JP2007020361A - System stabilizer - Google Patents

System stabilizer Download PDF

Info

Publication number
JP2007020361A
JP2007020361A JP2005201299A JP2005201299A JP2007020361A JP 2007020361 A JP2007020361 A JP 2007020361A JP 2005201299 A JP2005201299 A JP 2005201299A JP 2005201299 A JP2005201299 A JP 2005201299A JP 2007020361 A JP2007020361 A JP 2007020361A
Authority
JP
Japan
Prior art keywords
voltage
phase
power
output
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005201299A
Other languages
Japanese (ja)
Other versions
JP4706361B2 (en
Inventor
Takayuki Tanabe
隆之 田邊
Hiroshi Shishido
洋 宍道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2005201299A priority Critical patent/JP4706361B2/en
Publication of JP2007020361A publication Critical patent/JP2007020361A/en
Application granted granted Critical
Publication of JP4706361B2 publication Critical patent/JP4706361B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein a parallel operation device that is constituted so as to suppress the load variation of an autonomous power supply system, constituted of a power storage device using DC power for storing the power of a current control type self-excitated inverter and a synchronous generator cannot sufficiently cope with abrupt changes in the load and imbalance load. <P>SOLUTION: An active current set value is obtained, by inputting a signal composed of a frequency set value and a negative correction amount obtained from the drooping properties of the frequency of the autonomous system to a frequency controller. A reactive current set value is obtained, by inputting a signal composed of a voltage set value and a negative correction amount obtained from the drooping properties of the voltage to the difference of actual values of the autonomous system. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自励式インバータを用いた電力貯蔵装置と同期発電機を用いたエンジン発電機から構成される自立電源系統の並列運転時の系統安定化装置に係り、特に負荷の急変や不平衡負荷に対応できる制御装置に関するものである。 The present invention relates to a system stabilization device during parallel operation of a self-sustained power supply system composed of a power storage device using a self-excited inverter and an engine generator using a synchronous generator, and in particular, a sudden change in load or an unbalanced load. It is related with the control apparatus which can respond to.

系統から独立して負荷に電力を供給する電源としては、同期発電機を用いたエンジン発電機や、自励式インバータを用いた無停電電源装置がある。同期発電機を用いたエンジン発電機の場合は、励磁機の励磁電流により系統電圧を一定に、エンジンへのトルク入力を制御するガバナにより系統周波数を一定に制御している。同期発電機を運転する場合には発電機間の横流を抑制し負荷分担を適正に保つために、系統電圧及び系統周波数に垂下特性を持たせる。 As a power source for supplying power to a load independently from the system, there are an engine generator using a synchronous generator and an uninterruptible power supply device using a self-excited inverter. In the case of an engine generator using a synchronous generator, the system voltage is kept constant by the excitation current of the exciter and the system frequency is kept constant by a governor that controls the torque input to the engine. When operating a synchronous generator, the system voltage and system frequency are given drooping characteristics in order to suppress the cross current between the generators and keep the load sharing properly.

電源装置に対して、負荷が比較的大きい場合には複数台運転となるが複数の同期発電機を運転する場合、発電機間の横流が発生する。この横流を抑制して負荷分担を適正に保つために系統電圧及び系統周波数に垂下特性を持たせているが、しかし、負荷変動が急峻な場合エンジン発電機の出力制御が充分に追従できないため、発電量と負荷電力のバランスがとれず周波数変動や電圧変動が生じる。   When the load is relatively large with respect to the power supply device, a plurality of units are operated. However, when a plurality of synchronous generators are operated, a cross current is generated between the generators. In order to suppress this cross current and keep the load sharing properly, the system voltage and system frequency have drooping characteristics, but if the load fluctuation is steep, the output control of the engine generator can not sufficiently follow, The amount of power generation and load power are not balanced, resulting in frequency fluctuations and voltage fluctuations.

また、自励式インバータを用いた無停電電源装置を複数台接続した場合には、無停電電源装置間で発生する電圧の大きさと位相の同期を図ることで並列運転は可能となるが、直流電源が大きくなり、且つ直流電源として二次電池を用いた場合には、電源供給できる時間が有限となる問題がある。   In addition, when multiple uninterruptible power supply units using self-excited inverters are connected, parallel operation is possible by synchronizing the magnitude and phase of the voltage generated between the uninterruptible power supply units. When the secondary battery is used as the DC power source, there is a problem that the power supply time is limited.

これらの問題点を考慮して同期発電機と無停電電源装置を並列運転する場合、両者間に発生する横流が問題となる。また、無停電電源装置を電圧制御型として一定電圧、一定周波数の交流電圧を発生する装置とした場合、負荷電力の変動分は無停電電源装置が負うこととなり同期発電機との負荷分担を適正に保つことができない。なお、同期発電機とインバータとの並列運転として系統接続時の安定化を図ることが例えば特許文献1によっても知られている。この文献のものは、風力発電システムにおいて系統電力変動の短周期成分を抽出して自励式インバータ側で補償するものである。
特開2000−4541号公報
In consideration of these problems, when the synchronous generator and the uninterruptible power supply are operated in parallel, the cross current generated between the two becomes a problem. Also, if the uninterruptible power supply is a voltage-controlled type and generates an AC voltage with a constant voltage and constant frequency, the uninterruptible power supply will bear the load power fluctuation, and the load sharing with the synchronous generator will be appropriate. Can't keep up. For example, Patent Document 1 discloses that stabilization at the time of system connection is achieved as parallel operation of a synchronous generator and an inverter. In this document, a short-period component of system power fluctuation is extracted in a wind power generation system and compensated on the self-excited inverter side.
JP 2000-4541 A

同期発電機と自励式インバータの並列運転を従来方法で制御すると、負荷変動分を自励式インバータ側が負担することになり大きい電力貯蔵容量が必要となる。なお、上記した特許文献1にはインバータの制御信号生成時に、垂下特性を有する補正量で電力貯蔵装置の出力量に応じて補正する技術は開示されていない。 When the parallel operation of the synchronous generator and the self-excited inverter is controlled by the conventional method, the load fluctuation is borne by the self-excited inverter and a large power storage capacity is required. Note that the above-described Patent Document 1 does not disclose a technique for correcting according to the output amount of the power storage device with a correction amount having drooping characteristics when generating a control signal of the inverter.

本発明の目的は、負荷の変動分を両者で適正に分担することにより小さい電力貯蔵容量で品質のよい電力を供給できる制御装置を提供することにある。   An object of the present invention is to provide a control device that can supply high-quality power with a smaller power storage capacity by appropriately sharing the fluctuation of the load between the two.

本発明の第1は、電流制御型自励式インバータの電力貯蔵に直流電源を用いた電力貯蔵装置と同期発電機から構成される自立電源系統の負荷変動を抑制するよう構成した並列運転装置において、
前記インバータの出力電圧の位相を基準として3相電流を3相2相変換して有効電流成分と無効電流成分を検出する3相2相変換手段と、周波数設定値と検出された検出値との偏差信号から有効電流設定値を生成する周波数制御手段と、電圧設定値と検出された検出値との偏差信号から無効電流設定値を生成する電圧制御手段と、前記生成された有効電流設定値と前記3相2相変換手段による検出有効電流との偏差信号、及び前記生成された無効電流設定値と前記検出された検出無効電流との偏差を求め、それぞれ各別に入力してそれぞれ有効電圧分と無効電圧
分を得る電流制御手段と、各電流制御手段の出力を入力し、且つ検出された電圧の位相を基準として2相3相変換してPWM制御信号を生成する手段とを設けると共に、前記3相2相変換手段による有効電流成分を入力して比例定数を乗算する第1の比例演算部を設け、この比例演算部の出力を前記周波数設定値と検出された検出値との偏差信号に逆極性で加算して周波数制御手段に入力し、さらに前記3相2相変換手段による無効電流成分を入力して比例定数を乗算する第2の比例演算部を設け、この比例演算部の出力を前記電圧設定値と検出された検出値との偏差信号に逆極性で加算して電圧制御手段に入力するよう構成したことを特徴としたものである。
A first aspect of the present invention is a parallel operation apparatus configured to suppress load fluctuations of a self-sustained power system composed of a power storage device using a DC power source and a synchronous generator for power storage of a current-controlled self-excited inverter,
Three-phase two-phase conversion means for detecting an effective current component and a reactive current component by converting a three-phase current into a three-phase two-phase with reference to the phase of the output voltage of the inverter, and a frequency setting value and a detected detection value Frequency control means for generating an active current set value from a deviation signal, voltage control means for generating a reactive current set value from a deviation signal between the voltage set value and the detected detection value, and the generated active current set value The deviation signal from the detected effective current by the three-phase to two-phase conversion means, and the deviation between the generated reactive current set value and the detected detected reactive current are obtained and input separately for each of the effective voltage components. A current control means for obtaining a reactive voltage component; a means for inputting an output of each current control means; and a means for generating a PWM control signal by performing two-phase to three-phase conversion based on the detected voltage phase; and 3 phase 2 A first proportional calculation unit that inputs an effective current component by the conversion means and multiplies the proportional constant is provided, and the output of the proportional calculation unit is added to the deviation signal between the frequency set value and the detected detection value with a reverse polarity. And a second proportional operation unit that multiplies the proportional constant by inputting the reactive current component from the three-phase / two-phase conversion unit, and outputs the output of the proportional operation unit to the voltage set value. Is added to the deviation signal between the detected value and the detected value with the opposite polarity, and is input to the voltage control means.

本発明の第2は、前記各電流制御手段と直列にそれぞれ電流リミッタ回路を接続して構成したことを特徴としたものである。   A second aspect of the present invention is characterized in that a current limiter circuit is connected in series with each of the current control means.

