ出力および定格出力から負荷遮断したときに無負荷状態で整定する整定周波数に係るプロットとを結ぶ一次関数の傾きによって表される。すなわち、Hz-kWドループ特性は、周波数が増加するほど出力が減少する特性である。なお、他の実施形態においては、ガバナ特性がPID(Proportional Integral Differential)制御によって実現されてもよい。AVR14は、V-kbarドループ特性(無効電力ドループ特性)により発電機12の界磁巻線に供給する電流を制御することで、発電機12の端子電圧を調整する。V-kbarドループ特性は、電圧が増加するほど無効電力が減少する特性である。なお、他の実施形態においては、エンジン発電機10に代えて他の交流発電機を用いてもよい。
The engine generator 10 includes an engine 11, a generator 12, a governor 13, and an AVR 14 (Automatic Voltage Regulator). The engine generator 10 is an AC generator that generates AC power by driving the generator 12 by the rotation of the engine 11.
The governor 13 controls the rotation speed of the engine 11 by the Hz-kW droop characteristic (active power droop characteristic). The Hz-kW droop characteristic of the engine generator 10 is, for example, a first order link between a plot relating to the rated output and the rated frequency and a plot relating to the settling frequency that is settled in the unloaded state when the load is cut off from the zero output and the rated output. It is represented by the slope of the function. That is, the Hz-kW droop characteristic is a characteristic in which the output decreases as the frequency increases. In other embodiments, the governor characteristic may be realized by PID (Proportional Integral Differential) control. The AVR 14 adjusts the terminal voltage of the generator 12 by controlling the current supplied to the field winding of the generator 12 by the V-kbar droop characteristic (reactive power droop characteristic). The V-kbar droop characteristic is a characteristic in which the reactive power decreases as the voltage increases. It should be noted that in other embodiments, another AC generator may be used instead of the engine generator 10.
 太陽光発電機20は、太陽電池21と、インバータ22とを備える。太陽電池21は、太陽光を直流電力に変換する直流電源装置である。インバータ22は、太陽電池21が生成する直流電力を交流電力に変換する。インバータ22は、例えば電流制御型インバータである。なお、インバータ22と太陽電池21とは必ずしも一対一に設けられなくてよい。例えば、1つのインバータ22に複数の太陽電池21が接続されてもよい。なお、他の実施形態においては、太陽電池21に代えて、例えば、風力発電機などの他の再生可能エネルギー発電機を用いてもよい。 The solar power generator 20 includes a solar cell 21 and an inverter 22. The solar cell 21 is a DC power supply device that converts sunlight into DC power. The inverter 22 converts the DC power generated by the solar cell 21 into AC power. The inverter 22 is, for example, a current control type inverter. The inverter 22 and the solar cell 21 do not necessarily have to be provided in a one-to-one relationship. For example, a plurality of solar cells 21 may be connected to one inverter 22. In addition, in another embodiment, it may replace with the solar cell 21 and may use other renewable energy generators, such as a wind power generator, for example.
 蓄電装置30は、二次電池31と、インバータ32とを備える。インバータ32は、電力制御装置40からの指令に基づいて二次電池31が出力する直流電力を、交流電力に変換して母線に供給する。またインバータ32は、電力制御装置40からの指令に基づいて母線に流れる交流電力の一部を直流電力に変換して二次電池31を充電する。二次電池31としては、例えばリチウムイオン二次電池を用いることができる。なお、インバータ32と二次電池31とは必ずしも一対一に設けられなくてよい。例えば、1つのインバータ32に複数の二次電池31が接続されてもよい。 The power storage device 30 includes a secondary battery 31 and an inverter 32. The inverter 32 converts the DC power output from the secondary battery 31 into AC power based on a command from the power control device 40 and supplies the AC power to the bus bar. Further, inverter 32 converts a part of the AC power flowing through the bus bar into DC power based on a command from power control device 40 to charge secondary battery 31. As the secondary battery 31, for example, a lithium ion secondary battery can be used. The inverter 32 and the secondary battery 31 do not necessarily have to be provided in a one-to-one relationship. For example, a plurality of secondary batteries 31 may be connected to one inverter 32.
 電力制御装置40は、母線の電力値を監視し、エンジン発電機10に発電電力指令を出力し、蓄電装置30に充放電指令を出力する。例えば、電力制御装置40は、昼間など、太陽光発電機20による発電電力が所定の閾値以上である場合に、エンジン発電機10に発電電力を低下させ、または停止させる発電電力指令を出力する。また電力制御装置40は、夜間や悪天候時など、太陽光発電機20による発電電力が所定の閾値未満となる場合に、エンジン発電機10に発電電力を増加させる発電電力指令を出力する。
 また例えば、電力制御装置40は、太陽光発電機20による発電電力の変動に基づいて、当該変動を平滑化するための充放電指令をインバータ32に出力する。また、電力制御装置40は、母線に供給されている電力値の総和と負荷Lによる需要電力値とを比較し、電力差に基づいて充放電指令をインバータ32に出力する。
Power control device 40 monitors the power value of the bus, outputs a generated power command to engine generator 10, and outputs a charge/discharge command to power storage device 30. For example, the power control device 40 outputs a generated power command to the engine generator 10 to reduce or stop the generated power when the power generated by the solar power generator 20 is equal to or higher than a predetermined threshold, such as during the daytime. In addition, the power control device 40 outputs a generated power command to the engine generator 10 when the power generated by the solar power generator 20 is less than a predetermined threshold, such as at night or in bad weather.
