WO2013099957A1 - Power conversion apparatus - Google Patents

Power conversion apparatus Download PDF

Info

Publication number
WO2013099957A1
WO2013099957A1 PCT/JP2012/083675 JP2012083675W WO2013099957A1 WO 2013099957 A1 WO2013099957 A1 WO 2013099957A1 JP 2012083675 W JP2012083675 W JP 2012083675W WO 2013099957 A1 WO2013099957 A1 WO 2013099957A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
amount
control unit
value
difference
Prior art date
Application number
PCT/JP2012/083675
Other languages
French (fr)
Japanese (ja)
Inventor
孝彰 則定
伊藤 和雄
真 小曽根
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011287461A external-priority patent/JP5899477B2/en
Priority claimed from JP2011287472A external-priority patent/JP5899479B2/en
Priority claimed from JP2011287467A external-priority patent/JP5899478B2/en
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2013099957A1 publication Critical patent/WO2013099957A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging

Definitions

  • the present invention relates to a power conversion device.
  • a power conversion device that performs power transmission and reception between a power storage device, a power generation device, and a power system through power conversion.
  • input / output control of a bidirectional converter connected to an electric power system is performed in order to charge a power storage device with a constant current value (charge command amount) while maximizing the output of a photovoltaic power generation device.
  • the charging power value is controlled (see, for example, Japanese Patent Publication No. 6-78473).
  • an object of the present invention is to provide a power converter that contributes to suppression of the hunting phenomenon.
  • the power conversion device includes a power conversion circuit and a control unit.
  • the power conversion circuit includes a power receiving function for receiving power from a power supply device, a power transmission function for supplying power to a power demand device, an output process for supplying power to a power auxiliary device, and an input for acquiring power from the power auxiliary device.
  • An instruction from the control unit is at least one of an input / output selection function for selectively executing processing, supply power that is power received from the power supply device, and demand power that is power supplied to the power demand device And an adjustment function to adjust accordingly.
  • the control unit compares the supply power with the demand power, and if the supply power is greater than the demand power, the output to the power conversion circuit is such that a surplus of the supply power is supplied to the power auxiliary device. And when the supply power is less than the demand power, the power conversion circuit is configured to execute the input process so that the shortage of the supply power is compensated by the power from the power auxiliary device. .
  • the control unit is configured to determine whether or not an event that causes a hunting phenomenon has occurred in the power conversion circuit, and to execute hunting suppression control when determining that the event has occurred. In the hunting suppression control, the control unit is configured to give the instruction to the power conversion circuit so that a difference between the supplied power and the demand power becomes large.
  • 1 is a schematic overall configuration diagram of a power supply system according to a first embodiment. It is a block diagram of the control part of the power converter device in a 1st embodiment. It is a figure which shows the electric power input / output state in charge fixed control. It is a figure showing the time transition of electric power generation amount, and is a figure for demonstrating the system side hunting phenomenon. It is a figure showing the time transition of electric power generation amount, and is a figure for demonstrating hunting suppression control. It is a figure for demonstrating the 1st implementation example of the hunting suppression control corresponding to charge determination control corresponding to 1st Embodiment. It is a figure for demonstrating the 2nd implementation example of the hunting suppression control corresponding to charge determination control according to 1st Embodiment.
  • the power conversion device 2 includes a power conversion circuit 20 and a control unit 23.
  • the power conversion circuit 20 includes a power receiving function that receives power from the power supply device, a power transmission function that supplies power to the power demand device, an output process that supplies power to the power auxiliary device, and an input process that acquires power from the power auxiliary device. And adjusting at least one of an input / output selection function for selectively executing and supply power that is power received from the power supply device and demand power that is power supplied to the power demanding device in accordance with an instruction from the control unit 23 An adjustment function.
  • the control unit 23 compares the supplied power with the demand power, and if the supplied power is greater than the demand power, causes the power conversion circuit 20 to execute an output process so that a surplus of the supplied power is supplied to the power auxiliary device. Is less than the demand power, the power conversion circuit 20 is configured to execute the input process so that the shortage of the supplied power is compensated by the power from the power auxiliary device.
  • the control unit 23 is configured to determine whether or not an event that causes a hunting phenomenon has occurred in the power conversion circuit 20, and to execute hunting suppression control when determining that an event has occurred. In the hunting suppression control, the control unit 23 is configured to give an instruction to the power conversion circuit 20 so that the difference between the supplied power and the demand power becomes large.
  • the instruction is a target value of demand power.
  • the power conversion circuit 20 is configured to adjust the demand power to the target value when receiving the target value from the control unit 23.
  • the control unit 23 is configured to execute normal control for setting the target value to a default value until it is determined that an event has occurred. In the hunting suppression control, the control unit 23 is configured to set the target value to a value different from the default value.
  • the power supply device is the power generation device 4 in the second embodiment.
  • the power demand device is one of the power storage device 3 and the power system 5
  • the power auxiliary device is the other of the power storage device 3 and the power system 5.
  • the power supply device includes a power generation device 4 and a power supply device.
  • the supplied power is the sum of the generated power that is the power supplied from the power generation device 4 and the power supply power that is the power obtained from the power supply device.
  • the instruction is a target value of power supply power.
  • the power conversion circuit 20 is configured to adjust the power supply power to the target value when receiving the target value.
  • the control unit 23 is configured to execute normal control for setting the target value to a default value until it is determined that an event has occurred. In the hunting suppression control, the control unit 23 is configured to set the target value to a value different from the default value.
  • the power supply device is one of the power storage device 3 and the power system 5
  • the power auxiliary device is the power storage device 3 and the power system 5. And the other.
  • the power supply device includes the power generation device 4 in the first embodiment.
  • the supplied power includes generated power that is power obtained from the power generation device 4.
  • the instruction is a target value of generated power.
  • the power conversion circuit 20 is configured to control the power generation device 4 so that the generated power becomes the target value.
  • the control unit 23 is configured to execute normal control for setting the target value to a predetermined value until it is determined that an event has occurred.
  • the controller 23 is configured to set the target value to a value different from the default value in the hunting suppression control.
  • the power generation device 4 is a solar cell.
  • the power conversion circuit 20 is configured to adjust the generated power by changing the operating point of the solar cell in accordance with an instruction.
  • the default value is a value corresponding to the maximum power of the solar cell.
  • the power demand device is one of the power storage device 3 and the power system 5, and The device is the other of power storage device 3 and power system 5.
  • the power supply device further includes a power supply device.
  • the supplied power is the sum of the generated power that is the power supplied from the power generation device 4 and the power supply power that is the power obtained from the power supply device.
  • the power supply device is one of the power storage device 3 and the power system 5, and the power auxiliary device is the other of the power storage device 3 and the power system 5.
  • the power conversion circuit 20 has a second input / output selection function for selectively executing the second output process and the second input process.
  • the power conversion circuit 20 is configured to increase the power demand by using the second power auxiliary device as a part of the power demand device by supplying power to the second power auxiliary device.
  • the power conversion circuit 20 is configured to increase the supply power by using the second power auxiliary device as a part of the power supply device by acquiring power from the second power auxiliary device.
  • the hunting suppression control includes first hunting suppression control that causes the power conversion circuit 20 to execute the second output process, and second hunting suppression control that causes the power conversion circuit 20 to execute the second input process.
  • the control unit 23 is configured to execute either the first hunting suppression control or the second hunting suppression control so that the difference between the supplied power and the demand power becomes large.
  • the second power auxiliary device is the second power storage device 3a.
  • the power conversion circuit 20 is configured to charge the second power storage device 3a in the second output process and to discharge the second power storage device 3a in the second input process.
  • the control unit 23 determines that an event has occurred, the remaining power of the second power storage device 3a is compared with a predetermined value. Configured to do.
  • the control unit 23 is configured to execute the first hunting suppression control if the remaining amount is less than the predetermined value, and to execute the second hunting suppression control if the remaining amount is equal to or greater than the predetermined value.
  • the power supply device is the power generation device 4.
  • the power demand device is one of the power storage device 3 and the power system 5
  • the power auxiliary device is the other of the power storage device 3 and the power system 5.
  • the power supply device includes a power generation device 4 and a power supply device.
  • the power supply device is one of the power storage device 3 and the power system 5
  • the power auxiliary device is the other of the power storage device 3 and the power system 5.
  • the control unit 23 determines that the difference between the supplied power and the demand power is during execution of the hunting suppression control. When the release condition is satisfied, the hunting suppression control is configured to end.
  • the cancellation condition is that the absolute value of the difference between the supply power and the demand power is equal to or less than a predetermined threshold, or the supply power This is that a state where the absolute value of the difference from the demand power is equal to or less than a predetermined threshold has continued for a predetermined time.
  • the predetermined threshold is smaller than the range of change in the difference between the supplied power and the demand power due to the execution of the hunting suppression control.
  • the cancellation condition is that the state where the difference between the supplied power and the demand power is positive or negative continues for a predetermined time.
  • the control unit 23 satisfies the release condition when the difference between the supplied power and the predetermined value is during execution of the hunting suppression control.
  • the hunting suppression control is configured to end.
  • the release condition is that the absolute value of the difference is equal to or greater than the threshold, the state where the absolute value of the difference is equal to or greater than the threshold continues for a predetermined first time, or the state where the difference is positive or negative is the predetermined second.
  • the control unit 23 calculates the total value of the generated power and the predetermined value and the demand power during execution of the hunting suppression control.
  • the hunting suppression control is configured to end.
  • the release condition is that the absolute value of the difference is equal to or greater than the threshold, the state where the absolute value of the difference is equal to or greater than the threshold continues for a predetermined first time, or the state where the difference is positive or negative is the predetermined second.
  • the control unit 23 when the control unit 23 performs the hunting suppression control and the difference between the demand power and the predetermined value satisfies the release condition, It is comprised so that hunting suppression control may be complete
  • the release condition is that the absolute value of the difference is equal to or greater than the threshold, the state where the absolute value of the difference is equal to or greater than the threshold continues for a predetermined first time, or the state where the difference is positive or negative is the predetermined second.
  • the control unit 23 determines that the difference between the total value of the power supply power and the predetermined value and the power for demand is during execution of the hunting suppression control.
  • the hunting suppression control is configured to end.
  • the release condition is that the absolute value of the difference is greater than or equal to a threshold, the state where the absolute value of the difference is greater than or equal to the threshold continues for a predetermined first time, or the state where the difference is positive or negative is predetermined.
  • the power conversion circuit 2 increases the demand power from the first predetermined value in the second output process.
  • the control unit 23 is configured to end the first hunting suppression control when the difference between the supplied power and the first predetermined value satisfies the first release condition during the execution of the first hunting suppression control.
  • the first release condition is that the first absolute value of the difference between the supplied power and the first predetermined value is equal to or greater than the first threshold, and the state where the first absolute value is equal to or greater than the first threshold continues for a predetermined first time. Or a state in which the difference between the supplied power and the first predetermined value is positive or negative has continued for a predetermined second time.
  • the power conversion circuit 2 supplies the second predetermined power supply in the second input process. Configured to increase from the value.
  • the control unit 23 is configured to end the second hunting suppression control when the difference between the demand power and the second predetermined value satisfies the second release condition during the execution of the second hunting suppression control.
  • the second release condition is that the second absolute value of the difference between the demand power and the second predetermined value is equal to or greater than the second threshold, and the state where the second absolute value is equal to or greater than the second threshold continues for a predetermined third time. Or a state in which the difference between the demand power and the second predetermined value is positive or negative has continued for a predetermined fourth time.
  • the control unit 23 switches between input processing and output processing during execution of hunting suppression control. It is determined whether or not the operation has been performed a predetermined number of times, and when it is determined that the switching operation has been performed a predetermined number of times, the hunting suppression control is configured to end.
  • control unit 23 causes the power conversion circuit 20 to perform a switching operation between output processing and input processing. It is configured to determine that an event has occurred when a predetermined number of times have been performed in time.
  • the control unit 23 determines that the absolute value of the difference between the supplied power and the demand power is equal to or less than a determination value. It is determined whether or not there is an event, and when it is determined that the absolute value is equal to or less than the determination value, it is determined that an event has occurred.
  • the control unit 23 determines that the absolute value of the difference between the supplied power and the demand power is equal to or less than a determination value. It is configured to determine whether or not a certain state has continued for the determination time, and to determine that an event has occurred when it is determined that the state has continued for the determination time.
  • FIG. 1 is a schematic overall configuration diagram of a power supply system 1 according to the first embodiment, which can also be referred to as a storage battery system.
  • the power supply system 1 includes all or part of the blocks shown in FIG.
  • the power supply system 1 includes at least a power conversion device 2, a power storage device 3, a power generation device 4, a display unit 9, and an operation unit 10.
  • the display unit 9 and the operation unit 10 may be components of the power conversion device 2.
  • the power supply system 1 is connected to, for example, a DC load 8 and a system load 7.
  • the power storage device 3 is provided with a battery unit (not shown) composed of one or more secondary batteries.
  • the secondary battery forming the battery unit of the power storage device 3 is any type of secondary battery, such as a lithium ion battery or a nickel metal hydride battery.
  • discharging and charging means discharging and charging of the power storage device 3 (more specifically, discharging and charging of each secondary battery in the battery unit of the power storage device 3) unless otherwise specified.
  • the power conversion device 2 includes a power conversion circuit 20 and a control unit 23.
  • the power conversion circuit 20 includes a power receiving function that receives power from the power supply device, a power transmission function that supplies power to the power demand device, an output process that supplies power to the power auxiliary device, and an input process that acquires power from the power auxiliary device. And an input / output selection function for selectively executing.
  • the power conversion circuit 20 has an adjustment function for adjusting at least one of supply power that is power received from the power supply device and demand power that is power supplied to the power demand device in accordance with an instruction from the control unit 23.
  • the supplied power is power that can be supplied from the power supply apparatus to the power demand apparatus.
  • demand power is the electric power requested
  • the magnitude of the supplied power is referred to as the supplied power amount.
  • the amount of power supplied is equal to the total amount of power supplied for 1 second, for example.
  • the magnitude of demand power is called demand power.
  • the amount of power demand is equal to the total amount of power demand for one second, for example.
  • the control unit 23 is configured to execute quantitative control.
  • the control unit 23 compares the supplied power with the demand power, and if the supplied power is larger than the demand power, performs an output process on the power conversion circuit 20 so that a surplus of the supplied power is supplied to the power auxiliary device. If the supply power is less than the demand power, the power conversion circuit 20 is configured to execute the input process so that the shortage of the supply power is compensated by the power from the power auxiliary device.
  • Quantitative control includes charge quantitative control, discharge quantitative control, system output quantitative control, and system input quantitative control.
  • the power generation device 4 is used as a power supply device
  • the power storage device 3 is used as a power demand device
  • the power system 5 is used as a power auxiliary device.
  • the power generation device 4 and the power storage device 3 are used as a power supply device, the DC load 8 is used as a power demand device, and the power system 5 is used as a power auxiliary device.
  • the power generation device 4 is used as a power supply device
  • the power system 5 is used as a power demand device
  • the power storage device 3 is used as a power auxiliary device.
  • the power generation device 4 and the power system 5 are used as a power supply device, the DC load 8 is used as a power demand device, and the power storage device 3 is used as a power auxiliary device.
  • the control unit 23 is configured to selectively execute charge quantitative control, discharge quantitative control, system output quantitative control, and system input quantitative control.
  • Control unit 23 determines whether an event has occurred that hunting occurs in the power conversion circuit 20, when determining that an event has occurred hunting suppression control CNT 1 (CNT 1A, CNT 1B , CNT 1C, CNT 1D), Configured to perform.
  • the control unit 23 is configured to give an instruction to the power conversion circuit 20 so that the difference between the supplied power and the demand power becomes large.
  • control unit 23 includes a comparison unit 231, a determination unit 232, and an instruction unit 233 as shown in FIG.
  • the comparison unit 231 is configured to compare the supplied power and the demand power, and to give the comparison result to the instruction unit 233.
  • the determination unit 232 is configured to determine whether or not an event that causes a hunting phenomenon has occurred in the power conversion circuit 20 and to give the determination result to the instruction unit 233. Further, the determination unit 232 is configured to determine whether or not a release condition described later is satisfied.
  • the instruction unit 233 causes the power conversion circuit 20 to execute the output process so that the surplus of the supplied power is supplied to the power auxiliary device. Composed.
  • the instructing unit 233 causes the power conversion circuit 20 to perform input processing so that the shortage of the supplied power is compensated by the power from the power auxiliary device. .
  • the instruction unit 233 is configured to execute the hunting suppression control CNT 1 if the determination result indicates that an event has occurred.
  • the instruction unit 233 is configured to give an instruction to the power conversion circuit 20 so that the difference between the supplied power and the demand power becomes large.
  • the power conversion circuit 20 includes a power terminal (external power terminal) TB1 and a power terminal (internal power terminal) TB2 , and a (first) power conversion unit 21B for the power storage device connected to the power storage device 3,
  • Intermediate wire 22 includes a (first) internal power terminal T B2 of the first power conversion unit 21B, the second power conversion unit 21G (second) and the internal power terminal T G2, the third power conversion unit 21S (the 3) Connected to the internal power terminal T S2 .
  • the power storage device 3 is connected to the power conversion unit 21B at the (first) external power terminal T B1 and can output its own discharge power to the power conversion unit 21B and supply charging power from the power conversion unit 21B. When you receive it, it will be charged.
  • size of discharge electric power is called discharge electric energy.
  • the amount of discharge power is equal to the total amount of discharge power for one second, for example.
  • the magnitude of the charging power is referred to as the charging power amount.
  • the amount of charging power is equal to the total amount of demand power for one second, for example.
  • the power generation device 4 is a power generation device that performs power generation based on arbitrary energy and outputs generated power, and examples of the energy include natural energy (sunlight, wind power, hydropower, geothermal heat, and the like).
  • the generated power depends on natural energy. Therefore, the generated power is not constant and can change with time.
  • the magnitude of the generated power is referred to as the amount of generated power.
  • the amount of generated power is equal to the total amount of generated power for one second, for example.
  • the power generation device 4 is a solar power generation device that generates power based on sunlight and outputs generated power.
  • the power generator 4 is connected to the power converter 21G at the (second) external power terminal T G1 , and the generated power of the power generator 4 is output to the power converter 21G.
  • the power system 5 is connected to a commercial power source 6 that generates and outputs commercial AC power, and transmits the commercial AC power.
  • the power system 5 is connected to the power conversion unit 21S at the (third) external power terminal T S1, and power transmission and reception between the power conversion unit 21S and the power system 5 are performed via the power terminal T S1 . That is, the power system 5 supplies input power to the power conversion circuit 20 and receives output power from the power conversion circuit 20.
  • the magnitude of input power is referred to as input power amount.
  • the input power amount is equal to, for example, the total amount of input power for one second.
  • the magnitude of output power is referred to as output power amount.
  • the output power amount is equal to the total amount of output power for one second, for example.
  • the power terminals T B2 , T G2, and T S2 are commonly connected in the power conversion circuit 20 by the intermediate wiring 22.
  • the system load 7 and the DC load 8 are, for example, industrial equipment or electrical appliances in factories, stores, buildings, or general houses where the power supply system 1 is introduced.
  • the system load 7 is connected to the power terminal T S1 and the power system 5, and the DC load 8 is connected to the intermediate wiring 22.
  • all or part of the power output from the power conversion circuit 20 to the power system 5 may be consumed by the system load 7, here, the power from the power conversion circuit 20 to the system load 7 is converted into power conversion. It is considered that it is a part of the output power from the circuit 20 to the power system 5 (that is, the power consumption of the system load 7 is not related to the essence of the present invention, so the following description ignores the presence of the system load 7).
  • a power conversion unit may be provided between the DC load 8 and the intermediate wiring 22.
  • the power conversion circuit 20 performs power transmission and power reception among the power storage device 3, the power generation device 4, and the power system 5 under the control of the control unit 23, and performs necessary power conversion at the time of power transmission and power reception.
  • power conversion unit 21B converts the DC discharge power received from power storage device 3 via power terminal (external power terminal) TB1 to other DC power, and converts the other DC power to power terminal. (internal power terminal) and the discharge power conversion output from T B2, the power terminals (internal power terminal) of the DC power received via the T B2 is converted into another DC power said other DC power power terminal ( It is possible to execute power conversion for charging that is output to the power storage device 3 as charging power via the external power terminal T B1 .
  • the power converter 21B receives power from the power storage device 3 as a power supply device, a power transmission function that supplies power to the power storage device 3 as a power demand device, and supplies power to the power storage device 3 as a power auxiliary device.
  • An input / output selection function for selectively executing an output process to be performed and an input process for acquiring power from the power storage device 3 as a power auxiliary device.
  • the power conversion unit 21B in response to an instruction from the control unit 23, supplies power (discharge power) that is power received from the power storage device 3 as a power supply device and power supplied to the power storage device 3 as a power demand device. It has an adjustment function to adjust the demand power (charging power).
  • the power conversion unit 21B in response to an instruction from the control unit 23, supplies power (discharged power) that is the amount of power received from the power storage device 3 as the power supply device and the power storage device 3 as the power demand device.
  • the amount of power demand (charge power amount) that is the amount of power supplied to the battery is adjusted.
  • the power conversion unit 21B adjusts the discharge power (discharge power amount) to the target value. Further, upon receiving the target value of the charging power (charging power amount) from the control unit 23, the power conversion unit 21B adjusts the charging power (charging power amount) to the target value.
  • the power output from the power terminal TB2 by the power conversion for discharge is sent to the DC load 8 through the intermediate wiring 22, or is sent to the power system 5 through the intermediate wiring 22 and the power conversion unit 21S.
  • the DC power by the power conversion unit 21B receives via a power terminal T B2, the power based on the power generated by the power conversion unit 21G and the intermediate wiring 22 power generator is supplied via the 4, or the power The power is based on the commercial AC power supplied from the power system 5 supplied via the converter 21S and the intermediate wiring 22, or a combination thereof.
  • the power conversion unit 21G converts the generated DC power received from the power generation device 4 through the power terminal T G1 into another DC power and outputs the other DC power from the power terminal T G2. It is feasible.
  • the power conversion unit 21G has a power receiving function of receiving power from the power generation device 4 as a power supply device.
  • the power conversion unit 21G has an adjustment function of adjusting supply power (generated power) that is power received from the power generation device 4 as a power supply device in accordance with an instruction from the control unit 23.
  • the power conversion unit 21G adjusts the supply power amount (generated power amount), which is the amount of power received from the power generation device 4 as the power supply device, in accordance with an instruction from the control unit 23.
  • the power conversion unit 21G adjusts the generated power (generated power amount) to the target value.
  • the power output from the power terminal TG2 by the power conversion for power generation is sent to the DC load 8 through the intermediate wiring 22, sent to the power system 5 through the intermediate wiring 22 and the power conversion unit 21S, or intermediate It is sent to the power storage device 3 through the wiring 22 and the power conversion unit 21B.
  • the power conversion unit 21S converts the commercial AC power received from the power system 5 through the power terminal T S1 into DC power and outputs the DC power from the power terminal T S2. It is possible to perform power conversion for system output that converts the DC power received via S2 into AC power and outputs the AC power to the power system 5 via the power terminal T S1 .
  • the power conversion unit 21S receives power from the power system 5 as a power supply device, a power transmission function that supplies power to the power system 5 as a power demand device, and supplies power to the power system 5 as a power auxiliary device.
  • An input / output selection function for selectively executing output processing to be performed and input processing for acquiring power from the power system 5 as a power auxiliary device.
  • the power conversion unit 21S in response to an instruction from the control unit 23, supplies power (input power) that is power received from the power system 5 as a power supply device and power supplied to the power system 5 as a power demand device. It has an adjustment function for adjusting the demand power (output power).
  • the power conversion unit 21S supplies the supply power amount (input power amount) that is the power received from the power system 5 as the power supply device and the power system 5 as the power demand device according to the instruction from the control unit 23. It has an adjustment function for adjusting the amount of demand power (output power amount) that is the power to be generated.
  • the power conversion unit 21S adjusts the input power (input power amount) to the target value. Further, when receiving the target value of the output power (output power amount) from the control unit 23, the power conversion unit 21S adjusts the output power (output power amount) to the target value.
  • the power output from the power terminal T S2 by the power conversion for system input is sent to the DC load 8 via the intermediate wiring 22 or sent to the power storage device 3 via the intermediate wiring 22 and the power conversion unit 21B.
  • the DC power received by the power conversion unit 21S via the power terminal T S2 is based on the discharge power of the power storage device 3 supplied from the power storage device 3 via the power conversion unit 21B and the intermediate wiring 22.
  • the control unit 23 acquires input / output power information representing a voltage value, a current value, and a power amount in each unit of the power conversion circuit 20 using various sensors.
  • the power conversion device 2 includes a plurality of current sensors (not shown) that measure values I B , I G , and I S of currents flowing through the external power terminals T B1 , T G1 , and T S1 , and an internal power terminal. And a plurality of current sensors (not shown) for measuring values I BINT , I GINT , and I SINT of currents flowing through T B2 , T G2 , and T S2 , respectively.
  • the power converter 2 includes a plurality of voltage sensors (not shown) that measure the voltage values V B , V G , and V S of the external power terminals T B1 , T G1 , and T S1 , and an internal power terminal. And a voltage sensor (not shown) for measuring the value V INT of the voltages T B2 , T G2 , and T S2 (that is, the voltage of the intermediate wiring 22).
  • control unit 23 uses current sensors to measure current values (current values) I B and I flowing through the power terminals T B1 , T G1 , T S1 , T B2 , T G2 , and T S2.
  • G , I S , I BINT , I GINT , and I SINT are acquired individually, and voltage values (voltage values) V B and V G applied to the power terminals T B1 , T G1 , and T S1 using the voltage sensor are obtained.
  • V S is acquired individually.
  • the control unit 23 uses the voltage sensor, acquires the power terminal T B2, the value of the common voltage applied to the T G2 and T S2 (voltage value) V INT.
  • the input / output power information includes current values I B , I G , I S , I BINT , I GINT and I SINT , and voltage values V B , V G , V S and V INT , and the following formulas (1a) to (1f ) Can also include power magnitudes (power quantities) P B , P G , P S , P BINT , P GINT, and P SINT .
  • I B , V B, and P B are output to the power storage device 3 from the current value, voltage value, and power amount of the discharge power of the power storage device 3 input from the power storage device 3 to the power conversion unit 21B, or from the power conversion unit 21B, respectively.
  • I G , V G, and P G are a current value, a voltage value, and an electric energy in the generated power of the power generation device 4 input from the power generation device 4 to the power conversion unit 21G, respectively.
  • I S , V S, and P S are current values, voltage values, and amounts of electric power in commercial AC power input from the power system 5 to the power conversion unit 21S, or AC output from the power conversion unit 21S to the power system 5, respectively. It is the current value, voltage value, and electric energy in electric power.
  • I BINT and V INT are current values and voltage values corresponding to I B and V B before or after power conversion in the power conversion unit 21B.
  • I GINT and V INT are current values and voltage values after power conversion in the power conversion unit 21G, corresponding to I G and V G.
  • I SINT and V INT are current values and voltage values corresponding to I S and V S before or after power conversion in the power conversion unit 21S.
  • the control unit 23 controls the operation of the power conversion circuit 20 including the operation of each power conversion of the power conversion units 21B, 21G, and 21S based on the input / output power information, and through the control of the operation of the power conversion circuit 20, It controls power transmission and power reception among the power storage device 3, the power generation device 4, and the power system 5.
  • control unit 23 can display a desired image on the display unit 9 by controlling the display unit 9 including a liquid crystal display or the like.
  • the operation unit 10 receives various instructions and information from the operator of the power supply system 1 and transmits the instructions and information to the control unit 23.
  • the operator is, for example, an owner, a user, or a maintenance manager (so-called service man) of the power supply system 1.
  • the operation unit 10 can include a touch panel on the display unit 9.
  • one or more other power storage devices similar to the power storage device 3 may be further provided in the power supply system 1, and in this case, a power conversion unit for the other one or more power storage devices is added to the power conversion circuit 20. This is preferable (the same applies to other embodiments described later).
  • One or more other power generation devices similar to the power generation device 4 may be further provided in the power supply system 1, and in this case, a power conversion unit for the other one or more power generation devices is added to the power conversion circuit 20. This is preferable (the same applies to other embodiments described later).
  • the control unit 23 may be formed by a plurality of control units (the same applies to other embodiments described later).
  • the control unit 23 can execute charge quantitative control, discharge quantitative control, system output quantitative control, and system input quantitative control based on the input / output power information.
  • charge quantitative control, discharge quantitative control, the system output quantitative control, and the system input quantitative control will be described in detail.
  • the control unit 23 charges the power storage device 3 using the power generation device 4 and the power system 5.
  • the power generation device 4 is used as a power supply device
  • the power storage device 3 is used as a power demand device
  • the power system 5 is used as a power auxiliary device. Therefore, in the charging quantitative control, the supplied power is the generated power of the power generation device 4.
  • the demand power is power (charging power) used for charging the power storage device 3.
  • control unit 23 compares the generated power (generated power amount) of the power generation device 4 with the charged power (charged power amount) of the power storage device 3.
  • the control unit 23 (instruction unit 233) supplies the surplus of the supplied power (generated power) to the power system 5 (power auxiliary device).
  • the power conversion circuit 20 is caused to execute output processing (power conversion for system output of the power conversion unit 21S).
  • control unit 23 (instruction unit 233) gives an instruction (target value of output power) to the power conversion unit 21S so that output power corresponding to the difference between the generated power and the charged power can be obtained. For example, if the supplied power amount is 12 kW ⁇ s and the charged power amount is 10 kW ⁇ s, 2 kW ⁇ s is given to the power conversion unit 21S as the target value of the output power.
  • the controller 23 instruction unit 233
  • the controller 23 supplements the shortage of the supplied power (generated power) with the power from the power system 5 (power auxiliary device).
  • the power conversion circuit 20 is caused to execute input processing (system input power conversion of the power conversion unit 21S).
  • control unit 23 (instruction unit 233) gives an instruction (target value of input power) to the power conversion unit 21S so that input power corresponding to the difference between the generated power and the charged power can be obtained. For example, if the supplied power amount is 8 kW ⁇ s and the charged power amount is 10 kW ⁇ s, the control unit 23 gives 2 kW ⁇ s to the power conversion unit 21S as the target value of the input power.
  • the charging reference condition is a condition for designating a charging power amount of the power storage device 3 or a current value and a voltage value depending on the charging power amount, and the control unit 23 can freely determine the charging reference condition.
  • the charging reference condition may be a condition for designating only one of a current value and a voltage value depending on the amount of charging power of the power storage device 3.
  • the charge reference condition specifies that the power storage device 3 is charged with a constant reference power amount for storage (charge / discharge reference power amount) P BREF .
  • the control unit 23 can generate a charge command amount P B * that specifies the amount of charge power supplied from the power conversion unit 21B to the power storage device 3 and give the charge command amount P B * to the power conversion unit 21B.
  • the power conversion unit 21B performs power conversion for charging including control of the voltage value V B and the current value I B in order to supply the power storage device 3 with the charging power amount specified by the charging command amount P B * .
  • the charge command amount P B * may be formed from a voltage command amount and a current command amount that specify the voltage value V B and the current value I B.
  • control unit 23 can charge the power storage device 3 with a constant reference power amount P BREF for storage by substituting the value of the reference power amount P BREF for storage into the charge command amount P B *. .
  • P BREF 10
  • the unit of numerical values related to an arbitrary electric energy including a charge command amount is unified to be kW ⁇ s (kilowatt ⁇ second).
  • the power loss in the power conversion circuit 20 is zero unless otherwise specified (that is, the power conversion efficiency in each power conversion in the power conversion circuit 20 is assumed to be 100%). To do).
  • control unit 23 can substitute 10 for the charge command amount P B * .
  • the control unit 23 controls the power conversion unit 21S so that an insufficient power amount 4 kW ⁇ s corresponding to the difference between them is input from the power system 5 to the power conversion circuit 20. To do.
  • the control unit 23 controls the power conversion unit 21S so that the surplus power amount 3 kW ⁇ s corresponding to the difference between them is output from the power conversion circuit 20 to the power system 5. .
  • a solid curve 311 represents a time transition of the amount of power generated by the power generation device 4, and timing t A1 corresponds to the state of FIG. 3A, and timing t A2 corresponds to the state of FIG. .
  • the generated power of the power generation device 4 is used while absorbing the shortage or surplus of the generated power of the power generation device 4 by the power input / output between the power conversion circuit 20 and the power system 5.
  • the power storage device 3 is charged under a certain charging reference condition.
  • the hunting phenomenon in charge quantitative control is a system-side hunting phenomenon in which the power conversion circuit 20 alternately repeats output processing (system output power conversion) and input processing (system input power conversion) in a relatively short time. It is.
  • the power system 5 may become unstable.
  • the stability of the power system 5 May be impaired.
  • the control unit 23 can detect the occurrence of the system-side hunting phenomenon by performing the system-side hunting detection process HD 1A based on the input / output power information.
  • the control unit 23 switches the input / output of power between the power conversion unit 21S and the power system 5 for a predetermined time based on the current value I S or I SINT included in the input / output power information.
  • the system side hunting detection determination is made.
  • control unit 23 causes the power conversion circuit 20 to perform a switching operation between the output process (system power conversion) and the input process (system input power conversion) a predetermined number of times within a predetermined time.
  • the event ie, the occurrence of a hunting phenomenon in the power conversion circuit 20 is determined to occur.
  • the predetermined number of times may be any number of 1 or more, but 2 or more is desirable.
  • the system-side hunting detection determination means that it is determined that the system-side hunting phenomenon is currently occurring.
  • control unit 23 may predict the occurrence of the system-side hunting phenomenon by performing the system-side hunting prediction process HP 1A based on the input / output power information (that is, the future It is also possible to predict whether a system-side hunting phenomenon is likely to occur).
  • the control unit 23 generates power based on the current value I G and the voltage value V G (that is, based on the generated power amount P G ) or based on the current value I GINT and the voltage value V INT.
  • a charging power amount P B ′ corresponding to the power amount P G is obtained, and the charging power amount P B ′ is compared with the storage power reference power amount P BREF defined by the charging reference condition.
  • the system-side hunting prediction determination means that it is determined that a system-side hunting phenomenon is likely to occur in the near future.
  • the corresponding charge power amount P B 'in generated power quantity P G refers to the charging electric energy for power storage device 3 based on the generated power quantity P G of the generator 4, the power conversion unit 21G and 21B power conversion efficiency and product
  • control unit 23 determines the absolute value
  • control unit 23 determines the absolute value
  • the hunting suppression control CNT 1A by changing the charging power amount, the absolute value of the input / output power amount between the power conversion circuit 20 and the power system 5 is increased, thereby suppressing the system-side hunting phenomenon.
  • the input / output power amount between the power conversion circuit 20 and the power system 5 indicates the input power amount from the power system 5 to the power conversion circuit 20 or the output power amount from the power conversion circuit 20 to the power system 5.
  • the timing at which the system-side hunting detection determination or the system-side hunting prediction determination is performed is also referred to as a system-side hunting recognition timing.
  • the control unit 23 can start the suppression control CNT 1A from the system-side hunting recognition timing (the same applies to hunting suppression control CNT 1B described later).
  • the suppression control CNT 1A is a control performed in the charge quantitative control, and the content of the charge quantitative control is modified during the execution period of the suppression control CNT 1A .
  • control unit 23 is configured to execute the hunting suppression control CNT 1A when it is determined that an event has occurred during the execution period of the charge quantitative control.
  • control unit 23 is configured to give an instruction to the power conversion circuit 20 so that the difference between the supplied power and the demand power becomes large.
  • the control unit 23 stores the charge command amount P B * by a predetermined amount ⁇ P B * for power storage.
  • Increase or decrease from the reference power amount P BREF that is, change the charge command amount P B * with reference to before the system-side hunting recognition timing.
  • the predetermined amount ⁇ P B * may be an amount (for example, the product of P BREF and the coefficient k) that depends on the reference power amount P BREF for power storage.
  • control unit 23 (instruction unit 233) is configured to execute normal control for setting the target value to a predetermined value (storage power reference amount P BREF ) until it is determined that an event has occurred.
  • control unit 23 is configured to set the target value to a value (P BREF ⁇ ⁇ P B * ) different from a predetermined value (storage power reference power amount P BREF ).
  • control unit 23 increases or decreases the charging power so that the difference between the generated power and the charging power becomes large.
  • FIG. 5 shows an example when the charge command amount P B * is decreased.
  • a broken broken line 312 represents a time transition of the charge command amount P B * , and a timing t A3 is a system-side hunting recognition timing.
  • FIG. 6A corresponds to immediately after the timing t A3 , when the charge command amount P B * is reduced to 8 by the suppression control CNT 1A when the generated power amount of the power generation device 4 is 10 kW ⁇ s. Indicates the power input / output state.
  • the control unit 23 controls the power conversion unit 21 ⁇ / b> S so that the surplus power amount 2 kW ⁇ s corresponding to the difference between the supplied power and the demand power is output from the power conversion circuit 20 to the power system 5. That is, the absolute value of the input / output power amount between the power conversion circuit 20 and the power system 5 based on the decrease before the decrease due to the decrease in the charged power amount by the suppression control CNT 1A (based on the state of FIG. 3C). Will increase. As a result, the system side hunting phenomenon is appropriately suppressed. The same applies to the case where the charge command amount P B * is increased from the power storage reference power amount P BREF .
  • control unit 23 controls the power conversion unit 21S so that the insufficient power amount 2 kW ⁇ s corresponding to the difference between the supplied power and the demand power is input from the power system 5 to the power conversion circuit 20.
  • the system side hunting phenomenon is appropriately suppressed.
  • the instruction given from the control unit 23 (instruction unit 233) to the power conversion circuit 20 is a target value of demand power (charging power). That is, the control unit 23 (instruction unit 233) suppresses the hunting phenomenon by controlling the power conversion unit 21B.
  • control unit 23 generates a system input / output command amount P S * that specifies the input / output power amount between the power conversion circuit 20 and the power system 5 to generate the power conversion unit 21S.
  • P S * the input / output command amount between the power conversion circuit 20 and the power system 5 to generate the power conversion unit 21S.
  • the power conversion unit 21S has a voltage value V S and a current value I so that power input / output having a power amount matching the system input / output command amount P S * is performed between the power conversion circuit 20 and the power system 5.
  • System input power conversion including S control or system output power conversion is performed.
  • the command amount P S * may be formed from a voltage command amount and a current command amount that specify the voltage value V S and the current value I S.
  • the control unit 23 When mains hunting detection determination or mains hunting prediction judgment is made, the control unit 23 to perform the second implementation of suppression control CNT 1A, based on the pre-system side hunting cognitive timing, system output command amount P S
  • the suppression control CNT 1A is realized by changing * by a predetermined amount ⁇ P S * and assigning the change amount to the change in the amount of charge power of the power storage device 3.
  • ⁇ P S * > 0
  • the predetermined amount ⁇ P S * may be an amount (for example, the product of P BREF and the coefficient k) that depends on the reference power amount P BREF for power storage.
  • the control unit 23 instructs the power conversion unit 21S (input power or output power so that input power or output power corresponding to the difference between the generated power and the charging power can be obtained.
  • Target value the control unit 23 (instruction unit 233) sets a target value (input power or output power target value) to be given to the power conversion unit 21S to a predetermined value. That is, the control unit 23 causes the power conversion unit 21S to perform either input processing or output processing regardless of the difference between the supplied power (generated power) and the demand power (charged power).
  • the command amount P S * is set as shown in FIG. This corresponds to the state where zero is substituted.
  • the control unit 23 changes the system input / output command amount (target value of output power) P S * from zero to a predetermined value (for example, It is possible to execute the suppression control CNT 1A that is changed to 2) (in this case, it is considered that the state where P S * > 0 corresponds to the power output state from the power conversion unit 21S to the power system 5).
  • a predetermined value for example, It is possible to execute the suppression control CNT 1A that is changed to 2
  • the control unit 23 prioritizes the system input / output command amount P S * over the charge command amount P B * , or gives the charge command amount P B * to the power conversion unit 21B. Don't give.
  • the control unit 23 charges the power storage device 3 with the surplus power determined by the amount of power generated by the power generation device 4 and the amount of input / output power between the power conversion circuit 20 and the power system 5.
  • the power converter 21B is controlled as described above.
  • FIG. 7 shows an example in which the command amount P S * is changed so that power output from the power conversion circuit 20 to the power system 5 is performed, but power input from the power system 5 to the power conversion circuit 20 is performed.
  • the command amount P S * may be changed so as to be performed.
  • the charge power amount of the power storage device 3 increases from 10 kW ⁇ s.
  • control unit 23 can execute the suppression control CNT 1A that changes the system input / output command amount (target value of input power) P S * from zero to a predetermined value (for example, ⁇ 2) (here, The state where P S * ⁇ 0 corresponds to the power input state from the power system 5 to the power conversion unit 21S).
  • a predetermined value for example, ⁇ 2
  • the instruction given from the control unit 23 (instruction unit 233) to the power conversion circuit 20 is the target value of output power or input power. That is, the control unit 23 (instruction unit 233) suppresses the hunting phenomenon by controlling the power conversion unit 21S.
  • the charge power amount is directly controlled by controlling the charge command amount P B *
  • the system input / output command amount P is indirectly controlled by controlling S * (by controlling the input / output power amount between the power conversion circuit 20 and the power system 5).
  • the control unit 23 performs the above-described operation based on the current value I G and the voltage value V G (that is, based on the generated power amount P G ) or based on the current value I GINT and the voltage value V INT.
  • the control unit 23 determines that the absolute value
  • is equal to or greater than the threshold TH 2A is continuously observed for a predetermined time or more, or a state in which the absolute value
  • the control unit 23 performs the difference (P B ) between the supplied power (generated power amount P G , charged power amount P B ′) and a predetermined value (power storage reference power amount P BREF ) during execution of the hunting suppression control CNT 1A.
  • P B the difference between the supplied power (generated power amount P G , charged power amount P B ′) and a predetermined value (power storage reference power amount P BREF ) during execution of the hunting suppression control CNT 1A.
  • is the first state is in a predetermined a threshold TH 2A above time (e.g., predetermined time T L) continued that the difference (P B '-P BREF) is positive or negative and the second time condition is given is (e.g., a predetermined time T L) continuing it, either It is.
  • the determination unit 232 determines the difference (P B ) between the supplied power (generated power amount P G , charged power amount P B ′) and a predetermined value (storage power reference power amount P BREF ). It is determined whether or not “ ⁇ P BREF ) satisfies the release condition, and the result of the determination is given to the instruction unit 233.
  • the instruction unit 233 is configured to end the hunting suppression control CNT 1A if the end determination result indicates that the release condition is satisfied.
  • the control unit 23 determines the difference (P B ′ ⁇ P B * ) May be set as a determination target, and when the charge command amount P B * is increased from the storage reference power amount P BREF by the predetermined amount ⁇ P B * by the suppression control CNT 1A , the control unit 23 determines the difference.
  • (P B * ⁇ P B ′) may be set as a determination target.
  • P B * may be replaced with the actually measured charging power amount P B (that is, I B ⁇ V B ).
  • the control unit 23 The execution of the suppression control CNT 1A may be canceled by determining that the cancellation condition in the determination process J 1A is satisfied (TH 2A '> ⁇ P B * ).
  • the control unit 23 when the difference between the supply during the hunting prevention control CNT 1A power (generated power) and the power demand (the amount of charging power) satisfies the release condition, terminates the hunting suppression control CNT 1A It may be configured to.
  • the release condition is that the absolute value of the difference between the generated electric energy and the charged electric energy is less than or equal to a predetermined threshold, or the absolute value of the difference between the generated electric energy and the charged electric energy is less than or equal to the predetermined threshold.
  • a certain state has continued for a predetermined time.
  • the predetermined threshold value is smaller than the range of change in the difference between the generated power amount and the charged power amount by execution of the hunting suppression control CNT 1A .
  • the release condition may be that a state where the difference between the generated power amount and the charged power amount is positive or negative continues for a predetermined time.
  • control unit 23 determines whether or not the switching operation between the input process and the output process has been performed a predetermined number of times during the execution of the hunting suppression control CNT 1A.
  • the suppression control CNT 1A may be configured to end.
  • the predetermined number may be one or more.
  • the control unit 23 can supply power to the DC load 8 using the generated power of the power generation device 4 and the discharge power of the power storage device 3, but in the discharge quantitative control, at this time, the power storage device 3 has a constant discharge reference.
  • the power conversion circuit 20 is controlled so as to be discharged under conditions.
  • the control unit 23 uses the power storage device 3, the power generation device 4, and the power system 5 together to supply power to the DC load 8.
  • the power storage device 3 and the power generation device 4 are used as a power supply device
  • the DC load 8 is used as a power demand device
  • the power system 5 is used as a power auxiliary device. Therefore, the power supply device includes a power generation device 4 and a power storage device 3 used as a power supply device.
  • the supplied power is the total of the generated power that is the power supplied from the power generation device 4 and the power supply power (discharge power) that is the power obtained from the power supply device (power storage device 3).
  • the demand power is power consumed by the DC load 8 (power consumption).
  • the magnitude of power consumption is referred to as power consumption.
  • the power consumption is equal to, for example, the total amount of power consumed for 1 second.
  • control unit 23 calculates the total value of the discharge power (discharge power amount) of the power storage device 3 and the generated power (generation power amount) of the power generation device 4 to the power consumption of the DC load 8 ( Compared with power consumption).
  • the control unit 23 indicates that if the supply power (the sum of the discharge power and the generated power) is greater than the demand power (power consumption), the surplus of the supply power (the sum of the discharge power and the generated power) is the power system
  • the power conversion circuit 20 is caused to execute output processing (power conversion for system output of the power conversion unit 21S) so as to be supplied to 5 (power auxiliary device).
  • the control unit 23 instructs the power conversion unit 21S (output power) so that output power corresponding to the difference between the total value of the discharged power and the generated power and the power consumption is obtained.
  • Target value For example, if the generated power is 13 kW ⁇ s and the discharged power is 10 kW ⁇ s, the supplied power is 23 kW ⁇ s. At this time, if the power consumption is 20 kW ⁇ s, the control unit 23 gives 3 kW ⁇ s to the power conversion unit 21S as the target value of the output power.
  • the controller 23 If the supplied power (the sum of the discharged power and the generated power) is less than the demand power (power consumption), the controller 23 (the instruction unit 233) has a shortage of the supplied power (the sum of the discharged power and the generated power) in the power system.
  • the power conversion circuit 20 performs input processing (power conversion for system input of the power conversion unit 21S) so as to be supplemented by power from 5 (power auxiliary device).
  • the control unit 23 instructs the power conversion unit 21S (input power) so as to obtain input power corresponding to the difference between the total value of the discharge power and the generated power and the power consumption.
  • Target value For example, if the generated power is 6 kW ⁇ s and the discharged power is 10 kW ⁇ s, the supplied power is 16 kW ⁇ s. At this time, if the power consumption is 20 kW ⁇ s, the control unit 23 gives 4 kW ⁇ s to the power conversion unit 21S as the target value of the input power.
  • the discharge reference condition is a condition for designating a discharge power amount of the power storage device 3 or a current value and a voltage value depending on the discharge power amount, and the control unit 23 can freely determine the discharge reference condition.
  • the discharge reference condition may be a condition for designating only one of a current value and a voltage value depending on the amount of discharge power of the power storage device 3.
  • the discharge reference condition specifies that the power storage device 3 is discharged with a constant reference power amount P BREF for power storage.
  • the control unit 23 can generate a discharge command amount P B * that specifies the amount of discharge power supplied from the power storage device 3 to the power conversion unit 21B and give the generated discharge command amount P B * to the power conversion unit 21B.
  • Power conversion unit 21B as the discharge amount of power specified by the discharge command amount P B * is output from the power storage device 3, the discharging power conversion, including the control of the voltage value V B and the current value I B Do.
  • the discharge command amount P B * may be formed from a voltage command amount and a current command amount that specify the voltage value V B and the current value I B.
  • control unit 23 can discharge the power storage device 3 with a constant reference power amount P BREF for storage by substituting the value of the reference power amount P BREF for storage into the discharge command amount P B *. .
  • the control unit 23 controls the power conversion unit 21 ⁇ / b> S so that the insufficient power amount 4 kW ⁇ s corresponding to is input from the power system 5 to the power conversion circuit 20.
  • the control unit 23 controls the power conversion unit 21 ⁇ / b> S so that the surplus power amount 3 kW ⁇ s to be output is output from the power conversion circuit 20 to the power system 5.
  • the generated power and power storage of the power generator 4 are absorbed while the shortage or surplus of the generated power of the power generator 4 is absorbed by the power input / output between the power conversion circuit 20 and the power system 5.
  • the power storage device 3 is discharged under a certain discharge reference condition.
  • (2-2) System side hunting detection processing HD 1B During the discharge quantitative control execution period, the control unit 23 can execute the system-side hunting detection process HD 1B .
  • the system-side hunting detection process HD 1B is the same as the system-side hunting detection process HD 1A described above.
  • control unit 23 may predict the occurrence of the system side hunting phenomenon by performing the system side hunting prediction process HP 1B based on the input / output power information.
  • the control unit 23 generates power based on the current value I G and the voltage value V G (that is, based on the generated power amount P G ) or based on the current value I GINT and the voltage value V INT. 'seeking, electric energy P G' power amount P G corresponding to the amount of power P G total power amount of the power storage for the reference power P BREF that is defined by the discharge reference condition (P G '+ P BREF) Is compared with the power consumption P C8 of the DC load 8.
  • the amount of power P G ′ is the amount of power output from the power converter 21 G and can be considered to be equal to the product (I GINT ⁇ V INT ).
  • control unit 23 determines whether or not the absolute value of the difference between the total power amount (P G '+ P BREF ) and the power consumption amount of the DC load 8 is equal to or less than a predetermined positive threshold value TH 3A.
  • a predetermined positive threshold value TH 3A When the state where the value is equal to or less than the threshold TH 3A is continuously observed for a predetermined time or more, the system side hunting prediction determination is made.
  • control unit 23 determines the absolute value of the difference between the supplied power (the total value of the power storage reference power P BREF and the power P G ′) and the demand power (power consumption P C8 )
  • the event is configured to determine that an event has occurred.
  • control unit 23 determines the absolute value of the difference between the supplied power (the total value of the power storage reference power P BREF and the power P G ′) and the demand power (power consumption P C8 )
  • the hunting suppression control CNT 1B the absolute value of the input / output power amount between the power conversion circuit 20 and the power system 5 is increased by changing the discharge power amount, thereby suppressing the system-side hunting phenomenon.
  • the suppression control CNT 1B is control performed in the discharge quantitative control, and the contents of the discharge quantitative control are corrected during the execution period of the suppression control CNT 1B .
  • control unit 23 is configured to execute the hunting suppression control CNT 1B when it is determined that an event has occurred during the discharge quantitative control execution period.
  • control unit 23 is configured to give an instruction to the power conversion circuit 20 so that the difference between the supplied power and the demand power becomes large.
  • the control unit 23 stores the discharge command amount P B * by a predetermined amount ⁇ P B * for power storage. Increase or decrease from the reference power amount P BREF (that is, change the discharge command amount P B * with reference to before the system-side hunting recognition timing).
  • control unit 23 (instruction unit 233) is configured to execute normal control for setting the target value to a predetermined value (storage power reference amount P BREF ) until it is determined that an event has occurred.
  • control unit 23 is configured to set the target value to a value (P BREF ⁇ ⁇ P B * ) different from the predetermined value (storage power reference P BREF ).
  • control unit 23 increases or decreases the discharge power so that the difference between the total value of the discharge power and the generated power and the power consumption increases.
  • the control unit 23 determines that the surplus power amount 2 kW ⁇ s is the power conversion circuit 20.
  • the power conversion unit 21S is controlled so as to be output to the power system 5. That is, the absolute value of the input / output power amount between the power conversion circuit 20 and the power system 5 with the increase in the discharge power amount by the suppression control CNT 1B as a reference (based on the state of FIG. 10C). Will increase. As a result, the system side hunting phenomenon is appropriately suppressed. The same applies to the case where the discharge command amount P B * is decreased from the reference power amount P BREF for power storage.
  • control unit 23 converts the power so that an insufficient power amount 2 kW ⁇ s corresponding to the difference between the total value of the discharge power and the generated power and the power consumption is input from the power system 5 to the power conversion circuit 20.
  • the unit 21S is controlled. As a result, the system side hunting phenomenon is appropriately suppressed.
  • the instruction given from the control unit 23 (instruction unit 233) to the power conversion circuit 20 is the target value of the power source power (discharge power). That is, the control unit 23 (instruction unit 233) suppresses the hunting phenomenon by controlling the power conversion unit 21B.
  • a second implementation example of the suppression control CNT 1B will be described.
  • the control unit 23 that performs the second implementation example of the suppression control CNT 1B uses the system input / output command amount P S as a reference before the system-side hunting recognition timing.
  • the suppression control CNT 1B is realized by changing * by a predetermined amount ⁇ P S * and assigning the change to the change in the amount of discharge power of the power storage device 3.
  • the control unit 23 obtains input power or output power corresponding to the difference between the supplied power (the total value of the discharge power and the generated power) and the demand power (power consumption). Thus, an instruction (target value of input power or output power) is given to the power conversion unit 21S.
  • the control unit 23 sets a target value (target value of input power or output power) to be given to the power conversion unit 21S to a predetermined value. That is, the control unit 23 performs either the input process or the output process on the power conversion unit 21S regardless of the difference between the supplied power (the total value of the discharge power and the generated power) and the demand power (power consumption). Let it be done.
  • FIG. 10C the state of FIG. 10C, that is, the state where the total amount of power generated by the power generation device 4 and the amount of discharge power of the power storage device 3 matches the power consumption of the DC load 8 is shown in FIG. As shown, this corresponds to a state where zero is substituted for the command amount P S * .
  • the control unit 23 changes the system input / output command amount (target value of output power) P S * from zero to a predetermined value (for example, It is possible to execute the suppression control CNT 1B that is changed to 2) (here, it is considered that the state where P S * > 0 corresponds to the power output state from the power conversion unit 21S to the power system 5).
  • the control unit 23 prioritizes the system input / output command amount P S * over the discharge command amount P B * , or gives the discharge command amount P B * to the power conversion unit 21B. Don't give.
  • the control unit 23 is determined by the amount of power generated by the power generation device 4, the amount of input / output power between the power conversion circuit 20 and the power system 5, and the power consumption of the DC load 8. Then, the power conversion unit 21B is controlled so that the insufficient power (the shortage of power to be supplied to the DC load 8) is discharged from the power storage device 3.
  • the power storage device 3 outputs discharge power for 12 W ⁇ s that is larger than the power storage reference power amount P BREF . This state is equivalent to the state shown in FIG.
  • FIG. 12 shows an example in which the command amount P S * is changed so that power output from the power conversion circuit 20 to the power system 5 is performed, but power input from the power system 5 to the power conversion circuit 20 is performed.
  • the command amount P S * may be changed to be performed.
  • the discharge power amount of the power storage device 3 is reduced from 10 kW ⁇ s.
  • control unit 23 can execute the suppression control CNT 1B that changes the system input / output command amount (target value of input power) P S * from zero to a predetermined value (for example, ⁇ 2) (here, The state where P S * ⁇ 0 corresponds to the power input state from the power system 5 to the power conversion unit 21S).
  • a predetermined value for example, ⁇ 2
  • the instruction given from the control unit 23 (instruction unit 233) to the power conversion circuit 20 is a target value of input power or output power. That is, the control unit 23 (instruction unit 233) suppresses the hunting phenomenon by controlling the power conversion unit 21S.
  • the discharge power amount is directly controlled by controlling the discharge command amount P B *
  • the system input / output command amount P is indirectly controlled by controlling S * (by controlling the input / output power amount between the power conversion circuit 20 and the power system 5).
  • cancellation determination processing J 1B corresponding to suppression control CNT 1B Control unit 23, during the execution period of the suppression control CNT 1B, through the success determination of a predetermined cancellation condition, performing the cancellation determination processing J 1B determines whether to cancel the execution of the suppression control CNT 1B Can do.
  • the control unit 23 continues the state where the absolute value is equal to or greater than the predetermined positive threshold TH 4A or the absolute value is equal to or greater than the threshold TH 4A for a predetermined time or longer.
  • the release condition in the determination process J 1B is satisfied (execution of the suppression control CNT 1B is performed). It is determined that the system-side hunting phenomenon does not occur or is unlikely to occur even if it is canceled), and the execution of the suppression control CNT 1B is canceled.
  • the control unit 23 calculates the total value (P G '+ P BREF ) of the generated power P G ' and the predetermined value (reference power storage amount) P BREF and the demand power (power consumption).
  • the difference (P G '+ P BREF -P C8 ) from the amount P C8 ) satisfies the release condition, the hunting suppression control CNT 1B is configured to end.
  • is the threshold TH 4A above state
  • a predetermined first time for example, the above-mentioned predetermined time
  • a predetermined second time for example, the above-mentioned predetermined time
  • the determination unit 232 includes the total value (P G '+ P BREF ) of the generated power P G ′ and the predetermined value (reference power storage amount) P BREF and the demand power (power consumption). It is determined whether or not the difference (P G '+ P BREF ⁇ P C8 ) from the amount P C8 ) satisfies the release condition, and the result of the end determination is given to the instruction unit 233.
  • the instruction unit 233 is configured to end the hunting suppression control CNT 1B if the end determination result indicates that the release condition is satisfied.
  • the control unit 23 when the suppression control CNT 1B has reduced the discharge command amount P B * from the predetermined amount [Delta] P B * only energy storage for the reference power P BREF, the control unit 23 the difference (P C8 - (P G ' + P B * )) may be set as a determination target, and control is performed when the discharge command amount P B * is increased from the storage reference power amount P BREF by a predetermined amount ⁇ P B * by the suppression control CNT 1B.
  • the unit 23 may set the difference ((P G '+ P B * ) ⁇ P C8 ) as a determination target.
  • P B * may be replaced with the actually measured discharge power amount P B (that is, I B ⁇ V B ).
  • P C8 represents the power consumption of the DC load 8.
  • the control unit 23 may cancel by determining that the cancellation condition in the determination process J 1B is satisfied (TH 4A '> ⁇ P B * ).
  • the control unit 23 determines that the difference between the supplied power (the total amount of generated power and the discharged power) and the demand power (power consumption) satisfies the release condition during the execution of the hunting suppression control CNT 1B.
  • the hunting suppression control CNT 1B may be configured to end.
  • the release condition is that the absolute value of the difference between the total value of the generated power amount and the discharged power amount and the consumed power amount is equal to or less than a predetermined threshold, or the total value of the generated power amount and the discharged power amount That is, a state where the absolute value of the difference between the power consumption and the power consumption amount is equal to or less than a predetermined threshold value continues for a predetermined time.
  • the predetermined threshold value is smaller than the range of change in the difference between the total value of the generated power amount and the discharged power amount and the consumed power amount due to the execution of the hunting suppression control CNT 1B .
  • the release condition may be that a state where the difference between the total value of the generated power amount and the discharged power amount and the consumed power amount is positive or negative continues for a predetermined time.
  • control unit 23 determines whether or not the switching operation between the input process and the output process has been performed a predetermined number of times during the execution of the hunting suppression control CNT 1B , and determines that the switching operation has been performed the predetermined number of times.
  • the suppression control CNT 1B may be configured to end.
  • the predetermined number may be one or more.
  • System output quantitative control (3-1) Basic operation Next, system output quantitative control will be described.
  • the control unit 23 controls the power conversion circuit 20 so that power is output from the power conversion circuit 20 to the power system 5 under a certain system output reference condition using the generated power of the power generation device 4. To do.
  • the control unit 23 supplies power to the power system 5 using the power storage device 3 and the power generation device 4.
  • the power generation device 4 is used as a power supply device
  • the power system 5 is used as a power demand device
  • the power storage device 3 is used as a power auxiliary device. Therefore, in the grid output quantitative control, the supplied power is the generated power of the power generator 4.
  • the demand power is power (output power) supplied to the power system 5.
  • control unit 23 compares the generated power (generated power amount) of the power generation device 4 with the output power (output power amount) of the power system 5.
  • control unit 23 may supply an excess of the supplied power (generated power) to the power storage device 3 (power auxiliary device).
  • the power conversion circuit 20 is caused to execute output processing (power conversion for charging of the power conversion unit 21B).
  • control unit 23 (instruction unit 233) gives an instruction (target value of charging power) to the power conversion unit 21B so that charging power corresponding to the difference between the generated power and the output power can be obtained. For example, if the supplied power amount is 13 kW ⁇ s and the output power amount is 10 kW ⁇ s, 3 kW ⁇ s is given to the power conversion unit 21B as the target value of the charging power.
  • the control unit 23 (instruction unit 233) compensates for the shortage of the supplied power (generated power) with the power from the power storage device 3 (power auxiliary device). In this manner, the power conversion circuit 20 is caused to execute input processing (discharge power conversion of the power conversion unit 21B).
  • control unit 23 (instruction unit 233) gives an instruction (target value of the discharge power) to the power conversion unit 21B so that the discharge power corresponding to the difference between the generated power and the output power can be obtained. For example, if the supply power amount is 6 kW ⁇ s and the output power amount is 10 kW ⁇ s, the control unit 23 gives 4 kW ⁇ s to the power conversion unit 21B as the target value of the discharge power.
  • the control unit 23 controls the power conversion circuit 20 so that the power storage device 3 is charged with surplus power (surplus power amount).
  • the system output reference condition is a condition for designating an output power amount from the power conversion circuit 20 to the power system 5 or a current value and a voltage value depending on the output power amount, and the control unit 23 freely sets the system output reference condition. Can be determined.
  • the system output reference condition may be a condition for designating only one of the current value and the voltage value depending on the output power amount from the power conversion circuit 20 to the power system 5.
  • the grid output reference condition specifies that the power conversion circuit 20 outputs power to the power grid 5 at a constant grid reference power amount (system input / output reference power amount) P SREF .
  • the power flow between the power conversion circuit 20 and the power system 5 is limited from the power conversion circuit 20 to the power system 5, so the system input / output command amount P S * is changed to the system output command amount P S *. Also say.
  • the control unit 23 gives the system output command amount P S * into which the value of the system reference power amount P SREF is substituted to the power conversion unit 21S, so that the system is transferred from the power conversion unit 21S to the power system 5.
  • the power of the reference power amount P SREF can be output.
  • the control unit 23 controls the power conversion unit 21B so that the power shortage 4 kW ⁇ s corresponding to the difference between them is discharged from the power storage device 3.
  • the power conversion circuit 20 uses the generated power of the power generation device 4 while absorbing the shortage or surplus of the generated power of the power generation device 4 by charging or discharging the power storage device 3. Electric power is output to the electric power system 5 under a certain system output reference condition.
  • the hunting phenomenon in the grid output quantitative control is a storage-side hunting phenomenon in which the power conversion circuit 20 alternately repeats output processing (charging power conversion) and input processing (discharging power conversion) in a relatively short time. is there.
  • Switching due to the power storage side hunting phenomenon is not preferable for the power storage device 3 and can promote deterioration of the power storage device 3.
  • control unit 23 can detect the occurrence of the power storage side hunting phenomenon by performing the power storage side hunting detection process HD 1C based on the input / output power information.
  • the control unit 23 switches the input / output of power between the power conversion unit 21B and the power storage device 3 for a predetermined time based on the current value I B or I BINT included in the input / output power information.
  • a storage side hunting detection determination is made.
  • the control unit 23 determines unit 232.
  • the event that is, the occurrence of the hunting phenomenon in the power conversion circuit 20 is determined to occur.
  • the predetermined number of times may be any number of 1 or more, but 2 or more is desirable.
  • the storage-side hunting detection determination means that it is determined that the storage-side hunting phenomenon is currently occurring.
  • control unit 23 may predict the occurrence of the power storage side hunting phenomenon by performing the power storage side hunting prediction process HP 1C based on the input / output power information (that is, It may be predicted whether the storage-side hunting phenomenon is likely to occur in the future).
  • the control unit 23 generates power based on the current value I G and the voltage value V G (that is, based on the generated power amount P G ) or based on the current value I GINT and the voltage value V INT.
  • the system output power amount P S ′ corresponding to the power amount P G is obtained, and the system output power amount P S ′ is compared with the system reference power amount P SREF defined by the system output reference condition.
  • control unit 23 determines that the absolute value
  • a storage-side hunting prediction determination is made when a state of 5 A or less is continuously observed for a predetermined time or more.
  • the storage side hunting prediction determination means that it is determined that the storage side hunting phenomenon is likely to occur in the near future.
  • the grid output power amount P S ′ corresponding to the generated power amount P G indicates the output power amount for the power system 5 based on the generated power amount P G of the power generation device 4, and the power conversion efficiency of the power conversion units 21G and 21S.
  • control unit 23 determines that the absolute value
  • the control unit 23 determines that the absolute value
  • a determination value threshold value TH 5A
  • (3-5) Hunting suppression control CNT 1C When the storage-side hunting detection determination or the storage-side hunting prediction determination is made during the execution period of the system output quantitative control, the control unit 23 sets the output power amount from the power conversion circuit 20 to the power system 5 as the system output reference condition. The hunting suppression control CNT 1C that is changed from the system reference power amount P SREF is executed.
  • the input / output power amount between the power conversion circuit 20 and the power storage device 3 is an input power amount from the power storage device 3 to the power conversion circuit 20 (that is, a discharge power amount of the power storage device 3) or from the power conversion circuit 20 to the power storage device 3.
  • Output electric energy that is, charging electric energy of the power storage device 3.
  • the timing at which the storage-side hunting detection determination or the storage-side hunting prediction determination is made is also referred to as a storage-side hunting recognition timing.
  • the control unit 23 can start the suppression control CNT 1C from the storage side hunting recognition timing (the same applies to the hunting suppression control CNT 1D described later).
  • the suppression control CNT 1C is control performed in the system output quantitative control, and correction is made to the content of the system output quantitative control during the execution period of the suppression control CNT 1C .
  • control unit 23 is configured to execute the hunting suppression control CNT 1C when it is determined that an event has occurred during the execution period of the system output quantitative control.
  • control unit 23 is configured to give an instruction to the power conversion circuit 20 so that the difference between the supplied power and the demand power becomes large.
  • the output power or output power amount from the power conversion circuit 20 to the power system 5 may be simply referred to as output power or output power amount to the power system 5.
  • the input power or input power amount to 20 may be simply referred to as input power or input power amount from the power system 5.
  • the control unit 23 reduces the system output command amount P S * to the system by a predetermined amount ⁇ P S *.
  • the reference power amount P SREF is increased or decreased (that is, the system output command amount P S * is changed with reference to the timing before the power storage side hunting recognition timing).
  • the predetermined amount ⁇ P S * may be an amount that depends on the grid reference power amount P SREF (for example, the product of P SREF and the coefficient k).
  • control unit 23 (instruction unit 233) is configured to execute normal control for setting the target value to a predetermined value (system reference power amount P SREF ) until it is determined that an event has occurred.
  • control unit 23 is configured to set the target value to a value (P SREF ⁇ ⁇ P S * ) different from the predetermined value (system reference power amount P SREF ).
  • control unit 23 increases or decreases the output power so that the difference between the generated power and the output power becomes large.
  • the control unit 23 causes the power conversion unit 21 ⁇ / b > B so that the insufficient power amount 2 kW ⁇ s corresponding to the difference between the generated power amount of the power generation device 4 and the system output command amount P S * is discharged from the power storage device 3.
  • the input / output between the power conversion circuit 20 and the power storage device 3 is based on the increase in the amount of output power to the power system 5 due to the suppression control CNT 1C (based on the state before FIG. 13C).
  • the absolute value of the electric energy increases.
  • the power storage side hunting phenomenon is appropriately suppressed.
  • the system output command amount P S * is reduced from the system reference power amount P SREF .
  • control unit 23 controls the power conversion unit 21B so that the surplus power amount 2 kW ⁇ s corresponding to the difference between the supplied power and the output power is supplied from the power conversion circuit 20 to the power storage device 3.
  • the power storage side hunting phenomenon is appropriately suppressed.
  • the instruction given from the control unit 23 (instruction unit 233) to the power conversion circuit 20 is a target value of demand power (output power). That is, the control unit 23 (instruction unit 233) suppresses the hunting phenomenon by controlling the power conversion unit 21S.
  • the suppression control CNT 1C uses the charging command to the power conversion unit 21B with reference to the timing before the storage-side hunting recognition timing.
  • the suppression control CNT 1C is realized by changing the amount or the discharge command amount P B * by a predetermined amount ⁇ P B * and assigning the change amount to the change in the output power amount from the power conversion circuit 20 to the power system 5.
  • ⁇ P B * > 0”.
  • the predetermined amount ⁇ P B * may be an amount depending on the grid reference power amount P SREF , for example, the product of P SREF and the coefficient k.
  • the control unit 23 instructs the power conversion unit 21B (charging power or discharging power so that charging power or discharging power corresponding to the difference between the generated power and the output power is obtained.
  • Target value the control unit 23 (instruction unit 233) sets a target value (target value of charging power or discharging power) to be given to the power conversion unit 21B to a predetermined value.
  • the control unit 23 causes the power conversion unit 21B to perform either input processing or output processing regardless of the difference between the supplied power (generated power) and the demand power (output power).
  • the control unit 23 changes the discharge command amount (target value of discharge power) P B * from zero to a predetermined value (for example, 2). Suppression control CNT 1C to be changed to can be executed.
  • the control unit 23 prioritizes the discharge command amount (or charge command amount) P B * over the system output command amount P S * or the system output command amount P S. * Is not given to the power converter 21S.
  • the control unit 23 controls the power conversion unit 21S so that the total power amount of the power generation amount of the power generation device 4 and the discharge power of the power storage device 3 is output to the power system 5. .
  • the power grid 5 is supplied with 12 kW ⁇ s of output power that is greater than the grid reference power amount P SREF .
  • 12 kW ⁇ s of power is output from the power conversion circuit 20 to the power system 5. This state is equivalent to the state shown in FIG.
  • Figure 15 is an example of when the discharge of the power storage device 3 has changed the command amount P B * to take place, even by changing the command value P B * as charging of the electricity storage device 3 is carried out In that case, the output power amount to the electric power system 5 is reduced from 10 kW ⁇ s.
  • control unit 23 can execute the suppression control CNT 1C that changes the charging command amount (target value of charging power) P B * from zero to a predetermined value (for example, 2).
  • the instruction given from the control unit 23 (instruction unit 233) to the power conversion circuit 20 is a target value of charging power or discharging power. That is, the control unit 23 (instruction unit 233) suppresses the hunting phenomenon by controlling the power conversion unit 21B.
  • the output power amount to the power system 5 is directly controlled by controlling the system output command amount P S *
  • the output power amount to the power system 5 is indirectly controlled by controlling the charge or discharge command amount P B * (by controlling the input / output power amount between the power conversion circuit 20 and the power storage device 3).
  • the control unit 23 performs the above-described operation based on the current value I G and the voltage value V G (that is, based on the generated power amount P G ) or based on the current value I GINT and the voltage value V INT.