本発明の第3は、前記各比例演算部の入力側にそれぞれローパスフィルタを直列接続して構成したことを特徴としたものである。   According to a third aspect of the present invention, a low-pass filter is connected in series to the input side of each proportional calculation unit.

本発明の第4は、前記直流電源として電気二重層キャパシタを用い、この電気二重層キャパシタの直流電圧検出値と予め設定された直流電圧設定値との偏差信号を求めると共に、少なくとも比例・積分機能を有する直流電圧制御手段を設け、この直流電圧制御手段に前記直流電圧検出値と直流電圧設定値との偏差信号を入力し、その出力信号を前記生成された有効電流設定値と逆極性に加算して前記有効電圧分を得る電流制御手段に入力するよう構成したことを特徴としたものである。   According to a fourth aspect of the present invention, an electric double layer capacitor is used as the DC power source, and a deviation signal between a DC voltage detection value of the electric double layer capacitor and a preset DC voltage setting value is obtained, and at least a proportional / integral function is obtained. DC voltage control means having a DC voltage control means, a deviation signal between the DC voltage detection value and the DC voltage setting value is input to the DC voltage control means, and the output signal is added to the polarity opposite to the generated effective current setting value. The current control means for obtaining the effective voltage is input to the current control means.

本発明の第5は、前記直流電圧制御手段からの出力を、前記周波数設定値とは逆極性に加算して前記周波数制御手段に入力するよう構成したことを特徴としたものである。   The fifth aspect of the present invention is characterized in that the output from the DC voltage control means is added to the polarity opposite to the frequency set value and input to the frequency control means.

本発明の第6は、電圧制御型自励式インバータの電力貯蔵に直流電源を用いた電力貯蔵装置と同期発電機から構成される自立電源系統の負荷変動を抑制するよう構成した並列運転装置において、
前記インバータ出力の無効電力を検出し、この検出された無効電力に応じて垂下演算を実行する垂下演算手段と、この垂下演算手段による演算出力と予め設定された設定値との偏差信号入力及び有効電圧0と固定された2相3相変換手段と、前記自立電源系統の検出された周波数をローパスフィルタを介し入力して位相信号に変換する周波数位相変換手段とを設け、前記2相3相変換手段は周波数位相変換手段にて検出された電圧位相を基準として2相3相変換後、PWM制御信号生成手段を介して前記インバータのゲート信号を出力するよう構成したことを特徴としたものである。
A sixth aspect of the present invention is a parallel operation apparatus configured to suppress load fluctuations of a self-sustained power system composed of a power generator using a DC power source and a synchronous generator for power storage of a voltage-controlled self-excited inverter,
The droop calculation means for detecting the reactive power of the inverter output and executing the droop calculation according to the detected reactive power, the deviation signal input between the calculation output by the droop calculation means and the preset set value, and the valid Two-phase three-phase conversion means fixed at voltage 0, and frequency phase conversion means for inputting the detected frequency of the independent power supply system through a low-pass filter and converting it into a phase signal are provided. The means is characterized in that after the two-phase / three-phase conversion based on the voltage phase detected by the frequency phase conversion means, the gate signal of the inverter is output via the PWM control signal generation means. .

本発明の第7は、前記直流電源を電気二重層キャパシタとし、この直流電圧の検出値と予め設定された直流電圧設定値との偏差を少なくとも比例・積分機能を有する直流電圧制御手段に入力し、その出力信号と前記周波数位相変換手段からの電圧位相との差信号を得て電圧位相基準信号として前記2相3相変換手段に出力するよう構成したことを特徴としたものである。   According to a seventh aspect of the present invention, the DC power source is an electric double layer capacitor, and a deviation between the detected value of the DC voltage and a preset DC voltage setting value is input to a DC voltage control means having at least a proportional / integral function. A difference signal between the output signal and the voltage phase from the frequency phase conversion means is obtained and output as a voltage phase reference signal to the two-phase / three-phase conversion means.

本発明の第8は、電圧制御型自励式インバータの電力貯蔵に直流電源を用いた電力貯蔵装置と同期発電機から構成される自立電源系統の負荷変動を抑制するよう構成した並列運転装置において、
前記インバータ出力の無効電力と有効電力を検出する電力演算部と、この演算部により検出された無効電力に応じて垂下演算を実行する垂下演算手段と、この垂下演算手段による演算出力と予め設定された電圧設定値との偏差信号入力及び有効電圧0と固定された2相3相変換手段と、前記電力演算部により検出された有効電力に応じて垂下演算を実行する垂下演算手段と、この垂下演算手段による演算出力と予め設定された周波数設定値との偏差信号を入力して位相信号を生成して前記2相3相変換手段に出力する位相制御部と、2相3相変換手段は入力された位相信号を基準として2相3相変換後、PWM制御信号生成手段を介して前記インバータのゲート信号を出力するよう構成したことを特徴としたものである。
The eighth aspect of the present invention is a parallel operation device configured to suppress load fluctuations of a self-sustained power system configured by a power storage device using a DC power source and a synchronous generator for power storage of a voltage-controlled self-excited inverter,
A power calculation unit that detects reactive power and active power of the inverter output, a droop calculation unit that executes droop calculation according to the reactive power detected by the calculation unit, and a calculation output by the droop calculation unit are preset. Deviation signal input to the set voltage value and two-phase three-phase conversion means fixed to the effective voltage 0, droop calculation means for executing droop calculation according to the active power detected by the power calculation section, and the droop A phase control unit that inputs a deviation signal between a calculation output from the calculation means and a preset frequency setting value to generate a phase signal and outputs the phase signal to the two-phase / three-phase conversion means; After the two-phase / three-phase conversion with the phase signal as a reference, the inverter gate signal is output via the PWM control signal generating means.

本発明の第9は、前記直流電源を電気二重層キャパシタとし、この直流電圧の検出値と予め設定された直流電圧設定値との偏差を少なくとも比例・積分機能を有する直流電圧制御手段に入力し、この直流電圧制御手段の出力と前記有効電力に応じて垂下演算を実行する垂下演算手段の出力とを加算するよう構成したことを特徴としたものである。   According to a ninth aspect of the present invention, the DC power source is an electric double layer capacitor, and a deviation between the detected value of the DC voltage and a preset DC voltage setting value is input to a DC voltage control means having at least a proportional / integral function. The output of the DC voltage control means and the output of the droop calculation means for executing the droop calculation according to the active power are added.

以上のとおり、本発明によれば、同期発電機と自励式インバータとで負荷を適正に分担することにより周波数変動と電圧変動を抑制して系統を安定化することができる。また、キャパシタ電圧を一定に制御することによりエネルギーを常時貯蔵しておくことができ、負荷変動に対処できる出力をインバータ側から常時供給できる状態に維持することができる。さらに、インバータを電圧制御型とすることにより逆相電流の一部も補償して同期発電機の分担を低減し同期発電機が渦電流等で加熱されることを防止できる。   As described above, according to the present invention, it is possible to stabilize the system by suppressing frequency fluctuations and voltage fluctuations by appropriately sharing the load between the synchronous generator and the self-excited inverter. Moreover, energy can be always stored by controlling the capacitor voltage to be constant, and an output capable of coping with load fluctuation can be maintained in a state where it can always be supplied from the inverter side. Furthermore, by making the inverter a voltage control type, a part of the reverse phase current can be compensated to reduce the share of the synchronous generator, and the synchronous generator can be prevented from being heated by an eddy current or the like.

本発明の実施形態を以下に詳述する。 Embodiments of the present invention are described in detail below.

図1は、本発明の第1の実施形態を示す構成図である。1はエンジンなどで駆動される同期発電機、2は変動負荷、3は電流制御型自励式インバータで、自己消弧形のスイッチイグ素子が使用され制御装置50によりPWM制御される。自励式インバータ3は、直流電源4を有し、この直流電源4と共に電力貯蔵装置を構成している。そして、この電力貯蔵装置は同期発電機1に並列接続されて変動負荷2へ電力を供給している。   FIG. 1 is a configuration diagram showing a first embodiment of the present invention. Reference numeral 1 is a synchronous generator driven by an engine or the like, 2 is a variable load, 3 is a current-controlled self-excited inverter, and a self-extinguishing type switch igniter element is used and PWM control is performed by the control device 50. The self-excited inverter 3 has a DC power supply 4 and constitutes a power storage device together with the DC power supply 4. The power storage device is connected in parallel to the synchronous generator 1 and supplies power to the variable load 2.

5は変流器、6はトランスで、トランス6で検出した自励式インバータ3の出力電圧は実効値検出回路7と位相同期回路8に出力される。実効値検出回路7では電圧実効値を検出し、また、位相同期回路8により位相と周波数を検出する。9は3相2相変換器で、位相同期回路8で検出した位相信号と変流器5による自励式インバータ出力電流を入力し、電圧位相を基準として、変流器5で検出した自励式インバータ出力電流を3相2相変換器9で変換して有効電流と無効電流を得る。   5 is a current transformer, 6 is a transformer, and the output voltage of the self-excited inverter 3 detected by the transformer 6 is output to the effective value detection circuit 7 and the phase synchronization circuit 8. The effective value detection circuit 7 detects the effective voltage value, and the phase synchronization circuit 8 detects the phase and frequency. Reference numeral 9 denotes a three-phase to two-phase converter, which receives the phase signal detected by the phase synchronization circuit 8 and the self-excited inverter output current from the current transformer 5, and uses the voltage phase as a reference to detect the self-excited inverter detected by the current transformer 5. The output current is converted by the three-phase two-phase converter 9 to obtain an effective current and a reactive current.