Further, for example, the power control device 40 outputs, to the inverter 32, a charge/discharge command for smoothing the fluctuation of the power generated by the solar power generator 20, based on the fluctuation. Further, power control device 40 compares the sum of the power values supplied to the bus bar with the power demand value of load L, and outputs a charge/discharge command to inverter 32 based on the power difference.
《蓄電装置のインバータ》
 図2は、第1の実施形態に係る蓄電装置のインバータの構成を示す概略ブロック図である。
 第1の実施形態に係るインバータ32は、インバータ本体321、電流計322、電圧計323、制御装置324を備える。電流計322は、インバータ本体321の出力端の電流を計測する。電圧計323は、母線電圧を計測する。制御装置324は、電流計322および電圧計323の計測値に基づいてインバータ本体321を制御する。
<<Inverter for power storage device>>
FIG. 2 is a schematic block diagram showing the configuration of the inverter of the power storage device according to the first embodiment.
The inverter 32 according to the first embodiment includes an inverter body 321, an ammeter 322, a voltmeter 323, and a control device 324. The ammeter 322 measures the current at the output end of the inverter body 321. The voltmeter 323 measures the bus bar voltage. The control device 324 controls the inverter main body 321 based on the measured values of the ammeter 322 and the voltmeter 323.
 制御装置324は、制御関数記憶部3241、計測値取得部3242、目標周波数決定部3243、目標有効電力決定部3244、目標無効電力決定部3245、変調制御部3246、指令受付部3247を備える。 The control device 324 includes a control function storage unit 3241, a measurement value acquisition unit 3242, a target frequency determination unit 3243, a target active power determination unit 3244, a target reactive power determination unit 3245, a modulation control unit 3246, and a command reception unit 3247.
 制御関数記憶部3241は、母線電圧と母線電圧周波数との関係を示す目標周波数関数F1と、母線電圧周波数と有効電力との関係を示す有効電力ドループ関数F2と、母線電圧と無効電力との関係を示す無効電力ドループ関数F3とを記憶する。目標周波数関数F1は、母線電圧に対して母線電圧周波数が単調増加する関数である。なお、本実施形態において、「単調増加」とは、一方の値が増加したときに、常に他方の値が増加し、または変化しないこと(単調非減少)をいう。同様に、「単調減少」とは、一方の値が増加したときに、常に他方の値が減少し、または変化しないこと(単調非増加)をいう。目標周波数関数F1は、母線電圧の変化に対するエンジン発電機10が出力する母線電圧周波数の変化を表す関数である。有効電力ドループ関数F2は、母線電圧周波数に対して有効電力が単調減少する関数である。有効電力ドループ関数F2の傾き(母線電圧周波数に対する有効電力の変化量)は、エンジン発電機10のガバナ13のHz-kWドループ特性に係る傾きと等しい。無効電力ドループ関数F3は、母線電圧に対して無効電力が単調減少する関数である。無効電力ドループ関数F3の傾き(母線電圧に対する無効電力の変化量)は、エンジン発電機10のAVR14のV-kbarドループ特性に係る傾きと等しい。他方、無効電力ドループ関数F3の母線電圧の切片および無効電力の切片は、エンジン発電機10のAVR14のV-kbarドループ特性に係る母線電圧の切片および無効電力の切片以下である。すなわち、無効電力ドループ関数F3によって算出される無効電力は、常にAVR14のV-kbarドループ特性によってエンジン発電機10が出力する無効電力以下となる。なお、本明細書において、「等しい」、「一致している」とは、必ずしも完全一致している必要はなく、実質的に一致している範囲を含む。 The control function storage unit 3241 includes a target frequency function F1 indicating the relationship between the bus voltage and the bus voltage frequency, an active power droop function F2 indicating the relationship between the bus voltage frequency and the active power, and a relationship between the bus voltage and the reactive power. And a reactive power droop function F3 indicating The target frequency function F1 is a function in which the bus voltage frequency monotonically increases with respect to the bus voltage. In the present embodiment, “monotonically increasing” means that when one value increases, the other value always increases or does not change (monotonically non-decreasing). Similarly, “monotonically decreasing” means that when one value increases, the other value always decreases or does not change (monotonically non-increasing). The target frequency function F1 is a function that represents a change in the bus voltage frequency output by the engine generator 10 with respect to a change in the bus voltage. The active power droop function F2 is a function in which the active power monotonically decreases with respect to the bus voltage frequency. The slope of the active power droop function F2 (the amount of change in active power with respect to the bus voltage frequency) is equal to the slope related to the Hz-kW droop characteristic of the governor 13 of the engine generator 10. The reactive power droop function F3 is a function in which the reactive power monotonically decreases with respect to the bus voltage. The slope of the reactive power droop function F3 (the amount of change in the reactive power with respect to the bus voltage) is equal to the slope of the V-kbar droop characteristic of the AVR 14 of the engine generator 10. On the other hand, the intercept of the bus voltage and the intercept of the reactive power of the reactive power droop function F3 are equal to or less than the intercept of the bus voltage and the intercept of the reactive power according to the V-kbar droop characteristic of the AVR 14 of the engine generator 10. That is, the reactive power calculated by the reactive power droop function F3 is always less than or equal to the reactive power output by the engine generator 10 due to the V-kbar droop characteristic of the AVR 14. In the present specification, the terms “equal” and “matched” do not necessarily have to be completely matched, and include a substantially matched range.