  • the control unit 23 determines that the absolute value
  • is equal to or greater than the threshold TH 6A is continuously observed for a predetermined time or longer, or a state where the absolute value
  • the release condition in the determination process J 1C is determined to be satisfied (determined that the storage-side hunting phenomenon does not occur or hardly occurs even if the execution of the suppression control CNT 1C is canceled), and the suppression control CNT 1C Cancel execution.
  • the control unit 23 performs the difference (P) between the supplied power (generated power amount P G , system output power amount P S ′) and a predetermined value (system reference power amount P SREF ) during execution of the hunting suppression control CNT 1C.
  • the hunting suppression control CNT 1C is configured to end.
  • is equal to or greater than the threshold TH 6A
  • is the first state is in a predetermined is equal to or greater than the threshold TH 6A
  • the determination unit 232 determines the difference between the supplied power (generated power amount P G , system output power amount P S ′) and a predetermined value (system reference power amount P SREF ) (P S '-P SREF) performs the cancellation condition is satisfied whether end determination, giving the result of the completion determination instructing section 233.
  • the instruction unit 233 is configured to end the hunting suppression control CNT 1C if the result of the end determination indicates that the release condition is satisfied.
  • the control unit 23 determines the difference (P S ′ ⁇ P S * ) May be set as a determination target, and when the system output command amount P S * is increased from the system reference power amount P SREF by the predetermined amount ⁇ P S * by the suppression control CNT 1C , the control unit 23 The difference (P S * ⁇ P S ′) may be set as a determination target.
  • P S * may be replaced with the actually measured output power P S (ie, I S ⁇ V S ).
  • the control unit 23 determines The execution of the suppression control CNT 1C may be canceled by determining that the cancellation condition in the process J 1C is satisfied (TH 6A '> ⁇ P S * ).
  • the control unit 23 when the difference between the supply during the hunting prevention control CNT 1C power (generated power) and the power demand (the amount of output power) satisfies the release condition, terminates the hunting suppression control CNT 1C It may be configured to.
  • the release condition is that the absolute value of the difference between the generated electric energy and the output electric energy is less than or equal to a predetermined threshold, or the absolute value of the difference between the generated electric energy and the output electric energy is less than or equal to the predetermined threshold.
  • a certain state has continued for a predetermined time.
  • the predetermined threshold value is smaller than the range of change in the difference between the generated power amount and the output power amount due to the execution of the hunting suppression control CNT 1C .
  • the cancellation condition may be that the state where the difference between the generated power amount and the output power amount is positive or negative continues for a predetermined time.
  • control unit 23 determines whether or not the switching operation between the input process and the output process has been performed a predetermined number of times during the execution of the hunting suppression control CNT 1C , and determines that the switching operation has been performed the predetermined number of times.
  • the suppression control CNT 1C may be configured to end.
  • the predetermined number may be one or more.
  • the control unit 23 can supply power to the DC load 8 using the generated power of the power generation device 4 and the input power from the power system 5 to the power conversion circuit 20, but in the system input quantitative control, The power conversion circuit 20 is controlled so that power is input from the system 5 to the power conversion circuit 20 under a constant system input reference condition.
  • the control unit 23 supplies power to the DC load 8 by using the power storage device 3, the power generation device 4, and the power system 5 in combination.
  • the power system 5 and the power generation device 4 are used as a power supply device
  • the DC load 8 is used as a power demand device
  • the power storage device 3 is used as a power auxiliary device. Therefore, the power supply device includes a power generation device 4 and a power system 5 used as a power supply device.
  • the supplied power is the total of the generated power that is the power supplied from the power generation device 4 and the power supply power (input power) that is the power obtained from the power supply device (power system 5).
  • the demand power is power consumed by the DC load 8 (power consumption).
  • control unit 23 uses the total value of the input power (input power amount) of the power system 5 and the generated power (generated power amount) of the power generation device 4 as the power consumption of the DC load 8. Compare with (Power consumption).
  • the control unit 23 (instruction unit 233) stores the surplus of the supplied power (total of input power and generated power) in the power storage device.
  • the power conversion circuit 20 is caused to execute output processing (charging power conversion of the power conversion unit 21B) so as to be supplied to 3 (power auxiliary device).
  • the control unit 23 instructs the power conversion unit 21B (charging power so that charging power corresponding to the difference between the total value of input power and generated power and power consumption is obtained.
  • Target value For example, if the generated power is 13 kW ⁇ s and the input power is 10 kW ⁇ s, the supplied power is 23 kW ⁇ s. At this time, if the power consumption is 20 kW ⁇ s, the control unit 23 gives 3 kW ⁇ s to the power conversion unit 21B as the target value of the charging power.
  • the control unit 23 (the instruction unit 233) has a shortage of the supplied power (the total of the input power and the generated power).
  • the power conversion circuit 20 is caused to execute input processing (discharge power conversion of the power conversion unit 21B) so as to be supplemented with power from 3 (power auxiliary device).
  • the control unit 23 instructs the power conversion unit 21B (discharge power) so as to obtain discharge power corresponding to the difference between the total value of input power and generated power and power consumption.
  • Target value For example, if the power generation amount is 6 kW ⁇ s and the input power amount is 10 kW ⁇ s, the supplied power amount is 16 kW ⁇ s. At this time, if the power consumption is 20 kW ⁇ s, the control unit 23 gives 4 kW ⁇ s to the power conversion unit 21B as the target value of the discharge power.
  • the control unit 23 controls the power conversion circuit 20 so that the power storage device 3 is charged with (the surplus power amount).
  • the system input reference condition is a condition for designating an input power amount from the power system 5 to the power conversion circuit 20 or a current value and a voltage value depending on the input power amount, and the control unit 23 freely sets the system input reference condition. Can be determined.
  • the system input reference condition may be a condition for designating only one of the current value and the voltage value depending on the input power amount from the power system 5 to the power conversion circuit 20.
  • the system input reference condition specifies that power input from the power system 5 to the power conversion circuit 20 is performed at a constant system reference power amount (system input / output reference power amount) P SREF. To do.
  • the power flow between the power conversion circuit 20 and the power system 5 is limited from the power system 5 to the power conversion circuit 20, and therefore the system input / output command quantity P S * is changed to the system input command quantity P S *. Also say.
  • control unit 23 gives the system input command amount P S * into which the value of the system reference power amount P SREF is assigned to the power conversion unit 21S, so that the power system 5 sends the power conversion unit 21S to the power conversion unit 21S.
  • the power of the grid reference power amount P SREF can be input.
  • the control unit 23 controls the power conversion unit 21 ⁇ / b> B so that the insufficient power amount 4 kW ⁇ s corresponding to the difference is discharged from the power storage device 3.
  • the control unit 23 controls the power conversion unit 21B so that the power storage device 3 is charged with a surplus power amount 3 kW ⁇ s corresponding to the difference.
  • the power conversion circuit is connected to the power generated by the power generator 4 and the power grid 5 while absorbing the shortage or surplus of the power generated by the power generator 4 by charging or discharging the power storage device 3.
  • power is input from the power system 5 to the power conversion circuit 20 under a certain system input reference condition.
  • the control unit 23 can execute the power storage side hunting detection process HD 1D .
  • the power storage side hunting detection process HD 1D is the same as the power storage side hunting detection process HD 1C described above.
  • control unit 23 may predict the occurrence of the power storage side hunting phenomenon by performing the power storage side hunting prediction process HP 1D based on the input / output power information.
  • the control unit 23 generates power based on the current value I G and the voltage value V G (that is, based on the generated power amount P G ) or based on the current value I GINT and the voltage value V INT. 'seeking, electric energy P G' power amount P G corresponding to the amount of power P G total electric energy of the power system reference power P SREF which is defined by the system input reference condition (P G '+ P SREF ) Is compared with the power consumption of the DC load 8.
  • the amount of power P G ′ is the amount of power output from the power converter 21G, and can be considered to be equal to the product (I GINT ⁇ V INT ).
  • the control unit 23 determines whether or not the absolute value of the difference between the total power amount (P G '+ P SREF ) and the power consumption amount of the DC load 8 is equal to or less than a predetermined positive threshold value TH 7A.
  • a predetermined positive threshold value TH 7A When the state where the value is equal to or less than the threshold TH 7A is continuously observed for a predetermined time or more, the power storage side hunting prediction determination is made.
  • control unit 23 determines the absolute value of the difference between the supplied power (the total value of the grid reference power amount P SREF and the power amount P G ′) and the demand power (power consumption amount P C8 )
  • the event is configured to determine that an event has occurred.
  • the control unit 23 determines the absolute value of the difference between the supplied power (the total value of the grid reference power amount P SREF and the power amount P G ′) and the demand power (power consumption amount P C8 ). When it is determined whether P SREF + P G ′ ⁇ P C8
  • the hunting suppression control CNT 1D In the hunting suppression control CNT 1D , the absolute value of the input / output power amount between the power conversion circuit 20 and the power storage device 3 is increased by changing the input power amount from the power system 5 to the power conversion circuit 20, thereby storing the power. Suppresses side hunting phenomenon.
  • the suppression control CNT 1D is control performed in the system input quantitative control, and the contents of the system input quantitative control are corrected during the execution period of the suppression control CNT 1D .
  • control unit 23 is configured to execute the hunting suppression control CNT 1D when it is determined that an event has occurred during the execution period of the system input quantitative control.
  • control unit 23 is configured to give an instruction to the power conversion circuit 20 so that the difference between the supplied power and the demand power becomes large.
  • the control unit 23 reduces the system input command amount P S * to the system by a predetermined amount ⁇ P S *.
  • the reference power amount P SREF is increased or decreased (that is, the system input command amount P S * is changed with reference to the power storage side hunting recognition timing).
  • control unit 23 (instruction unit 233) is configured to execute normal control for setting the target value to a predetermined value (system reference power amount P SREF ) until it is determined that an event has occurred.
  • control unit 23 is configured to set the target value to a value (P SREF ⁇ ⁇ P S * ) different from the predetermined value (system reference power amount P SREF ).
  • control unit 23 increases or decreases the input power so that the difference between the total value of the input power and the generated power and the power consumption increases.
  • the control unit 23 converts the power storage unit 3 so that the power storage device 3 is charged with a surplus power amount 2 kW ⁇ s corresponding to the difference between the power generation amount of the power generation device 4 and the system input command amount P S *. 21B is controlled. That is, the input / output between the power conversion circuit 20 and the power storage device 3 is based on the increase in the amount of input power from the power system 5 due to the suppression control CNT 1D with reference to the state before the increase (based on the state of FIG. 16C). The absolute value of the electric energy increases. As a result, the power storage side hunting phenomenon is appropriately suppressed. The same applies when the system input command amount P S * is decreased from the system reference power amount P SREF .
  • control unit 23 converts the power so that an insufficient power amount 2 kW ⁇ s corresponding to the difference between the total value of the input power and the generated power and the power consumption is input from the power storage device 3 to the power conversion circuit 20.
  • the unit 21B is controlled. As a result, the power storage side hunting phenomenon is appropriately suppressed.
  • the instruction given from the control unit 23 (instruction unit 233) to the power conversion circuit 20 is the target value of the power supply power (input power). That is, the control unit 23 (instruction unit 233) suppresses the hunting phenomenon by controlling the power conversion unit 21S.
  • a second implementation example of the suppression control CNT 1D will be described.
  • the control unit 23 that performs the second implementation example of the suppression control CNT 1D uses the charging command to the power conversion unit 21B with reference to the timing before the storage-side hunting recognition timing.
  • the suppression control CNT 1D is realized by changing the amount or the discharge command amount P B * by a predetermined amount ⁇ P B * and assigning the change amount to the change in the input power amount from the power system 5 to the power conversion circuit 20.
  • the control unit 23 instruction unit 233) can obtain discharge power or charge power corresponding to a difference between supply power (total value of input power and generated power) and demand power (power consumption). In this manner, an instruction (a target value of discharge power or charge power) is given to the power conversion unit 21B.
  • the control unit 23 in the hunting suppression control CNT 1D , the control unit 23 (instruction unit 233) maintains the target value (discharge power or charge power target value) given to the power conversion unit 21B at a predetermined value. That is, the control unit 23 performs either the input process or the output process on the power conversion unit 21B regardless of the difference between the supplied power (the total value of the input power and the generated power) and the demand power (power consumption). Let it be done.
  • control unit 23 executes, for example, suppression control CNT 1D that changes the charge command amount P B * from zero to 2. Can do.
  • the control unit 23 prioritizes the charge command amount (or discharge command amount) P B * over the system input command amount P S * or the system input command amount P S. * Is not given to the power converter 21S.
  • the control unit 23 supplies an insufficient power amount (supplied to the DC load 8) determined by the power generation amount of the power generation device 4, the charging power amount of the power storage device 3, and the power consumption amount of the DC load 8.
  • the power converter 21S is controlled so that the power shortage) is input from the power system 5.
  • Figure 18 is an example of when the charging of power storage device 3 has changed the command amount P B * to take place, even by changing the command value P B * as discharge of the power storage device 3 is carried out In that case, the amount of input power from the power system 5 is reduced from 10 kW ⁇ s.
  • control unit 23 can execute the suppression control CNT 1D that changes the discharge command amount (target value of discharge power) P B * from zero to a predetermined value (for example, 2).
  • the instruction given from the control unit 23 (instruction unit 233) to the power conversion circuit 20 is the target value of the discharge power or the charge power. That is, the control unit 23 (instruction unit 233) suppresses the hunting phenomenon by controlling the power conversion unit 21B.
  • the input power amount from the power system 5 is directly controlled by controlling the system input command amount P S *
  • the amount of input power from the power system 5 is indirectly controlled by controlling the charge or discharge command amount P B * (by controlling the amount of input / output power between the power conversion circuit 20 and the power storage device 3).
  • cancellation determination processing J 1D corresponding to suppression control CNT 1D Control unit 23, during the execution period of the suppression control CNT 1D, through a success determination of the predetermined release condition, release determination processing J 1D be performed determines whether to cancel the execution of the suppression control CNT 1D Can do.
  • the control unit 23 continues the state where the absolute value is equal to or greater than the predetermined positive threshold TH 8A or the absolute value is equal to or greater than the threshold TH 8A for a predetermined time or longer.
  • the release condition in the determination process J 1D is satisfied (execution of the suppression control CNT 1D is executed). It is determined that the storage-side hunting phenomenon does not occur or is unlikely to occur even when the release is canceled), and the execution of the suppression control CNT 1D is canceled.
  • the control unit 23 calculates the total value (P G '+ P SREF ) of the generated power P G ' and the predetermined value (system reference power amount) P SREF and the demand power (power consumption).
  • the difference (P G '+ P SREF -P C8 ) from the amount P C8 ) satisfies the release condition, the hunting suppression control CNT 1D is terminated.
  • the release condition is that the absolute value of the difference
  • a predetermined first time for example, the above-mentioned predetermined time
  • a state in which the difference (P G '+ P SREF -P C8 ) is positive or negative continues for a predetermined second time (for example, the above-mentioned predetermined time) Either
  • the determination unit 232 includes the total value (P G ′ + P SREF ) of the generated power P G ′ and the predetermined value (system reference power amount) P SREF and the demand power (power consumption). An end determination is made as to whether or not the difference (P G ′ + P SREF ⁇ P C8 ) from the amount P C8 ) satisfies the release condition, and the result of the end determination is given to the instruction unit 233.
  • the instruction unit 233 is configured to end the hunting suppression control CNT 1D if the end determination result indicates that the release condition is satisfied.
  • the control unit 23 determines the difference (P C8 ⁇ (P G '+ P S * )) may be set as a determination target, and when the system input command amount P S * is increased from the system reference power amount P SREF by a predetermined amount ⁇ P S * by the suppression control CNT 1D.
  • the control unit 23 may set the difference ((P G ′ + P S * ) ⁇ P C8 ) as a determination target.
  • P S * may be replaced with the actually measured input power P S (ie, I S ⁇ V S ).
  • P C8 represents the power consumption of the DC load 8.
  • the control unit 23 determines that the difference between the supply power (the total amount of generated power and the input power) and the demand power (power consumption) satisfies the release condition during execution of the hunting suppression control CNT 1D.
  • the hunting suppression control CNT 1D may be configured to end.
  • the cancellation condition is that the absolute value of the difference between the total value of the generated power amount and the input power amount and the consumed power amount is equal to or less than a predetermined threshold, or the total value of the generated power amount and the input power amount That is, a state where the absolute value of the difference between the power consumption and the power consumption amount is equal to or less than a predetermined threshold value continues for a predetermined time.
  • the predetermined threshold value is smaller than the change width of the difference between the total value of the generated power amount and the input power amount and the consumed power amount due to the execution of the hunting suppression control CNT 1D .
  • the release condition may be that a state where the difference between the total value of the generated power amount and the input power amount and the consumed power amount is positive or negative continues for a predetermined time.
  • control unit 23 determines whether or not the switching operation between the input process and the output process has been performed a predetermined number of times during the execution of the hunting suppression control CNT 1D , and if it is determined that the switching operation has been performed the predetermined number of times,
  • the suppression control CNT 1D may be configured to end.
  • the predetermined number may be one or more.
  • FIG. 19 is an operation flowchart of the power conversion device 2 focusing on the above-described various quantitative controls.
  • step S11 the control unit 23 starts execution of the above-described charge quantitative control, discharge quantitative control, system output quantitative control, or system input quantitative control (hereinafter, charge quantitative control, discharge quantitative control, system output quantitative control).
  • system input quantitative control is also simply referred to as quantitative control).
  • step S12 the control unit 23, based on the input / output power information, performs the above-mentioned system side or power storage side hunting detection process (HD 1A , HD 1B , HD 1C , HD 1D ) or system side or power storage side hunting prediction process. (HP 1A , HP 1B , HP 1C , HP 1D ).
  • step S13 the control unit 23 checks whether the system side or power storage side hunting detection determination or the system side or power storage side hunting prediction determination has been made, and if neither of these determinations has been made. Returning from step S13 to step S12, the processes of steps S12 and S13 are repeated, but if any of these determinations is made, a transition to step S14 is generated and hunting suppression control (CNT 1A , CNT 1B , CNT 1C , CNT 1D ) is started.
  • hunting suppression control CNT 1A , CNT 1B , CNT 1C , CNT 1D
  • the control unit 23 After the execution of the hunting suppression control is started, the control unit 23 performs a hunting suppression control cancelability determination process (J 1A , J 1B , J 1C , J 1D ) (step S15).
  • the control unit 23 continues to execute the hunting suppression control until a predetermined release condition is satisfied (steps S15 and S16), and cancels the execution of the hunting suppression control when the release condition is satisfied (step S17). Return to step S12.
  • the hunting suppression control is a control that is performed in the quantitative control and modifies the content of the quantitative control (for example, if the hunting suppression control is performed during the execution of the charge quantitative control, the charging power
  • the charge quantitative control is performed after the amount is corrected upward or downward from the reference power amount P BREF for power storage), and when the execution of the hunting suppression control is canceled, the correction is also canceled and the basic quantitative control is performed. Resumed.
  • step S17 the execution of the quantitative control is stopped during the execution of the hunting suppression control, and the quantitative control can be resumed when the hunting suppression control is canceled (in this case, the hunting suppression control is canceled in step S17). Then, the process returns to step S11).
  • the reference power amount P BREF or P SREF is updated to the latest one. It is good to update to.
  • the reference power P BREF or P SREF with updated to the latest ones may be returned to step S11.
  • control part 23 may perform the cancellation
  • the control unit 23 executes the system-side hunting detection process HD 1A and observes the occurrence of the system-side hunting phenomenon for a predetermined number of times (any number of 1 or more). When it is determined that the release condition is satisfied, the execution of the suppression control CNT 1A or CNT 1B may be released.
  • the control unit 23 executes the storage-side hunting detection process HD 1C, and the occurrence of the storage-side hunting phenomenon is equal to or greater than a predetermined number (any number of 1 or more). When the observation is observed, it may be determined that the release condition is satisfied, and the execution of the suppression control CNT 1C or CNT 1D may be released.
  • the power conversion device 2 includes a power conversion circuit 20 and a control unit 23.
  • the power conversion circuit 20 includes a power storage side circuit (power conversion unit 21B) connected to the power storage device 3 that can be charged and discharged, and a power generation side circuit (power) connected to the power generation device 4 that generates power and outputs generated power. It has a system side circuit (power conversion unit 21S) connected to the conversion unit 21G) and the power system 5.
  • the power conversion circuit 20 is configured to perform power transmission and reception between the power storage device 3, the power generation device 4, and the power system 5 through power conversion.
  • the control unit 23 is configured to control power transmission and power reception by controlling the power conversion circuit 20.
  • the control unit 23 absorbs the shortage or surplus of the generated power at the input / output of the power between the power conversion circuit 20 and the power system 5 and uses the generated power of the power generation device 4 to keep the power storage device 3 at a certain level.
  • a power storage device that is charged under one reference condition or that supplies power to at least one of a load and a secondary battery connected to the power conversion circuit 20 using the generated power of the power generation device 4 and the discharge power of the power storage device 3 3 is configured to execute quantitative control (charge quantitative control / discharge quantitative control) for discharging 3 under a constant second reference condition.
  • the control unit 23 changes the charging or discharging condition of the power storage device 3 from the first reference condition or the second reference condition. The suppression control which suppresses switching by this is performed.
  • the power conversion device 2 of the present embodiment has the following second feature in addition to the first feature.
  • the power storage circuit includes the power conversion circuit 20 and the power storage device 3 so that the charging or discharging condition of the power storage device 3 follows the charge / discharge command amount given from the control unit 23. It is configured to perform power conversion between.
  • the control unit 23 realizes the suppression control by changing the charge / discharge command amount from the reference amount according to the first reference condition or the second reference condition.
  • the power conversion device 2 of the present embodiment has the following third feature in addition to the first feature.
  • the system side circuit power conversion unit 21S
  • the control unit 23 changes the system input / output command amount with reference to the time before the detection or prediction is made, and the power amount corresponding to the change is stored in the power storage device 3. Suppression control is realized by allocating to a change in the amount of charge power or the amount of discharge power.
  • the power conversion device 2 of the present embodiment has a fourth feature.
  • the power conversion device 2 includes a power conversion circuit 20 and a control unit 23.
  • the power conversion circuit 20 includes a power storage side circuit (power conversion unit 21B) connected to the power storage device 3 that can be charged and discharged, and a power generation side circuit (power) connected to the power generation device 4 that generates power and outputs generated power. It has a system side circuit (power conversion unit 21S) connected to the conversion unit 21G) and the power system 5.
  • the power conversion circuit 20 is configured to perform power transmission and reception between the power storage device 3, the power generation device 4, and the power system 5 through power conversion.
  • the control unit 23 is configured to control power transmission and power reception by controlling the power conversion circuit 20.
  • the control unit 23 absorbs the shortage or surplus of the generated power by charging or discharging the power storage device 3, and uses the generated power of the power generation device 4 to transfer a constant first reference from the power conversion circuit 20 to the power system 5. Power is output under conditions, or power is supplied to at least one of a load and a secondary battery connected to the power conversion circuit 20 using generated power and input power from the power system 5 to the power conversion circuit 20 Therefore, the quantitative control (system output quantitative control / system input quantitative control) is performed in which power is input from the power system 5 to the power conversion circuit 20 under a constant second reference condition.
  • the control unit 23 sets the input / output condition of power between the power conversion circuit 20 and the power system 5 as the first reference condition or the second reference condition. Suppression control that suppresses switching by changing from the reference condition is executed.
  • the power conversion device 2 of the present embodiment has the following fifth feature in addition to the fourth feature.
  • the system side circuit power conversion unit 21S
  • the control unit 23 realizes the suppression control by changing the system input / output command amount from the reference amount according to the first reference condition or the second reference condition.
  • the power conversion device 2 of the present embodiment has the following sixth feature in addition to the fourth feature.
  • the power storage circuit includes the power conversion circuit 20 and the power storage device 3 so that the charge or discharge conditions of the power storage device 3 are in accordance with the charge / discharge command amount given from the control unit 23. Power conversion between the two.
  • the control unit 23 changes the charge / discharge command amount with reference to the time before detection or prediction is made, and converts the amount of power corresponding to the change to the power conversion circuit 20 and Suppression control is realized by allocating to changes in the input / output power amount between power systems.
  • the power conversion device 2 of the present embodiment has the following seventh feature in addition to any one of the first to sixth features.
  • the control unit 23 determines a predetermined value based on the generated power amount of the power generation device 4 or a value corresponding to the generated power amount and the first reference condition or the second reference condition during the execution period of the suppression control. When it is determined that the release condition is satisfied, the execution of the suppression control is released.
  • the power conversion device 2 of the present embodiment has the following eighth feature in addition to any one of the first to sixth features.
  • the control unit 23 cancels the execution of the suppression control when switching is detected during the execution period of the suppression control.
  • the power converter device 2 should just have at least 1 of the 1st characteristic and the 4th characteristic.
  • the second, third, fifth to eighth features are optional features.
  • the hunting suppression control CNT 1 As described above, according to the hunting suppression control CNT 1 according to the present embodiment, the system side hunting phenomenon that affects the stability of the power system 5 or the power storage side hunting phenomenon that may adversely affect the power storage device 3 is performed. It is possible to suppress appropriately. Therefore, according to the present embodiment, it is possible to provide the power conversion device 2 that contributes to suppression of the hunting phenomenon.
  • a method for releasing the hunting suppression control CNT 1 when monitoring the fulfillment whether cancellation condition when the execution hunting suppression control CNT 1, the hunting phenomenon is determined to not or hardly occur occur even cancel the execution By adopting, charging or the like can be performed with as much original power as possible while avoiding the hunting phenomenon as much as possible.
  • the hunting suppression control is executed after the occurrence of the hunting phenomenon is detected, so that some hunting phenomenon is allowed to occur.
  • the hunting prediction process if the hunting prediction process is used, the occurrence of the hunting phenomenon can be completely or almost completely avoided.
  • the time for performing charging or the like with the original amount of power is shorter than when the hunting detection process is used.
  • Whether to execute the hunting detection process or the prediction process may be set in accordance with which one of priority is given to the suppression of the hunting phenomenon and the charging with the original electric energy.
  • the power converter 2 of the present embodiment includes first, sixth to tenth, sixteenth to eighteenth, twenty-first, twenty-second, twenty-fifth to twenty-fifth according to the present invention.
  • the power conversion device 2 in the form of 28 is related.
  • the configuration of the power supply system 1 according to the second embodiment is the same as the configuration of the power supply system 1 according to the first embodiment (see FIG. 1).
  • the power supply device 2 of the present embodiment includes a power conversion circuit 20 and a control unit 23 as in the case of the power supply device 2 of the first embodiment.
  • the power conversion circuit 20 includes a power receiving function that receives power from the power supply device, a power transmission function that supplies power to the power demand device, an output process that supplies power to the power auxiliary device, and an input process that acquires power from the power auxiliary device. And adjusting at least one of an input / output selection function for selectively executing and supply power that is power received from the power supply device and demand power that is power supplied to the power demanding device in accordance with an instruction from the control unit 23 An adjustment function.
  • the control unit 23 compares the supplied power with the demand power, and if the supplied power is greater than the demand power, causes the power conversion circuit 20 to execute an output process so that a surplus of the supplied power is supplied to the power auxiliary device. Is less than the demand power, the power conversion circuit 20 is configured to execute the input process so that the shortage of the supplied power is compensated by the power from the power auxiliary device.
  • the control unit 23 is configured to determine whether or not an event that causes a hunting phenomenon has occurred in the power conversion circuit 20, and to execute hunting suppression control when determining that an event has occurred.
  • control unit 23 is configured to give an instruction to the power conversion circuit 20 so that the difference between the supplied power and the demand power becomes large.
  • control unit 23 performs maximum power point tracking control (Maximum Power) for the power generation device 4.
  • Maximum Power Point Tracking Control
  • MPPT control Point Tracking Control
  • a curve 400 in FIG. 20 represents the relationship between the output current of the power generation device 4 and the generated power.
  • the value of the output current of the power generator 4 is the above-described current value I G
  • the generated power changes depending on the output current.
  • the generated power amount P G becomes maximum (that is, becomes the maximum power amount P MPP ), and the generated power increases as the absolute value
  • the amount P G decreases from the maximum amount of power P MPP.
  • the point on the curve 400 that defines the amount of power generated by the power generation device 4 is called a power point (or operating point).
  • the power point 401 is a power point that makes the generated power amount of the power generation device 4 coincide with the maximum power amount P MPP .
  • power point 402 and 403 are power point to match the small amount of power P Q than the maximum amount of power P MPP the generated power of the generator 4.
  • current value I G assumes values I Q1 and I Q2 , respectively.
  • control unit 23 generates a current command value I G * that specifies the current value I G can be given to the power conversion unit 21G, whereby it is possible to control the current value I G together, it is possible to control the voltage value V G and the amount of power P G through control of the current value I G.
  • Power conversion unit 21G generates power for power conversion so that the current value I G matches the current command value I G *.
  • the control unit 23 sets the current command value I G * so that the power generation amount of the power generation device 4 is maximized based on the current value I G and the voltage value V G included in the input / output power information. Set and adjust. That is, when executing the MPPT control, the control unit 23 substitutes the value I MPP for the current command value I G * . Since the implementation method of MPPT control is well-known, it abbreviate
  • control unit 23 is configured the target value of the generated power P G as an indication to provide a power conversion circuit 20.
  • Power conversion circuit 20 receives the target value (the target value of the generated power P G), configured to generated power P G to control the power generator 4 so that the target value.
  • the power conversion unit 21G of the power conversion circuit 20 receives the target value of the generated power P G from the control unit 23 is configured to generated power P G to control the power generator 4 so that the target value .
  • the power generation device 4 is a solar cell.
  • Power conversion circuit 20 is configured to adjust the generated power P G by changing the operating point of the solar cell (power point) according to the instruction.
  • the control unit 23 is configured to execute normal control for setting a target value to a default value until it is determined that an event has occurred.
  • the default value is a value corresponding to the maximum power of the solar cell.
  • control unit 23 can individually execute the charge quantitative control, the discharge quantitative control, the system output quantitative control, and the system input quantitative control described in the first embodiment. At this time, the control unit 23 can execute charge quantitative control, discharge quantitative control, system output quantitative control, or system input quantitative control while performing MPPT control (the same applies to the first and third embodiments).
  • the power generation device 4 is used as a power supply device, the power storage device 3 is used as a power demand device, and the power system 5 is used as a power auxiliary device. Therefore, the supplied power is generated power from the power generation device 4.
  • the demand power is charging power for the power storage device 3.
  • the power generation device 4 and the power supply device are used as a power supply device
  • the DC load 8 is used as a power demand device
  • the power system 5 is used as a power auxiliary device. Therefore, the supplied power is the sum of the generated power from the power generation device 4 and the power supply power (discharge power of the power storage device 3) that is power obtained from the power supply device.
  • the demand power is the power consumption of the DC load 8.
  • the power generation device 4 is used as a power supply device, the power system 5 is used as a power demand device, and the power storage device 3 is used as a power auxiliary device. Therefore, the supplied power is generated power from the power generation device 4. The demand power is output power to the power system 5.
  • the power generation device 4 and the power supply device are used as a power supply device
  • the DC load 8 is used as a power demand device
  • the power storage device 3 is used as a power auxiliary device. Accordingly, the supplied power is the sum of the generated power from the power generation device 4 and the power supply power (input power of the power system 5) that is power obtained from the power supply device.
  • the demand power is the power consumption of the DC load 8.
  • the above-mentioned system side or power storage side hunting phenomenon may occur during execution of quantitative control.
  • the control unit 23 can perform hunting detection processing or prediction processing similar to that described in the first embodiment during the execution of each quantitative control.
  • the control unit 23 according to the second and third embodiments can perform the above-described hunting detection process HD 1A or the prediction process HP 1A during the execution period of the MPPT control and the charge quantitative control.
  • the hunting detection process HD 1B or the prediction process HP 1B can be performed during the execution period of the quantitative control
  • the hunting detection process HD 1C or the prediction process HP can be performed during the execution period of the MPPT control and the system output quantitative control.
  • 1C can be performed, and the above-described hunting detection process HD 1D or prediction process HP 1D can be performed during the execution period of MPPT control and system input quantitative control.
  • the absolute value of the input / output power amount between the power conversion circuit 20 and the power system 5 is increased by changing the power generation amount of the power generation device 4. This suppresses the system-side hunting phenomenon.
  • the hunting suppression control CNT 2 applied to the system output quantitative control or the system input quantitative control, the absolute value of the input / output power amount between the power conversion circuit 20 and the power storage device 3 by changing the power generation amount of the power generation device 4. This suppresses the storage-side hunting phenomenon.
  • Suppression control CNT 2 is a control performed in each quantitative control, although the execution of the suppression control CNT 2 does not affect the contents of each quantitative control, the MPPT control during execution of the suppression control CNT 2 Stopped.
  • the control unit 23 Prior to the system-side hunting recognition timing or the power storage-side hunting recognition timing, the control unit 23 implements MPPT control by giving a current command value I G * into which the value I MPP is substituted to the power conversion unit 21G.
  • power point of the generator 4 is the maximum amount of power P MPP is outputted to the power conversion unit 21G as generated power P G is a consistent with power point 401 (see FIG. 20), power generating apparatus 4 .
  • the control unit 23 supplies the current to the power conversion unit 21G.
  • the command value I G * is changed from the value I MPP to the value I Q1 or I Q2 , thereby changing the power point of the power generator 4 from the power point 401 to the power point 402 or 403 (see FIG. 20).
  • the power generation amount of the power generation device 4 decreases from the power amount P MPP to the power amount P Q.
  • the control unit 23 executes the hunting suppression control CNT 2 , so that the supplied power amount is insufficient by 2 kW ⁇ s. Therefore, the difference between the power supply amount and the power demand amount is increased, and the hunting phenomenon is suppressed. In this case, the control unit 23 gives 2 kW ⁇ s as a target value of the input power to the power conversion unit 21S, and thereby obtains input power of 2 kW ⁇ s from the power system 5.
  • the supplied power amount (total value of the generated power amount and the discharged power amount) is compared with the demand power amount (power consumption amount).
  • the control unit 23 executes the hunting suppression control CNT 2 so that the supplied power amount is insufficient by 2 kW ⁇ s. It will be. Therefore, the difference between the power supply amount and the power demand amount is increased, and the hunting phenomenon is suppressed.
  • the control unit 23 gives 2 kW ⁇ s as a target value of the input power to the power conversion unit 21S, and thereby obtains input power of 2 kW ⁇ s from the power system 5.
  • the control unit 23 executes the hunting suppression control CNT 2 , so that the supplied power amount is insufficient by 2 kW ⁇ s. Therefore, the difference between the power supply amount and the power demand amount is increased, and the hunting phenomenon is suppressed. In this case, the control unit 23 gives 2 kW ⁇ s as a target value of the discharge power to the power conversion unit 21B, and thereby obtains 2 kW ⁇ s of discharge power from the power storage device 3.
  • the amount of supplied power (the total value of the generated power and the amount of input power) is compared with the amount of demand power (power consumption).
  • the control unit 23 executes the hunting suppression control CNT 2 so that the supplied power amount is insufficient by 2 kW ⁇ s. It will be. Therefore, the difference between the power supply amount and the power demand amount is increased, and the hunting phenomenon is suppressed.
  • the control unit 23 gives 2 kW ⁇ s as the target value of the discharge power to the power conversion unit 21B, and thereby obtains 2 kW ⁇ s of discharge power from the power storage device 3.
  • the absolute value of the input / output power amount between the power conversion circuit 20 and the power system 5 is reduced. Since the value increases, the system-side hunting phenomenon is appropriately suppressed.
  • the power generation amount of the power generation device 4 decreases when the power storage side hunting phenomenon occurs, the absolute value of the input / output power amount between the power conversion circuit 20 and the power storage device 3 increases, so that the power storage side hunting phenomenon is appropriate. To be suppressed.
  • the control unit 23 for example, when any of the first to fourth release following conditions are satisfied, it is possible to resume the MPPT control by releasing the execution of the suppression control CNT 2.
  • solid line curves 411 and 411 ' represent a first example and a second example of the time transition of the amount of power generated by the power generation device 4.
  • the control unit 23 substitutes the reference power amount P BREF for power storage into the charge command amount P B * , thereby charging power of the power storage device 3.
  • the amount corresponds to the reference power amount P BREF for power storage.
  • Timing t B1 is the system-side hunting recognition timing.
  • the control unit 23 starts executing the suppression control CNT 2 , thereby reducing the generated power amount P G by ⁇ P G at the timing t B1.
  • Timings t B2 and t B2 ′ are timings after timing t B1 .
  • the control unit 23 is based on the current value I G and the voltage value V G (that is, based on the generated power amount P G ) or based on the current value I GINT and the voltage value V INT.
  • the charge power amount P B ′ is obtained.
  • the first release condition is satisfied when the charging power amount P B ′ satisfying the following inequality (A1) is observed.
  • the control unit 23 determines that the difference between the supplied power (charging power amount P B ′) and the demand power (storage power reference power amount P BREF ) is canceled during the execution of the hunting suppression control CNT 2 (first releasing condition).
  • the first release condition is that a value obtained by subtracting the supplied power (charging power amount P B ′) from the demand power (storage power reference power amount P BREF ) is equal to or less than a predetermined threshold TH B1 . That is, the first release condition is that the absolute value of the difference between the supplied power (charging power amount P B ′) and the demand power (power storage reference power amount P BREF ) is equal to or less than a predetermined threshold value TH B1 .
  • the timing t B1 and t suppressing control CNT 2 between B2 for charging power amount P B 'does not satisfy the inequality (A1) at each timing between the timing t B1 and t B2 is continuously performed
  • the control unit 23 cancels the execution of the suppression control CNT 2 at the timing t B2 and restarts the MPPT control.
  • the control unit 23 can hold the value of [Delta] P G.
  • the predetermined threshold TH B1 is smaller than the width of the change in the difference between the supplied power and the demand power due to the execution of the hunting suppression control CNT 2 .
  • hunting suppression control CNT 2 is performed, since the generated power P G is reduced by [Delta] P G, the width of change in the difference between the power supply and demand electric power becomes [Delta] P G.
  • the first release condition is that the state where the absolute value of the difference between the supplied power (charged energy P B ′) and the demand power (storage power reference P BREF ) is equal to or less than a predetermined threshold TH B1 continues for a predetermined time. It may be that. Further, the first release condition may be that a state where the difference between the supplied power and the demand power is positive or negative continues for a predetermined time.
  • the second cancellation condition is satisfied when the charging power amount P B ′ satisfying the following inequality (A2) is observed.
  • the control unit 23 determines that the difference between the supplied power (charged power amount P B ′) and the demand power (power storage reference power amount P BREF ) during the execution of the hunting suppression control CNT 2 is a release condition (second release condition).
  • the second release condition is that the value obtained by subtracting the supplied power (charging power amount P B ′) from the demand power (storage power reference power amount P BREF ) is equal to or greater than a predetermined threshold value TH B2 . That is, the absolute value of the difference between the supplied power (charging power amount P B ′) and the demand power (power storage reference power amount P BREF ) may be equal to or greater than the predetermined threshold value TH B2 .
  • the timing t B1 and t B2 timing t B1 and t B2 'suppression control between CNT 2 because does not satisfy the inequality (A2)' charging power amount P B in each timing between 'is continued execution
  • the control unit 23 cancels the execution of the suppression control CNT 2 at the timing t B2 ′ and restarts the MPPT control.
  • hunting suppression control CNT 2 is performed, since the generated power P G is reduced by [Delta] P G, the width of change in the difference between the power supply and demand electric power becomes [Delta] P G.
  • the second release condition is that the state where the absolute value of the difference between the supplied power (charged energy P B ′) and the demand power (storage power reference P BREF ) is equal to or greater than a predetermined threshold TH B2 continues for a predetermined time. It may be that.
  • the third release condition will be described.
  • the control unit 23 based on the current value I G and the voltage value V G , or based on the current value I GINT and the voltage value V INT during the execution period of the suppression control CNT 2 .
  • the charge energy P B ′′ is obtained.
  • the charged power amount P B ′′ corresponds to a value obtained by multiplying the virtual power generation amount that would have been obtained if MPPT control was performed by the power conversion efficiencies of the power conversion units 21G and 21B.
  • the virtual power generation amount is a value corresponding to the maximum power of the solar cell. Accordingly, the virtual power generation amount corresponds to a predetermined value.
  • Virtual generated power amount assuming generated power P G is obtained by adding the [Delta] P G in (the power conversion efficiency at the suppression control CNT 2 execution to be 100%, P B '' is a virtual This is the same as the amount of generated power (P G + ⁇ P G ).
  • the control unit 23 determines that the third release condition is satisfied. This is because it is expected that the system-side hunting phenomenon will not occur even if the MPPT control is resumed under the situation where the observation is made.
  • control unit 23 determines that the difference between the demand power (storage power reference amount P BREF ) and the predetermined value (virtual power generation amount) satisfies the release condition (third release condition) during the execution of the hunting suppression control CNT 2.
  • the hunting suppression control CNT 2 is terminated.
  • the third release condition is that the state where the difference between the demand power (reference power amount P BREF for power storage) and the predetermined value (virtual power generation amount) is positive or negative continues for a predetermined time (predetermined second time). is there.
  • the third release condition is that the absolute value of the difference between the demand power (reference power amount P BREF for power storage) and the predetermined value (virtual power generation amount) is greater than or equal to the threshold value, or the absolute value of the difference is greater than or equal to the threshold value. It may be that the state is continued for a predetermined time (predetermined first time).
  • the control unit 23 executes the system-side hunting detection process HD 1A during the execution period of the suppression control CNT 2 and determines that the fourth release condition is satisfied when the occurrence of the system-side hunting phenomenon is observed a predetermined number of times or more. To do.
  • control unit 23 determines whether or not the switching operation between the input process and the output process has been performed during the execution of the hunting suppression control CNT 2 , and determines that the switching operation has been performed a predetermined number of times. Configured to exit.
  • the predetermined number of times may be an arbitrary number of 1 or more. This is because when the system-side hunting phenomenon occurs despite the execution of the suppression control CNT 2 , the system-side hunting phenomenon is avoided due to the increase in the amount of generated power accompanying the restart of the MPPT control.
  • the above-described release possibility determination process J 2 is also performed when the suppression control CNT 2 is executed. Can be executed. However, if the quantitative control of the non-charging quantitative control has been made, the contents of the release determination process J 2 is modified as follows. First, at the time of execution of system output or system input quantitative control, the above-described timing t B1 corresponds to the storage side hunting recognition timing.
  • the first to third release conditions should be changed as follows.
  • the above-mentioned formula (A1) and (A2) is changed to respectively the following formulas (B1) and (B2), wherein during the execution of the suppression control CNT 2
  • the control unit 23 determines that the first or second release condition is satisfied (the first implementation is performed for the definition of P G ′). See form).
  • Q represents the power consumption of the DC load 8.
  • the control unit 23 determines the difference between the supplied power (the total value of the generated power amount P G ′ and the storage reference power amount P BREF ) and the demand power (power consumption amount Q) during the execution of the hunting suppression control CNT 2.
  • the first release condition is that a value obtained by subtracting demand power (power consumption amount Q) from supplied power (total value of generated power amount P G ′ and power storage reference power amount P BREF ) is equal to or less than a predetermined threshold TH B1. (Formula (B1)).
  • the first cancellation condition is that the absolute value of the difference between the supplied power (the total value of the generated power amount P G ′ and the storage reference power amount P BREF ) and the demand power (power consumption amount Q) is a predetermined threshold TH. B1 or less.
  • Predetermined threshold value TH B1 is smaller than the width of change in the supply power and the power demand by the execution of the hunting suppression control CNT 2. That is, by hunting suppression control CNT 2 is performed, since the generated power P G is reduced by [Delta] P G, the width of change in the difference between the power supply and demand electric power becomes [Delta] P G.
  • the first release condition is that the absolute value of the difference between the supplied power (the total amount of the generated power amount P G ′ and the reference power amount P BREF for power storage) and the demand power (power consumption amount Q) is a predetermined threshold TH. It may be that the state of B1 or less continues for a predetermined time. Further, the first release condition may be that a state where the difference between the supplied power and the demand power is positive or negative continues for a predetermined time.
  • control unit 23 determines the difference between the supplied power (the total value of the generated power amount P G ′ and the storage reference power amount P BREF ) and the demand power (power consumption amount Q) during the execution of the hunting suppression control CNT 2. Is configured to end the hunting suppression control CNT 2 when the release condition (second release condition) is satisfied.
  • the second release condition is that a value obtained by subtracting demand power (power consumption Q) from supplied power (total value of generated power P G ′ and power storage reference power P BREF ) is equal to or greater than a predetermined threshold TH B2. (Formula (B2)).
  • the second cancellation condition is that the absolute value of the difference between the supplied power (the total value of the generated power amount P G ′ and the power storage reference power amount P BREF ) and the demand power (power consumption amount Q) is a predetermined threshold TH. B2 or higher.
  • the predetermined threshold value TH B2 is larger than the width of change in the difference between the supplied power and the demand power due to the execution of the hunting suppression control CNT 2 . That is, by hunting suppression control CNT 2 is performed, since the generated power P G is reduced by [Delta] P G, the width of change in the difference between the power supply and demand electric power becomes [Delta] P G.
  • the second release condition is that the absolute value of the difference between the supplied power (the total amount of the generated power amount P G ′ and the power storage reference power amount P BREF ) and the demand power (power consumption amount Q) is a predetermined threshold TH.
  • the state of B2 or more may be continued for a predetermined time.
  • the control unit 23 determines the electric energy P G based on the current value I G and the voltage value V G or based on the current value I GINT and the voltage value V INT during the execution period of the suppression control CNT 2.
  • the power amount P G ′′ corresponds to the virtual power generation amount multiplied by the power conversion efficiency of the power conversion unit 21 G (assuming that the power conversion efficiency is 100%, P G ′′ is virtual This is the same as the amount of generated power (P G + ⁇ P G ). Then, when the state where the absolute value
  • the control unit 23 calculates the total value of the power source power (storage power reference power amount P BREF ) and the predetermined value (virtual power generation power amount P G ′′) and the power demand (consumption).
  • the difference from the electric energy Q) satisfies the release condition (third release condition)
  • the hunting suppression control CNT 2 is configured to end.
  • the third release condition is that the difference between the total value of the power source power (storage power reference amount P BREF ) and the predetermined value (virtual power generation amount P G ′′) and the demand power (power consumption amount Q) is positive or That is, the negative state has continued for a predetermined time (predetermined second time).
  • the third release condition is that the difference between the total value of the power source power (storage power reference power P BREF ) and the predetermined value (virtual power generation power P G ′′) and the power demand (power consumption Q). It may be that the absolute value is equal to or greater than the threshold value, or that the state where the absolute value of the difference is equal to or greater than the threshold value continues for a predetermined time (predetermined first time).
  • the fourth release condition corresponding to the discharge quantitative control is the same as the fourth release condition described above for the charge quantitative control. That is, the control unit 23 determines whether or not the switching operation between the input process and the output process has been performed during the execution of the hunting suppression control CNT 2 , and determines that the switching operation has been performed a predetermined number of times. Configured to terminate CNT 2 .
  • the hunting suppression control CNT 2 determines that the difference between the supplied power (system output power amount P S ′) and the demand power (system power reference amount P SREF ) during the execution of the hunting suppression control CNT 2 is the release condition (first release condition). ),
  • the hunting suppression control CNT 2 is configured to end.
  • the first release condition is that the value obtained by subtracting the supplied power (system output power P S ′) from the demand power (system reference power P SREF ) is equal to or less than a predetermined threshold TH B1 (formula (C1)) ). That is, the first release condition is that the absolute value of the difference between the supplied power (system output power amount P S ′) and the demand power (system reference power amount P SREF ) is equal to or less than a predetermined threshold value TH B1 .
  • Predetermined threshold value TH B1 is smaller than the width of change in the supply power and the power demand by the execution of the hunting suppression control CNT 2. That is, by hunting suppression control CNT 2 is performed, since the generated power P G is reduced by [Delta] P G, the width of change in the difference between the power supply and demand electric power becomes [Delta] P G.
  • the first release condition is that a state where the absolute value of the difference between the supplied power (system output power amount P S ′) and the demand power (system reference power amount P SREF ) is equal to or less than a predetermined threshold value TH B1 is a predetermined time. It may be continued. Further, the first release condition may be that a state where the difference between the supplied power and the demand power is positive or negative continues for a predetermined time.
  • the control unit 23 determines that the difference between the supply power (system output power amount P S ′) and the demand power (system power reference amount P SREF ) is canceled during the execution of the hunting suppression control CNT 2 (second release condition). ),
  • the hunting suppression control CNT 2 is configured to end.
  • the second cancellation condition is that the value obtained by subtracting the supplied power (system output power P S ′) from the demand power (system reference power P SREF ) is equal to or greater than a predetermined threshold TH B2 (formula (C2)) ). That is, the second cancellation condition is that the absolute value of the difference between the supplied power (system output power amount P S ′) and the demand power (system reference power amount P SREF ) is equal to or greater than a predetermined threshold value TH B2 .
  • the predetermined threshold value TH B2 is larger than the width of change in the difference between the supplied power and the demand power due to the execution of the hunting suppression control CNT 2 . That is, by hunting suppression control CNT 2 is performed, since the generated power P G is reduced by [Delta] P G, the width of change in the difference between the power supply and demand electric power becomes [Delta] P G.
  • the second release condition is that a state where the absolute value of the difference between the supplied power (system output power amount P S ′) and the demand power (system reference power amount P SREF ) is equal to or greater than a predetermined threshold value TH B2 is a predetermined time. It may be continued.
  • the control unit 23 during the execution period of the suppression control CNT 2, based on current value I G and based on the voltage value V G or a current value I GINT and the voltage value V INT, power P Find S ''.
  • the power amount P S ′′ corresponds to the virtual power generation amount multiplied by each power conversion efficiency of the power conversion units 21G and 21S (assuming that each power conversion efficiency is 100%, P S ′ 'Is equal to the virtual power generation amount (P G + ⁇ P G )). Then, when the state where the absolute value
  • the control unit 23 determines that the difference between the demand power (system reference power amount P SREF ) and the predetermined value (virtual power generation power amount P S ′′) during the execution of the hunting suppression control CNT 2 is the release condition (third release). When the condition (condition) is satisfied, the hunting suppression control CNT 2 is configured to end.
  • the third release condition is that a state in which the difference between the demand power (system reference power amount P SREF ) and the predetermined value (virtual generated power amount P S ′′) is positive or negative is a predetermined time (predetermined second time). It was continued.
  • the third release condition is that the absolute value of the difference between the demand power (system reference power amount P SREF ) and the predetermined value (virtual generated power amount P S ′′) is greater than or equal to the threshold value, or the absolute difference
  • the state where the value is equal to or greater than the threshold may be continued for a predetermined time (predetermined first time).
  • the first to third release conditions should be changed as follows.
  • the control unit 23 determines the difference between the supply power (the total value of the generated power amount P G ′ and the grid reference power amount P SREF ) and the demand power (power consumption amount Q) during the execution of the hunting suppression control CNT 2.
  • the first cancellation condition is that a value obtained by subtracting demand power (power consumption amount Q) from supplied power (total value of generated power amount P G ′ and grid reference power amount P SREF ) is equal to or less than a predetermined threshold TH B1. (Formula (D1)).
  • the first cancellation condition is that the absolute value of the difference between the supplied power (the total amount of the generated power amount P G ′ and the grid reference power amount P SREF ) and the demand power (power consumption amount Q) is a predetermined threshold TH. B1 or less.
  • Predetermined threshold value TH B1 is smaller than the width of change in the supply power and the power demand by the execution of the hunting suppression control CNT 2. That is, by hunting suppression control CNT 2 is performed, since the generated power P G is reduced by [Delta] P G, the width of change in the difference between the power supply and demand electric power becomes [Delta] P G.
  • the first release condition is that the absolute value of the difference between the supplied power (the total amount of the generated power amount P G ′ and the grid reference power amount P SREF ) and the demand power (power consumption amount Q) is a predetermined threshold TH. It may be that the state of B1 or less continues for a predetermined time. Further, the first release condition may be that a state where the difference between the supplied power and the demand power is positive or negative continues for a predetermined time.
  • control unit 23 determines the difference between the supply power (the total value of the generated power amount P G ′ and the grid reference power amount P SREF ) and the demand power (power consumption amount Q) during the execution of the hunting suppression control CNT 2. Is configured to end the hunting suppression control CNT 2 when the release condition (second release condition) is satisfied.
  • the second cancellation condition is that a value obtained by subtracting demand power (power consumption Q) from supplied power (total value of generated power P G ′ and grid reference power P SREF ) is equal to or greater than a predetermined threshold value TH B2 (Formula (D2)).
  • the second cancellation condition is that the absolute value of the difference between the supplied power (the total amount of the generated power amount P G ′ and the grid reference power amount P SREF ) and the demand power (power consumption amount Q) is a predetermined threshold TH. B2 or higher.
  • the predetermined threshold value TH B2 is larger than the width of change in the difference between the supplied power and the demand power due to the execution of the hunting suppression control CNT 2 . That is, by hunting suppression control CNT 2 is performed, since the generated power P G is reduced by [Delta] P G, the width of change in the difference between the power supply and demand electric power becomes [Delta] P G.
  • the second release condition is that the absolute value of the difference between the supplied power (the total amount of the generated power amount P G ′ and the grid reference power amount P SREF ) and the demand power (power consumption amount Q) is a predetermined threshold TH.
  • the state of B2 or more may be continued for a predetermined time.
  • the control unit 23 performs the above-described power based on the current value I G and the voltage value V G or based on the current value I GINT and the voltage value V INT during the execution period of the suppression control CNT 2. Determine the quantity P G ′′. Then, the control unit 23 satisfies the third release condition corresponding to the system input quantitative control when a state where the absolute value
  • the control unit 23 calculates the total value of the power source power (system reference power amount P SREF ) and the predetermined value (virtual power generation power amount P G ′′) and the demand power (consumption).
  • the difference from the electric energy Q) satisfies the release condition (third release condition)
  • the hunting suppression control CNT 2 is configured to end.
  • the third release condition is that the difference between the total value of the power source power (system reference power amount P SREF ) and the predetermined value (virtual power generation amount P G ′′) and the demand power (power consumption amount Q) is positive or That is, the negative state has continued for a predetermined time (predetermined second time).
  • the third release condition is that the difference between the total value of the power source power (system reference power amount P SREF ) and the predetermined value (virtual power generation amount P G ′′) and the demand power (power consumption amount Q). It may be that the absolute value is equal to or greater than the threshold value, or that the state where the absolute value of the difference is equal to or greater than the threshold value continues for a predetermined time (predetermined first time).
  • the control unit 23 executes the storage side hunting detection process HD 1C and observes the occurrence of the storage side hunting phenomenon for a predetermined number of times or more. It is good to determine that the fourth release condition has been satisfied.
  • the predetermined number of times may be an arbitrary number of 1 or more.
  • the 4th cancellation conditions corresponding to system output fixed control and system input fixed control are the same as the 4th cancellation conditions mentioned above about charge fixed control. That is, the control unit 23 determines whether or not the switching operation between the input process and the output process has been performed during the execution of the hunting suppression control CNT 2 , and determines that the switching operation has been performed a predetermined number of times. Configured to terminate CNT 2 .
  • FIG. 24 is an operation flowchart of the power conversion apparatus 2 focusing on the above-described various quantitative controls. Steps S22 and S23 are the same as steps S12 and S13 in FIG.
  • step S21 the control unit 23 starts executing any quantitative control and also starts executing MPPT control.
  • step S22 the control unit 23 performs the above-described hunting detection process or prediction process based on the input / output power information.
  • step S23 the control unit 23 checks whether the hunting detection determination or the prediction determination is made, and if any of the determinations is made, the control unit 23 shifts to step S24 to execute the hunting suppression control CNT 2 . Execution is started (ie, MPPT control is stopped).
  • control unit 23 After the execution of the hunting suppression control CNT 2 is started, the control unit 23 performs a release permission determination process J 2 for the hunting suppression control CNT 2 (step S25).
  • Control unit 23 until one of the first to fourth release condition is satisfied to continue execution of the hunting suppression control CNT 2 (steps S25 and S26), when it is confirmed fulfillment of releasing condition hunting suppression control CNT 2 Is canceled (step S27), and the process returns to step S22.
  • the power conversion device 2 includes a power conversion circuit 20 and a control unit 23.
  • the power conversion circuit 20 includes a power storage side circuit (power conversion unit 21B) connected to the power storage device 3 that can be charged and discharged, and a power generation side circuit (power) connected to the power generation device 4 that generates power and outputs generated power. It has a system side circuit (power conversion unit 21S) connected to the conversion unit 21G) and the power system 5.
  • the power conversion circuit 20 is configured to perform power transmission and reception between the power storage device 3, the power generation device 4, and the power system 5 through power conversion.
  • the control unit 23 is configured to control power transmission and power reception by controlling the power conversion circuit 20.
  • the control unit 23 absorbs the shortage or surplus of the generated power at the input / output of the power between the power conversion circuit 20 and the power system 5 and uses the generated power of the power generation device 4 to keep the power storage device 3 at a certain level.
  • a power storage device that is charged under one reference condition or that supplies power to at least one of a load and a secondary battery connected to the power conversion circuit 20 using the generated power of the power generation device 4 and the discharge power of the power storage device 3 Quantitative control for discharging 3 under a constant second reference condition is executed.
  • the control unit 23 changes the power generation amount of the power generation device 4 through the change of the power point of the power generation device 4.
  • the suppression control that suppresses the switching is executed.
  • the power conversion device 2 of the present embodiment has the following second feature.
  • the power conversion device 2 the power conversion device 2, the power conversion device 2, the power conversion circuit 20, the control unit 23, Is provided.
  • the power conversion circuit 20 includes a power storage side circuit (power conversion unit 21B) connected to the power storage device 3 that can be charged and discharged, and a power generation side circuit (power) connected to the power generation device 4 that generates power and outputs generated power. It has a system side circuit (power conversion unit 21S) connected to the conversion unit 21G) and the power system 5.
  • the power conversion circuit 20 is configured to perform power transmission and reception between the power storage device 3, the power generation device 4, and the power system 5 through power conversion.
  • the control unit 23 is configured to control power transmission and power reception by controlling the power conversion circuit 20.
  • the control unit 23 absorbs the shortage or surplus of the generated power by charging or discharging the power storage device 3, and uses the generated power of the power generation device 4 to transfer the constant first power from the power conversion circuit 20 to the power system 5.
  • Quantitative control for inputting power from the power system 5 to the power conversion circuit 20 under a constant second reference condition is performed.
  • the control unit 23 performs switching by changing the power generation amount of the power generation device 4 through a change in the power point of the power generation device 4.
  • the suppression control which suppresses is performed.
  • the power conversion device 2 of the present embodiment has the following third feature in addition to the first or second feature.
  • the control unit 23 generates a power generation circuit (power conversion unit) to operate the power generation device 4 at the first power point that maximizes the amount of power generated by the power generation device 4 before detection or prediction is performed. 21G), and after detection or prediction is performed, the power generation side circuit (power conversion unit 21G) is controlled such that the power point of the power generation device 4 is changed to a second power point different from the first power point. In this way, suppression control is realized.
  • the power conversion device 2 of the present embodiment has the following fourth feature in addition to any one of the first to third features.
  • the control unit 23 determines the predetermined amount based on the value of the generated power amount or the generated power amount of the power generation device 4 and the first reference condition or the second reference condition during the execution period of the suppression control. When it is determined that the release condition is satisfied, the execution of the suppression control is released.
  • the power conversion device 2 of the present embodiment has the following fifth feature in addition to any one of the first to third features.
  • the control unit 23 cancels the execution of the suppression control when switching is detected during the execution period of the suppression control.
  • the power converter device 2 should just have at least 1 of a 1st characteristic and a 2nd characteristic.
  • the third to fifth features are arbitrary features.
  • the hunting suppression control CNT 2 according to the second embodiment also has an adverse effect on the system-side hunting phenomenon or the power storage device 3 that affects the stability of the power system 5 as in the first embodiment. It is possible to appropriately suppress the storage-side hunting phenomenon that may be applied. Therefore, according to the present embodiment, it is possible to provide the power conversion device 2 that contributes to suppression of the hunting phenomenon.
  • the hunting suppression control CNT 2 in the second embodiment does not affect the quantitative control, the desired quantitative control can be continued during the execution period of the hunting suppression control CNT 2 .
  • the hunting suppression control CNT 2 of the second embodiment is accompanied by a decrease in the amount of generated power. In this regard, whether or not the release condition is satisfied is monitored when the hunting suppression control CNT 2 is executed, and the hunting suppression control CNT 2 is released when it is determined that the hunting phenomenon does not occur or hardly occurs even when the execution is canceled. By adopting the method, it is possible to extract as much generated power as possible from the power generator 4 while avoiding the hunting phenomenon as much as possible.
  • the hunting suppression control is executed after the occurrence of the hunting phenomenon is detected, so that some hunting phenomenon is allowed to occur.
  • the hunting prediction process if the hunting prediction process is used, the occurrence of the hunting phenomenon can be completely or almost completely avoided.
  • the time for performing the MPPT control is shorter than when the hunting detection process is used. What is necessary is just to set which of a hunting detection process and a prediction process is performed according to which priority is given to hunting phenomenon suppression or generated electric power amount.
  • control unit 23 may supply the power conversion unit 21G with a voltage command value V G * that specifies the voltage value V G instead of the current command value I G * .
  • control unit 23 can realize the MPPT control by giving the voltage command value V G * corresponding to the power point 401 to the power conversion unit 21G, and when performing the suppression control CNT 2 , the power point 402 Alternatively, the voltage command value V G * corresponding to 403 may be given to the power conversion unit 21G.
  • FIG. 1 (Third embodiment) 1. Configuration of Power Converter 2 of Third Embodiment A power converter 2 of this embodiment is related to the power converters 2 of the first, eleventh to eighteenth and twenty-third to twenty-eighth aspects of the present invention.
  • the power supply system 1 according to the third embodiment is provided with two power storage devices 3, and correspondingly, the power conversion circuit 20 according to the third embodiment includes a power conversion unit 21B for the power storage device.
  • the characteristics, configuration and operation of the power storage device can be made different between the two power storage devices 3, and the characteristics, configuration and operation of the power conversion unit can be made different between the two power conversion units 21B.
  • each of the two power storage devices 3 has the same characteristics and configuration as the power storage device 3 described in the first embodiment and is the same as the power storage device 3 described in the first embodiment.
  • each of the two power conversion units 21B has the same characteristics and configuration as the power conversion unit 21B described in the first embodiment and the same operation as the power conversion unit 21B described in the first embodiment Shall be realized.
  • the control unit 23 can control the power conversion unit 21B described in the first embodiment for each of the two power conversion units 21B.
  • the power supply system according to the third embodiment including two power storage devices 3 is referred to by reference numeral 1a
  • the power conversion circuit according to the third embodiment including two power conversion units 21B is referred to by reference numeral 20a
  • the power conversion device according to the third embodiment including the conversion circuit 20a is referred to by reference numeral 2a.
  • FIG. 25 is a schematic overall configuration diagram of a power supply system 1a according to the third embodiment.
  • the two power storage devices 3 are referred to as power storage devices 3 and 3a
  • the two power conversion units 21B are referred to as power conversion units 21B and 21Ba.
  • the power conversion unit 21Ba is provided in the power conversion circuit 20a.
  • the power supply system 1a is formed by replacing the power conversion device 2 with the power conversion device 2a and adding the power storage device 3a.
  • the reference numerals “1”, “2”, and “20” in the description of the first or second embodiment are “1a”, It is read as “2a” and “20a”.
  • the power supply device 2 (2a) of the present embodiment includes a power conversion circuit 20 (20a) and a control unit 23.
  • the power conversion circuit 20a includes a power receiving function for receiving power from the power supply device, a power transmission function for supplying power to the power demand device, an output process for supplying power to the power auxiliary device, and an input process for acquiring power from the power auxiliary device. And adjusting at least one of an input / output selection function for selectively executing and supply power that is power received from the power supply device and demand power that is power supplied to the power demanding device in accordance with an instruction from the control unit 23 An adjustment function.
  • the control unit 23 compares the supplied power with the demand power, and if the supplied power is greater than the demand power, causes the power conversion circuit 20 to execute an output process so that a surplus of the supplied power is supplied to the power auxiliary device. Is less than the demand power, the power conversion circuit 20 is configured to execute the input process so that the shortage of the supplied power is compensated by the power from the power auxiliary device.
  • Control unit 23 determines whether an event has occurred that hunting occurs in the power conversion circuit 20, configured to perform hunting suppression control CNT 3 determines that the event has occurred.
  • the control unit 23 is configured to give an instruction to the power conversion circuit 20 so that the difference between the supplied power and the demand power becomes large.
  • the power conversion circuit 20a has a second input / output selection function for selectively executing the second output process and the second input process.
  • the power conversion circuit 20a is configured to increase power demand by supplying power to the second power auxiliary device and using the second power auxiliary device as part of the power demand device.
  • the power conversion circuit 20a is configured to acquire power from the second power auxiliary device and increase the supply power by using the second power auxiliary device as a part of the power supply device.
  • the second power auxiliary device is the second power storage device 3a.
  • the power conversion circuit 20a is configured to charge the second power storage device 3a in the second output process and to discharge the second power storage device 3a in the second input process.
  • the hunting suppression control CNT 3 includes a first hunting suppression control CNT 3A that causes the power conversion circuit 20a to execute a second output process, and a second hunting suppression control that causes the power conversion circuit 20a to execute a second input process.
  • CNT 3B the hunting suppression control CNT 3 includes a first hunting suppression control CNT 3A that causes the power conversion circuit 20a to execute a second output process, and a second hunting suppression control that causes the power conversion circuit 20a to execute a second input process.
  • control unit 23 determines that an event has occurred, the control unit 23 executes one of the first hunting suppression control CNT 3A and the second hunting suppression control CNT 3B so that the difference between the supplied power and the demand power becomes large. Composed.
  • control unit 23 when it is determined that an event has occurred, the control unit 23 is configured to compare the remaining amount of power of the second power storage device 3a with a predetermined value.
  • the controller 23 is configured to execute the first hunting suppression control CNT 3A if the remaining amount is less than the predetermined value, and to execute the second hunting suppression control CNT 3B if the remaining amount is equal to or greater than the predetermined value.
  • Power conversion unit (fourth power conversion unit) 21Ba corresponds to the power terminal T B1 and power terminal T B2 of the power conversion unit 21B, the power terminals (external power terminal) T B1a and power terminals (internal power terminal) T B2a Have That is, the power conversion unit 21Ba has a (fourth) external power terminal T B1a and (4) the internal power terminal T B2a, is connected to the second power storage device 3a.
  • Power storage device 3a is connected to the power conversion unit 21Ba by the power terminal T B1a, it is possible to output its discharge power to the power conversion unit 21Ba, charging when the power conversion unit 21Ba supplied with the charging power Is done.
  • the power terminals (internal power terminals) T B2a , T B2 , T G2, and T S2 are commonly connected in the power conversion circuit 20 a by the intermediate wiring 22.
  • the power conversion circuit 20a performs power transmission and power reception among the power storage device 3, the power storage device 3a, the power generation device 4, and the power system 5 under the control of the control unit 23, and performs necessary power conversion at the time of power transmission and power reception. .
  • the power conversion unit 21Ba converts the DC discharge power received from the power storage device 3a through the power terminal T B1a into another DC power and outputs the other DC power from the power terminal T B2a. , Converting the DC power received via the power terminal T B2a into another DC power and performing the power conversion for charging to output the other DC power to the power storage device 3a as the charging power via the power terminal T B1a Is possible.
  • the power conversion unit 21Ba has a second input / output selection function that selectively executes the second output process (second charge power conversion) and the second input process (second discharge power conversion).
  • the power conversion unit 21Ba in response to an instruction from the control unit 23, supplies power (discharge power) that is power received from the second power storage device 3a as the second power auxiliary device and the second power auxiliary device as the second power auxiliary device. 2 It has a function of adjusting demand power (charging power) that is power supplied to the power storage device 3a.
  • the power conversion unit 21Ba responds to an instruction from the control unit 23 and supplies power (discharge power) that is the amount of power received from the second power storage device 3a and the amount of power supplied to the second power storage device 3a.
  • the amount of demand power (charging power amount) is adjusted.
  • the power conversion unit 21Ba adjusts the discharge power (discharge power amount) to the target value. Further, when receiving the target value of the charging power (charging power amount) from the control unit 23, the power conversion unit 21Ba adjusts the charging power (charging power amount) to the target value.
  • the operation of the power converters 21B, 21G, and 21S is as described in the first embodiment. However, with the addition of the power storage device 3a and the power conversion unit 21Ba, the power from the power storage device 3, the power generation device 4, or the power system 5 may be sent to the power storage device 3a, and the power from the power storage device 3a is stored in the power storage device. 3. It may be sent to the electric power system 5 or the DC load 8.
  • the input / output power information acquired by the control unit 23 includes the current value I Ba and the voltage value based on the measurement results of the current sensor and the voltage sensor in addition to the values described in the first embodiment. It includes V Ba and the current value I BINTa, and may include electric power amounts P Ba and P BINTa represented by the following formulas (1g) and (1h).
  • the power converter 2a includes a plurality of current sensors (not shown) that measure values I B , I Ba , I G , and I S of currents flowing through the external power terminals T B1 , T B1a , T G1 , and T S1. ) And a plurality of current sensors (not shown) for measuring the values I BINT , I BINTa , I GINT , and I SINT of the currents flowing through the internal power terminals T B2 , T B2a , T G2 , and T S2 , respectively. .
  • the power converter 2a includes a plurality of voltage sensors (not shown) that measure the voltage values V B , V Ba , V G , and V S of the external power terminals T B1 , T B1a , T G1 , and T S1. ) And a voltage sensor (not shown) for measuring the value V INT of the voltages of the internal power terminals T B2 , T B2a , T G2 , T S2 (that is, the voltage of the intermediate wiring 22).
  • I Ba , V Ba, and P Ba are output from the power storage unit 3a to the power conversion unit 21Ba, respectively, as a current value, a voltage value, and a power amount in the discharge power of the power storage device 3a, or output from the power conversion unit 21Ba to the power storage device 3a.
  • I BINTa and V INT are current values and voltage values corresponding to I Ba and V Ba before or after power conversion in the power converter 21Ba.
  • the control unit 23 controls the operation of the power conversion circuit 20a including the operations of the power conversion units 21B, 21Ba, 21G, and 21S, and controls the operation of the power conversion circuit 20a.
  • the power transmission device 3, the power storage device 3 a, the power generation device 4, and the power grid 5 are controlled.
  • control unit 23 can individually execute the charge quantitative control, the discharge quantitative control, the system output quantitative control, and the system input quantitative control described in the first embodiment.
  • the power generation device 4 is used as a power supply device
  • the power storage device 3 is used as a power demand device
  • the power system 5 is used as a power auxiliary device.
  • the second power storage device 3a is used as a power supply device or a power demand device.
  • the supplied power is the sum of the generated power from the power generator 4 and the discharged power from the second power storage device 3a.
  • the demand power is the sum of the charging power for the power storage device 3 and the charging power for the second power storage device 3a.