実効値検出回路7によって得られた電圧実効値は、加算部AD1において電圧設定値VSとの偏差信号が求められ、また、位相同期回路8により得られた周波数は加算部AD2において周波数設定値FSとの偏差信号が求められる。3相2相変換器9で変換された無効電流は、加算部AD6と比例演算回路11に印加され、また、有効電流は加算部AD5と比例演算回路15にそれぞれ印加される。比例演算回路15では有効電流に一定値が乗算されて有効電流の補正値として加算部AD3に印加され、加算部AD2で得られた偏差信号との偏差が求められて周波数制御器14に入力されて有効電流設定値を得る。比例演算回路11では無効電流に一定値が乗算されて加算部AD4に印加され、加算部AD2で得られた電圧の偏差信号が求められて電流制御器10に入力されて無効電流設定値を得る。   The voltage effective value obtained by the effective value detection circuit 7 is obtained as a deviation signal from the voltage set value VS in the adder AD1, and the frequency obtained by the phase synchronization circuit 8 is obtained by the frequency set value FS in the adder AD2. The deviation signal is obtained. The reactive current converted by the three-phase / two-phase converter 9 is applied to the adder AD6 and the proportional operation circuit 11, and the active current is applied to the adder AD5 and the proportional operation circuit 15, respectively. In the proportional calculation circuit 15, the active current is multiplied by a fixed value and applied to the adder AD3 as a correction value of the active current. The deviation from the deviation signal obtained by the adder AD2 is obtained and input to the frequency controller 14. To obtain the effective current set value. In the proportional calculation circuit 11, the reactive current is multiplied by a fixed value and applied to the adder AD4, and the voltage deviation signal obtained by the adder AD2 is obtained and input to the current controller 10 to obtain the reactive current set value. .

図2(a)は周波数の垂下特性図で、有効電流に比例した補正量を差し引くことによって得ている。このような特性とすることにより有効電流が増加するほど周波数を下げる効果が得られる。図2(b)は電圧の垂下特性図で、無効電流に比例した補正量を差し引くことにより、電圧の垂下特性を得ている。すなわち無効電力出力が増加するほど電圧を下げる効果が得られる。   FIG. 2A is a frequency drooping characteristic diagram, which is obtained by subtracting a correction amount proportional to the effective current. By setting it as such a characteristic, the effect of reducing a frequency is acquired, so that an effective current increases. FIG. 2B is a voltage drooping characteristic diagram. The voltage drooping characteristic is obtained by subtracting a correction amount proportional to the reactive current. That is, the effect of lowering the voltage is obtained as the reactive power output increases.

17は電流制御器で、周波数制御器14で得られた有効電流設定値と検出した有効電流との偏差を加算部AD5によって求めて電流制御器17に入力して有効電圧が得られる。13は電流制御器で、電圧制御器10で得られた無効電流設定値と検出した無効電流との偏差を加算部AD6で求め、電流制御器13に入力して無効電圧が得られる。18は2相3相変換器で、求められたこれら有効電圧と無効電圧、及び位相同期回路8で検出した電圧位相を基準としてこの2相3相変換器18により変換してPWM制御信号発生器19でインバータのゲート信号を生成し、所望のインバータ出力が得られる。ここで、周波数制御器14、電圧制御器10及び電流制御器13、17は、PIやPID等により構成される。また、場合によっては電流制御器13,17とそれぞれ直列に電流リミッタ回路12、16を設けることによりインバータの過電流をそれぞれ防止することができる。   A current controller 17 obtains a deviation between the effective current set value obtained by the frequency controller 14 and the detected effective current by the adder AD5 and inputs it to the current controller 17 to obtain an effective voltage. A current controller 13 obtains a deviation between the reactive current set value obtained by the voltage controller 10 and the detected reactive current by the adder AD6 and inputs it to the current controller 13 to obtain a reactive voltage. Reference numeral 18 denotes a two-phase / three-phase converter, which converts the obtained effective voltage and invalid voltage and the voltage phase detected by the phase synchronization circuit 8 by the two-phase / three-phase converter 18 to generate a PWM control signal generator. In 19, an inverter gate signal is generated, and a desired inverter output is obtained. Here, the frequency controller 14, the voltage controller 10, and the current controllers 13 and 17 are configured by PI, PID, or the like. In some cases, an inverter overcurrent can be prevented by providing the current limiter circuits 12 and 16 in series with the current controllers 13 and 17, respectively.

この実施例によれば電流制御型自励式インバータ出力の有効電力が増加するほど周波数を下げ、また、無効電力が増加するほど電圧を下げる垂下特性を持たせたことにより、同期発電機と自励式インバータを並列運転時に負荷の急峻な変動が発生しても自励式インバータと同様な垂下特性を持つ同期発電機との負荷分担が有効に実施されて系統の電圧と周波数を安定化することができる。すなわち、電力負荷の緩やかな変動成分は同期発電機が分担し、急峻な変動成分を電力貯蔵装置が負うことで、自励式インバータの高速な応答性を生かして自立系統の電力品質の向上を図ることが可能となる。また、自励式インバータを電流制御型としたことで、インバータの過電流防止が電流リミッタ回路により容易に実現可能である。   According to this embodiment, by having a drooping characteristic that lowers the frequency as the active power of the current-controlled self-excited inverter output increases and decreases the voltage as the reactive power increases, the synchronous generator and the self-excited Even if a sudden load change occurs during parallel operation of the inverter, the load sharing with the synchronous generator having the drooping characteristics similar to that of the self-excited inverter is effectively performed, and the voltage and frequency of the system can be stabilized. . That is, the synchronous generator shares the gradual fluctuation component of the power load, and the power storage device bears the steep fluctuation component, thereby improving the power quality of the self-sustained system by utilizing the high-speed response of the self-excited inverter. It becomes possible. Further, since the self-excited inverter is a current control type, the overcurrent prevention of the inverter can be easily realized by the current limiter circuit.

図3は、本発明の第2の実施形態を示す構成図である。図3において、図1と相違する点は、比例演算回路11と比例演算回路15の入力側に、それぞれローパスフィルタ20とローパスフィルタ21を追加接続したことである。   FIG. 3 is a block diagram showing a second embodiment of the present invention. 3 is different from FIG. 1 in that a low-pass filter 20 and a low-pass filter 21 are additionally connected to the input sides of the proportional calculation circuit 11 and the proportional calculation circuit 15, respectively.

比例演算回路11,15にローパスフィルタを直列接続した構成にすると、各比例演算回路の比例定数が負荷変動の開始時点で見かけ上小さく、また、時間が経過した定常状態で本来の垂下比例定数と一致する。すなわち垂下特性を図4に示すように時間と共にt1からt2のように変化させることができる。図4(a)は有効電力出力特性を、(b)図は無効電力出力特性を示したものである。また、(c)図は負荷の分担特性を示したもので、実線が同期発電機、点線がインバータ側の分担を示したものである。図4に示すように時刻t1で負荷の急峻な変動が生じた場合、時刻t2までの初期については応答性の速いインバータが主に負荷分担し、時間の経過と共に同期発電機が負荷を負う。従って、この実施例によれば実施例1よりも電圧と周波数の変動をより小さくでき、また、インバータの電力貯蔵容量も少なくて小型化できる利点がある。   If the low-pass filter is connected in series to the proportional calculation circuits 11 and 15, the proportional constant of each proportional calculation circuit is apparently small at the start of load fluctuation, and the original droop proportional constant in the steady state after time has passed. Match. That is, the drooping characteristic can be changed from time t1 to time t2 with time as shown in FIG. 4A shows active power output characteristics, and FIG. 4B shows reactive power output characteristics. FIG. 6C shows the load sharing characteristics, where the solid line indicates the synchronous generator and the dotted line indicates the inverter side sharing. As shown in FIG. 4, when a steep fluctuation of the load occurs at time t1, the inverter with quick response is mainly responsible for the load until the time t2, and the synchronous generator bears the load as time passes. Therefore, according to this embodiment, it is possible to make the fluctuations in voltage and frequency smaller than in the first embodiment, and there is an advantage that the inverter can be miniaturized with a small power storage capacity.

すなわち、実施例1においては電力負荷の緩やかな変動成分を同期発電機が分担し、急峻な変動成分を電力貯蔵装置が負うことで、自励式インバータの高速な応答性能を生かして自立系統の電力品質を向上することが可能となる。ただし、実施例1の場合、垂下特性を電力貯蔵装置の有効電力出力、無効電力出力に対して比例する特性としているため、急峻な電力負荷の変動成分も同期発電機と電力貯蔵装置が分担することとなり、電圧変動、周波数変動に関する電力品質を満足できない場合が生じる。これに対して実施例2の場合、電力負荷の急峻な変動成分を電力貯蔵装置に負荷させるため、垂下特性を動的に変化させる。電力貯蔵装置の有効電力出力、無効電力出力の緩やかな変動成分を一次遅れフィルタ20、21により検出し、有効電力出力が増加するに従って周波数設定値を下げ、無効電力出力が増加するに従って電圧設定値を下げる垂下特性を持たせる。これにより負荷の急変による周波数変動や電圧変動の急峻な変動成分は電力貯蔵装置が吸収し、緩やかな変動は同期発電機が負うことができる。   In other words, in the first embodiment, the synchronous generator shares the gentle fluctuation component of the power load, and the power storage device bears the steep fluctuation component, so that the high-speed response performance of the self-excited inverter is utilized. Quality can be improved. However, in the case of Example 1, since the drooping characteristic is proportional to the active power output and reactive power output of the power storage device, the synchronous generator and the power storage device also share steep power load fluctuation components. In other words, there may be cases where the power quality related to voltage fluctuation and frequency fluctuation cannot be satisfied. On the other hand, in the second embodiment, the drooping characteristic is dynamically changed in order to load the power storage device with a steep fluctuation component of the power load. Slow fluctuation components of the active power output and reactive power output of the power storage device are detected by the first-order lag filters 20 and 21, and the frequency setting value is lowered as the active power output increases, and the voltage setting value as the reactive power output increases. It has a drooping characteristic that lowers As a result, the power storage device absorbs steep fluctuation components of frequency fluctuations and voltage fluctuations due to sudden changes in the load, and the synchronous generator can bear gradual fluctuations.