 計測値取得部3242は、電流計322および電圧計323の計測値を取得する。
 目標周波数決定部3243は、制御関数記憶部3241が記憶する目標周波数関数F1に母線電圧の計測値を代入することで、電圧周波数の目標値を決定する。
 目標有効電力決定部3244は、制御関数記憶部3241が記憶する有効電力ドループ関数F2に、目標周波数決定部3243が決定した電圧周波数の目標値を代入することで、有効電力の目標値を決定する。
 目標無効電力決定部3245は、制御関数記憶部3241が記憶する無効電力ドループ関数F3に、母線電圧の計測値を代入することで、無効電力の目標値を決定する。
The measurement value acquisition unit 3242 acquires the measurement values of the ammeter 322 and the voltmeter 323.
The target frequency determination unit 3243 determines the target value of the voltage frequency by substituting the measured value of the bus voltage into the target frequency function F1 stored in the control function storage unit 3241.
The target active power determination unit 3244 determines the target value of active power by substituting the target value of the voltage frequency determined by the target frequency determination unit 3243 into the active power droop function F2 stored in the control function storage unit 3241. ..
The target reactive power determination unit 3245 substitutes the measured value of the bus voltage into the reactive power droop function F3 stored in the control function storage unit 3241 to determine the target value of the reactive power.
 変調制御部3246は、目標周波数決定部3243が決定した電圧周波数の目標値、目標有効電力決定部3244が決定した有効電力の目標値、および目標無効電力決定部3245が決定した無効電力の目標値に基づいて、インバータ本体321をパルス幅変調制御する。具体的には、変調制御部3246は、母線の電圧周波数を検出する図示しないPLL回路で検出した電圧周波数と位相に基づいてパルス幅変調制御のモジュレーションおよびデューティ比を決定する。変調制御部3246は、決定したパルス幅変調制御のモジュレーション、デューティ比、および出力電圧周波数に基づいて、インバータ本体321の図示しないスイッチング素子のオンオフを制御する。 The modulation control unit 3246 includes a target value of the voltage frequency determined by the target frequency determination unit 3243, a target value of active power determined by the target active power determination unit 3244, and a target value of reactive power determined by the target reactive power determination unit 3245. The pulse width modulation control of the inverter main body 321 is performed based on the above. Specifically, the modulation control unit 3246 determines the modulation and duty ratio of the pulse width modulation control based on the voltage frequency and phase detected by a PLL circuit (not shown) that detects the voltage frequency of the bus. The modulation control unit 3246 controls on/off of a switching element (not shown) of the inverter main body 321 based on the determined modulation of the pulse width modulation control, the duty ratio, and the output voltage frequency.
 指令受付部3247は、電力制御装置40から電力指令を受け付け、電力指令に基づいて制御関数記憶部3241が記憶する有効電力ドループ関数F2および無効電力ドループ関数F3を更新する。具体的には、指令受付部3247は、蓄電装置30に出力させる有効電力および無効電力の最大値を示す電力指令を受け付ける。当該電力指令は、エンジン発電機10および太陽光発電機20の発電容量に基づいて生成される。指令受付部3247は、有効電力ドループ関数F2の傾きを変えずに、有効電力軸の切片の値が、電力指令が示す有効電力の最大値となるように、有効電力ドループ関数F2を更新する。また、指令受付部3247は、無効電力ドループ関数F3の傾きを変えずに、無効電力軸の切片の値が、電力指令が示す無効電力の最大値となるように、無効電力ドループ関数F3を更新する。 The command receiving unit 3247 receives the power command from the power control device 40, and updates the active power droop function F2 and the reactive power droop function F3 stored in the control function storage unit 3241 based on the power command. Specifically, command accepting unit 3247 accepts a power command indicating the maximum values of active power and reactive power output from power storage device 30. The power command is generated based on the power generation capacities of the engine generator 10 and the solar power generator 20. The command receiving unit 3247 updates the active power droop function F2 so that the intercept value of the active power axis becomes the maximum value of the active power indicated by the power command without changing the slope of the active power droop function F2. In addition, the command receiving unit 3247 updates the reactive power droop function F3 so that the intercept value of the reactive power axis becomes the maximum value of the reactive power indicated by the power command without changing the slope of the reactive power droop function F3. To do.
《インバータの動作》
 図3は、第1の実施形態に係る蓄電装置のインバータの動作を示すフローチャートである。
 制御装置324の計測値取得部3242は、電流計322から母線電流の計測値を取得し、電圧計323から母線電圧の計測値を取得する(ステップS1)。目標周波数決定部3243は、ステップS1で取得した母線電圧の計測値を、制御関数記憶部3241が記憶する目標周波数関数F1に代入することで、電圧周波数の目標値を決定する(ステップS2)。つまり、目標周波数決定部3243は、負荷Lの増大により母線電圧が低下した場合、目標周波数を低下させる。他方、目標周波数決定部3243は、負荷Lの減少により母線電圧が増加した場合、目標周波数を増加させる。これにより、インバータ32が出力する電圧周波数は、エンジン発電機10が出力する電圧周波数と同様に変化する。すなわち、エンジン発電機10は、負荷Lの増大に伴って発電電力をが増加し、発電電圧が低下し、電圧周波数が低下するが、目標周波数決定部3243も、母線電圧が低下したときに目標周波数を低下させることで、エンジン発電機10と同様の電圧周波数の変化を実現することができる。
<<Inverter operation>>
FIG. 3 is a flowchart showing the operation of the inverter of the power storage device according to the first embodiment.