  • the power generation device 4 and the power supply device are used as a power supply device
  • the DC load 8 is used as a power demand device
  • the power system 5 is used as a power auxiliary device.
  • the second power storage device 3a is used as a power supply device or a power demand device. Accordingly, the supplied power is the sum of the generated power from the power generation device 4, the power source power (discharge power of the power storage device 3) that is power obtained from the power supply device, and the discharge power from the second power storage device 3a.
  • the demand power is the sum of the power consumption of the DC load 8 and the charging power for the second power storage device 3a.
  • the power generation device 4 is used as a power supply device
  • the power system 5 is used as a power demand device
  • the power storage device 3 is used as a power auxiliary device.
  • the second power storage device 3a is used as a power supply device or a power demand device.
  • the supplied power is the total value of the generated power from the power generator 4 and the discharged power from the second power storage device 3a.
  • the demand power is the total value of the output power to the power system 5 and the charging power to the second power storage device 3a.
  • the power generation device 4 and the power supply device are used as a power supply device
  • the DC load 8 is used as a power demand device
  • the power storage device 3 is used as a power auxiliary device.
  • the second power storage device 3a is used as a power supply device or a power demand device. Therefore, the supplied power is the sum of the generated power from the power generation device 4, the power source power (input power of the power system 5) that is power obtained from the power source device, and the discharge power from the second power storage device 3a.
  • the demand power is the sum of the power consumption of the DC load 8 and the charging power for the second power storage device 3a.
  • the charging or discharging state of the power storage device 3a is not limited, but here, for the sake of concrete description, the charging of the power storage device 3a is performed during a period in which hunting suppression control CNT 3 described later is not performed. And the discharge power is zero. Further, as described in the description of the second embodiment, the control unit 23 performs the hunting detection process (HD 1A , HD 1B , HD 1C) corresponding to the quantitative control being executed during the execution period of each quantitative control. , HD 1D ) or hunting prediction processing (HP 1A , HP 1B , HP 1C , HP 1D ) can be executed.
  • the hunting detection process HD 1A , HD 1B , HD 1C
  • HP 1D hunting prediction processing
  • control unit 23 performs the hunting suppression control CNT 3 in which power is input and output between the power conversion circuit 20a and the power storage device 3a.
  • the power input / output between the power conversion circuit 20a and the power storage device 3a means power output from the power conversion circuit 20a to the power storage device 3a or power input from the power storage device 3a to the power conversion circuit 20a.
  • the power output from the power conversion circuit 20a to the power storage device 3a means that charging power is supplied from the power conversion unit 21Ba to the power storage device 3a.
  • the power input from the power storage device 3a to the power conversion circuit 20a is the power storage device 3a. Is supplied to the power converter 21Ba.
  • the hunting suppression control CNT 3 applied to the charge quantitative control or the discharge quantitative control, the absolute value of the input / output power amount between the power conversion circuit 20 and the power system 5 by the power input / output between the power conversion circuit 20a and the power storage device 3a. Thereby suppressing the system-side hunting phenomenon.
  • the input / output power amount between the power conversion circuit 20 and the power storage device 3 is determined by the power input / output between the power conversion circuit 20a and the power storage device 3a.
  • the absolute value is increased, thereby suppressing the power storage side hunting phenomenon.
  • the suppression control CNT 3 is control performed in each quantitative control, and the execution of the suppression control CNT 3 does not affect the contents of each quantitative control.
  • control unit 23 determines that the event has occurred, the control unit 23 performs either one of the first hunting suppression control CNT 3A and the second hunting suppression control CNT 3B so that the difference between the supplied power and the demand power becomes large. Configured to run.
  • the control unit 23 causes the power conversion circuit 20a to execute the second output process. As a result, the second power storage device 3a is discharged. Considering the demand power as a reference, the power supply (power supply amount) has increased. Conversely, if the supplied power is considered as a reference, the demand power (demand power amount) has decreased.
  • the control unit 23 causes the power conversion circuit 20a to execute the second input process. Thereby, the second power storage device 3a is charged. Considering supply power as a reference, demand power (demand power amount) has increased. Conversely, if the demand power is considered as a reference, the supply power (supply power amount) has decreased.
  • FIGS. 26A and 26B are conceptual diagrams of the suppression control CNT 3 that can be performed during the execution period of the charge quantitative control.
  • FIGS. 27A and 27B are conceptual diagrams of the suppression control CNT 3 that can be performed during the execution of the discharge quantitative control.
  • the control unit 23 performs the suppression control CNT 3 in FIG. 26A or FIG.
  • the power conversion unit 21Ba is controlled so that a predetermined amount of charging power is supplied from the power conversion unit 21Ba to the power storage device 3a, or as shown in FIG. 26B or FIG.
  • the power conversion unit 21Ba is controlled so that a predetermined amount of discharge power is output from the power storage device 3a to the power conversion unit 21Ba.
  • the amount of supplied power (the sum of the generated power from the power generation device 4 and the discharge power from the second power storage device 3a) and the amount of demand power (the charge power to the power storage device 3 and the second power storage device 3a). And the total charge power).
  • the power generation amount of the power generation device 4 is 10 kW ⁇ s
  • the charge power amount of the power storage device 3 is 10 kW ⁇ s.
  • the control unit 23 executes the first hunting suppression control CNT 3A and sets the discharge power (discharge power amount) from the second power storage device 3a to 2 kW ⁇ s
  • the supply power amount increases by 2 kW ⁇ s and increases to 12 kW.
  • the charging power of the second power storage device 3a is 0 kW ⁇ s). Since the amount of power demand is 10 kW ⁇ s, the supplied power is more than 2 kW ⁇ s.
  • control unit 23 gives 2 kW ⁇ s as the target value of the output power to the power conversion unit 21S, and thereby supplies the output power of 2 kW ⁇ s to the power system 5 (see FIG. 26B).
  • the control unit 23 executes the second hunting suppression control CNT 3B and sets the charging power (charging power amount) from the second power storage device 3a to 2 kW ⁇ s
  • the demand power amount increases by 2 kW ⁇ s and increases to 12 kW ⁇ s.
  • the discharge power of the second power storage device 3a is 0 kW ⁇ s.
  • the power supply amount is 10 kW ⁇ s
  • the power supply is insufficient by 2 kW ⁇ s. In this way, the difference between the supplied power amount and the demand power amount becomes large, and the hunting phenomenon is suppressed.
  • the control unit 23 gives 2 kW ⁇ s as the target value of the input power to the power conversion unit 21S, and thereby obtains input power of 2 kW ⁇ s from the power system 5 (see FIG. 26A).
  • the amount of supplied power (the sum of the generated power from the power generation device 4, the discharge power from the power storage device 3, and the discharge power from the second power storage device 3a) and the demand power (of the DC load 8).
  • the sum of the power consumption and the charging power for the second power storage device 3a) is compared.
  • the generated power amount of the power generation device 4 is 10 kW ⁇ s
  • the discharged power amount of the power storage device 3 is 10 kW ⁇ s
  • the consumed power amount of the DC load 8 is 20 kW ⁇ S.
  • the control unit 23 executes the first hunting suppression control CNT 3A and sets the discharge power (discharge power amount) from the second power storage device 3a to 2 kW ⁇ s
  • the supply power amount increases by 2 kW ⁇ s and increases to 22 kW.
  • the charging power of the second power storage device 3a is 0 kW ⁇ s). Since the amount of power demand is 20 kW ⁇ s, the supplied power is more than 2 kW ⁇ s.
  • control unit 23 gives 2 kW ⁇ s as the target value of the output power to the power conversion unit 21S, thereby supplying the output power of 2 kW ⁇ s to the power system 5 (see FIG. 27B).
  • the control unit 23 executes the second hunting suppression control CNT 3B and sets the charging power (charging power amount) from the second power storage device 3a to 2 kW ⁇ s
  • the demand power amount increases by 2 kW ⁇ s and increases to 22 kW ⁇ s.
  • the discharge power of the second power storage device 3a is 0 kW ⁇ s.
  • the control unit 23 gives 2 kW ⁇ s as the target value of the input power to the power conversion unit 21S, and thereby obtains input power of 2 kW ⁇ s from the power system 5 (see FIG. 27A).
  • the charging or discharging of the power storage device 3a causes a continuous flow of power in a certain direction between the power conversion circuit 20a and the power system 5, thereby suppressing the system-side hunting phenomenon.
  • FIGS. 28A and 28B are conceptual diagrams of the suppression control CNT 3 that can be performed during the execution period of the system output quantitative control.
  • FIGS. 29A and 29B are conceptual diagrams of the suppression control CNT 3 that can be performed during the execution period of the system input quantitative control.
  • the control unit 23 performs the suppression control CNT 3 in FIG. 28 (a) or FIG. 29 (a).
  • the power conversion unit 21Ba is controlled so that a predetermined amount of charging power is supplied from the power conversion unit 21Ba to the power storage device 3a, or as shown in FIG. 28 (b) or FIG. 29 (b),
  • the power conversion unit 21Ba is controlled so that a predetermined amount of discharge power is output from the power storage device 3a to the power conversion unit 21Ba.
  • the amount of supplied power (the sum of the generated power from the power generation device 4 and the discharge power from the second power storage device 3a) and the demand power (the output power to the power system 5 and the second power storage device 3a). And the total charging power).
  • the power generation amount of the power generation device 4 is 10 kW ⁇ s
  • the output power amount of the power system 5 is 10 kW ⁇ s.
  • the control unit 23 executes the first hunting suppression control CNT 3A and sets the discharge power (discharge power amount) from the second power storage device 3a to 2 kW ⁇ s
  • the supply power amount increases by 2 kW ⁇ s and increases to 12 kW.
  • the charging power of the second power storage device 3a is 0 kW ⁇ s). Since the amount of power demand is 10 kW ⁇ s, the supplied power is more than 2 kW ⁇ s.
  • control unit 23 gives 2 kW ⁇ s as the target value of the charging power to the power conversion unit 21B, and thereby supplies the charging power of 2 kW ⁇ s to the power storage device 3 (see FIG. 28B).
  • the control unit 23 executes the second hunting suppression control CNT 3B and sets the charging power (charging power amount) from the second power storage device 3a to 2 kW ⁇ s
  • the demand power amount increases by 2 kW ⁇ s and increases to 12 kW ⁇ s.
  • the discharge power of the second power storage device 3a is 0 kW ⁇ s. Since the power supply amount is 10 kW ⁇ s, the power supply is insufficient by 2 kW ⁇ s. In this way, the difference between the supplied power amount and the demand power amount becomes large, and the hunting phenomenon is suppressed.
  • the control unit 23 gives 2 kW ⁇ s as the target value of the discharge power to the power conversion unit 21B, thereby obtaining 2 kW ⁇ s of discharge power from the power storage device 3 (see FIG. 28A).
  • the amount of supplied power (the sum of the generated power from the power generation device 4, the input power from the power system 5, and the discharge power from the second power storage device 3a) and the demand power (DC load 8). Power consumption and the sum of the charging power for the second power storage device 3a).
  • the power generation amount of the power generation device 4 is 10 kW ⁇ s
  • the input power amount of the power system 5 is 10 kW ⁇ s
  • the power consumption of the DC load 8 is 20 kW ⁇ S.
  • the control unit 23 executes the first hunting suppression control CNT 3A and sets the discharge power (discharge power amount) from the second power storage device 3a to 2 kW ⁇ s
  • the supply power amount increases by 2 kW ⁇ s and increases to 22 kW.
  • the charging power of the second power storage device 3a is 0 kW ⁇ s). Since the amount of power demand is 20 kW ⁇ s, the supplied power is more than 2 kW ⁇ s.
  • control unit 23 gives 2 kW ⁇ s as the target value of the charging power to the power conversion unit 21B, and thereby supplies 2 kW ⁇ s of charging power to the power storage device 3 (see FIG. 29B).
  • the control unit 23 executes the second hunting suppression control CNT 3B and sets the charging power (charging power amount) from the second power storage device 3a to 2 kW ⁇ s
  • the demand power amount increases by 2 kW ⁇ s and increases to 22 kW ⁇ s.
  • the discharge power of the second power storage device 3a is 0 kW ⁇ s. Since the power supply amount is 20 kW ⁇ s, the power supply is insufficient by 2 kW ⁇ s. In this way, the difference between the supplied power amount and the demand power amount becomes large, and the hunting phenomenon is suppressed.
  • the control unit 23 gives 2 kW ⁇ s as the target value of the discharge power to the power conversion unit 21B, thereby obtaining 2 kW ⁇ s of discharge power from the power storage device 3 (see FIG. 29A).
  • the charging or discharging of the power storage device 3a causes a continuous flow of power between the power conversion circuit 20a and the power storage device 3 and suppresses the power storage-side hunting phenomenon.
  • the release possibility determination process that can be performed during the execution period of the hunting suppression control CNT 3 is the same as that described in the first embodiment. That is, when the suppression control CNT 3 is executed when the charge quantitative control, the discharge quantitative control, the system output quantitative control, or the system input quantitative control is performed, during the execution period of the suppression control CNT 3 , the control unit 23 Each of the above-described release permission / inhibition determination processes J 1A , J 1B , J 1C, or J 1D can be performed.
  • the power conversion circuit 2 (2a) is configured to increase the demand power from the first predetermined value in the second output process.
  • Control unit 23 the configuration in the case where the difference between the power supply and the first predetermined value during execution of the first hunting suppression control CNT 3A satisfies a first release condition, so as to end the first hunting suppression control CNT 3A Is done.
  • the first release condition is that the first absolute value of the difference between the supplied power and the first predetermined value is equal to or greater than the first threshold, and the state where the first absolute value is equal to or greater than the first threshold continues for a predetermined first time. Or a state in which the difference between the supplied power and the first predetermined value is positive or negative has continued for a predetermined second time.
  • the power conversion circuit 2 (2a) is configured to increase the supply power from the second predetermined value in the second input process.
  • the control unit 23 is configured to end the second hunting suppression control CNT 3B when the difference between the demand power and the second predetermined value satisfies the second release condition during the execution of the second hunting suppression control.
  • the second release condition is that the second absolute value of the difference between the demand power and the second predetermined value is equal to or greater than the second threshold, and the state where the second absolute value is equal to or greater than the second threshold continues for a predetermined third time. Or a state in which the difference between the demand power and the second predetermined value is positive or negative has continued for a predetermined fourth time.
  • the cancellation condition is that the absolute value of the difference between the supplied power and the demand power is less than or equal to a predetermined threshold, or that the absolute value of the difference between the supplied power and the demand power is less than or equal to a predetermined threshold has continued for a predetermined time. That is.
  • the predetermined threshold is smaller than the range of change in the difference between the supplied power and the demand power due to the execution of the hunting suppression control.
  • the cancellation condition is that the state where the difference between the supplied power and the demand power is positive or negative continues for a predetermined time.
  • the demand power and the supplied power differ for each of the charge quantitative control, the discharge quantitative control, the system output quantitative control, and the system input quantitative control.
  • the control unit 23 cancels the execution of the suppression control CNT 3 , that is, stops the power input / output between the power conversion circuit 20 a and the power storage device 3 a (as a result, the charging power and the discharging power of the power storage device 3 a are zero. Back to).
  • the control unit 23 executes the system-side hunting detection process HD 1A during the charge quantitative control or the discharge quantitative control and the suppression control CNT 3 and executes the system-side hunting detection process HD 1A.
  • the execution of the suppression control CNT 3 may be canceled by determining that the cancellation condition is satisfied when the occurrence of the phenomenon is observed a predetermined number of times (an arbitrary number of 1 or more).
  • the control unit 23 executes the power storage side hunting detection process HD 1C , and the power storage side hunting phenomenon occurs a predetermined number of times (1 It may be determined that the release condition has been satisfied when the number of observations above is observed, and the execution of the suppression control CNT 3 may be released.
  • control unit 23 determines whether or not the switching operation between the input process and the output process has been performed a predetermined number of times during the execution of the hunting suppression control CNT 3 , and if it is determined that the switching operation has been performed the predetermined number of times,
  • the suppression control CNT 3 may be configured to end.
  • the predetermined number may be one or more.
  • FIG. 30 is an operation flowchart of the power conversion device 2a focusing on the above-described various quantitative controls. Steps S31 to S33, S35 and S36 are the same as steps S11 to S13, S15 and S16 of FIG. 19, respectively.
  • step S31 the control unit 23 starts executing any quantitative control.
  • step S32 the control unit 23 performs the above-described hunting detection process or prediction process based on the input / output power information.
  • step S33 the control unit 23 checks whether the hunting detection determination or the prediction determination is made, and if any of the determinations is made, the control unit 23 shifts to step S34 to perform the hunting suppression control CNT 3 . Execution is started (that is, charging / discharging for suppressing hunting is performed by the power storage device 3a).
  • the control unit 23 After the execution of the hunting suppression control CNT 3 is started, the control unit 23 performs a hunting suppression control CNT 3 release possibility determination process (J 1A , J 1B , J 1C or J 1D ) (step S35).
  • Control unit 23 continues the execution of the hunting suppression control CNT 3 until either the predetermined release condition is satisfied (step S35 and S36), the execution of the is confirmed fulfillment of releasing condition hunting suppression control CNT 3 Cancel (step S37) and return to step S32.
  • the power converter 2 (2a) of the present embodiment has the following first features.
  • the power conversion device 2 a includes a power conversion circuit 20 (20 a) and a control unit 23.
  • the power conversion circuit 20a includes a first power storage side circuit (power conversion unit 21B) connected to the first power storage device 3 capable of charging and discharging, and a second power source connected to the second power storage device 3a capable of charging and discharging.
  • the power conversion circuit 20a is configured to transmit and receive power between the first power storage device 3, the second power storage device 3a, the power generation device 4, and the power system 5 through power conversion.
  • the control unit 23 is configured to control power transmission and power reception by controlling the power conversion circuit 20a.
  • the controller 23 absorbs the shortage or surplus of the generated power at the input / output of power between the power conversion circuit 20a and the power system 5, and uses the generated power of the power generation device 4 to keep the first power storage device 3 constant. Or supplying power to at least one of the load and the secondary battery connected to the power conversion circuit 20a using the generated power of the power generation device 4 and the discharge power of the first power storage device 3. Quantitative control for discharging the first power storage device 3 under a certain second reference condition is performed.
  • the control unit 23 outputs power from the power conversion circuit 20a to the second power storage device 3a or power from the second power storage device 3a.
  • the suppression control which suppresses switching by performing the electric power input to the conversion circuit 20a is performed.
  • the power conversion device 2 (2a) of the present embodiment has the following second feature.
  • the power conversion device 2 a includes a power conversion circuit 20 (20 a) and a control unit 23.
  • the power conversion circuit 20a includes a first power storage side circuit (power conversion unit 21B) connected to the first power storage device 3 capable of charging and discharging, and a second power source connected to the second power storage device 3a capable of charging and discharging.
  • the power conversion circuit 20a is configured to transmit and receive power between the first power storage device 3, the second power storage device 3a, the power generation device 4, and the power system 5 through power conversion.
  • the control unit 23 is configured to control power transmission and power reception by controlling the power conversion circuit 20a.
  • the control unit 23 absorbs the deficiency or surplus of the generated power by charging or discharging the first power storage device 3 and uses the generated power of the power generation device 4 to transfer the constant power from the power conversion circuit 20a to the power system 5.
  • Power is output under one reference condition, or power is supplied to at least one of a load and a secondary battery connected to the power conversion circuit 20a using generated power and input power from the power system 5 to the power conversion circuit 20a.
  • Quantitative control for inputting electric power from the power system 5 to the power conversion circuit 20a under a constant second reference condition is performed.
  • the quantitative control when switching of power input / output between the power conversion circuit 20a and the first power storage device 3 is detected more than a predetermined number of times within a predetermined time, or depending on the generated power amount or the generated power amount of the power generating device 4
  • the control unit 23 When occurrence of switching is predicted based on the measured value and the first reference condition or the second reference condition, the control unit 23 outputs power from the power conversion circuit 20a to the second power storage device 3a or the second power storage device 3a.
  • the suppression control which suppresses switching by performing the electric power input to the power converter circuit 20a from is performed.
  • the power conversion device 2 of the present embodiment has the following third feature in addition to the first or second feature.
  • the control unit 23 performs the control based on the value of the generated power amount or the generated power amount of the power generation device 4 and the first reference condition or the second reference condition during the execution period of the suppression control. When it is determined that the release condition is satisfied, the execution of the suppression control is released.
  • the power conversion device 2 of the present embodiment has the following fourth feature in addition to the first or second feature.
  • the control unit 23 cancels the execution of the suppression control when switching is detected during the execution period of the suppression control.
  • the power converter device 2 should just have at least 1 of a 1st characteristic and a 2nd characteristic.
  • the third and fourth features are optional features.
  • the hunting suppression control CNT 3 according to the third embodiment also has an adverse effect on the system-side hunting phenomenon or the power storage device 3 that affects the stability of the power system 5 as in the first embodiment. It is possible to appropriately suppress the storage-side hunting phenomenon that may be applied. Therefore, according to the present embodiment, it is possible to provide the power conversion device 2a that contributes to the suppression of the hunting phenomenon.
  • the hunting suppression control CNT 3 in the third embodiment does not affect the quantitative control, the desired quantitative control can be continued during the execution period of the hunting suppression control CNT 3 .
  • the hunting suppression control CNT 3 of the third embodiment causes the power storage device 3a to perform charge / discharge that is not originally required. In this regard, whether or not the release condition is satisfied is monitored when the hunting suppression control CNT 3 is executed, and the hunting suppression control CNT 3 is released when it is determined that the hunting phenomenon does not occur or hardly occurs even when the execution is canceled.
  • unnecessary charging / discharging can be suppressed as much as possible while avoiding the hunting phenomenon as much as possible.
  • the hunting suppression control is executed after the occurrence of the hunting phenomenon is detected, so that some hunting phenomenon is allowed to occur.
  • the occurrence of the hunting phenomenon can be completely or almost completely avoided.
  • the unnecessary charge / discharge execution time increases as compared with the case where the hunting detection process is used, and the efficiency of the entire system is reduced (power conversion associated with unnecessary charge / discharge). Loss reduces overall system efficiency).
  • Whether to execute the hunting detection process or the prediction process may be set according to which of the hunting phenomenon suppression and the system efficiency is given priority.
  • the control unit 23 may perform a selection process of selecting any one of the two power storage devices as the power storage device 3 and selecting the other as the power storage device 3a.
  • the control unit 23 may obtain the degree of deterioration (for example, SOH (State Of Health)) of each of the two power storage devices and perform the selection process according to the degree of deterioration.
  • SOH State Of Health
  • it may be fixed in advance whether the power storage device 3 a is to be charged or discharged, or the control unit 23 may determine according to the remaining capacity of the power storage device 3 a. It may be determined.
  • the charging reference condition specifies that the charging power amount of the power storage device 3 is constant, and accordingly, the charge quantitative control keeps the charging power amount of the power storage device 3 constant. Assumed to be control. However, as long as charge quantitative control is what charges the electrical storage apparatus 3 on fixed charge reference conditions, charge quantitative control is not limited to what was illustrated in each embodiment. That is, for example, the charge quantitative control may be control (constant current charge control) for charging the power storage device 3 with a constant current value, or control for charging the power storage device 3 with a constant voltage value (constant voltage charge control). ). Similarly, as long as the discharge quantitative control is to discharge the power storage device 3 under a certain discharge reference condition, the discharge quantitative control is not limited to those exemplified in each embodiment. 3 may be controlled to discharge at a constant current value (constant current discharge control).
  • the system output quantitative control is as exemplified in each embodiment.
  • the system output quantitative control may be control that keeps the output current value (effective value) from the power conversion circuit (20 or 20a) to the power system 5 constant.
  • the system input quantitative control is as illustrated in each embodiment.
  • the system input quantitative control may be control that keeps the input current value (effective value) from the power system 5 to the power conversion circuit (20 or 20a) constant.
  • the control unit 23 determines the charge current supplied from the power conversion unit 21B to the power storage device 3 instead of the charge command amount P B * for power.
  • the charge command amount I B * designating the current value I B may be generated and given to the power conversion unit 21B.
  • the power conversion unit 21B has a charge current having a current value designated by the charge command amount I B * . May be converted to supply power to the power storage device 3.
  • the control unit 23 can charge the power storage device 3 with a constant reference current amount I BREF for storage by substituting the value of the reference current amount I BREF for storage into the charge command amount I B *. .
  • the charge reference condition specifies that the power storage device 3 is charged with a constant reference current amount I BREF for power storage.
  • current value and the term “current amount” are synonymous, and the term “voltage value” and the term “voltage amount” are synonymous.
  • the control unit 23 in the discharge quantitative control, the control unit 23 generates a discharge command amount I B * that specifies the current value I B of the discharge current of the power storage device 3 instead of the discharge command amount P B * for power.
  • the power conversion unit 21B may perform the discharge power conversion so that a discharge current having a current value specified by the discharge command amount I B * is output from the power storage device 3. Also good.
  • the control unit 23 can discharge the power storage device 3 with a constant reference current amount I BREF for storage by substituting the value of the reference current amount I BREF for storage into the discharge command amount I B *. .
  • the discharge reference condition specifies that the power storage device 3 is discharged with a constant reference current amount I BREF for power storage.
  • the control unit 23 designates the current value I S of the output current from the power conversion unit 21S to the power system 5 instead of the grid output command amount P S * for power.
  • the command amount I S * may be generated and given to the power conversion unit 21S.
  • the power conversion unit 21S receives a current having a current value specified by the system output command amount I S * from the power conversion unit 21S.
  • System output power conversion may be performed so that the power is output to 5.
  • the control unit 23 substitutes the value of the system reference current amount I SREF into the system output command amount I S * to transfer the current from the power conversion unit 21S to the power system 5 with a constant current amount I SREF .
  • Output can be performed.
  • the grid output reference condition specifies that the power output from the power conversion circuit (20 or 20a) to the power grid 5 is performed with a constant grid reference current amount I SREF .
  • the control unit 23 specifies the current value I S of the input current from the power system 5 to the power conversion unit 21S instead of the system input command amount P S * for power.
  • the command amount I S * may be generated and given to the power conversion unit 21S.
  • the power conversion unit 21S receives a current having a current value specified by the system input command amount I S * from the power system 5 and converts it into a power conversion unit. System input power conversion may be performed so as to be input to 21S.
  • the control unit 23 substitutes the value of the system reference current amount I SREF into the system input command amount I S * to transfer a current with a constant current amount I SREF from the power system 5 to the power conversion unit 21S. Input can be made.
  • the grid input reference condition specifies that the current input from the power grid 5 to the power conversion circuit (20 or 20a) is performed with a constant grid reference current amount I SREF .
  • absolute value instead of
  • may be compared with the threshold value TH 1A .
  • the control unit 23 can also perform the prediction processes HP 1C and HP 1D and the release possibility determination processes J 1C and J 1D using only the current value I G or I GINT .
  • HP 1C , HP 1C , J 1C and J 1D arbitrary “power amount” and “symbol representing power amount” are set to “current value” and “current value” using information on known voltages. The process realized through this conversion is equivalent to the processes HP 1C , HP 1C , J 1C and J 1D described above.
  • the ratio between the voltage value V G and the voltage value V B , the ratio between the voltage value V INT and the voltage value V B, and between the voltage value V G and the voltage value (effective value) V S If the ratio, voltage value V INT and voltage value (effective value) V S , voltage values V G , V B and V INT , or voltage values V G , V S and V INT are known to the control unit 23 if, the control unit 23 can also form a release determination process J 2 using only current value I G or I GINT.
  • charging condition the charging condition of the power storage device 3
  • discharging condition the discharging condition of the power storage device 3
  • discharging condition the power output condition from the power conversion circuit (20 or 20a) to the power grid 5
  • system input condition the power input condition from the power system 5 to the power conversion circuit (20 or 20a
  • the specific method of the hunting suppression control CNT 1A for changing the charging condition from the charging reference condition is described, assuming that the charging reference condition defines the storage reference power amount P BREF.
  • the above-described method is only one method for changing the charging condition from the charging reference condition.
  • the suppression control CNT 1A can be realized by any method that can change the charging condition of the power storage device 3 (condition of the electric energy, current value, or voltage value in charging) from the charging reference condition.
  • the control unit 23 has given current instruction values I B * which specifies the current value I B to the power conversion unit 21B, that is, the control unit 23 via the control of the current value I B charge
  • the control unit 23 changes the current command amount I B * from the current value (I BREF ) according to the charge reference condition, thereby changing the charge condition to the charge reference. You may change from conditions.
  • the control unit 23 when the control unit 23 has given voltage command value V B * that specifies the voltage value V B to the power conversion unit 21B, that is, the control unit 23 via the control voltage value V B
  • the control unit 23 changes the voltage command amount V B * from the voltage amount V BREF according to the charge reference condition, thereby changing the charge condition to the charge reference condition.
  • P BREF I BREF ⁇ V BREF ).
  • a change in the charging condition by the suppression control CNT 1A is accompanied by a change in the amount of charge power of the power storage device 3 (for example, a change from P BREF ).
  • the suppression control CNT 1B can be realized by any method that can change the discharge condition of the power storage device 3 (the condition of the electric energy, current value, or voltage value in discharge) from the discharge reference condition.
  • the discharge quantitative control when the control unit 23 has given current instruction values I B * which specifies the current value I B to the power conversion unit 21B, that is, the control unit 23 via the control of the current value I B discharge
  • the control unit 23 changes the discharge condition by changing the current command amount I B * from the current value (I BREF ) according to the discharge reference condition. You may change from conditions.
  • the control unit 23 changes the discharge condition by changing the voltage command amount V B * from the voltage amount V BREF according to the discharge reference condition. It may be changed from In any case, a change in the discharge condition by the suppression control CNT 1B is accompanied by a change in the amount of discharge power of the power storage device 3 (for example, a change from P BREF ).
  • P B * , I B *, and V B * is a kind of command amount (charge / discharge command amount) that specifies a charging condition or a discharging condition.
  • P BREF , I BREF, and V BREF are all types of reference amounts (charge / discharge reference amounts) according to the charge reference condition or the discharge reference condition.
  • the suppression control CNT 1C changes the grid output condition (the condition of the electric energy, current value, or voltage value in the power output from the power conversion circuit (20 or 20a) to the power grid 5) from the grid output reference condition.
  • the current instruction values I S * by the control unit 23 specifies the current value I S If given to the power conversion unit 21S, i.e. the control unit 23 via the control of the current value I S
  • the control unit 23 changes the current command amount I S * from the current value (I SREF ) according to the system output reference condition to output the system output.
  • the condition may be changed from the system output reference condition.
  • the control unit 23 has given voltage command value V S * to specify the voltage value V S to the power conversion unit 21S, i.e. the control unit 23 via the control voltage value V S
  • a change in the system output condition by the suppression control CNT 1C is accompanied by a change in the output power amount from the power conversion circuit (20 or 20a) to the power system 5 (for example, a change from P SREF ).
  • the suppression control CNT 1D changes the system input condition (the condition of the electric energy, current value, or voltage value in the power input from the power system 5 to the power conversion circuit (20 or 20a)) from the system input reference condition. It can be realized by an arbitrary method.
  • the system inputs quantitative control the current instruction values I S * by the control unit 23 specifies the current value I S If given to the power conversion unit 21S, i.e. the control unit 23 via the control of the current value I S
  • the control unit 23 changes the current command amount I S * from the current value (I SREF ) according to the system input reference condition, thereby inputting the system input.
  • the condition may be changed from the system input reference condition.
  • the control unit 23 has given voltage command value V S * to specify the voltage value V S to the power conversion unit 21S, i.e. the control unit 23 via the control voltage value V S
  • the control unit 23 changes the voltage command amount V S * from the voltage amount V SREF according to the system input reference condition, thereby changing the system input condition. May be changed from the system input reference condition.
  • a change in the grid input condition by the suppression control CNT 1D is accompanied by a change in the amount of input power from the power grid 5 to the power conversion circuit (20 or 20a) (for example, a change from P SREF ).
  • P S * , I S *, and V S * are all types of command quantities (system input / output command quantities) that specify system output conditions or system input conditions.
  • P SREF , I SREF, and V SREF are all types of reference quantities (system input / output reference quantities) according to system output reference conditions or system input reference conditions.
  • the input / output power information to be acquired by the control unit 23 is not necessarily required to include all information indicating the voltage value, current value, and power amount.
  • the input / output power information includes voltage information representing voltage values (that is, V B , V G , V S and V INT , or V B , V Ba , V G , V S and V INT ), current information indicating a current value (ie, I B , I G , I S , I BINT , I GINT and I SINT , or I B , I Ba , I G , I S , I BINT , I BINTa , I GINT and I SINT ) and power information representing the amount of power (ie, P B , P G , P S , P BINT , P GINT and P SINT , or P B , P Ba , P G , P S , P BINT , P BINTa , P GINT, and P SINT ) as
  • the power conversion units 21B, 21Ba, 21G, and 21S respectively include a first power storage side circuit, a second power storage side circuit, a power generation side circuit, and a system connected to the power storage device 3, the power storage device 3a, the power generation device 4, and the power system 5.
  • the DC load 8 and the secondary battery 8a may be connected to the intermediate wiring 22 as shown in FIG.
  • the secondary battery 8a is composed of one or more secondary batteries of any type (for example, a lithium ion battery or a nickel metal hydride battery).
  • the secondary battery 8a is a battery mounted on an electric vehicle such as an electric vehicle, for example.
  • the electric power sent to the DC load 8 and the DC load 8 and What is necessary is just to consider it as the electric power sent to the secondary battery 8a that is, for example, the power consumption of the DC load 8 is regarded as the sum of the power consumption of the DC load 8 and the charging power of the secondary battery 8a and the power supplied to the DC load 8 May be regarded as the power supplied to the DC load 8 and the secondary battery 8a.
  • the DC load 8 and the secondary battery 8a are connected to the intermediate wiring 22, one or more power conversion units may be interposed between the intermediate wiring 22, the DC load 8, and the secondary battery 8a.
  • a secondary battery 8 a may be connected to the intermediate wiring 22 instead of the DC load 8.
  • the DC load 8 is not connected to the intermediate wiring 22.
  • the power sent to the DC load 8 in each of the above description including the description of the first to third embodiments What is necessary is just to regard the power sent to the secondary battery 8a, that is, for example, the power consumption of the DC load 8 is regarded as the charging power of the secondary battery 8a and the power supplied to the DC load 8 is the power supplied to the secondary battery 8a. You should consider it.
  • a power conversion unit may be interposed between the intermediate wiring 22 and the secondary battery 8a.
  • the control unit 23 can be configured by hardware or a combination of hardware and software.
  • a function realized using software may be described as a program, and the function may be realized by executing the program on a program execution device (for example, a computer).
  • a CPU Central Processing Unit
  • a necessary function can be realized by causing the CPU to execute a program stored in a flash memory (not shown).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

A power conversion apparatus relating to the present invention is provided with a power conversion circuit and a control unit. The power conversion circuit adjusts, in accordance with instructions given from the control unit, power supply from a power supply apparatus and/or power demand for a power demand apparatus. The power conversion circuit selectively performs output processing for supplying power to a power auxiliary apparatus, and input processing for obtaining power from the power auxiliary apparatus. The control unit makes the power conversion circuit perform the output processing if the power supply is larger than the power demand, and makes the power conversion circuit perform the input processing if the power supply is smaller than the power demand. When the control unit determines that hunting phenomenon is generated, the control unit gives instructions to the power conversion circuit to have a large difference between the power supply and the power demand.

Description

電力変換装置Power converter
 本発明は、電力変換装置に関する。 The present invention relates to a power conversion device.
 電力変換を介して蓄電装置、発電装置及び電力系統間における送電及び受電を行う電力変換装置がある。或る従来方法では、太陽光発電装置の出力を最大限に利用しながら一定の電流値(充電指令量)で蓄電装置を充電すべく、電力系統に接続された双方向コンバータの入出力制御を行って充電電力値を制御している(例えば日本国公開特許公報第6-78473号参照)。 There is a power conversion device that performs power transmission and reception between a power storage device, a power generation device, and a power system through power conversion. In a conventional method, input / output control of a bidirectional converter connected to an electric power system is performed in order to charge a power storage device with a constant current value (charge command amount) while maximizing the output of a photovoltaic power generation device. The charging power value is controlled (see, for example, Japanese Patent Publication No. 6-78473).
 しかしながら、上記従来方法では、太陽光発電装置の発電電力量が充電指令量付近にあるとき、双方向コンバータから成る電力変換回路と電力系統との間で電力の入出力が頻繁に切り替わる現象が発生しうる。このような現象は、電力系統の安定性にとって好ましくない。同様の現象が、一定条件下で蓄電装置を放電させるときにも発生しうる。また、一定条件下で電力系統へ電力出力を行うとき又は電力系統から電力を入力するときには、上記現象に類似する現象として、電力変換回路及び蓄電装置間の入出力の頻繁な切り替わりが発生しうる。このような現象は、蓄電装置にとって好ましいものではない。 However, in the above-described conventional method, when the amount of power generated by the photovoltaic power generation apparatus is near the charge command amount, a phenomenon occurs in which power input / output frequently switches between the power conversion circuit including the bidirectional converter and the power system. Yes. Such a phenomenon is undesirable for the stability of the power system. A similar phenomenon can occur when the power storage device is discharged under certain conditions. In addition, when power is output to the power system under certain conditions or when power is input from the power system, frequent switching of input / output between the power conversion circuit and the power storage device may occur as a phenomenon similar to the above phenomenon. . Such a phenomenon is not preferable for the power storage device.
 そこで本発明は、ハンチング現象の抑制に寄与する電力変換装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a power converter that contributes to suppression of the hunting phenomenon.
 本発明に係る電力変換装置は、電力変換回路と、制御部と、を備える。前記電力変換回路は、電力供給装置から電力を受け取る受電機能と、電力需要装置に電力を供給する送電機能と、電力補助装置に電力を供給する出力処理と前記電力補助装置から電力を取得する入力処理とを選択的に実行する入出力選択機能と、前記電力供給装置から受け取る電力である供給電力と前記電力需要装置に供給する電力である需要電力との少なくとも一方を前記制御部からの指示に応じて調整する調整機能と、を有する。前記制御部は、前記供給電力を前記需要電力と比較し、前記供給電力が前記需要電力より多ければ前記供給電力の余剰分が前記電力補助装置に供給されるように前記電力変換回路に前記出力処理を実行させ、前記供給電力が前記需要電力より少なければ前記供給電力の不足分が前記電力補助装置からの電力で補われるように前記電力変換回路に前記入力処理を実行させるように構成される。前記制御部は、前記電力変換回路でハンチング現象が発生するイベントが起きたか否かを判定し、前記イベントが起きたと判定するとハンチング抑制制御を実行するように構成される。前記制御部は、前記ハンチング抑制制御では、前記供給電力と前記需要電力との差が大きくなるように前記電力変換回路に前記指示を与えるように構成される。 The power conversion device according to the present invention includes a power conversion circuit and a control unit. The power conversion circuit includes a power receiving function for receiving power from a power supply device, a power transmission function for supplying power to a power demand device, an output process for supplying power to a power auxiliary device, and an input for acquiring power from the power auxiliary device. An instruction from the control unit is at least one of an input / output selection function for selectively executing processing, supply power that is power received from the power supply device, and demand power that is power supplied to the power demand device And an adjustment function to adjust accordingly. The control unit compares the supply power with the demand power, and if the supply power is greater than the demand power, the output to the power conversion circuit is such that a surplus of the supply power is supplied to the power auxiliary device. And when the supply power is less than the demand power, the power conversion circuit is configured to execute the input process so that the shortage of the supply power is compensated by the power from the power auxiliary device. . The control unit is configured to determine whether or not an event that causes a hunting phenomenon has occurred in the power conversion circuit, and to execute hunting suppression control when determining that the event has occurred. In the hunting suppression control, the control unit is configured to give the instruction to the power conversion circuit so that a difference between the supplied power and the demand power becomes large.
第1実施形態に係る電力供給システムの概略全体構成図である。1 is a schematic overall configuration diagram of a power supply system according to a first embodiment. 第1実施形態における電力変換装置の制御部のブロック図である。It is a block diagram of the control part of the power converter device in a 1st embodiment. 充電定量制御における電力入出力状態を示す図である。It is a figure which shows the electric power input / output state in charge fixed control. 発電電力量の時間推移を表す図であって、且つ、系統側ハンチング現象を説明するための図である。It is a figure showing the time transition of electric power generation amount, and is a figure for demonstrating the system side hunting phenomenon. 発電電力量の時間推移を表す図であって、且つ、ハンチング抑制制御を説明するための図である。It is a figure showing the time transition of electric power generation amount, and is a figure for demonstrating hunting suppression control. 第1実施形態に係り、充電定量制御に対応するハンチング抑制制御の第1実現例を説明するための図である。It is a figure for demonstrating the 1st implementation example of the hunting suppression control corresponding to charge determination control corresponding to 1st Embodiment. 第1実施形態に係り、充電定量制御に対応するハンチング抑制制御の第2実現例を説明するための図である。It is a figure for demonstrating the 2nd implementation example of the hunting suppression control corresponding to charge determination control according to 1st Embodiment. 第1実施形態に係り、ハンチング抑制制御の解除条件を説明するための図である。It is a figure for demonstrating the cancellation conditions of hunting suppression control concerning 1st Embodiment. 第1実施形態に係り、ハンチング抑制制御の解除条件を説明するための図である。It is a figure for demonstrating the cancellation conditions of hunting suppression control concerning 1st Embodiment. 放電定量制御における電力入出力状態を示す図である。It is a figure which shows the electric power input / output state in discharge quantitative control. 第1実施形態に係り、放電定量制御に対応するハンチング抑制制御の第1実現例を説明するための図である。It is a figure for demonstrating the 1st implementation example of the hunting suppression control corresponding to 1st Embodiment and corresponding to discharge quantitative control. 第1実施形態に係り、放電定量制御に対応するハンチング抑制制御の第2実現例を説明するための図である。It is a figure for demonstrating the 2nd implementation example of the hunting suppression control corresponding to 1st Embodiment and corresponding to discharge quantitative control. 系統出力定量制御における電力入出力状態を示す図である。It is a figure which shows the electric power input / output state in system | strain output fixed control. 第1実施形態に係り、系統出力定量制御に対応するハンチング抑制制御の第1実現例を説明するための図である。It is a figure for demonstrating the 1st implementation example of the hunting suppression control corresponding to 1st Embodiment and corresponding to system | strain output fixed control. 第1実施形態に係り、系統出力定量制御に対応するハンチング抑制制御の第2実現例を説明するための図である。It is a figure for demonstrating the 2nd implementation example of the hunting suppression control corresponding to 1st Embodiment and corresponding to system | strain output fixed control. 系統入力定量制御における電力入出力状態を示す図である。It is a figure which shows the electric power input / output state in system | strain input fixed control. 第1実施形態に係り、系統入力定量制御に対応するハンチング抑制制御の第1実現例を説明するための図である。It is a figure for demonstrating the 1st implementation example of the hunting suppression control corresponding to 1st Embodiment and corresponding to system | strain input fixed control. 第1実施形態に係り、系統入力定量制御に対応するハンチング抑制制御の第2実現例を説明するための図である。It is a figure for demonstrating the 2nd implementation example of the hunting suppression control corresponding to 1st Embodiment and corresponding to system | strain input fixed control. 第1実施形態に係る電力変換装置の動作フローチャートである。It is an operation | movement flowchart of the power converter device which concerns on 1st Embodiment. 第2実施形態に係り、発電装置の出力電流と発電電力の関係を示す図である。It is a figure which concerns on 2nd Embodiment and shows the relationship between the output current of a generator, and generated electric power. 第2実施形態に係り、電流指令値の伝達の様子を示す図である。It is a figure which concerns on 2nd Embodiment and shows the mode of transmission of an electric current command value. 第2実施形態に係り、ハンチング抑制制御の解除条件を説明するための図である。It is a figure for demonstrating the cancellation conditions of hunting suppression control concerning 2nd Embodiment. 第2実施形態に係り、ハンチング抑制制御の解除条件を説明するための図である。It is a figure for demonstrating the cancellation conditions of hunting suppression control concerning 2nd Embodiment. 第2実施形態に係る電力変換装置の動作フローチャートである。It is an operation | movement flowchart of the power converter device which concerns on 2nd Embodiment. 第3実施形態に係る電力供給システムの概略全体構成図である。It is a schematic whole block diagram of the electric power supply system which concerns on 3rd Embodiment. 第3実施形態に係り、充電定量制御における電力入出力状態を示す図である。It is a figure which concerns on 3rd Embodiment and shows the electric power input / output state in charge fixed quantity control. 第3実施形態に係り、放電定量制御における電力入出力状態を示す図である。It is a figure which concerns on 3rd Embodiment and shows the electric power input / output state in discharge quantitative control. 第3実施形態に係り、系統出力定量制御における電力入出力状態を示す図である。It is a figure which concerns on 3rd Embodiment and shows the electric power input / output state in system | strain output fixed control. 第3実施形態に係り、系統入力定量制御における電力入出力状態を示す図である。It is a figure which concerns on 3rd Embodiment and shows the electric power input / output state in system | strain input fixed control. 第3実施形態に係る電力変換装置の動作フローチャートである。It is an operation | movement flowchart of the power converter device which concerns on 3rd Embodiment. 電力供給システムの部分的な変形構成図である。It is a partial deformation | transformation block diagram of an electric power supply system. 電力供給システムの部分的な変形構成図である。It is a partial deformation | transformation block diagram of an electric power supply system.
 本発明に係る第1の形態の電力変換装置2は、電力変換回路20と、制御部23と、を備える。電力変換回路20は、電力供給装置から電力を受け取る受電機能と、電力需要装置に電力を供給する送電機能と、電力補助装置に電力を供給する出力処理と電力補助装置から電力を取得する入力処理とを選択的に実行する入出力選択機能と、制御部23からの指示に応じて電力供給装置から受け取る電力である供給電力と電力需要装置に供給する電力である需要電力との少なくとも一方を調整する調整機能と、を有する。制御部23は、供給電力を需要電力と比較し、供給電力が需要電力より多ければ供給電力の余剰分が電力補助装置に供給されるように電力変換回路20に出力処理を実行させ、供給電力が需要電力より少なければ供給電力の不足分が電力補助装置からの電力で補われるように電力変換回路20に入力処理を実行させるように構成される。制御部23は、電力変換回路20でハンチング現象が発生するイベントが起きたか否かを判定し、イベントが起きたと判定するとハンチング抑制制御を実行するように構成される。制御部23は、ハンチング抑制制御では、供給電力と需要電力との差が大きくなるように電力変換回路20に指示を与えるように構成される。 The power conversion device 2 according to the first embodiment of the present invention includes a power conversion circuit 20 and a control unit 23. The power conversion circuit 20 includes a power receiving function that receives power from the power supply device, a power transmission function that supplies power to the power demand device, an output process that supplies power to the power auxiliary device, and an input process that acquires power from the power auxiliary device. And adjusting at least one of an input / output selection function for selectively executing and supply power that is power received from the power supply device and demand power that is power supplied to the power demanding device in accordance with an instruction from the control unit 23 An adjustment function. The control unit 23 compares the supplied power with the demand power, and if the supplied power is greater than the demand power, causes the power conversion circuit 20 to execute an output process so that a surplus of the supplied power is supplied to the power auxiliary device. Is less than the demand power, the power conversion circuit 20 is configured to execute the input process so that the shortage of the supplied power is compensated by the power from the power auxiliary device. The control unit 23 is configured to determine whether or not an event that causes a hunting phenomenon has occurred in the power conversion circuit 20, and to execute hunting suppression control when determining that an event has occurred. In the hunting suppression control, the control unit 23 is configured to give an instruction to the power conversion circuit 20 so that the difference between the supplied power and the demand power becomes large.
 本発明に係る第2の形態の電力変換装置2では、第1の形態において、指示は、需要電力の目標値である。電力変換回路20は、制御部23から目標値を受け取ると、需要電力を目標値に調整するように構成される。制御部23は、イベントが起きたと判定するまでは、目標値を既定値に設定する通常制御を実行するように構成される。制御部23は、ハンチング抑制制御では、目標値を既定値と異なる値に設定するように構成される。 In the power conversion device 2 of the second form according to the present invention, in the first form, the instruction is a target value of demand power. The power conversion circuit 20 is configured to adjust the demand power to the target value when receiving the target value from the control unit 23. The control unit 23 is configured to execute normal control for setting the target value to a default value until it is determined that an event has occurred. In the hunting suppression control, the control unit 23 is configured to set the target value to a value different from the default value.
 本発明に係る第3の形態の電力変換装置2では、第2の形態において、電力供給装置は、発電装置4である。電力需要装置は蓄電装置3と電力系統5とのいずれか一方であり、電力補助装置は蓄電装置3と電力系統5とのいずれか他方である。 In the power conversion device 2 according to the third embodiment of the present invention, the power supply device is the power generation device 4 in the second embodiment. The power demand device is one of the power storage device 3 and the power system 5, and the power auxiliary device is the other of the power storage device 3 and the power system 5.
 本発明に係る第4の形態の電力変換装置2では、第1の形態において、電力供給装置は、発電装置4と、電源装置と、を含む。供給電力は、発電装置4から供給される電力である発電電力と、電源装置から得られる電力である電源電力との合計である。指示は、電源電力の目標値である。電力変換回路20は、目標値を受け取ると、電源電力を目標値に調整するように構成される。制御部23は、イベントが起きたと判定するまでは、目標値を既定値に設定する通常制御を実行するように構成される。制御部23は、ハンチング抑制制御では、目標値を既定値と異なる値に設定するように構成される。 In the power conversion device 2 according to the fourth aspect of the present invention, in the first aspect, the power supply device includes a power generation device 4 and a power supply device. The supplied power is the sum of the generated power that is the power supplied from the power generation device 4 and the power supply power that is the power obtained from the power supply device. The instruction is a target value of power supply power. The power conversion circuit 20 is configured to adjust the power supply power to the target value when receiving the target value. The control unit 23 is configured to execute normal control for setting the target value to a default value until it is determined that an event has occurred. In the hunting suppression control, the control unit 23 is configured to set the target value to a value different from the default value.
 本発明に係る第5の形態の電力変換装置2では、第4の形態において、電源装置は蓄電装置3と電力系統5とのいずれか一方であり、電力補助装置は蓄電装置3と電力系統5とのいずれか他方である。 In the power conversion device 2 of the fifth aspect according to the present invention, in the fourth aspect, the power supply device is one of the power storage device 3 and the power system 5, and the power auxiliary device is the power storage device 3 and the power system 5. And the other.
 本発明に係る第6の形態の電力変換装置2では、第1の形態において、電力供給装置は、発電装置4を含む。供給電力は、発電装置4から得られる電力である発電電力を含む。指示は、発電電力の目標値である。電力変換回路20は、目標値を受け取ると、発電電力が目標値となるように発電装置4を制御するように構成される。制御部23は、イベントが起きたと判定するまでは、目標値を既定値に設定する通常制御を実行するように構成される。制御部23は、ハンチング抑制制御では、目標値を既定値と異なる値に設定するように構成される。 In the power conversion device 2 according to the sixth embodiment of the present invention, the power supply device includes the power generation device 4 in the first embodiment. The supplied power includes generated power that is power obtained from the power generation device 4. The instruction is a target value of generated power. When receiving the target value, the power conversion circuit 20 is configured to control the power generation device 4 so that the generated power becomes the target value. The control unit 23 is configured to execute normal control for setting the target value to a predetermined value until it is determined that an event has occurred. The controller 23 is configured to set the target value to a value different from the default value in the hunting suppression control.
 本発明に係る第7の形態の電力変換装置2では、第6の形態において、発電装置4は、太陽電池である。電力変換回路20は、指示に応じて太陽電池の動作点を変更することで発電電力を調整するように構成される。 In the power conversion device 2 according to the seventh aspect of the present invention, in the sixth aspect, the power generation device 4 is a solar cell. The power conversion circuit 20 is configured to adjust the generated power by changing the operating point of the solar cell in accordance with an instruction.
 本発明に係る第8の形態の電力変換装置2では、第7の形態において、既定値は、太陽電池の最大電力に対応する値である。 In the power conversion device 2 according to the eighth aspect of the present invention, in the seventh aspect, the default value is a value corresponding to the maximum power of the solar cell.
 本発明に係る第9の形態の電力変換装置2では、第6~第8の形態のいずれか1つにおいて、電力需要装置は蓄電装置3と電力系統5とのいずれか一方であり、電力補助装置は蓄電装置3と電力系統5とのいずれか他方である。 In the power conversion device 2 of the ninth aspect according to the present invention, in any one of the sixth to eighth aspects, the power demand device is one of the power storage device 3 and the power system 5, and The device is the other of power storage device 3 and power system 5.
 本発明に係る第10の形態の電力変換装置2では、第6~第8の形態のいずれか1つにおいて、電力供給装置は、電源装置をさらに含む。供給電力は、発電装置4から供給される電力である発電電力と、電源装置から得られる電力である電源電力との合計である。電源装置は蓄電装置3と電力系統5とのいずれか一方であり、電力補助装置は蓄電装置3と電力系統5とのいずれか他方である。 In the power conversion device 2 of the tenth aspect according to the present invention, in any one of the sixth to eighth aspects, the power supply device further includes a power supply device. The supplied power is the sum of the generated power that is the power supplied from the power generation device 4 and the power supply power that is the power obtained from the power supply device. The power supply device is one of the power storage device 3 and the power system 5, and the power auxiliary device is the other of the power storage device 3 and the power system 5.
 本発明に係る第11の形態の電力変換装置2では、第1の形態において、電力変換回路20は、第2出力処理と第2入力処理とを選択的に実行する第2入出力選択機能を有する。電力変換回路20は、第2出力処理では、第2電力補助装置に電力を供給することで第2電力補助装置を電力需要装置の一部として用いて需要電力を増やすように構成される。電力変換回路20は、第2入力処理では、第2電力補助装置から電力を取得することで第2電力補助装置を電力供給装置の一部として用いて供給電力を増やすように構成される。ハンチング抑制制御は、電力変換回路20に第2出力処理を実行させる第1ハンチング抑制制御と、電力変換回路20に第2入力処理を実行させる第2ハンチング抑制制御と、を含む。制御部23は、イベントが起きたと判定すると、供給電力と需要電力との差が大きくなるように第1ハンチング抑制制御と第2ハンチング抑制制御とのいずれか一方を実行するように構成される。 In the power conversion device 2 according to the eleventh aspect of the present invention, in the first aspect, the power conversion circuit 20 has a second input / output selection function for selectively executing the second output process and the second input process. Have. In the second output process, the power conversion circuit 20 is configured to increase the power demand by using the second power auxiliary device as a part of the power demand device by supplying power to the second power auxiliary device. In the second input process, the power conversion circuit 20 is configured to increase the supply power by using the second power auxiliary device as a part of the power supply device by acquiring power from the second power auxiliary device. The hunting suppression control includes first hunting suppression control that causes the power conversion circuit 20 to execute the second output process, and second hunting suppression control that causes the power conversion circuit 20 to execute the second input process. When it is determined that an event has occurred, the control unit 23 is configured to execute either the first hunting suppression control or the second hunting suppression control so that the difference between the supplied power and the demand power becomes large.
 本発明に係る第12の形態の電力変換装置2では、第11の形態において、第2電力補助装置は、第2蓄電装置3aである。電力変換回路20は、第2出力処理では第2蓄電装置3aを充電し、第2入力処理では第2蓄電装置3aを放電させるように構成される。 In the twelfth mode power conversion device 2 according to the present invention, in the eleventh mode, the second power auxiliary device is the second power storage device 3a. The power conversion circuit 20 is configured to charge the second power storage device 3a in the second output process and to discharge the second power storage device 3a in the second input process.
 本発明に係る第13の形態の電力変換装置2では、第12の形態において、制御部23は、イベントが起きたと判定した場合に、第2蓄電装置3aの電力の残量を所定値と比較するように構成される。制御部23は、残量が所定値未満であれば第1ハンチング抑制制御を実行し、残量が所定値以上であれば第2ハンチング抑制制御を実行するように構成される。 In the power conversion device 2 according to the thirteenth aspect of the present invention, in the twelfth aspect, when the control unit 23 determines that an event has occurred, the remaining power of the second power storage device 3a is compared with a predetermined value. Configured to do. The control unit 23 is configured to execute the first hunting suppression control if the remaining amount is less than the predetermined value, and to execute the second hunting suppression control if the remaining amount is equal to or greater than the predetermined value.
 本発明に係る第14の形態の電力変換装置2では、第11~第13の形態のいずれか1つにおいて、電力供給装置は、発電装置4である。電力需要装置は蓄電装置3と電力系統5とのいずれか一方であり、電力補助装置は蓄電装置3と電力系統5とのいずれか他方である。 In the power conversion device 2 according to the fourteenth aspect of the present invention, in any one of the eleventh to thirteenth aspects, the power supply device is the power generation device 4. The power demand device is one of the power storage device 3 and the power system 5, and the power auxiliary device is the other of the power storage device 3 and the power system 5.
 本発明に係る第15の形態の電力変換装置2では、第11~第13の形態のいずれか1つにおいて、電力供給装置は、発電装置4と、電源装置と、を含む。電源装置は蓄電装置3と電力系統5とのいずれか一方であり、電力補助装置は蓄電装置3と電力系統5とのいずれか他方である。 In the power conversion device 2 of the fifteenth aspect according to the present invention, in any one of the eleventh to thirteenth aspects, the power supply device includes a power generation device 4 and a power supply device. The power supply device is one of the power storage device 3 and the power system 5, and the power auxiliary device is the other of the power storage device 3 and the power system 5.
 本発明に係る第16の形態の電力変換装置2では、第1~第15の形態のいずれか1つにおいて、制御部23は、ハンチング抑制制御の実行中に供給電力と需要電力との差が解除条件を満たした場合に、ハンチング抑制制御を終了するように構成される。 In the power conversion device 2 of the sixteenth aspect according to the present invention, in any one of the first to fifteenth aspects, the control unit 23 determines that the difference between the supplied power and the demand power is during execution of the hunting suppression control. When the release condition is satisfied, the hunting suppression control is configured to end.
 本発明に係る第17の形態の電力変換装置2では、第16の形態において、解除条件は、供給電力と需要電力との差の絶対値が所定の閾値以下であること、または、供給電力と需要電力との差の絶対値が所定の閾値以下である状態が所定時間継続したことである。所定の閾値は、ハンチング抑制制御の実行による供給電力と需要電力との差の変化の幅より小さい。 In the power conversion device 2 according to the seventeenth aspect of the present invention, in the sixteenth aspect, the cancellation condition is that the absolute value of the difference between the supply power and the demand power is equal to or less than a predetermined threshold, or the supply power This is that a state where the absolute value of the difference from the demand power is equal to or less than a predetermined threshold has continued for a predetermined time. The predetermined threshold is smaller than the range of change in the difference between the supplied power and the demand power due to the execution of the hunting suppression control.
 本発明に係る第18の形態の電力変換装置2では、第16の形態において、解除条件は、供給電力と需要電力との差が正また負である状態が所定時間継続したことである。 In the power conversion device 2 according to the eighteenth aspect of the present invention, in the sixteenth aspect, the cancellation condition is that the state where the difference between the supplied power and the demand power is positive or negative continues for a predetermined time.
 本発明に係る第19の形態の電力変換装置2では、第2または第3の形態において、制御部23は、ハンチング抑制制御の実行中に供給電力と既定値との差が解除条件を満たした場合に、ハンチング抑制制御を終了するように構成される。解除条件は、差の絶対値が閾値以上であること、差の絶対値が閾値以上である状態が所定の第1時間継続したこと、または、差が正又は負である状態が所定の第2時間継続したこと、のいずれかである。 In the power conversion device 2 according to the nineteenth aspect of the present invention, in the second or third aspect, the control unit 23 satisfies the release condition when the difference between the supplied power and the predetermined value is during execution of the hunting suppression control. In the case, the hunting suppression control is configured to end. The release condition is that the absolute value of the difference is equal to or greater than the threshold, the state where the absolute value of the difference is equal to or greater than the threshold continues for a predetermined first time, or the state where the difference is positive or negative is the predetermined second. One of the things that lasted for hours.
 本発明に係る第20の形態の電力変換装置2では、第4または第5の形態において、制御部23は、ハンチング抑制制御の実行中に発電電力と既定値との合計値と需用電力との差が解除条件を満たした場合に、ハンチング抑制制御を終了するように構成される。解除条件は、差の絶対値が閾値以上であること、差の絶対値が閾値以上である状態が所定の第1時間継続したこと、または、差が正又は負である状態が所定の第2時間継続したこと、のいずれかである。 In the power conversion device 2 of the twentieth aspect according to the present invention, in the fourth or fifth aspect, the control unit 23 calculates the total value of the generated power and the predetermined value and the demand power during execution of the hunting suppression control. When the difference between the two satisfies the release condition, the hunting suppression control is configured to end. The release condition is that the absolute value of the difference is equal to or greater than the threshold, the state where the absolute value of the difference is equal to or greater than the threshold continues for a predetermined first time, or the state where the difference is positive or negative is the predetermined second. One of the things that lasted for hours.
 本発明に係る第21の形態の電力変換装置2では、第9の形態において、制御部23は、ハンチング抑制制御の実行中に需要電力と既定値との差が解除条件を満たした場合に、ハンチング抑制制御を終了するように構成される。解除条件は、差の絶対値が閾値以上であること、差の絶対値が閾値以上である状態が所定の第1時間継続したこと、または、差が正又は負である状態が所定の第2時間継続したこと、のいずれかである。 In the power conversion device 2 of the twenty-first form according to the present invention, in the ninth form, when the control unit 23 performs the hunting suppression control and the difference between the demand power and the predetermined value satisfies the release condition, It is comprised so that hunting suppression control may be complete | finished. The release condition is that the absolute value of the difference is equal to or greater than the threshold, the state where the absolute value of the difference is equal to or greater than the threshold continues for a predetermined first time, or the state where the difference is positive or negative is the predetermined second. One of the things that lasted for hours.
 本発明に係る第22の形態の電力変換装置2では、第10の形態において、制御部23は、ハンチング抑制制御の実行中に電源電力と既定値との合計値と需用電力との差が解除条件を満たした場合に、ハンチング抑制制御を終了するように構成される。解除条件は、差の絶対値が閾値以上であること、差の絶対値が前記閾値以上である状態が所定の第1時間継続したこと、または、前記差が正又は負である状態が所定の第2時間継続したこと、のいずれかである。 In the power conversion device 2 of the twenty-second aspect according to the present invention, in the tenth aspect, the control unit 23 determines that the difference between the total value of the power supply power and the predetermined value and the power for demand is during execution of the hunting suppression control. When the release condition is satisfied, the hunting suppression control is configured to end. The release condition is that the absolute value of the difference is greater than or equal to a threshold, the state where the absolute value of the difference is greater than or equal to the threshold continues for a predetermined first time, or the state where the difference is positive or negative is predetermined. One of the things that lasted for the second time.
 本発明に係る第23の形態の電力変換装置2では、第11~第15の形態のいずれか1つにおいて、電力変換回路2は、第2出力処理では、需要電力を第1既定値から増やすように構成される。制御部23は、第1ハンチング抑制制御の実行中に供給電力と第1既定値との差が第1解除条件を満たした場合に、第1ハンチング抑制制御を終了するように構成される。第1解除条件は、供給電力と第1既定値との差の第1絶対値が第1閾値以上であること、第1絶対値が第1閾値以上である状態が所定の第1時間継続したこと、または、供給電力と第1既定値との差が正又は負である状態が所定の第2時間継続したこと、のいずれかである。 In the power conversion device 2 of the twenty-third form according to the present invention, in any one of the eleventh to fifteenth forms, the power conversion circuit 2 increases the demand power from the first predetermined value in the second output process. Configured as follows. The control unit 23 is configured to end the first hunting suppression control when the difference between the supplied power and the first predetermined value satisfies the first release condition during the execution of the first hunting suppression control. The first release condition is that the first absolute value of the difference between the supplied power and the first predetermined value is equal to or greater than the first threshold, and the state where the first absolute value is equal to or greater than the first threshold continues for a predetermined first time. Or a state in which the difference between the supplied power and the first predetermined value is positive or negative has continued for a predetermined second time.
 本発明に係る第24の形態の電力変換装置2では、第11~第15および第23の形態のいずれか1つにおいて、電力変換回路2は、第2入力処理では、供給電力を第2既定値から増やすように構成される。制御部23は、第2ハンチング抑制制御の実行中に需要電力と第2既定値との差が第2解除条件を満たした場合に、第2ハンチング抑制制御を終了するように構成される。第2解除条件は、需要電力と第2既定値との差の第2絶対値が第2閾値以上であること、第2絶対値が第2閾値以上である状態が所定の第3時間継続したこと、または、需要電力と第2既定値との差が正又は負である状態が所定の第4時間継続したこと、のいずれかである。 In the power conversion device 2 of the twenty-fourth aspect according to the present invention, in any one of the eleventh to fifteenth and twenty-third aspects, the power conversion circuit 2 supplies the second predetermined power supply in the second input process. Configured to increase from the value. The control unit 23 is configured to end the second hunting suppression control when the difference between the demand power and the second predetermined value satisfies the second release condition during the execution of the second hunting suppression control. The second release condition is that the second absolute value of the difference between the demand power and the second predetermined value is equal to or greater than the second threshold, and the state where the second absolute value is equal to or greater than the second threshold continues for a predetermined third time. Or a state in which the difference between the demand power and the second predetermined value is positive or negative has continued for a predetermined fourth time.
 本発明に係る第25の形態の電力変換装置2では、第1~第24の形態のいずれか1つにおいて、制御部23は、ハンチング抑制制御の実行中に、入力処理と出力処理との切り替え動作が所定回数行われたか否かを判定し、切り替え動作が所定回数行われたと判定すると、ハンチング抑制制御を終了するように構成される。 In the power conversion device 2 of the twenty-fifth aspect according to the present invention, in any one of the first to twenty-fourth aspects, the control unit 23 switches between input processing and output processing during execution of hunting suppression control. It is determined whether or not the operation has been performed a predetermined number of times, and when it is determined that the switching operation has been performed a predetermined number of times, the hunting suppression control is configured to end.
 本発明に係る第26の形態の電力変換装置2では、第1~第25の形態のいずれか1つにおいて、制御部23は、電力変換回路20が出力処理と入力処理との切り替え動作を所定時間内に所定回数以上行った場合に、イベントが起きたと判定するように構成される。 In the power conversion device 2 of the twenty-sixth aspect according to the present invention, in any one of the first to twenty-fifth aspects, the control unit 23 causes the power conversion circuit 20 to perform a switching operation between output processing and input processing. It is configured to determine that an event has occurred when a predetermined number of times have been performed in time.
 本発明に係る第27の形態の電力変換装置2では、第1~第26の形態のいずれか1つにおいて、制御部23は、供給電力と需要電力との差の絶対値が判定値以下であるか否かを判定し、絶対値が判定値以下であると判定した場合にイベントが起きたと判定するように構成される。 In the power conversion device 2 according to the twenty-seventh aspect of the present invention, in any one of the first to twenty-sixth aspects, the control unit 23 determines that the absolute value of the difference between the supplied power and the demand power is equal to or less than a determination value. It is determined whether or not there is an event, and when it is determined that the absolute value is equal to or less than the determination value, it is determined that an event has occurred.
 本発明に係る第28の形態の電力変換装置2では、第1~第26の形態のいずれか1つにおいて、制御部23は、供給電力と需要電力との差の絶対値が判定値以下である状態が判定時間継続したか否かを判定し、状態が判定時間継続したと判定した場合にイベントが起きたと判定するように構成される。 In the power conversion device 2 of the twenty-eighth aspect according to the present invention, in any one of the first to twenty-sixth aspects, the control unit 23 determines that the absolute value of the difference between the supplied power and the demand power is equal to or less than a determination value. It is configured to determine whether or not a certain state has continued for the determination time, and to determine that an event has occurred when it is determined that the state has continued for the determination time.
 以下、本発明の実施形態の例を、図面を参照して具体的に説明する。参照される各図において、同一の部分には同一の符号を付し、同一の部分に関する重複する説明を原則として省略する。尚、本明細書では、記述の簡略化上、情報、信号、物理量、状態量又は部材等を参照する記号又は符号を記すことによって該記号又は符号に対応する情報、信号、物理量、状態量又は部材等の名称を省略又は略記することがある。 Hereinafter, an example of an embodiment of the present invention will be specifically described with reference to the drawings. In each of the drawings to be referred to, the same part is denoted by the same reference numeral, and redundant description regarding the same part is omitted in principle. In this specification, for simplification of description, a symbol or reference that refers to information, signal, physical quantity, state quantity, member, or the like is written to indicate information, signal, physical quantity, state quantity or Names of members and the like may be omitted or abbreviated.
 (第1実施形態)
 1. 第1実施形態の電力変換装置2の構成
 本実施形態の電力変換装置2は、本発明に係る第1~第5、第16~第20、第25~第28の形態の電力変換装置2に関連する。
(First embodiment)
1. Configuration of Power Converter 2 of First Embodiment The power converter 2 of the present embodiment is different from the power converter 2 of the first to fifth, sixteenth to twentieth and twenty-fifth to twenty-eighth embodiments of the present invention. Related.
 以下、本発明の第1実施形態について説明する。図1は、第1実施形態に係る、蓄電池システムとも呼ぶことができる電力供給システム1の概略全体構成図である。電力供給システム1は、図1に示されるブロックの全て又は一部を備えている。例えば、電力供給システム1は、少なくとも電力変換装置2、蓄電装置3、発電装置4、表示部9及び操作部10を備えている。表示部9及び操作部10は、電力変換装置2の構成要素であっても良い。 Hereinafter, a first embodiment of the present invention will be described. FIG. 1 is a schematic overall configuration diagram of a power supply system 1 according to the first embodiment, which can also be referred to as a storage battery system. The power supply system 1 includes all or part of the blocks shown in FIG. For example, the power supply system 1 includes at least a power conversion device 2, a power storage device 3, a power generation device 4, a display unit 9, and an operation unit 10. The display unit 9 and the operation unit 10 may be components of the power conversion device 2.
 電力供給システム1は、例えば、直流負荷8および系統負荷7に接続される。 The power supply system 1 is connected to, for example, a DC load 8 and a system load 7.
 蓄電装置3には、1以上の二次電池から成る電池部(不図示)が設けられている。蓄電装置3の電池部を形成する二次電池は、任意の種類の二次電池であり、例えば、リチウムイオン電池、ニッケル水素電池である。本実施形態において、放電及び充電とは、特に記述なき限り蓄電装置3の放電及び充電(より詳細には、蓄電装置3の電池部内の各二次電池の放電及び充電)を意味する。 The power storage device 3 is provided with a battery unit (not shown) composed of one or more secondary batteries. The secondary battery forming the battery unit of the power storage device 3 is any type of secondary battery, such as a lithium ion battery or a nickel metal hydride battery. In the present embodiment, discharging and charging means discharging and charging of the power storage device 3 (more specifically, discharging and charging of each secondary battery in the battery unit of the power storage device 3) unless otherwise specified.
 電力変換装置2は、電力変換回路20及び制御部23を有する。 The power conversion device 2 includes a power conversion circuit 20 and a control unit 23.