図5は、本発明の第3の実施形態を示す構成図である。図5において、図1、図3と相違する点は、直流電源4を電気二重層キャパシタ24とした場合の実施例である。電気二重層キャパシタ24は貯蔵されるエネルギーが直流電圧で決まり、その直流電圧を一定に保つ制御機能を追加したものである。   FIG. 5 is a block diagram showing a third embodiment of the present invention. 5 differs from FIG. 1 and FIG. 3 in an embodiment in which the DC power supply 4 is an electric double layer capacitor 24. In the electric double layer capacitor 24, the stored energy is determined by a DC voltage, and a control function for keeping the DC voltage constant is added.

図5では、電気二重層キャパシタ24の直流電圧設定値DVSと検出値の偏差を加算部AD7で求め、偏差信号を直流電圧制御器25に入力する。直流電圧制御器25は電流制御器17と同様にPIやPID等により構成されるが、電流制御器17よりも緩やかな応答をするようにパラメータを設定して負荷変動への対応を優先している。直流電圧制御器25の出力は加算部AD8において有効電流設定値との偏差が求められ、その偏差信号を電流制御器17の入力に加えることにより電気二重層キャパシタ24の直流電圧を一定に保つ構成としている。   In FIG. 5, a deviation between the DC voltage set value DVS of the electric double layer capacitor 24 and the detected value is obtained by the adder AD 7, and the deviation signal is input to the DC voltage controller 25. The DC voltage controller 25 is composed of PI, PID, etc., like the current controller 17, but prioritizes the response to load fluctuations by setting parameters so as to respond more slowly than the current controller 17. Yes. Deviation of the output of the DC voltage controller 25 from the active current set value is obtained in the adder AD8, and the deviation signal is added to the input of the current controller 17 to keep the DC voltage of the electric double layer capacitor 24 constant. It is said.

また、垂下特性を得るための垂下演算回路22、23は実施例1または実施例2のいずれかを用いる。このようにして直流電圧をほぼ一定に制御することにより貯蔵エネルギーの小さい電気二重層キャパシタでも負荷変動に対処することができる。   In addition, the drooping operation circuits 22 and 23 for obtaining the drooping characteristic use either the first embodiment or the second embodiment. In this way, by controlling the DC voltage to be substantially constant, even an electric double layer capacitor having a small stored energy can cope with load fluctuations.

図6は、本発明の第4の実施形態を示す構成図である。図6において、図5と相違する点は、電気二重層キャパシタ24の直流電圧を一定に制御するために直流電圧制御器26の出力を周波数制御器14の入力に加える構成としたことである。   FIG. 6 is a block diagram showing a fourth embodiment of the present invention. 6 is different from FIG. 5 in that the output of the DC voltage controller 26 is added to the input of the frequency controller 14 in order to control the DC voltage of the electric double layer capacitor 24 to be constant.

ここでも、直流電圧制御器26は、周波数制御器14と同様にPIやPID等により構成されるが、周波数制御器よりも緩やかな応答をするようにパラメータを設定して負荷変動への対応を優先する。このような構成にしても実施例3と同じ効果が得られる。   Again, the DC voltage controller 26 is composed of PI, PID, and the like, similar to the frequency controller 14, but the parameters are set so as to respond more slowly than the frequency controller to cope with load fluctuations. Prioritize. Even if it is such a structure, the same effect as Example 3 is acquired.

図7は、本発明の第5の実施形態を示す構成図である。図7において、図1と相違する点は、自励式インバータとして高調波電流や不平衡負荷による逆相電流を生成することができる電圧制御型自励式インバータ27を用いたことである。   FIG. 7 is a block diagram showing a fifth embodiment of the present invention. 7 is different from FIG. 1 in that a voltage-controlled self-excited inverter 27 that can generate a harmonic current or a negative phase current due to an unbalanced load is used as the self-excited inverter.

自励式インバータを電流制御型として電圧の大きさと周波数を制御する場合、自励式インバータの発生する電流は正相分のみの三相平衡の電流源となるため、自立系統内に高調波負荷や不平衡負荷が存在する場合にはこれらの負荷が必要とする逆相電流は主に同期発電機が負うこととなる。そして、同期発電機に逆相電流が流れた場合には、巻線の加熱等により安定に運転を継続することができなくなる問題がある。   When the voltage level and frequency are controlled using a self-excited inverter as a current control type, the current generated by the self-excited inverter becomes a three-phase balanced current source only for the positive phase, so there is no harmonic load or noise in the independent system. In the case where balanced loads exist, the negative phase current required by these loads is mainly borne by the synchronous generator. When a negative phase current flows through the synchronous generator, there is a problem that the operation cannot be stably continued due to heating of the winding or the like.

自励式インバータを電圧制御型とすることで、同期発電機のみでなく電力貯蔵装置も逆相電流の供給源とすることが可能となり、同期発電機の逆相電流の負担を軽減することが可能となる。ただし、電圧源である同期発電機と電圧制御型の自励式インバータを並列運転する場合には両者の同期をとることが必要となるため、自励式インバータの発生する電圧の位相を自立系統の交流電圧位相に同期させる。この位相同期はPLL回路により行なう。   By making the self-excited inverter voltage control type, not only the synchronous generator but also the power storage device can be used as the source of the negative phase current, and the burden on the negative phase current of the synchronous generator can be reduced. It becomes. However, when a synchronous generator, which is a voltage source, and a voltage-controlled self-excited inverter are operated in parallel, it is necessary to synchronize the two, so the phase of the voltage generated by the self-excited inverter is set to AC of the independent system. Synchronize with voltage phase. This phase synchronization is performed by a PLL circuit.

また、自立系統の電圧位相の検出にLPFを用いて大きめの遅れを持たせることにより、急峻な有効電力の負荷変動に対する周波数変動を電力貯蔵装置が抑制するように動作するため、結果的に急峻な有効電力の負荷変動を電力貯蔵装置から供給する事が可能となる。電圧の大きさは、基準値と自励式インバータの出力無効電力に応じて電圧を降下させる垂下特性から決定する。垂下特性は実施例1と同様な比例定数を用いるか、または実施例2と同様のLPF付きの比例定数を用いる。LPF付きの垂下特性を用いることで、急峻な負荷変動に対する電圧変動を電力貯蔵装置が負担し、その後電力貯蔵装置と同期発電機の無効電力の負担を垂下特性に従って適正に保つことができる。   In addition, the LPF is used to detect the voltage phase of the autonomous system, and the power storage device operates so as to suppress the frequency fluctuation with respect to the steep active power load fluctuation. It is possible to supply a load fluctuation of active power from the power storage device. The magnitude of the voltage is determined from the drooping characteristic that drops the voltage according to the reference value and the output reactive power of the self-excited inverter. The drooping characteristic uses a proportionality constant similar to that of the first embodiment or a proportionality constant with LPF similar to that of the second embodiment. By using the drooping characteristic with the LPF, the power storage device bears the voltage fluctuation with respect to the steep load fluctuation, and then the reactive power burden of the power storage apparatus and the synchronous generator can be appropriately maintained according to the drooping characteristic.

すなわち、変流器5で検出したインバータ出力電流とトランス6で検出した電圧から無効電力演算器28により無効電力を算出し、垂下演算回路22を通して電圧基準値VSにフィードバックして無効電圧とする。30は2相3相変換器で、一方の入力端子には無効電圧が入力されるが、有効電圧は0とされる。また、2相3相変換器30に入力される電圧位相は、周波数検出回路31、ローパスフィルタ32、及び周波数位相変換器33を介して入力され、この2相3相変換器30により変換した後、PWM制御信号発生器に出力してPWM制御信号を生成し、自励式インバータ27のゲートに出力する。ここで、ローパスフィルタ32を用いることにより、負荷の急激な変動による電圧位相変化を抑制するように自励式インバータが有効電力を供給して周波数の変動を安定化する効果がある。   That is, reactive power is calculated by the reactive power calculator 28 from the inverter output current detected by the current transformer 5 and the voltage detected by the transformer 6, and is fed back to the voltage reference value VS through the droop calculation circuit 22 to obtain a reactive voltage. Reference numeral 30 denotes a two-phase / three-phase converter. An invalid voltage is input to one input terminal, but an effective voltage is set to zero. The voltage phase input to the two-phase / three-phase converter 30 is input via the frequency detection circuit 31, the low-pass filter 32, and the frequency / phase converter 33, and is converted by the two-phase / three-phase converter 30. The PWM control signal generator generates a PWM control signal and outputs it to the gate of the self-excited inverter 27. Here, by using the low-pass filter 32, there is an effect that the self-excited inverter supplies the active power so as to suppress the voltage phase change due to the rapid fluctuation of the load to stabilize the fluctuation of the frequency.