The measured value acquisition unit 3242 of the control device 324 acquires the measured value of the bus current from the ammeter 322, and acquires the measured value of the bus voltage from the voltmeter 323 (step S1). The target frequency determination unit 3243 determines the target value of the voltage frequency by substituting the measured value of the bus voltage acquired in step S1 into the target frequency function F1 stored in the control function storage unit 3241 (step S2). That is, the target frequency determination unit 3243 reduces the target frequency when the bus voltage decreases due to the increase in the load L. On the other hand, the target frequency determination unit 3243 increases the target frequency when the bus voltage increases due to the decrease in the load L. As a result, the voltage frequency output by the inverter 32 changes similarly to the voltage frequency output by the engine generator 10. That is, in the engine generator 10, the generated power increases as the load L increases, the generated voltage decreases, and the voltage frequency decreases, but the target frequency determining unit 3243 also targets the target voltage when the bus voltage decreases. By reducing the frequency, it is possible to realize the same voltage frequency change as that of the engine generator 10.
 次に、目標有効電力決定部3244は、ステップS2で決定した電圧周波数の目標値を、制御関数記憶部3241が記憶する有効電力ドループ関数F2に代入することで、有効電力の目標値を決定する(ステップS3)。有効電力ドループ関数F2は、エンジン発電機10のドループ特性と同じ傾きを有する。そのため、ステップS3で有効電力ドループ関数F2によって電圧周波数の目標値から有効電力の目標値を決定することで、インバータ32は、エンジン発電機10のドループ特性に合わせて有効電力を出力することができる。これにより、有効電力をエンジン発電機10と蓄電装置30とで分担させることができる。 Next, the target active power determination unit 3244 determines the target value of active power by substituting the target value of the voltage frequency determined in step S2 into the active power droop function F2 stored in the control function storage unit 3241. (Step S3). The active power droop function F2 has the same slope as the droop characteristic of the engine generator 10. Therefore, by determining the target value of active power from the target value of voltage frequency by the active power droop function F2 in step S3, the inverter 32 can output active power according to the droop characteristic of the engine generator 10. .. As a result, active power can be shared between the engine generator 10 and the power storage device 30.
 また目標無効電力決定部3245は、ステップS1で取得した母線電圧の計測値を制御関数記憶部3241が記憶する無効電力ドループ関数F3に代入することで、無効電力の目標値を決定する(ステップS4)。無効電力ドループ関数F3の母線電圧の切片および無効電力の切片は、エンジン発電機10のAVR14のV-kbarドループ特性に係る母線電圧の切片および無効電力の切片以下である。すなわち、無効電力ドループ関数F3によって算出される無効電力は、常にAVR14のV-kbarドループ特性によってエンジン発電機10が出力する無効電力以下となる。これにより、無効電力をエンジン発電機10と蓄電装置30とで分担させつつ、力率がインバータ32より低いエンジン発電機10に相対的に多くの無効電力を分担させることができる。 The target reactive power determination unit 3245 determines the target value of reactive power by substituting the measured value of the bus voltage acquired in step S1 into the reactive power droop function F3 stored in the control function storage unit 3241 (step S4). ). The bus voltage intercept and the reactive power intercept of the reactive power droop function F3 are less than or equal to the bus voltage intercept and the reactive power intercept related to the V-kbar droop characteristic of the AVR 14 of the engine generator 10. That is, the reactive power calculated by the reactive power droop function F3 is always less than or equal to the reactive power output by the engine generator 10 due to the V-kbar droop characteristic of the AVR 14. Accordingly, the engine generator 10 and the power storage device 30 can share the reactive power, while the engine generator 10 having a power factor lower than that of the inverter 32 can share the relatively large amount of the reactive power.
 変調制御部3246は、ステップS3で決定した有効電力の目標値およびステップS4で決定した無効電力の目標値に基づいて、パルス幅変調制御のモジュレーションおよびデューティ比を決定する(ステップS5)。また変調制御部3246は、母線の電圧周波数を検出する図示しないPLL回路で検出した電圧周波数と位相に基づいてパルス幅変調制御の周波数を決定する(ステップS6)。変調制御部3246は、決定したパルス幅変調制御のモジュレーション、デューティ比、および周波数に基づいて、インバータ本体321の図示しないスイッチング素子のオンオフを制御する(ステップS7)。これにより、インバータ32は、ステップS2で決定した電圧周波数の目標値、ステップS3で決定した有効電力の目標値、およびステップS4で決定した無効電力の目標値で、電力を出力することができる。 The modulation control unit 3246 determines the modulation and duty ratio of the pulse width modulation control based on the target value of the active power determined in step S3 and the target value of the reactive power determined in step S4 (step S5). Further, the modulation control unit 3246 determines the frequency of the pulse width modulation control based on the voltage frequency and the phase detected by the PLL circuit (not shown) that detects the voltage frequency of the bus (step S6). The modulation control unit 3246 controls on/off of a switching element (not shown) of the inverter main body 321 based on the determined modulation, duty ratio, and frequency of the pulse width modulation control (step S7). As a result, the inverter 32 can output power with the target value of the voltage frequency determined in step S2, the target value of active power determined in step S3, and the target value of reactive power determined in step S4.