 電力変換回路20は、電力供給装置から電力を受け取る受電機能と、電力需要装置に電力を供給する送電機能と、電力補助装置に電力を供給する出力処理と電力補助装置から電力を取得する入力処理とを選択的に実行する入出力選択機能と、を有する。 The power conversion circuit 20 includes a power receiving function that receives power from the power supply device, a power transmission function that supplies power to the power demand device, an output process that supplies power to the power auxiliary device, and an input process that acquires power from the power auxiliary device. And an input / output selection function for selectively executing.
 さらに、電力変換回路20は、制御部23からの指示に応じて、電力供給装置から受け取る電力である供給電力と電力需要装置に供給する電力である需要電力との少なくとも一方を調整する調整機能を有する。なお、供給電力は、電力供給装置から電力需要装置に供給可能な電力であるともいえる。また、需要電力は、電力需要装置から要求される電力であるともいえる。以下では、供給電力の大きさを供給電力量という。供給電力量は、例えば、1秒間の供給電力の総量に等しい。また、需要電力の大きさを需要電力量という。需要電力量は、例えば、1秒間の需要電力の総量に等しい。 Furthermore, the power conversion circuit 20 has an adjustment function for adjusting at least one of supply power that is power received from the power supply device and demand power that is power supplied to the power demand device in accordance with an instruction from the control unit 23. Have. It can be said that the supplied power is power that can be supplied from the power supply apparatus to the power demand apparatus. Moreover, it can be said that demand power is the electric power requested | required from an electric power demand apparatus. Hereinafter, the magnitude of the supplied power is referred to as the supplied power amount. The amount of power supplied is equal to the total amount of power supplied for 1 second, for example. The magnitude of demand power is called demand power. The amount of power demand is equal to the total amount of power demand for one second, for example.
 制御部23は、定量制御を実行するように構成される。制御部23は、定量制御では、供給電力を需要電力と比較し、供給電力が需要電力より多ければ供給電力の余剰分が電力補助装置に供給されるように電力変換回路20に出力処理を実行させ、供給電力が需要電力より少なければ供給電力の不足分が電力補助装置からの電力で補われるように電力変換回路20に入力処理を実行させるように構成される。 The control unit 23 is configured to execute quantitative control. In the quantitative control, the control unit 23 compares the supplied power with the demand power, and if the supplied power is larger than the demand power, performs an output process on the power conversion circuit 20 so that a surplus of the supplied power is supplied to the power auxiliary device. If the supply power is less than the demand power, the power conversion circuit 20 is configured to execute the input process so that the shortage of the supply power is compensated by the power from the power auxiliary device.
 定量制御は、充電定量制御と、放電定量制御と、系統出力定量制御と、系統入力定量制御と、がある。 Quantitative control includes charge quantitative control, discharge quantitative control, system output quantitative control, and system input quantitative control.
 充電定量制御では、発電装置4が電力供給装置、蓄電装置3が電力需要装置、電力系統5が電力補助装置として使用される。 In charge quantitative control, the power generation device 4 is used as a power supply device, the power storage device 3 is used as a power demand device, and the power system 5 is used as a power auxiliary device.
 放電定量制御では、発電装置4と蓄電装置3とが電力供給装置、直流負荷8が電力需要装置、電力系統5が電力補助装置として使用される。 In the discharge quantitative control, the power generation device 4 and the power storage device 3 are used as a power supply device, the DC load 8 is used as a power demand device, and the power system 5 is used as a power auxiliary device.
 系統出力定量制御では、発電装置4が電力供給装置、電力系統5が電力需要装置、蓄電装置3が電力補助装置として使用される。 In the grid output quantitative control, the power generation device 4 is used as a power supply device, the power system 5 is used as a power demand device, and the power storage device 3 is used as a power auxiliary device.
 系統入力定量制御では、発電装置4と電力系統5とが電力供給装置、直流負荷8が電力需要装置、蓄電装置3が電力補助装置として使用される。 In the grid input quantitative control, the power generation device 4 and the power system 5 are used as a power supply device, the DC load 8 is used as a power demand device, and the power storage device 3 is used as a power auxiliary device.
 制御部23は、充電定量制御と、放電定量制御と、系統出力定量制御と、系統入力定量制御と、を選択的に実行するように構成される。 The control unit 23 is configured to selectively execute charge quantitative control, discharge quantitative control, system output quantitative control, and system input quantitative control.
 制御部23は、電力変換回路20でハンチング現象が発生するイベントが起きたか否かを判定し、イベントが起きたと判定するとハンチング抑制制御CNT1(CNT1A、CNT1B、CNT1C、CNT1D)、を実行するように構成される。制御部23は、ハンチング抑制制御CNT1では、供給電力と需要電力との差が大きくなるように電力変換回路20に指示を与えるように構成される。 Control unit 23 determines whether an event has occurred that hunting occurs in the power conversion circuit 20, when determining that an event has occurred hunting suppression control CNT 1 (CNT 1A, CNT 1B , CNT 1C, CNT 1D), Configured to perform. In the hunting suppression control CNT 1 , the control unit 23 is configured to give an instruction to the power conversion circuit 20 so that the difference between the supplied power and the demand power becomes large.
 例えば、制御部23は、図2に示すように、比較部231と、判定部232と、指示部233と、を備える。 For example, the control unit 23 includes a comparison unit 231, a determination unit 232, and an instruction unit 233 as shown in FIG.
 比較部231は、供給電力と需要電力との比較を行い、比較の結果を指示部233に与えるように構成される。 The comparison unit 231 is configured to compare the supplied power and the demand power, and to give the comparison result to the instruction unit 233.
 判定部232は、電力変換回路20でハンチング現象が発生するイベントが起きたか否かの判定を行い、判定の結果を指示部233に与えるように構成される。また、判定部232は、後述する解除条件が満たされたか否かの判定を行うように構成される。 The determination unit 232 is configured to determine whether or not an event that causes a hunting phenomenon has occurred in the power conversion circuit 20 and to give the determination result to the instruction unit 233. Further, the determination unit 232 is configured to determine whether or not a release condition described later is satisfied.
 指示部233は、比較の結果が供給電力が需要電力より多いことを示していれば、供給電力の余剰分が電力補助装置に供給されるように電力変換回路20に出力処理を実行させるように構成される。 If the comparison result indicates that the supplied power is greater than the demand power, the instruction unit 233 causes the power conversion circuit 20 to execute the output process so that the surplus of the supplied power is supplied to the power auxiliary device. Composed.
 指示部233は、比較の結果が供給電力が需要電力より少ないことを示していれば、供給電力の不足分が電力補助装置からの電力で補われるように電力変換回路20に入力処理を実行させる。 If the comparison result indicates that the supplied power is less than the demand power, the instructing unit 233 causes the power conversion circuit 20 to perform input processing so that the shortage of the supplied power is compensated by the power from the power auxiliary device. .
 指示部233は、判定の結果がイベントが起きたことを示していれば、ハンチング抑制制御CNT1を実行するように構成される。ハンチング抑制制御CNT1では、指示部233は、供給電力と需要電力との差が大きくなるように電力変換回路20に指示を与えるように構成される。 The instruction unit 233 is configured to execute the hunting suppression control CNT 1 if the determination result indicates that an event has occurred. In the hunting suppression control CNT 1 , the instruction unit 233 is configured to give an instruction to the power conversion circuit 20 so that the difference between the supplied power and the demand power becomes large.
 電力変換回路20は、電力端子(外部電力端子)TB1及び電力端子(内部電力端子)TB2を有し、蓄電装置3に接続される蓄電装置用の(第1)電力変換部21Bと、電力端子(外部電力端子)TG1及び電力端子(内部電力端子)TG2を有し、発電装置4に接続される発電装置用の(第2)電力変換部21Gと、電力端子(外部電力端子)TS1及び電力端子(内部電力端子)TS2を有し、電力系統5に接続される系統用の(第3)電力変換部21Sと、電力変換部21B、21G及び21Sを共通接続する中間配線22と、を備える。 The power conversion circuit 20 includes a power terminal (external power terminal) TB1 and a power terminal (internal power terminal) TB2 , and a (first) power conversion unit 21B for the power storage device connected to the power storage device 3, The power terminal (external power terminal) T G1 and the power terminal (internal power terminal) T G2 , the (second) power conversion unit 21G for the power generator connected to the power generator 4, and the power terminal (external power terminal) ) Having T S1 and a power terminal (internal power terminal) T S2 , and a (third) power conversion unit 21S for the system connected to the power system 5 and a power connection unit 21B, 21G and 21S in the middle Wiring 22.
 中間配線22は、第1電力変換部21Bの(第1)内部電力端子TB2と、第2電力変換部21Gの(第2)内部電力端子TG2と、第3電力変換部21Sの(第3)内部電力端子TS2と、に接続される。 Intermediate wire 22 includes a (first) internal power terminal T B2 of the first power conversion unit 21B, the second power conversion unit 21G (second) and the internal power terminal T G2, the third power conversion unit 21S (the 3) Connected to the internal power terminal T S2 .
 蓄電装置3は、(第1)外部電力端子TB1にて電力変換部21Bに接続され、自身の放電電力を電力変換部21Bに出力することができると共に、電力変換部21Bから充電電力の供給を受けたときには充電される。以下では、放電電力の大きさを放電電力量という。放電電力量は、例えば、1秒間の放電電力の総量に等しい。また、充電電力の大きさを充電電力量という。充電電力量は、例えば、1秒間の需要電力の総量に等しい。 The power storage device 3 is connected to the power conversion unit 21B at the (first) external power terminal T B1 and can output its own discharge power to the power conversion unit 21B and supply charging power from the power conversion unit 21B. When you receive it, it will be charged. Below, the magnitude | size of discharge electric power is called discharge electric energy. The amount of discharge power is equal to the total amount of discharge power for one second, for example. The magnitude of the charging power is referred to as the charging power amount. The amount of charging power is equal to the total amount of demand power for one second, for example.
 発電装置4は、任意のエネルギに基づく発電を行って発電電力を出力する発電装置であり、当該エネルギの例として自然エネルギ(太陽光、風力、水力、地熱等)が挙げられる。発電電力は、自然エネルギに依存する。したがって、発電電力は一定ではなく、時間とともに変化し得る。以下では、発電電力の大きさを発電電力量という。発電電力量は、例えば、1秒間の発電電力の総量に等しい。 The power generation device 4 is a power generation device that performs power generation based on arbitrary energy and outputs generated power, and examples of the energy include natural energy (sunlight, wind power, hydropower, geothermal heat, and the like). The generated power depends on natural energy. Therefore, the generated power is not constant and can change with time. Below, the magnitude of the generated power is referred to as the amount of generated power. The amount of generated power is equal to the total amount of generated power for one second, for example.
 ここでは、発電装置4が太陽光に基づく発電を行って発電電力を出力する太陽光発電装置であるとする。発電装置4は、(第2)外部電力端子TG1にて電力変換部21Gに接続され、発電装置4の発電電力は電力変換部21Gに出力される。 Here, it is assumed that the power generation device 4 is a solar power generation device that generates power based on sunlight and outputs generated power. The power generator 4 is connected to the power converter 21G at the (second) external power terminal T G1 , and the generated power of the power generator 4 is output to the power converter 21G.
 電力系統5は、商用交流電力を生成及び出力する商用電源6に接続され、商用交流電力を送電する。電力系統5は、(第3)外部電力端子TS1にて電力変換部21Sに接続され、電力端子TS1を介して電力変換部21S及び電力系統5間の送電及び受電が行われる。すなわち、電力系統5は、電力変換回路20に入力電力を供給し、また、電力変換回路20から出力電力を受け取る。以下では、入力電力の大きさを入力電力量という。入力電力量は、例えば、1秒間の入力電力の総量に等しい。また、出力電力の大きさを出力電力量という。出力電力量は、例えば、1秒間の出力電力の総量に等しい。 The power system 5 is connected to a commercial power source 6 that generates and outputs commercial AC power, and transmits the commercial AC power. The power system 5 is connected to the power conversion unit 21S at the (third) external power terminal T S1, and power transmission and reception between the power conversion unit 21S and the power system 5 are performed via the power terminal T S1 . That is, the power system 5 supplies input power to the power conversion circuit 20 and receives output power from the power conversion circuit 20. Hereinafter, the magnitude of input power is referred to as input power amount. The input power amount is equal to, for example, the total amount of input power for one second. The magnitude of output power is referred to as output power amount. The output power amount is equal to the total amount of output power for one second, for example.
 電力端子TB2、TG2及びTS2は、中間配線22によって電力変換回路20内で共通接続されている。 The power terminals T B2 , T G2, and T S2 are commonly connected in the power conversion circuit 20 by the intermediate wiring 22.
 系統負荷7及び直流負荷8は、例えば、電力供給システム1が導入される工場、店舗、ビル又は一般家屋等における工業機器又は電化製品等である。系統負荷7は、電力端子TS1及び電力系統5に接続され、直流負荷8は中間配線22に接続される。電力変換回路20から電力系統5に出力された電力の全部又は一部は系統負荷7にて消費されることもあるが、ここでは、電力変換回路20から系統負荷7に向かう電力は、電力変換回路20から電力系統5への出力電力の一部であると考える(即ち、系統負荷7の電力消費は本発明の本質と関係がないため、以下の説明では、系統負荷7の存在を無視する)。尚、直流負荷8及び中間配線22間に電力変換部を設けるようにしても良い。 The system load 7 and the DC load 8 are, for example, industrial equipment or electrical appliances in factories, stores, buildings, or general houses where the power supply system 1 is introduced. The system load 7 is connected to the power terminal T S1 and the power system 5, and the DC load 8 is connected to the intermediate wiring 22. Although all or part of the power output from the power conversion circuit 20 to the power system 5 may be consumed by the system load 7, here, the power from the power conversion circuit 20 to the system load 7 is converted into power conversion. It is considered that it is a part of the output power from the circuit 20 to the power system 5 (that is, the power consumption of the system load 7 is not related to the essence of the present invention, so the following description ignores the presence of the system load 7). ). A power conversion unit may be provided between the DC load 8 and the intermediate wiring 22.
 電力変換回路20は、制御部23による制御の下、蓄電装置3、発電装置4及び電力系統5間における送電及び受電を行い、この送電及び受電の際、必要な電力変換を行う。 The power conversion circuit 20 performs power transmission and power reception among the power storage device 3, the power generation device 4, and the power system 5 under the control of the control unit 23, and performs necessary power conversion at the time of power transmission and power reception.
 具体的には、電力変換部21Bは、電力端子(外部電力端子)TB1を介して蓄電装置3から受けた直流の放電電力を他の直流電力に変換して該他の直流電力を電力端子(内部電力端子)TB2から出力する放電用電力変換と、電力端子(内部電力端子)TB2を介して受けた直流電力を他の直流電力に変換して該他の直流電力を電力端子(外部電力端子)TB1を介し充電電力として蓄電装置3に出力する充電用電力変換と、を実行可能である。 Specifically, power conversion unit 21B converts the DC discharge power received from power storage device 3 via power terminal (external power terminal) TB1 to other DC power, and converts the other DC power to power terminal. (internal power terminal) and the discharge power conversion output from T B2, the power terminals (internal power terminal) of the DC power received via the T B2 is converted into another DC power said other DC power power terminal ( It is possible to execute power conversion for charging that is output to the power storage device 3 as charging power via the external power terminal T B1 .
 つまり、電力変換部21Bは、電力供給装置として蓄電装置3から電力を受け取る受電機能と、電力需要装置として蓄電装置3に電力を供給する送電機能と、電力補助装置として蓄電装置3に電力を供給する出力処理と電力補助装置として蓄電装置3から電力を取得する入力処理とを選択的に実行する入出力選択機能と、を有する。 That is, the power converter 21B receives power from the power storage device 3 as a power supply device, a power transmission function that supplies power to the power storage device 3 as a power demand device, and supplies power to the power storage device 3 as a power auxiliary device. An input / output selection function for selectively executing an output process to be performed and an input process for acquiring power from the power storage device 3 as a power auxiliary device.
 また、電力変換部21Bは、制御部23からの指示に応じて、電力供給装置としての蓄電装置3から受け取る電力である供給電力(放電電力)と電力需要装置としての蓄電装置3に供給する電力である需要電力(充電電力)とを調整する調整機能を有する。 In addition, the power conversion unit 21B, in response to an instruction from the control unit 23, supplies power (discharge power) that is power received from the power storage device 3 as a power supply device and power supplied to the power storage device 3 as a power demand device. It has an adjustment function to adjust the demand power (charging power).
 すなわち、電力変換部21Bは、制御部23からの指示に応じて、電力供給装置としての蓄電装置3から受け取る電力の量である供給電力量(放電電力量)と電力需要装置としての蓄電装置3に供給する電力の量である需要電力量(充電電力量)とを調整する。 That is, the power conversion unit 21B, in response to an instruction from the control unit 23, supplies power (discharged power) that is the amount of power received from the power storage device 3 as the power supply device and the power storage device 3 as the power demand device. The amount of power demand (charge power amount) that is the amount of power supplied to the battery is adjusted.
 したがって、電力変換部21Bは、制御部23から放電電力(放電電力量)の目標値を受け取ると、放電電力(放電電力量)を目標値に調整する。また、電力変換部21Bは、制御部23から充電電力(充電電力量)の目標値を受け取ると、充電電力(充電電力量)を目標値に調整する。 Therefore, when receiving the target value of the discharge power (discharge power amount) from the control unit 23, the power conversion unit 21B adjusts the discharge power (discharge power amount) to the target value. Further, upon receiving the target value of the charging power (charging power amount) from the control unit 23, the power conversion unit 21B adjusts the charging power (charging power amount) to the target value.
 放電用電力変換によって電力端子TB2から出力された電力は、中間配線22を介して直流負荷8に送られる、又は、中間配線22及び電力変換部21Sを介して電力系統5に送られる。 The power output from the power terminal TB2 by the power conversion for discharge is sent to the DC load 8 through the intermediate wiring 22, or is sent to the power system 5 through the intermediate wiring 22 and the power conversion unit 21S.
 充電用電力変換において、電力変換部21Bが電力端子TB2を介して受ける直流電力は、電力変換部21G及び中間配線22を介して供給された発電装置4の発電電力に基づく電力、若しくは、電力変換部21S及び中間配線22を介して供給された電力系統5からの商用交流電力に基づく電力、又は、それらの組み合わせである。 In charge power conversion, the DC power by the power conversion unit 21B receives via a power terminal T B2, the power based on the power generated by the power conversion unit 21G and the intermediate wiring 22 power generator is supplied via the 4, or the power The power is based on the commercial AC power supplied from the power system 5 supplied via the converter 21S and the intermediate wiring 22, or a combination thereof.
 電力変換部21Gは、電力端子TG1を介して発電装置4から受けた直流の発電電力を他の直流電力に変換して該他の直流電力を電力端子TG2から出力する発電用電力変換を実行可能である。 The power conversion unit 21G converts the generated DC power received from the power generation device 4 through the power terminal T G1 into another DC power and outputs the other DC power from the power terminal T G2. It is feasible.
 つまり、電力変換部21Gは、電力供給装置として発電装置4から電力を受け取る受電機能を有する。 That is, the power conversion unit 21G has a power receiving function of receiving power from the power generation device 4 as a power supply device.
 また、電力変換部21Gは、制御部23からの指示に応じて、電力供給装置としての発電装置4から受け取る電力である供給電力(発電電力)を調整する調整機能を有する。 Further, the power conversion unit 21G has an adjustment function of adjusting supply power (generated power) that is power received from the power generation device 4 as a power supply device in accordance with an instruction from the control unit 23.
 すなわち、電力変換部21Gは、制御部23からの指示に応じて、電力供給装置としての発電装置4から受け取る電力の量である供給電力量(発電電力量)を調整する。 That is, the power conversion unit 21G adjusts the supply power amount (generated power amount), which is the amount of power received from the power generation device 4 as the power supply device, in accordance with an instruction from the control unit 23.
 したがって、電力変換部21Gは、制御部23から発電電力(発電電力量)の目標値を受け取ると、発電電力(発電電力量)を目標値に調整する。 Therefore, when receiving the target value of the generated power (generated power amount) from the control unit 23, the power conversion unit 21G adjusts the generated power (generated power amount) to the target value.
 発電用電力変換によって電力端子TG2から出力された電力は、中間配線22を介して直流負荷8に送られる、中間配線22及び電力変換部21Sを介して電力系統5に送られる、又は、中間配線22及び電力変換部21Bを介して蓄電装置3に送られる。 The power output from the power terminal TG2 by the power conversion for power generation is sent to the DC load 8 through the intermediate wiring 22, sent to the power system 5 through the intermediate wiring 22 and the power conversion unit 21S, or intermediate It is sent to the power storage device 3 through the wiring 22 and the power conversion unit 21B.
 電力変換部21Sは、電力端子TS1を介して電力系統5から受けた商用交流電力を直流電力に変換して該直流電力を電力端子TS2から出力する系統入力用電力変換と、電力端子TS2を介して受けた直流電力を交流電力に変換して該交流電力を電力端子TS1を介して電力系統5に出力する系統出力用電力変換と、を実行可能である。 The power conversion unit 21S converts the commercial AC power received from the power system 5 through the power terminal T S1 into DC power and outputs the DC power from the power terminal T S2. It is possible to perform power conversion for system output that converts the DC power received via S2 into AC power and outputs the AC power to the power system 5 via the power terminal T S1 .
 つまり、電力変換部21Sは、電力供給装置として電力系統5から電力を受け取る受電機能と、電力需要装置として電力系統5に電力を供給する送電機能と、電力補助装置として電力系統5に電力を供給する出力処理と電力補助装置として電力系統5から電力を取得する入力処理とを選択的に実行する入出力選択機能と、を有する。 That is, the power conversion unit 21S receives power from the power system 5 as a power supply device, a power transmission function that supplies power to the power system 5 as a power demand device, and supplies power to the power system 5 as a power auxiliary device. An input / output selection function for selectively executing output processing to be performed and input processing for acquiring power from the power system 5 as a power auxiliary device.
 また、電力変換部21Sは、制御部23からの指示に応じて、電力供給装置としての電力系統5から受け取る電力である供給電力(入力電力)と電力需要装置としての電力系統5に供給する電力である需要電力(出力電力)とを調整する調整機能を有する。 In addition, the power conversion unit 21S, in response to an instruction from the control unit 23, supplies power (input power) that is power received from the power system 5 as a power supply device and power supplied to the power system 5 as a power demand device. It has an adjustment function for adjusting the demand power (output power).
 すなわち、電力変換部21Sは、制御部23からの指示に応じて、電力供給装置としての電力系統5から受け取る電力である供給電力量(入力電力量)と電力需要装置としての電力系統5に供給する電力である需要電力量(出力電力量)とを調整する調整機能を有する。 That is, the power conversion unit 21S supplies the supply power amount (input power amount) that is the power received from the power system 5 as the power supply device and the power system 5 as the power demand device according to the instruction from the control unit 23. It has an adjustment function for adjusting the amount of demand power (output power amount) that is the power to be generated.
 したがって、電力変換部21Sは、制御部23から入力電力(入力電力量)の目標値を受け取ると、入力電力(入力電力量)を目標値に調整する。また、電力変換部21Sは、制御部23から出力電力(出力電力量)の目標値を受け取ると、出力電力(出力電力量)を目標値に調整する。 Therefore, when receiving the target value of the input power (input power amount) from the control unit 23, the power conversion unit 21S adjusts the input power (input power amount) to the target value. Further, when receiving the target value of the output power (output power amount) from the control unit 23, the power conversion unit 21S adjusts the output power (output power amount) to the target value.
 系統入力用電力変換によって電力端子TS2から出力された電力は、中間配線22を介して直流負荷8に送られる、又は、中間配線22及び電力変換部21Bを介して蓄電装置3に送られる。 The power output from the power terminal T S2 by the power conversion for system input is sent to the DC load 8 via the intermediate wiring 22 or sent to the power storage device 3 via the intermediate wiring 22 and the power conversion unit 21B.
 系統出力用電力変換において、電力変換部21Sが電力端子TS2を介して受ける直流電力は、蓄電装置3から電力変換部21B及び中間配線22を介して供給された蓄電装置3の放電電力に基づく直流電力、若しくは、発電装置4から電力変換部21G及び中間配線22を介して供給された発電装置4の発電電力に基づく直流電力、又は、それらの組み合わせである。 In the power conversion for system output, the DC power received by the power conversion unit 21S via the power terminal T S2 is based on the discharge power of the power storage device 3 supplied from the power storage device 3 via the power conversion unit 21B and the intermediate wiring 22. DC power, or DC power based on the generated power of the power generation device 4 supplied from the power generation device 4 via the power conversion unit 21G and the intermediate wiring 22, or a combination thereof.
 制御部23は、各種センサを用いて、電力変換回路20の各部における電圧値、電流値及び電力量を表す入出力電力情報を取得する。 The control unit 23 acquires input / output power information representing a voltage value, a current value, and a power amount in each unit of the power conversion circuit 20 using various sensors.
 例えば、電力変換装置2は、外部電力端子TB1,TG1,TS1にそれぞれ流れる電流の値IB,IG,ISを測定する複数の電流センサ(図示せず)と、内部電力端子TB2,TG2,TS2にそれぞれ流れる電流の値IBINT,IGINT,ISINTを測定する複数の電流センサ(図示せず)と、を備える。 For example, the power conversion device 2 includes a plurality of current sensors (not shown) that measure values I B , I G , and I S of currents flowing through the external power terminals T B1 , T G1 , and T S1 , and an internal power terminal. And a plurality of current sensors (not shown) for measuring values I BINT , I GINT , and I SINT of currents flowing through T B2 , T G2 , and T S2 , respectively.
 また、電力変換装置2は、外部電力端子TB1,TG1,TS1のそれぞれの電圧の値VB,VG,VSを測定する複数の電圧センサ(図示せず)と、内部電力端子TB2,TG2,TS2の電圧(すなわち、中間配線22の電圧)の値VINTを測定する電圧センサ(図示せず)と、を備える。 In addition, the power converter 2 includes a plurality of voltage sensors (not shown) that measure the voltage values V B , V G , and V S of the external power terminals T B1 , T G1 , and T S1 , and an internal power terminal. And a voltage sensor (not shown) for measuring the value V INT of the voltages T B2 , T G2 , and T S2 (that is, the voltage of the intermediate wiring 22).
 具体的には、制御部23は、電流センサを用いて、電力端子TB1、TG1、TS1、TB2、TG2、TS2を介して流れる電流の値(電流値)IB、IG、IS、IBINT、IGINT、ISINTを個別に取得すると共に、電圧センサを用いて、電力端子TB1、TG1、TS1に加わる電圧の値(電圧値)VB、VG、VSを個別に取得する。 Specifically, the control unit 23 uses current sensors to measure current values (current values) I B and I flowing through the power terminals T B1 , T G1 , T S1 , T B2 , T G2 , and T S2. G , I S , I BINT , I GINT , and I SINT are acquired individually, and voltage values (voltage values) V B and V G applied to the power terminals T B1 , T G1 , and T S1 using the voltage sensor are obtained. , V S is acquired individually.
 また、制御部23は、電圧センサを用いて、電力端子TB2、TG2及びTS2に加わる共通の電圧の値(電圧値)VINTを取得する。 The control unit 23 uses the voltage sensor, acquires the power terminal T B2, the value of the common voltage applied to the T G2 and T S2 (voltage value) V INT.
 入出力電力情報は、電流値IB、IG、IS、IBINT、IGINT及びISINT並びに電圧値VB、VG、VS及びVINTを含み、下記式(1a)~(1f)によって表される電力の大きさ(電力量)PB、PG、PS、PBINT、PGINT及びPSINTも含みうる。 The input / output power information includes current values I B , I G , I S , I BINT , I GINT and I SINT , and voltage values V B , V G , V S and V INT , and the following formulas (1a) to (1f ) Can also include power magnitudes (power quantities) P B , P G , P S , P BINT , P GINT, and P SINT .
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 IB、VB及びPBは、夫々、蓄電装置3から電力変換部21Bに入力される蓄電装置3の放電電力における電流値、電圧値及び電力量又は電力変換部21Bから蓄電装置3に出力される蓄電装置3の充電電力における電流値、電圧値及び電力量である。 I B , V B, and P B are output to the power storage device 3 from the current value, voltage value, and power amount of the discharge power of the power storage device 3 input from the power storage device 3 to the power conversion unit 21B, or from the power conversion unit 21B, respectively. Current value, voltage value, and electric energy in the charging power of the power storage device 3 to be performed.
 IG、VG及びPGは、夫々、発電装置4から電力変換部21Gに入力される発電装置4の発電電力における電流値、電圧値及び電力量である。 I G , V G, and P G are a current value, a voltage value, and an electric energy in the generated power of the power generation device 4 input from the power generation device 4 to the power conversion unit 21G, respectively.
 IS、VS及びPSは、夫々、電力系統5から電力変換部21Sに入力される商用交流電力における電流値、電圧値及び電力量又は電力変換部21Sから電力系統5に出力される交流電力における電流値、電圧値及び電力量である。 I S , V S, and P S are current values, voltage values, and amounts of electric power in commercial AC power input from the power system 5 to the power conversion unit 21S, or AC output from the power conversion unit 21S to the power system 5, respectively. It is the current value, voltage value, and electric energy in electric power.
 IBINT、VINTは、IB及びVBに対応する、電力変換部21Bにおける電力変換前又は後の電流値及び電圧値である。 I BINT and V INT are current values and voltage values corresponding to I B and V B before or after power conversion in the power conversion unit 21B.
 IGINT、VINTは、IG及びVGに対応する、電力変換部21Gにおける電力変換後の電流値及び電圧値である。 I GINT and V INT are current values and voltage values after power conversion in the power conversion unit 21G, corresponding to I G and V G.
 ISINT、VINTは、IS及びVSに対応する、電力変換部21Sにおける電力変換前又は後の電流値及び電圧値である。 I SINT and V INT are current values and voltage values corresponding to I S and V S before or after power conversion in the power conversion unit 21S.
 制御部23は、入出力電力情報に基づき、電力変換部21B、21G及び21Sの各電力変換の動作を含む電力変換回路20の動作を制御し、電力変換回路20の動作の制御を介して、蓄電装置3、発電装置4及び電力系統5間の送電及び受電を制御する。 The control unit 23 controls the operation of the power conversion circuit 20 including the operation of each power conversion of the power conversion units 21B, 21G, and 21S based on the input / output power information, and through the control of the operation of the power conversion circuit 20, It controls power transmission and power reception among the power storage device 3, the power generation device 4, and the power system 5.
 また、制御部23は、液晶ディスプレイ等から成る表示部9を制御することで、表示部9に所望の映像を表示させることができる。 Further, the control unit 23 can display a desired image on the display unit 9 by controlling the display unit 9 including a liquid crystal display or the like.
 操作部10は、電力供給システム1の操作者からの様々な指示及び情報を受け、その指示及び情報を制御部23に伝達する。操作者は、例えば、電力供給システム1の所有者、使用者又は保守管理者(所謂サービスマン等)である。操作部10は、表示部9上のタッチパネルを含みうる。 The operation unit 10 receives various instructions and information from the operator of the power supply system 1 and transmits the instructions and information to the control unit 23. The operator is, for example, an owner, a user, or a maintenance manager (so-called service man) of the power supply system 1. The operation unit 10 can include a touch panel on the display unit 9.
 尚、蓄電装置3と同様の他の1以上の蓄電装置が更に電力供給システム1に設けられていても良く、この場合、その他の1以上の蓄電装置に対する電力変換部を電力変換回路20に追加すると良い(後述の他の実施形態においても同様)。 Note that one or more other power storage devices similar to the power storage device 3 may be further provided in the power supply system 1, and in this case, a power conversion unit for the other one or more power storage devices is added to the power conversion circuit 20. This is preferable (the same applies to other embodiments described later).
 また、発電装置4と同様の他の1以上の発電装置が更に電力供給システム1に設けられていても良く、この場合、他の1以上の発電装置に対する電力変換部を電力変換回路20に追加すると良い(後述の他の実施形態においても同様)。また、制御部23は、複数の制御部にて形成されていても良い(後述の他の実施形態においても同様)。 One or more other power generation devices similar to the power generation device 4 may be further provided in the power supply system 1, and in this case, a power conversion unit for the other one or more power generation devices is added to the power conversion circuit 20. This is preferable (the same applies to other embodiments described later). The control unit 23 may be formed by a plurality of control units (the same applies to other embodiments described later).
 制御部23は、入出力電力情報に基づき、充電定量制御、放電定量制御、系統出力定量制御及び系統入力定量制御を実行することができる。以下、充電定量制御と、放電定量制御と、系統出力定量制御と、系統入力定量制御と、について詳細に説明する。 The control unit 23 can execute charge quantitative control, discharge quantitative control, system output quantitative control, and system input quantitative control based on the input / output power information. Hereinafter, the charge quantitative control, the discharge quantitative control, the system output quantitative control, and the system input quantitative control will be described in detail.
 2. 各定量制御の内容
 (1) 充電定量制御
 (1-1) 基本動作
 まず、充電定量制御を説明する。充電定量制御において、制御部23は、発電装置4の発電電力を用いて蓄電装置3が一定の充電基準条件下で充電されるように電力変換回路20を制御する。
2. Contents of each quantitative control (1) Charge quantitative control (1-1) Basic operation First, charge quantitative control will be described. In the charge quantitative control, the control unit 23 controls the power conversion circuit 20 using the generated power of the power generation device 4 so that the power storage device 3 is charged under a constant charge reference condition.
 充電定量制御では、制御部23は、発電装置4と電力系統5とを利用して、蓄電装置3の充電を行う。充電定量制御では、発電装置4が電力供給装置、蓄電装置3が電力需要装置、電力系統5が電力補助装置として使用される。したがって、充電定量制御では、供給電力は、発電装置4の発電電力である。また、需要電力は、蓄電装置3の充電に使用される電力(充電電力)である。 In charge quantitative control, the control unit 23 charges the power storage device 3 using the power generation device 4 and the power system 5. In the charge quantitative control, the power generation device 4 is used as a power supply device, the power storage device 3 is used as a power demand device, and the power system 5 is used as a power auxiliary device. Therefore, in the charging quantitative control, the supplied power is the generated power of the power generation device 4. The demand power is power (charging power) used for charging the power storage device 3.
 充電定量制御では、制御部23(比較部231)は、発電装置4の発電電力(発電電力量)を蓄電装置3の充電電力(充電電力量)と比較する。 In charge quantitative control, the control unit 23 (comparison unit 231) compares the generated power (generated power amount) of the power generation device 4 with the charged power (charged power amount) of the power storage device 3.
 制御部23(指示部233)は、供給電力(発電電力)が需要電力(充電電力)より多ければ供給電力(発電電力)の余剰分が電力系統5(電力補助装置)に供給されるように電力変換回路20に出力処理(電力変換部21Sの系統出力用電力変換)を実行させる。 If the supplied power (generated power) is greater than the demand power (charged power), the control unit 23 (instruction unit 233) supplies the surplus of the supplied power (generated power) to the power system 5 (power auxiliary device). The power conversion circuit 20 is caused to execute output processing (power conversion for system output of the power conversion unit 21S).
 具体的には、制御部23(指示部233)は、発電電力と充電電力との差に相当する出力電力が得られるように、電力変換部21Sに指示(出力電力の目標値)を与える。例えば、供給電力量が12kW・sであり、充電電力量が10kW・sであれば、出力電力の目標値として、2kW・sを電力変換部21Sに与える。 Specifically, the control unit 23 (instruction unit 233) gives an instruction (target value of output power) to the power conversion unit 21S so that output power corresponding to the difference between the generated power and the charged power can be obtained. For example, if the supplied power amount is 12 kW · s and the charged power amount is 10 kW · s, 2 kW · s is given to the power conversion unit 21S as the target value of the output power.
 制御部23(指示部233)は、供給電力(発電電力)が需要電力(充電電力)より少なければ供給電力(発電電力)の不足分が電力系統5(電力補助装置)からの電力で補われるように電力変換回路20に入力処理(電力変換部21Sの系統入力用電力変換)を実行させる。 If the supplied power (generated power) is less than the demand power (charged power), the controller 23 (instruction unit 233) supplements the shortage of the supplied power (generated power) with the power from the power system 5 (power auxiliary device). Thus, the power conversion circuit 20 is caused to execute input processing (system input power conversion of the power conversion unit 21S).
 具体的には、制御部23(指示部233)は、発電電力と充電電力との差に相当する入力電力が得られるように、電力変換部21Sに指示(入力電力の目標値)を与える。例えば、供給電力量が8kW・sであり、充電電力量が10kW・sであれば、制御部23は、入力電力の目標値として2kW・sを電力変換部21Sに与える。 Specifically, the control unit 23 (instruction unit 233) gives an instruction (target value of input power) to the power conversion unit 21S so that input power corresponding to the difference between the generated power and the charged power can be obtained. For example, if the supplied power amount is 8 kW · s and the charged power amount is 10 kW · s, the control unit 23 gives 2 kW · s to the power conversion unit 21S as the target value of the input power.
 このように、この充電定量制御において、発電装置4の発電電力量が蓄電装置3の充電に必要な電力量(充電電力量)よりも少ないときには、それらの差分に相当する不足電力(不足電力量)が電力系統5から電力変換回路20に入力されるように、且つ、発電装置4の発電電力量が蓄電装置3の充電に必要な電力量(充電電力量)よりも多いときには、それらの差分に相当する余剰電力(余剰電力量)が電力変換回路20から電力系統5に出力されるように、入出力電力情報に基づき制御部23は電力変換回路20を制御する。充電定量制御を考える場合、直流負荷8の存在は無視される(直流負荷8の有無は問わない)。 In this way, in this charging quantitative control, when the amount of power generated by the power generation device 4 is smaller than the amount of power required for charging the power storage device 3 (charge power amount), the shortage power (shortage power amount) corresponding to the difference between them. ) Is input from the power system 5 to the power conversion circuit 20 and when the amount of power generated by the power generation device 4 is larger than the amount of power required for charging the power storage device 3 (charge power amount), the difference between them The control unit 23 controls the power conversion circuit 20 based on the input / output power information so that the surplus power corresponding to (the amount of surplus power) is output from the power conversion circuit 20 to the power system 5. When considering charge quantitative control, the presence of the DC load 8 is ignored (regardless of the presence or absence of the DC load 8).
 充電基準条件は、蓄電装置3の充電電力量又は該充電電力量に依存する電流値及び電圧値等を指定する条件であり、制御部23は充電基準条件を自由に定めることができる。充電基準条件は、蓄電装置3の充電電力量に依存する電流値及び電圧値の一方のみを指定する条件であっても良い。ここでは、充電基準条件が蓄電装置3を一定の蓄電用基準電力量(充放電基準電力量)PBREFで充電することを指定しているものとする。 The charging reference condition is a condition for designating a charging power amount of the power storage device 3 or a current value and a voltage value depending on the charging power amount, and the control unit 23 can freely determine the charging reference condition. The charging reference condition may be a condition for designating only one of a current value and a voltage value depending on the amount of charging power of the power storage device 3. Here, it is assumed that the charge reference condition specifies that the power storage device 3 is charged with a constant reference power amount for storage (charge / discharge reference power amount) P BREF .
 制御部23は、電力変換部21Bから蓄電装置3に供給される充電電力量を指定する充電指令量PB *を生成して電力変換部21Bに与えることができる。 The control unit 23 can generate a charge command amount P B * that specifies the amount of charge power supplied from the power conversion unit 21B to the power storage device 3 and give the charge command amount P B * to the power conversion unit 21B.
 電力変換部21Bは、充電指令量PB *にて指定された充電電力量を蓄電装置3に供給するべく、電圧値VB及び電流値IBの制御を含めた充電用電力変換を行う。 The power conversion unit 21B performs power conversion for charging including control of the voltage value V B and the current value I B in order to supply the power storage device 3 with the charging power amount specified by the charging command amount P B * .
 充電指令量PB *は、電圧値VB及び電流値IBを指定する電圧指令量及び電流指令量から形成されていても良い。 The charge command amount P B * may be formed from a voltage command amount and a current command amount that specify the voltage value V B and the current value I B.
 充電定量制御において、制御部23は、充電指令量PB *に蓄電用基準電力量PBREFの値を代入することで蓄電装置3を一定の蓄電用基準電力量PBREFで充電させることができる。 In the charge quantitative control, the control unit 23 can charge the power storage device 3 with a constant reference power amount P BREF for storage by substituting the value of the reference power amount P BREF for storage into the charge command amount P B *. .
 今、説明の具体化のため、PBREF=10であることを考え、且つ、充電指令量等を含む任意の電力量に関する数値の単位はkW・s(キロワット・秒)であると統一して考える。また、説明の簡略化上、特に記述無き限り、電力変換回路20内における電力損失はゼロであると考える(即ち、電力変換回路20内の各電力変換における電力変換効率を100%であると仮定する)。 Now, for the sake of concrete explanation, it is considered that P BREF = 10, and the unit of numerical values related to an arbitrary electric energy including a charge command amount is unified to be kW · s (kilowatt · second). Think. Further, for simplification of description, it is assumed that the power loss in the power conversion circuit 20 is zero unless otherwise specified (that is, the power conversion efficiency in each power conversion in the power conversion circuit 20 is assumed to be 100%). To do).
 充電定量制御において、PBREF=10である場合、制御部23は充電指令量PB *に10を代入することができる。 In the charge quantitative control, when P BREF = 10, the control unit 23 can substitute 10 for the charge command amount P B * .
 この場合において例えば、図3(a)に示す如く、発電装置4の発電電力量が6kW・sであるならば、発電装置4の発電電力量が蓄電装置3の充電に必要な電力量10kW・s(=PB *)よりも少ないため、それらの差分に相当する不足電力量4kW・sが電力系統5から電力変換回路20に入力されるように、制御部23は電力変換部21Sを制御する。 In this case, for example, as shown in FIG. 3A, if the power generation amount of the power generation device 4 is 6 kW · s, the power generation amount of the power generation device 4 is 10 kW · power required for charging the power storage device 3. Since it is less than s (= P B * ), the control unit 23 controls the power conversion unit 21S so that an insufficient power amount 4 kW · s corresponding to the difference between them is input from the power system 5 to the power conversion circuit 20. To do.
 一方、例えば、図3(b)に示す如く、発電装置4の発電電力量が13kW・sであるならば、発電装置4の発電電力量が蓄電装置3の充電に必要な電力量10kW・s(=PB *)よりも多いため、それらの差分に相当する余剰電力量3kW・sが電力変換回路20から電力系統5に出力されるように、制御部23は電力変換部21Sを制御する。 On the other hand, for example, as shown in FIG. 3B, if the amount of power generated by the power generation device 4 is 13 kW · s, the amount of power generated by the power generation device 4 is 10 kW · s required for charging the power storage device 3. Since there are more than (= P B * ), the control unit 23 controls the power conversion unit 21S so that the surplus power amount 3 kW · s corresponding to the difference between them is output from the power conversion circuit 20 to the power system 5. .
 図4において、実線曲線311は発電装置4の発電電力量の時間推移を表し、タイミングtA1が図3(a)の状態に対応し、タイミングtA2が図3(b)の状態に対応する。 In FIG. 4, a solid curve 311 represents a time transition of the amount of power generated by the power generation device 4, and timing t A1 corresponds to the state of FIG. 3A, and timing t A2 corresponds to the state of FIG. .
 このように、充電定量制御では、発電装置4の発電電力の不足分又は余剰分を電力変換回路20及び電力系統5間の電力の入出力にて吸収しつつ、発電装置4の発電電力を用いて蓄電装置3を一定の充電基準条件下で充電する。 As described above, in the charge quantitative control, the generated power of the power generation device 4 is used while absorbing the shortage or surplus of the generated power of the power generation device 4 by the power input / output between the power conversion circuit 20 and the power system 5. Thus, the power storage device 3 is charged under a certain charging reference condition.
 (1-2) 系統側ハンチング現象
 ところが、充電定量制御において、仮に図3(c)に示す如く、発電装置4の発電電力量が蓄電用基準電力量PBREF付近の値を持っていたとき、発電電力の不足状態及び余剰状態間の行き来に伴う、電力変換回路20及び電力系統5間の電力の入出力の切り替わりが比較的短期間で繰り返して発生する(図4も参照)。充電定量制御の実行時における、このような切り替わりを系統側ハンチング現象と呼ぶ。
(1-2) System-side Hunting Phenomenon However, in charge quantification control, as shown in FIG. 3 (c), when the power generation amount of the power generation device 4 has a value in the vicinity of the power storage reference power P BREF , The input / output switching of power between the power conversion circuit 20 and the power system 5 is repeatedly generated in a relatively short period due to the transition between the shortage state and the surplus state of the generated power (see also FIG. 4). Such switching at the time of execution of charge quantitative control is called a system-side hunting phenomenon.
 つまり、充電定量制御におけるハンチング現象は、比較的短時間の間に電力変換回路20が出力処理(系統出力用電力変換)と入力処理(系統入力用電力変換)とを交互に繰り返す系統側ハンチング現象である。 In other words, the hunting phenomenon in charge quantitative control is a system-side hunting phenomenon in which the power conversion circuit 20 alternately repeats output processing (system output power conversion) and input processing (system input power conversion) in a relatively short time. It is.
 系統側ハンチング現象が発生すると電力系統5が不安定になるおそれがある。特に、電力変換装置2、蓄電装置3及び発電装置4を導入した機器が、多数、電力系統5に接続されている状態において、各機器において系統側ハンチング現象が生じたとき、電力系統5の安定性が損なわれるおそれがある。 If the hunting phenomenon on the system side occurs, the power system 5 may become unstable. In particular, when a large number of devices into which the power conversion device 2, the power storage device 3, and the power generation device 4 are connected to the power system 5, when the system-side hunting phenomenon occurs in each device, the stability of the power system 5 May be impaired.
 (1-3) 系統側ハンチング検出処理HD1A
 充電定量制御の実行期間中において、制御部23は、入出力電力情報に基づく系統側ハンチング検出処理HD1Aを行うことで、系統側ハンチング現象の発生を検出することができる。
(1-3) System side hunting detection processing HD 1A
During the charge quantitative control execution period, the control unit 23 can detect the occurrence of the system-side hunting phenomenon by performing the system-side hunting detection process HD 1A based on the input / output power information.
 系統側ハンチング検出処理HD1Aにおいて、制御部23は、入出力電力情報に含まれる電流値IS又はISINTに基づき、電力変換部21S及び電力系統5間の電力の入出力の切り替えが所定時間内に所定回数以上検出されたとき、系統側ハンチング検出判定を成す。 In the system-side hunting detection process HD 1A , the control unit 23 switches the input / output of power between the power conversion unit 21S and the power system 5 for a predetermined time based on the current value I S or I SINT included in the input / output power information. When a predetermined number of times is detected, the system side hunting detection determination is made.
 すなわち、制御部23(判定部232)は、電力変換回路20が出力処理(系統出力用電力変換)と入力処理(系統入力用電力変換)との切り替え動作を所定時間内に所定回数以上行った場合に、イベント(すなわち、電力変換回路20でのハンチング現象の発生)が起きたと判定するように構成される。 In other words, the control unit 23 (determination unit 232) causes the power conversion circuit 20 to perform a switching operation between the output process (system power conversion) and the input process (system input power conversion) a predetermined number of times within a predetermined time. The event (ie, the occurrence of a hunting phenomenon in the power conversion circuit 20) is determined to occur.
 所定回数は1以上の任意の回数であって良いが、2以上が望ましい。系統側ハンチング検出判定とは、現在、系統側ハンチング現象が発生していると判断することを意味する。 The predetermined number of times may be any number of 1 or more, but 2 or more is desirable. The system-side hunting detection determination means that it is determined that the system-side hunting phenomenon is currently occurring.
 (1-4) 系統側ハンチング予測処理HP1A
 また、充電定量制御の実行期間中において、制御部23は、入出力電力情報に基づく系統側ハンチング予測処理HP1Aを行うことで、系統側ハンチング現象の発生を予測しても良い(即ち、未来において系統側ハンチング現象が発生しそうであるかを予測しても良い)。
(1-4) System side hunting prediction processing HP 1A
Further, during the charge quantitative control execution period, the control unit 23 may predict the occurrence of the system-side hunting phenomenon by performing the system-side hunting prediction process HP 1A based on the input / output power information (that is, the future It is also possible to predict whether a system-side hunting phenomenon is likely to occur).
 例えば、系統側ハンチング予測処理HP1Aにおいて、制御部23は、電流値IG及び電圧値VGに基づき(即ち発電電力量PGに基づき)又は電流値IGINT及び電圧値VINTに基づき発電電力量PGに対応する充電電力量PB’を求めて、充電電力量PB’と充電基準条件にて規定されている蓄電用基準電力量PBREFとを比較する。そして、制御部23は、それらの差の絶対値|PB’-PBREF|が所定の正の閾値TH1A以下である場合に、或いは、絶対値|PB’-PBREF|が閾値TH1A以下である状態が所定時間以上継続して観測された場合に、系統側ハンチング予測判定を成す。 For example, in the system-side hunting prediction process HP 1A , the control unit 23 generates power based on the current value I G and the voltage value V G (that is, based on the generated power amount P G ) or based on the current value I GINT and the voltage value V INT. A charging power amount P B ′ corresponding to the power amount P G is obtained, and the charging power amount P B ′ is compared with the storage power reference power amount P BREF defined by the charging reference condition. Then, when the absolute value | P B '−P BREF | of the difference is equal to or less than a predetermined positive threshold value TH 1A , or the absolute value | P B ' −P BREF | When a state of 1A or less is continuously observed for a predetermined time or more, the system side hunting prediction judgment is made.
 系統側ハンチング予測判定とは、近い将来において系統側ハンチング現象が発生しそうであると判断することを意味する。発電電力量PGに対応する充電電力量PB’とは、発電装置4の発電電力量PGに基づく蓄電装置3に対する充電電力量を指し、電力変換部21G及び21Bの電力変換効率と積“IG×VG”を用いて、或いは、電力変換部21Bの電力変換効率と積“IGINT×VINT”を用いて充電電力量PB’を求めることができる。電力変換部21G及び21Bの電力損失量をゼロと仮定すれば、PB’=PGである。 The system-side hunting prediction determination means that it is determined that a system-side hunting phenomenon is likely to occur in the near future. The corresponding charge power amount P B 'in generated power quantity P G, refers to the charging electric energy for power storage device 3 based on the generated power quantity P G of the generator 4, the power conversion unit 21G and 21B power conversion efficiency and product The charging power amount P B ′ can be obtained using “I G × V G ” or using the power conversion efficiency and the product “I GINT × V INT ” of the power conversion unit 21B. Assuming zero power loss of the power converter 21G and 21B, a P B '= P G.
 すなわち、制御部23(判定部232)は、供給電力(充電電力量PB’)と需要電力(蓄電用基準電力量PBREF)との差の絶対値|PB’-PBREF|が判定値(閾値TH1A)以下であるか否かを判定し、絶対値|PB’-PBREF|が判定値TH1A以下であると判定した場合にイベントが起きたと判定するように構成される。 That is, the control unit 23 (determination unit 232) determines the absolute value | P B '−P BREF | of the difference between the supplied power (charging power amount P B ') and the demand power (storage power reference amount P BREF ). It determines whether less than the value (threshold value TH 1A), the absolute value | configured to determine that an event has occurred when is equal to or less than the determination value TH 1A | P B '-P BREF .
 なお、制御部23(判定部232)は、供給電力(充電電力量PB’)と需要電力(蓄電用基準電力量PBREF)との差の絶対値|PB’-PBREF|が判定値(閾値TH1A)以下である状態が判定時間(上記の所定時間)継続したか否かを判定し、前記状態が判定時間継続したと判定した場合にイベントが起きたと判定するように構成されていてもよい。 Note that the control unit 23 (determination unit 232) determines the absolute value | P B '−P BREF | of the difference between the supplied power (charging power amount P B ′) and the demand power (storage power reference amount P BREF ). It is configured to determine whether or not a state that is equal to or less than a value (threshold value TH 1A ) has continued for a determination time (the predetermined time described above), and to determine that an event has occurred when it is determined that the state has continued for the determination time It may be.
 (1-5) ハンチング抑制制御CNT1A
 充電定量制御の実行期間中において、系統側ハンチング検出判定又は系統側ハンチング予測判定を成したとき、制御部23は、蓄電装置3の充電電力量を充電基準条件に従った蓄電用基準電力量PBREFから変化させるハンチング抑制制御CNT1Aを実行する。
(1-5) Hunting suppression control CNT 1A
When the system-side hunting detection determination or the system-side hunting prediction determination is made during the charge quantitative control execution period, the control unit 23 sets the charge power amount of the power storage device 3 to the power storage reference power amount P according to the charge reference condition. Hunting suppression control CNT 1A changed from BREF is executed.
 ハンチング抑制制御CNT1Aでは、充電電力量を変化させることで、電力変換回路20及び電力系統5間の入出力電力量の絶対値を増大させ、これによって系統側ハンチング現象を抑制する。電力変換回路20及び電力系統5間の入出力電力量とは、電力系統5から電力変換回路20への入力電力量又は電力変換回路20から電力系統5への出力電力量を指す。系統側ハンチング検出判定又は系統側ハンチング予測判定を成したタイミングを、系統側ハンチング認知タイミングとも呼ぶ。制御部23は、系統側ハンチング認知タイミングから抑制制御CNT1Aを開始することができる(後述のハンチング抑制制御CNT1Bについても同様)。抑制制御CNT1Aは、充電定量制御の中で行われる制御であり、抑制制御CNT1Aの実行期間中には、充電定量制御の内容に修正が加えられる。 In the hunting suppression control CNT 1A , by changing the charging power amount, the absolute value of the input / output power amount between the power conversion circuit 20 and the power system 5 is increased, thereby suppressing the system-side hunting phenomenon. The input / output power amount between the power conversion circuit 20 and the power system 5 indicates the input power amount from the power system 5 to the power conversion circuit 20 or the output power amount from the power conversion circuit 20 to the power system 5. The timing at which the system-side hunting detection determination or the system-side hunting prediction determination is performed is also referred to as a system-side hunting recognition timing. The control unit 23 can start the suppression control CNT 1A from the system-side hunting recognition timing (the same applies to hunting suppression control CNT 1B described later). The suppression control CNT 1A is a control performed in the charge quantitative control, and the content of the charge quantitative control is modified during the execution period of the suppression control CNT 1A .
 すなわち、制御部23(指示部233)は、充電定量制御の実行期間中においてイベントが起きたと判定するとハンチング抑制制御CNT1Aを実行するように構成される。制御部23(指示部233)は、ハンチング抑制制御CNT1Aでは、供給電力と需要電力との差が大きくなるように電力変換回路20に指示を与えるように構成される。 That is, the control unit 23 (instruction unit 233) is configured to execute the hunting suppression control CNT 1A when it is determined that an event has occurred during the execution period of the charge quantitative control. In the hunting suppression control CNT 1A , the control unit 23 (instruction unit 233) is configured to give an instruction to the power conversion circuit 20 so that the difference between the supplied power and the demand power becomes large.
 抑制制御CNT1Aの第1実現例を説明する。系統側ハンチング認知タイミング前においては、上述の如く、制御部23は充電指令量PB *に蓄電用基準電力量PBREFを代入しており、これによって蓄電装置3の充電電力量は蓄電用基準電力量PBREF(=10)と一致している(図3(a)、(b)及び(c)参照)。 A first implementation example of the suppression control CNT 1A will be described. Before the system-side hunting recognition timing, as described above, the control unit 23 substitutes the power storage reference power amount P BREF for the charge command amount P B * , whereby the charge power amount of the power storage device 3 becomes the power storage reference power amount. It corresponds to the electric energy P BREF (= 10) (see FIGS. 3A, 3B, and 3C).
 但し、系統側ハンチング検出判定又は系統側ハンチング予測判定が成されると、抑制制御CNT1Aの第1実現例において、制御部23は、充電指令量PB *を所定量ΔPB *だけ蓄電用基準電力量PBREFから増大又は減少させる(即ち、系統側ハンチング認知タイミング前を基準として充電指令量PB *を変化させる)。ここで、“ΔPB *>0”である。所定量ΔPB *は蓄電用基準電力量PBREFに依存する量(例えばPBREFと係数kとの積)であっても良い。 However, when the system-side hunting detection determination or the system-side hunting prediction determination is made, in the first implementation example of the suppression control CNT 1A , the control unit 23 stores the charge command amount P B * by a predetermined amount ΔP B * for power storage. Increase or decrease from the reference power amount P BREF (that is, change the charge command amount P B * with reference to before the system-side hunting recognition timing). Here, “ΔP B * > 0”. The predetermined amount ΔP B * may be an amount (for example, the product of P BREF and the coefficient k) that depends on the reference power amount P BREF for power storage.
 すなわち、制御部23(指示部233)は、イベントが起きたと判定するまでは、目標値を既定値(蓄電用基準電力量PBREF)に設定する通常制御を実行するように構成される。制御部23は、ハンチング抑制制御CNT1Aでは、目標値を既定値(蓄電用基準電力量PBREF)と異なる値(PBREF±ΔPB *)に設定するように構成される。 That is, the control unit 23 (instruction unit 233) is configured to execute normal control for setting the target value to a predetermined value (storage power reference amount P BREF ) until it is determined that an event has occurred. In the hunting suppression control CNT 1A , the control unit 23 is configured to set the target value to a value (P BREF ± ΔP B * ) different from a predetermined value (storage power reference power amount P BREF ).
 このように、第1実現例では、制御部23(指示部233)は、発電電力と充電電力との差が大きくなるように、充電電力を増減させる。 Thus, in the first implementation example, the control unit 23 (instruction unit 233) increases or decreases the charging power so that the difference between the generated power and the charging power becomes large.
 図5に、充電指令量PB *を減少させたときの例を示す。破線折れ線312は充電指令量PB *の時間推移を表しており、タイミングtA3が系統側ハンチング認知タイミングである。 FIG. 5 shows an example when the charge command amount P B * is decreased. A broken broken line 312 represents a time transition of the charge command amount P B * , and a timing t A3 is a system-side hunting recognition timing.
 図6(a)は、タイミングtA3の直後に対応し、発電装置4の発電電力量が10kW・sであるときに抑制制御CNT1Aにより充電指令量PB *が8に減少されたときの電力入出力状態を表している。ここでは、制御部23は、目標値を蓄電用基準電力量PBREF(=10)と異なる値である8(=PBREF-ΔPB *)に設定している(ΔPB *=2)。 FIG. 6A corresponds to immediately after the timing t A3 , when the charge command amount P B * is reduced to 8 by the suppression control CNT 1A when the generated power amount of the power generation device 4 is 10 kW · s. Indicates the power input / output state. Here, the control unit 23 sets the target value to 8 (= P BREF −ΔP B * ), which is a value different from the storage reference power amount P BREF (= 10) (ΔP B * = 2).
 この状態において、制御部23は、供給電力と需要電力との差分に相当する余剰電力量2kW・sが電力変換回路20から電力系統5に出力されるように電力変換部21Sを制御する。即ち、抑制制御CNT1Aによる充電電力量の減少によって、その減少前を基準として(図3(c)の状態を基準として)、電力変換回路20及び電力系統5間の入出力電力量の絶対値が増大する。結果、系統側ハンチング現象が適切に抑制される。充電指令量PB *を蓄電用基準電力量PBREFから増大させた場合も同様である。 In this state, the control unit 23 controls the power conversion unit 21 </ b> S so that the surplus power amount 2 kW · s corresponding to the difference between the supplied power and the demand power is output from the power conversion circuit 20 to the power system 5. That is, the absolute value of the input / output power amount between the power conversion circuit 20 and the power system 5 based on the decrease before the decrease due to the decrease in the charged power amount by the suppression control CNT 1A (based on the state of FIG. 3C). Will increase. As a result, the system side hunting phenomenon is appropriately suppressed. The same applies to the case where the charge command amount P B * is increased from the power storage reference power amount P BREF .
 例えば、制御部23は、目標値を蓄電用基準電力量PBREF(=10)と異なる値である12(=PBREF+ΔPB *)に設定してもよい(ΔPB *=2)。 For example, the control unit 23 may set the target value to 12 (= P BREF + ΔP B * ), which is a value different from the storage reference power amount P BREF (= 10) (ΔP B * = 2).
 この状態において、制御部23は、供給電力と需要電力との差分に相当する不足電力量2kW・sが電力系統5から電力変換回路20に入力されるように電力変換部21Sを制御する。結果、系統側ハンチング現象が適切に抑制される。 In this state, the control unit 23 controls the power conversion unit 21S so that the insufficient power amount 2 kW · s corresponding to the difference between the supplied power and the demand power is input from the power system 5 to the power conversion circuit 20. As a result, the system side hunting phenomenon is appropriately suppressed.
 このように、第1実現例では、制御部23(指示部233)から電力変換回路20に与えられる指示は、需要電力(充電電力)の目標値である。つまり、制御部23(指示部233)は、電力変換部21Bを制御することで、ハンチング現象を抑制する。 Thus, in the first implementation example, the instruction given from the control unit 23 (instruction unit 233) to the power conversion circuit 20 is a target value of demand power (charging power). That is, the control unit 23 (instruction unit 233) suppresses the hunting phenomenon by controlling the power conversion unit 21B.
 抑制制御CNT1Aの第2実現例を説明する。上述の説明では特に意識していなかったが、制御部23は、電力変換回路20及び電力系統5間の入出力電力量を指定する系統入出力指令量PS *を生成して電力変換部21Sに与えることができ、これによって該入出力電力量を制御することができる。 A second implementation example of the suppression control CNT 1A will be described. Although not particularly conscious in the above description, the control unit 23 generates a system input / output command amount P S * that specifies the input / output power amount between the power conversion circuit 20 and the power system 5 to generate the power conversion unit 21S. Thus, the input / output power amount can be controlled.
 電力変換部21Sは、系統入出力指令量PS *と一致する電力量を持った電力の入出力が電力変換回路20及び電力系統5間で行われるように、電圧値VS及び電流値ISの制御を含めた系統入力用電力変換又は系統出力用電力変換を行う。指令量PS *は、電圧値VS及び電流値ISを指定する電圧指令量及び電流指令量から形成されていても良い。 The power conversion unit 21S has a voltage value V S and a current value I so that power input / output having a power amount matching the system input / output command amount P S * is performed between the power conversion circuit 20 and the power system 5. System input power conversion including S control or system output power conversion is performed. The command amount P S * may be formed from a voltage command amount and a current command amount that specify the voltage value V S and the current value I S.
 系統側ハンチング検出判定又は系統側ハンチング予測判定が成されると、抑制制御CNT1Aの第2実現例を行う制御部23は、系統側ハンチング認知タイミング前を基準として、系統入出力指令量PS *を所定量ΔPS *だけ変化させ、その変化分を蓄電装置3の充電電力量の変化に割り当てることで抑制制御CNT1Aを実現する。ここで、“ΔPS *>0”である。所定量ΔPS *は蓄電用基準電力量PBREFに依存する量(例えばPBREFと係数kとの積)であっても良い。 When mains hunting detection determination or mains hunting prediction judgment is made, the control unit 23 to perform the second implementation of suppression control CNT 1A, based on the pre-system side hunting cognitive timing, system output command amount P S The suppression control CNT 1A is realized by changing * by a predetermined amount ΔP S * and assigning the change amount to the change in the amount of charge power of the power storage device 3. Here, “ΔP S * > 0”. The predetermined amount ΔP S * may be an amount (for example, the product of P BREF and the coefficient k) that depends on the reference power amount P BREF for power storage.
 すなわち、制御部23(指示部233)は、通常制御では、発電電力と充電電力との差に相当する入力電力または出力電力が得られるように、電力変換部21Sに指示(入力電力または出力電力の目標値)を与える。これに対して、制御部23(指示部233)は、ハンチング抑制制御CNT1Aでは、電力変換部21Sに与える目標値(入力電力または出力電力の目標値)を所定値に設定する。つまり、制御部23は、供給電力(発電電力)と需要電力(充電電力)との差に関わらず、電力変換部21Sに入力処理と出力処理とのいずれか一方を行わせる。 That is, in the normal control, the control unit 23 (instruction unit 233) instructs the power conversion unit 21S (input power or output power so that input power or output power corresponding to the difference between the generated power and the charging power can be obtained. Target value). On the other hand, in the hunting suppression control CNT 1A , the control unit 23 (instruction unit 233) sets a target value (input power or output power target value) to be given to the power conversion unit 21S to a predetermined value. That is, the control unit 23 causes the power conversion unit 21S to perform either input processing or output processing regardless of the difference between the supplied power (generated power) and the demand power (charged power).
 例えば、図3(c)の状態、即ち発電装置4の発電電力量及び蓄電装置3の充電電力量が共に10kW・sである状態は、図6(b)に示す如く指令量PS *にゼロが代入されている状態に相当する。 For example, in the state of FIG. 3C, that is, the state in which the amount of power generated by the power generation device 4 and the amount of charge power of the power storage device 3 are both 10 kW · s, the command amount P S * is set as shown in FIG. This corresponds to the state where zero is substituted.
 この状態において、系統側ハンチング検出判定又は系統側ハンチング予測判定が成されると、制御部23は、例えば、系統入出力指令量(出力電力の目標値)PS *をゼロから所定値(例えば2)へと変化させる抑制制御CNT1Aを実行することができる(ここでは、PS *>0である状態が、電力変換部21Sから電力系統5への電力出力状態に相当すると考える)。 In this state, when the system-side hunting detection determination or the system-side hunting prediction determination is made, the control unit 23 changes the system input / output command amount (target value of output power) P S * from zero to a predetermined value (for example, It is possible to execute the suppression control CNT 1A that is changed to 2) (in this case, it is considered that the state where P S * > 0 corresponds to the power output state from the power conversion unit 21S to the power system 5).
 抑制制御CNT1Aの第2実現例において、制御部23は、系統入出力指令量PS *を充電指令量PB *よりも優先する、或いは、充電指令量PB *を電力変換部21Bに与えない。何れにせよ、抑制制御CNT1Aにおいて、制御部23は、発電装置4の発電電力量と電力変換回路20及び電力系統5間の入出力電力量とで定まる余剰電力分にて蓄電装置3が充電されるように電力変換部21Bを制御する。 In the second implementation example of the suppression control CNT 1A , the control unit 23 prioritizes the system input / output command amount P S * over the charge command amount P B * , or gives the charge command amount P B * to the power conversion unit 21B. Don't give. In any case, in the suppression control CNT 1A , the control unit 23 charges the power storage device 3 with the surplus power determined by the amount of power generated by the power generation device 4 and the amount of input / output power between the power conversion circuit 20 and the power system 5. The power converter 21B is controlled as described above.
 この場合、発電電力量は10kW・sであるが、電力系統5には2kW・sの出力電力が供給される。したがって、蓄電装置3に供給可能な電力は8kW・sとなる。そこで、制御部23(指示部233)は、充電指令量PB *を蓄電用基準電力量PBREF(=10kW・s)から8kW・sに減少させる。すなわち、制御部23は、電力変換部21Bに目標値として8kW・sを与える。その結果、図7に示す如く、蓄電装置3には蓄電用基準電力量PBREFより少ない8kW・s分しか充電電力が向かわなくなる。この状態は、図6(a)に示した状態と等価なものである。 In this case, the amount of generated power is 10 kW · s, but output power of 2 kW · s is supplied to the power system 5. Therefore, the power that can be supplied to the power storage device 3 is 8 kW · s. Therefore, the control unit 23 (instruction unit 233) decreases the charge command amount P B * from the storage reference power amount P BREF (= 10 kW · s) to 8 kW · s. That is, the control unit 23 gives 8 kW · s as a target value to the power conversion unit 21B. As a result, as shown in FIG. 7, the charging power is directed to the power storage device 3 only for 8 kW · s, which is smaller than the reference power amount P BREF for power storage. This state is equivalent to the state shown in FIG.
 図7は、電力変換回路20から電力系統5への電力出力が行われるように指令量PS *を変化させたときの例であるが、電力系統5から電力変換回路20への電力入力が行われるように指令量PS *を変化させてもよく、その場合には、蓄電装置3の充電電力量は10kW・sから増大する。 FIG. 7 shows an example in which the command amount P S * is changed so that power output from the power conversion circuit 20 to the power system 5 is performed, but power input from the power system 5 to the power conversion circuit 20 is performed. The command amount P S * may be changed so as to be performed. In this case, the charge power amount of the power storage device 3 increases from 10 kW · s.
 例えば、制御部23は、系統入出力指令量(入力電力の目標値)PS *をゼロから所定値(例えば-2)へと変化させる抑制制御CNT1Aを実行することができる(ここでは、PS *<0である状態が、電力系統5から電力変換部21Sへの電力入力状態に相当すると考える)。 For example, the control unit 23 can execute the suppression control CNT 1A that changes the system input / output command amount (target value of input power) P S * from zero to a predetermined value (for example, −2) (here, The state where P S * <0 corresponds to the power input state from the power system 5 to the power conversion unit 21S).
 この場合、発電電力量は10kW・sであるが、電力系統5からは2kW・sの入力電力が供給される。したがって、蓄電装置3に供給可能な電力は12kW・sとなる。そこで、制御部23(指示部233)は、充電指令量PB *を蓄電用基準電力量PBREF(=10kW・s)から12kW・sに増加させる。すなわち、制御部23は、電力変換部21Bに目標値として12kW・sを与える。その結果、蓄電装置3には、蓄電用基準電力量PBREFより大きい12kW・sの充電電力が供給される。 In this case, the amount of generated power is 10 kW · s, but input power of 2 kW · s is supplied from the power system 5. Therefore, the power that can be supplied to the power storage device 3 is 12 kW · s. Therefore, the control unit 23 (instruction unit 233) increases the charge command amount P B * from the power storage reference power amount P BREF (= 10 kW · s) to 12 kW · s. That is, the control unit 23 gives 12 kW · s as a target value to the power conversion unit 21B. As a result, the power storage device 3 is supplied with charging power of 12 kW · s, which is larger than the power storage reference power amount P BREF .
 このように、第2実現例では、制御部23(指示部233)から電力変換回路20に与えられる指示は、出力電力または入力電力の目標値である。つまり、制御部23(指示部233)は、電力変換部21Sを制御することで、ハンチング現象を抑制する。 Thus, in the second implementation example, the instruction given from the control unit 23 (instruction unit 233) to the power conversion circuit 20 is the target value of output power or input power. That is, the control unit 23 (instruction unit 233) suppresses the hunting phenomenon by controlling the power conversion unit 21S.
 抑制制御CNT1Aの第1実現例では、充電指令量PB *の制御によって充電電力量を直接制御しているのに対し、抑制制御CNT1Aの第2実現例では、系統入出力指令量PS *の制御によって(電力変換回路20及び電力系統5間の入出力電力量の制御によって)充電電力量を間接的に制御している。 In the first implementation example of the suppression control CNT 1A , the charge power amount is directly controlled by controlling the charge command amount P B * , whereas in the second implementation example of the suppression control CNT 1A , the system input / output command amount P The charge power amount is indirectly controlled by controlling S * (by controlling the input / output power amount between the power conversion circuit 20 and the power system 5).