自励式インバータの発生する系統電圧と同相分の電圧の大きさを電圧設定値で与える。電圧設定値は電圧基準値(固定値)と自励式インバータの出力無効電力の大きさに応じた垂下特性との差分から決定する。垂下特性は比例定数またはLPF付きの比例定数とする。自励式インバータの発生する系統電圧に対して90deg遅れの電圧の大きさは零で固定とする。自励式インバータの発生する交流電圧は、2相の直流分として与えられる同相分電圧と90deg遅れ電圧の大きさを2相3相変換することで得る。2相3相変換に用いる位相は自立系統の電圧位相に同期した位相とする。自立系統の電圧位相の検出はPLLにより行い、検出したLPFにより処理して、自励式インバータの発生する電圧位相が急激に自立系統の位相に追従しないようにして、自立系統内の周波数の安定化を図る。このような構成とすることにより同期発電機が全て負担していた高調波電流や不平衡負荷による逆相電流についてもインバータからも供給することができ、同期発電機の負担を軽減することができる。   The magnitude of the voltage in phase with the system voltage generated by the self-excited inverter is given as the voltage setting value. The voltage setting value is determined from the difference between the voltage reference value (fixed value) and the drooping characteristic corresponding to the magnitude of the output reactive power of the self-excited inverter. The drooping characteristic is a proportional constant or a proportional constant with LPF. The magnitude of the voltage delayed by 90 deg with respect to the system voltage generated by the self-excited inverter is fixed at zero. The AC voltage generated by the self-excited inverter is obtained by two-phase and three-phase conversion of the in-phase voltage provided as the two-phase DC component and the magnitude of the 90 deg delay voltage. The phase used for the two-phase / three-phase conversion is a phase synchronized with the voltage phase of the independent system. The voltage phase of the autonomous system is detected by the PLL and processed by the detected LPF so that the voltage phase generated by the self-excited inverter does not rapidly follow the phase of the autonomous system, and the frequency in the autonomous system is stabilized. Plan. By adopting such a configuration, it is possible to supply from the inverter also about the harmonic current and the negative phase current caused by the unbalanced load that were all borne by the synchronous generator, and the burden on the synchronous generator can be reduced. .

図8は、本発明の第6の実施形態を示す構成図である。図8において、図7と相違する点は、直流電源4を電気二重層キャパシタ24とした場合の実施例である。電気二重層キャパシタ24は貯蔵されるエネルギーが直流電圧で決まり、その直流電圧を一定に保つ制御機能を追加したものである。   FIG. 8 is a block diagram showing a sixth embodiment of the present invention. 8 differs from FIG. 7 in an embodiment in which the DC power source 4 is an electric double layer capacitor 24. In FIG. In the electric double layer capacitor 24, the stored energy is determined by a DC voltage, and a control function for keeping the DC voltage constant is added.

自励式インバータを電圧制御とした場合、有効電力出力は自立系統の電圧位相と自励式インバータの発生する電圧位相の位相差で決まり、自立系統の電圧位相検出にLPFを用いて自立系統の周波数の安定化を図ると、自立系統内の有効電力負荷の急峻な変動を自励式インバータから供給することになる。貯蔵容量を一定に保つためには緩やかに電気二重層キャパシタからの有効電力の供給量を制御する必要がある。   When the self-excited inverter is voltage controlled, the active power output is determined by the phase difference between the voltage phase of the self-sustained system and the voltage phase generated by the self-excited inverter, and LPF is used to detect the voltage phase of the self-supported system and When stabilization is achieved, a steep fluctuation of the active power load in the self-supporting system is supplied from the self-excited inverter. In order to keep the storage capacity constant, it is necessary to gently control the amount of active power supplied from the electric double layer capacitor.

有効電力の供給量を制御するため、基本的な回路構成は実施例4と同様として、電気二重層キャパシタの直流電圧と直流電圧設定値の偏差を零とするよう動作する直流電圧制御器を追加し、自励式インバータの2相3相変換に用いる電圧位相を補正する。直流電圧検出値が直流電圧設定値より上昇した場合には電気二重層キャパシタを放電方向に動作させることで直流電圧を一定に保つことができる。よって、直流電圧が上昇した場合には自励式インバータの発生する電圧位相を自立系統の電圧位相に対して進み方向に動作させる事で電力貯蔵装置を放電方向に動作させることができる。直流電圧制御器は比例制御(P制御)、進み遅れ補償(ST1+1)/(ST2+1)等により構成する。   In order to control the amount of active power supplied, the basic circuit configuration is the same as in Example 4, and a DC voltage controller that operates so that the deviation between the DC voltage of the electric double layer capacitor and the DC voltage setting value is zero is added. The voltage phase used for the two-phase / three-phase conversion of the self-excited inverter is corrected. When the DC voltage detection value rises above the DC voltage set value, the DC voltage can be kept constant by operating the electric double layer capacitor in the discharging direction. Therefore, when the DC voltage rises, the power storage device can be operated in the discharge direction by operating the voltage phase generated by the self-excited inverter in the advance direction with respect to the voltage phase of the independent system. The DC voltage controller includes proportional control (P control), lead / lag compensation (ST1 + 1) / (ST2 + 1), and the like.

図8では、電気二重層キャパシタの直流電圧設定値DVSと検出値とを加算部において逆極性に加算して偏差値を求め、その偏差値を直流電圧制御器34に入力してPI制御、もしくはPID制御する。制御器34の出力は、2相3相変換器30に入力され、この変換器30で用いる電圧位相を補正する構成としたものである。この場合も直流電圧制御器34の応答は緩やかになるように設定して負荷変動への対応を優先する。このようにして直流電圧をほぼ一定に制御することにより貯蔵エネルギーの小さい電気二重層キャパシタでも負荷変動に対処することができる。   In FIG. 8, the DC voltage set value DVS of the electric double layer capacitor and the detected value are added to the opposite polarity in the adding unit to obtain a deviation value, and the deviation value is input to the DC voltage controller 34 to perform PI control or PID control. The output of the controller 34 is input to the two-phase / three-phase converter 30, and the voltage phase used in the converter 30 is corrected. Also in this case, the response of the DC voltage controller 34 is set so as to be gentle, and priority is given to the response to the load fluctuation. In this way, by controlling the DC voltage to be substantially constant, even an electric double layer capacitor having a small stored energy can cope with load fluctuations.

図9は、本発明の第7の実施形態を示す。図9において、図7と相違する点は2相3相変換器30へ入力する位相信号の作り方である。自励式インバータを電圧制御型として運転し、周波数及び電圧の大きさを一定に保つよう制御する。この場合、自励式インバータが発生する周波数を一定とすると自立系統内で生じた有効電力の変動分のほぼ全てを電力貯蔵装置が負う事となるため、電力貯蔵装置の有効電力出力に応じて出力する電圧の発振周波数を垂下させる。   FIG. 9 shows a seventh embodiment of the present invention. In FIG. 9, the difference from FIG. 7 is how to create a phase signal to be input to the two-phase / three-phase converter 30. The self-excited inverter is operated as a voltage control type and controlled so as to keep the frequency and the voltage magnitude constant. In this case, if the frequency generated by the self-excited inverter is constant, the power storage device bears almost all the fluctuation of the active power generated in the self-supporting system. The oscillation frequency of the voltage to be dropped is lowered.

この方式では通常運転において自励式インバータの電圧位相を自立系統の電圧位相に明示的に同期させないため、起動時には同期発電機が確立する自立系統電圧に対して、自励式インバータの発生する電圧の大きさと周波数を制御し、両者の電圧の大きさ、周波数、位相が一致したのを検知して自励式インバータの遮断器を投入する同期投入を行う。同期投入後の通常運転時は発生する電圧の発振周波数と電圧の大きさのみを調整する。発振周波数は自励式インバータの発生する有効電力出力に対する垂下特性により決定し、電圧の大きさは自励式インバータの発生する無効電力出力に対する垂下特性により決定する。垂下特性は実施例1または実施例2の何れかを採用する。   Since this method does not explicitly synchronize the voltage phase of the self-excited inverter with the voltage phase of the self-sustained system in normal operation, the voltage generated by the self-excited inverter is larger than the self-sustained system voltage established by the synchronous generator at startup. The frequency is controlled, and when the magnitude, frequency and phase of both voltages are detected to coincide with each other, the self-excited inverter circuit breaker is turned on. During normal operation after synchronization, only the oscillation frequency and voltage magnitude of the generated voltage are adjusted. The oscillation frequency is determined by the drooping characteristic for the active power output generated by the self-excited inverter, and the magnitude of the voltage is determined by the drooping characteristic for the reactive power output generated by the self-excited inverter. As the drooping characteristic, either Example 1 or Example 2 is adopted.

電力貯蔵装置の起動時は、図示省略された遮断器一次側の自立系統母線の電圧と遮断器二次側の自励式インバータの発生する電圧の周波数偏差、電圧偏差を検出してこれを零とするよう自励式インバータの周波数制御と電圧制御を行う。周波数制御器の出力により自励式インバータの発生する電圧の周波数基準値を補正し、位相制御器により位相を生成する。また、電圧制御器の出力により自励式インバータの発生する電圧の電圧基準値を補正する。この電圧に対して90deg遅れの電圧の大きさは零で固定として2相3相変換し、自励式インバータの発生する交流電圧を決定する。   When starting up the power storage device, the frequency deviation of the voltage of the self-sustained system bus on the primary side of the circuit breaker (not shown) and the voltage generated by the self-excited inverter on the secondary side of the circuit breaker are detected and set to zero. The frequency control and voltage control of the self-excited inverter are performed. The frequency reference value of the voltage generated by the self-excited inverter is corrected by the output of the frequency controller, and the phase is generated by the phase controller. Further, the voltage reference value of the voltage generated by the self-excited inverter is corrected by the output of the voltage controller. The magnitude of the voltage delayed by 90 deg with respect to this voltage is fixed at zero, and two-phase three-phase conversion is performed to determine the AC voltage generated by the self-excited inverter.

また同時に同期検定回路により遮断器の一次側、二次側の電圧の大きさ、周波数、位相を比較して全ての絶対値が閾値以下になった場合に同期信号を発生し、遮断器の投入を行うと共に自励式インバータの制御モードを通常運転の制御モードに切り替える。通常運転の制御モードに切り替えた後は、電力貯蔵装置の有効電力出力に応じて周波数基準値を下げる垂下特性により周波数基準値を補正し、無効電力出力に応じて電圧基準値を下げる垂下特性により電圧基準値を補正して自励式インバータの発生する電圧の大きさと位相を制御する。   At the same time, the synchronous verification circuit compares the voltage level, frequency, and phase of the primary and secondary side of the circuit breaker, and generates a synchronization signal when all absolute values are below the threshold value. And the control mode of the self-excited inverter is switched to the control mode of normal operation. After switching to the normal operation control mode, the frequency reference value is corrected by the drooping characteristic that lowers the frequency reference value according to the active power output of the power storage device, and the drooping characteristic that lowers the voltage reference value according to the reactive power output. The voltage reference value is corrected to control the magnitude and phase of the voltage generated by the self-excited inverter.