《作用・効果》
 このように、第1の実施形態に係る制御装置324は、母線の電圧値に基づいて、電圧周波数の目標値および有効電力の目標値を決定する。このとき、母線電圧が高いほど電圧周波数の目標値は高くなり、有効電力の目標値は低くなる。これにより、ドループ特性によって動作するエンジン発電機10の変動に対して遅滞なく蓄電装置30の電圧周波数および有効電力を変化させることができる。したがって、制御装置324によれば、交流発電機であるエンジン発電機10と直流電源装置である蓄電装置30とを備える電力供給システム1において、負荷Lの変動をエンジン発電機10と蓄電装置30とのそれぞれに負担させることができる。
《Action/effect》
As described above, the control device 324 according to the first embodiment determines the target value of the voltage frequency and the target value of the active power based on the voltage value of the bus bar. At this time, the higher the bus voltage, the higher the target value of voltage frequency and the lower the target value of active power. As a result, the voltage frequency and active power of power storage device 30 can be changed without delay with respect to changes in engine generator 10 that operates due to droop characteristics. Therefore, according to the control device 324, in the power supply system 1 that includes the engine generator 10 that is an AC generator and the power storage device 30 that is a DC power supply device, the fluctuation of the load L is caused by Can be burdened with each.
 また、第1の実施形態に係る制御装置324は、電圧周波数に対して有効電力が単調減少する関係を示す有効電力ドループ関数F2に基づいて、有効電力の目標値を決定する。有効電力ドループ関数F2の電圧周波数に対する有効電力の変化量は、エンジン発電機10の有効電力ドループ特性と一致する。これにより、制御装置324は、エンジン発電機10のドループ特性に合わせてインバータ32が出力する有効電力を変化させることができる。
 なお、他の実施形態においては、これに限られない。例えば、他の実施形態に係る制御装置324の有効電力ドループ関数F2の電圧周波数に対する有効電力の変化量は、エンジン発電機10の有効電力ドループ特性と一致しなくてよい。また、他の実施形態に係る制御装置324は、有効電力ドループ関数F2に代えて、母線電圧に対して有効電力が単調減少する関係を示す関数を用いて、母線電圧の計測値から有効電力を決定してもよい。
Further, the control device 324 according to the first embodiment determines the target value of the active power based on the active power droop function F2 indicating the relationship that the active power monotonously decreases with respect to the voltage frequency. The amount of change in active power with respect to the voltage frequency of the active power droop function F2 matches the active power droop characteristic of the engine generator 10. As a result, the control device 324 can change the active power output by the inverter 32 according to the droop characteristic of the engine generator 10.
In addition, in other embodiments, it is not limited to this. For example, the amount of change in active power with respect to the voltage frequency of the active power droop function F2 of the control device 324 according to another embodiment may not match the active power droop characteristic of the engine generator 10. Further, the control device 324 according to another embodiment, instead of the active power droop function F2, uses a function indicating a relationship in which the active power monotonously decreases with respect to the bus voltage, and calculates the active power from the measured value of the bus voltage. You may decide.
 また、第1の実施形態に係る制御装置324は、母線電圧に基づいて無効電力の目標値を決定する。これにより、インバータ32は、負荷Lの変動に伴って生じる無効電力をエンジン発電機10と蓄電装置30とのそれぞれに負担させることができる。また、第1の実施形態に係る制御装置324は、電圧値に対して無効電力が単調減少する関係を示す無効電力ドループ関数F3に基づいて無効電力の目標値を決定する。無効電力ドループ関数F3の電圧値の切片および無効電力の切片は、エンジン発電機10の無効電力ドループ特性の電圧値の切片および無効電力の切片以下である。これにより、制御装置324は、無効電力をエンジン発電機10と蓄電装置30とで分担させつつ、力率がインバータ32より低いエンジン発電機10に相対的に多くの無効電力を分担させることができる。なお、他の実施形態においてはこれに限られない。例えば、他の実施形態に係る制御装置324は、無効電力をインバータ32に負担させず、有効電力のみを負担させるように制御してもよい。 Also, the control device 324 according to the first embodiment determines the target value of the reactive power based on the bus voltage. Thus, the inverter 32 can cause the engine generator 10 and the power storage device 30 to bear the reactive power generated as the load L changes. Further, the control device 324 according to the first embodiment determines the target value of the reactive power based on the reactive power droop function F3 indicating the relationship that the reactive power monotonously decreases with respect to the voltage value. The intercept of the voltage value and the intercept of the reactive power of the reactive power droop function F3 are below the intercept of the voltage value and the intercept of the reactive power of the reactive power droop characteristic of engine generator 10. Thereby, control device 324 can allow engine generator 10 having a power factor lower than that of inverter 32 to share a relatively large amount of reactive power while allowing engine generator 10 and power storage device 30 to share the reactive power. .. Note that the present invention is not limited to this in other embodiments. For example, the control device 324 according to another embodiment may control so that the inverter 32 does not bear the reactive power but only the active power.
〈他の実施形態〉
 以上、図面を参照して一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、様々な設計変更等をすることが可能である。
<Other Embodiments>
Although one embodiment has been described in detail above with reference to the drawings, the specific configuration is not limited to the above, and various design changes and the like are possible.