 (1-6) 抑制制御CNT1Aに対応する解除可否判定処理J1A
 制御部23は、抑制制御CNT1Aの実行期間中において、所定の解除条件の成否判定を介して、抑制制御CNT1Aの実行を解除するか否かを判定する解除可否判定処理J1Aを行うことができる。
(1-6) cancellation determination processing J 1A corresponding to suppression control CNT 1A
Control unit 23, during the execution period of the suppression control CNT 1A, via the judging success or failure of the predetermined release condition, performing the determining cancellation determination processing J 1A whether to cancel the execution of the suppression control CNT 1A Can do.
 例えば、解除可否判定処理J1Aにおいて、制御部23は、電流値IG及び電圧値VGに基づき(即ち発電電力量PGに基づき)又は電流値IGINT及び電圧値VINTに基づき、上述の充電電力量PB’を求めて、充電電力量PB’と充電基準条件にて規定されている蓄電用基準電力量PBREFとを比較する(上述したように、電力変換の電力損失量をゼロとみなせばPB’=PG)。 For example, in the cancelability determination process J 1A , the control unit 23 performs the above-described operation based on the current value I G and the voltage value V G (that is, based on the generated power amount P G ) or based on the current value I GINT and the voltage value V INT. Charge electric energy P B ′ is obtained, and the charged electric energy P B ′ is compared with the reference electric energy P BREF for storage specified in the charging reference condition (as described above, the electric power conversion power loss amount Is considered as zero, P B ′ = P G ).
 そして、判定処理J1Aにおいて、制御部23は、それらの差の絶対値|PB’-PBREF|が所定の正の閾値TH2A以上である場合に(図8参照)、或いは、絶対値|PB’-PBREF|が閾値TH2A以上である状態が所定時間以上継続して観測された場合に、或いは、絶対値|PB’-PBREF|が正である状態が所定時間以上継続して観測された場合に(図9参照;図9においてTLが所定時間に対応)、判定処理J1Aにおける解除条件が満たされると判断し(抑制制御CNT1Aの実行を解除しても系統側ハンチング現象は発生しない又は発生しにくいと判断し)、抑制制御CNT1Aの実行を解除する。抑制制御CNT1Aの実行の解除によって、蓄電装置3の充電電力量が蓄電用基準電力量PBREF(=10)に復帰する。 In the determination process J 1A , the control unit 23 determines that the absolute value | P B '−P BREF | of the difference is equal to or greater than a predetermined positive threshold TH 2A (see FIG. 8) or the absolute value. When a state in which | P B '−P BREF | is equal to or greater than the threshold TH 2A is continuously observed for a predetermined time or more, or a state in which the absolute value | P B ' −P BREF | When continuously observed (see FIG. 9; TL corresponds to a predetermined time in FIG. 9), it is determined that the cancellation condition in the determination process J 1A is satisfied (even if the execution of the suppression control CNT 1A is canceled) It is determined that the system-side hunting phenomenon does not occur or hardly occurs), and the execution of the suppression control CNT 1A is canceled. By canceling the execution of the suppression control CNT 1A , the charge power amount of the power storage device 3 returns to the power storage reference power amount P BREF (= 10).
 すなわち、制御部23は、ハンチング抑制制御CNT1Aの実行中に供給電力(発電電力量PG、充電電力量PB’)と既定値(蓄電用基準電力量PBREF)との差(PB’-PBREF)が解除条件を満たした場合に、ハンチング抑制制御CNT1Aを終了するように構成される。解除条件は、差の絶対値|PB’-PBREF|が閾値TH2A以上であること、差の絶対値|PB’-PBREF|が閾値TH2A以上である状態が所定の第1時間(例えば、所定時間TL)継続したこと、差(PB’-PBREF)が正又は負である状態が所定の第2時間(例えば、所定時間TL)継続したこと、のいずれかである。 That is, the control unit 23 performs the difference (P B ) between the supplied power (generated power amount P G , charged power amount P B ′) and a predetermined value (power storage reference power amount P BREF ) during execution of the hunting suppression control CNT 1A. When “−P BREF ) satisfies the release condition, the hunting suppression control CNT 1A is configured to end. Release condition, the absolute value of the difference | P B '-P BREF | that is the threshold value TH 2A above, the absolute value of the difference | P B' -P BREF | is the first state is in a predetermined a threshold TH 2A above time (e.g., predetermined time T L) continued that the difference (P B '-P BREF) is positive or negative and the second time condition is given is (e.g., a predetermined time T L) continuing it, either It is.
 例えば、判定部232は、ハンチング抑制制御CNT1Aの実行中に供給電力(発電電力量PG、充電電力量PB’)と既定値(蓄電用基準電力量PBREF)との差(PB’-PBREF)が解除条件を満たすか否かの終了判定を行い、その終了判定の結果を指示部233に与える。指示部233は、終了判定の結果が解除条件が満たされたことを示していれば、ハンチング抑制制御CNT1Aを終了するように構成される。 For example, during the execution of the hunting suppression control CNT 1A , the determination unit 232 determines the difference (P B ) between the supplied power (generated power amount P G , charged power amount P B ′) and a predetermined value (storage power reference power amount P BREF ). It is determined whether or not “−P BREF ) satisfies the release condition, and the result of the determination is given to the instruction unit 233. The instruction unit 233 is configured to end the hunting suppression control CNT 1A if the end determination result indicates that the release condition is satisfied.
 或いは例えば、抑制制御CNT1Aにより充電指令量PB *を所定量ΔPB *だけ蓄電用基準電力量PBREFから減少させている場合には、制御部23は差(PB’-PB *)を判定対象に設定してもよく、抑制制御CNT1Aにより充電指令量PB *を所定量ΔPB *だけ蓄電用基準電力量PBREFから増大させている場合には、制御部23は差(PB *-PB’)を判定対象に設定してもよい。 Alternatively, for example, when the charge command amount P B * is decreased from the storage reference power amount P BREF by a predetermined amount ΔP B * by the suppression control CNT 1A , the control unit 23 determines the difference (P B ′ −P B * ) May be set as a determination target, and when the charge command amount P B * is increased from the storage reference power amount P BREF by the predetermined amount ΔP B * by the suppression control CNT 1A , the control unit 23 determines the difference. (P B * −P B ′) may be set as a determination target.
 判定対象において、PB *を、実測された充電電力量PB(即ちIB×VB)に置き換えても良い。 In the determination target, P B * may be replaced with the actually measured charging power amount P B (that is, I B × V B ).
 そして、判定対象が所定の正の閾値TH2A’以上である場合に、或いは、判定対象が閾値TH2A’以上である状態が所定時間以上継続して観測された場合に、制御部23は、判定処理J1Aにおける解除条件が満たされると判断して抑制制御CNT1Aの実行を解除しても良い(TH2A’>ΔPB *)。 Then, when the determination target is equal to or greater than a predetermined positive threshold TH 2A ′, or when a state where the determination target is equal to or greater than the threshold TH 2A ′ is continuously observed for a predetermined time or longer, the control unit 23 The execution of the suppression control CNT 1A may be canceled by determining that the cancellation condition in the determination process J 1A is satisfied (TH 2A '> ΔP B * ).
 なお、制御部23は、ハンチング抑制制御CNT1Aの実行中に供給電力(発電電力量)と需要電力(充電電力量)との差が解除条件を満たした場合に、ハンチング抑制制御CNT1Aを終了するように構成されていてもよい。 The control unit 23, when the difference between the supply during the hunting prevention control CNT 1A power (generated power) and the power demand (the amount of charging power) satisfies the release condition, terminates the hunting suppression control CNT 1A It may be configured to.
 この場合、解除条件は、発電電力量と充電電力量との差の絶対値が所定の閾値以下であること、または、発電電力量と充電電力量との差の絶対値が所定の閾値以下である状態が所定時間継続したことである。所定の閾値は、ハンチング抑制制御CNT1Aの実行による発電電力量と充電電力量との差の変化の幅より小さい。あるいは、解除条件は、発電電力量と充電電力量との差が正また負である状態が所定時間継続したことであってもよい。 In this case, the release condition is that the absolute value of the difference between the generated electric energy and the charged electric energy is less than or equal to a predetermined threshold, or the absolute value of the difference between the generated electric energy and the charged electric energy is less than or equal to the predetermined threshold. A certain state has continued for a predetermined time. The predetermined threshold value is smaller than the range of change in the difference between the generated power amount and the charged power amount by execution of the hunting suppression control CNT 1A . Alternatively, the release condition may be that a state where the difference between the generated power amount and the charged power amount is positive or negative continues for a predetermined time.
 あるいは、制御部23は、ハンチング抑制制御CNT1Aの実行中に、入力処理と出力処理との切り替え動作が所定回数行われたか否かを判定し、切り替え動作が所定回数行われたと判定すると、ハンチング抑制制御CNT1Aを終了するように構成されていてもよい。なお、所定回数は1以上であればよい。 Alternatively, the control unit 23 determines whether or not the switching operation between the input process and the output process has been performed a predetermined number of times during the execution of the hunting suppression control CNT 1A. The suppression control CNT 1A may be configured to end. The predetermined number may be one or more.
 (2) 放電定量制御
 (2-1) 基本動作
 次に、放電定量制御を説明する。制御部23は、発電装置4の発電電力及び蓄電装置3の放電電力を用いて直流負荷8に電力供給を行うことができるが、放電定量制御では、この際、蓄電装置3が一定の放電基準条件下で放電されるように電力変換回路20を制御する。
(2) Discharge quantitative control (2-1) Basic operation Next, discharge quantitative control will be described. The control unit 23 can supply power to the DC load 8 using the generated power of the power generation device 4 and the discharge power of the power storage device 3, but in the discharge quantitative control, at this time, the power storage device 3 has a constant discharge reference. The power conversion circuit 20 is controlled so as to be discharged under conditions.
 放電定量制御では、制御部23は、蓄電装置3と発電装置4と電力系統5とを併用して、直流負荷8への給電を行う。放電定量制御では、蓄電装置3と発電装置4とが電力供給装置、直流負荷8が電力需要装置、電力系統5が電力補助装置として使用される。したがって、電力供給装置は、発電装置4と、電源装置として使用される蓄電装置3と、を含む。供給電力は、発電装置4から供給される電力である発電電力と、電源装置(蓄電装置3)から得られる電力である電源電力(放電電力)との合計である。需要電力は、直流負荷8で消費される電力(消費電力)である。以下では、消費電力の大きさを消費電力量という。消費電力量は、例えば、1秒間の消費電力の総量に等しい。 In the discharge quantitative control, the control unit 23 uses the power storage device 3, the power generation device 4, and the power system 5 together to supply power to the DC load 8. In the discharge quantitative control, the power storage device 3 and the power generation device 4 are used as a power supply device, the DC load 8 is used as a power demand device, and the power system 5 is used as a power auxiliary device. Therefore, the power supply device includes a power generation device 4 and a power storage device 3 used as a power supply device. The supplied power is the total of the generated power that is the power supplied from the power generation device 4 and the power supply power (discharge power) that is the power obtained from the power supply device (power storage device 3). The demand power is power consumed by the DC load 8 (power consumption). Hereinafter, the magnitude of power consumption is referred to as power consumption. The power consumption is equal to, for example, the total amount of power consumed for 1 second.
 放電定量制御では、制御部23(比較部231)は、蓄電装置3の放電電力(放電電力量)と発電装置4の発電電力(発電電力量)との合計値を直流負荷8の消費電力(消費電力量)と比較する。 In the discharge quantitative control, the control unit 23 (comparison unit 231) calculates the total value of the discharge power (discharge power amount) of the power storage device 3 and the generated power (generation power amount) of the power generation device 4 to the power consumption of the DC load 8 ( Compared with power consumption).
 制御部23(指示部233)は、供給電力(放電電力と発電電力との合計)が需要電力(消費電力)より多ければ供給電力(放電電力と発電電力との合計)の余剰分が電力系統5(電力補助装置)に供給されるように電力変換回路20に出力処理(電力変換部21Sの系統出力用電力変換)を実行させる。 The control unit 23 (instruction unit 233) indicates that if the supply power (the sum of the discharge power and the generated power) is greater than the demand power (power consumption), the surplus of the supply power (the sum of the discharge power and the generated power) is the power system The power conversion circuit 20 is caused to execute output processing (power conversion for system output of the power conversion unit 21S) so as to be supplied to 5 (power auxiliary device).
 具体的には、制御部23(指示部233)は、放電電力と発電電力との合計値と消費電力との差に相当する出力電力が得られるように、電力変換部21Sに指示(出力電力の目標値)を与える。例えば、発電電力量が13kW・sであり、放電電力量が10kW・sであれば、供給電力量が23kW・sになる。このとき、消費電力量が20kW・sであれば、制御部23は、出力電力の目標値として、3kW・sを電力変換部21Sに与える。 Specifically, the control unit 23 (instruction unit 233) instructs the power conversion unit 21S (output power) so that output power corresponding to the difference between the total value of the discharged power and the generated power and the power consumption is obtained. Target value). For example, if the generated power is 13 kW · s and the discharged power is 10 kW · s, the supplied power is 23 kW · s. At this time, if the power consumption is 20 kW · s, the control unit 23 gives 3 kW · s to the power conversion unit 21S as the target value of the output power.
 制御部23(指示部233)は、供給電力(放電電力と発電電力との合計)が需要電力(消費電力)より少なければ供給電力(放電電力と発電電力との合計)の不足分が電力系統5(電力補助装置)からの電力で補われるように電力変換回路20に入力処理(電力変換部21Sの系統入力用電力変換)を実行させる。 If the supplied power (the sum of the discharged power and the generated power) is less than the demand power (power consumption), the controller 23 (the instruction unit 233) has a shortage of the supplied power (the sum of the discharged power and the generated power) in the power system. The power conversion circuit 20 performs input processing (power conversion for system input of the power conversion unit 21S) so as to be supplemented by power from 5 (power auxiliary device).
 具体的には、制御部23(指示部233)は、放電電力と発電電力との合計値と消費電力との差に相当する入力電力が得られるように、電力変換部21Sに指示(入力電力の目標値)を与える。例えば、発電電力量が6kW・sであり、放電電力量が10kW・sであれば、供給電力量が16kW・sになる。このとき、消費電力量が20kW・sであれば、制御部23は、入力電力の目標値として、4kW・sを電力変換部21Sに与える。 Specifically, the control unit 23 (instruction unit 233) instructs the power conversion unit 21S (input power) so as to obtain input power corresponding to the difference between the total value of the discharge power and the generated power and the power consumption. Target value). For example, if the generated power is 6 kW · s and the discharged power is 10 kW · s, the supplied power is 16 kW · s. At this time, if the power consumption is 20 kW · s, the control unit 23 gives 4 kW · s to the power conversion unit 21S as the target value of the input power.
 このように、この放電定量制御において、発電装置4の発電電力量と蓄電装置3の放電電力量の合計電力量が直流負荷8の消費電力量よりも少ないときには、それらの差分に相当する不足電力(不足電力量)が電力系統5から電力変換回路20に入力されるように、且つ、上記合計電力量が直流負荷8の消費電力量よりも多いときには、それらの差分に相当する余剰電力(余剰電力量)が電力変換回路20から電力系統5に出力されるように、入出力電力情報に基づき制御部23は電力変換回路20を制御する。 Thus, in this discharge quantitative control, when the total power amount of the power generation amount of the power generation device 4 and the discharge power amount of the power storage device 3 is smaller than the power consumption amount of the DC load 8, the shortage power corresponding to the difference between them. When (the amount of insufficient power) is input from the power system 5 to the power conversion circuit 20 and the total power amount is larger than the power consumption amount of the DC load 8, surplus power corresponding to the difference between them (surplus power) The control unit 23 controls the power conversion circuit 20 based on the input / output power information so that the power amount is output from the power conversion circuit 20 to the power system 5.
 放電基準条件は、蓄電装置3の放電電力量又は該放電電力量に依存する電流値及び電圧値等を指定する条件であり、制御部23は放電基準条件を自由に定めることができる。放電基準条件は、蓄電装置3の放電電力量に依存する電流値及び電圧値の一方のみを指定する条件であっても良い。ここでは、放電基準条件が蓄電装置3を一定の蓄電用基準電力量PBREFで放電することを指定しているものとする。 The discharge reference condition is a condition for designating a discharge power amount of the power storage device 3 or a current value and a voltage value depending on the discharge power amount, and the control unit 23 can freely determine the discharge reference condition. The discharge reference condition may be a condition for designating only one of a current value and a voltage value depending on the amount of discharge power of the power storage device 3. Here, it is assumed that the discharge reference condition specifies that the power storage device 3 is discharged with a constant reference power amount P BREF for power storage.
 放電定量制御を考える場合、上述の記号PB *を放電指令量の記号として参照する。制御部23は、蓄電装置3から電力変換部21Bに供給される放電電力量を指定する放電指令量PB *を生成して電力変換部21Bに与えることができる。 When considering discharge quantitative control, the above-mentioned symbol P B * is referred to as a symbol of the discharge command amount. The control unit 23 can generate a discharge command amount P B * that specifies the amount of discharge power supplied from the power storage device 3 to the power conversion unit 21B and give the generated discharge command amount P B * to the power conversion unit 21B.
 電力変換部21Bは、放電指令量PB *にて指定された放電電力量が蓄電装置3から出力されるように、電圧値VB及び電流値IBの制御を含めた放電用電力変換を行う。 Power conversion unit 21B, as the discharge amount of power specified by the discharge command amount P B * is output from the power storage device 3, the discharging power conversion, including the control of the voltage value V B and the current value I B Do.
 放電指令量PB *は、電圧値VB及び電流値IBを指定する電圧指令量及び電流指令量から形成されていても良い。 The discharge command amount P B * may be formed from a voltage command amount and a current command amount that specify the voltage value V B and the current value I B.
 放電定量制御において、制御部23は、放電指令量PB *に蓄電用基準電力量PBREFの値を代入することで蓄電装置3を一定の蓄電用基準電力量PBREFで放電させることができる。 In the discharge quantitative control, the control unit 23 can discharge the power storage device 3 with a constant reference power amount P BREF for storage by substituting the value of the reference power amount P BREF for storage into the discharge command amount P B *. .
 ここでも、説明の具体化のため、PBREF=10であることを考える。また、直流負荷8の消費電力量は変動しうるが、ここでは、直流負荷8の消費電力量が常に20kW・sであると仮定する。放電定量制御においてPBREF=10である場合、制御部23は放電指令量PB *に10を代入することができ、これによって放電電力量は10kW・sとなる。 Again, for the sake of concrete explanation, consider that P BREF = 10. Further, although the power consumption of the DC load 8 can fluctuate, it is assumed here that the power consumption of the DC load 8 is always 20 kW · s. When P BREF = 10 in the discharge quantitative control, the control unit 23 can substitute 10 for the discharge command amount P B * , and the discharge power amount becomes 10 kW · s.
 この場合において例えば、図10に示す如く、発電装置4の発電電力量が6kW・sであるならば、上記合計電力量が直流負荷8の消費電力量20kW・sよりも少ないため、それらの差分に相当する不足電力量4kW・sが電力系統5から電力変換回路20に入力されるように、制御部23は電力変換部21Sを制御する。 In this case, for example, as shown in FIG. 10, if the power generation amount of the power generation device 4 is 6 kW · s, the total power amount is smaller than the power consumption amount 20 kW · s of the DC load 8. The control unit 23 controls the power conversion unit 21 </ b> S so that the insufficient power amount 4 kW · s corresponding to is input from the power system 5 to the power conversion circuit 20.
 一方例えば、図10に示す如く、発電装置4の発電電力量が13kW・sであるならば、上記合計電力量が直流負荷8の消費電力量20kW・sよりも多いため、それらの差分に相当する余剰電力量3kW・sが電力変換回路20から電力系統5に出力されるように、制御部23は電力変換部21Sを制御する。 On the other hand, for example, as shown in FIG. 10, if the power generation amount of the power generation device 4 is 13 kW · s, the total power amount is larger than the power consumption amount 20 kW · s of the DC load 8, which corresponds to the difference between them. The control unit 23 controls the power conversion unit 21 </ b> S so that the surplus power amount 3 kW · s to be output is output from the power conversion circuit 20 to the power system 5.
 このように、放電定量制御では、発電装置4の発電電力の不足分又は余剰分を電力変換回路20及び電力系統5間の電力の入出力にて吸収しつつ、発電装置4の発電電力及び蓄電装置3の放電電力を用いて直流負荷8に電力供給を行うべく、蓄電装置3を一定の放電基準条件下で放電させる。 As described above, in the discharge quantitative control, the generated power and power storage of the power generator 4 are absorbed while the shortage or surplus of the generated power of the power generator 4 is absorbed by the power input / output between the power conversion circuit 20 and the power system 5. In order to supply power to the DC load 8 using the discharge power of the device 3, the power storage device 3 is discharged under a certain discharge reference condition.
 ところが、放電定量制御において、仮に図10(c)に示す如く、上記の合計電力量が直流負荷8の消費電力量付近の値を持っていたとき、発電電力の不足状態及び余剰状態間の行き来に伴う、電力変換回路20及び電力系統5間の電力の入出力の切り替わりが比較的短期間で繰り返して発生する。放電定量制御の実行時における、このような切り替わりも系統側ハンチング現象である。 However, in the discharge quantitative control, as shown in FIG. 10C, when the total electric power has a value in the vicinity of the electric power consumption of the DC load 8, the change between the insufficient state and the surplus state of the generated power is performed. As a result, the switching of power input / output between the power conversion circuit 20 and the power system 5 repeatedly occurs in a relatively short period of time. Such switching at the time of execution of discharge quantitative control is also a system-side hunting phenomenon.
 (2-2) 系統側ハンチング検出処理HD1B
 放電定量制御の実行期間中において、制御部23は、系統側ハンチング検出処理HD1Bを実行することができる。系統側ハンチング検出処理HD1Bは、上述の系統側ハンチング検出処理HD1Aと同じである。
(2-2) System side hunting detection processing HD 1B
During the discharge quantitative control execution period, the control unit 23 can execute the system-side hunting detection process HD 1B . The system-side hunting detection process HD 1B is the same as the system-side hunting detection process HD 1A described above.
 (2-3) 系統側ハンチング予測処理HP1B
 また、放電定量制御の実行期間中において、制御部23は、入出力電力情報に基づく系統側ハンチング予測処理HP1Bを行うことで、系統側ハンチング現象の発生を予測しても良い。
(2-3) System side hunting prediction processing HP 1B
Further, during the discharge quantitative control execution period, the control unit 23 may predict the occurrence of the system side hunting phenomenon by performing the system side hunting prediction process HP 1B based on the input / output power information.
 例えば、系統側ハンチング予測処理HP1Bにおいて、制御部23は、電流値IG及び電圧値VGに基づき(即ち発電電力量PGに基づき)又は電流値IGINT及び電圧値VINTに基づき発電電力量PGに対応する電力量PG’を求めて、電力量PG’と放電基準条件にて規定されている蓄電用基準電力量PBREFとの合計電力量(PG’+PBREF)を直流負荷8の消費電力量PC8と比較する。 For example, in the system-side hunting prediction process HP 1B , the control unit 23 generates power based on the current value I G and the voltage value V G (that is, based on the generated power amount P G ) or based on the current value I GINT and the voltage value V INT. 'seeking, electric energy P G' power amount P G corresponding to the amount of power P G total power amount of the power storage for the reference power P BREF that is defined by the discharge reference condition (P G '+ P BREF) Is compared with the power consumption P C8 of the DC load 8.
 電力量PG’は電力変換部21Gから出力される電力量であって、積(IGINT×VINT)と等しいと考えることができる。また、ここでは、放電定量制御により電力変換部21Bから蓄電用基準電力量PBREF(=10)の放電電力が直流負荷8に供給されていると考える。故に、合計電力量(PG’+PBREF)は、発電装置4の発電電力及び蓄電装置3の放電電力に基づく、電力変換部21G及び21Bから出力される合計電力量である(電力変換回路20の電力損失を無視すれば、PG’+PBREF=PG+PB)。 The amount of power P G ′ is the amount of power output from the power converter 21 G and can be considered to be equal to the product (I GINT × V INT ). Here, it is considered that the discharge power of the storage reference power amount P BREF (= 10) is supplied to the DC load 8 from the power conversion unit 21B by the discharge quantitative control. Therefore, the total power amount (P G ′ + P BREF ) is the total power amount output from the power conversion units 21G and 21B based on the generated power of the power generation device 4 and the discharge power of the power storage device 3 (power conversion circuit 20 If the power loss is ignored, P G ′ + P BREF = P G + P B ).
 そして、制御部23は、合計電力量(PG’+PBREF)と直流負荷8の消費電力量との差の絶対値が所定の正の閾値TH3A以下である場合に、或いは、その絶対値が閾値TH3A以下である状態が所定時間以上継続して観測された場合に、系統側ハンチング予測判定を成す。 Then, the control unit 23 determines whether or not the absolute value of the difference between the total power amount (P G '+ P BREF ) and the power consumption amount of the DC load 8 is equal to or less than a predetermined positive threshold value TH 3A. When the state where the value is equal to or less than the threshold TH 3A is continuously observed for a predetermined time or more, the system side hunting prediction determination is made.
 すなわち、制御部23(判定部232)は、供給電力(蓄電用基準電力量PBREFと電力量PG’との合計値)と需要電力(消費電力量PC8)との差の絶対値|PBREF+PG’-PC8|が判定値(閾値TH3A)以下であるか否かを判定し、絶対値|PBREF+PG’-PC8|が判定値TH3A以下であると判定した場合にイベントが起きたと判定するように構成される。 That is, the control unit 23 (determination unit 232) determines the absolute value of the difference between the supplied power (the total value of the power storage reference power P BREF and the power P G ′) and the demand power (power consumption P C8 ) | It is determined whether or not P BREF + P G ′ −P C8 | is equal to or less than a determination value (threshold TH 3A ), and it is determined that the absolute value | P BREF + P G ′ −P C8 | is equal to or less than the determination value TH 3A . The event is configured to determine that an event has occurred.
 なお、制御部23(判定部232)は、供給電力(蓄電用基準電力量PBREFと電力量PG’との合計値)と需要電力(消費電力量PC8)との差の絶対値|PBREF+PG’-PC8|が判定値(閾値TH3A)以下である状態が判定時間(上記の所定時間)継続したか否かを判定し、前記状態が判定時間継続下と判定した場合にイベントが起きたと判定するように構成されていてもよい。 Note that the control unit 23 (determination unit 232) determines the absolute value of the difference between the supplied power (the total value of the power storage reference power P BREF and the power P G ′) and the demand power (power consumption P C8 ) | When it is determined whether or not the state where P BREF + P G '−P C8 | is equal to or less than the determination value (threshold value TH 3A ) has continued for the determination time (the predetermined time described above), It may be configured to determine that an event has occurred.
 (2-4) ハンチング抑制制御CNT1B
 放電定量制御の実行期間中において、系統側ハンチング検出判定又は系統側ハンチング予測判定を成したとき、制御部23は、蓄電装置3の放電電力量を放電基準条件に従った蓄電用基準電力量PBREFから変化させるハンチング抑制制御CNT1Bを実行する。
(2-4) Hunting suppression control CNT 1B
When the system-side hunting detection determination or the system-side hunting prediction determination is made during the execution of the discharge quantitative control, the control unit 23 sets the discharge power amount of the power storage device 3 according to the discharge reference condition P Hunting suppression control CNT 1B changed from BREF is executed.
 ハンチング抑制制御CNT1Bでは、放電電力量を変化させることよって、電力変換回路20及び電力系統5間の入出力電力量の絶対値を増大させ、これによって系統側ハンチング現象を抑制する。抑制制御CNT1Bは、放電定量制御の中で行われる制御であり、抑制制御CNT1Bの実行期間中には、放電定量制御の内容に修正が加えられる。 In the hunting suppression control CNT 1B , the absolute value of the input / output power amount between the power conversion circuit 20 and the power system 5 is increased by changing the discharge power amount, thereby suppressing the system-side hunting phenomenon. The suppression control CNT 1B is control performed in the discharge quantitative control, and the contents of the discharge quantitative control are corrected during the execution period of the suppression control CNT 1B .
 すなわち、制御部23(指示部233)は、放電定量制御の実行期間中においてイベントが起きたと判定するとハンチング抑制制御CNT1Bを実行するように構成される。制御部23(指示部233)は、ハンチング抑制制御CNT1Bでは、供給電力と需要電力との差が大きくなるように電力変換回路20に指示を与えるように構成される。 That is, the control unit 23 (instruction unit 233) is configured to execute the hunting suppression control CNT 1B when it is determined that an event has occurred during the discharge quantitative control execution period. In the hunting suppression control CNT 1B , the control unit 23 (instruction unit 233) is configured to give an instruction to the power conversion circuit 20 so that the difference between the supplied power and the demand power becomes large.
 抑制制御CNT1Bの第1実現例を説明する。系統側ハンチング認知タイミング前においては、上述の如く、制御部23は放電指令量PB *に蓄電用基準電力量PBREFを代入しており、これによって蓄電装置3の放電電力量は蓄電用基準電力量PBREF(=10)と一致している(図10(a)、(b)及び(c)参照)。 A first implementation example of the suppression control CNT 1B will be described. Before the system-side hunting recognition timing, as described above, the control unit 23 substitutes the power storage reference power amount P BREF for the discharge command amount P B * , whereby the discharge power amount of the power storage device 3 becomes the power storage reference power amount. It corresponds to the electric energy P BREF (= 10) (see FIGS. 10A, 10B, and 10C).
 但し、系統側ハンチング検出判定又は系統側ハンチング予測判定が成されると、抑制制御CNT1Bの第1実現例において、制御部23は、放電指令量PB *を所定量ΔPB *だけ蓄電用基準電力量PBREFから増大又は減少させる(即ち、系統側ハンチング認知タイミングの前を基準として放電指令量PB *を変化させる)。 However, when the system-side hunting detection determination or the system-side hunting prediction determination is made, in the first implementation example of the suppression control CNT 1B , the control unit 23 stores the discharge command amount P B * by a predetermined amount ΔP B * for power storage. Increase or decrease from the reference power amount P BREF (that is, change the discharge command amount P B * with reference to before the system-side hunting recognition timing).
 すなわち、制御部23(指示部233)は、イベントが起きたと判定するまでは、目標値を既定値(蓄電用基準電力量PBREF)に設定する通常制御を実行するように構成される。制御部23は、ハンチング抑制制御CNT1Bでは、目標値を既定値(蓄電用基準電力量PBREF)と異なる値(PBREF±ΔPB *)に設定するように構成される。 That is, the control unit 23 (instruction unit 233) is configured to execute normal control for setting the target value to a predetermined value (storage power reference amount P BREF ) until it is determined that an event has occurred. In the hunting suppression control CNT 1B , the control unit 23 is configured to set the target value to a value (P BREF ± ΔP B * ) different from the predetermined value (storage power reference P BREF ).
 このように、第1実現例では、制御部23(指示部233)は、放電電力と発電電力との合計値と消費電力との差が大きくなるように、放電電力を増減させる。 Thus, in the first implementation example, the control unit 23 (instruction unit 233) increases or decreases the discharge power so that the difference between the total value of the discharge power and the generated power and the power consumption increases.
 図11(a)に、放電指令量PB *を蓄電用基準電力量PBREF(=10)から2だけ増大させたときの電力入出力状態を示す。ここでは、制御部23は、目標値を蓄電用基準電力量PBREF(=10)と異なる値である12(=PBREF+ΔPB *)に設定している(ΔPB *=2)。 FIG. 11A shows a power input / output state when the discharge command amount P B * is increased by 2 from the power storage reference power amount P BREF (= 10). Here, the control unit 23 sets the target value to 12 (= P BREF + ΔP B * ), which is a value different from the storage reference power amount P BREF (= 10) (ΔP B * = 2).
 この状態では、発電装置4の発電電力量及び蓄電装置3の放電電力量に余剰電力量2kW・sが含まれることになるため、制御部23は、余剰電力量2kW・sが電力変換回路20から電力系統5に出力されるように電力変換部21Sを制御する。即ち、抑制制御CNT1Bによる放電電力量の増大によって、その増大前を基準として(図10(c)の状態を基準として)、電力変換回路20及び電力系統5間の入出力電力量の絶対値が増大する。結果、系統側ハンチング現象が適切に抑制される。放電指令量PB *を蓄電用基準電力量PBREFから減少させた場合も同様である。 In this state, since the surplus power amount 2 kW · s is included in the generated power amount of the power generation device 4 and the discharge power amount of the power storage device 3, the control unit 23 determines that the surplus power amount 2 kW · s is the power conversion circuit 20. The power conversion unit 21S is controlled so as to be output to the power system 5. That is, the absolute value of the input / output power amount between the power conversion circuit 20 and the power system 5 with the increase in the discharge power amount by the suppression control CNT 1B as a reference (based on the state of FIG. 10C). Will increase. As a result, the system side hunting phenomenon is appropriately suppressed. The same applies to the case where the discharge command amount P B * is decreased from the reference power amount P BREF for power storage.
 例えば、制御部23は、目標値を蓄電用基準電力量PBREF(=10)と異なる値である8(=PBREF-ΔPB *)に設定してもよい(ΔPB *=2)。 For example, the control unit 23 may set the target value to 8 (= P BREF −ΔP B * ), which is a value different from the reference power amount P BREF (= 10) for storage (ΔP B * = 2).
 この状態において、制御部23は、放電電力と発電電力との合計値と消費電力との差分に相当する不足電力量2kW・sが電力系統5から電力変換回路20に入力されるように電力変換部21Sを制御する。結果、系統側ハンチング現象が適切に抑制される。 In this state, the control unit 23 converts the power so that an insufficient power amount 2 kW · s corresponding to the difference between the total value of the discharge power and the generated power and the power consumption is input from the power system 5 to the power conversion circuit 20. The unit 21S is controlled. As a result, the system side hunting phenomenon is appropriately suppressed.
 このように、第1実現例では、制御部23(指示部233)から電力変換回路20に与えられる指示は、電源電力(放電電力)の目標値である。つまり、制御部23(指示部233)は、電力変換部21Bを制御することで、ハンチング現象を抑制する。 Thus, in the first implementation example, the instruction given from the control unit 23 (instruction unit 233) to the power conversion circuit 20 is the target value of the power source power (discharge power). That is, the control unit 23 (instruction unit 233) suppresses the hunting phenomenon by controlling the power conversion unit 21B.
 抑制制御CNT1Bの第2実現例を説明する。系統側ハンチング検出判定又は系統側ハンチング予測判定が成されると、抑制制御CNT1Bの第2実現例を行う制御部23は、系統側ハンチング認知タイミング前を基準として、系統入出力指令量PS *を所定量ΔPS *だけ変化させ、その変化分を蓄電装置3の放電電力量の変化に割り当てることで抑制制御CNT1Bを実現する。 A second implementation example of the suppression control CNT 1B will be described. When the system-side hunting detection determination or the system-side hunting prediction determination is made, the control unit 23 that performs the second implementation example of the suppression control CNT 1B uses the system input / output command amount P S as a reference before the system-side hunting recognition timing. The suppression control CNT 1B is realized by changing * by a predetermined amount ΔP S * and assigning the change to the change in the amount of discharge power of the power storage device 3.
 すなわち、制御部23(指示部233)は、通常制御では、供給電力(放電電力と発電電力との合計値)と需要電力(消費電力)との差に相当する入力電力または出力電力が得られるように、電力変換部21Sに指示(入力電力または出力電力の目標値)を与える。これに対して、制御部23(指示部233)は、ハンチング抑制制御CNT1Bでは、電力変換部21Sに与える目標値(入力電力または出力電力の目標値)を所定値に設定する。つまり、制御部23は、供給電力(放電電力と発電電力との合計値)と需要電力(消費電力)との差に関わらず、電力変換部21Sに入力処理と出力処理とのいずれか一方を行わせる。 That is, in the normal control, the control unit 23 (instruction unit 233) obtains input power or output power corresponding to the difference between the supplied power (the total value of the discharge power and the generated power) and the demand power (power consumption). Thus, an instruction (target value of input power or output power) is given to the power conversion unit 21S. On the other hand, in the hunting suppression control CNT 1B , the control unit 23 (instruction unit 233) sets a target value (target value of input power or output power) to be given to the power conversion unit 21S to a predetermined value. That is, the control unit 23 performs either the input process or the output process on the power conversion unit 21S regardless of the difference between the supplied power (the total value of the discharge power and the generated power) and the demand power (power consumption). Let it be done.
 例えば、図10(c)の状態、即ち発電装置4の発電電力量及び蓄電装置3の放電電力量の合計が直流負荷8の消費電力量と一致している状態は、図11(b)に示す如く指令量PS *にゼロが代入されている状態に相当する。 For example, the state of FIG. 10C, that is, the state where the total amount of power generated by the power generation device 4 and the amount of discharge power of the power storage device 3 matches the power consumption of the DC load 8 is shown in FIG. As shown, this corresponds to a state where zero is substituted for the command amount P S * .
 この状態において、系統側ハンチング検出判定又は系統側ハンチング予測判定が成されると、制御部23は、例えば、系統入出力指令量(出力電力の目標値)PS *をゼロから所定値(例えば2)へと変化させる抑制制御CNT1Bを実行することができる(ここでは、PS *>0である状態が、電力変換部21Sから電力系統5への電力出力状態に相当すると考える)。 In this state, when the system-side hunting detection determination or the system-side hunting prediction determination is made, the control unit 23 changes the system input / output command amount (target value of output power) P S * from zero to a predetermined value (for example, It is possible to execute the suppression control CNT 1B that is changed to 2) (here, it is considered that the state where P S * > 0 corresponds to the power output state from the power conversion unit 21S to the power system 5).
 抑制制御CNT1Bの第2実現例において、制御部23は、系統入出力指令量PS *を放電指令量PB *よりも優先する、或いは、放電指令量PB *を電力変換部21Bに与えない。何れにせよ、抑制制御CNT1Bにおいて、制御部23は、発電装置4の発電電力量と、電力変換回路20及び電力系統5間の入出力電力量と、直流負荷8の消費電力とで定まるとで不足電力分(直流負荷8に供給すべき電力の不足分)が蓄電装置3から放電されるように電力変換部21Bを制御する。 In the second implementation example of the suppression control CNT 1B , the control unit 23 prioritizes the system input / output command amount P S * over the discharge command amount P B * , or gives the discharge command amount P B * to the power conversion unit 21B. Don't give. In any case, in the suppression control CNT 1B , the control unit 23 is determined by the amount of power generated by the power generation device 4, the amount of input / output power between the power conversion circuit 20 and the power system 5, and the power consumption of the DC load 8. Then, the power conversion unit 21B is controlled so that the insufficient power (the shortage of power to be supplied to the DC load 8) is discharged from the power storage device 3.
 この場合、発電電力量は10kW・sであるが、電力系統5には2kW・sの出力電力が供給される。したがって、消費電力量が20kW・sである場合、消費電力量の不足分は12kW・sとなる。そこで、制御部23(指示部233)は、放電指令量PB *を蓄電用基準電力量PBREF(=10kW・s)から12kW・sに増加させる。すなわち、制御部23は、電力変換部21Bに目標値として12kW・sを与える。その結果、図12に示す如く、蓄電装置3から蓄電用基準電力量PBREFより多い12W・s分の放電電力が出力されることになる。この状態は、図11(a)に示した状態と等価なものである。 In this case, the amount of generated power is 10 kW · s, but output power of 2 kW · s is supplied to the power system 5. Therefore, when the power consumption is 20 kW · s, the shortage of the power consumption is 12 kW · s. Therefore, the control unit 23 (instruction unit 233) increases the discharge command amount P B * from the storage reference power amount P BREF (= 10 kW · s) to 12 kW · s. That is, the control unit 23 gives 12 kW · s as a target value to the power conversion unit 21B. As a result, as shown in FIG. 12, the power storage device 3 outputs discharge power for 12 W · s that is larger than the power storage reference power amount P BREF . This state is equivalent to the state shown in FIG.
 図12は、電力変換回路20から電力系統5への電力出力が行われるように指令量PS *を変化させたときの例であるが、電力系統5から電力変換回路20への電力入力が行われるように指令量PS *を変化させてもよく、その場合には、蓄電装置3の放電電力量は10kW・sから減少する。 FIG. 12 shows an example in which the command amount P S * is changed so that power output from the power conversion circuit 20 to the power system 5 is performed, but power input from the power system 5 to the power conversion circuit 20 is performed. The command amount P S * may be changed to be performed. In this case, the discharge power amount of the power storage device 3 is reduced from 10 kW · s.
 例えば、制御部23は、系統入出力指令量(入力電力の目標値)PS *をゼロから所定値(例えば-2)へと変化させる抑制制御CNT1Bを実行することができる(ここでは、PS *<0である状態が、電力系統5から電力変換部21Sへの電力入力状態に相当すると考える)。 For example, the control unit 23 can execute the suppression control CNT 1B that changes the system input / output command amount (target value of input power) P S * from zero to a predetermined value (for example, −2) (here, The state where P S * <0 corresponds to the power input state from the power system 5 to the power conversion unit 21S).
 この場合、発電電力量は10kW・sであるが、電力系統5からは2kW・sの入力電力が供給される。したがって、消費電力量が20kW・sである場合、消費電力量の不足分は8kW・sとなる。そこで、制御部23(指示部233)は、放電指令量PB *を蓄電用基準電力量PBREF(=10kW・s)から8kW・sに減少させる。すなわち、制御部23は、電力変換部21Bに目標値として8kW・sを与える。その結果、蓄電装置3から蓄電用基準電力量PBREFより少ない8kW・sの放電電力が出力される。 In this case, the amount of generated power is 10 kW · s, but input power of 2 kW · s is supplied from the power system 5. Therefore, when the power consumption is 20 kW · s, the shortage of the power consumption is 8 kW · s. Therefore, the control unit 23 (instruction unit 233) decreases the discharge command amount P B * from the storage reference power amount P BREF (= 10 kW · s) to 8 kW · s. That is, the control unit 23 gives 8 kW · s as a target value to the power conversion unit 21B. As a result, discharge power of 8 kW · s, which is smaller than the reference power amount P BREF for power storage, is output from the power storage device 3.
 このように、第2実現例では、制御部23(指示部233)から電力変換回路20に与えられる指示は、入力電力または出力電力の目標値である。つまり、制御部23(指示部233)は、電力変換部21Sを制御することで、ハンチング現象を抑制する。 Thus, in the second implementation example, the instruction given from the control unit 23 (instruction unit 233) to the power conversion circuit 20 is a target value of input power or output power. That is, the control unit 23 (instruction unit 233) suppresses the hunting phenomenon by controlling the power conversion unit 21S.
 抑制制御CNT1Bの第1実現例では、放電指令量PB *の制御によって放電電力量を直接制御しているのに対し、抑制制御CNT1Bの第2実現例では、系統入出力指令量PS *の制御によって(電力変換回路20及び電力系統5間の入出力電力量の制御によって)放電電力量を間接的に制御している。 In the first implementation example of the suppression control CNT 1B , the discharge power amount is directly controlled by controlling the discharge command amount P B * , whereas in the second implementation example of the suppression control CNT 1B , the system input / output command amount P The discharge power amount is indirectly controlled by controlling S * (by controlling the input / output power amount between the power conversion circuit 20 and the power system 5).
 (2-5) 抑制制御CNT1Bに対応する解除可否判定処理J1B
 制御部23は、抑制制御CNT1Bの実行期間中において、所定の解除条件の成否判定を介して、抑制制御CNT1Bの実行を解除するか否かを判定する解除可否判定処理J1Bを行うことができる。
(2-5) cancellation determination processing J 1B corresponding to suppression control CNT 1B
Control unit 23, during the execution period of the suppression control CNT 1B, through the success determination of a predetermined cancellation condition, performing the cancellation determination processing J 1B determines whether to cancel the execution of the suppression control CNT 1B Can do.
 例えば、解除可否判定処理J1Bにおいて、制御部23は、上述の方法によって合計電力量(PG’+PBREF)を求め、合計電力量(PG’+PBREF)と直流負荷8の消費電力量との差の絶対値を求める(電力変換回路20の電力損失を無視すれば、PG’+PBREF=PG+PB)。 For example, in the cancelability determination process J 1B , the control unit 23 obtains the total power amount (P G '+ P BREF ) by the above-described method, and calculates the total power amount (P G ' + P BREF ) and the power consumption amount of the DC load 8. Is obtained (if the power loss of the power conversion circuit 20 is ignored, P G ′ + P BREF = P G + P B ).
 そして、判定処理J1Bにおいて、制御部23は、その絶対値が所定の正の閾値TH4A以上である場合に、或いは、その絶対値が閾値TH4A以上である状態が所定時間以上継続して観測された場合に、或いは、その絶対値が正である状態が所定時間以上継続して観測された場合に、判定処理J1Bにおける解除条件が満たされると判断し(抑制制御CNT1Bの実行を解除しても系統側ハンチング現象は発生しない又は発生しにくいと判断し)、抑制制御CNT1Bの実行を解除する。抑制制御CNT1Bの実行の解除によって、蓄電装置3の放電電力量が蓄電用基準電力量PBREF(=10)に復帰する。 In the determination process J 1B , the control unit 23 continues the state where the absolute value is equal to or greater than the predetermined positive threshold TH 4A or the absolute value is equal to or greater than the threshold TH 4A for a predetermined time or longer. When observed, or when a state in which the absolute value is positive is continuously observed for a predetermined time or more, it is determined that the release condition in the determination process J 1B is satisfied (execution of the suppression control CNT 1B is performed). It is determined that the system-side hunting phenomenon does not occur or is unlikely to occur even if it is canceled), and the execution of the suppression control CNT 1B is canceled. By canceling the execution of the suppression control CNT 1B , the discharge power amount of the power storage device 3 returns to the power storage reference power amount P BREF (= 10).
 すなわち、制御部23は、ハンチング抑制制御CNT1Bの実行中に発電電力PG’と既定値(蓄電用基準電力量)PBREFとの合計値(PG’+PBREF)と需要電力(消費電力量PC8)との差(PG’+PBREF-PC8)が解除条件を満たした場合に、ハンチング抑制制御CNT1Bを終了するように構成される。解除条件は、差の絶対値|PG’+PBREF-PC8|が閾値TH4A以上であること、差の絶対値|PG’+PBREF-PC8|が閾値TH4A以上である状態が所定の第1時間(例えば、上記の所定時間)継続したこと、差(PG’+PBREF-PC8)が正又は負である状態が所定の第2時間(例えば、上記の所定時間)継続したこと、のいずれかである。 That is, during the execution of the hunting suppression control CNT 1B , the control unit 23 calculates the total value (P G '+ P BREF ) of the generated power P G ' and the predetermined value (reference power storage amount) P BREF and the demand power (power consumption). When the difference (P G '+ P BREF -P C8 ) from the amount P C8 ) satisfies the release condition, the hunting suppression control CNT 1B is configured to end. Release condition, the absolute value of the difference | is the threshold TH 4A above state | P G '+ P BREF -P C8 | that is the threshold value TH 4A above, the absolute value of the difference | P G' + P BREF -P C8 Continued for a predetermined first time (for example, the above-mentioned predetermined time), and a state in which the difference (P G ′ + P BREF −P C8 ) is positive or negative continues for a predetermined second time (for example, the above-mentioned predetermined time) Either
 例えば、判定部232は、ハンチング抑制制御CNT1Bの実行中に発電電力PG’と既定値(蓄電用基準電力量)PBREFとの合計値(PG’+PBREF)と需要電力(消費電力量PC8)との差(PG’+PBREF-PC8)が解除条件を満たすか否かの終了判定を行い、その終了判定の結果を指示部233に与える。指示部233は、終了判定の結果が解除条件が満たされたことを示していれば、ハンチング抑制制御CNT1Bを終了するように構成される。 For example, during the execution of the hunting suppression control CNT 1B , the determination unit 232 includes the total value (P G '+ P BREF ) of the generated power P G ′ and the predetermined value (reference power storage amount) P BREF and the demand power (power consumption). It is determined whether or not the difference (P G '+ P BREF −P C8 ) from the amount P C8 ) satisfies the release condition, and the result of the end determination is given to the instruction unit 233. The instruction unit 233 is configured to end the hunting suppression control CNT 1B if the end determination result indicates that the release condition is satisfied.
 或いは例えば、抑制制御CNT1Bにより放電指令量PB *を所定量ΔPB *だけ蓄電用基準電力量PBREFから減少させている場合には、制御部23は差(PC8-(PG’+PB *))を判定対象に設定してもよく、抑制制御CNT1Bにより放電指令量PB *を所定量ΔPB *だけ蓄電用基準電力量PBREFから増大させている場合には、制御部23は差((PG’+PB *)-PC8)を判定対象に設定してもよい。 Alternatively, for example, when the suppression control CNT 1B has reduced the discharge command amount P B * from the predetermined amount [Delta] P B * only energy storage for the reference power P BREF, the control unit 23 the difference (P C8 - (P G ' + P B * )) may be set as a determination target, and control is performed when the discharge command amount P B * is increased from the storage reference power amount P BREF by a predetermined amount ΔP B * by the suppression control CNT 1B. The unit 23 may set the difference ((P G '+ P B * ) − P C8 ) as a determination target.
 判定対象において、PB *を、実測された放電電力量PB(即ちIB×VB)に置き換えても良い。PC8は、直流負荷8の消費電力量を表す。 In the determination target, P B * may be replaced with the actually measured discharge power amount P B (that is, I B × V B ). P C8 represents the power consumption of the DC load 8.
 そして、判定対象が所定の正の閾値TH4A’以上である場合に、或いは、判定対象が閾値TH4A’以上である状態が所定時間以上継続して観測された場合に、制御部23は、判定処理J1Bにおける解除条件が満たされると判断して抑制制御CNT1Bの実行を解除しても良い(TH4A’>ΔPB *)。 Then, when the determination target is equal to or greater than a predetermined positive threshold TH 4A ′, or when a state where the determination target is equal to or greater than the threshold TH 4A ′ is continuously observed for a predetermined time or longer, the control unit 23 The execution of the suppression control CNT 1B may be canceled by determining that the cancellation condition in the determination process J 1B is satisfied (TH 4A '> ΔP B * ).
 なお、制御部23は、ハンチング抑制制御CNT1Bの実行中に供給電力(発電電力量と放電電力量との合計値)と需要電力(消費電力量)との差が解除条件を満たした場合に、ハンチング抑制制御CNT1Bを終了するように構成されていてもよい。 The control unit 23 determines that the difference between the supplied power (the total amount of generated power and the discharged power) and the demand power (power consumption) satisfies the release condition during the execution of the hunting suppression control CNT 1B. The hunting suppression control CNT 1B may be configured to end.
 この場合、解除条件は、発電電力量と放電電力量との合計値と消費電力量との差の絶対値が所定の閾値以下であること、または、発電電力量と放電電力量との合計値と消費電力量との差の絶対値が所定の閾値以下である状態が所定時間継続したことである。所定の閾値は、ハンチング抑制制御CNT1Bの実行による発電電力量と放電電力量との合計値と消費電力量との差の変化の幅より小さい。あるいは、解除条件は、発電電力量と放電電力量との合計値と消費電力量との差が正また負である状態が所定時間継続したことであってもよい。 In this case, the release condition is that the absolute value of the difference between the total value of the generated power amount and the discharged power amount and the consumed power amount is equal to or less than a predetermined threshold, or the total value of the generated power amount and the discharged power amount That is, a state where the absolute value of the difference between the power consumption and the power consumption amount is equal to or less than a predetermined threshold value continues for a predetermined time. The predetermined threshold value is smaller than the range of change in the difference between the total value of the generated power amount and the discharged power amount and the consumed power amount due to the execution of the hunting suppression control CNT 1B . Alternatively, the release condition may be that a state where the difference between the total value of the generated power amount and the discharged power amount and the consumed power amount is positive or negative continues for a predetermined time.
 あるいは、制御部23は、ハンチング抑制制御CNT1Bの実行中に、入力処理と出力処理との切り替え動作が所定回数行われたか否かを判定し、切り替え動作が所定回数行われたと判定すると、ハンチング抑制制御CNT1Bを終了するように構成されていてもよい。なお、所定回数は1以上であればよい。 Alternatively, the control unit 23 determines whether or not the switching operation between the input process and the output process has been performed a predetermined number of times during the execution of the hunting suppression control CNT 1B , and determines that the switching operation has been performed the predetermined number of times. The suppression control CNT 1B may be configured to end. The predetermined number may be one or more.
 (3) 系統出力定量制御
 (3-1) 基本動作
 次に、系統出力定量制御を説明する。系統出力定量制御において、制御部23は、発電装置4の発電電力を用いて電力変換回路20から電力系統5へ一定の系統出力基準条件下で電力が出力されるように電力変換回路20を制御する。
(3) System output quantitative control (3-1) Basic operation Next, system output quantitative control will be described. In the system output quantitative control, the control unit 23 controls the power conversion circuit 20 so that power is output from the power conversion circuit 20 to the power system 5 under a certain system output reference condition using the generated power of the power generation device 4. To do.
 系統出力定量制御では、制御部23は、蓄電装置3と発電装置4とを利用して、電力系統5への給電を行う。系統出力定量制御では、発電装置4が電力供給装置、電力系統5が電力需要装置、蓄電装置3が電力補助装置として使用される。したがって、系統出力定量制御では、供給電力は、発電装置4の発電電力である。また、需要電力は、電力系統5へ供給される電力(出力電力)である。 In the system output quantitative control, the control unit 23 supplies power to the power system 5 using the power storage device 3 and the power generation device 4. In the system output quantitative control, the power generation device 4 is used as a power supply device, the power system 5 is used as a power demand device, and the power storage device 3 is used as a power auxiliary device. Therefore, in the grid output quantitative control, the supplied power is the generated power of the power generator 4. The demand power is power (output power) supplied to the power system 5.
 系統出力定量制御では、制御部23(比較部231)は、発電装置4の発電電力(発電電力量)を電力系統5の出力電力(出力電力量)と比較する。 In the grid output quantitative control, the control unit 23 (comparison unit 231) compares the generated power (generated power amount) of the power generation device 4 with the output power (output power amount) of the power system 5.
 制御部23(指示部233)は、供給電力(発電電力)が需要電力(出力電力)より多ければ供給電力(発電電力)の余剰分が蓄電装置3(電力補助装置)に供給されるように電力変換回路20に出力処理(電力変換部21Bの充電用電力変換)を実行させる。 If the supplied power (generated power) is greater than the demand power (output power), the control unit 23 (instruction unit 233) may supply an excess of the supplied power (generated power) to the power storage device 3 (power auxiliary device). The power conversion circuit 20 is caused to execute output processing (power conversion for charging of the power conversion unit 21B).
 具体的には、制御部23(指示部233)は、発電電力と出力電力との差に相当する充電電力が得られるように、電力変換部21Bに指示(充電電力の目標値)を与える。例えば、供給電力量が13kW・sであり、出力電力量が10kW・sであれば、充電電力の目標値として、3kW・sを電力変換部21Bに与える。 Specifically, the control unit 23 (instruction unit 233) gives an instruction (target value of charging power) to the power conversion unit 21B so that charging power corresponding to the difference between the generated power and the output power can be obtained. For example, if the supplied power amount is 13 kW · s and the output power amount is 10 kW · s, 3 kW · s is given to the power conversion unit 21B as the target value of the charging power.
 制御部23(指示部233)は、供給電力(発電電力)が需要電力(出力電力)より少なければ供給電力(発電電力)の不足分が蓄電装置3(電力補助装置)からの電力で補われるように電力変換回路20に入力処理(電力変換部21Bの放電用電力変換)を実行させる。 If the supply power (generated power) is less than the demand power (output power), the control unit 23 (instruction unit 233) compensates for the shortage of the supplied power (generated power) with the power from the power storage device 3 (power auxiliary device). In this manner, the power conversion circuit 20 is caused to execute input processing (discharge power conversion of the power conversion unit 21B).
 具体的には、制御部23(指示部233)は、発電電力と出力電力との差に相当する放電電力が得られるように、電力変換部21Bに指示(放電電力の目標値)を与える。例えば、供給電力量が6kW・sであり、出力電力量が10kW・sであれば、制御部23は、放電電力の目標値として4kW・sを電力変換部21Bに与える。 Specifically, the control unit 23 (instruction unit 233) gives an instruction (target value of the discharge power) to the power conversion unit 21B so that the discharge power corresponding to the difference between the generated power and the output power can be obtained. For example, if the supply power amount is 6 kW · s and the output power amount is 10 kW · s, the control unit 23 gives 4 kW · s to the power conversion unit 21B as the target value of the discharge power.
 このように、この系統出力定量制御において、発電装置4の発電電力量が電力系統5への出力に必要な電力量(出力電力量)よりも少ないときには、それらの差分に相当する不足電力(不足電力量)が蓄電装置3から放電されるように、且つ、発電装置4の発電電力量が電力系統5への出力に必要な電力量(出力電力量)よりも多いときには、それらの差分に相当する余剰電力(余剰電力量)にて蓄電装置3が充電されるように、入出力電力情報に基づき制御部23は電力変換回路20を制御する。系統出力定量制御を考える場合、直流負荷8の存在は無視される(直流負荷8の有無は問わない)。 As described above, in the grid output quantitative control, when the power generation amount of the power generation device 4 is smaller than the power amount (output power amount) required for the output to the power system 5, the shortage power (insufficient) corresponding to the difference between them. If the amount of power generated by the power generation device 4 is larger than the amount of power (output power amount) required for output to the power system 5, this corresponds to the difference between them. Based on the input / output power information, the control unit 23 controls the power conversion circuit 20 so that the power storage device 3 is charged with surplus power (surplus power amount). When system output quantitative control is considered, the presence of the DC load 8 is ignored (regardless of the presence or absence of the DC load 8).
 系統出力基準条件は、電力変換回路20から電力系統5に対する出力電力量又は該出力電力量に依存する電流値及び電圧値等を指定する条件であり、制御部23は系統出力基準条件を自由に定めることができる。系統出力基準条件は、電力変換回路20から電力系統5に対する出力電力量に依存する電流値及び電圧値の一方のみを指定する条件であっても良い。ここでは、電力変換回路20が電力系統5へ一定の系統用基準電力量(系統入出力基準電力量)PSREFで電力出力を行うことを、系統出力基準条件が指定しているものとする。 The system output reference condition is a condition for designating an output power amount from the power conversion circuit 20 to the power system 5 or a current value and a voltage value depending on the output power amount, and the control unit 23 freely sets the system output reference condition. Can be determined. The system output reference condition may be a condition for designating only one of the current value and the voltage value depending on the output power amount from the power conversion circuit 20 to the power system 5. Here, it is assumed that the grid output reference condition specifies that the power conversion circuit 20 outputs power to the power grid 5 at a constant grid reference power amount (system input / output reference power amount) P SREF .
 系統出力定量制御では、電力変換回路20及び電力系統5間の電力の流れは電力変換回路20から電力系統5に限定されるため、系統入出力指令量PS *を系統出力指令量PS *とも言う。系統出力定量制御において、制御部23は、系統用基準電力量PSREFの値を代入した系統出力指令量PS *を電力変換部21Sに与えることで、電力変換部21Sから電力系統5に系統用基準電力量PSREFの電力を出力させることができる。 In the system output quantitative control, the power flow between the power conversion circuit 20 and the power system 5 is limited from the power conversion circuit 20 to the power system 5, so the system input / output command amount P S * is changed to the system output command amount P S *. Also say. In the system output quantitative control, the control unit 23 gives the system output command amount P S * into which the value of the system reference power amount P SREF is substituted to the power conversion unit 21S, so that the system is transferred from the power conversion unit 21S to the power system 5. The power of the reference power amount P SREF can be output.
 今、説明の具体化のため、PSREF=10であることを考える。系統出力定量制御において、PSREF=10である場合、制御部23は系統出力指令量PS *に10を代入することができる。 Now, consider P SREF = 10 for the sake of concrete explanation. In the system output quantitative control, when P SREF = 10, the control unit 23 can substitute 10 for the system output command amount P S * .
 この場合において例えば、図13(a)に示す如く、発電装置4の発電電力量が6kW・sであるならば、発電装置4の発電電力量が電力系統5への出力に必要な電力量10kW・s(=PS *)よりも少ないため、それらの差分に相当する不足電力量4kW・sが蓄電装置3から放電されるように、制御部23は電力変換部21Bを制御する。 In this case, for example, as shown in FIG. 13A, if the amount of power generated by the power generation device 4 is 6 kW · s, the amount of power generated by the power generation device 4 is 10 kW necessary for output to the power system 5. Since it is less than s (= P S * ), the control unit 23 controls the power conversion unit 21B so that the power shortage 4 kW · s corresponding to the difference between them is discharged from the power storage device 3.
 一方例えば、図13(b)に示す如く、発電装置4の発電電力量が13kW・sであるならば、発電装置4の発電電力量が電力系統5への出力に必要な電力量10kW・s(=PS *)よりも多いため、それらの差分に相当する余剰電力量3kW・sにて蓄電装置3が充電されるように、制御部23は電力変換部21Bを制御する。 On the other hand, for example, as shown in FIG. 13 (b), if the amount of power generated by the power generator 4 is 13 kW · s, the amount of power generated by the power generator 4 is 10 kW · s required for output to the power system 5. since (= P S *) greater than, as power storage device 3 is charged by excess power amount 3 kW · s corresponding to their difference, the control unit 23 controls the power conversion unit 21B.
 このように、系統出力定量制御では、発電装置4の発電電力の不足分又は余剰分を蓄電装置3の充電又は放電にて吸収しつつ、発電装置4の発電電力を用いて電力変換回路20から電力系統5へ一定の系統出力基準条件下で電力を出力する。 Thus, in the system output quantitative control, the power conversion circuit 20 uses the generated power of the power generation device 4 while absorbing the shortage or surplus of the generated power of the power generation device 4 by charging or discharging the power storage device 3. Electric power is output to the electric power system 5 under a certain system output reference condition.
 (3-2) 蓄電側ハンチング現象
 ところが、系統出力定量制御において、仮に図13(c)に示す如く、発電装置4の発電電力量が系統用基準電力量PSREF付近の値を持っていたとき、発電電力の不足状態及び余剰状態間の行き来に伴う、電力変換回路20及び蓄電装置3間の電力の入出力の切り替わり(充電及び放電間の切り替わり)が比較的短期間で繰り返して発生する。系統出力定量制御の実行時における、このような切り替わりを蓄電側ハンチング現象と呼ぶ。
(3-2) Storage-side hunting phenomenon However, in the grid output quantitative control, if the generated power amount of the power generator 4 has a value near the grid reference power amount P SREF as shown in FIG. Switching between input and output of power between the power conversion circuit 20 and the power storage device 3 (switching between charging and discharging) occurs repeatedly in a relatively short period due to the transition between the shortage state and the surplus state of the generated power. Such switching at the time of executing the system output quantitative control is called a power storage side hunting phenomenon.
 つまり、系統出力定量制御におけるハンチング現象は、比較的短時間の間に電力変換回路20が出力処理(充電用電力変換)と入力処理(放電用電力変換)とを交互に繰り返す蓄電側ハンチング現象である。 In other words, the hunting phenomenon in the grid output quantitative control is a storage-side hunting phenomenon in which the power conversion circuit 20 alternately repeats output processing (charging power conversion) and input processing (discharging power conversion) in a relatively short time. is there.
 蓄電側ハンチング現象に伴う切り替わりは、蓄電装置3にとって好ましいものではなく、蓄電装置3の劣化を促進させうる。 Switching due to the power storage side hunting phenomenon is not preferable for the power storage device 3 and can promote deterioration of the power storage device 3.
 (3-3) 蓄電側ハンチング検出処理HD1C
 系統出力定量制御の実行期間中において、制御部23は、入出力電力情報に基づく蓄電側ハンチング検出処理HD1Cを行うことで、蓄電側ハンチング現象の発生を検出することができる。
(3-3) Storage-side hunting detection processing HD 1C
During the execution period of the system output quantitative control, the control unit 23 can detect the occurrence of the power storage side hunting phenomenon by performing the power storage side hunting detection process HD 1C based on the input / output power information.
 蓄電側ハンチング検出処理HD1Cにおいて、制御部23は、入出力電力情報に含まれる電流値IB又はIBINTに基づき、電力変換部21B及び蓄電装置3間の電力の入出力の切り替えが所定時間内に所定回数以上検出されたとき、蓄電側ハンチング検出判定を成す。 In the power storage side hunting detection process HD 1C , the control unit 23 switches the input / output of power between the power conversion unit 21B and the power storage device 3 for a predetermined time based on the current value I B or I BINT included in the input / output power information. When it is detected a predetermined number of times or more, a storage side hunting detection determination is made.
 すなわち、制御部23(判定部232)は、電力変換回路20が出力処理(充電用電力変換)と入力処理(放電用電力変換)との切り替え動作を所定時間内に所定回数以上行った場合に、イベント(すなわち、電力変換回路20でのハンチング現象の発生)が起きたと判定するように構成される。 That is, when the power conversion circuit 20 performs a switching operation between the output process (power conversion for charging) and the input process (power conversion for discharge) a predetermined number of times or more within a predetermined time, the control unit 23 (determination unit 232). The event (that is, the occurrence of the hunting phenomenon in the power conversion circuit 20) is determined to occur.
 所定回数は1以上の任意の回数であって良いが、2以上が望ましい。蓄電側ハンチング検出判定とは、現在、蓄電側ハンチング現象が発生していると判断することを意味する。 The predetermined number of times may be any number of 1 or more, but 2 or more is desirable. The storage-side hunting detection determination means that it is determined that the storage-side hunting phenomenon is currently occurring.
 (3-4) 蓄電側ハンチング予測処理HP1C
 また、系統出力定量制御の実行期間中において、制御部23は、入出力電力情報に基づく蓄電側ハンチング予測処理HP1Cを行うことで、蓄電側ハンチング現象の発生を予測しても良い(即ち、未来において蓄電側ハンチング現象が発生しそうであるかを予測しても良い)。
(3-4) Storage-side hunting prediction processing HP 1C
Further, during the execution period of the system output quantitative control, the control unit 23 may predict the occurrence of the power storage side hunting phenomenon by performing the power storage side hunting prediction process HP 1C based on the input / output power information (that is, It may be predicted whether the storage-side hunting phenomenon is likely to occur in the future).
 例えば、蓄電側ハンチング予測処理HP1Cにおいて、制御部23は、電流値IG及び電圧値VGに基づき(即ち発電電力量PGに基づき)又は電流値IGINT及び電圧値VINTに基づき発電電力量PGに対応する系統出力電力量PS’を求めて、系統出力電力量PS’と系統出力基準条件にて規定されている系統用基準電力量PSREFとを比較する。そして、制御部23は、それらの差の絶対値|PS’-PSREF|が所定の正の閾値TH5A以下である場合に、或いは、絶対値|PS’-PSREF|が閾値TH5A以下である状態が所定時間以上継続して観測された場合に、蓄電側ハンチング予測判定を成す。 For example, in the power storage side hunting prediction process HP 1C , the control unit 23 generates power based on the current value I G and the voltage value V G (that is, based on the generated power amount P G ) or based on the current value I GINT and the voltage value V INT. The system output power amount P S ′ corresponding to the power amount P G is obtained, and the system output power amount P S ′ is compared with the system reference power amount P SREF defined by the system output reference condition. Then, the control unit 23 determines that the absolute value | P S '−P SREF | of the difference is equal to or less than the predetermined positive threshold value TH 5A or the absolute value | P S ' −P SREF | A storage-side hunting prediction determination is made when a state of 5 A or less is continuously observed for a predetermined time or more.
 蓄電側ハンチング予測判定とは、近い将来において蓄電側ハンチング現象が発生しそうであると判断することを意味する。発電電力量PGに対応する系統出力電力量PS’とは、発電装置4の発電電力量PGに基づく電力系統5に対する出力電力量を指し、電力変換部21G及び21Sの電力変換効率と積“IG×VG”を用いて、或いは、電力変換部21Sの電力変換効率と積“IGINT×VINT”を用いて系統出力電力量PS’を求めることができる。電力変換部21G及び21Sの電力損失量をゼロと仮定すれば、PS’=PGである。 The storage side hunting prediction determination means that it is determined that the storage side hunting phenomenon is likely to occur in the near future. The grid output power amount P S ′ corresponding to the generated power amount P G indicates the output power amount for the power system 5 based on the generated power amount P G of the power generation device 4, and the power conversion efficiency of the power conversion units 21G and 21S. The system output power P S ′ can be obtained using the product “I G × V G ” or using the power conversion efficiency of the power conversion unit 21 < / b> S and the product “I GINT × V INT ”. Assuming zero power loss of the power converter 21G and 21S, a P S '= P G.
 すなわち、制御部23(判定部232)は、供給電力(系統出力電力量PS’)と需要電力(系統用基準電力量PSREF)との差の絶対値|PS’-PSREF|が判定値(閾値TH5A)以下であるか否かを判定し、絶対値|PS’-PSREF|が判定値TH5A以下であると判定した場合にイベントが起きたと判定するように構成される。 That is, the control unit 23 (determination unit 232) determines that the absolute value | P S '−P SREF | of the difference between the supplied power (system output power amount P S ′) and the demand power (system reference power amount P SREF ) is decision value determines whether a (threshold TH 5A) below, the absolute value | is configured to determine that an event has occurred when it is determined that less than the determination value TH 5A | P S '-P SREF The
 なお、制御部23(判定部232)は、供給電力(系統出力電力量PS’)と需要電力(系統用基準電力量PSREF)との差の絶対値|PS’-PSREF|が判定値(閾値TH5A)以下である状態が判定時間(上記の所定時間)継続したか否かを判定し、前記状態が判定時間継続したと判定した場合にイベントが起きたと判定するように構成されていてもよい。 The control unit 23 (determination unit 232) determines that the absolute value | P S '−P SREF | of the difference between the supplied power (system output power amount P S ′) and the demand power (system reference power amount P SREF ) is It is configured to determine whether or not a state equal to or less than a determination value (threshold value TH 5A ) has continued for a determination time (the predetermined time described above), and to determine that an event has occurred when it is determined that the state has continued for the determination time May be.
 (3-5) ハンチング抑制制御CNT1C
 系統出力定量制御の実行期間中において、蓄電側ハンチング検出判定又は蓄電側ハンチング予測判定を成したとき、制御部23は、電力変換回路20から電力系統5への出力電力量を系統出力基準条件に従った系統用基準電力量PSREFから変化させるハンチング抑制制御CNT1Cを実行する。
(3-5) Hunting suppression control CNT 1C
When the storage-side hunting detection determination or the storage-side hunting prediction determination is made during the execution period of the system output quantitative control, the control unit 23 sets the output power amount from the power conversion circuit 20 to the power system 5 as the system output reference condition. The hunting suppression control CNT 1C that is changed from the system reference power amount P SREF is executed.