すなわち、図9では、電力演算器35により有効電力を算出し、垂下演算回路23を通して周波数基準値との偏差を位相制御器36に入力して2相3相変換器の位相信号を得る構成としている。このような構成とすることにより実施例5と同じ効果が得られる。   That is, in FIG. 9, the active power is calculated by the power calculator 35 and the deviation from the frequency reference value is input to the phase controller 36 through the droop calculation circuit 23 to obtain the phase signal of the two-phase / three-phase converter. Yes. By adopting such a configuration, the same effect as in the fifth embodiment can be obtained.

図10は、本発明の第8の実施形態を示す構成図である。図10において、図9と相違する点は、直流電源4を電気二重層キャパシタ24とした場合の実施例である。電気二重層キャパシタ24は貯蔵されるエネルギーが直流電圧で決まり、その直流電圧を一定に保つ制御機能を追加したものである。   FIG. 10 is a block diagram showing an eighth embodiment of the present invention. 10 is different from FIG. 9 in an embodiment in which the DC power source 4 is an electric double layer capacitor 24. In the electric double layer capacitor 24, the stored energy is determined by a DC voltage, and a control function for keeping the DC voltage constant is added.

基本的な回路構成は実施例7と同様として、電気二重層キャパシタの直流電圧と直流電圧設定値の偏差を零とするよう動作する直流電圧制御器を追加し、自励式インバータの発振周波数を補正する。電気二重層キャパシタの容量制御は通常運転時のみ行うことから、補正量の加算部は通常運転時の周波数垂下特性の出力部に設ける。自励式インバータの発振周波数を増加させると有効電力出力を上昇(放電方向)させ、発振周波数を低下させると有効電力出力を下降(充電方向)させるよう動作する。   The basic circuit configuration is the same as in Example 7, and a DC voltage controller that operates to make the deviation between the DC voltage of the electric double layer capacitor and the DC voltage set value zero is added to correct the oscillation frequency of the self-excited inverter. To do. Since the capacitance control of the electric double layer capacitor is performed only during normal operation, the correction amount adding unit is provided at the output unit of the frequency drooping characteristic during normal operation. When the oscillation frequency of the self-excited inverter is increased, the active power output is increased (discharge direction), and when the oscillation frequency is decreased, the active power output is decreased (charge direction).

電気二重層キャパシタの直流電圧検出値が直流電圧設定値より上昇した場合は電気二重層キャパシタを放電方向に動作させることで容量を一定に保つことができる。直流電圧検出値が直流電圧設定値より上昇した場合は、直流電圧制御器への入力である直流電圧偏差は負となり、この場合に電気二重層キャパシタを放電方向に動作させるためには、発振周波数を上昇させるように動作させる。   When the detected DC voltage value of the electric double layer capacitor is higher than the DC voltage set value, the capacitance can be kept constant by operating the electric double layer capacitor in the discharging direction. When the DC voltage detection value rises above the DC voltage setting value, the DC voltage deviation input to the DC voltage controller becomes negative. In this case, in order to operate the electric double layer capacitor in the discharge direction, the oscillation frequency Operate to raise.

すなわち、電気二重層キャパシタの直流電圧設定値と検出値の偏差を入力した直流電圧制御器37の出力で位相制御器36の入力を補正する構成とし、この場合も位相制御器36と同様にPIやPID等により構成されるが、直流電圧制御器37の方を緩やかな応答となるようにパラメータを設定して負荷変動への対応を優先する。このような構成とすることにより実施例7と同じ効果が得られる。   In other words, the input of the phase controller 36 is corrected by the output of the DC voltage controller 37 to which the deviation between the DC voltage set value and the detected value of the electric double layer capacitor is input. The DC voltage controller 37 is set with parameters so as to have a more gradual response, and priority is given to dealing with load fluctuations. By adopting such a configuration, the same effect as in the seventh embodiment can be obtained.

本発明の第1の実施例を示す構成図。The block diagram which shows the 1st Example of this invention. インバータ出力の垂下特性を示し、(a)は有効電力、(b)は無効電力特性図。The drooping characteristic of an inverter output is shown, (a) is active power, (b) is a reactive power characteristic diagram. 本発明の第2の実施例を示す構成図。The block diagram which shows the 2nd Example of this invention. 垂下特性の時間変化図で、(a)は有効電力、(b)は無効電力、(c)は負荷分担説明図。It is a time change figure of drooping characteristics, (a) is active power, (b) is reactive power, (c) is a load sharing explanatory view. 本発明の第3の実施例を示す構成図。The block diagram which shows the 3rd Example of this invention. 本発明の第4の実施例を示す構成図。The block diagram which shows the 4th Example of this invention. 本発明の第5の実施例を示す構成図。The block diagram which shows the 5th Example of this invention. 本発明の第6の実施例を示す構成図。The block diagram which shows the 6th Example of this invention. 本発明の第7の実施例を示す構成図。The block diagram which shows the 7th Example of this invention. 本発明の第8の実施例を示す構成図。The block diagram which shows the 8th Example of this invention.

符号の説明Explanation of symbols

1… 同期発電機
2… 変動負荷
3… 電流制御型インバータ
4… 直流電源
5… 変流器
6… トランス
7… 実効値検出回路
8… 位相同期回路
9… 3相2相変換器
10…電圧制御器
11…比例演算回路
12…電流リミッタ
13…電流制御器
14…周波数制御器
15…比例演算回路
16…電流リミッタ回路
17…電流制御器
18…2相3相変換器
19…PWM制御信号発生器
20…ローパスフィルタ
21…ローパスフィルタ
22…垂下演算回路
23…垂下演算回路
24…電気二重層キャパシタ
25…直流電圧制御器
26…直流電圧制御器
27…電圧制御型インバータ
28…無効電力演算器
30…2相3相変換器
31…周波数検出器
32…ローパスフィルタ
33…周波数位相変換器
34…直流電圧制御器
35…電力演算器
36…位相制御器
37…直流電圧制御器
50…制御装置















DESCRIPTION OF SYMBOLS 1 ... Synchronous generator 2 ... Variable load 3 ... Current control type inverter 4 ... DC power supply 5 ... Current transformer 6 ... Transformer 7 ... Effective value detection circuit 8 ... Phase synchronous circuit 9 ... Three-phase two-phase converter 10 ... Voltage control 11 ... Proportional arithmetic circuit 12 ... Current limiter 13 ... Current controller 14 ... Frequency controller 15 ... Proportional arithmetic circuit 16 ... Current limiter circuit 17 ... Current controller 18 ... Two-phase three-phase converter 19 ... PWM control signal generator DESCRIPTION OF SYMBOLS 20 ... Low pass filter 21 ... Low pass filter 22 ... Droop operation circuit 23 ... Droop operation circuit 24 ... Electric double layer capacitor 25 ... DC voltage controller 26 ... DC voltage controller 27 ... Voltage control type inverter 28 ... Reactive power calculator 30 ... Two-phase / three-phase converter 31 ... Frequency detector 32 ... Low pass filter 33 ... Frequency / phase converter 34 ... DC voltage controller 35 ... Power calculator 36 ... Phase controller 37 ... DC voltage controller 50 ... Control device















Claims (9)