 第1の実施形態では、蓄電装置30のインバータ32が上記の制御を行うが、他の実施形態においては、これに限られない。例えば、他の実施形態においては、太陽光発電機20のインバータ22が同様の制御を行ってもよい。また、他の実施形態においては、複数のインバータ32のうち、一部のインバータ32について、上述の制御を行い、他のインバータ32については通常の制御を行うようにしてもよい。 In the first embodiment, the inverter 32 of the power storage device 30 performs the above control, but the other embodiments are not limited to this. For example, in another embodiment, the inverter 22 of the solar power generator 20 may perform the same control. Further, in another embodiment, some of the plurality of inverters 32 may be controlled as described above, and the other inverters 32 may be controlled as usual.
〈コンピュータ構成〉
 図4は、少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
 コンピュータ90は、プロセッサ91、メインメモリ92、ストレージ93、インタフェース94を備える。
 上述の制御装置324は、コンピュータ90に実装される。そして、上述した各処理部の動作は、プログラムの形式でストレージ93に記憶されている。プロセッサ91は、プログラムをストレージ93から読み出してメインメモリ92に展開し、当該プログラムに従って上記処理を実行する。また、プロセッサ91は、プログラムに従って、上述した制御関数記憶部3241に対応する記憶領域をメインメモリ92に確保する。
 プログラムは、コンピュータ90に発揮させる機能の一部を実現するためのものであってもよい。例えば、プログラムは、ストレージ93に既に記憶されている他のプログラムとの組み合わせ、または他の装置に実装された他のプログラムとの組み合わせによって機能を発揮させるものであってもよい。なお、他の実施形態においては、コンピュータ90は、上記構成に加えて、または上記構成に代えてPLD(Programmable Logic Device)などのカスタムLSI(Large Scale Integrated Circuit)を備えてもよい。PLDの例としては、PAL(Programmable Array Logic)、GAL(Generic Array Logic)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array)が挙げられる。この場合、プロセッサ91によって実現される機能の一部または全部が当該集積回路によって実現されてよい。
<Computer configuration>
FIG. 4 is a schematic block diagram showing the configuration of a computer according to at least one embodiment.
The computer 90 includes a processor 91, a main memory 92, a storage 93, and an interface 94.
The control device 324 described above is implemented in the computer 90. The operation of each processing unit described above is stored in the storage 93 in the form of a program. The processor 91 reads out the program from the storage 93, expands it in the main memory 92, and executes the above processing in accordance with the program. Further, the processor 91 reserves a storage area corresponding to the above-mentioned control function storage unit 3241 in the main memory 92 according to the program.
The program may be for realizing some of the functions that the computer 90 is caused to perform. For example, the program may exert a function by a combination with another program already stored in the storage 93 or a combination with another program installed in another device. In other embodiments, the computer 90 may include a custom LSI (Large Scale Integrated Circuit) such as a PLD (Programmable Logic Device) in addition to or instead of the above configuration. Examples of PLD include PAL (Programmable Array Logic), GAL (Generic Array Logic), CPLD (Complex Programmable Logic Device), and FPGA (Field Programmable Gate Array). In this case, some or all of the functions implemented by the processor 91 may be implemented by the integrated circuit.
 ストレージ93の例としては、HDD(Hard Disk Drive)、SSD(Solid State Drive)、磁気ディスク、光磁気ディスク、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disc Read Only Memory)、半導体メモリ等が挙げられる。ストレージ93は、コンピュータ90のバスに直接接続された内部メディアであってもよいし、インタフェース94または通信回線を介してコンピュータ90に接続される外部メディアであってもよい。また、このプログラムが通信回線によってコンピュータ90に配信される場合、配信を受けたコンピュータ90が当該プログラムをメインメモリ92に展開し、上記処理を実行してもよい。少なくとも1つの実施形態において、ストレージ93は、一時的でない有形の記憶媒体である。 Examples of the storage 93 are HDD (Hard Disk Drive), SSD (Solid State Drive), magnetic disk, magneto-optical disk, CD-ROM (Compact Disc Read Only Memory), DVD-ROM (Digital Versatile Disc Read Only Memory). , Semiconductor memory, and the like. The storage 93 may be an internal medium directly connected to the bus of the computer 90 or an external medium connected to the computer 90 via the interface 94 or a communication line. Further, when this program is distributed to the computer 90 through a communication line, the computer 90 that receives the distribution may expand the program in the main memory 92 and execute the above processing. In at least one embodiment, storage 93 is a non-transitory, tangible storage medium.
 また、当該プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、当該プログラムは、前述した機能をストレージ93に既に記憶されている他のプログラムとの組み合わせで実現するもの、いわゆる差分ファイル(差分プログラム)であってもよい。 Also, the program may be for realizing some of the functions described above. Furthermore, the program may be a so-called difference file (difference program) that realizes the above-described function in combination with another program already stored in the storage 93.
 上記態様のうち少なくとも1つの態様によれば、インバータは、交流発電機と直流電源装置とを備える電力供給システムにおいて、負荷の変動による直流電源装置の解列の発生を抑制することができる。 According to at least one of the above aspects, the inverter can suppress the occurrence of disconnection of the DC power supply device due to load fluctuations in the power supply system including the AC generator and the DC power supply device.