 ハンチング抑制制御CNT1Cでは、電力変換回路20から電力系統5への出力電力量を変化させることで、電力変換回路20及び蓄電装置3間の入出力電力量の絶対値を増大させ、これによって蓄電側ハンチング現象を抑制する。電力変換回路20及び蓄電装置3間の入出力電力量とは、蓄電装置3から電力変換回路20への入力電力量(即ち蓄電装置3の放電電力量)又は電力変換回路20から蓄電装置3への出力電力量(即ち蓄電装置3の充電電力量)を指す。蓄電側ハンチング検出判定又は蓄電側ハンチング予測判定を成したタイミングを、蓄電側ハンチング認知タイミングとも呼ぶ。制御部23は、蓄電側ハンチング認知タイミングから抑制制御CNT1Cを開始することができる(後述のハンチング抑制制御CNT1Dについても同様)。抑制制御CNT1Cは、系統出力定量制御の中で行われる制御であり、抑制制御CNT1Cの実行期間中には、系統出力定量制御の内容に修正が加えられる。 In the hunting suppression control CNT 1C , by changing the output power amount from the power conversion circuit 20 to the power system 5, the absolute value of the input / output power amount between the power conversion circuit 20 and the power storage device 3 is increased, thereby storing power. Suppresses side hunting phenomenon. The input / output power amount between the power conversion circuit 20 and the power storage device 3 is an input power amount from the power storage device 3 to the power conversion circuit 20 (that is, a discharge power amount of the power storage device 3) or from the power conversion circuit 20 to the power storage device 3. Output electric energy (that is, charging electric energy of the power storage device 3). The timing at which the storage-side hunting detection determination or the storage-side hunting prediction determination is made is also referred to as a storage-side hunting recognition timing. The control unit 23 can start the suppression control CNT 1C from the storage side hunting recognition timing (the same applies to the hunting suppression control CNT 1D described later). The suppression control CNT 1C is control performed in the system output quantitative control, and correction is made to the content of the system output quantitative control during the execution period of the suppression control CNT 1C .
 すなわち、制御部23(指示部233)は、系統出力定量制御の実行期間中においてイベントが起きたと判定するとハンチング抑制制御CNT1Cを実行するように構成される。制御部23(指示部233)は、ハンチング抑制制御CNT1Cでは、供給電力と需要電力との差が大きくなるように電力変換回路20に指示を与えるように構成される。 That is, the control unit 23 (instruction unit 233) is configured to execute the hunting suppression control CNT 1C when it is determined that an event has occurred during the execution period of the system output quantitative control. In the hunting suppression control CNT 1C , the control unit 23 (instruction unit 233) is configured to give an instruction to the power conversion circuit 20 so that the difference between the supplied power and the demand power becomes large.
 尚、以下の説明において、電力変換回路20から電力系統5への出力電力又は出力電力量を、単に電力系統5への出力電力又は出力電力量と言うことがあり、電力系統5から電力変換回路20への入力電力又は入力電力量を、単に電力系統5からの入力電力又は入力電力量と言うことがある。 In the following description, the output power or output power amount from the power conversion circuit 20 to the power system 5 may be simply referred to as output power or output power amount to the power system 5. The input power or input power amount to 20 may be simply referred to as input power or input power amount from the power system 5.
 抑制制御CNT1Cの第1実現例を説明する。蓄電側ハンチング認知タイミング前においては、上述の如く、制御部23は系統出力指令量PS *に系統用基準電力量PSREFを代入しており、これによって電力系統5への出力電力量は系統用基準電力量PSREF(=10)と一致している(図13(a)、(b)及び(c)参照)。 A first implementation example of the suppression control CNT 1C will be described. Before the storage side hunting recognition timing, as described above, the control unit 23 substitutes the system reference power amount P SREF for the system output command amount P S * , and the output power amount to the power system 5 is thereby reduced. This is consistent with the reference power amount P SREF (= 10) (see FIGS. 13A, 13B, and 13C).
 但し、蓄電側ハンチング検出判定又は蓄電側ハンチング予測判定が成されると、抑制制御CNT1Cの第1実現例において、制御部23は、系統出力指令量PS *を所定量ΔPS *だけ系統用基準電力量PSREFから増大又は減少させる(即ち、蓄電側ハンチング認知タイミング前を基準として系統出力指令量PS *を変化させる)。ここで、“ΔPS *>0”である。所定量ΔPS *は系統用基準電力量PSREFに依存する量(例えばPSREFと係数kとの積)であっても良い。 However, when the storage-side hunting detection determination or the storage-side hunting prediction determination is made, in the first implementation example of the suppression control CNT 1C , the control unit 23 reduces the system output command amount P S * to the system by a predetermined amount ΔP S *. The reference power amount P SREF is increased or decreased (that is, the system output command amount P S * is changed with reference to the timing before the power storage side hunting recognition timing). Here, “ΔP S * > 0”. The predetermined amount ΔP S * may be an amount that depends on the grid reference power amount P SREF (for example, the product of P SREF and the coefficient k).
 すなわち、制御部23(指示部233)は、イベントが起きたと判定するまでは、目標値を既定値(系統用基準電力量PSREF)に設定する通常制御を実行するように構成される。制御部23は、ハンチング抑制制御CNT1Cでは、目標値を既定値(系統用基準電力量PSREF)と異なる値(PSREF±ΔPS *)に設定するように構成される。 That is, the control unit 23 (instruction unit 233) is configured to execute normal control for setting the target value to a predetermined value (system reference power amount P SREF ) until it is determined that an event has occurred. In the hunting suppression control CNT 1C , the control unit 23 is configured to set the target value to a value (P SREF ± ΔP S * ) different from the predetermined value (system reference power amount P SREF ).
 このように、第1実現例では、制御部23(指示部233)は、発電電力と出力電力との差が大きくなるように、出力電力を増減させる。 Thus, in the first implementation example, the control unit 23 (instruction unit 233) increases or decreases the output power so that the difference between the generated power and the output power becomes large.
 図14(a)に、系統出力指令量PS*を系統用基準電力量PSREF(=10)から2だけ増大させたときの電力入出力状態を示す。ここでは、制御部23は、目標値を系統用基準電力量PSREF(=10)と異なる値である12(=PSREF+ΔPS *)に設定している(ΔPS *=2)。 FIG. 14A shows a power input / output state when the system output command amount PS * is increased by 2 from the system reference power amount PSREF (= 10). Here, the control unit 23 sets the target value to 12 (= P SREF + ΔP S * ), which is a value different from the reference power amount P SREF (= 10) for the system (ΔP S * = 2).
 この状態において、制御部23は、発電装置4の発電電力量と系統出力指令量PS *との差分に相当する不足電力量2kW・sが蓄電装置3から放電されるように電力変換部21Bを制御する。即ち、抑制制御CNT1Cによる電力系統5への出力電力量の増大によって、その増大前を基準として(図13(c)の状態を基準として)、電力変換回路20及び蓄電装置3間の入出力電力量の絶対値が増大する。結果、蓄電側ハンチング現象が適切に抑制される。系統出力指令量PS *を系統用基準電力量PSREFから減少させた場合も同様である。 In this state, the control unit 23 causes the power conversion unit 21 </ b > B so that the insufficient power amount 2 kW · s corresponding to the difference between the generated power amount of the power generation device 4 and the system output command amount P S * is discharged from the power storage device 3. To control. That is, the input / output between the power conversion circuit 20 and the power storage device 3 is based on the increase in the amount of output power to the power system 5 due to the suppression control CNT 1C (based on the state before FIG. 13C). The absolute value of the electric energy increases. As a result, the power storage side hunting phenomenon is appropriately suppressed. The same applies when the system output command amount P S * is reduced from the system reference power amount P SREF .
 例えば、制御部23は、目標値を系統用基準電力量PSREF(=10)と異なる値である8(=PSREF-ΔPS *)に設定してもよい(ΔPS *=2)。 For example, the control unit 23 may set the target value to 8 (= P SREF −ΔP S * ), which is a value different from the system reference power amount P SREF (= 10) (ΔP S * = 2).
 この状態において、制御部23は、供給電力と出力電力との差分に相当する余剰電力量2kW・sが電力変換回路20から蓄電装置3に供給されるように電力変換部21Bを制御する。結果、蓄電側ハンチング現象が適切に抑制される。 In this state, the control unit 23 controls the power conversion unit 21B so that the surplus power amount 2 kW · s corresponding to the difference between the supplied power and the output power is supplied from the power conversion circuit 20 to the power storage device 3. As a result, the power storage side hunting phenomenon is appropriately suppressed.
 このように、第1実現例では、制御部23(指示部233)から電力変換回路20に与えられる指示は、需要電力(出力電力)の目標値である。つまり、制御部23(指示部233)は、電力変換部21Sを制御することで、ハンチング現象を抑制する。 Thus, in the first implementation example, the instruction given from the control unit 23 (instruction unit 233) to the power conversion circuit 20 is a target value of demand power (output power). That is, the control unit 23 (instruction unit 233) suppresses the hunting phenomenon by controlling the power conversion unit 21S.
 抑制制御CNT1Cの第2実現例を説明する。蓄電側ハンチング検出判定又は蓄電側ハンチング予測判定が成されると、抑制制御CNT1Cの第2実現例を行う制御部23は、蓄電側ハンチング認知タイミング前を基準として、電力変換部21Bに対する充電指令量又は放電指令量PB *を所定量ΔPB *だけ変化させ、その変化分を、電力変換回路20から電力系統5への出力電力量の変化に割り当てることで抑制制御CNT1Cを実現する。ここで、“ΔPB *>0”である。所定量ΔPB *は系統用基準電力量PSREFに依存する量例えばPSREFと係数kとの積)であっても良い。 A second implementation example of the suppression control CNT 1C will be described. When the storage-side hunting detection determination or the storage-side hunting prediction determination is made, the control unit 23 that performs the second implementation example of the suppression control CNT 1C uses the charging command to the power conversion unit 21B with reference to the timing before the storage-side hunting recognition timing. The suppression control CNT 1C is realized by changing the amount or the discharge command amount P B * by a predetermined amount ΔP B * and assigning the change amount to the change in the output power amount from the power conversion circuit 20 to the power system 5. Here, “ΔP B * > 0”. The predetermined amount ΔP B * may be an amount depending on the grid reference power amount P SREF , for example, the product of P SREF and the coefficient k.
 すなわち、制御部23(指示部233)は、通常制御では、発電電力と出力電力との差に相当する充電電力または放電電力が得られるように、電力変換部21Bに指示(充電電力または放電電力の目標値)を与える。これに対して、制御部23(指示部233)は、ハンチング抑制制御CNT1Cでは、電力変換部21Bに与える目標値(充電電力または放電電力の目標値)を所定値に設定する。つまり、制御部23は、供給電力(発電電力)と需要電力(出力電力)との差に関わらず、電力変換部21Bに入力処理と出力処理とのいずれか一方を行わせる。 That is, in the normal control, the control unit 23 (instruction unit 233) instructs the power conversion unit 21B (charging power or discharging power so that charging power or discharging power corresponding to the difference between the generated power and the output power is obtained. Target value). In contrast, in the hunting suppression control CNT 1C , the control unit 23 (instruction unit 233) sets a target value (target value of charging power or discharging power) to be given to the power conversion unit 21B to a predetermined value. In other words, the control unit 23 causes the power conversion unit 21B to perform either input processing or output processing regardless of the difference between the supplied power (generated power) and the demand power (output power).
 例えば、図13(c)の状態、即ち発電装置4の発電電力量及び電力系統5への出力電力量が共に10kW・sである状態は、図14(b)に示す如く指令量(充電又は放電指令量)PB*にゼロが代入されている状態に相当する。 For example, in the state of FIG. 13C, that is, the state where the amount of power generated by the power generation device 4 and the amount of power output to the power system 5 are both 10 kW · s, as shown in FIG. This corresponds to a state where zero is substituted for the discharge command amount (PB *).
 この状態において、蓄電側ハンチング検出判定又は蓄電側ハンチング予測判定が成されると、制御部23は、例えば、放電指令量(放電電力の目標値)PB *をゼロから所定値(例えば2)へと変化させる抑制制御CNT1Cを実行することができる。 In this state, when the storage-side hunting detection determination or the storage-side hunting prediction determination is made, for example, the control unit 23 changes the discharge command amount (target value of discharge power) P B * from zero to a predetermined value (for example, 2). Suppression control CNT 1C to be changed to can be executed.
 抑制制御CNT1Cの第2実現例おいて、制御部23は、放電指令量(又は充電指令量)PB *を系統出力指令量PS *よりも優先する、或いは、系統出力指令量PS *を電力変換部21Sに与えない。何れにせよ、抑制制御CNT1Cにおいて、制御部23は、発電装置4の発電電力量と蓄電装置3の放電電力の合計電力量が電力系統5に出力されるように電力変換部21Sを制御する。 In the second implementation example of the suppression control CNT 1C , the control unit 23 prioritizes the discharge command amount (or charge command amount) P B * over the system output command amount P S * or the system output command amount P S. * Is not given to the power converter 21S. In any case, in the suppression control CNT 1C , the control unit 23 controls the power conversion unit 21S so that the total power amount of the power generation amount of the power generation device 4 and the discharge power of the power storage device 3 is output to the power system 5. .
 この場合、発電電力量は10kW・sであるが、蓄電装置3から電力変換回路20には2kW・sの放電電力が供給される。したがって、電力系統5に供給可能な電力は12kW・sとなる。そこで、制御部23(指示部233)は、系統出力指令量PS *を系統用基準電力量PSREF(=10kW・s)から12kW・sに増加させる。すなわち、制御部23は、電力変換部21Sに目標値として12kW・sを与える。その結果、電力系統5には、系統用基準電力量PSREFより多い12kW・sの出力電力が供給される。その結果、図15に示す如く、電力変換回路20から12kW・sの電力が電力系統5に出力される。この状態は、図14(a)に示した状態と等価なものである。 In this case, the amount of generated power is 10 kW · s, but 2 kW · s of discharge power is supplied from the power storage device 3 to the power conversion circuit 20. Therefore, the power that can be supplied to the power system 5 is 12 kW · s. Therefore, the control unit 23 (instruction unit 233) increases the system output command amount P S * from the system reference power amount P SREF (= 10 kW · s) to 12 kW · s. That is, the control unit 23 gives 12 kW · s as a target value to the power conversion unit 21S. As a result, the power grid 5 is supplied with 12 kW · s of output power that is greater than the grid reference power amount P SREF . As a result, as shown in FIG. 15, 12 kW · s of power is output from the power conversion circuit 20 to the power system 5. This state is equivalent to the state shown in FIG.
 図15は、蓄電装置3の放電が行われるように指令量PB *を変化させたときの例であるが、蓄電装置3の充電が行われるように指令量PB *を変化させてもよく、その場合には、電力系統5への出力電力量が10kW・sより減少する。 Figure 15 is an example of when the discharge of the power storage device 3 has changed the command amount P B * to take place, even by changing the command value P B * as charging of the electricity storage device 3 is carried out In that case, the output power amount to the electric power system 5 is reduced from 10 kW · s.
 例えば、制御部23は、充電指令量(充電電力の目標値)PB *をゼロから所定値(例えば2)へと変化させる抑制制御CNT1Cを実行することができる。 For example, the control unit 23 can execute the suppression control CNT 1C that changes the charging command amount (target value of charging power) P B * from zero to a predetermined value (for example, 2).
 この場合、発電電力量は10kW・sであるが、蓄電装置3には2kW・sの充電電力が供給される。したがって、電力系統5に供給可能な電力は8kW・sとなる。そこで、制御部23(指示部233)は、系統出力指令量PS *を系統用基準電力量PSREF(=10kW・s)から8kW・sに減少させる。すなわち、制御部23は、電力変換部21Sに目標値として8kW・sを与える。その結果、電力系統5には、系統用基準電力量PSREFより少ない8kW・s分だけ出力電力が供給される。 In this case, the amount of generated power is 10 kW · s, but the power storage device 3 is supplied with 2 kW · s of charging power. Therefore, the power that can be supplied to the power system 5 is 8 kW · s. Therefore, the control unit 23 (instruction unit 233) decreases the system output command amount P S * from the system reference power amount P SREF (= 10 kW · s) to 8 kW · s. That is, the control unit 23 gives 8 kW · s as a target value to the power conversion unit 21S. As a result, the output power is supplied to the power system 5 by 8 kW · s, which is smaller than the system reference power amount P SREF .
 このように、第2実現例では、制御部23(指示部233)から電力変換回路20に与えられる指示は、充電電力または放電電力の目標値である。つまり、制御部23(指示部233)は、電力変換部21Bを制御することで、ハンチング現象を抑制する。 Thus, in the second implementation example, the instruction given from the control unit 23 (instruction unit 233) to the power conversion circuit 20 is a target value of charging power or discharging power. That is, the control unit 23 (instruction unit 233) suppresses the hunting phenomenon by controlling the power conversion unit 21B.
 抑制制御CNT1Cの第1実現例では、系統出力指令量PS *の制御によって電力系統5への出力電力量を直接制御しているのに対し、抑制制御CNT1Cの第2実現例では、充電又は放電指令量PB *の制御によって(電力変換回路20及び蓄電装置3間の入出力電力量の制御によって)電力系統5への出力電力量を間接的に制御している。 In the first implementation example of the suppression control CNT 1C , the output power amount to the power system 5 is directly controlled by controlling the system output command amount P S * , whereas in the second implementation example of the suppression control CNT 1C , The output power amount to the power system 5 is indirectly controlled by controlling the charge or discharge command amount P B * (by controlling the input / output power amount between the power conversion circuit 20 and the power storage device 3).
 (3-6) 抑制制御CNT1Cに対応する解除可否判定処理J1C
 制御部23は、抑制制御CNT1Cの実行期間中において、所定の解除条件の成否判定を介して、抑制制御CNT1Cの実行を解除するか否かを判定する解除可否判定処理J1Cを行うことができる。
(3-6) cancellation determination processing J 1C corresponding to suppression control CNT 1C
Control unit 23, during the execution period of the suppression control CNT 1C, through the success determination of a predetermined cancellation condition, performing the determining cancellation determination processing J 1C whether to cancel the execution of the suppression control CNT 1C Can do.
 例えば、解除可否判定処理J1Cにおいて、制御部23は、電流値IG及び電圧値VGに基づき(即ち発電電力量PGに基づき)又は電流値IGINT及び電圧値VINTに基づき、上述の系統出力電力量PS’を求めて、系統出力電力量PS’と系統出力基準条件にて規定されている系統用基準電力量PSREFとを比較する(電力変換部21G及び21Sの電力損失を無視すれば、PS’=PGである)。 For example, in the cancelability determination process J 1C , the control unit 23 performs the above-described operation based on the current value I G and the voltage value V G (that is, based on the generated power amount P G ) or based on the current value I GINT and the voltage value V INT. System output power P S ′ is obtained and the system output power P S ′ is compared with the system reference power P SREF defined by the system output reference condition (the power of the power converters 21G and 21S) neglecting losses, a P S '= P G).
 そして、判定処理J1Cにおいて、制御部23は、それらの差の絶対値|PS’-PSREF|が所定の正の閾値TH6A以上である場合に、或いは、絶対値|PS’-PSREF|が閾値TH6A以上である状態が所定時間以上継続して観測された場合に、或いは、絶対値|PS’-PSREF|が正である状態が所定時間以上継続して観測された場合に、判定処理J1Cにおける解除条件が満たされると判断し(抑制制御CNT1Cの実行を解除しても蓄電側ハンチング現象は発生しない又は発生しにくいと判断し)、抑制制御CNT1Cの実行を解除する。抑制制御CNT1Cの実行の解除によって、電力系統5への出力電力量が系統用基準電力量PSREF(=10)に復帰する。 In the determination process J 1C , the control unit 23 determines that the absolute value | P S '−P SREF | of the difference is equal to or greater than a predetermined positive threshold TH 6A or the absolute value | P S ' −. When a state where P SREF | is equal to or greater than the threshold TH 6A is continuously observed for a predetermined time or longer, or a state where the absolute value | P S '−P SREF | is positive is continuously observed for a predetermined time or longer. The release condition in the determination process J 1C is determined to be satisfied (determined that the storage-side hunting phenomenon does not occur or hardly occurs even if the execution of the suppression control CNT 1C is canceled), and the suppression control CNT 1C Cancel execution. By canceling the execution of the suppression control CNT 1C , the output power amount to the power system 5 returns to the grid reference power amount P SREF (= 10).
 すなわち、制御部23は、ハンチング抑制制御CNT1Cの実行中に供給電力(発電電力量PG、系統出力電力量PS’)と既定値(系統用基準電力量PSREF)との差(PS’-PSREF)が解除条件を満たした場合に、ハンチング抑制制御CNT1Cを終了するように構成される。解除条件は、差の絶対値|PS’-PSREF|が閾値TH6A以上であること、差の絶対値|PS’-PSREF|が閾値TH6A以上である状態が所定の第1時間(例えば、上記の所定時間)継続したこと、差(PS’-PSREF)が正又は負である状態が所定の第2時間(例えば、上記の所定時間)継続したこと、のいずれかである。 That is, the control unit 23 performs the difference (P) between the supplied power (generated power amount P G , system output power amount P S ′) and a predetermined value (system reference power amount P SREF ) during execution of the hunting suppression control CNT 1C. When S′− P SREF ) satisfies the release condition, the hunting suppression control CNT 1C is configured to end. Release condition, the absolute value of the difference | P S '-P SREF | is equal to or greater than the threshold TH 6A, the absolute value of the difference | P S' -P SREF | is the first state is in a predetermined is equal to or greater than the threshold TH 6A Either the time (for example, the above-mentioned predetermined time) has been continued, or the state where the difference (P S '−P SREF ) is positive or negative has continued for a predetermined second time (for example, the above-mentioned predetermined time) It is.
 例えば、判定部232は、ハンチング抑制制御CNT1Cの実行中に供給電力(発電電力量PG、系統出力電力量PS’)と既定値(系統用基準電力量PSREF)との差(PS’-PSREF)が解除条件を満たすか否かの終了判定を行い、その終了判定の結果を指示部233に与える。指示部233は、終了判定の結果が解除条件が満たされたことを示していれば、ハンチング抑制制御CNT1Cを終了するように構成される。 For example, during the execution of the hunting suppression control CNT 1C , the determination unit 232 determines the difference between the supplied power (generated power amount P G , system output power amount P S ′) and a predetermined value (system reference power amount P SREF ) (P S '-P SREF) performs the cancellation condition is satisfied whether end determination, giving the result of the completion determination instructing section 233. The instruction unit 233 is configured to end the hunting suppression control CNT 1C if the result of the end determination indicates that the release condition is satisfied.
 或いは例えば、抑制制御CNT1Cにより系統出力指令量PS *を所定量ΔPS *だけ系統用基準電力量PSREFから減少させている場合には、制御部23は差(PS’-PS *)を判定対象に設定してもよく、抑制制御CNT1Cにより系統出力指令量PS *を所定量ΔPS *だけ系統用基準電力量PSREFから増大させている場合には、制御部23は差(PS *-PS’)を判定対象に設定してもよい。 Alternatively, for example, when the system output command amount P S * is decreased from the system reference power amount P SREF by a predetermined amount ΔP S * by the suppression control CNT 1C , the control unit 23 determines the difference (P S ′ −P S * ) May be set as a determination target, and when the system output command amount P S * is increased from the system reference power amount P SREF by the predetermined amount ΔP S * by the suppression control CNT 1C , the control unit 23 The difference (P S * −P S ′) may be set as a determination target.
 判定対象において、PS *を、実測された出力電力量PS(即ちIS×VS)に置き換えても良い。 In the determination target, P S * may be replaced with the actually measured output power P S (ie, I S × V S ).
 そして、判定対象が所定の正の閾値TH6A’以上である場合に、或いは、判定対象が閾値TH6A’以上である状態が所定時間以上継続して観測された場合に、制御部23は、判定処理J1Cにおける解除条件が満たされると判断して抑制制御CNT1Cの実行を解除しても良い(TH6A’>ΔPS *)。 Then, when the determination target is greater than or equal to the predetermined positive threshold TH 6A ′, or when a state where the determination target is greater than or equal to the threshold TH 6A ′ is continuously observed for a predetermined time or longer, the control unit 23 determines The execution of the suppression control CNT 1C may be canceled by determining that the cancellation condition in the process J 1C is satisfied (TH 6A '> ΔP S * ).
 なお、制御部23は、ハンチング抑制制御CNT1Cの実行中に供給電力(発電電力量)と需要電力(出力電力量)との差が解除条件を満たした場合に、ハンチング抑制制御CNT1Cを終了するように構成されていてもよい。 The control unit 23, when the difference between the supply during the hunting prevention control CNT 1C power (generated power) and the power demand (the amount of output power) satisfies the release condition, terminates the hunting suppression control CNT 1C It may be configured to.
 この場合、解除条件は、発電電力量と出力電力量との差の絶対値が所定の閾値以下であること、または、発電電力量と出力電力量との差の絶対値が所定の閾値以下である状態が所定時間継続したことである。所定の閾値は、ハンチング抑制制御CNT1Cの実行による発電電力量と出力電力量との差の変化の幅より小さい。あるいは、解除条件は、発電電力量と出力電力量との差が正また負である状態が所定時間継続したことであってもよい。 In this case, the release condition is that the absolute value of the difference between the generated electric energy and the output electric energy is less than or equal to a predetermined threshold, or the absolute value of the difference between the generated electric energy and the output electric energy is less than or equal to the predetermined threshold. A certain state has continued for a predetermined time. The predetermined threshold value is smaller than the range of change in the difference between the generated power amount and the output power amount due to the execution of the hunting suppression control CNT 1C . Alternatively, the cancellation condition may be that the state where the difference between the generated power amount and the output power amount is positive or negative continues for a predetermined time.
 あるいは、制御部23は、ハンチング抑制制御CNT1Cの実行中に、入力処理と出力処理との切り替え動作が所定回数行われたか否かを判定し、切り替え動作が所定回数行われたと判定すると、ハンチング抑制制御CNT1Cを終了するように構成されていてもよい。なお、所定回数は1以上であればよい。 Alternatively, the control unit 23 determines whether or not the switching operation between the input process and the output process has been performed a predetermined number of times during the execution of the hunting suppression control CNT 1C , and determines that the switching operation has been performed the predetermined number of times. The suppression control CNT 1C may be configured to end. The predetermined number may be one or more.
 (4) 系統入力定量制御
 (4-1) 基本動作
 次に、系統入力定量制御を説明する。制御部23は、発電装置4の発電電力と電力系統5から電力変換回路20への入力電力を用いて直流負荷8に電力供給を行うことができるが、系統入力定量制御では、この際、電力系統5から電力変換回路20へ一定の系統入力基準条件で電力が入力されるように電力変換回路20を制御する。
(4) System input quantitative control (4-1) Basic operation Next, system input quantitative control will be described. The control unit 23 can supply power to the DC load 8 using the generated power of the power generation device 4 and the input power from the power system 5 to the power conversion circuit 20, but in the system input quantitative control, The power conversion circuit 20 is controlled so that power is input from the system 5 to the power conversion circuit 20 under a constant system input reference condition.
 系統入力定量制御では、制御部23は、蓄電装置3と発電装置4と電力系統5とを併用して、直流負荷8への給電を行う。系統入力定量制御では、電力系統5と発電装置4とが電力供給装置、直流負荷8が電力需要装置、蓄電装置3が電力補助装置として使用される。したがって、電力供給装置は、発電装置4と、電源装置として使用される電力系統5と、を含む。供給電力は、発電装置4から供給される電力である発電電力と、電源装置(電力系統5)から得られる電力である電源電力(入力電力)との合計である。需要電力は、直流負荷8で消費される電力(消費電力)である。 In the system input quantitative control, the control unit 23 supplies power to the DC load 8 by using the power storage device 3, the power generation device 4, and the power system 5 in combination. In the system input quantitative control, the power system 5 and the power generation device 4 are used as a power supply device, the DC load 8 is used as a power demand device, and the power storage device 3 is used as a power auxiliary device. Therefore, the power supply device includes a power generation device 4 and a power system 5 used as a power supply device. The supplied power is the total of the generated power that is the power supplied from the power generation device 4 and the power supply power (input power) that is the power obtained from the power supply device (power system 5). The demand power is power consumed by the DC load 8 (power consumption).
 系統入力定量制御では、制御部23(比較部231)は、電力系統5の入力電力(入力電力量)と発電装置4の発電電力(発電電力量)との合計値を直流負荷8の消費電力(消費電力量)と比較する。 In the system input quantitative control, the control unit 23 (comparison unit 231) uses the total value of the input power (input power amount) of the power system 5 and the generated power (generated power amount) of the power generation device 4 as the power consumption of the DC load 8. Compare with (Power consumption).
 制御部23(指示部233)は、供給電力(入力電力と発電電力との合計)が需要電力(消費電力)より多ければ供給電力(入力電力と発電電力との合計)の余剰分が蓄電装置3(電力補助装置)に供給されるように電力変換回路20に出力処理(電力変換部21Bの充電用電力変換)を実行させる。 If the supplied power (total of input power and generated power) is greater than the demand power (power consumption), the control unit 23 (instruction unit 233) stores the surplus of the supplied power (total of input power and generated power) in the power storage device. The power conversion circuit 20 is caused to execute output processing (charging power conversion of the power conversion unit 21B) so as to be supplied to 3 (power auxiliary device).
 具体的には、制御部23(指示部233)は、入力電力と発電電力との合計値と消費電力との差に相当する充電電力が得られるように、電力変換部21Bに指示(充電電力の目標値)を与える。例えば、発電電力量が13kW・sであり、入力電力量が10kW・sであれば、供給電力量が23kW・sになる。このとき、消費電力量が20kW・sであれば、制御部23は、充電電力の目標値として、3kW・sを電力変換部21Bに与える。 Specifically, the control unit 23 (instruction unit 233) instructs the power conversion unit 21B (charging power so that charging power corresponding to the difference between the total value of input power and generated power and power consumption is obtained. Target value). For example, if the generated power is 13 kW · s and the input power is 10 kW · s, the supplied power is 23 kW · s. At this time, if the power consumption is 20 kW · s, the control unit 23 gives 3 kW · s to the power conversion unit 21B as the target value of the charging power.
 制御部23(指示部233)は、供給電力(入力電力と発電電力との合計)が需要電力(消費電力)より少なければ供給電力(入力電力と発電電力との合計)の不足分が蓄電装置3(電力補助装置)からの電力で補われるように、電力変換回路20に入力処理(電力変換部21Bの放電用電力変換)を実行させる。 If the supplied power (the sum of the input power and the generated power) is less than the demand power (power consumption), the control unit 23 (the instruction unit 233) has a shortage of the supplied power (the total of the input power and the generated power). The power conversion circuit 20 is caused to execute input processing (discharge power conversion of the power conversion unit 21B) so as to be supplemented with power from 3 (power auxiliary device).
 具体的には、制御部23(指示部233)は、入力電力と発電電力との合計値と消費電力との差に相当する放電電力が得られるように、電力変換部21Bに指示(放電電力の目標値)を与える。例えば、発電電力量が6kW・sであり、入力電力量が10kW・sであれば、供給電力量が16kW・sになる。このとき、消費電力量が20kW・sであれば、制御部23は、放電電力の目標値として、4kW・sを電力変換部21Bに与える。 Specifically, the control unit 23 (instruction unit 233) instructs the power conversion unit 21B (discharge power) so as to obtain discharge power corresponding to the difference between the total value of input power and generated power and power consumption. Target value). For example, if the power generation amount is 6 kW · s and the input power amount is 10 kW · s, the supplied power amount is 16 kW · s. At this time, if the power consumption is 20 kW · s, the control unit 23 gives 4 kW · s to the power conversion unit 21B as the target value of the discharge power.
 このように、この系統入力定量制御において、発電装置4の発電電力量と電力系統5から電力変換回路20への入力電力量の合計電力量が直流負荷8の消費電力量よりも少ないときには、それらの差分に相当する不足電力(不足電力量)が蓄電装置3から放電されるように、且つ、上記合計電力量が直流負荷8の消費電力量よりも多いときには、それらの差分に相当する余剰電力(余剰電力量)にて蓄電装置3が充電されるように、入出力電力情報に基づき制御部23は電力変換回路20を制御する。 Thus, in this system input quantitative control, when the total power amount of the generated power amount of the power generator 4 and the input power amount from the power system 5 to the power conversion circuit 20 is smaller than the power consumption amount of the DC load 8, these When the total power amount is larger than the power consumption amount of the DC load 8 so that the shortage power (shortage power amount) corresponding to the difference between the power storage devices 3 is discharged from the power storage device 3, the surplus power corresponding to these differences Based on the input / output power information, the control unit 23 controls the power conversion circuit 20 so that the power storage device 3 is charged with (the surplus power amount).
 系統入力基準条件は、電力系統5から電力変換回路20に対する入力電力量又は該入力電力量に依存する電流値及び電圧値等を指定する条件であり、制御部23は系統入力基準条件を自由に定めることができる。系統入力基準条件は、電力系統5から電力変換回路20に対する入力電力量に依存する電流値及び電圧値の一方のみを指定する条件であっても良い。ここでは、電力系統5から電力変換回路20に対して一定の系統用基準電力量(系統入出力基準電力量)PSREFで電力入力を行うことを、系統入力基準条件が指定しているものとする。 The system input reference condition is a condition for designating an input power amount from the power system 5 to the power conversion circuit 20 or a current value and a voltage value depending on the input power amount, and the control unit 23 freely sets the system input reference condition. Can be determined. The system input reference condition may be a condition for designating only one of the current value and the voltage value depending on the input power amount from the power system 5 to the power conversion circuit 20. Here, the system input reference condition specifies that power input from the power system 5 to the power conversion circuit 20 is performed at a constant system reference power amount (system input / output reference power amount) P SREF. To do.
 系統入力定量制御では、電力変換回路20及び電力系統5間の電力の流れは電力系統5から電力変換回路20に限定されるため、系統入出力指令量PS *を系統入力指令量PS *とも言う。 In the system input quantitative control, the power flow between the power conversion circuit 20 and the power system 5 is limited from the power system 5 to the power conversion circuit 20, and therefore the system input / output command quantity P S * is changed to the system input command quantity P S *. Also say.
 系統入力定量制御において、制御部23は、系統用基準電力量PSREFの値を代入した系統入力指令量PS *を電力変換部21Sに与えることで、電力系統5から電力変換部21Sに対して系統用基準電力量PSREFの電力を入力させることができる。 In the system input quantitative control, the control unit 23 gives the system input command amount P S * into which the value of the system reference power amount P SREF is assigned to the power conversion unit 21S, so that the power system 5 sends the power conversion unit 21S to the power conversion unit 21S. Thus, the power of the grid reference power amount P SREF can be input.
 ここでも、説明の具体化のため、PSREF=10であることを考える。また、直流負荷8の消費電力量は変動しうるが、ここでは、直流負荷8の消費電力量が常に20kW・sであると仮定する。系統入力定量制御においてPSREF=10である場合、制御部23は系統入力指令量PS *に10を代入することができ、これによって電力系統5からの入力電力量は10kW・sとなる。 Also here, for the sake of concrete explanation, consider that P SREF = 10. Further, although the power consumption of the DC load 8 can fluctuate, it is assumed here that the power consumption of the DC load 8 is always 20 kW · s. When P SREF = 10 in the system input quantitative control, the control unit 23 can substitute 10 for the system input command amount P S * , and thereby the input power amount from the power system 5 becomes 10 kW · s.
 この場合において例えば、図16(a)に示す如く、発電装置4の発電電力量が6kW・sであるならば、上記合計電力量が直流負荷8の消費電力量20kW・sよりも少ないため、それらの差分に相当する不足電力量4kW・sが蓄電装置3から放電されるように、制御部23は電力変換部21Bを制御する。 In this case, for example, as shown in FIG. 16 (a), if the power generation amount of the power generation device 4 is 6 kW · s, the total power amount is less than the power consumption amount 20 kW · s of the DC load 8, The control unit 23 controls the power conversion unit 21 </ b> B so that the insufficient power amount 4 kW · s corresponding to the difference is discharged from the power storage device 3.
 一方例えば、図16(b)に示す如く、発電装置4の発電電力量が13kW・sであるならば、上記合計電力量が直流負荷8の消費電力量20kW・sよりも多いため、それらの差分に相当する余剰電力量3kW・sにて蓄電装置3が充電されるように、制御部23は電力変換部21Bを制御する。 On the other hand, for example, as shown in FIG. 16 (b), if the power generation amount of the power generation device 4 is 13 kW · s, the total power amount is larger than the power consumption amount 20 kW · s of the DC load 8; The control unit 23 controls the power conversion unit 21B so that the power storage device 3 is charged with a surplus power amount 3 kW · s corresponding to the difference.
 このように、系統入力定量制御では、発電装置4の発電電力の不足分又は余剰分を蓄電装置3の充電又は放電にて吸収しつつ、発電装置4の発電電力と電力系統5から電力変換回路20への入力電力とを用いて直流負荷8に電力供給を行うべく、電力系統5から電力変換回路20へ一定の系統入力基準条件で電力を入力させる。 As described above, in the grid input quantitative control, the power conversion circuit is connected to the power generated by the power generator 4 and the power grid 5 while absorbing the shortage or surplus of the power generated by the power generator 4 by charging or discharging the power storage device 3. In order to supply power to the DC load 8 using the input power to 20, power is input from the power system 5 to the power conversion circuit 20 under a certain system input reference condition.
 ところが、系統入力定量制御において、仮に図16(c)に示す如く、上記の合計電力量が直流負荷8の消費電力量付近の値を持っていたとき、発電電力の不足状態及び余剰状態間の行き来に伴う、電力変換回路20及び蓄電装置3間の電力の入出力の切り替わり(充電及び放電の切り替わり)が比較的短期間で繰り返して発生する。系統入力定量制御の実行時における、このような切り替わりも蓄電側ハンチング現象である。 However, in the system input quantitative control, as shown in FIG. 16 (c), when the total electric power has a value in the vicinity of the electric power consumption of the DC load 8, between the shortage state and the surplus state of the generated power. Switching between input and output of power between the power conversion circuit 20 and the power storage device 3 (switching between charge and discharge) occurs repeatedly in a relatively short period. Such switching at the time of executing the system input quantitative control is also a storage-side hunting phenomenon.
 (4-2) 蓄電側ハンチング検出処理HD1D
 系統入力定量制御の実行期間中において、制御部23は、蓄電側ハンチング検出処理HD1Dを実行することができる。蓄電側ハンチング検出処理HD1Dは、上述の蓄電側ハンチング検出処理HD1Cと同じである。
(4-2) Storage side hunting detection processing HD 1D
During the execution period of the system input quantitative control, the control unit 23 can execute the power storage side hunting detection process HD 1D . The power storage side hunting detection process HD 1D is the same as the power storage side hunting detection process HD 1C described above.
 (4-3) 蓄電側ハンチング予測処理HP1D
 また、系統入力定量制御の実行期間中において、制御部23は、入出力電力情報に基づく蓄電側ハンチング予測処理HP1Dを行うことで、蓄電側ハンチング現象の発生を予測しても良い。
(4-3) Storage-side hunting prediction processing HP 1D
Further, during the execution period of the system input quantitative control, the control unit 23 may predict the occurrence of the power storage side hunting phenomenon by performing the power storage side hunting prediction process HP 1D based on the input / output power information.
 例えば、蓄電側ハンチング予測処理HP1Dにおいて、制御部23は、電流値IG及び電圧値VGに基づき(即ち発電電力量PGに基づき)又は電流値IGINT及び電圧値VINTに基づき発電電力量PGに対応する電力量PG’を求めて、電力量PG’と系統入力基準条件にて規定されている系統用基準電力量PSREFとの合計電力量(PG’+PSREF)を直流負荷8の消費電力量と比較する。 For example, in the power storage side hunting prediction process HP 1D , the control unit 23 generates power based on the current value I G and the voltage value V G (that is, based on the generated power amount P G ) or based on the current value I GINT and the voltage value V INT. 'seeking, electric energy P G' power amount P G corresponding to the amount of power P G total electric energy of the power system reference power P SREF which is defined by the system input reference condition (P G '+ P SREF ) Is compared with the power consumption of the DC load 8.
 電力量PG’は電力変換部21Gから出力される電力量であって、積(IGINT×VINT)と等しいと考えることができる。また、ここでは、系統入力定量制御により電力変換部21Sから系統用基準電力量PSREF(=10)の電力が直流負荷8に供給されていると考える。故に、合計電力量(PG’+PSREF)は、発電装置4の発電電力及び電力系統5からの商用交流電力に基づく、電力変換部21G及び21Sから出力される合計電力量である(電力変換回路20の電力損失を無視すれば、PG’+PSREF=PG+PS)。 The amount of power P G ′ is the amount of power output from the power converter 21G, and can be considered to be equal to the product (I GINT × V INT ). Here, it is considered that the power of the grid reference power amount P SREF (= 10) is supplied from the power conversion unit 21S to the DC load 8 by the grid input quantitative control. Therefore, the total amount of power (P G ′ + P SREF ) is the total amount of power output from the power conversion units 21G and 21S based on the generated power of the power generation device 4 and the commercial AC power from the power system 5 (power conversion If the power loss of the circuit 20 is ignored, P G ′ + P SREF = P G + P S ).
 そして、制御部23は、合計電力量(PG’+PSREF)と直流負荷8の消費電力量との差の絶対値が所定の正の閾値TH7A以下である場合に、或いは、その絶対値が閾値TH7A以下である状態が所定時間以上継続して観測された場合に、蓄電側ハンチング予測判定を成す。 Then, the control unit 23 determines whether or not the absolute value of the difference between the total power amount (P G '+ P SREF ) and the power consumption amount of the DC load 8 is equal to or less than a predetermined positive threshold value TH 7A. When the state where the value is equal to or less than the threshold TH 7A is continuously observed for a predetermined time or more, the power storage side hunting prediction determination is made.
 すなわち、制御部23(判定部232)は、供給電力(系統用基準電力量PSREFと電力量PG’との合計値)と需要電力(消費電力量PC8)との差の絶対値|PSREF+PG’-PC8|が判定値(閾値TH7A)以下であるか否かを判定し、絶対値|PSREF+PG’-PC8|が判定値TH7A以下であると判定した場合にイベントが起きたと判定するように構成される。 That is, the control unit 23 (determination unit 232) determines the absolute value of the difference between the supplied power (the total value of the grid reference power amount P SREF and the power amount P G ′) and the demand power (power consumption amount P C8 ) | It is determined whether or not P SREF + P G ′ −P C8 | is equal to or less than a determination value (threshold TH 7A ), and it is determined that the absolute value | P SREF + P G ′ −P C8 | is equal to or less than the determination value TH 7A . The event is configured to determine that an event has occurred.
 なお、制御部23(判定部232)は、供給電力(系統用基準電力量PSREFと電力量PG’との合計値)と需要電力(消費電力量PC8)との差の絶対値|PSREF+PG’-PC8|が判定値(閾値TH7A)以下である状態が判定時間(上記の所定時間)継続したか否かを判定し、前記状態が判定時間継続下と判定した場合にイベントが起きたと判定するように構成されていてもよい。 The control unit 23 (determination unit 232) determines the absolute value of the difference between the supplied power (the total value of the grid reference power amount P SREF and the power amount P G ′) and the demand power (power consumption amount P C8 ). When it is determined whether P SREF + P G ′ −P C8 | is equal to or less than the determination value (threshold value TH 7A ) continues for the determination time (the predetermined time described above), and it is determined that the state is under the determination time It may be configured to determine that an event has occurred.
 (4-4) ハンチング抑制制御CNT1D
 系統入力定量制御の実行期間中において、蓄電側ハンチング検出判定又は蓄電側ハンチング予測判定を成したとき、制御部23は、電力系統5から電力変換回路20への入力電力量を系統入力基準条件に従った系統用基準電力量PSREFから変化させるハンチング抑制制御CNT1Dを実行する。
(4-4) Hunting suppression control CNT 1D
When the storage side hunting detection determination or the storage side hunting prediction determination is made during the execution period of the system input quantitative control, the control unit 23 sets the input power amount from the power system 5 to the power conversion circuit 20 as the system input reference condition. The hunting suppression control CNT 1D that is changed from the system reference power amount P SREF is executed.
 ハンチング抑制制御CNT1Dでは、電力系統5から電力変換回路20への入力電力量を変化させることで、電力変換回路20及び蓄電装置3間の入出力電力量の絶対値を増大させ、これによって蓄電側ハンチング現象を抑制する。抑制制御CNT1Dは、系統入力定量制御の中で行われる制御であり、抑制制御CNT1Dの実行期間中には、系統入力定量制御の内容に修正が加えられる。 In the hunting suppression control CNT 1D , the absolute value of the input / output power amount between the power conversion circuit 20 and the power storage device 3 is increased by changing the input power amount from the power system 5 to the power conversion circuit 20, thereby storing the power. Suppresses side hunting phenomenon. The suppression control CNT 1D is control performed in the system input quantitative control, and the contents of the system input quantitative control are corrected during the execution period of the suppression control CNT 1D .
 すなわち、制御部23(指示部233)は、系統入力定量制御の実行期間中においてイベントが起きたと判定するとハンチング抑制制御CNT1Dを実行するように構成される。制御部23(指示部233)は、ハンチング抑制制御CNT1Dでは、供給電力と需要電力との差が大きくなるように電力変換回路20に指示を与えるように構成される。 That is, the control unit 23 (instruction unit 233) is configured to execute the hunting suppression control CNT 1D when it is determined that an event has occurred during the execution period of the system input quantitative control. In the hunting suppression control CNT 1D , the control unit 23 (instruction unit 233) is configured to give an instruction to the power conversion circuit 20 so that the difference between the supplied power and the demand power becomes large.
 抑制制御CNT1Dの第1実現例を説明する。蓄電側ハンチング認知タイミング前においては、上述の如く、制御部23は系統入力指令量PS *に系統用基準電力量PSREFを代入しており、これによって電力系統5からの入力電力量は系統用基準電力量PSREF(=10)と一致している(図16(a)、(b)及び(c)参照)。 A first implementation example of the suppression control CNT 1D will be described. Before the storage-side hunting recognition timing, as described above, the control unit 23 substitutes the system reference power amount P SREF for the system input command amount P S * , whereby the input power amount from the power system 5 is This is consistent with the reference power amount P SREF (= 10) (see FIGS. 16A, 16B, and 16C).
 但し、蓄電側ハンチング検出判定又は蓄電側ハンチング予測判定が成されると、抑制制御CNT1Dの第1実現例において、制御部23は、系統入力指令量PS *を所定量ΔPS *だけ系統用基準電力量PSREFから増大又は減少させる(即ち、蓄電側ハンチング認知タイミング前を基準として系統入力指令量PS *を変化させる)。 However, when the storage-side hunting detection determination or the storage-side hunting prediction determination is made, in the first implementation example of the suppression control CNT 1D , the control unit 23 reduces the system input command amount P S * to the system by a predetermined amount ΔP S *. The reference power amount P SREF is increased or decreased (that is, the system input command amount P S * is changed with reference to the power storage side hunting recognition timing).
 すなわち、制御部23(指示部233)は、イベントが起きたと判定するまでは、目標値を既定値(系統用基準電力量PSREF)に設定する通常制御を実行するように構成される。制御部23は、ハンチング抑制制御CNT1Dでは、目標値を既定値(系統用基準電力量PSREF)と異なる値(PSREF±ΔPS *)に設定するように構成される。 That is, the control unit 23 (instruction unit 233) is configured to execute normal control for setting the target value to a predetermined value (system reference power amount P SREF ) until it is determined that an event has occurred. In the hunting suppression control CNT 1D , the control unit 23 is configured to set the target value to a value (P SREF ± ΔP S * ) different from the predetermined value (system reference power amount P SREF ).
 このように、第1実現例では、制御部23(指示部233)は、入力電力と発電電力との合計値と消費電力との差が大きくなるように、入力電力を増減させる。 As described above, in the first implementation example, the control unit 23 (instruction unit 233) increases or decreases the input power so that the difference between the total value of the input power and the generated power and the power consumption increases.
 図17(a)に、系統入力指令量PS *を系統用基準電力量PSREF(=10)から2だけ増大させたときの電力入出力状態を示す。 FIG. 17A shows a power input / output state when the system input command amount P S * is increased by 2 from the system reference power amount P SREF (= 10).
 この状態において、制御部23は、発電装置4の発電電力量と系統入力指令量PS *との差分に相当する余剰電力量2kW・sにて蓄電装置3が充電されるように電力変換部21Bを制御する。即ち、抑制制御CNT1Dによる電力系統5からの入力電力量の増大によって、その増大前を基準として(図16(c)の状態を基準として)、電力変換回路20及び蓄電装置3間の入出力電力量の絶対値が増大する。結果、蓄電側ハンチング現象が適切に抑制される。系統入力指令量PS *を系統用基準電力量PSREFから減少させた場合も同様である。 In this state, the control unit 23 converts the power storage unit 3 so that the power storage device 3 is charged with a surplus power amount 2 kW · s corresponding to the difference between the power generation amount of the power generation device 4 and the system input command amount P S *. 21B is controlled. That is, the input / output between the power conversion circuit 20 and the power storage device 3 is based on the increase in the amount of input power from the power system 5 due to the suppression control CNT 1D with reference to the state before the increase (based on the state of FIG. 16C). The absolute value of the electric energy increases. As a result, the power storage side hunting phenomenon is appropriately suppressed. The same applies when the system input command amount P S * is decreased from the system reference power amount P SREF .
 例えば、制御部23は、目標値を系統用基準電力量PSREF(=10)と異なる値である8(=PSREF-ΔPS *)に設定してもよい(ΔPS *=2)。 For example, the control unit 23 may set the target value to 8 (= P SREF −ΔP S * ), which is a value different from the system reference power amount P SREF (= 10) (ΔP S * = 2).
 この状態において、制御部23は、入力電力と発電電力との合計値と消費電力との差分に相当する不足電力量2kW・sが蓄電装置3から電力変換回路20に入力されるように電力変換部21Bを制御する。結果、蓄電側ハンチング現象が適切に抑制される。 In this state, the control unit 23 converts the power so that an insufficient power amount 2 kW · s corresponding to the difference between the total value of the input power and the generated power and the power consumption is input from the power storage device 3 to the power conversion circuit 20. The unit 21B is controlled. As a result, the power storage side hunting phenomenon is appropriately suppressed.
 このように、第1実現例では、制御部23(指示部233)から電力変換回路20に与えられる指示は、電源電力(入力電力)の目標値である。つまり、制御部23(指示部233)は、電力変換部21Sを制御することで、ハンチング現象を抑制する。 Thus, in the first implementation example, the instruction given from the control unit 23 (instruction unit 233) to the power conversion circuit 20 is the target value of the power supply power (input power). That is, the control unit 23 (instruction unit 233) suppresses the hunting phenomenon by controlling the power conversion unit 21S.
 抑制制御CNT1Dの第2実現例を説明する。蓄電側ハンチング検出判定又は蓄電側ハンチング予測判定が成されると、抑制制御CNT1Dの第2実現例を行う制御部23は、蓄電側ハンチング認知タイミング前を基準として、電力変換部21Bに対する充電指令量又は放電指令量PB *を所定量ΔPB *だけ変化させ、その変化分を、電力系統5から電力変換回路20への入力電力量の変化に割り当てることで抑制制御CNT1Dを実現する。 A second implementation example of the suppression control CNT 1D will be described. When the storage-side hunting detection determination or the storage-side hunting prediction determination is made, the control unit 23 that performs the second implementation example of the suppression control CNT 1D uses the charging command to the power conversion unit 21B with reference to the timing before the storage-side hunting recognition timing. The suppression control CNT 1D is realized by changing the amount or the discharge command amount P B * by a predetermined amount ΔP B * and assigning the change amount to the change in the input power amount from the power system 5 to the power conversion circuit 20.
 すなわち、制御部23(指示部233)は、通常制御では、供給電力(入力電力と発電電力との合計値)と需要電力(消費電力)との差に相当する放電電力または充電電力が得られるように、電力変換部21Bに指示(放電電力または充電電力の目標値)を与える。これに対して、制御部23(指示部233)は、ハンチング抑制制御CNT1Dでは、電力変換部21Bに与える目標値(放電電力または充電電力の目標値)を所定値に維持する。つまり、制御部23は、供給電力(入力電力と発電電力との合計値)と需要電力(消費電力)との差に関わらず、電力変換部21Bに入力処理と出力処理とのいずれか一方を行わせる。 That is, in the normal control, the control unit 23 (instruction unit 233) can obtain discharge power or charge power corresponding to a difference between supply power (total value of input power and generated power) and demand power (power consumption). In this manner, an instruction (a target value of discharge power or charge power) is given to the power conversion unit 21B. In contrast, in the hunting suppression control CNT 1D , the control unit 23 (instruction unit 233) maintains the target value (discharge power or charge power target value) given to the power conversion unit 21B at a predetermined value. That is, the control unit 23 performs either the input process or the output process on the power conversion unit 21B regardless of the difference between the supplied power (the total value of the input power and the generated power) and the demand power (power consumption). Let it be done.
 例えば、図16(c)の状態、即ち発電装置4の発電電力量及び電力系統5からの入力電力量が共に10kW・sである状態は、図17(b)に示す如く指令量(充電又は放電指令量)PB *にゼロが代入されている状態に相当する。 For example, in the state of FIG. 16C, that is, the state in which the amount of power generated by the power generation device 4 and the amount of input power from the power system 5 are both 10 kW · s, as shown in FIG. This corresponds to a state where zero is substituted for the discharge command amount) P B * .
 この状態において、蓄電側ハンチング検出判定又は蓄電側ハンチング予測判定が成されると、制御部23は、例えば、充電指令量PB *をゼロから2へと変化させる抑制制御CNT1Dを実行することができる。 In this state, when the storage-side hunting detection determination or the storage-side hunting prediction determination is made, the control unit 23 executes, for example, suppression control CNT 1D that changes the charge command amount P B * from zero to 2. Can do.
 抑制制御CNT1Dの第2実現例おいて、制御部23は、充電指令量(又は放電指令量)PB *を系統入力指令量PS *よりも優先する、或いは、系統入力指令量PS *を電力変換部21Sに与えない。何れにせよ、抑制制御CNT1Dにおいて、制御部23は、発電装置4の発電電力量、蓄電装置3の充電電力量及び直流負荷8の消費電力量で定まる不足電力量(直流負荷8に供給すべき電力の不足分)が電力系統5から入力されるように電力変換部21Sを制御する。 In the second implementation example of the suppression control CNT 1D , the control unit 23 prioritizes the charge command amount (or discharge command amount) P B * over the system input command amount P S * or the system input command amount P S. * Is not given to the power converter 21S. In any case, in the suppression control CNT 1D , the control unit 23 supplies an insufficient power amount (supplied to the DC load 8) determined by the power generation amount of the power generation device 4, the charging power amount of the power storage device 3, and the power consumption amount of the DC load 8. The power converter 21S is controlled so that the power shortage) is input from the power system 5.
 この場合、発電電力量は10kW・sであるが、蓄電装置3には2kW・sの充電電力が供給される。したがって、消費電力量が20kW・sである場合、消費電力量の不足分は12kW・sとなる。そこで、制御部23(指示部233)は、系統入力指令量PS *を系統用基準電力量PSREF(=10kW・s)から12kW・sに増加させる。すなわち、制御部23は、電力変換部21Sに目標値として12kW・sを与える。その結果、図18に示す如く、電力系統5から電力変換回路20へ12kW・sの電力が入力される。この状態は、図17(a)に示した状態と等価なものである。 In this case, the amount of generated power is 10 kW · s, but the power storage device 3 is supplied with 2 kW · s of charging power. Therefore, when the power consumption is 20 kW · s, the shortage of the power consumption is 12 kW · s. Therefore, the control unit 23 (instruction unit 233) increases the system input command amount P S * from the system reference power amount P SREF (= 10 kW · s) to 12 kW · s. That is, the control unit 23 gives 12 kW · s as a target value to the power conversion unit 21S. As a result, as shown in FIG. 18, 12 kW · s of power is input from the power system 5 to the power conversion circuit 20. This state is equivalent to the state shown in FIG.
 図18は、蓄電装置3の充電が行われるように指令量PB *を変化させたときの例であるが、蓄電装置3の放電が行われるように指令量PB *を変化させてもよく、その場合には、電力系統5からの入力電力量が10kW・sより減少する。 Figure 18 is an example of when the charging of power storage device 3 has changed the command amount P B * to take place, even by changing the command value P B * as discharge of the power storage device 3 is carried out In that case, the amount of input power from the power system 5 is reduced from 10 kW · s.
 例えば、制御部23は、放電指令量(放電電力の目標値)PB *をゼロから所定値(例えば2)へと変化させる抑制制御CNT1Dを実行することができる。 For example, the control unit 23 can execute the suppression control CNT 1D that changes the discharge command amount (target value of discharge power) P B * from zero to a predetermined value (for example, 2).
 この場合、発電電力量は10kW・sであるが、蓄電装置3からは2kW・sの放電電力が供給される。したがって、消費電力量が20kW・sである場合、消費電力量の不足分は8kW・sとなる。そこで、制御部23(指示部233)は、系統入力指令量PS *を系統用基準電力量PSREF(=10kW・s)から8kW・sに減少させる。すなわち、制御部23は、電力変換部21Sに目標値として8kW・sを与える。その結果、電力系統5から系統用基準電力量PSREFより少ない8kW・sの入力電力が出力される。 In this case, the amount of generated power is 10 kW · s, but 2 kW · s of discharge power is supplied from the power storage device 3. Therefore, when the power consumption is 20 kW · s, the shortage of the power consumption is 8 kW · s. Therefore, the control unit 23 (instruction unit 233) decreases the system input command amount P S * from the system reference power amount P SREF (= 10 kW · s) to 8 kW · s. That is, the control unit 23 gives 8 kW · s as a target value to the power conversion unit 21S. As a result, an input power of 8 kW · s, which is smaller than the grid reference power amount P SREF, is output from the power grid 5.
 このように、第2実現例では、制御部23(指示部233)から電力変換回路20に与えられる指示は、放電電力または充電電力の目標値である。つまり、制御部23(指示部233)は、電力変換部21Bを制御することで、ハンチング現象を抑制する。 Thus, in the second implementation example, the instruction given from the control unit 23 (instruction unit 233) to the power conversion circuit 20 is the target value of the discharge power or the charge power. That is, the control unit 23 (instruction unit 233) suppresses the hunting phenomenon by controlling the power conversion unit 21B.
 抑制制御CNT1Dの第1実現例では、系統入力指令量PS *の制御によって電力系統5からの入力電力量を直接制御しているのに対し、抑制制御CNT1Dの第2実現例では、充電又は放電指令量PB *の制御によって(電力変換回路20及び蓄電装置3間の入出力電力量の制御によって)電力系統5からの入力電力量を間接的に制御している。 In the first implementation example of the suppression control CNT 1D , the input power amount from the power system 5 is directly controlled by controlling the system input command amount P S * , whereas in the second implementation example of the suppression control CNT 1D , The amount of input power from the power system 5 is indirectly controlled by controlling the charge or discharge command amount P B * (by controlling the amount of input / output power between the power conversion circuit 20 and the power storage device 3).
 (4-5) 抑制制御CNT1Dに対応する解除可否判定処理J1D
 制御部23は、抑制制御CNT1Dの実行期間中において、所定の解除条件の成否判定を介して、抑制制御CNT1Dの実行を解除するか否かを判定する解除可否判定処理J1Dを行うことができる。
(4-5) cancellation determination processing J 1D corresponding to suppression control CNT 1D
Control unit 23, during the execution period of the suppression control CNT 1D, through a success determination of the predetermined release condition, release determination processing J 1D be performed determines whether to cancel the execution of the suppression control CNT 1D Can do.
 例えば、解除可否判定処理J1Dにおいて、制御部23は、上述の方法によって合計電力量(PG’+PSREF)を求め、合計電力量(PG’+PSREF)と直流負荷8の消費電力量との差の絶対値を求める(電力変換回路20の電力損失を無視すれば、PG’+PSREF=PG+PS)。 For example, in the cancelability determination process J 1D , the control unit 23 obtains the total power amount (P G '+ P SREF ) by the above-described method, and calculates the total power amount (P G ' + P SREF ) and the power consumption amount of the DC load 8. Is obtained (if the power loss of the power conversion circuit 20 is ignored, P G ′ + P SREF = P G + P S ).
 そして、判定処理J1Dにおいて、制御部23は、その絶対値が所定の正の閾値TH8A以上である場合に、或いは、その絶対値が閾値TH8A以上である状態が所定時間以上継続して観測された場合に、或いは、その絶対値が正である状態が所定時間以上継続して観測された場合に、判定処理J1Dにおける解除条件が満たされると判断し(抑制制御CNT1Dの実行を解除しても蓄電側ハンチング現象は発生しない又は発生しにくいと判断し)、抑制制御CNT1Dの実行を解除する。抑制制御CNT1Dの実行の解除によって、電力系統5からの入力電力量が系統用基準電力量PSREF(=10)に復帰する。 In the determination process J 1D , the control unit 23 continues the state where the absolute value is equal to or greater than the predetermined positive threshold TH 8A or the absolute value is equal to or greater than the threshold TH 8A for a predetermined time or longer. When observed, or when a state in which the absolute value is positive is continuously observed for a predetermined time or more, it is determined that the release condition in the determination process J 1D is satisfied (execution of the suppression control CNT 1D is executed). It is determined that the storage-side hunting phenomenon does not occur or is unlikely to occur even when the release is canceled), and the execution of the suppression control CNT 1D is canceled. By canceling the execution of the suppression control CNT 1D , the input power amount from the power system 5 returns to the system reference power amount P SREF (= 10).
 すなわち、制御部23は、ハンチング抑制制御CNT1Dの実行中に発電電力PG’と既定値(系統用基準電力量)PSREFとの合計値(PG’+PSREF)と需要電力(消費電力量PC8)との差(PG’+PSREF-PC8)が解除条件を満たした場合に、ハンチング抑制制御CNT1Dを終了するように構成される。解除条件は、差の絶対値|PG’+PSREF-PC8|が閾値TH8A以上であること、差の絶対値|PG’+PSREF-PC8|が閾値TH8A以上である状態が所定の第1時間(例えば、上記の所定時間)継続したこと、差(PG’+PSREF-PC8)が正又は負である状態が所定の第2時間(例えば、上記の所定時間)継続したこと、のいずれかである。 That is, during the execution of the hunting suppression control CNT 1D , the control unit 23 calculates the total value (P G '+ P SREF ) of the generated power P G ' and the predetermined value (system reference power amount) P SREF and the demand power (power consumption). When the difference (P G '+ P SREF -P C8 ) from the amount P C8 ) satisfies the release condition, the hunting suppression control CNT 1D is terminated. The release condition is that the absolute value of the difference | P G ′ + P SREF −P C8 | is greater than or equal to the threshold TH 8A , and the absolute value of the difference | P G ′ + P SREF −P C8 | is greater than or equal to the threshold TH 8A. Continued for a predetermined first time (for example, the above-mentioned predetermined time), and a state in which the difference (P G '+ P SREF -P C8 ) is positive or negative continues for a predetermined second time (for example, the above-mentioned predetermined time) Either
 例えば、判定部232は、ハンチング抑制制御CNT1Dの実行中に発電電力PG’と既定値(系統用基準電力量)PSREFとの合計値(PG’+PSREF)と需要電力(消費電力量PC8)との差(PG’+PSREF-PC8)が解除条件を満たすか否かの終了判定を行い、その終了判定の結果を指示部233に与える。指示部233は、終了判定の結果が解除条件が満たされたことを示していれば、ハンチング抑制制御CNT1Dを終了するように構成される。 For example, during the execution of the hunting suppression control CNT 1D , the determination unit 232 includes the total value (P G ′ + P SREF ) of the generated power P G ′ and the predetermined value (system reference power amount) P SREF and the demand power (power consumption). An end determination is made as to whether or not the difference (P G ′ + P SREF −P C8 ) from the amount P C8 ) satisfies the release condition, and the result of the end determination is given to the instruction unit 233. The instruction unit 233 is configured to end the hunting suppression control CNT 1D if the end determination result indicates that the release condition is satisfied.
 或いは例えば、抑制制御CNT1Dにより系統入力指令量PS *を所定量ΔPS *だけ系統用基準電力量PSREFから減少させている場合には、制御部23は差(PC8-(PG’+PS *))を判定対象に設定してもよく、抑制制御CNT1Dにより系統入力指令量PS *を所定量ΔPS *だけ系統用基準電力量PSREFから増大させている場合には、制御部23は差((PG’+PS *)-PC8)を判定対象に設定してもよい。 Alternatively, for example, when the system input command amount P S * is decreased from the system reference power amount P SREF by a predetermined amount ΔP S * by the suppression control CNT 1D , the control unit 23 determines the difference (P C8 − (P G '+ P S * )) may be set as a determination target, and when the system input command amount P S * is increased from the system reference power amount P SREF by a predetermined amount ΔP S * by the suppression control CNT 1D. The control unit 23 may set the difference ((P G ′ + P S * ) − P C8 ) as a determination target.
 判定対象において、PS *を、実測された入力電力量PS(即ちIS×VS)に置き換えても良い。上述したように、PC8は直流負荷8の消費電力量を表す。そして、判定対象が所定の正の閾値TH8A’以上である場合に、或いは、判定対象が閾値TH8A’以上である状態が所定時間以上継続して観測された場合に、制御部23は、判定処理J1Dにおける解除条件が満たされると判断して抑制制御CNT1Dの実行を解除しても良い(TH8A’>ΔPS *)。 In the determination target, P S * may be replaced with the actually measured input power P S (ie, I S × V S ). As described above, P C8 represents the power consumption of the DC load 8. Then, when the determination target is equal to or greater than a predetermined positive threshold TH 8A ′, or when a state where the determination target is equal to or greater than the threshold TH 8A ′ is continuously observed for a predetermined time or longer, the control unit 23 The execution of the suppression control CNT 1D may be canceled by determining that the cancellation condition in the determination process J 1D is satisfied (TH 8A '> ΔP S * ).
 なお、制御部23は、ハンチング抑制制御CNT1Dの実行中に供給電力(発電電力量と入力電力量との合計値)と需要電力(消費電力量)との差が解除条件を満たした場合に、ハンチング抑制制御CNT1Dを終了するように構成されていてもよい。 The control unit 23 determines that the difference between the supply power (the total amount of generated power and the input power) and the demand power (power consumption) satisfies the release condition during execution of the hunting suppression control CNT 1D. The hunting suppression control CNT 1D may be configured to end.
 この場合、解除条件は、発電電力量と入力電力量との合計値と消費電力量との差の絶対値が所定の閾値以下であること、または、発電電力量と入力電力量との合計値と消費電力量との差の絶対値が所定の閾値以下である状態が所定時間継続したことである。所定の閾値は、ハンチング抑制制御CNT1Dの実行による発電電力量と入力電力量との合計値と消費電力量との差の変化の幅より小さい。あるいは、解除条件は、発電電力量と入力電力量との合計値と消費電力量との差が正また負である状態が所定時間継続したことであってもよい。 In this case, the cancellation condition is that the absolute value of the difference between the total value of the generated power amount and the input power amount and the consumed power amount is equal to or less than a predetermined threshold, or the total value of the generated power amount and the input power amount That is, a state where the absolute value of the difference between the power consumption and the power consumption amount is equal to or less than a predetermined threshold value continues for a predetermined time. The predetermined threshold value is smaller than the change width of the difference between the total value of the generated power amount and the input power amount and the consumed power amount due to the execution of the hunting suppression control CNT 1D . Alternatively, the release condition may be that a state where the difference between the total value of the generated power amount and the input power amount and the consumed power amount is positive or negative continues for a predetermined time.
 あるいは、制御部23は、ハンチング抑制制御CNT1Dの実行中に、入力処理と出力処理との切り替え動作が所定回数行われたか否かを判定し、切り替え動作が所定回数行われたと判定すると、ハンチング抑制制御CNT1Dを終了するように構成されていてもよい。なお、所定回数は1以上であればよい。 Alternatively, the control unit 23 determines whether or not the switching operation between the input process and the output process has been performed a predetermined number of times during the execution of the hunting suppression control CNT 1D , and if it is determined that the switching operation has been performed the predetermined number of times, The suppression control CNT 1D may be configured to end. The predetermined number may be one or more.
 3. 動作フローチャート
 次に、図19を参照して電力変換装置2の動作の流れを説明する。図19は、上述の各種定量制御に注目した、電力変換装置2の動作フローチャートである。
3. Operation Flowchart Next, an operation flow of the power conversion device 2 will be described with reference to FIG. FIG. 19 is an operation flowchart of the power conversion device 2 focusing on the above-described various quantitative controls.
 まず、ステップS11において、制御部23は、上述の充電定量制御、放電定量制御、系統出力定量制御又は系統入力定量制御の実行を開始する(以下、充電定量制御、放電定量制御、系統出力定量制御又は系統入力定量制御を単に定量制御ともいう)。 First, in step S11, the control unit 23 starts execution of the above-described charge quantitative control, discharge quantitative control, system output quantitative control, or system input quantitative control (hereinafter, charge quantitative control, discharge quantitative control, system output quantitative control). Alternatively, system input quantitative control is also simply referred to as quantitative control).
 その後、ステップS12において、制御部23は、入出力電力情報に基づき、上述の系統側若しくは蓄電側ハンチング検出処理(HD1A、HD1B、HD1C、HD1D)又は系統側若しくは蓄電側ハンチング予測処理(HP1A、HP1B、HP1C、HP1D)を行う。 Thereafter, in step S12, the control unit 23, based on the input / output power information, performs the above-mentioned system side or power storage side hunting detection process (HD 1A , HD 1B , HD 1C , HD 1D ) or system side or power storage side hunting prediction process. (HP 1A , HP 1B , HP 1C , HP 1D ).
 続くステップS13において、制御部23は、系統側若しくは蓄電側ハンチング検出判定、又は、系統側若しくは蓄電側ハンチング予測判定を成したかをチェックし、それらの何れの判定も成していない場合にはステップS13からステップS12へ戻ってステップS12及びS13の処理を繰り返すが、それらの何れかの判定を成した場合にはステップS14への移行を発生させて、ハンチング抑制制御(CNT1A、CNT1B、CNT1C、CNT1D)の実行を開始する。 In subsequent step S13, the control unit 23 checks whether the system side or power storage side hunting detection determination or the system side or power storage side hunting prediction determination has been made, and if neither of these determinations has been made. Returning from step S13 to step S12, the processes of steps S12 and S13 are repeated, but if any of these determinations is made, a transition to step S14 is generated and hunting suppression control (CNT 1A , CNT 1B , CNT 1C , CNT 1D ) is started.
 ハンチング抑制制御の実行開始後、制御部23は、ハンチング抑制制御の解除可否判定処理(J1A、J1B、J1C、J1D)を行う(ステップS15)。 After the execution of the hunting suppression control is started, the control unit 23 performs a hunting suppression control cancelability determination process (J 1A , J 1B , J 1C , J 1D ) (step S15).
 制御部23は、所定の解除条件が満たされるまでハンチング抑制制御の実行を継続し(ステップS15及びS16)、解除条件の充足が確認されるとハンチング抑制制御の実行を解除して(ステップS17)ステップS12に戻る。 The control unit 23 continues to execute the hunting suppression control until a predetermined release condition is satisfied (steps S15 and S16), and cancels the execution of the hunting suppression control when the release condition is satisfied (step S17). Return to step S12.