電流制御型自励式インバータの電力貯蔵に直流電源を用いた電力貯蔵装置と同期発電機から構成される自立電源系統の負荷変動を抑制するよう構成した並列運転装置において、
前記インバータの出力電圧の位相を基準として3相電流を3相2相変換して有効電流成分と無効電流成分を検出する3相2相変換手段と、周波数設定値と検出された検出値との偏差信号から有効電流設定値を生成する周波数制御手段と、電圧設定値と検出された検出値との偏差信号から無効電流設定値を生成する電圧制御手段と、前記生成された有効電流設定値と前記3相2相変換手段による検出有効電流との偏差信号、及び前記生成された無効電流設定値と前記検出された検出無効電流との偏差を求め、それぞれ各別に入力してそれぞれ有効電圧分と無効電圧
分を得る電流制御手段と、各電流制御手段の出力を入力し、且つ検出された電圧の位相を基準として2相3相変換してPWM制御信号を生成する手段とを設けると共に、前記3相2相変換手段による有効電流成分を入力して比例定数を乗算する第1の比例演算部を設け、この比例演算部の出力を前記周波数設定値と検出された検出値との偏差信号に逆極性で加算して周波数制御手段に入力し、さらに前記3相2相変換手段による無効電流成分を入力して比例定数を乗算する第2の比例演算部を設け、この比例演算部の出力を前記電圧設定値と検出された検出値との偏差信号に逆極性で加算して電圧制御手段に入力するよう構成したことを特徴とした系統安定化装置。
In a parallel operation device configured to suppress load fluctuations of a self-sustained power system composed of a power storage device using a DC power source and a synchronous generator for power storage of a current-controlled self-excited inverter,
Three-phase two-phase conversion means for detecting an effective current component and a reactive current component by converting a three-phase current into a three-phase two-phase with reference to the phase of the output voltage of the inverter, and a frequency setting value and a detected detection value Frequency control means for generating an active current set value from a deviation signal, voltage control means for generating a reactive current set value from a deviation signal between the voltage set value and the detected detection value, and the generated active current set value The deviation signal from the detected effective current by the three-phase to two-phase conversion means, and the deviation between the generated reactive current set value and the detected detected reactive current are obtained and input separately for each of the effective voltage components. A current control means for obtaining a reactive voltage component; a means for inputting an output of each current control means; and a means for generating a PWM control signal by performing two-phase to three-phase conversion based on the detected voltage phase; and 3 phase 2 A first proportional calculation unit that inputs an effective current component by the conversion means and multiplies the proportional constant is provided, and the output of the proportional calculation unit is added to the deviation signal between the frequency set value and the detected detection value with a reverse polarity. And a second proportional operation unit that multiplies the proportional constant by inputting the reactive current component from the three-phase / two-phase conversion unit, and outputs the output of the proportional operation unit to the voltage set value. A system stabilizing device characterized by being added to the deviation signal between the detected value and the detected value and having the opposite polarity and inputting it to the voltage control means.
前記各電流制御手段と直列にそれぞれ電流リミッタ回路を接続して構成したことを特徴とした請求項1記載の系統安定化装置。 2. The system stabilizing device according to claim 1, wherein a current limiter circuit is connected in series with each of the current control means. 前記各比例演算部の入力側にそれぞれローパスフィルタを直列接続して構成したことを特徴とした請求項1又は2記載の系統安定化装置。 3. The system stabilizing device according to claim 1, wherein a low pass filter is connected in series to each input side of each proportional calculation unit. 前記直流電源として電気二重層キャパシタを用い、この電気二重層キャパシタの直流電圧検出値と予め設定された直流電圧設定値との偏差信号を求めると共に、少なくとも比例・積分機能を有する直流電圧制御手段を設け、この直流電圧制御手段に前記直流電圧検出値と直流電圧設定値との偏差信号を入力し、その出力信号を前記生成された有効電流設定値と逆極性に加算して前記有効電圧分を得る電流制御手段に入力するよう構成したことを特徴とした請求項1乃至3記載の系統安定化装置。 An electric double layer capacitor is used as the DC power source, a deviation signal between a DC voltage detection value of the electric double layer capacitor and a preset DC voltage setting value is obtained, and a DC voltage control means having at least a proportional / integral function A deviation signal between the DC voltage detection value and the DC voltage setting value is input to the DC voltage control means, and the output signal is added to the polarity opposite to the generated effective current setting value to obtain the effective voltage component. 4. The system stabilizing device according to claim 1, wherein the system stabilizing device is configured to input to the current control means to be obtained. 前記直流電圧制御手段からの出力を、前記周波数設定値とは逆極性に加算して前記周波数制御手段に入力するよう構成したことを特徴とした請求項4記載の系統安定化装置。 5. The system stabilizing device according to claim 4, wherein an output from the DC voltage control means is added to a polarity opposite to the frequency set value and input to the frequency control means. 電圧制御型自励式インバータの電力貯蔵に直流電源を用いた電力貯蔵装置と同期発電機から構成される自立電源系統の負荷変動を抑制するよう構成した並列運転装置において、
前記インバータ出力の無効電力を検出し、この検出された無効電力に応じて垂下演算を実行する垂下演算手段と、この垂下演算手段による演算出力と予め設定された設定値との偏差信号入力及び有効電圧0と固定された2相3相変換手段と、前記自立電源系統の検出された周波数をローパスフィルタを介し入力して位相信号に変換する周波数位相変換手段とを設け、前記2相3相変換手段は周波数位相変換手段にて検出された電圧位相を基準として2相3相変換後、PWM制御信号生成手段を介して前記インバータのゲート信号を出力するよう構成したことを特徴とした系統安定化装置。
In a parallel operation device configured to suppress load fluctuations of a self-sustained power system composed of a power storage device using a DC power source and a synchronous generator for power storage of a voltage-controlled self-excited inverter,
The droop calculation means for detecting the reactive power of the inverter output and executing the droop calculation according to the detected reactive power, the deviation signal input between the calculation output by the droop calculation means and the preset set value, and the valid Two-phase three-phase conversion means fixed at voltage 0, and frequency phase conversion means for inputting the detected frequency of the independent power supply system through a low-pass filter and converting it into a phase signal are provided. The system stabilization is characterized in that after the two-phase / three-phase conversion based on the voltage phase detected by the frequency phase conversion means, the gate signal of the inverter is output via the PWM control signal generation means. apparatus.
前記直流電源を電気二重層キャパシタとし、この直流電圧の検出値と予め設定された直流電圧設定値との偏差を少なくとも比例・積分機能を有する直流電圧制御手段に入力し、その出力信号と前記周波数位相変換手段からの電圧位相との差信号を得て電圧位相基準信号として前記2相3相変換手段に出力するよう構成したことを特徴とした請求項6記載の系統安定化装置。 The DC power supply is an electric double layer capacitor, and a deviation between the detected value of the DC voltage and a preset DC voltage set value is input to a DC voltage control means having at least a proportional / integral function, the output signal and the frequency 7. The system stabilizing device according to claim 6, wherein a difference signal from the voltage phase from the phase conversion means is obtained and output to the two-phase / three-phase conversion means as a voltage phase reference signal. 電圧制御型自励式インバータの電力貯蔵に直流電源を用いた電力貯蔵装置と同期発電機から構成される自立電源系統の負荷変動を抑制するよう構成した並列運転装置において、
前記インバータ出力の無効電力と有効電力を検出する電力演算部と、この演算部により検出された無効電力に応じて垂下演算を実行する垂下演算手段と、この垂下演算手段による演算出力と予め設定された電圧設定値との偏差信号入力及び有効電圧0と固定された2相3相変換手段と、前記電力演算部により検出された有効電力に応じて垂下演算を実行する垂下演算手段と、この垂下演算手段による演算出力と予め設定された周波数設定値との偏差信号を入力して位相信号を生成して前記2相3相変換手段に出力する位相制御部と、2相3相変換手段は入力された位相信号を基準として2相3相変換後、PWM制御信号生成手段を介して前記インバータのゲート信号を出力するよう構成したことを特徴とした系統安定化装置。
In a parallel operation device configured to suppress load fluctuations of a self-sustained power system composed of a power storage device using a DC power source and a synchronous generator for power storage of a voltage-controlled self-excited inverter,
A power calculation unit that detects reactive power and active power of the inverter output, a droop calculation unit that executes droop calculation according to the reactive power detected by the calculation unit, and a calculation output by the droop calculation unit are preset. Deviation signal input to the set voltage value and two-phase three-phase conversion means fixed to the effective voltage 0, droop calculation means for executing droop calculation according to the active power detected by the power calculation section, and the droop A phase control unit that inputs a deviation signal between a calculation output from the calculation means and a preset frequency setting value to generate a phase signal and outputs the phase signal to the two-phase / three-phase conversion means; A system stabilization device configured to output a gate signal of the inverter via a PWM control signal generation means after performing two-phase / three-phase conversion with the phase signal as a reference.
前記直流電源を電気二重層キャパシタとし、この直流電圧の検出値と予め設定された直流電圧設定値との偏差を少なくとも比例・積分機能を有する直流電圧制御手段に入力し、この直流電圧制御手段の出力と前記有効電力に応じて垂下演算を実行する垂下演算手段の出力とを加算するよう構成したことを特徴とした請求項8記載の系統安定化装置。 The DC power supply is an electric double layer capacitor, and a deviation between the detected value of the DC voltage and a preset DC voltage set value is input to a DC voltage control means having at least a proportional / integral function, and the DC voltage control means 9. The system stabilization apparatus according to claim 8, wherein the output is added to an output of a drooping operation means for executing a drooping operation according to the active power.
JP2005201299A 2005-07-11 2005-07-11 System stabilization device Active JP4706361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005201299A JP4706361B2 (en) 2005-07-11 2005-07-11 System stabilization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005201299A JP4706361B2 (en) 2005-07-11 2005-07-11 System stabilization device

Publications (2)

Publication Number Publication Date
JP2007020361A true JP2007020361A (en) 2007-01-25
JP4706361B2 JP4706361B2 (en) 2011-06-22

Family

ID=37756991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005201299A Active JP4706361B2 (en) 2005-07-11 2005-07-11 System stabilization device

Country Status (1)