1 電力供給システム
10 エンジン発電機
11 エンジン
12 発電機
13 ガバナ
14 AVR
20 太陽光発電機
21 太陽電池
22 インバータ
30 蓄電装置
31 二次電池
32 インバータ
321 インバータ本体
322 電流計
323 電圧計
324 制御装置
3241 制御関数記憶部
3242 計測値取得部
3243 目標周波数決定部
3244 目標有効電力決定部
3245 目標無効電力決定部
3246 変調制御部
3247 指令受付部
40 電力制御装置
L 負荷
1 Power Supply System 10 Engine Generator 11 Engine 12 Generator 13 Governor 14 AVR
20 Photovoltaic generator 21 Solar cell 22 Inverter 30 Storage device 31 Secondary battery 32 Inverter 321 Inverter body 322 Ammeter 323 Voltmeter 324 Control device 3241 Control function storage unit 3242 Measurement value acquisition unit 3243 Target frequency determination unit 3244 Target active power Determination unit 3245 Target reactive power determination unit 3246 Modulation control unit 3247 Command reception unit 40 Power control device L Load

Claims (9)

  1.  自立運転によって電力を供給する交流発電機と同じ母線に接続された、直流電源装置のインバータを制御する制御装置であって、
     前記母線の電圧値に基づいて、前記電圧値に対して単調減少する有効電力の目標値を決定する目標決定部と、
     決定した前記有効電力の目標値に基づいて、前記インバータのパルス幅変調制御を行う変調制御部と
     を備えるインバータの制御装置。
    A control device for controlling an inverter of a DC power supply device, which is connected to the same bus bar as an AC generator that supplies power by self-sustaining operation,
    Based on the voltage value of the bus bar, a target determination unit that determines a target value of active power that monotonically decreases with respect to the voltage value,
    A modulation control unit that performs pulse width modulation control of the inverter based on the determined target value of the active power.
  2.  前記目標決定部は、前記電圧値に対して単調増加する電圧周波数の目標値を決定し、電圧周波数に対して有効電力が単調減少する関係を示す有効電力ドループ関数と、決定した前記電圧周波数の目標値とに基づいて、前記有効電力の目標値を決定する
     請求項1に記載のインバータの制御装置。
    The target determining unit determines a target value of a voltage frequency that monotonically increases with respect to the voltage value, an active power droop function indicating a relationship in which active power monotonically decreases with respect to the voltage frequency, and the determined voltage frequency. The inverter control device according to claim 1, wherein the target value of the active power is determined based on the target value.
  3.  前記有効電力ドループ関数の電圧周波数に対する有効電力の変化量が前記交流発電機の有効電力ドループ特性と一致する
     請求項2に記載のインバータの制御装置。
    The control device for an inverter according to claim 2, wherein a variation amount of active power with respect to a voltage frequency of the active power droop function matches an active power droop characteristic of the alternator.
  4.  前記目標決定部は、前記母線の電圧値に基づいて、前記電圧値に対して単調減少する無効電力の目標値を決定し、
     前記変調制御部は、決定した前記有効電力の目標値および前記無効電力の目標値に基づいて、前記インバータのパルス幅変調制御を行う
     請求項1から請求項3の何れか1項に記載のインバータの制御装置。
    The target determination unit, based on the voltage value of the bus bar, determines a target value of reactive power that monotonically decreases with respect to the voltage value,
    The inverter according to any one of claims 1 to 3, wherein the modulation control unit performs pulse width modulation control of the inverter based on the target value of the active power and the target value of the reactive power that have been determined. Control device.
  5.  前記目標決定部は、電圧値に対して無効電力が単調減少する関係を示す無効電力ドループ関数と、決定した前記母線の電圧値とに基づいて、前記無効電力の目標値を決定する 請求項4に記載のインバータの制御装置。 The target deciding unit decides the target value of the reactive power based on the reactive power droop function indicating the relationship that the reactive power monotonously decreases with respect to the voltage value and the determined voltage value of the busbar. Inverter control device according to.
  6.  前記無効電力ドループ関数の電圧値の切片および無効電力の切片が前記交流発電機の無効電力ドループ特性の電圧値の切片および無効電力の切片以下であり、
     前記無効電力ドループ関数の電圧値に対する無効電力の変化量が前記交流発電機の無効電力ドループ特性と一致する
     請求項5に記載のインバータの制御装置。
    The intercept of the voltage value of the reactive power droop function and the intercept of the reactive power are less than or equal to the intercept of the voltage value and the intercept of the reactive power of the reactive power droop characteristic of the alternator,
    The inverter control device according to claim 5, wherein a variation amount of the reactive power with respect to the voltage value of the reactive power droop function matches the reactive power droop characteristic of the alternator.
  7.  自立運転によって電力を供給する交流発電機と同じ母線に接続された、直流電源装置のインバータであって、
     前記母線の電圧値に基づいて、前記電圧値に対して単調増加する電圧周波数の目標値と、前記電圧値に対して単調減少する有効電力の目標値とを決定する目標決定部と、
     決定した前記電圧周波数の目標値および前記有効電力の目標値に基づいてパルス幅変調制御を行う変調制御部と
     を備えるインバータ。
    An inverter for a DC power supply device, which is connected to the same bus bar as an AC generator that supplies power by self-sustaining operation,
    Based on the voltage value of the bus bar, a target value determination unit that determines a target value of the voltage frequency that monotonically increases with respect to the voltage value, and a target value of active power that monotonically decreases with respect to the voltage value,
    A modulation control unit that performs pulse width modulation control based on the determined target value of the voltage frequency and the determined target value of the active power.