 上述したように、ハンチング抑制制御は、定量制御の中で行われる、定量制御の内容に修正を加える制御であり(例えば、充電定量制御の実行中にハンチング抑制制御が成されると、充電電力量が蓄電用基準電力量PBREFから上方又は下方修正された上で充電定量制御が行われる)、ハンチング抑制制御の実行が解除されると、その修正も解除されて、基本通りの定量制御が再開される。 As described above, the hunting suppression control is a control that is performed in the quantitative control and modifies the content of the quantitative control (for example, if the hunting suppression control is performed during the execution of the charge quantitative control, the charging power The charge quantitative control is performed after the amount is corrected upward or downward from the reference power amount P BREF for power storage), and when the execution of the hunting suppression control is canceled, the correction is also canceled and the basic quantitative control is performed. Resumed.
 但し、ハンチング抑制制御の実行中には定量制御の実行が停止され、ハンチング抑制制御が解除されると定量制御が再開される、という考え方もできる(この場合、ステップS17にてハンチング抑制制御が解除されるとステップS11に戻る)。 However, the execution of the quantitative control is stopped during the execution of the hunting suppression control, and the quantitative control can be resumed when the hunting suppression control is canceled (in this case, the hunting suppression control is canceled in step S17). Then, the process returns to step S11).
 また、ハンチング抑制制御の実行中に基準電力量PBREF又はPSREFが変更される可能性がある場合においては、ハンチング抑制制御を解除する際に、基準電力量PBREF又はPSREFを最新のものへと更新すると良い。或いは、任意のタイミングにおいて基準電力量PBREF又はPSREFが変更された場合には、基準電力量PBREF又はPSREFを最新のものへと更新した上でステップS11に戻るようにしても良い。 In addition, when there is a possibility that the reference power amount P BREF or P SREF is changed during execution of the hunting suppression control, when the hunting suppression control is canceled, the reference power amount P BREF or P SREF is updated to the latest one. It is good to update to. Alternatively, if the reference power P BREF or P SREF is changed at any timing, the reference power P BREF or P SREF with updated to the latest ones may be returned to step S11.
 また、制御部23は、解除可否判定処理J1A、J1B、J1C又はJ1Dを以下のように実行しても良い。 Moreover, the control part 23 may perform the cancellation | release permission determination processing J1A , J1B , J1C, or J1D as follows.
 即ち、抑制制御CNT1A又はCNT1Bの実行期間中において、制御部23は、系統側ハンチング検出処理HD1Aを実行し、系統側ハンチング現象の発生が所定回数(1以上の任意の回数)以上観測されたときに解除条件が充足したと判断して、抑制制御CNT1A又はCNT1Bの実行を解除するようにしても良い。 That is, during the execution period of the suppression control CNT 1A or CNT 1B , the control unit 23 executes the system-side hunting detection process HD 1A and observes the occurrence of the system-side hunting phenomenon for a predetermined number of times (any number of 1 or more). When it is determined that the release condition is satisfied, the execution of the suppression control CNT 1A or CNT 1B may be released.
 同様に、抑制制御CNT1C又はCNT1Dの実行期間中において、制御部23は、蓄電側ハンチング検出処理HD1Cを実行し、蓄電側ハンチング現象の発生が所定回数(1以上の任意の回数)以上観測されたときに解除条件が充足したと判断して、抑制制御CNT1C又はCNT1Dの実行を解除するようにしても良い。 Similarly, during the execution period of the suppression control CNT 1C or CNT 1D , the control unit 23 executes the storage-side hunting detection process HD 1C, and the occurrence of the storage-side hunting phenomenon is equal to or greater than a predetermined number (any number of 1 or more). When the observation is observed, it may be determined that the release condition is satisfied, and the execution of the suppression control CNT 1C or CNT 1D may be released.
 抑制制御の実行中に発電電力量の増大等が発生すると逆にハンチング現象が発生することもある。このような場合には、抑制制御の解除がハンチング現象の回避に資する。 逆 If an increase in the amount of generated power occurs during execution of suppression control, a hunting phenomenon may occur. In such a case, the release of the suppression control contributes to avoiding the hunting phenomenon.
 4. 本実施形態の電力変換装置2の特徴
 本実施形態の電力変換装置2は、以下の第1の特徴を有する。第1の特徴では、電力変換装置2は、電力変換回路20と、制御部23と、を備える。電力変換回路20は、充電及び放電が可能な蓄電装置3に接続される蓄電側回路(電力変換部21B)、発電を行って発電電力を出力する発電装置4に接続される発電側回路(電力変換部21G)及び電力系統5に接続される系統側回路(電力変換部21S)を有する。電力変換回路20は、電力変換を介して蓄電装置3、発電装置4及び電力系統5間における送電及び受電を行うように構成される。制御部23は、電力変換回路20を制御することで送電及び受電を制御するように構成される。制御部23は、発電電力の不足分又は余剰分を電力変換回路20及び電力系統5間の電力の入出力にて吸収しつつ、発電装置4の発電電力を用いて蓄電装置3を一定の第1基準条件下で充電する、又は、発電装置4の発電電力及び蓄電装置3の放電電力を用いて電力変換回路20に接続された負荷及び二次電池の少なくとも一方に電力供給を行うべく蓄電装置3を一定の第2基準条件下で放電させる定量制御(充電定量制御・放電定量制御)を実行するように構成される。定量制御において、電力変換回路20及び電力系統5間の電力の入出力の切り替えが所定時間内に所定回数以上検出されたとき、或いは、発電装置4の発電電力量又は発電電力量に応じた値と第1基準条件又は第2基準条件とに基づいて切り替えの発生が予測されたとき、制御部23は、蓄電装置3の充電又は放電の条件を第1基準条件又は第2基準条件から変化させることで切り替えを抑制する抑制制御を実行する。
4). Features of Power Converter 2 of the Present Embodiment The power converter 2 of the present embodiment has the following first features. In the first feature, the power conversion device 2 includes a power conversion circuit 20 and a control unit 23. The power conversion circuit 20 includes a power storage side circuit (power conversion unit 21B) connected to the power storage device 3 that can be charged and discharged, and a power generation side circuit (power) connected to the power generation device 4 that generates power and outputs generated power. It has a system side circuit (power conversion unit 21S) connected to the conversion unit 21G) and the power system 5. The power conversion circuit 20 is configured to perform power transmission and reception between the power storage device 3, the power generation device 4, and the power system 5 through power conversion. The control unit 23 is configured to control power transmission and power reception by controlling the power conversion circuit 20. The control unit 23 absorbs the shortage or surplus of the generated power at the input / output of the power between the power conversion circuit 20 and the power system 5 and uses the generated power of the power generation device 4 to keep the power storage device 3 at a certain level. A power storage device that is charged under one reference condition or that supplies power to at least one of a load and a secondary battery connected to the power conversion circuit 20 using the generated power of the power generation device 4 and the discharge power of the power storage device 3 3 is configured to execute quantitative control (charge quantitative control / discharge quantitative control) for discharging 3 under a constant second reference condition. In the quantitative control, when switching of power input / output between the power conversion circuit 20 and the power system 5 is detected a predetermined number of times within a predetermined time, or a value corresponding to the generated power amount or the generated power amount of the power generation device 4 When the occurrence of switching is predicted based on the first reference condition or the second reference condition, the control unit 23 changes the charging or discharging condition of the power storage device 3 from the first reference condition or the second reference condition. The suppression control which suppresses switching by this is performed.
 本実施形態の電力変換装置2は、第1の特徴に加えて、以下の第2の特徴を有する。第2の特徴では、蓄電側回路(電力変換部21B)は、蓄電装置3の充電又は放電の条件が制御部23から与えられた充放電指令量に従うように、電力変換回路20及び蓄電装置3間における電力変換を実行するように構成される。制御部23は、定量制御において検出又は予測が成されたとき、充放電指令量を、第1基準条件又は第2基準条件に従った基準量から変化させることにより抑制制御を実現する。 The power conversion device 2 of the present embodiment has the following second feature in addition to the first feature. In the second feature, the power storage circuit (power conversion unit 21B) includes the power conversion circuit 20 and the power storage device 3 so that the charging or discharging condition of the power storage device 3 follows the charge / discharge command amount given from the control unit 23. It is configured to perform power conversion between. When detection or prediction is made in the quantitative control, the control unit 23 realizes the suppression control by changing the charge / discharge command amount from the reference amount according to the first reference condition or the second reference condition.
 本実施形態の電力変換装置2は、第1の特徴に加えて、以下の第3の特徴を有する。第3の特徴では、系統側回路(電力変換部21S)は、電力変換回路20及び電力系統5間における電力の入出力の条件が制御部23から与えられた系統入出力指令量に従うように、電力変換回路20及び電力系統5間における電力変換を実行する。制御部23は、定量制御において検出又は予測が成されたとき、検出又は予測が成される前を基準として系統入出力指令量を変化させ、その変化分に対応する電力量を蓄電装置3の充電電力量又は放電電力量の変化に割り当てることで抑制制御を実現する。 The power conversion device 2 of the present embodiment has the following third feature in addition to the first feature. In the third feature, the system side circuit (power conversion unit 21S) is configured so that the power input / output conditions between the power conversion circuit 20 and the power system 5 are in accordance with the system input / output command amount given from the control unit 23. Power conversion between the power conversion circuit 20 and the power system 5 is executed. When the detection or prediction is made in the quantitative control, the control unit 23 changes the system input / output command amount with reference to the time before the detection or prediction is made, and the power amount corresponding to the change is stored in the power storage device 3. Suppression control is realized by allocating to a change in the amount of charge power or the amount of discharge power.
 また、本実施形態の電力変換装置2は、第4の特徴を有する。第4の特徴では、電力変換装置2は、電力変換回路20と、制御部23と、を備える。電力変換回路20は、充電及び放電が可能な蓄電装置3に接続される蓄電側回路(電力変換部21B)、発電を行って発電電力を出力する発電装置4に接続される発電側回路(電力変換部21G)及び電力系統5に接続される系統側回路(電力変換部21S)を有する。電力変換回路20は、電力変換を介して蓄電装置3、発電装置4及び電力系統5間における送電及び受電を行うように構成される。制御部23は、電力変換回路20を制御することで送電及び受電を制御するように構成される。制御部23は、発電電力の不足分又は余剰分を蓄電装置3の充電又は放電にて吸収しつつ、発電装置4の発電電力を用いて電力変換回路20から電力系統5へ一定の第1基準条件下で電力を出力する、又は、発電電力と電力系統5から電力変換回路20への入力電力とを用いて電力変換回路20に接続された負荷及び二次電池の少なくとも一方に電力供給を行うべく電力系統5から電力変換回路20へ一定の第2基準条件で電力を入力する定量制御(系統出力定量制御・系統入力定量制御)を実行する。定量制御において、電力変換回路20及び蓄電装置3間の電力の入出力の切り替えが所定時間内に所定回数以上検出されたとき、発電装置4の発電電力量又は発電電力量に応じた値と第1基準条件又は第2基準条件とに基づいて切り替えの発生が予測されたとき、制御部23は、電力変換回路20及び電力系統5間における電力の入出力の条件を第1基準条件又は第2基準条件から変化させることで切り替えを抑制する抑制制御を実行する。 Further, the power conversion device 2 of the present embodiment has a fourth feature. In the fourth feature, the power conversion device 2 includes a power conversion circuit 20 and a control unit 23. The power conversion circuit 20 includes a power storage side circuit (power conversion unit 21B) connected to the power storage device 3 that can be charged and discharged, and a power generation side circuit (power) connected to the power generation device 4 that generates power and outputs generated power. It has a system side circuit (power conversion unit 21S) connected to the conversion unit 21G) and the power system 5. The power conversion circuit 20 is configured to perform power transmission and reception between the power storage device 3, the power generation device 4, and the power system 5 through power conversion. The control unit 23 is configured to control power transmission and power reception by controlling the power conversion circuit 20. The control unit 23 absorbs the shortage or surplus of the generated power by charging or discharging the power storage device 3, and uses the generated power of the power generation device 4 to transfer a constant first reference from the power conversion circuit 20 to the power system 5. Power is output under conditions, or power is supplied to at least one of a load and a secondary battery connected to the power conversion circuit 20 using generated power and input power from the power system 5 to the power conversion circuit 20 Therefore, the quantitative control (system output quantitative control / system input quantitative control) is performed in which power is input from the power system 5 to the power conversion circuit 20 under a constant second reference condition. In the quantitative control, when switching of power input / output between the power conversion circuit 20 and the power storage device 3 is detected a predetermined number of times or more within a predetermined time, the generated power amount of the power generation device 4 or a value corresponding to the generated power amount When occurrence of switching is predicted based on the first reference condition or the second reference condition, the control unit 23 sets the input / output condition of power between the power conversion circuit 20 and the power system 5 as the first reference condition or the second reference condition. Suppression control that suppresses switching by changing from the reference condition is executed.
 本実施形態の電力変換装置2は、第4の特徴に加えて、以下の第5の特徴を有する。第5の特徴では、系統側回路(電力変換部21S)は、電力変換回路20及び電力系統5間における電力の入出力の条件が制御部23から与えられた系統入出力指令量に従うように、電力変換回路20及び電力系統5間における電力変換を実行する。制御部23は、定量制御において検出又は予測が成されたとき、系統入出力指令量を、第1基準条件又は第2基準条件に従った基準量から変化させることにより抑制制御を実現する。 The power conversion device 2 of the present embodiment has the following fifth feature in addition to the fourth feature. In the fifth feature, the system side circuit (power conversion unit 21S) is configured so that the power input / output conditions between the power conversion circuit 20 and the power system 5 are in accordance with the system input / output command amount given from the control unit 23. Power conversion between the power conversion circuit 20 and the power system 5 is executed. When detection or prediction is performed in the quantitative control, the control unit 23 realizes the suppression control by changing the system input / output command amount from the reference amount according to the first reference condition or the second reference condition.
 本実施形態の電力変換装置2は、第4の特徴に加えて、以下の第6の特徴を有する。第6の特徴では、蓄電側回路(電力変換部21B)は、蓄電装置3の充電又は放電の条件が制御部23から与えられた充放電指令量に従うように、電力変換回路20及び蓄電装置3間における電力変換を実行する。制御部23は、定量制御において検出又は予測が成されたとき、検出又は予測が成される前を基準として充放電指令量を変化させ、その変化分に対応する電力量を電力変換回路20及び電力系統間の入出力電力量の変化に割り当てることで抑制制御を実現する。 The power conversion device 2 of the present embodiment has the following sixth feature in addition to the fourth feature. In the sixth feature, the power storage circuit (power conversion unit 21B) includes the power conversion circuit 20 and the power storage device 3 so that the charge or discharge conditions of the power storage device 3 are in accordance with the charge / discharge command amount given from the control unit 23. Power conversion between the two. When detection or prediction is made in the quantitative control, the control unit 23 changes the charge / discharge command amount with reference to the time before detection or prediction is made, and converts the amount of power corresponding to the change to the power conversion circuit 20 and Suppression control is realized by allocating to changes in the input / output power amount between power systems.
 本実施形態の電力変換装置2は、第1~第6の特徴のいずれか1つに加えて、以下の第7の特徴を有する。第7の特徴では、制御部23は、抑制制御の実行期間中において、発電装置4の発電電力量又は発電電力量に応じた値と、第1基準条件又は第2基準条件とに基づき、所定の解除条件が満たされると判断した場合に、抑制制御の実行を解除する。 The power conversion device 2 of the present embodiment has the following seventh feature in addition to any one of the first to sixth features. In the seventh feature, the control unit 23 determines a predetermined value based on the generated power amount of the power generation device 4 or a value corresponding to the generated power amount and the first reference condition or the second reference condition during the execution period of the suppression control. When it is determined that the release condition is satisfied, the execution of the suppression control is released.
 本実施形態の電力変換装置2は、第1~第6の特徴のいずれか1つに加えて、以下の第8の特徴を有する。第8の特徴では、制御部23は、抑制制御の実行期間中において、切り替えが検出されたとき抑制制御の実行を解除する。 The power conversion device 2 of the present embodiment has the following eighth feature in addition to any one of the first to sixth features. In the eighth feature, the control unit 23 cancels the execution of the suppression control when switching is detected during the execution period of the suppression control.
 なお、電力変換装置2は、第1の特徴と第4の特徴との少なくとも1つを有していればよい。第2,第3,第5~第8の特徴は任意の特徴である。 In addition, the power converter device 2 should just have at least 1 of the 1st characteristic and the 4th characteristic. The second, third, fifth to eighth features are optional features.
 上述したように、本実施形態に係るハンチング抑制制御CNT1によれば、電力系統5の安定性に影響を与えるような系統側ハンチング現象又は蓄電装置3に悪影響を与えかねない蓄電側ハンチング現象を適切に抑制することが可能である。したがって、本実施形態によれば、ハンチング現象の抑制に寄与する電力変換装置2を提供することが可能である。 As described above, according to the hunting suppression control CNT 1 according to the present embodiment, the system side hunting phenomenon that affects the stability of the power system 5 or the power storage side hunting phenomenon that may adversely affect the power storage device 3 is performed. It is possible to suppress appropriately. Therefore, according to the present embodiment, it is possible to provide the power conversion device 2 that contributes to suppression of the hunting phenomenon.
 ハンチング抑制制御CNT1の実現に際し、上述の第1及び第2実現例(例えば図6(a)及び(c))参照)のどちらを用いても同様のハンチング抑制効果が得られる。 When realizing the hunting suppression control CNT 1 , the same hunting suppression effect can be obtained regardless of which of the first and second implementation examples described above (see, for example, FIGS. 6A and 6C).
 また、ハンチング抑制制御CNT1の実行時に解除条件の充足有無を監視し、その実行を解除してもハンチング現象が発生しない又は発生しにくいと判断されたときにハンチング抑制制御CNT1を解除する方法を採用することにより、ハンチング現象を極力回避しながら、なるだけ本来の電力量で充電等を行うことができる。 Further, a method for releasing the hunting suppression control CNT 1 when monitoring the fulfillment whether cancellation condition when the execution hunting suppression control CNT 1, the hunting phenomenon is determined to not or hardly occur occur even cancel the execution By adopting, charging or the like can be performed with as much original power as possible while avoiding the hunting phenomenon as much as possible.
 尚、ハンチング予測処理を用いずにハンチング検出処理を用いる場合は、ハンチング現象の発生を検出した後にハンチング抑制制御が実行されるため、多少のハンチング現象の発生を許容することになる。これに対し、ハンチング予測処理を用いるようにすれば、ハンチング現象の発生を完全に或いは殆ど完全に回避することができる。但し、ハンチング予測処理を用いる場合は、ハンチング検出処理を用いる場合と比べて、本来の電力量で充電等を行う時間が短くなる。ハンチング現象抑制と、本来の電力量での充電等の、どちらを優先するかに応じて、ハンチング検出処理及び予測処理のどちらを実行するかを設定すれば良い。 Note that, when the hunting detection process is used without using the hunting prediction process, the hunting suppression control is executed after the occurrence of the hunting phenomenon is detected, so that some hunting phenomenon is allowed to occur. On the other hand, if the hunting prediction process is used, the occurrence of the hunting phenomenon can be completely or almost completely avoided. However, when the hunting prediction process is used, the time for performing charging or the like with the original amount of power is shorter than when the hunting detection process is used. Whether to execute the hunting detection process or the prediction process may be set in accordance with which one of priority is given to the suppression of the hunting phenomenon and the charging with the original electric energy.
 (第2実施形態)
 1. 第2実施形態の電力変換装置2の構成
 本実施形態の電力変換装置2は、本発明に係る第1,第6~第10、第16~第18、第21、第22、第25~第28の形態の電力変換装置2に関連する。
(Second Embodiment)
1. Configuration of Power Converter 2 of Second Embodiment The power converter 2 of the present embodiment includes first, sixth to tenth, sixteenth to eighteenth, twenty-first, twenty-second, twenty-fifth to twenty-fifth according to the present invention. The power conversion device 2 in the form of 28 is related.
 以下、本発明の第2実施形態について説明する。第2実施形態及び後述の第3実施形態は、第1実施形態を基礎とする実施形態であり、第2及び第3実施形態において特に記述しない事項に関しては、矛盾なき限り、第1実施形態の記載が第2及び第3実施形態にも適用される。 Hereinafter, a second embodiment of the present invention will be described. The second embodiment and the third embodiment which will be described later are embodiments based on the first embodiment. The matters not particularly described in the second and third embodiments are the same as those of the first embodiment as long as there is no contradiction. The description also applies to the second and third embodiments.
 第2実施形態に係る電力供給システム1の構成は、第1実施形態の電力供給システム1の構成(図1参照)と同じである。 The configuration of the power supply system 1 according to the second embodiment is the same as the configuration of the power supply system 1 according to the first embodiment (see FIG. 1).
 また、本実施形態の電力供給装置2は、第1実施形態の電力供給装置2と同様に、電力変換回路20と、制御部23と、を備える。 Further, the power supply device 2 of the present embodiment includes a power conversion circuit 20 and a control unit 23 as in the case of the power supply device 2 of the first embodiment.
 電力変換回路20は、電力供給装置から電力を受け取る受電機能と、電力需要装置に電力を供給する送電機能と、電力補助装置に電力を供給する出力処理と電力補助装置から電力を取得する入力処理とを選択的に実行する入出力選択機能と、制御部23からの指示に応じて電力供給装置から受け取る電力である供給電力と電力需要装置に供給する電力である需要電力との少なくとも一方を調整する調整機能と、を有する。 The power conversion circuit 20 includes a power receiving function that receives power from the power supply device, a power transmission function that supplies power to the power demand device, an output process that supplies power to the power auxiliary device, and an input process that acquires power from the power auxiliary device. And adjusting at least one of an input / output selection function for selectively executing and supply power that is power received from the power supply device and demand power that is power supplied to the power demanding device in accordance with an instruction from the control unit 23 An adjustment function.
 制御部23は、供給電力を需要電力と比較し、供給電力が需要電力より多ければ供給電力の余剰分が電力補助装置に供給されるように電力変換回路20に出力処理を実行させ、供給電力が需要電力より少なければ供給電力の不足分が電力補助装置からの電力で補われるように電力変換回路20に入力処理を実行させるように構成される。 The control unit 23 compares the supplied power with the demand power, and if the supplied power is greater than the demand power, causes the power conversion circuit 20 to execute an output process so that a surplus of the supplied power is supplied to the power auxiliary device. Is less than the demand power, the power conversion circuit 20 is configured to execute the input process so that the shortage of the supplied power is compensated by the power from the power auxiliary device.
 制御部23は、電力変換回路20でハンチング現象が発生するイベントが起きたか否かを判定し、イベントが起きたと判定するとハンチング抑制制御を実行するように構成される。 The control unit 23 is configured to determine whether or not an event that causes a hunting phenomenon has occurred in the power conversion circuit 20, and to execute hunting suppression control when determining that an event has occurred.
 制御部23は、ハンチング抑制制御では、供給電力と需要電力との差が大きくなるように電力変換回路20に指示を与えるように構成される。 In the hunting suppression control, the control unit 23 is configured to give an instruction to the power conversion circuit 20 so that the difference between the supplied power and the demand power becomes large.
 第1実施形態では特に意識していなかったが、第2実施形態、上述の第1実施形態及び後述の第3実施形態において、制御部23は、発電装置4に対する最大電力点追従制御(Maximum Power Point Tracking Control;以下、MPPT制御という)を成すことができる。 Although not particularly conscious in the first embodiment, in the second embodiment, the first embodiment described above and the third embodiment described later, the control unit 23 performs maximum power point tracking control (Maximum Power) for the power generation device 4. Point Tracking Control; hereinafter referred to as MPPT control).
 図20の曲線400は、発電装置4の出力電流と発電電力の関係を表している。発電装置4の出力電流の値は上述の電流値IGであり、発電装置4の発電電力の量は上述の電力量PG(=IG×VG)ある(図1参照)。 A curve 400 in FIG. 20 represents the relationship between the output current of the power generation device 4 and the generated power. The value of the output current of the power generator 4 is the above-described current value I G , and the amount of power generated by the power generator 4 is the above-described power amount P G (= I G × V G ) (see FIG. 1).
 発電装置4において、発電電力は出力電流に依存して変化する。出力電流値IGが電流値IMPPと一致するときに発電電力量PGは最大となり(即ち、最大電力量PMPPとなり)、絶対値|IG-IMPP|が増大するにつれて、発電電力量PGは最大電力量PMPPから減少する。 In the power generation device 4, the generated power changes depending on the output current. When the output current value I G coincides with the current value I MPP , the generated power amount P G becomes maximum (that is, becomes the maximum power amount P MPP ), and the generated power increases as the absolute value | I G −I MPP | increases. the amount P G decreases from the maximum amount of power P MPP.
 発電装置4の発電電力量を定める、曲線400上の点は電力点(又は動作点)と呼ばれる。電力点401は、発電装置4の発電電力量を最大電力量PMPPに一致させる電力点である。一方、電力点402及び403は、発電装置4の発電電力量を最大電力量PMPPよりも小さな電力量PQと一致させる電力点である。電力点402及び403において、電流値IGは、それぞれ値IQ1及びIQ2をとるものとする。ここで、“0<IQ1<IMPP<IQ2”である。また、“PMPP-PQ=ΔPG”が成立するものとする(ΔPG>0)。 The point on the curve 400 that defines the amount of power generated by the power generation device 4 is called a power point (or operating point). The power point 401 is a power point that makes the generated power amount of the power generation device 4 coincide with the maximum power amount P MPP . On the other hand, power point 402 and 403 are power point to match the small amount of power P Q than the maximum amount of power P MPP the generated power of the generator 4. At power points 402 and 403, current value I G assumes values I Q1 and I Q2 , respectively. Here, “0 <I Q1 <I MPP <I Q2 ”. Further, it is assumed that “P MPP −P Q = ΔP G ” is satisfied (ΔP G > 0).
 図21に示す如く、制御部23は、電流値IGを指定する電流指令値IG *を生成して電力変換部21Gに与えることができ、これによって電流値IGを制御することができると共に、電流値IGの制御を通じて電圧値VG及び電力量PGを制御することができる。 As shown in FIG. 21, the control unit 23 generates a current command value I G * that specifies the current value I G can be given to the power conversion unit 21G, whereby it is possible to control the current value I G together, it is possible to control the voltage value V G and the amount of power P G through control of the current value I G.
 電力変換部21Gは、電流値IGが電流指令値IG *と一致するように発電用電力変換を行う。MPPT制御を行う際、制御部23は、入出力電力情報に含まれる電流値IG及び電圧値VGに基づき、発電装置4の発電電力量が最大となるように電流指令値IG *を設定及び調整する。即ち、MPPT制御の実行時において、制御部23は、電流指令値IG *に値IMPPを代入することになる。MPPT制御の実現法は公知であるため説明を割愛する。 Power conversion unit 21G generates power for power conversion so that the current value I G matches the current command value I G *. When performing the MPPT control, the control unit 23 sets the current command value I G * so that the power generation amount of the power generation device 4 is maximized based on the current value I G and the voltage value V G included in the input / output power information. Set and adjust. That is, when executing the MPPT control, the control unit 23 substitutes the value I MPP for the current command value I G * . Since the implementation method of MPPT control is well-known, it abbreviate | omits description.
 すなわち、制御部23は、指示として発電電力PGの目標値を電力変換回路20に与えるように構成される。 That is, the control unit 23 is configured the target value of the generated power P G as an indication to provide a power conversion circuit 20.
 電力変換回路20は、目標値(発電電力PGの目標値)を受け取ると、発電電力PGが目標値となるように発電装置4を制御するように構成される。例えば、電力変換回路20の電力変換部21Gは、制御部23から発電電力PGの目標値を受け取ると、発電電力PGが目標値となるように発電装置4を制御するように構成される。 Power conversion circuit 20 receives the target value (the target value of the generated power P G), configured to generated power P G to control the power generator 4 so that the target value. For example, the power conversion unit 21G of the power conversion circuit 20 receives the target value of the generated power P G from the control unit 23 is configured to generated power P G to control the power generator 4 so that the target value .
 本実施形態では、発電装置4は、太陽電池である。電力変換回路20は、指示に応じて太陽電池の動作点(電力点)を変更することで発電電力PGを調整するように構成される。 In the present embodiment, the power generation device 4 is a solar cell. Power conversion circuit 20 is configured to adjust the generated power P G by changing the operating point of the solar cell (power point) according to the instruction.
 制御部23は、イベントが起きたと判定するまでは、目標値を既定値に設定する通常制御を実行するように構成される。既定値は、太陽電池の最大電力に対応する値である。 The control unit 23 is configured to execute normal control for setting a target value to a default value until it is determined that an event has occurred. The default value is a value corresponding to the maximum power of the solar cell.
 他方、第2実施形態においても、制御部23は、第1実施形態で述べた充電定量制御、放電定量制御、系統出力定量制御及び系統入力定量制御を個別に実行可能である。この際、制御部23は、MPPT制御を行いながら、充電定量制御、放電定量制御、系統出力定量制御又は系統入力定量制御を実行することができる(第1及び第3実施形態においても同様)。 On the other hand, also in the second embodiment, the control unit 23 can individually execute the charge quantitative control, the discharge quantitative control, the system output quantitative control, and the system input quantitative control described in the first embodiment. At this time, the control unit 23 can execute charge quantitative control, discharge quantitative control, system output quantitative control, or system input quantitative control while performing MPPT control (the same applies to the first and third embodiments).
 充電定量制御では、発電装置4が電力供給装置、蓄電装置3が電力需要装置、電力系統5が電力補助装置として使用される。したがって、供給電力は、発電装置4からの発電電力である。需要電力は、蓄電装置3への充電電力である。 In charge quantitative control, the power generation device 4 is used as a power supply device, the power storage device 3 is used as a power demand device, and the power system 5 is used as a power auxiliary device. Therefore, the supplied power is generated power from the power generation device 4. The demand power is charging power for the power storage device 3.
 放電定量制御では、発電装置4と電源装置(蓄電装置3)とが電力供給装置、直流負荷8が電力需要装置、電力系統5が電力補助装置として使用される。したがって、供給電力は、発電装置4からの発電電力と、電源装置から得られる電力である電源電力(蓄電装置3の放電電力)との合計である。需要電力は、直流負荷8の消費電力である。 In the discharge quantitative control, the power generation device 4 and the power supply device (power storage device 3) are used as a power supply device, the DC load 8 is used as a power demand device, and the power system 5 is used as a power auxiliary device. Therefore, the supplied power is the sum of the generated power from the power generation device 4 and the power supply power (discharge power of the power storage device 3) that is power obtained from the power supply device. The demand power is the power consumption of the DC load 8.
 系統出力定量制御では、発電装置4が電力供給装置、電力系統5が電力需要装置、蓄電装置3が電力補助装置として使用される。したがって、供給電力は、発電装置4からの発電電力である。需要電力は、電力系統5への出力電力である。 In the grid output quantitative control, the power generation device 4 is used as a power supply device, the power system 5 is used as a power demand device, and the power storage device 3 is used as a power auxiliary device. Therefore, the supplied power is generated power from the power generation device 4. The demand power is output power to the power system 5.
 系統入力定量制御では、発電装置4と電源装置(電力系統5)とが電力供給装置、直流負荷8が電力需要装置、蓄電装置3が電力補助装置として使用される。したがって、供給電力は、発電装置4からの発電電力と、電源装置から得られる電力である電源電力(電力系統5の入力電力)との合計である。需要電力は、直流負荷8の消費電力である。 In the grid input quantitative control, the power generation device 4 and the power supply device (power system 5) are used as a power supply device, the DC load 8 is used as a power demand device, and the power storage device 3 is used as a power auxiliary device. Accordingly, the supplied power is the sum of the generated power from the power generation device 4 and the power supply power (input power of the power system 5) that is power obtained from the power supply device. The demand power is the power consumption of the DC load 8.
 第2実施形態においても、定量制御の実行中に上述の系統側又は蓄電側ハンチング現象が発生しうる。制御部23は、各定量制御の実行期間中に第1実施形態で述べたものと同様のハンチング検出処理又は予測処理を行うことができる。後述の第3実施形態でも同様である。即ち、第2及び第3実施形態に係る制御部23は、MPPT制御及び充電定量制御の実行期間中に、上述のハンチング検出処理HD1A又は予測処理HP1Aを行うことができ、MPPT制御及び放電定量制御の実行期間中に、上述のハンチング検出処理HD1B又は予測処理HP1Bを行うことができ、MPPT制御及び系統出力定量制御の実行期間中に、上述のハンチング検出処理HD1C又は予測処理HP1Cを行うことができ、MPPT制御及び系統入力定量制御の実行期間中に、上述のハンチング検出処理HD1D又は予測処理HP1Dを行うことができる。 Also in the second embodiment, the above-mentioned system side or power storage side hunting phenomenon may occur during execution of quantitative control. The control unit 23 can perform hunting detection processing or prediction processing similar to that described in the first embodiment during the execution of each quantitative control. The same applies to a third embodiment described later. That is, the control unit 23 according to the second and third embodiments can perform the above-described hunting detection process HD 1A or the prediction process HP 1A during the execution period of the MPPT control and the charge quantitative control. The hunting detection process HD 1B or the prediction process HP 1B can be performed during the execution period of the quantitative control, and the hunting detection process HD 1C or the prediction process HP can be performed during the execution period of the MPPT control and the system output quantitative control. 1C can be performed, and the above-described hunting detection process HD 1D or prediction process HP 1D can be performed during the execution period of MPPT control and system input quantitative control.
 2. 制御の内容
 2.1 ハンチング抑制制御CNT2
 MPPT制御と充電定量制御又は放電定量制御とを実行している期間中において系統側ハンチング検出判定又は系統側ハンチング予測判定を成したとき、或いは、MPPT制御と系統出力定量制御又は系統入力定量制御とを実行している期間中において蓄電側ハンチング検出判定又は蓄電側ハンチング予測判定を成したとき、制御部23は、発電装置4の電力点の変更を介して発電装置4の発電電力量を変化させるハンチング抑制制御CNT2を実行する。すなわち、制御部23は、ハンチング抑制制御CNT2では、発電電力PGの目標値を既定値と異なる値に設定するように構成される。
2. Details of control 2.1 Hunting suppression control CNT 2
When system-side hunting detection determination or system-side hunting prediction determination is made during the period in which MPPT control and charge quantitative control or discharge quantitative control are executed, or MPPT control and system output quantitative control or system input quantitative control When the storage-side hunting detection determination or the storage-side hunting prediction determination is made during the period in which the power generation device 4 is executed, the control unit 23 changes the power generation amount of the power generation device 4 through the change of the power point of the power generation device 4. Hunting suppression control CNT 2 is executed. That is, the control unit 23, the hunting suppression control CNT 2, arranged to set the default value different target value for generated power P G.
 充電定量制御又は放電定量制御に適用されるハンチング抑制制御CNT2では、発電装置4の発電電力量を変化させることによって、電力変換回路20及び電力系統5間の入出力電力量の絶対値を増大させ、これによって系統側ハンチング現象を抑制する。 In the hunting suppression control CNT 2 applied to charge quantitative control or discharge quantitative control, the absolute value of the input / output power amount between the power conversion circuit 20 and the power system 5 is increased by changing the power generation amount of the power generation device 4. This suppresses the system-side hunting phenomenon.
 系統出力定量制御又は系統入力定量制御に適用されるハンチング抑制制御CNT2では、発電装置4の発電電力量を変化させることによって、電力変換回路20及び蓄電装置3間の入出力電力量の絶対値を増大させ、これによって蓄電側ハンチング現象を抑制する。 In the hunting suppression control CNT 2 applied to the system output quantitative control or the system input quantitative control, the absolute value of the input / output power amount between the power conversion circuit 20 and the power storage device 3 by changing the power generation amount of the power generation device 4. This suppresses the storage-side hunting phenomenon.
 抑制制御CNT2は各定量制御の中で行われる制御であって、抑制制御CNT2の実行は各定量制御の内容に影響を与えないが、抑制制御CNT2の実行期間中にはMPPT制御が停止される。 Suppression control CNT 2 is a control performed in each quantitative control, although the execution of the suppression control CNT 2 does not affect the contents of each quantitative control, the MPPT control during execution of the suppression control CNT 2 Stopped.
 抑制制御CNT2の具体的方法を説明する。また、第2実施形態の以下の説明では、特に記述なき限り、充電定量制御、放電定量制御、系統出力定量制御又は系統入力定量制御が継続して実行されている状態を想定している。 A specific method of the suppression control CNT 2 will be described. In the following description of the second embodiment, it is assumed that charge quantitative control, discharge quantitative control, system output quantitative control, or system input quantitative control is continuously executed unless otherwise specified.
 系統側ハンチング認知タイミング又は蓄電側ハンチング認知タイミング前においては、制御部23は、値IMPPを代入した電流指令値IG *を電力変換部21Gに与えることでMPPT制御を実現する。この状態では、発電装置4の電力点は電力点401(図20参照)と一致しており、発電装置4からは最大電力量PMPPが発電電力量PGとして電力変換部21Gに出力される。 Prior to the system-side hunting recognition timing or the power storage-side hunting recognition timing, the control unit 23 implements MPPT control by giving a current command value I G * into which the value I MPP is substituted to the power conversion unit 21G. In this state, power point of the generator 4 is the maximum amount of power P MPP is outputted to the power conversion unit 21G as generated power P G is a consistent with power point 401 (see FIG. 20), power generating apparatus 4 .
 但し、系統側ハンチング検出判定、系統側ハンチング予測判定、蓄電側ハンチング検出判定又は蓄電側ハンチング予測判定が成されると、抑制制御CNT2において、制御部23は、電力変換部21Gに供給する電流指令値IG *を値IMPPから値IQ1又はIQ2へと変更し、これによって発電装置4の電力点を電力点401から電力点402又は403へと変化させる(図20参照)。結果、発電装置4の発電電力量が電力量PMPPから電力量PQへと減少する。 However, when the system-side hunting detection determination, the system-side hunting prediction determination, the power storage-side hunting detection determination, or the power storage-side hunting prediction determination is performed, in the suppression control CNT 2 , the control unit 23 supplies the current to the power conversion unit 21G. The command value I G * is changed from the value I MPP to the value I Q1 or I Q2 , thereby changing the power point of the power generator 4 from the power point 401 to the power point 402 or 403 (see FIG. 20). As a result, the power generation amount of the power generation device 4 decreases from the power amount P MPP to the power amount P Q.
 例えば、制御部23は、ハンチング抑制制御では、発電電力PGの目標値を、電力点401(電力量PMPP)に対応する既定値から、電力点402,403(電力量PQ)に対応する値に変更する。例えば、電力量PMPPは10kW・sであり、電力量PQは8kW・sである。 For example, the control unit 23, the hunting suppression control, corresponding to the target value of the generated power P G, from the default value corresponding to the power point 401 (electric energy P MPP), the power point 402 and 403 (power amount P Q) Change the value to For example, the electric energy P MPP is 10 kW · s, and the electric energy P Q is 8 kW · s.
 充電定量制御の場合、供給電力量(発電電力量)と需要電力量(充電電力量)とが比較される。蓄電装置3の充電電力量が10kW・sである場合、制御部23がハンチング抑制制御CNT2を実行することで、供給電力量が2kW・sだけ不足することになる。したがって、供給電力量と需要電力量との差が大きくなり、ハンチング現象が抑制される。この場合、制御部23は、電力変換部21Sに入力電力の目標値として2kW・sを与え、これによって、電力系統5から2kW・sの入力電力を得る。 In the case of charge quantitative control, the amount of supplied power (power generation amount) and the amount of demand power (charge power amount) are compared. When the charging power amount of the power storage device 3 is 10 kW · s, the control unit 23 executes the hunting suppression control CNT 2 , so that the supplied power amount is insufficient by 2 kW · s. Therefore, the difference between the power supply amount and the power demand amount is increased, and the hunting phenomenon is suppressed. In this case, the control unit 23 gives 2 kW · s as a target value of the input power to the power conversion unit 21S, and thereby obtains input power of 2 kW · s from the power system 5.
 放電定量制御の場合、供給電力量(発電電力量と放電電力量の合計値)と需要電力量(消費電力量)とが比較される。蓄電装置3の放電電力量が10kW・sであり、消費電力量が20kW・sである場合、制御部23がハンチング抑制制御CNT2を実行することで、供給電力量が2kW・sだけ不足することになる。したがって、供給電力量と需要電力量との差が大きくなり、ハンチング現象が抑制される。この場合、制御部23は、電力変換部21Sに入力電力の目標値として2kW・sを与え、これによって、電力系統5から2kW・sの入力電力を得る。 In the case of the discharge quantitative control, the supplied power amount (total value of the generated power amount and the discharged power amount) is compared with the demand power amount (power consumption amount). When the discharge power amount of the power storage device 3 is 10 kW · s and the power consumption amount is 20 kW · s, the control unit 23 executes the hunting suppression control CNT 2 so that the supplied power amount is insufficient by 2 kW · s. It will be. Therefore, the difference between the power supply amount and the power demand amount is increased, and the hunting phenomenon is suppressed. In this case, the control unit 23 gives 2 kW · s as a target value of the input power to the power conversion unit 21S, and thereby obtains input power of 2 kW · s from the power system 5.
 系統出力定量制御の場合、供給電力量(発電電力量)と需要電力量(出力電力量)とが比較される。電力系統5の出力電力量が10kW・sである場合、制御部23がハンチング抑制制御CNT2を実行することで、供給電力量が2kW・sだけ不足することになる。したがって、供給電力量と需要電力量との差が大きくなり、ハンチング現象が抑制される。この場合、制御部23は、電力変換部21Bに放電電力の目標値として2kW・sを与え、これによって、蓄電装置3から2kW・sの放電電力を得る。 In the case of grid output quantitative control, the amount of power supplied (power generation amount) and the amount of power demand (output power amount) are compared. When the output power amount of the power system 5 is 10 kW · s, the control unit 23 executes the hunting suppression control CNT 2 , so that the supplied power amount is insufficient by 2 kW · s. Therefore, the difference between the power supply amount and the power demand amount is increased, and the hunting phenomenon is suppressed. In this case, the control unit 23 gives 2 kW · s as a target value of the discharge power to the power conversion unit 21B, and thereby obtains 2 kW · s of discharge power from the power storage device 3.
 系統入力定量制御の場合、供給電力量(発電電力量と入力電力量の合計値)と需要電力量(消費電力量)とが比較される。電力系統5の入力電力量が10kW・sであり、消費電力量が20kW・sである場合、制御部23がハンチング抑制制御CNT2を実行することで、供給電力量が2kW・sだけ不足することになる。したがって、供給電力量と需要電力量との差が大きくなり、ハンチング現象が抑制される。この場合、制御部23は、電力変換部21Bに放電電力の目標値として2kW・sを与え、これによって、蓄電装置3から2kW・sの放電電力を得る。 In the case of system input quantitative control, the amount of supplied power (the total value of the generated power and the amount of input power) is compared with the amount of demand power (power consumption). When the input power amount of the power system 5 is 10 kW · s and the power consumption amount is 20 kW · s, the control unit 23 executes the hunting suppression control CNT 2 so that the supplied power amount is insufficient by 2 kW · s. It will be. Therefore, the difference between the power supply amount and the power demand amount is increased, and the hunting phenomenon is suppressed. In this case, the control unit 23 gives 2 kW · s as the target value of the discharge power to the power conversion unit 21B, and thereby obtains 2 kW · s of discharge power from the power storage device 3.
 第1実施形態の説明から容易に理解されるように、系統側ハンチング現象の発生時において発電装置4の発電電力量が減少すると、電力変換回路20及び電力系統5間の入出力電力量の絶対値が増大するため、系統側ハンチング現象が適切に抑制される。同様に、蓄電側ハンチング現象の発生時において発電装置4の発電電力量が減少すると、電力変換回路20及び蓄電装置3間の入出力電力量の絶対値が増大するため、蓄電側ハンチング現象が適切に抑制される。 As can be easily understood from the description of the first embodiment, when the power generation amount of the power generation device 4 decreases when the system-side hunting phenomenon occurs, the absolute value of the input / output power amount between the power conversion circuit 20 and the power system 5 is reduced. Since the value increases, the system-side hunting phenomenon is appropriately suppressed. Similarly, if the power generation amount of the power generation device 4 decreases when the power storage side hunting phenomenon occurs, the absolute value of the input / output power amount between the power conversion circuit 20 and the power storage device 3 increases, so that the power storage side hunting phenomenon is appropriate. To be suppressed.
 2.2 抑制制御CNT2に対応する解除可否判定処理J2
 制御部23は、抑制制御CNT2の実行期間中において、所定の解除条件の成否判定を介して、抑制制御CNT2の実行を解除するか否かを判定する解除可否判定処理J2を行うことができる。
2.2 release permission corresponding to the suppression control CNT 2 determination process J 2
Control unit 23, during the execution period of the suppression control CNT 2, via the judging success or failure of the predetermined release condition, performing the determining cancellation determination processing J 2 whether to cancel the execution of the suppression control CNT 2 Can do.
 充電定量制御が成されている状態を想定して解除可否判定処理J2の例を説明する。解除可否判定処理J2において、制御部23は、例えば下記の第1~第4解除条件の何れかが満たされるとき、抑制制御CNT2の実行を解除してMPPT制御を再開することができる。 On the assumption that the charging quantitative control is made for explaining an example of a cancellation determination processing J 2. In release determination processing J 2, the control unit 23, for example, when any of the first to fourth release following conditions are satisfied, it is possible to resume the MPPT control by releasing the execution of the suppression control CNT 2.
 図22及び図23を参照して、第1及び第2解除条件について説明する。図22及び23において、実線曲線411及び411’は発電装置4の発電電力量の時間推移の第1例及び第2例を表している。 The first and second release conditions will be described with reference to FIGS. 22 and 23, solid line curves 411 and 411 'represent a first example and a second example of the time transition of the amount of power generated by the power generation device 4.
 今、充電定量制御が成されている状態を想定しているため、制御部23は充電指令量PB *に蓄電用基準電力量PBREFを代入しており、これによって蓄電装置3の充電電力量は蓄電用基準電力量PBREFと一致している。 Since it is assumed that the charge quantitative control is currently performed, the control unit 23 substitutes the reference power amount P BREF for power storage into the charge command amount P B * , thereby charging power of the power storage device 3. The amount corresponds to the reference power amount P BREF for power storage.
 タイミングtB1に至るまでは、MPPT制御が継続して実行されている。タイミングtB1は系統側ハンチング認知タイミングであり、タイミングtB1において、制御部23は抑制制御CNT2の実行を開始し、これによってタイミングtB1を境に発電電力量PGがΔPGだけ減少する。タイミングtB2及びtB2’はタイミングtB1よりも後のタイミングである。 The MPPT control is continuously executed until the timing t B1 is reached. Timing t B1 is the system-side hunting recognition timing. At timing t B1 , the control unit 23 starts executing the suppression control CNT 2 , thereby reducing the generated power amount P G by ΔP G at the timing t B1. . Timings t B2 and t B2 ′ are timings after timing t B1 .
 制御部23は、抑制制御CNT2の実行期間中、電流値IG及び電圧値VGに基づき(即ち発電電力量PGに基づき)又は電流値IGINT及び電圧値VINTに基づき、上述の充電電力量PB’を求める。上述したように、充電電力量PB’は、発電電力量PGに基づく充電電力量であり、電力変換の電力損失量をゼロとみなせば(即ち電力変換効率を100%とみなせば)、PB’=PGである。 During the execution period of the suppression control CNT 2 , the control unit 23 is based on the current value I G and the voltage value V G (that is, based on the generated power amount P G ) or based on the current value I GINT and the voltage value V INT. The charge power amount P B ′ is obtained. As described above, the charge power amount P B ′ is the charge power amount based on the generated power amount P G , and if the power loss amount of power conversion is regarded as zero (that is, if the power conversion efficiency is regarded as 100%), is a P B '= P G.
 第1解除条件は、下記不等式(A1)を満たす充電電力量PB’が観測されたときに充足する。 The first release condition is satisfied when the charging power amount P B ′ satisfying the following inequality (A1) is observed.
 すなわち、制御部23は、ハンチング抑制制御CNT2の実行中に供給電力(充電電力量PB’)と需要電力(蓄電用基準電力量PBREF)との差が解除条件(第1解除条件)を満たした場合に、ハンチング抑制制御CNT2を終了するように構成される。第1解除条件は、需要電力(蓄電用基準電力量PBREF)から供給電力(充電電力量PB’)を引いた値が所定の閾値THB1以下であることである。すなわち、第1解除条件は、供給電力(充電電力量PB’)と需要電力(蓄電用基準電力量PBREF)との差の絶対値が所定の閾値THB1以下であることである。 That is, the control unit 23 determines that the difference between the supplied power (charging power amount P B ′) and the demand power (storage power reference power amount P BREF ) is canceled during the execution of the hunting suppression control CNT 2 (first releasing condition). When the condition is satisfied, the hunting suppression control CNT 2 is configured to end. The first release condition is that a value obtained by subtracting the supplied power (charging power amount P B ′) from the demand power (storage power reference power amount P BREF ) is equal to or less than a predetermined threshold TH B1 . That is, the first release condition is that the absolute value of the difference between the supplied power (charging power amount P B ′) and the demand power (power storage reference power amount P BREF ) is equal to or less than a predetermined threshold value TH B1 .
 図22の例では、タイミングtB1及びtB2間の各タイミングにおいて充電電力量PB’が不等式(A1)を満たさないためタイミングtB1及びtB2間で抑制制御CNT2が継続実行されているが、タイミングtB2における充電電力量PB’が不等式(A1)を満たすため、制御部23は、タイミングtB2において抑制制御CNT2の実行を解除してMPPT制御を再開する。 In the example of FIG. 22, the timing t B1 and t suppressing control CNT 2 between B2 for charging power amount P B 'does not satisfy the inequality (A1) at each timing between the timing t B1 and t B2 is continuously performed However, since the charging power amount P B ′ at the timing t B2 satisfies the inequality (A1), the control unit 23 cancels the execution of the suppression control CNT 2 at the timing t B2 and restarts the MPPT control.
 式(A1)の左辺は、電力変換損失を無視すれば(PBREF-PG)又は(PB *-PG)と一致する。即ち、式(A1)の成立は、充電基準条件に規定される蓄電用基準電力量PBREF(=充電指令量PB *)と発電電力量PGとの差が十分に縮まり、MPPT制御を再開した時に系統側ハンチング現象が再度発生しないほど、発電電力量PGが大きくなったことを表している。 If the power conversion loss is ignored, the left side of the equation (A1) matches (P BREF −P G ) or (P B * −P G ). That is, establishment of formula (A1), the difference between the power storage for reference power P BREF and (* = charge command amount P B) and the generated power P G defined in charging reference conditions shrinks enough, the MPPT control more does not occur again mains hunting when resumed, generated power P G represents a possible increased.
 THB1は、0以上の所定の閾値であるが、ΔPGの値よりは小さい(仮に、THB1=ΔPGであると、MPPT制御の再開時に、直ちに系統側ハンチング現象が発生するおそれがあるため)。THB1の値の設定等を行うべく、制御部23はΔPGの値を保持しておくことができる。すなわち、所定の閾値THB1は、ハンチング抑制制御CNT2の実行による供給電力と需要電力との差の変化の幅より小さい。ハンチング抑制制御CNT2が行われることで、発電電力量PGがΔPGだけ減少するから、供給電力と需要電力との差の変化の幅はΔPGとなる。 TH B1 is a zero or a predetermined threshold, smaller than the value of [Delta] P G (Assuming that is TH B1 = [Delta] P G, when the MPPT control resumption, there is a possibility that immediately mains hunting phenomenon occurs For). To perform the setting of the value of TH B1, the control unit 23 can hold the value of [Delta] P G. In other words, the predetermined threshold TH B1 is smaller than the width of the change in the difference between the supplied power and the demand power due to the execution of the hunting suppression control CNT 2 . By hunting suppression control CNT 2 is performed, since the generated power P G is reduced by [Delta] P G, the width of change in the difference between the power supply and demand electric power becomes [Delta] P G.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 なお、第1解除条件は、供給電力(充電電力量PB’)と需要電力(蓄電用基準電力量PBREF)との差の絶対値が所定の閾値THB1以下である状態が所定時間継続したことであってもよい。また、第1解除条件は、供給電力と需要電力との差が正また負である状態が所定時間継続したことであってもよい。 The first release condition is that the state where the absolute value of the difference between the supplied power (charged energy P B ′) and the demand power (storage power reference P BREF ) is equal to or less than a predetermined threshold TH B1 continues for a predetermined time. It may be that. Further, the first release condition may be that a state where the difference between the supplied power and the demand power is positive or negative continues for a predetermined time.
 第2解除条件は、下記不等式(A2)を満たす充電電力量PB’が観測されたときに充足する。 The second cancellation condition is satisfied when the charging power amount P B ′ satisfying the following inequality (A2) is observed.
 すなわち、制御部23は、ハンチング抑制制御CNT2の実行中に供給電力(充電電力量PB’)と需要電力(蓄電用基準電力量PBREF)との差が解除条件(第2解除条件)を満たした場合に、ハンチング抑制制御CNT2を終了するように構成される。第2解除条件は、需要電力(蓄電用基準電力量PBREF)から供給電力(充電電力量PB’)を引いた値が所定の閾値THB2以上であることである。つまり、供給電力(充電電力量PB’)と需要電力(蓄電用基準電力量PBREF)との差の絶対値が所定の閾値THB2以上であればよい。 That is, the control unit 23 determines that the difference between the supplied power (charged power amount P B ′) and the demand power (power storage reference power amount P BREF ) during the execution of the hunting suppression control CNT 2 is a release condition (second release condition). When the condition is satisfied, the hunting suppression control CNT 2 is configured to end. The second release condition is that the value obtained by subtracting the supplied power (charging power amount P B ′) from the demand power (storage power reference power amount P BREF ) is equal to or greater than a predetermined threshold value TH B2 . That is, the absolute value of the difference between the supplied power (charging power amount P B ′) and the demand power (power storage reference power amount P BREF ) may be equal to or greater than the predetermined threshold value TH B2 .
 図23の例では、タイミングtB1及びtB2’間の各タイミングにおいて充電電力量PB’が不等式(A2)を満たさないためタイミングtB1及びtB2’間で抑制制御CNT2が継続実行されているが、タイミングtB2’における充電電力量PB’が不等式(A2)を満たすため、制御部23は、タイミングtB2’において抑制制御CNT2の実行を解除してMPPT制御を再開する。 In the example of FIG. 23, the timing t B1 and t B2 timing t B1 and t B2 'suppression control between CNT 2 because does not satisfy the inequality (A2)' charging power amount P B in each timing between 'is continued execution However, since the charging power amount P B ′ at the timing t B2 ′ satisfies the inequality (A2), the control unit 23 cancels the execution of the suppression control CNT 2 at the timing t B2 ′ and restarts the MPPT control.
 式(A2)の左辺は、電力変換損失を無視すれば(PBREF-PG)又は(PB *-PG)と一致する。即ち、式(A2)の成立は、充電基準条件に規定される蓄電用基準電力量PBREF(=充電指令量PB *)と発電電力量PGとの差が十分に広がり、MPPT制御を再開した時に系統側ハンチング現象が再度発生しないほど、発電電力量PGが小さくなったことを表している。 If the power conversion loss is ignored, the left side of the equation (A2) matches (P BREF −P G ) or (P B * −P G ). That is, establishment of formula (A2) is spread enough difference in power storage for reference power P BREF and (* = charge command amount P B) and the generated power P G defined in charging reference conditions, the MPPT control This indicates that the amount of generated power PG is so small that the system-side hunting phenomenon does not occur again when resuming.
 THB2は、ΔPGより大きな所定の閾値である(仮に、THB2=ΔPGであると、MPPT制御の再開時に、直ちに系統側ハンチング現象が発生するおそれがあるため)。すなわち、所定の閾値THB2は、ハンチング抑制制御CNT2の実行による供給電力と需要電力との差の変化の幅より大きい。ハンチング抑制制御CNT2が行われることで、発電電力量PGがΔPGだけ減少するから、供給電力と需要電力との差の変化の幅はΔPGとなる。 TH B2 is a large predetermined threshold than [Delta] P G (Assuming that is TH B2 = [Delta] P G, because when the MPPT control resumption, there is a possibility that immediately mains hunting phenomenon occurs). That is, the predetermined threshold TH B2 is greater than the width of the change in the difference between the power supply and demand power by the execution of the hunting suppression control CNT 2. By hunting suppression control CNT 2 is performed, since the generated power P G is reduced by [Delta] P G, the width of change in the difference between the power supply and demand electric power becomes [Delta] P G.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 なお、第2解除条件は、供給電力(充電電力量PB’)と需要電力(蓄電用基準電力量PBREF)との差の絶対値が所定の閾値THB2以上である状態が所定時間継続したことであってもよい。 The second release condition is that the state where the absolute value of the difference between the supplied power (charged energy P B ′) and the demand power (storage power reference P BREF ) is equal to or greater than a predetermined threshold TH B2 continues for a predetermined time. It may be that.
 次に、第3解除条件を説明する。第3解除条件の成否を確認するため、制御部23は、抑制制御CNT2の実行期間中において、電流値IG及び電圧値VGに基づき又は電流値IGINT及び電圧値VINTに基づき、充電電力量PB’’を求める。充電電力量PB’’は、MPPT制御を行ったならば得られたであろう仮想発電電力量に電力変換部21G及び21Bの各電力変換効率を乗じたものに相当する。 Next, the third release condition will be described. In order to confirm the success or failure of the third release condition, the control unit 23, based on the current value I G and the voltage value V G , or based on the current value I GINT and the voltage value V INT during the execution period of the suppression control CNT 2 , The charge energy P B ″ is obtained. The charged power amount P B ″ corresponds to a value obtained by multiplying the virtual power generation amount that would have been obtained if MPPT control was performed by the power conversion efficiencies of the power conversion units 21G and 21B.
 仮想発電電力量は、太陽電池の最大電力に対応する値である。したがって、仮想発電電力量は、既定値に相当する。仮想発電電力量は、抑制制御CNT2の実行時における発電電力量PGにΔPGを加算することで得られる(各電力変換効率が100%であると仮定すれば、PB’’は仮想発電電力量(PG+ΔPG)と一致する)。 The virtual power generation amount is a value corresponding to the maximum power of the solar cell. Accordingly, the virtual power generation amount corresponds to a predetermined value. Virtual generated power amount, assuming generated power P G is obtained by adding the [Delta] P G in (the power conversion efficiency at the suppression control CNT 2 execution to be 100%, P B '' is a virtual This is the same as the amount of generated power (P G + ΔP G ).
 そして、制御部23は、絶対値|PB’’-PBREF|が正である状態が所定時間以上継続して観測された場合に、第3解除条件が充足したと判断する。その観測が成される状況下においてMPPT制御を再開しても、系統側ハンチング現象は発生しないと予想されるからである。 Then, when the state where the absolute value | P B ″ −P BREF | is positive is continuously observed for a predetermined time or more, the control unit 23 determines that the third release condition is satisfied. This is because it is expected that the system-side hunting phenomenon will not occur even if the MPPT control is resumed under the situation where the observation is made.
 すなわち、制御部23は、ハンチング抑制制御CNT2の実行中に需要電力(蓄電用基準電力量PBREF)と既定値(仮想発電電力量)との差が解除条件(第3解除条件)を満たした場合に、ハンチング抑制制御CNT2を終了するように構成される。 That is, the control unit 23 determines that the difference between the demand power (storage power reference amount P BREF ) and the predetermined value (virtual power generation amount) satisfies the release condition (third release condition) during the execution of the hunting suppression control CNT 2. The hunting suppression control CNT 2 is terminated.
 第3解除条件は、需要電力(蓄電用基準電力量PBREF)と既定値(仮想発電電力量)との差が正又は負である状態が所定時間(所定の第2時間)継続したことである。 The third release condition is that the state where the difference between the demand power (reference power amount P BREF for power storage) and the predetermined value (virtual power generation amount) is positive or negative continues for a predetermined time (predetermined second time). is there.
 なお、第3解除条件は、需要電力(蓄電用基準電力量PBREF)と既定値(仮想発電電力量)との差の絶対値が閾値以上であること、または、差の絶対値が閾値以上である状態が所定時間(所定の第1時間)継続したことであってもよい。 The third release condition is that the absolute value of the difference between the demand power (reference power amount P BREF for power storage) and the predetermined value (virtual power generation amount) is greater than or equal to the threshold value, or the absolute value of the difference is greater than or equal to the threshold value. It may be that the state is continued for a predetermined time (predetermined first time).
 次に、第4解除条件を説明する。制御部23は、抑制制御CNT2の実行期間中において、系統側ハンチング検出処理HD1Aを実行し、系統側ハンチング現象の発生が所定回数以上観測されたときに第4解除条件が充足したと判断する。 Next, the fourth release condition will be described. The control unit 23 executes the system-side hunting detection process HD 1A during the execution period of the suppression control CNT 2 and determines that the fourth release condition is satisfied when the occurrence of the system-side hunting phenomenon is observed a predetermined number of times or more. To do.
 すなわち、制御部23は、ハンチング抑制制御CNT2の実行中に、入力処理と出力処理との切り替え動作が行われたか否かを判定し、切り替え動作が所定回数行われたと判定すると、ハンチング抑制制御を終了するように構成される。 That is, the control unit 23 determines whether or not the switching operation between the input process and the output process has been performed during the execution of the hunting suppression control CNT 2 , and determines that the switching operation has been performed a predetermined number of times. Configured to exit.
 所定回数は1以上の任意の回数であって良い。抑制制御CNT2を実行しているのにもかかわらず系統側ハンチング現象が発生する場合、MPPT制御を再開に伴う発電電力量の増大によって、系統側ハンチング現象が回避されるからである。 The predetermined number of times may be an arbitrary number of 1 or more. This is because when the system-side hunting phenomenon occurs despite the execution of the suppression control CNT 2 , the system-side hunting phenomenon is avoided due to the increase in the amount of generated power accompanying the restart of the MPPT control.
 充電定量制御以外の定量制御(放電定量制御、系統出力定量制御、系統入力定量制御)が成されている場合において、抑制制御CNT2が実行されているときにも上述の解除可否判定処理J2を実行できる。但し、充電定量制御以外の定量制御が成されている場合には、解除可否判定処理J2の内容が以下のように修正される。まず、系統出力又は系統入力定量制御の実行時においては、上述のタイミングtB1は蓄電側ハンチング認知タイミングに相当する。 In the case where quantitative control other than charge quantitative control (discharge quantitative control, system output quantitative control, system input quantitative control) is performed, the above-described release possibility determination process J 2 is also performed when the suppression control CNT 2 is executed. Can be executed. However, if the quantitative control of the non-charging quantitative control has been made, the contents of the release determination process J 2 is modified as follows. First, at the time of execution of system output or system input quantitative control, the above-described timing t B1 corresponds to the storage side hunting recognition timing.
 放電定量制御に対しては、第1~第3解除条件を以下のように変更すると良い。 For discharge quantitative control, the first to third release conditions should be changed as follows.
 放電定量制御に対応する第1及び第2解除条件では、上述の式(A1)及び(A2)が夫々下記式(B1)及び(B2)に変更され、抑制制御CNT2の実行期間中に式(B1)又は(B2)を満たす電力量PG’が観測されたときに、制御部23は、第1又は第2解除条件が充足したと判断する(PG’の定義については第1実施形態を参照)。Qは、直流負荷8の消費電力量を表す。 In the first and second release condition which corresponds to the discharge quantitative control, the above-mentioned formula (A1) and (A2) is changed to respectively the following formulas (B1) and (B2), wherein during the execution of the suppression control CNT 2 When the amount of power P G ′ satisfying (B1) or (B2) is observed, the control unit 23 determines that the first or second release condition is satisfied (the first implementation is performed for the definition of P G ′). See form). Q represents the power consumption of the DC load 8.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 すなわち、制御部23は、ハンチング抑制制御CNT2の実行中に供給電力(発電電力量PG’と蓄電用基準電力量PBREFとの合計値)と需要電力(消費電力量Q)との差が解除条件(第1解除条件)を満たした場合に、ハンチング抑制制御CNT2を終了するように構成される。第1解除条件は、供給電力(発電電力量PG’と蓄電用基準電力量PBREFとの合計値)から需要電力(消費電力量Q)を引いた値が所定の閾値THB1以下であることである(式(B1))。すなわち、第1解除条件は、供給電力(発電電力量PG’と蓄電用基準電力量PBREFとの合計値)と需要電力(消費電力量Q)との差の絶対値が所定の閾値THB1以下であることである。 That is, the control unit 23 determines the difference between the supplied power (the total value of the generated power amount P G ′ and the storage reference power amount P BREF ) and the demand power (power consumption amount Q) during the execution of the hunting suppression control CNT 2. Is configured to end the hunting suppression control CNT 2 when the release condition (first release condition) is satisfied. The first release condition is that a value obtained by subtracting demand power (power consumption amount Q) from supplied power (total value of generated power amount P G ′ and power storage reference power amount P BREF ) is equal to or less than a predetermined threshold TH B1. (Formula (B1)). In other words, the first cancellation condition is that the absolute value of the difference between the supplied power (the total value of the generated power amount P G ′ and the storage reference power amount P BREF ) and the demand power (power consumption amount Q) is a predetermined threshold TH. B1 or less.
 所定の閾値THB1は、ハンチング抑制制御CNT2の実行による供給電力と需要電力との差の変化の幅より小さい。すなわち、ハンチング抑制制御CNT2が行われることで、発電電力量PGがΔPGだけ減少するから、供給電力と需要電力との差の変化の幅はΔPGとなる。 Predetermined threshold value TH B1 is smaller than the width of change in the supply power and the power demand by the execution of the hunting suppression control CNT 2. That is, by hunting suppression control CNT 2 is performed, since the generated power P G is reduced by [Delta] P G, the width of change in the difference between the power supply and demand electric power becomes [Delta] P G.
 なお、第1解除条件は、供給電力(発電電力量PG’と蓄電用基準電力量PBREFとの合計値)と需要電力(消費電力量Q)との差の絶対値が所定の閾値THB1以下である状態が所定時間継続したことであってもよい。また、第1解除条件は、供給電力と需要電力との差が正また負である状態が所定時間継続したことであってもよい。 The first release condition is that the absolute value of the difference between the supplied power (the total amount of the generated power amount P G ′ and the reference power amount P BREF for power storage) and the demand power (power consumption amount Q) is a predetermined threshold TH. It may be that the state of B1 or less continues for a predetermined time. Further, the first release condition may be that a state where the difference between the supplied power and the demand power is positive or negative continues for a predetermined time.
 また、制御部23は、ハンチング抑制制御CNT2の実行中に供給電力(発電電力量PG’と蓄電用基準電力量PBREFとの合計値)と需要電力(消費電力量Q)との差が解除条件(第2解除条件)を満たした場合に、ハンチング抑制制御CNT2を終了するように構成される。第2解除条件は、供給電力(発電電力量PG’と蓄電用基準電力量PBREFとの合計値)から需要電力(消費電力量Q)を引いた値が所定の閾値THB2以上であることである(式(B2))。すなわち、第2解除条件は、供給電力(発電電力量PG’と蓄電用基準電力量PBREFとの合計値)と需要電力(消費電力量Q)との差の絶対値が所定の閾値THB2以上であることである。 Further, the control unit 23 determines the difference between the supplied power (the total value of the generated power amount P G ′ and the storage reference power amount P BREF ) and the demand power (power consumption amount Q) during the execution of the hunting suppression control CNT 2. Is configured to end the hunting suppression control CNT 2 when the release condition (second release condition) is satisfied. The second release condition is that a value obtained by subtracting demand power (power consumption Q) from supplied power (total value of generated power P G ′ and power storage reference power P BREF ) is equal to or greater than a predetermined threshold TH B2. (Formula (B2)). That is, the second cancellation condition is that the absolute value of the difference between the supplied power (the total value of the generated power amount P G ′ and the power storage reference power amount P BREF ) and the demand power (power consumption amount Q) is a predetermined threshold TH. B2 or higher.
 所定の閾値THB2は、ハンチング抑制制御CNT2の実行による供給電力と需要電力との差の変化の幅より大きい。すなわち、ハンチング抑制制御CNT2が行われることで、発電電力量PGがΔPGだけ減少するから、供給電力と需要電力との差の変化の幅はΔPGとなる。 The predetermined threshold value TH B2 is larger than the width of change in the difference between the supplied power and the demand power due to the execution of the hunting suppression control CNT 2 . That is, by hunting suppression control CNT 2 is performed, since the generated power P G is reduced by [Delta] P G, the width of change in the difference between the power supply and demand electric power becomes [Delta] P G.
 なお、第2解除条件は、供給電力(発電電力量PG’と蓄電用基準電力量PBREFとの合計値)と需要電力(消費電力量Q)との差の絶対値が所定の閾値THB2以上である状態が所定時間継続したことであってもよい。 The second release condition is that the absolute value of the difference between the supplied power (the total amount of the generated power amount P G ′ and the power storage reference power amount P BREF ) and the demand power (power consumption amount Q) is a predetermined threshold TH. The state of B2 or more may be continued for a predetermined time.
 また、放電定量制御に関し、制御部23は、抑制制御CNT2の実行期間中において、電流値IG及び電圧値VGに基づき又は電流値IGINT及び電圧値VINTに基づき、電力量PG’’を求める。電力量PG’’は、上記仮想発電電力量に電力変換部21Gの電力変換効率を乗じたものに相当する(電力変換効率が100%であると仮定すれば、PG’’は仮想発電電力量(PG+ΔPG)と一致する)。そして、制御部23は、絶対値|PG’’+PBREF-Q|が正である状態が所定時間以上継続して観測された場合に、放電定量制御に対応する第3解除条件が充足したと判断する。 Further, regarding the discharge quantitative control, the control unit 23 determines the electric energy P G based on the current value I G and the voltage value V G or based on the current value I GINT and the voltage value V INT during the execution period of the suppression control CNT 2. Ask for ''. The power amount P G ″ corresponds to the virtual power generation amount multiplied by the power conversion efficiency of the power conversion unit 21 G (assuming that the power conversion efficiency is 100%, P G ″ is virtual This is the same as the amount of generated power (P G + ΔP G ). Then, when the state where the absolute value | P G ″ + P BREF −Q | is positive is continuously observed for a predetermined time or more, the control unit 23 satisfies the third release condition corresponding to the discharge quantitative control. Judge.
 すなわち、制御部23は、ハンチング抑制制御CNT2の実行中に電源電力(蓄電用基準電力量PBREF)と既定値(仮想発電電力量PG’’)との合計値と需用電力(消費電力量Q)との差が解除条件(第3解除条件)を満たした場合に、ハンチング抑制制御CNT2を終了するように構成される。 That is, during the execution of the hunting suppression control CNT 2 , the control unit 23 calculates the total value of the power source power (storage power reference power amount P BREF ) and the predetermined value (virtual power generation power amount P G ″) and the power demand (consumption). When the difference from the electric energy Q) satisfies the release condition (third release condition), the hunting suppression control CNT 2 is configured to end.
 第3解除条件は、電源電力(蓄電用基準電力量PBREF)と既定値(仮想発電電力量PG’’)との合計値と需用電力(消費電力量Q)との差が正又は負である状態が所定時間(所定の第2時間)継続したことである。 The third release condition is that the difference between the total value of the power source power (storage power reference amount P BREF ) and the predetermined value (virtual power generation amount P G ″) and the demand power (power consumption amount Q) is positive or That is, the negative state has continued for a predetermined time (predetermined second time).