Country Link
JP (1) JP4706361B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123268A1 (en) * 2008-04-02 2009-10-08 株式会社 明電舎 System stabilizing device
WO2009136641A1 (en) * 2008-05-09 2009-11-12 株式会社 明電舎 System stabilizing devices
WO2009136640A1 (en) * 2008-05-09 2009-11-12 株式会社 明電舎 System stabilizing device
JP2009273210A (en) * 2008-05-02 2009-11-19 Shimizu Corp Method of controlling distributed power supply
JP2011067078A (en) * 2009-09-18 2011-03-31 Tokyo Gas Co Ltd Method and device for controlling power supply system
JP2011188614A (en) * 2010-03-08 2011-09-22 Origin Electric Co Ltd Automatic synchronous parallelization apparatus
WO2012081174A1 (en) * 2010-12-15 2012-06-21 川崎重工業株式会社 Adjustment apparatus for independent power-supply system, and method of adjusting independent power-supply system
JP2012143018A (en) * 2010-12-28 2012-07-26 Kawasaki Heavy Ind Ltd System stabilization apparatus and system stabilization method
WO2013008413A1 (en) 2011-07-08 2013-01-17 川崎重工業株式会社 Power conversion apparatus directed to combined-cycle power generation system
US8401712B2 (en) 2009-09-03 2013-03-19 Shimizu Corporation Method for controlling distributed power sources
JP2013172494A (en) * 2012-02-20 2013-09-02 Meidensha Corp Secondary battery charging controller and control method of power converter for power storage
JP2013176195A (en) * 2012-02-24 2013-09-05 Kansai Electric Power Co Inc:The Charging depth management method of secondary battery
WO2014103192A1 (en) 2012-12-27 2014-07-03 川崎重工業株式会社 Combined power generation system equipped with power conversion device
TWI486103B (en) * 2010-03-23 2015-05-21 Nippon Mektron Kk Flexible printed circuit board with attached plate and method for manufacturing the same
JP2016515375A (en) * 2013-03-14 2016-05-26 エスエムエイ ソーラー テクノロジー アクティエンゲゼルシャフトSMA Solar Technology AG Method for automatically starting a power plant comprising a plurality of inverters connectable to an AC electric grid
CN105633983A (en) * 2016-03-01 2016-06-01 国网甘肃省电力公司 Control system for improving frequency support capability of wind turbine generator set by super capacitor
CN106330027A (en) * 2016-11-01 2017-01-11 北京机械设备研究所 Dual-energy input running power take-off power generating device based on asynchronous generator
KR101763071B1 (en) * 2016-06-08 2017-07-31 명지대학교 산학협력단 Apparatus and method for droop control
JPWO2016157632A1 (en) * 2015-03-30 2017-10-26 株式会社日立産機システム Solar cell-storage battery cooperation system and power conversion control device
JP2018513662A (en) * 2015-07-02 2018-05-24 ダイナパワー カンパニー エルエルシー Independent operation of multiple grid-tie power converters
KR20180103178A (en) * 2016-03-30 2018-09-18 엔알 일렉트릭 컴퍼니 리미티드 DC power network voltage control method
WO2020158027A1 (en) * 2019-02-01 2020-08-06 三菱重工エンジン&ターボチャージャ株式会社 Command generation device and command generation method in multiple power generation power supply system
WO2020158028A1 (en) * 2019-02-01 2020-08-06 三菱重工エンジン&ターボチャージャ株式会社 Droop characteristic control in multiple power generation power supply facility
WO2022201470A1 (en) * 2021-03-25 2022-09-29 東芝三菱電機産業システム株式会社 Power conversion device and control device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105490291B (en) * 2015-12-03 2017-12-19 北京科诺伟业科技股份有限公司 A kind of inverter droop control method of anti-three-phase imbalance load
CN105790658B (en) * 2016-04-25 2018-02-06 南京航空航天大学 A kind of control method of double-winding asynchronous DC start electricity generation system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50106154A (en) * 1974-01-21 1975-08-21
JP2000004541A (en) * 1998-06-15 2000-01-07 Okinawa Electric Power Co Ltd Inverter control method
JP2001128366A (en) * 1999-10-26 2001-05-11 Hitachi Ltd Power conversion system
JP2002199734A (en) * 2000-12-25 2002-07-12 Toshiba Corp Parallel operation controller for single-phase power converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50106154A (en) * 1974-01-21 1975-08-21
JP2000004541A (en) * 1998-06-15 2000-01-07 Okinawa Electric Power Co Ltd Inverter control method
JP2001128366A (en) * 1999-10-26 2001-05-11 Hitachi Ltd Power conversion system
JP2002199734A (en) * 2000-12-25 2002-07-12 Toshiba Corp Parallel operation controller for single-phase power converter

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5003819B2 (en) * 2008-04-02 2012-08-15 株式会社明電舎 System stabilization device
WO2009123268A1 (en) * 2008-04-02 2009-10-08 株式会社 明電舎 System stabilizing device
US8560136B2 (en) 2008-04-02 2013-10-15 Meidensha Corporation System stabilizing device
JP2009273210A (en) * 2008-05-02 2009-11-19 Shimizu Corp Method of controlling distributed power supply
US8452462B2 (en) 2008-05-09 2013-05-28 Meidensha Corporation System stabilizing device
JP5141764B2 (en) * 2008-05-09 2013-02-13 株式会社明電舎 System stabilization device
WO2009136640A1 (en) * 2008-05-09 2009-11-12 株式会社 明電舎 System stabilizing device
JP5218554B2 (en) * 2008-05-09 2013-06-26 株式会社明電舎 System stabilization device
US8483885B2 (en) 2008-05-09 2013-07-09 Meidensha Corporation System stabilizing device
WO2009136641A1 (en) * 2008-05-09 2009-11-12 株式会社 明電舎 System stabilizing devices
US8401712B2 (en) 2009-09-03 2013-03-19 Shimizu Corporation Method for controlling distributed power sources
JP2011067078A (en) * 2009-09-18 2011-03-31 Tokyo Gas Co Ltd Method and device for controlling power supply system
JP2011188614A (en) * 2010-03-08 2011-09-22 Origin Electric Co Ltd Automatic synchronous parallelization apparatus
TWI486103B (en) * 2010-03-23 2015-05-21 Nippon Mektron Kk Flexible printed circuit board with attached plate and method for manufacturing the same
WO2012081174A1 (en) * 2010-12-15 2012-06-21 川崎重工業株式会社 Adjustment apparatus for independent power-supply system, and method of adjusting independent power-supply system
JP2012143018A (en) * 2010-12-28 2012-07-26 Kawasaki Heavy Ind Ltd System stabilization apparatus and system stabilization method
EP2731223A1 (en) * 2011-07-08 2014-05-14 Kawasaki Jukogyo Kabushiki Kaisha Power conversion apparatus directed to combined-cycle power generation system
WO2013008413A1 (en) 2011-07-08 2013-01-17 川崎重工業株式会社 Power conversion apparatus directed to combined-cycle power generation system
EP2731223A4 (en) * 2011-07-08 2015-04-22 Kawasaki Heavy Ind Ltd Power conversion apparatus directed to combined-cycle power generation system
US9356448B2 (en) 2011-07-08 2016-05-31 Kawasaki Jukogyo Kabushiki Kaisha Electric power converter for combined power generation system
JP2013172494A (en) * 2012-02-20 2013-09-02 Meidensha Corp Secondary battery charging controller and control method of power converter for power storage
JP2013176195A (en) * 2012-02-24 2013-09-05 Kansai Electric Power Co Inc:The Charging depth management method of secondary battery
US9698603B2 (en) 2012-12-27 2017-07-04 Kawasaki Jukogyo Kabushiki Kaisha Combined power generation system having power converting apparatus
KR20150053794A (en) 2012-12-27 2015-05-18 카와사키 주코교 카부시키 카이샤 Combined power generation system equipped with power conversion device
WO2014103192A1 (en) 2012-12-27 2014-07-03 川崎重工業株式会社 Combined power generation system equipped with power conversion device
JP2016515375A (en) * 2013-03-14 2016-05-26 エスエムエイ ソーラー テクノロジー アクティエンゲゼルシャフトSMA Solar Technology AG Method for automatically starting a power plant comprising a plurality of inverters connectable to an AC electric grid
JPWO2016157632A1 (en) * 2015-03-30 2017-10-26 株式会社日立産機システム Solar cell-storage battery cooperation system and power conversion control device
JP2018513662A (en) * 2015-07-02 2018-05-24 ダイナパワー カンパニー エルエルシー Independent operation of multiple grid-tie power converters
CN105633983A (en) * 2016-03-01 2016-06-01 国网甘肃省电力公司 Control system for improving frequency support capability of wind turbine generator set by super capacitor
KR101967127B1 (en) 2016-03-30 2019-04-08 엔알 일렉트릭 컴퍼니 리미티드 DC power network voltage control method
KR20180103178A (en) * 2016-03-30 2018-09-18 엔알 일렉트릭 컴퍼니 리미티드 DC power network voltage control method
KR101763071B1 (en) * 2016-06-08 2017-07-31 명지대학교 산학협력단 Apparatus and method for droop control
CN106330027A (en) * 2016-11-01 2017-01-11 北京机械设备研究所 Dual-energy input running power take-off power generating device based on asynchronous generator
WO2020158027A1 (en) * 2019-02-01 2020-08-06 三菱重工エンジン&ターボチャージャ株式会社 Command generation device and command generation method in multiple power generation power supply system
WO2020158028A1 (en) * 2019-02-01 2020-08-06 三菱重工エンジン&ターボチャージャ株式会社 Droop characteristic control in multiple power generation power supply facility
WO2022201470A1 (en) * 2021-03-25 2022-09-29 東芝三菱電機産業システム株式会社 Power conversion device and control device
JPWO2022201470A1 (en) * 2021-03-25 2022-09-29
JP7289409B2 (en) 2021-03-25 2023-06-09 東芝三菱電機産業システム株式会社 Power conversion device and control device

Also Published As

Publication number Publication date
JP4706361B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
JP4706361B2 (en) System stabilization device
JP6058147B2 (en) Power converter
AU2008227057B2 (en) Motor drive using flux adjustment to control power factor
JP5822732B2 (en) 3-level power converter
JP6185436B2 (en) Unbalance compensator
JP2009124836A (en) Controller of uninterrupted power supply system
JP5580095B2 (en) Grid-connected inverter device
JP2009118685A (en) Method for controlling ac voltage
EP3681029B1 (en) Power conversion device
JP2008245349A (en) Systematically interconnecting inverter device
JP5392649B2 (en) Self-excited reactive power compensator
JP5207910B2 (en) Operation control method and operation control apparatus for variable speed generator motor
JP2008079383A (en) Controller for ac excitation generator motor
JP4658909B2 (en) Uninterruptible power supply system
JP2001136664A (en) Distributed power generating system
JP2008312370A (en) Reactive power compensating device and control method therefor
JP6464801B2 (en) Control device, control method, and autonomous operation system
JP2006311725A (en) Controller for power converter
JP4493308B2 (en) Uninterruptible power supply and uninterruptible power supply system
WO2023112222A1 (en) Electric power conversion device and control method for electric power conversion device
Suvorov et al. Freely Configurable Model of Virtual Synchronous Generator for Grid-Forming Converter
JP3309894B2 (en) Control method of self-excited var compensator
JP5026821B2 (en) Power converter
JP6865509B2 (en) 3-level power converter
JP3655058B2 (en) Self-excited AC / DC converter controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110228

R150 Certificate of patent or registration of utility model

Ref document number: 4706361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150