  8.  自立運転によって電力を供給する交流発電機と同じ母線に接続された、直流電源装置のインバータの制御方法であって、
     前記母線の電圧値に基づいて、前記電圧値に対して単調減少する有効電力の目標値を決定するステップと、
     決定した前記有効電力の目標値に基づいて、前記インバータのパルス幅変調制御を行うステップと
     を備えるインバータの制御方法。
    A method for controlling an inverter of a DC power supply device, which is connected to the same bus bar as an AC generator that supplies power by self-sustaining operation,
    Determining a target value of active power that monotonically decreases with respect to the voltage value based on the voltage value of the bus bar;
    A pulse width modulation control of the inverter based on the determined target value of the active power.
  9.  自立運転によって電力を供給する交流発電機と同じ母線に接続された、直流電源装置のインバータのコンピュータに、
     前記母線の電圧値に基づいて、前記電圧値に対して単調減少する有効電力の目標値を決定するステップと、
     決定した前記有効電力の目標値に基づいて、前記インバータのパルス幅変調制御を行うステップと
     を実行させるためのプログラム。
    In the computer of the inverter of the DC power supply device, which is connected to the same bus bar as the AC generator that supplies power by self-sustaining operation,
    Determining a target value of active power that monotonically decreases with respect to the voltage value based on the voltage value of the bus bar;
    A step of performing pulse width modulation control of the inverter based on the determined target value of the active power.
PCT/JP2019/033894 2019-02-01 2019-08-29 Droop characteristic control in multiple power generation power supply facility WO2020158028A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019017467A JP7365123B2 (en) 2019-02-01 2019-02-01 Droop characteristic control in combined power generation equipment
JP2019-017467 2019-02-01

Publications (1)

Publication Number Publication Date
WO2020158028A1 true WO2020158028A1 (en) 2020-08-06

Family

ID=71841276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033894 WO2020158028A1 (en) 2019-02-01 2019-08-29 Droop characteristic control in multiple power generation power supply facility

Country Status (2)

Country Link
JP (1) JP7365123B2 (en)
WO (1) WO2020158028A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007020361A (en) * 2005-07-11 2007-01-25 Meidensha Corp System stabilizer
JP2009225599A (en) * 2008-03-18 2009-10-01 Kawasaki Heavy Ind Ltd Power converter
JP2011067078A (en) * 2009-09-18 2011-03-31 Tokyo Gas Co Ltd Method and device for controlling power supply system
JP2011120406A (en) * 2009-12-04 2011-06-16 Osaka Gas Co Ltd Power supply system
WO2012081174A1 (en) * 2010-12-15 2012-06-21 川崎重工業株式会社 Adjustment apparatus for independent power-supply system, and method of adjusting independent power-supply system
WO2016185660A1 (en) * 2015-05-20 2016-11-24 パナソニックIpマネジメント株式会社 Distributed power supply system, and control method of distributed power supply system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007020361A (en) * 2005-07-11 2007-01-25 Meidensha Corp System stabilizer
JP2009225599A (en) * 2008-03-18 2009-10-01 Kawasaki Heavy Ind Ltd Power converter
JP2011067078A (en) * 2009-09-18 2011-03-31 Tokyo Gas Co Ltd Method and device for controlling power supply system
JP2011120406A (en) * 2009-12-04 2011-06-16 Osaka Gas Co Ltd Power supply system
WO2012081174A1 (en) * 2010-12-15 2012-06-21 川崎重工業株式会社 Adjustment apparatus for independent power-supply system, and method of adjusting independent power-supply system
WO2016185660A1 (en) * 2015-05-20 2016-11-24 パナソニックIpマネジメント株式会社 Distributed power supply system, and control method of distributed power supply system

Also Published As

Publication number Publication date
JP2020127272A (en) 2020-08-20
JP7365123B2 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
JP4796974B2 (en) Hybrid system of wind power generator and power storage device, wind power generation system, power control device
JP5717172B2 (en) Power supply system
CA2686984C (en) Charger and charging method
US10355487B2 (en) Photovoltaic system
US20210257839A1 (en) Grid system, control device, control method for grid system, and power conversion device
KR101426826B1 (en) Variable Resistance Type Droop Control Appratus and the Method for Stand-alone Micro-grid
US10069303B2 (en) Power generation system and method with energy management
US11329488B2 (en) Power conversion system, method for controlling converter circuit, and program
WO2020158027A1 (en) Command generation device and command generation method in multiple power generation power supply system
US20220102980A1 (en) Command generation device and command generation method
WO2020158028A1 (en) Droop characteristic control in multiple power generation power supply facility
US11916397B2 (en) Combined electric power generations&#39; supply system in off grid independent operation
WO2022264303A1 (en) Uninterruptible power supply device
US20220302703A1 (en) Methods and systems for power management in a microgrid
JP6055968B2 (en) Power system
JP2016174477A (en) Input control power storage system
WO2024062754A1 (en) Control system, hybrid power system, and control method
WO2024029111A1 (en) Power generation system control device, power generation system control method, and program
KR102234526B1 (en) SoC Management System and Method using Frequency Control and Adaptive Control at ESS Interfacing Generation Plant
CN115663781A (en) Wind and storage integrated system and control method thereof
JP2022104575A (en) Power supply system and charge/discharge system
Xudong Research on power smoothing control for new micro-grid energy storage system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19914085

Country of ref document: EP

Kind code of ref document: A1