 なお、第3解除条件は、電源電力(蓄電用基準電力量PBREF)と既定値(仮想発電電力量PG’’)との合計値と需用電力(消費電力量Q)との差の絶対値が閾値以上であること、または、差の絶対値が閾値以上である状態が所定時間(所定の第1時間)継続したことであってもよい。 The third release condition is that the difference between the total value of the power source power (storage power reference power P BREF ) and the predetermined value (virtual power generation power P G ″) and the power demand (power consumption Q). It may be that the absolute value is equal to or greater than the threshold value, or that the state where the absolute value of the difference is equal to or greater than the threshold value continues for a predetermined time (predetermined first time).
 放電定量制御に対応する第4解除条件は、充電定量制御について上述した第4解除条件と同じである。すなわち、制御部23は、ハンチング抑制制御CNT2の実行中に、入力処理と出力処理との切り替え動作が行われたか否かを判定し、切り替え動作が所定回数行われたと判定すると、ハンチング抑制制御CNT2を終了するように構成される。 The fourth release condition corresponding to the discharge quantitative control is the same as the fourth release condition described above for the charge quantitative control. That is, the control unit 23 determines whether or not the switching operation between the input process and the output process has been performed during the execution of the hunting suppression control CNT 2 , and determines that the switching operation has been performed a predetermined number of times. Configured to terminate CNT 2 .
 系統出力定量制御に対しては、第1~第3解除条件を以下のように変更すると良い。 For grid output quantitative control, the first to third release conditions should be changed as follows.
 系統出力定量制御に対応する第1及び第2解除条件では、上述の式(A1)及び(A2)が夫々下記式(C1)及び(C2)に変更され、抑制制御CNT2の実行期間中に式(C1)又は(C2)を満たす電力量PS’が観測されたときに、制御部23は、第1又は第2解除条件が充足したと判断する(PS’の定義については第1実施形態を参照)。 In the first and second release conditions corresponding to the system output quantitative control, the above formulas (A1) and (A2) are changed to the following formulas (C1) and (C2), respectively, and during the execution period of the suppression control CNT 2 When the electric energy P S ′ satisfying the expression (C1) or (C2) is observed, the control unit 23 determines that the first or second release condition is satisfied (for the definition of P S ′, the first See embodiment).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 すなわち、制御部23は、ハンチング抑制制御CNT2の実行中に供給電力(系統出力電力量PS’)と需要電力(系統用基準電力量PSREF)との差が解除条件(第1解除条件)を満たした場合に、ハンチング抑制制御CNT2を終了するように構成される。第1解除条件は、需要電力(系統用基準電力量PSREF)から供給電力(系統出力電力量PS’)を引いた値が所定の閾値THB1以下であることである(式(C1))。すなわち、第1解除条件は、供給電力(系統出力電力量PS’)と需要電力(系統用基準電力量PSREF)との差の絶対値が所定の閾値THB1以下であることである。 That is, the control unit 23 determines that the difference between the supplied power (system output power amount P S ′) and the demand power (system power reference amount P SREF ) during the execution of the hunting suppression control CNT 2 is the release condition (first release condition). ), The hunting suppression control CNT 2 is configured to end. The first release condition is that the value obtained by subtracting the supplied power (system output power P S ′) from the demand power (system reference power P SREF ) is equal to or less than a predetermined threshold TH B1 (formula (C1)) ). That is, the first release condition is that the absolute value of the difference between the supplied power (system output power amount P S ′) and the demand power (system reference power amount P SREF ) is equal to or less than a predetermined threshold value TH B1 .
 所定の閾値THB1は、ハンチング抑制制御CNT2の実行による供給電力と需要電力との差の変化の幅より小さい。すなわち、ハンチング抑制制御CNT2が行われることで、発電電力量PGがΔPGだけ減少するから、供給電力と需要電力との差の変化の幅はΔPGとなる。 Predetermined threshold value TH B1 is smaller than the width of change in the supply power and the power demand by the execution of the hunting suppression control CNT 2. That is, by hunting suppression control CNT 2 is performed, since the generated power P G is reduced by [Delta] P G, the width of change in the difference between the power supply and demand electric power becomes [Delta] P G.
 なお、第1解除条件は、供給電力(系統出力電力量PS’)と需要電力(系統用基準電力量PSREF)との差の絶対値が所定の閾値THB1以下である状態が所定時間継続したことであってもよい。また、第1解除条件は、供給電力と需要電力との差が正また負である状態が所定時間継続したことであってもよい。 The first release condition is that a state where the absolute value of the difference between the supplied power (system output power amount P S ′) and the demand power (system reference power amount P SREF ) is equal to or less than a predetermined threshold value TH B1 is a predetermined time. It may be continued. Further, the first release condition may be that a state where the difference between the supplied power and the demand power is positive or negative continues for a predetermined time.
 また、制御部23は、ハンチング抑制制御CNT2の実行中に供給電力(系統出力電力量PS’)と需要電力(系統用基準電力量PSREF)との差が解除条件(第2解除条件)を満たした場合に、ハンチング抑制制御CNT2を終了するように構成される。第2解除条件は、需要電力(系統用基準電力量PSREF)から供給電力(系統出力電力量PS’)を引いた値が所定の閾値THB2以上であることである(式(C2))。すなわち、第2解除条件は、供給電力(系統出力電力量PS’)と需要電力(系統用基準電力量PSREF)との差の絶対値が所定の閾値THB2以上であることである。 In addition, the control unit 23 determines that the difference between the supply power (system output power amount P S ′) and the demand power (system power reference amount P SREF ) is canceled during the execution of the hunting suppression control CNT 2 (second release condition). ), The hunting suppression control CNT 2 is configured to end. The second cancellation condition is that the value obtained by subtracting the supplied power (system output power P S ′) from the demand power (system reference power P SREF ) is equal to or greater than a predetermined threshold TH B2 (formula (C2)) ). That is, the second cancellation condition is that the absolute value of the difference between the supplied power (system output power amount P S ′) and the demand power (system reference power amount P SREF ) is equal to or greater than a predetermined threshold value TH B2 .
 所定の閾値THB2は、ハンチング抑制制御CNT2の実行による供給電力と需要電力との差の変化の幅より大きい。すなわち、ハンチング抑制制御CNT2が行われることで、発電電力量PGがΔPGだけ減少するから、供給電力と需要電力との差の変化の幅はΔPGとなる。 The predetermined threshold value TH B2 is larger than the width of change in the difference between the supplied power and the demand power due to the execution of the hunting suppression control CNT 2 . That is, by hunting suppression control CNT 2 is performed, since the generated power P G is reduced by [Delta] P G, the width of change in the difference between the power supply and demand electric power becomes [Delta] P G.
 なお、第2解除条件は、供給電力(系統出力電力量PS’)と需要電力(系統用基準電力量PSREF)との差の絶対値が所定の閾値THB2以上である状態が所定時間継続したことであってもよい。 Note that the second release condition is that a state where the absolute value of the difference between the supplied power (system output power amount P S ′) and the demand power (system reference power amount P SREF ) is equal to or greater than a predetermined threshold value TH B2 is a predetermined time. It may be continued.
 また、系統出力定量制御に関し、制御部23は、抑制制御CNT2の実行期間中において、電流値IG及び電圧値VGに基づき又は電流値IGINT及び電圧値VINTに基づき、電力量PS’’を求める。電力量PS’’は、上記仮想発電電力量に電力変換部21G及び21Sの各電力変換効率を乗じたものに相当する(各電力変換効率が100%であると仮定すれば、PS’’は仮想発電電力量(PG+ΔPG)と一致する)。そして、制御部23は、絶対値|PS’’-PSREF|が正である状態が所定時間以上継続して観測された場合に、系統出力定量制御に対応する第3解除条件が充足したと判断する。 Also relates to channel output quantitative control, the control unit 23, during the execution period of the suppression control CNT 2, based on current value I G and based on the voltage value V G or a current value I GINT and the voltage value V INT, power P Find S ''. The power amount P S ″ corresponds to the virtual power generation amount multiplied by each power conversion efficiency of the power conversion units 21G and 21S (assuming that each power conversion efficiency is 100%, P S ′ 'Is equal to the virtual power generation amount (P G + ΔP G )). Then, when the state where the absolute value | P S ″ −P SREF | is positive is continuously observed for a predetermined time or longer, the control unit 23 satisfies the third release condition corresponding to the system output quantitative control. Judge.
 すなわち、制御部23は、ハンチング抑制制御CNT2の実行中に需要電力(系統用基準電力量PSREF)と既定値(仮想発電電力量PS’’)との差が解除条件(第3解除条件)を満たした場合に、ハンチング抑制制御CNT2を終了するように構成される。 That is, the control unit 23 determines that the difference between the demand power (system reference power amount P SREF ) and the predetermined value (virtual power generation power amount P S ″) during the execution of the hunting suppression control CNT 2 is the release condition (third release). When the condition (condition) is satisfied, the hunting suppression control CNT 2 is configured to end.
 第3解除条件は、需要電力(系統用基準電力量PSREF)と既定値(仮想発電電力量PS’’)との差が正又は負である状態が所定時間(所定の第2時間)継続したことである。 The third release condition is that a state in which the difference between the demand power (system reference power amount P SREF ) and the predetermined value (virtual generated power amount P S ″) is positive or negative is a predetermined time (predetermined second time). It was continued.
 なお、第3解除条件は、需要電力(系統用基準電力量PSREF)と既定値(仮想発電電力量PS’’)との差の絶対値が閾値以上であること、または、差の絶対値が閾値以上である状態が所定時間(所定の第1時間)継続したことであってもよい。 The third release condition is that the absolute value of the difference between the demand power (system reference power amount P SREF ) and the predetermined value (virtual generated power amount P S ″) is greater than or equal to the threshold value, or the absolute difference The state where the value is equal to or greater than the threshold may be continued for a predetermined time (predetermined first time).
 系統入力定量制御に対しては、第1~第3解除条件を以下のように変更すると良い。 For system input quantitative control, the first to third release conditions should be changed as follows.
 系統入力定量制御に対応する第1及び第2解除条件では、上述の式(A1)及び(A2)が夫々下記式(D1)及び(D2)に変更され、抑制制御CNT2の実行期間中に式(D1)又は(D2)を満たす電力量PG’が観測されたときに、制御部23は、第1又は第2解除条件が充足したと判断する。 In the first and second release conditions corresponding to the system input quantitative control, the above formulas (A1) and (A2) are changed to the following formulas (D1) and (D2), respectively, and during the execution period of the suppression control CNT 2 When the power amount P G ′ satisfying the expression (D1) or (D2) is observed, the control unit 23 determines that the first or second release condition is satisfied.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 すなわち、制御部23は、ハンチング抑制制御CNT2の実行中に供給電力(発電電力量PG’と系統用基準電力量PSREFとの合計値)と需要電力(消費電力量Q)との差が解除条件(第1解除条件)を満たした場合に、ハンチング抑制制御CNT2を終了するように構成される。第1解除条件は、供給電力(発電電力量PG’と系統用基準電力量PSREFとの合計値)から需要電力(消費電力量Q)を引いた値が所定の閾値THB1以下であることである(式(D1))。すなわち、第1解除条件は、供給電力(発電電力量PG’と系統用基準電力量PSREFとの合計値)と需要電力(消費電力量Q)との差の絶対値が所定の閾値THB1以下であることである。 That is, the control unit 23 determines the difference between the supply power (the total value of the generated power amount P G ′ and the grid reference power amount P SREF ) and the demand power (power consumption amount Q) during the execution of the hunting suppression control CNT 2. Is configured to end the hunting suppression control CNT 2 when the release condition (first release condition) is satisfied. The first cancellation condition is that a value obtained by subtracting demand power (power consumption amount Q) from supplied power (total value of generated power amount P G ′ and grid reference power amount P SREF ) is equal to or less than a predetermined threshold TH B1. (Formula (D1)). That is, the first cancellation condition is that the absolute value of the difference between the supplied power (the total amount of the generated power amount P G ′ and the grid reference power amount P SREF ) and the demand power (power consumption amount Q) is a predetermined threshold TH. B1 or less.
 所定の閾値THB1は、ハンチング抑制制御CNT2の実行による供給電力と需要電力との差の変化の幅より小さい。すなわち、ハンチング抑制制御CNT2が行われることで、発電電力量PGがΔPGだけ減少するから、供給電力と需要電力との差の変化の幅はΔPGとなる。 Predetermined threshold value TH B1 is smaller than the width of change in the supply power and the power demand by the execution of the hunting suppression control CNT 2. That is, by hunting suppression control CNT 2 is performed, since the generated power P G is reduced by [Delta] P G, the width of change in the difference between the power supply and demand electric power becomes [Delta] P G.
 なお、第1解除条件は、供給電力(発電電力量PG’と系統用基準電力量PSREFとの合計値)と需要電力(消費電力量Q)との差の絶対値が所定の閾値THB1以下である状態が所定時間継続したことであってもよい。また、第1解除条件は、供給電力と需要電力との差が正また負である状態が所定時間継続したことであってもよい。 The first release condition is that the absolute value of the difference between the supplied power (the total amount of the generated power amount P G ′ and the grid reference power amount P SREF ) and the demand power (power consumption amount Q) is a predetermined threshold TH. It may be that the state of B1 or less continues for a predetermined time. Further, the first release condition may be that a state where the difference between the supplied power and the demand power is positive or negative continues for a predetermined time.
 また、制御部23は、ハンチング抑制制御CNT2の実行中に供給電力(発電電力量PG’と系統用基準電力量PSREFとの合計値)と需要電力(消費電力量Q)との差が解除条件(第2解除条件)を満たした場合に、ハンチング抑制制御CNT2を終了するように構成される。第2解除条件は、供給電力(発電電力量PG’と系統用基準電力量PSREFとの合計値)から需要電力(消費電力量Q)を引いた値が所定の閾値THB2以上であることである(式(D2))。すなわち、第2解除条件は、供給電力(発電電力量PG’と系統用基準電力量PSREFとの合計値)と需要電力(消費電力量Q)との差の絶対値が所定の閾値THB2以上であることである。 In addition, the control unit 23 determines the difference between the supply power (the total value of the generated power amount P G ′ and the grid reference power amount P SREF ) and the demand power (power consumption amount Q) during the execution of the hunting suppression control CNT 2. Is configured to end the hunting suppression control CNT 2 when the release condition (second release condition) is satisfied. The second cancellation condition is that a value obtained by subtracting demand power (power consumption Q) from supplied power (total value of generated power P G ′ and grid reference power P SREF ) is equal to or greater than a predetermined threshold value TH B2 (Formula (D2)). That is, the second cancellation condition is that the absolute value of the difference between the supplied power (the total amount of the generated power amount P G ′ and the grid reference power amount P SREF ) and the demand power (power consumption amount Q) is a predetermined threshold TH. B2 or higher.
 所定の閾値THB2は、ハンチング抑制制御CNT2の実行による供給電力と需要電力との差の変化の幅より大きい。すなわち、ハンチング抑制制御CNT2が行われることで、発電電力量PGがΔPGだけ減少するから、供給電力と需要電力との差の変化の幅はΔPGとなる。 The predetermined threshold value TH B2 is larger than the width of change in the difference between the supplied power and the demand power due to the execution of the hunting suppression control CNT 2 . That is, by hunting suppression control CNT 2 is performed, since the generated power P G is reduced by [Delta] P G, the width of change in the difference between the power supply and demand electric power becomes [Delta] P G.
 なお、第2解除条件は、供給電力(発電電力量PG’と系統用基準電力量PSREFとの合計値)と需要電力(消費電力量Q)との差の絶対値が所定の閾値THB2以上である状態が所定時間継続したことであってもよい。 The second release condition is that the absolute value of the difference between the supplied power (the total amount of the generated power amount P G ′ and the grid reference power amount P SREF ) and the demand power (power consumption amount Q) is a predetermined threshold TH. The state of B2 or more may be continued for a predetermined time.
 また、系統入力定量制御に関し、制御部23は、抑制制御CNT2の実行期間中において、電流値IG及び電圧値VGに基づき又は電流値IGINT及び電圧値VINTに基づき、上述の電力量PG’’を求める。そして、制御部23は、絶対値|PG’’+PSREF-Q|が正である状態が所定時間以上継続して観測された場合に、系統入力定量制御に対応する第3解除条件が充足したと判断する。 Further, regarding the system input quantitative control, the control unit 23 performs the above-described power based on the current value I G and the voltage value V G or based on the current value I GINT and the voltage value V INT during the execution period of the suppression control CNT 2. Determine the quantity P G ″. Then, the control unit 23 satisfies the third release condition corresponding to the system input quantitative control when a state where the absolute value | P G ″ + P SREF −Q | is positive is continuously observed for a predetermined time or more. Judge that
 すなわち、制御部23は、ハンチング抑制制御CNT2の実行中に電源電力(系統用基準電力量PSREF)と既定値(仮想発電電力量PG’’)との合計値と需用電力(消費電力量Q)との差が解除条件(第3解除条件)を満たした場合に、ハンチング抑制制御CNT2を終了するように構成される。 That is, during execution of the hunting suppression control CNT 2 , the control unit 23 calculates the total value of the power source power (system reference power amount P SREF ) and the predetermined value (virtual power generation power amount P G ″) and the demand power (consumption). When the difference from the electric energy Q) satisfies the release condition (third release condition), the hunting suppression control CNT 2 is configured to end.
 第3解除条件は、電源電力(系統用基準電力量PSREF)と既定値(仮想発電電力量PG’’)との合計値と需用電力(消費電力量Q)との差が正又は負である状態が所定時間(所定の第2時間)継続したことである。 The third release condition is that the difference between the total value of the power source power (system reference power amount P SREF ) and the predetermined value (virtual power generation amount P G ″) and the demand power (power consumption amount Q) is positive or That is, the negative state has continued for a predetermined time (predetermined second time).
 なお、第3解除条件は、電源電力(系統用基準電力量PSREF)と既定値(仮想発電電力量PG’’)との合計値と需用電力(消費電力量Q)との差の絶対値が閾値以上であること、または、差の絶対値が閾値以上である状態が所定時間(所定の第1時間)継続したことであってもよい。 The third release condition is that the difference between the total value of the power source power (system reference power amount P SREF ) and the predetermined value (virtual power generation amount P G ″) and the demand power (power consumption amount Q). It may be that the absolute value is equal to or greater than the threshold value, or that the state where the absolute value of the difference is equal to or greater than the threshold value continues for a predetermined time (predetermined first time).
 系統出力定量制御又は系統入力定量制御の実行時において抑制制御CNT2が実行された際、制御部23は、蓄電側ハンチング検出処理HD1Cを実行し、蓄電側ハンチング現象の発生が所定回数以上観測されたときに第4解除条件が充足したと判断すると良い。所定回数は1以上の任意の回数であって良い。 When the suppression control CNT 2 is executed when the system output quantitative control or the system input quantitative control is executed, the control unit 23 executes the storage side hunting detection process HD 1C and observes the occurrence of the storage side hunting phenomenon for a predetermined number of times or more. It is good to determine that the fourth release condition has been satisfied. The predetermined number of times may be an arbitrary number of 1 or more.
 すなわち、系統出力定量制御および系統入力定量制御に対応する第4解除条件は、充電定量制御について上述した第4解除条件と同じである。すなわち、制御部23は、ハンチング抑制制御CNT2の実行中に、入力処理と出力処理との切り替え動作が行われたか否かを判定し、切り替え動作が所定回数行われたと判定すると、ハンチング抑制制御CNT2を終了するように構成される。 That is, the 4th cancellation conditions corresponding to system output fixed control and system input fixed control are the same as the 4th cancellation conditions mentioned above about charge fixed control. That is, the control unit 23 determines whether or not the switching operation between the input process and the output process has been performed during the execution of the hunting suppression control CNT 2 , and determines that the switching operation has been performed a predetermined number of times. Configured to terminate CNT 2 .
 3. 動作フローチャート
 次に、図24を参照して電力変換装置2の動作の流れを説明する。図24は、上述の各種定量制御に注目した、電力変換装置2の動作フローチャートである。ステップS22及びS23は、図19のステップS12及びS13と同じものである。
3. Operation Flowchart Next, an operation flow of the power conversion device 2 will be described with reference to FIG. FIG. 24 is an operation flowchart of the power conversion apparatus 2 focusing on the above-described various quantitative controls. Steps S22 and S23 are the same as steps S12 and S13 in FIG.
 まず、ステップS21において、制御部23は、何れかの定量制御を実行開始すると共にMPPT制御も実行開始する。 First, in step S21, the control unit 23 starts executing any quantitative control and also starts executing MPPT control.
 その後、ステップS22において、制御部23は、入出力電力情報に基づき、上述のハンチング検出処理又は予測処理を行う。 Thereafter, in step S22, the control unit 23 performs the above-described hunting detection process or prediction process based on the input / output power information.
 続くステップS23において、制御部23は、ハンチング検出判定又は予測判定を成したかをチェックし、何れかの判定を成した場合にはステップS24への移行を発生させて、ハンチング抑制制御CNT2の実行を開始する(即ちMPPT制御が停止される)。 In subsequent step S23, the control unit 23 checks whether the hunting detection determination or the prediction determination is made, and if any of the determinations is made, the control unit 23 shifts to step S24 to execute the hunting suppression control CNT 2 . Execution is started (ie, MPPT control is stopped).
 ハンチング抑制制御CNT2の実行開始後、制御部23は、ハンチング抑制制御CNT2の解除可否判定処理J2を行う(ステップS25)。 After the execution of the hunting suppression control CNT 2 is started, the control unit 23 performs a release permission determination process J 2 for the hunting suppression control CNT 2 (step S25).
 制御部23は、第1~第4解除条件の何れかが満たされるまでハンチング抑制制御CNT2の実行を継続し(ステップS25及びS26)、解除条件の充足が確認されるとハンチング抑制制御CNT2の実行を解除して(ステップS27)ステップS22に戻る。 Control unit 23, until one of the first to fourth release condition is satisfied to continue execution of the hunting suppression control CNT 2 (steps S25 and S26), when it is confirmed fulfillment of releasing condition hunting suppression control CNT 2 Is canceled (step S27), and the process returns to step S22.
 上述したように、ハンチング抑制制御CNT2の実行の解除によってMPPT制御が再開される。 As described above, MPPT control is resumed by the release of the execution of the hunting suppression control CNT 2.
 4. 本実施形態の電力変換装置2の特徴
 以上述べた本実施形態の電力変換装置2は、以下の第1の特徴を有する。第1の特徴では、電力変換装置2は、電力変換回路20と、制御部23と、を備える。電力変換回路20は、充電及び放電が可能な蓄電装置3に接続される蓄電側回路(電力変換部21B)、発電を行って発電電力を出力する発電装置4に接続される発電側回路(電力変換部21G)及び電力系統5に接続される系統側回路(電力変換部21S)を有する。電力変換回路20は、電力変換を介して蓄電装置3、発電装置4及び電力系統5間における送電及び受電を行うように構成される。制御部23は、電力変換回路20を制御することで送電及び受電を制御するように構成される。制御部23は、発電電力の不足分又は余剰分を電力変換回路20及び電力系統5間の電力の入出力にて吸収しつつ、発電装置4の発電電力を用いて蓄電装置3を一定の第1基準条件下で充電する、又は、発電装置4の発電電力及び蓄電装置3の放電電力を用いて電力変換回路20に接続された負荷及び二次電池の少なくとも一方に電力供給を行うべく蓄電装置3を一定の第2基準条件下で放電させる定量制御を実行する。定量制御において、電力変換回路20及び電力系統5間の電力の入出力の切り替えが所定時間内に所定回数以上検出されたとき、或いは、発電装置4の発電電力量又は発電電力量に応じた値と第1基準条件又は第2基準条件とに基づいて切り替えの発生が予測されたとき、制御部23は、発電装置4の電力点の変更を介して発電装置4の発電電力量を変化させることで切り替えを抑制する抑制制御を実行する。
4). Characteristics of Power Converter 2 of the Present Embodiment The power converter 2 of the present embodiment described above has the following first characteristics. In the first feature, the power conversion device 2 includes a power conversion circuit 20 and a control unit 23. The power conversion circuit 20 includes a power storage side circuit (power conversion unit 21B) connected to the power storage device 3 that can be charged and discharged, and a power generation side circuit (power) connected to the power generation device 4 that generates power and outputs generated power. It has a system side circuit (power conversion unit 21S) connected to the conversion unit 21G) and the power system 5. The power conversion circuit 20 is configured to perform power transmission and reception between the power storage device 3, the power generation device 4, and the power system 5 through power conversion. The control unit 23 is configured to control power transmission and power reception by controlling the power conversion circuit 20. The control unit 23 absorbs the shortage or surplus of the generated power at the input / output of the power between the power conversion circuit 20 and the power system 5 and uses the generated power of the power generation device 4 to keep the power storage device 3 at a certain level. A power storage device that is charged under one reference condition or that supplies power to at least one of a load and a secondary battery connected to the power conversion circuit 20 using the generated power of the power generation device 4 and the discharge power of the power storage device 3 Quantitative control for discharging 3 under a constant second reference condition is executed. In the quantitative control, when switching of power input / output between the power conversion circuit 20 and the power system 5 is detected a predetermined number of times within a predetermined time, or a value corresponding to the generated power amount or the generated power amount of the power generation device 4 When the occurrence of switching is predicted based on the first reference condition or the second reference condition, the control unit 23 changes the power generation amount of the power generation device 4 through the change of the power point of the power generation device 4. The suppression control that suppresses the switching is executed.
 本実施形態の電力変換装置2は、以下の第2の特徴を有する、以下の第2の特徴では、電力変換装置2は、電力変換装置2は、電力変換回路20と、制御部23と、を備える。電力変換回路20は、充電及び放電が可能な蓄電装置3に接続される蓄電側回路(電力変換部21B)、発電を行って発電電力を出力する発電装置4に接続される発電側回路(電力変換部21G)及び電力系統5に接続される系統側回路(電力変換部21S)を有する。電力変換回路20は、電力変換を介して蓄電装置3、発電装置4及び電力系統5間における送電及び受電を行うように構成される。制御部23は、電力変換回路20を制御することで送電及び受電を制御するように構成される。制御部23は、発電電力の不足分又は余剰分を蓄電装置3の充電又は放電にて吸収しつつ、発電装置4の発電電力を用いて電力変換回路20から前記電力系統5へ一定の第1基準条件下で電力を出力する、又は、発電電力と電力系統5から電力変換回路20への入力電力とを用いて電力変換回路20に接続された負荷及び二次電池の少なくとも一方に電力供給を行うべく電力系統5から電力変換回路20へ一定の第2基準条件で電力を入力する定量制御を実行する。定量制御において、電力変換回路20及び蓄電装置3間の電力の入出力の切り替えが所定時間内に所定回数以上検出されたとき、発電装置4の発電電力量又は発電電力量に応じた値と第1基準条件又は第2基準条件とに基づいて切り替えの発生が予測されたとき、制御部23は、発電装置4の電力点の変更を介して発電装置4の発電電力量を変化させることで切り替えを抑制する抑制制御を実行する。 The power conversion device 2 of the present embodiment has the following second feature. In the following second feature, the power conversion device 2, the power conversion device 2, the power conversion circuit 20, the control unit 23, Is provided. The power conversion circuit 20 includes a power storage side circuit (power conversion unit 21B) connected to the power storage device 3 that can be charged and discharged, and a power generation side circuit (power) connected to the power generation device 4 that generates power and outputs generated power. It has a system side circuit (power conversion unit 21S) connected to the conversion unit 21G) and the power system 5. The power conversion circuit 20 is configured to perform power transmission and reception between the power storage device 3, the power generation device 4, and the power system 5 through power conversion. The control unit 23 is configured to control power transmission and power reception by controlling the power conversion circuit 20. The control unit 23 absorbs the shortage or surplus of the generated power by charging or discharging the power storage device 3, and uses the generated power of the power generation device 4 to transfer the constant first power from the power conversion circuit 20 to the power system 5. Output power under reference conditions, or supply power to at least one of a load and a secondary battery connected to the power conversion circuit 20 using generated power and input power from the power system 5 to the power conversion circuit 20 Quantitative control for inputting power from the power system 5 to the power conversion circuit 20 under a constant second reference condition is performed. In the quantitative control, when switching of power input / output between the power conversion circuit 20 and the power storage device 3 is detected a predetermined number of times or more within a predetermined time, the generated power amount of the power generation device 4 or a value corresponding to the generated power amount When occurrence of switching is predicted based on the first reference condition or the second reference condition, the control unit 23 performs switching by changing the power generation amount of the power generation device 4 through a change in the power point of the power generation device 4. The suppression control which suppresses is performed.
 本実施形態の電力変換装置2は、第1または第2の特徴に加えて、以下の第3の特徴を有する。第3の特徴では、制御部23は、検出又は予測が成される前、発電装置4の発電電力量を最大化させる第1電力点で発電装置4を動作させるべく発電側回路(電力変換部21G)を制御し、検出又は予測が成された後、発電装置4の電力点が第1電力点と異なる第2電力点に変更されるように発電側回路(電力変換部21G)を制御することで抑制制御を実現する。 The power conversion device 2 of the present embodiment has the following third feature in addition to the first or second feature. In the third feature, the control unit 23 generates a power generation circuit (power conversion unit) to operate the power generation device 4 at the first power point that maximizes the amount of power generated by the power generation device 4 before detection or prediction is performed. 21G), and after detection or prediction is performed, the power generation side circuit (power conversion unit 21G) is controlled such that the power point of the power generation device 4 is changed to a second power point different from the first power point. In this way, suppression control is realized.
 本実施形態の電力変換装置2は、第1~第3の特徴のいずれか1つに加えて、以下の第4の特徴を有する。第4の特徴では、制御部23は、抑制制御の実行期間中において、発電装置4の発電電力量又は発電電力量に応じた値と、第1基準条件又は第2基準条件とに基づき、所定の解除条件が満たされると判断した場合に、抑制制御の実行を解除する。 The power conversion device 2 of the present embodiment has the following fourth feature in addition to any one of the first to third features. In the fourth feature, the control unit 23 determines the predetermined amount based on the value of the generated power amount or the generated power amount of the power generation device 4 and the first reference condition or the second reference condition during the execution period of the suppression control. When it is determined that the release condition is satisfied, the execution of the suppression control is released.
 本実施形態の電力変換装置2は、第1~第3の特徴のいずれか1つに加えて、以下の第5の特徴を有する。第5の特徴では、制御部23は、抑制制御の実行期間中において、切り替えが検出されたとき抑制制御の実行を解除する。 The power conversion device 2 of the present embodiment has the following fifth feature in addition to any one of the first to third features. In the fifth feature, the control unit 23 cancels the execution of the suppression control when switching is detected during the execution period of the suppression control.
 なお、電力変換装置2は、第1の特徴と第2の特徴との少なくとも1つを有していればよい。第3~第5の特徴は任意の特徴である。 In addition, the power converter device 2 should just have at least 1 of a 1st characteristic and a 2nd characteristic. The third to fifth features are arbitrary features.
 以上述べたように、第2実施形態に係るハンチング抑制制御CNT2によっても、第1実施形態と同様、電力系統5の安定性に影響を与えるような系統側ハンチング現象又は蓄電装置3に悪影響を与えかねない蓄電側ハンチング現象を適切に抑制することが可能である。したがって、本実施形態によれば、ハンチング現象の抑制に寄与する電力変換装置2を提供することが可能である。 As described above, the hunting suppression control CNT 2 according to the second embodiment also has an adverse effect on the system-side hunting phenomenon or the power storage device 3 that affects the stability of the power system 5 as in the first embodiment. It is possible to appropriately suppress the storage-side hunting phenomenon that may be applied. Therefore, according to the present embodiment, it is possible to provide the power conversion device 2 that contributes to suppression of the hunting phenomenon.
 また、第2実施形態におけるハンチング抑制制御CNT2は定量制御に影響を与えないため、ハンチング抑制制御CNT2の実行期間中も所望通りの定量制御を継続できる。但し、第2実施形態のハンチング抑制制御CNT2は、発電電力量の低下を伴う。この点、ハンチング抑制制御CNT2の実行時に解除条件の充足有無を監視し、その実行を解除してもハンチング現象が発生しない又は発生しにくいと判断されたときにハンチング抑制制御CNT2を解除する方法を採用することにより、ハンチング現象を極力回避しながら、なるだけ多くの発電電力量を発電装置4から引き出すことができる。 In addition, since the hunting suppression control CNT 2 in the second embodiment does not affect the quantitative control, the desired quantitative control can be continued during the execution period of the hunting suppression control CNT 2 . However, the hunting suppression control CNT 2 of the second embodiment is accompanied by a decrease in the amount of generated power. In this regard, whether or not the release condition is satisfied is monitored when the hunting suppression control CNT 2 is executed, and the hunting suppression control CNT 2 is released when it is determined that the hunting phenomenon does not occur or hardly occurs even when the execution is canceled. By adopting the method, it is possible to extract as much generated power as possible from the power generator 4 while avoiding the hunting phenomenon as much as possible.
 尚、ハンチング予測処理を用いずにハンチング検出処理を用いる場合は、ハンチング現象の発生を検出した後にハンチング抑制制御が実行されるため、多少のハンチング現象の発生を許容することになる。これに対し、ハンチング予測処理を用いるようにすれば、ハンチング現象の発生を完全に或いは殆ど完全に回避することができる。但し、ハンチング予測処理を用いる場合は、ハンチング検出処理を用いる場合と比べて、MPPT制御を行う時間が短くなる。ハンチング現象抑制と発電電力量の、どちらを優先するかに応じて、ハンチング検出処理及び予測処理のどちらを実行するかを設定すれば良い。 Note that, when the hunting detection process is used without using the hunting prediction process, the hunting suppression control is executed after the occurrence of the hunting phenomenon is detected, so that some hunting phenomenon is allowed to occur. On the other hand, if the hunting prediction process is used, the occurrence of the hunting phenomenon can be completely or almost completely avoided. However, when the hunting prediction process is used, the time for performing the MPPT control is shorter than when the hunting detection process is used. What is necessary is just to set which of a hunting detection process and a prediction process is performed according to which priority is given to hunting phenomenon suppression or generated electric power amount.
 また、制御部23は、電流指令値IG *の代わりに電圧値VGを指定する電圧指令値VG *を電力変換部21Gに与えるようにしても良い。この場合、制御部23は、電力点401に対応する電圧指令値VG *を電力変換部21Gに与えることでMPPT制御を実現可能であり、抑制制御CNT2を行う場合には、電力点402又は403に対応する電圧指令値VG *を電力変換部21Gに与えればよい。 Further, the control unit 23 may supply the power conversion unit 21G with a voltage command value V G * that specifies the voltage value V G instead of the current command value I G * . In this case, the control unit 23 can realize the MPPT control by giving the voltage command value V G * corresponding to the power point 401 to the power conversion unit 21G, and when performing the suppression control CNT 2 , the power point 402 Alternatively, the voltage command value V G * corresponding to 403 may be given to the power conversion unit 21G.
 (第3実施形態)
 1. 第3実施形態の電力変換装置2の構成
 本実施形態の電力変換装置2は、本発明に係る第1,第11~第18、第23~第28の形態の電力変換装置2に関連する。
(Third embodiment)
1. Configuration of Power Converter 2 of Third Embodiment A power converter 2 of this embodiment is related to the power converters 2 of the first, eleventh to eighteenth and twenty-third to twenty-eighth aspects of the present invention.
 以下、本発明の第3実施形態について説明する。第3実施形態に係る電力供給システム1には、2つの蓄電装置3が設けられており、これに対応して、第3実施形態に係る電力変換回路20には蓄電装置用の電力変換部21Bが2つ設けられている。蓄電装置の特性、構成及び動作を2つの蓄電装置3間で異ならせることも可能であると共に、電力変換部の特性、構成及び動作を2つの電力変換部21B間で異ならせることも可能であるが、ここでは、説明の簡略化上、2つの蓄電装置3の夫々が、第1実施形態で述べた蓄電装置3と同じ特性及び構成を有すると共に第1実施形態で述べた蓄電装置3と同じ動作を実現し、且つ、2つの電力変換部21Bの夫々が、第1実施形態で述べた電力変換部21Bと同じ特性及び構成を有すると共に第1実施形態で述べた電力変換部21Bと同じ動作を実現するものとする。制御部23は、2つの電力変換部21Bの夫々に対して、第1実施形態で述べた電力変換部21Bに対する制御を成すことができる。 Hereinafter, a third embodiment of the present invention will be described. The power supply system 1 according to the third embodiment is provided with two power storage devices 3, and correspondingly, the power conversion circuit 20 according to the third embodiment includes a power conversion unit 21B for the power storage device. Are provided. The characteristics, configuration and operation of the power storage device can be made different between the two power storage devices 3, and the characteristics, configuration and operation of the power conversion unit can be made different between the two power conversion units 21B. However, here, for simplification of explanation, each of the two power storage devices 3 has the same characteristics and configuration as the power storage device 3 described in the first embodiment and is the same as the power storage device 3 described in the first embodiment. Operation is realized, and each of the two power conversion units 21B has the same characteristics and configuration as the power conversion unit 21B described in the first embodiment and the same operation as the power conversion unit 21B described in the first embodiment Shall be realized. The control unit 23 can control the power conversion unit 21B described in the first embodiment for each of the two power conversion units 21B.
 2つの蓄電装置3を備えた第3実施形態に係る電力供給システムを符号1aによって参照し、2つの電力変換部21Bを備えた第3実施形態に係る電力変換回路を符号20aによって参照し、電力変換回路20aを備えた第3実施形態に係る電力変換装置を符号2aによって参照する。 The power supply system according to the third embodiment including two power storage devices 3 is referred to by reference numeral 1a, the power conversion circuit according to the third embodiment including two power conversion units 21B is referred to by reference numeral 20a, The power conversion device according to the third embodiment including the conversion circuit 20a is referred to by reference numeral 2a.
 図25は、第3実施形態に係る電力供給システム1aの概略全体構成図である。以下では、上記2つの蓄電装置3を蓄電装置3及び3aと呼ぶと共に、上記2つの電力変換部21Bを電力変換部21B及び21Baと呼ぶ。 FIG. 25 is a schematic overall configuration diagram of a power supply system 1a according to the third embodiment. Hereinafter, the two power storage devices 3 are referred to as power storage devices 3 and 3a, and the two power conversion units 21B are referred to as power conversion units 21B and 21Ba.
 図1の電力変換回路20及び電力変換装置2に電力変換部21Baを追加することで図25の電力変換回路20a及び電力変換装置2aが形成される。電力変換部21Baは、電力変換回路20a内に設けられる。 1 is added to the power conversion circuit 20 and the power conversion device 2 in FIG. 1 to form the power conversion circuit 20a and the power conversion device 2a in FIG. The power conversion unit 21Ba is provided in the power conversion circuit 20a.
 図1の電力供給システム1において、電力変換装置2を電力変換装置2aに置き換え且つ蓄電装置3aを追加することで電力供給システム1aが形成される。第1又は第2実施形態の記載を第3実施形態に適用する場合、第1又は第2実施形態の説明文中における符号“1”、“2”及び“20”は、夫々、“1a”、“2a”及び“20a”に読み替えられる。 In the power supply system 1 of FIG. 1, the power supply system 1a is formed by replacing the power conversion device 2 with the power conversion device 2a and adding the power storage device 3a. When the description of the first or second embodiment is applied to the third embodiment, the reference numerals “1”, “2”, and “20” in the description of the first or second embodiment are “1a”, It is read as “2a” and “20a”.
 本実施形態の電力供給装置2(2a)は、電力変換回路20(20a)と、制御部23と、を備える。 The power supply device 2 (2a) of the present embodiment includes a power conversion circuit 20 (20a) and a control unit 23.
 電力変換回路20aは、電力供給装置から電力を受け取る受電機能と、電力需要装置に電力を供給する送電機能と、電力補助装置に電力を供給する出力処理と電力補助装置から電力を取得する入力処理とを選択的に実行する入出力選択機能と、制御部23からの指示に応じて電力供給装置から受け取る電力である供給電力と電力需要装置に供給する電力である需要電力との少なくとも一方を調整する調整機能と、を有する。 The power conversion circuit 20a includes a power receiving function for receiving power from the power supply device, a power transmission function for supplying power to the power demand device, an output process for supplying power to the power auxiliary device, and an input process for acquiring power from the power auxiliary device. And adjusting at least one of an input / output selection function for selectively executing and supply power that is power received from the power supply device and demand power that is power supplied to the power demanding device in accordance with an instruction from the control unit 23 An adjustment function.
 制御部23は、供給電力を需要電力と比較し、供給電力が需要電力より多ければ供給電力の余剰分が電力補助装置に供給されるように電力変換回路20に出力処理を実行させ、供給電力が需要電力より少なければ供給電力の不足分が電力補助装置からの電力で補われるように電力変換回路20に入力処理を実行させるように構成される。 The control unit 23 compares the supplied power with the demand power, and if the supplied power is greater than the demand power, causes the power conversion circuit 20 to execute an output process so that a surplus of the supplied power is supplied to the power auxiliary device. Is less than the demand power, the power conversion circuit 20 is configured to execute the input process so that the shortage of the supplied power is compensated by the power from the power auxiliary device.
 制御部23は、電力変換回路20でハンチング現象が発生するイベントが起きたか否かを判定し、イベントが起きたと判定するとハンチング抑制制御CNT3を実行するように構成される。制御部23は、ハンチング抑制制御CNT3では、供給電力と需要電力との差が大きくなるように電力変換回路20に指示を与えるように構成される。 Control unit 23 determines whether an event has occurred that hunting occurs in the power conversion circuit 20, configured to perform hunting suppression control CNT 3 determines that the event has occurred. In the hunting suppression control CNT 3 , the control unit 23 is configured to give an instruction to the power conversion circuit 20 so that the difference between the supplied power and the demand power becomes large.
 本実施形態では、電力変換回路20aは、第2出力処理と第2入力処理とを選択的に実行する第2入出力選択機能を有する。電力変換回路20aは、第2出力処理では、第2電力補助装置に電力を供給することで第2電力補助装置を電力需要装置の一部として用いて需要電力を増やすように構成される。電力変換回路20aは、第2入力処理では、第2電力補助装置から電力を取得することで第2電力補助装置を電力供給装置の一部として用いて供給電力を増やすように構成される。 In the present embodiment, the power conversion circuit 20a has a second input / output selection function for selectively executing the second output process and the second input process. In the second output process, the power conversion circuit 20a is configured to increase power demand by supplying power to the second power auxiliary device and using the second power auxiliary device as part of the power demand device. In the second input process, the power conversion circuit 20a is configured to acquire power from the second power auxiliary device and increase the supply power by using the second power auxiliary device as a part of the power supply device.
 第2電力補助装置は、第2蓄電装置3aである。電力変換回路20aは、第2出力処理では第2蓄電装置3aを充電し、第2入力処理では第2蓄電装置3aを放電させるように構成される。 The second power auxiliary device is the second power storage device 3a. The power conversion circuit 20a is configured to charge the second power storage device 3a in the second output process and to discharge the second power storage device 3a in the second input process.
 本実施形態では、ハンチング抑制制御CNT3は、電力変換回路20aに第2出力処理を実行させる第1ハンチング抑制制御CNT3Aと、電力変換回路20aに第2入力処理を実行させる第2ハンチング抑制制御CNT3Bと、を含む。 In the present embodiment, the hunting suppression control CNT 3 includes a first hunting suppression control CNT 3A that causes the power conversion circuit 20a to execute a second output process, and a second hunting suppression control that causes the power conversion circuit 20a to execute a second input process. CNT 3B .
 制御部23は、イベントが起きたと判定すると、供給電力と需要電力との差が大きくなるように第1ハンチング抑制制御CNT3Aと第2ハンチング抑制制御CNT3Bとのいずれか一方を実行するように構成される。 When the control unit 23 determines that an event has occurred, the control unit 23 executes one of the first hunting suppression control CNT 3A and the second hunting suppression control CNT 3B so that the difference between the supplied power and the demand power becomes large. Composed.
 例えば、制御部23は、イベントが起きたと判定した場合に、第2蓄電装置3aの電力の残量を所定値と比較するように構成される。制御部23は、残量が所定値未満であれば第1ハンチング抑制制御CNT3Aを実行し、残量が所定値以上であれば第2ハンチング抑制制御CNT3Bを実行するように構成される。 For example, when it is determined that an event has occurred, the control unit 23 is configured to compare the remaining amount of power of the second power storage device 3a with a predetermined value. The controller 23 is configured to execute the first hunting suppression control CNT 3A if the remaining amount is less than the predetermined value, and to execute the second hunting suppression control CNT 3B if the remaining amount is equal to or greater than the predetermined value.
 電力変換部(第4電力変換部)21Baは、電力変換部21Bの電力端子TB1及び電力端子TB2に対応する、電力端子(外部電力端子)TB1a及び電力端子(内部電力端子)TB2aを有する。すなわち、電力変換部21Baは、(第4)外部電力端子TB1a及び(第4)内部電力端子TB2aを有し、第2蓄電装置3aに接続される。 Power conversion unit (fourth power conversion unit) 21Ba corresponds to the power terminal T B1 and power terminal T B2 of the power conversion unit 21B, the power terminals (external power terminal) T B1a and power terminals (internal power terminal) T B2a Have That is, the power conversion unit 21Ba has a (fourth) external power terminal T B1a and (4) the internal power terminal T B2a, is connected to the second power storage device 3a.
 蓄電装置3aは、電力端子TB1aにて電力変換部21Baに接続され、自身の放電電力を電力変換部21Baに出力することができると共に、電力変換部21Baから充電電力の供給を受けたときには充電される。 Power storage device 3a is connected to the power conversion unit 21Ba by the power terminal T B1a, it is possible to output its discharge power to the power conversion unit 21Ba, charging when the power conversion unit 21Ba supplied with the charging power Is done.
 電力端子(内部電力端子)TB2a、TB2、TG2及びTS2は、中間配線22によって電力変換回路20a内で共通接続されている。 The power terminals (internal power terminals) T B2a , T B2 , T G2, and T S2 are commonly connected in the power conversion circuit 20 a by the intermediate wiring 22.
 電力変換回路20aは、制御部23による制御の下、蓄電装置3、蓄電装置3a、発電装置4及び電力系統5間における送電及び受電を行い、この送電及び受電の際、必要な電力変換を行う。 The power conversion circuit 20a performs power transmission and power reception among the power storage device 3, the power storage device 3a, the power generation device 4, and the power system 5 under the control of the control unit 23, and performs necessary power conversion at the time of power transmission and power reception. .
 電力変換部21Baは、電力端子TB1aを介して蓄電装置3aから受けた直流の放電電力を他の直流電力に変換して該他の直流電力を電力端子TB2aから出力する放電用電力変換と、電力端子TB2aを介して受けた直流電力を他の直流電力に変換して該他の直流電力を電力端子TB1aを介し充電電力として蓄電装置3aに出力する充電用電力変換と、を実行可能である。 The power conversion unit 21Ba converts the DC discharge power received from the power storage device 3a through the power terminal T B1a into another DC power and outputs the other DC power from the power terminal T B2a. , Converting the DC power received via the power terminal T B2a into another DC power and performing the power conversion for charging to output the other DC power to the power storage device 3a as the charging power via the power terminal T B1a Is possible.
 つまり、電力変換部21Baは、第2出力処理(第2充電用電力変換)と第2入力処理(第2放電用電力変換)とを選択的に実行する第2入出力選択機能を有する。 That is, the power conversion unit 21Ba has a second input / output selection function that selectively executes the second output process (second charge power conversion) and the second input process (second discharge power conversion).
 また、電力変換部21Baは、制御部23からの指示に応じて、第2電力補助装置としての第2蓄電装置3aから受け取る電力である供給電力(放電電力)と第2電力補助装置としての第2蓄電装置3aに供給する電力である需要電力(充電電力)とを調整する調整機能を有する。 Further, the power conversion unit 21Ba, in response to an instruction from the control unit 23, supplies power (discharge power) that is power received from the second power storage device 3a as the second power auxiliary device and the second power auxiliary device as the second power auxiliary device. 2 It has a function of adjusting demand power (charging power) that is power supplied to the power storage device 3a.
 すなわち、電力変換部21Baは、制御部23からの指示に応じて、第2蓄電装置3aから受け取る電力の量である供給電力量(放電電力量)と第2蓄電装置3aに供給する電力の量である需要電力量(充電電力量)とを調整する。 That is, the power conversion unit 21Ba responds to an instruction from the control unit 23 and supplies power (discharge power) that is the amount of power received from the second power storage device 3a and the amount of power supplied to the second power storage device 3a. The amount of demand power (charging power amount) is adjusted.
 したがって、電力変換部21Baは、制御部23から放電電力(放電電力量)の目標値を受け取ると、放電電力(放電電力量)を目標値に調整する。また、電力変換部21Baは、制御部23から充電電力(充電電力量)の目標値を受け取ると、充電電力(充電電力量)を目標値に調整する。 Therefore, when receiving the target value of the discharge power (discharge power amount) from the control unit 23, the power conversion unit 21Ba adjusts the discharge power (discharge power amount) to the target value. Further, when receiving the target value of the charging power (charging power amount) from the control unit 23, the power conversion unit 21Ba adjusts the charging power (charging power amount) to the target value.
 電力変換部21B、21G及び21Sの動作は、第1実施形態で述べた通りである。但し、蓄電装置3a及び電力変換部21Baの追加に伴い、蓄電装置3、発電装置4又は電力系統5からの電力は蓄電装置3aに送られることもあるし、蓄電装置3aからの電力は蓄電装置3、電力系統5又は直流負荷8に送られることもある。 The operation of the power converters 21B, 21G, and 21S is as described in the first embodiment. However, with the addition of the power storage device 3a and the power conversion unit 21Ba, the power from the power storage device 3, the power generation device 4, or the power system 5 may be sent to the power storage device 3a, and the power from the power storage device 3a is stored in the power storage device. 3. It may be sent to the electric power system 5 or the DC load 8.
 また、第3実施形態において、制御部23が取得する入出力電力情報は、第1実施形態で述べた各値に加えて、電流センサ及び電圧センサの測定結果に基づく電流値IBa、電圧値VBa及び電流値IBINTaを含み、下記式(1g)及び(1h)によって表される電力量PBa及びPBINTaを含みうる。 In the third embodiment, the input / output power information acquired by the control unit 23 includes the current value I Ba and the voltage value based on the measurement results of the current sensor and the voltage sensor in addition to the values described in the first embodiment. It includes V Ba and the current value I BINTa, and may include electric power amounts P Ba and P BINTa represented by the following formulas (1g) and (1h).
 例えば、電力変換装置2aは、外部電力端子TB1,TB1a,TG1,TS1にそれぞれ流れる電流の値IB,IBa,IG,ISを測定する複数の電流センサ(図示せず)と、内部電力端子TB2,TB2a,TG2,TS2にそれぞれ流れる電流の値IBINT,IBINTa,IGINT,ISINTを測定する複数の電流センサ(図示せず)と、を備える。 For example, the power converter 2a includes a plurality of current sensors (not shown) that measure values I B , I Ba , I G , and I S of currents flowing through the external power terminals T B1 , T B1a , T G1 , and T S1. ) And a plurality of current sensors (not shown) for measuring the values I BINT , I BINTa , I GINT , and I SINT of the currents flowing through the internal power terminals T B2 , T B2a , T G2 , and T S2 , respectively. .
 また、電力変換装置2aは、外部電力端子TB1,TB1a,TG1,TS1のそれぞれの電圧の値VB,VBa,VG,VSを測定する複数の電圧センサ(図示せず)と、内部電力端子TB2,TB2a,TG2,TS2の電圧(すなわち、中間配線22の電圧)の値VINTを測定する電圧センサ(図示せず)と、を備える。 Further, the power converter 2a includes a plurality of voltage sensors (not shown) that measure the voltage values V B , V Ba , V G , and V S of the external power terminals T B1 , T B1a , T G1 , and T S1. ) And a voltage sensor (not shown) for measuring the value V INT of the voltages of the internal power terminals T B2 , T B2a , T G2 , T S2 (that is, the voltage of the intermediate wiring 22).
 IBa、VBa及びPBaは、夫々、蓄電装置3aから電力変換部21Baに入力される蓄電装置3aの放電電力における電流値、電圧値及び電力量又は電力変換部21Baから蓄電装置3aに出力される蓄電装置3aの充電電力における電流値、電圧値及び電力量である。IBINTa、VINTは、IBa及びVBaに対応する、電力変換部21Baにおける電力変換前又は後の電流値及び電圧値である。 I Ba , V Ba, and P Ba are output from the power storage unit 3a to the power conversion unit 21Ba, respectively, as a current value, a voltage value, and a power amount in the discharge power of the power storage device 3a, or output from the power conversion unit 21Ba to the power storage device 3a. Current value, voltage value, and electric energy in the charging power of the power storage device 3a. I BINTa and V INT are current values and voltage values corresponding to I Ba and V Ba before or after power conversion in the power converter 21Ba.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 制御部23は、入出力電力情報に基づき、電力変換部21B、21Ba、21G及び21Sの各電力変換の動作を含む電力変換回路20aの動作を制御し、電力変換回路20aの動作の制御を介して、蓄電装置3、蓄電装置3a、発電装置4及び電力系統5間の送電及び受電を制御する。 Based on the input / output power information, the control unit 23 controls the operation of the power conversion circuit 20a including the operations of the power conversion units 21B, 21Ba, 21G, and 21S, and controls the operation of the power conversion circuit 20a. The power transmission device 3, the power storage device 3 a, the power generation device 4, and the power grid 5 are controlled.
 第3実施形態においても、制御部23は、第1実施形態で述べた充電定量制御、放電定量制御、系統出力定量制御及び系統入力定量制御を個別に実行可能である。 Also in the third embodiment, the control unit 23 can individually execute the charge quantitative control, the discharge quantitative control, the system output quantitative control, and the system input quantitative control described in the first embodiment.
 充電定量制御では、発電装置4が電力供給装置、蓄電装置3が電力需要装置、電力系統5が電力補助装置として使用される。第2蓄電装置3aは電力供給装置または電力需要装置として使用される。供給電力は、発電装置4からの発電電力と第2蓄電装置3aからの放電電力との合計である。需要電力は、蓄電装置3への充電電力と第2蓄電装置3aへの充電電力との合計である。 In charge quantitative control, the power generation device 4 is used as a power supply device, the power storage device 3 is used as a power demand device, and the power system 5 is used as a power auxiliary device. The second power storage device 3a is used as a power supply device or a power demand device. The supplied power is the sum of the generated power from the power generator 4 and the discharged power from the second power storage device 3a. The demand power is the sum of the charging power for the power storage device 3 and the charging power for the second power storage device 3a.
 放電定量制御では、発電装置4と電源装置(蓄電装置3)とが電力供給装置、直流負荷8が電力需要装置、電力系統5が電力補助装置として使用される。第2蓄電装置3aは電力供給装置または電力需要装置として使用される。したがって、供給電力は、発電装置4からの発電電力と、電源装置から得られる電力である電源電力(蓄電装置3の放電電力)と、第2蓄電装置3aからの放電電力との合計である。需要電力は、直流負荷8の消費電力と第2蓄電装置3aへの充電電力との合計である。 In the discharge quantitative control, the power generation device 4 and the power supply device (power storage device 3) are used as a power supply device, the DC load 8 is used as a power demand device, and the power system 5 is used as a power auxiliary device. The second power storage device 3a is used as a power supply device or a power demand device. Accordingly, the supplied power is the sum of the generated power from the power generation device 4, the power source power (discharge power of the power storage device 3) that is power obtained from the power supply device, and the discharge power from the second power storage device 3a. The demand power is the sum of the power consumption of the DC load 8 and the charging power for the second power storage device 3a.
 系統出力定量制御では、発電装置4が電力供給装置、電力系統5が電力需要装置、蓄電装置3が電力補助装置として使用される。第2蓄電装置3aは電力供給装置または電力需要装置として使用される。供給電力は、発電装置4からの発電電力と第2蓄電装置3aからの放電電力との合計値である。需要電力は、電力系統5への出力電力と第2蓄電装置3aへの充電電力との合計値である。 In the grid output quantitative control, the power generation device 4 is used as a power supply device, the power system 5 is used as a power demand device, and the power storage device 3 is used as a power auxiliary device. The second power storage device 3a is used as a power supply device or a power demand device. The supplied power is the total value of the generated power from the power generator 4 and the discharged power from the second power storage device 3a. The demand power is the total value of the output power to the power system 5 and the charging power to the second power storage device 3a.
 系統入力定量制御では、発電装置4と電源装置(電力系統5)とが電力供給装置、直流負荷8が電力需要装置、蓄電装置3が電力補助装置として使用される。第2蓄電装置3aは電力供給装置または電力需要装置として使用される。したがって、供給電力は、発電装置4からの発電電力と、電源装置から得られる電力である電源電力(電力系統5の入力電力)と、第2蓄電装置3aからの放電電力との合計である。需要電力は、直流負荷8の消費電力と第2蓄電装置3aへの充電電力との合計である。 In the grid input quantitative control, the power generation device 4 and the power supply device (power system 5) are used as a power supply device, the DC load 8 is used as a power demand device, and the power storage device 3 is used as a power auxiliary device. The second power storage device 3a is used as a power supply device or a power demand device. Therefore, the supplied power is the sum of the generated power from the power generation device 4, the power source power (input power of the power system 5) that is power obtained from the power source device, and the discharge power from the second power storage device 3a. The demand power is the sum of the power consumption of the DC load 8 and the charging power for the second power storage device 3a.
 各定量制御を成す際、蓄電装置3aの充電又は放電状態は問わないが、ここでは、説明の具体化上、後述のハンチング抑制制御CNT3が成されていない期間中では、蓄電装置3aの充電及び放電電力はゼロであるとする。また、第2実施形態の説明文でも述べたように、制御部23は、各定量制御の実行期間中に、実行している定量制御に対応するハンチング検出処理(HD1A、HD1B、HD1C、HD1D)又はハンチング予測処理(HP1A、HP1B、HP1C、HP1D)を実行可能である。 When each quantitative control is performed, the charging or discharging state of the power storage device 3a is not limited, but here, for the sake of concrete description, the charging of the power storage device 3a is performed during a period in which hunting suppression control CNT 3 described later is not performed. And the discharge power is zero. Further, as described in the description of the second embodiment, the control unit 23 performs the hunting detection process (HD 1A , HD 1B , HD 1C) corresponding to the quantitative control being executed during the execution period of each quantitative control. , HD 1D ) or hunting prediction processing (HP 1A , HP 1B , HP 1C , HP 1D ) can be executed.
 2. 制御の内容
 2.1 ハンチング抑制制御CNT3
 充電定量制御又は放電定量制御を実行している期間中において系統側ハンチング検出判定又は系統側ハンチング予測判定を成したとき、或いは、系統出力定量制御又は系統入力定量制御を実行している期間中において蓄電側ハンチング検出判定又は蓄電側ハンチング予測判定を成したとき、制御部23は、電力変換回路20a及び蓄電装置3a間の電力入出力を行うハンチング抑制制御CNT3を実行する。電力変換回路20a及び蓄電装置3a間の電力入出力とは、電力変換回路20aから蓄電装置3aへの電力出力又は蓄電装置3aから電力変換回路20aへの電力入力を意味する。電力変換回路20aから蓄電装置3aへの電力出力は、電力変換部21Baから蓄電装置3aへ充電電力を供給することを意味し、蓄電装置3aから電力変換回路20aへの電力入力は、蓄電装置3aの放電電力を電力変換部21Baへ供給することを意味する。
2. Details of control 2.1 Hunting suppression control CNT 3
When system-side hunting detection judgment or system-side hunting prediction judgment is made during the period when charge quantitative control or discharge quantitative control is executed, or during the period when system output quantitative control or system input quantitative control is executed when it made a power storage side hunting detection determination or power storage side hunting prediction judgment, the control unit 23 performs the hunting suppression control CNT 3 in which power is input and output between the power conversion circuit 20a and the power storage device 3a. The power input / output between the power conversion circuit 20a and the power storage device 3a means power output from the power conversion circuit 20a to the power storage device 3a or power input from the power storage device 3a to the power conversion circuit 20a. The power output from the power conversion circuit 20a to the power storage device 3a means that charging power is supplied from the power conversion unit 21Ba to the power storage device 3a. The power input from the power storage device 3a to the power conversion circuit 20a is the power storage device 3a. Is supplied to the power converter 21Ba.
 充電定量制御又は放電定量制御に適用されるハンチング抑制制御CNT3では、電力変換回路20a及び蓄電装置3a間の電力入出力によって、電力変換回路20及び電力系統5間の入出力電力量の絶対値を増大させ、これによって系統側ハンチング現象を抑制する。 In the hunting suppression control CNT 3 applied to the charge quantitative control or the discharge quantitative control, the absolute value of the input / output power amount between the power conversion circuit 20 and the power system 5 by the power input / output between the power conversion circuit 20a and the power storage device 3a. Thereby suppressing the system-side hunting phenomenon.
 系統出力定量制御又は系統入力定量制御に適用されるハンチング抑制制御CNT3では、電力変換回路20a及び蓄電装置3a間の電力入出力によって、電力変換回路20及び蓄電装置3間の入出力電力量の絶対値を増大させ、これによって蓄電側ハンチング現象を抑制する。抑制制御CNT3は各定量制御の中で行われる制御であって、抑制制御CNT3の実行は各定量制御の内容に影響を与えない。 In the hunting suppression control CNT 3 applied to the system output quantitative control or the system input quantitative control, the input / output power amount between the power conversion circuit 20 and the power storage device 3 is determined by the power input / output between the power conversion circuit 20a and the power storage device 3a. The absolute value is increased, thereby suppressing the power storage side hunting phenomenon. The suppression control CNT 3 is control performed in each quantitative control, and the execution of the suppression control CNT 3 does not affect the contents of each quantitative control.
 このように、制御部23は、イベントが起きたと判定すると、供給電力と需要電力との差が大きくなるように第1ハンチング抑制制御CNT3Aと第2ハンチング抑制制御CNT3Bとのいずれか一方を実行するように構成される。 As described above, when the control unit 23 determines that the event has occurred, the control unit 23 performs either one of the first hunting suppression control CNT 3A and the second hunting suppression control CNT 3B so that the difference between the supplied power and the demand power becomes large. Configured to run.
 第1ハンチング抑制制御では、制御部23は、電力変換回路20aに第2出力処理を実行させる。これによって、第2蓄電装置3aが放電される。需要電力を基準として考えれば、供給電力(供給電力量)が増加したことになる。逆に、供給電力を基準として考えれば、需要電力(需要電力量)が減少したことになる。 In the first hunting suppression control, the control unit 23 causes the power conversion circuit 20a to execute the second output process. As a result, the second power storage device 3a is discharged. Considering the demand power as a reference, the power supply (power supply amount) has increased. Conversely, if the supplied power is considered as a reference, the demand power (demand power amount) has decreased.
 第2ハンチング抑制制御では、制御部23は、電力変換回路20aに第2入力処理を実行させる。これによって、第2蓄電装置3aが充電される。供給電力を基準として考えれば、需要電力(需要電力量)が増加したことになる。逆に、需要電力を基準として考えれば、供給電力(供給電力量)が減少したことになる。 In the second hunting suppression control, the control unit 23 causes the power conversion circuit 20a to execute the second input process. Thereby, the second power storage device 3a is charged. Considering supply power as a reference, demand power (demand power amount) has increased. Conversely, if the demand power is considered as a reference, the supply power (supply power amount) has decreased.
 図26(a)及び(b)は、充電定量制御の実行期間中に行うことのできる抑制制御CNT3の概念図である。図27(a)及び(b)は、放電定量制御の実行期間中に行うことのできる抑制制御CNT3の概念図である。 FIGS. 26A and 26B are conceptual diagrams of the suppression control CNT 3 that can be performed during the execution period of the charge quantitative control. FIGS. 27A and 27B are conceptual diagrams of the suppression control CNT 3 that can be performed during the execution of the discharge quantitative control.
 図3(c)又は図10(c)の例のような系統側ハンチング現象が検出又は予測されたとき、制御部23は、抑制制御CNT3において、図26(a)又は図27(a)に示す如く、電力変換部21Baから所定電力量の充電電力が蓄電装置3aに供給されるように電力変換部21Baを制御する、或いは、図26(b)又は図27(b)に示す如く、蓄電装置3aから所定電力量の放電電力が電力変換部21Baに出力されるように電力変換部21Baを制御する。 When the system-side hunting phenomenon as in the example of FIG. 3C or FIG. 10C is detected or predicted, the control unit 23 performs the suppression control CNT 3 in FIG. 26A or FIG. As shown in FIG. 26, the power conversion unit 21Ba is controlled so that a predetermined amount of charging power is supplied from the power conversion unit 21Ba to the power storage device 3a, or as shown in FIG. 26B or FIG. The power conversion unit 21Ba is controlled so that a predetermined amount of discharge power is output from the power storage device 3a to the power conversion unit 21Ba.
 図26(a)及び図27(a)の例において、蓄電装置3aの充電電力の全部又は一部は、電力系統5から供給されていると考えることもできるし、発電装置4又は蓄電装置3から供給されていると考えることもできる。 In the examples of FIG. 26A and FIG. 27A, it can be considered that all or part of the charging power of the power storage device 3a is supplied from the power system 5, or the power generation device 4 or the power storage device 3 It can be thought that it is supplied from.
 充電定量制御の場合、供給電力量(発電装置4からの発電電力と第2蓄電装置3aからの放電電力との合計)と需要電力量(蓄電装置3への充電電力と第2蓄電装置3aへの充電電力との合計)とが比較される。 In the case of charge constant control, the amount of supplied power (the sum of the generated power from the power generation device 4 and the discharge power from the second power storage device 3a) and the amount of demand power (the charge power to the power storage device 3 and the second power storage device 3a). And the total charge power).
 例えば、発電装置4の発電電力量が10kW・sであり、蓄電装置3の充電電力量が10kW・sである。この場合、制御部23が第1ハンチング抑制制御CNT3Aを実行して第2蓄電装置3aからの放電電力(放電電力量)を2kW・sにすると、供給電力量が2kW・s増加して12kW・sになる(当然ながら、第2蓄電装置3aの充電電力は0kW・sである)。需要電力量は10kW・sであるから、供給電力が2kW・s余る。このように、供給電力量と需要電力量との差が大きくなり、ハンチング現象が抑制される。この場合、制御部23は、電力変換部21Sに出力電力の目標値として2kW・sを与え、これによって、電力系統5に2kW・sの出力電力を供給する(図26(b)参照)。 For example, the power generation amount of the power generation device 4 is 10 kW · s, and the charge power amount of the power storage device 3 is 10 kW · s. In this case, if the control unit 23 executes the first hunting suppression control CNT 3A and sets the discharge power (discharge power amount) from the second power storage device 3a to 2 kW · s, the supply power amount increases by 2 kW · s and increases to 12 kW. S (of course, the charging power of the second power storage device 3a is 0 kW · s). Since the amount of power demand is 10 kW · s, the supplied power is more than 2 kW · s. In this way, the difference between the supplied power amount and the demand power amount becomes large, and the hunting phenomenon is suppressed. In this case, the control unit 23 gives 2 kW · s as the target value of the output power to the power conversion unit 21S, and thereby supplies the output power of 2 kW · s to the power system 5 (see FIG. 26B).
 一方、制御部23が第2ハンチング抑制制御CNT3Bを実行して第2蓄電装置3aからの充電電力(充電電力量)を2kW・sにすると、需要電力量が2kW・s増加して12kW・sになる(当然ながら、第2蓄電装置3aの放電電力は0kW・sである)。供給電力量は10kW・sであるから、供給電力が2kW・s不足する。このように、供給電力量と需要電力量との差が大きくなり、ハンチング現象が抑制される。この場合、制御部23は、電力変換部21Sに入力電力の目標値として2kW・sを与え、これによって、電力系統5から2kW・sの入力電力を得る(図26(a)参照)。 On the other hand, when the control unit 23 executes the second hunting suppression control CNT 3B and sets the charging power (charging power amount) from the second power storage device 3a to 2 kW · s, the demand power amount increases by 2 kW · s and increases to 12 kW · s. (Of course, the discharge power of the second power storage device 3a is 0 kW · s). Since the power supply amount is 10 kW · s, the power supply is insufficient by 2 kW · s. In this way, the difference between the supplied power amount and the demand power amount becomes large, and the hunting phenomenon is suppressed. In this case, the control unit 23 gives 2 kW · s as the target value of the input power to the power conversion unit 21S, and thereby obtains input power of 2 kW · s from the power system 5 (see FIG. 26A).
 図26(b)及び図27(b)の例において、蓄電装置3aの放電電力の全部又は一部は、電力系統5へ出力されていると考えることもできるし、蓄電装置3又は直流負荷8へ出力されていると考えることもできる。 In the examples of FIGS. 26B and 27B, it can be considered that all or part of the discharged power of the power storage device 3a is output to the power system 5, or the power storage device 3 or the DC load 8 You can also think that it is output to.
 放電定量制御の場合、供給電力量(発電装置4からの発電電力と、蓄電装置3からの放電電力と、第2蓄電装置3aからの放電電力との合計)と需要電力量(直流負荷8の消費電力と第2蓄電装置3aへの充電電力との合計)とが比較される。 In the case of the discharge quantitative control, the amount of supplied power (the sum of the generated power from the power generation device 4, the discharge power from the power storage device 3, and the discharge power from the second power storage device 3a) and the demand power (of the DC load 8). The sum of the power consumption and the charging power for the second power storage device 3a) is compared.
 例えば、発電装置4の発電電力量が10kW・sであり、蓄電装置3の放電電力量が10kW・sであり、直流負荷8の消費電力量が20kW・Sである。この場合、制御部23が第1ハンチング抑制制御CNT3Aを実行して第2蓄電装置3aからの放電電力(放電電力量)を2kW・sにすると、供給電力量が2kW・s増加して22kW・sになる(当然ながら、第2蓄電装置3aの充電電力は0kW・sである)。需要電力量は20kW・sであるから、供給電力が2kW・s余る。このように、供給電力量と需要電力量との差が大きくなり、ハンチング現象が抑制される。この場合、制御部23は、電力変換部21Sに出力電力の目標値として2kW・sを与え、これによって、電力系統5に2kW・sの出力電力を供給する(図27(b)参照)。 For example, the generated power amount of the power generation device 4 is 10 kW · s, the discharged power amount of the power storage device 3 is 10 kW · s, and the consumed power amount of the DC load 8 is 20 kW · S. In this case, if the control unit 23 executes the first hunting suppression control CNT 3A and sets the discharge power (discharge power amount) from the second power storage device 3a to 2 kW · s, the supply power amount increases by 2 kW · s and increases to 22 kW. S (of course, the charging power of the second power storage device 3a is 0 kW · s). Since the amount of power demand is 20 kW · s, the supplied power is more than 2 kW · s. In this way, the difference between the supplied power amount and the demand power amount becomes large, and the hunting phenomenon is suppressed. In this case, the control unit 23 gives 2 kW · s as the target value of the output power to the power conversion unit 21S, thereby supplying the output power of 2 kW · s to the power system 5 (see FIG. 27B).
 一方、制御部23が第2ハンチング抑制制御CNT3Bを実行して第2蓄電装置3aからの充電電力(充電電力量)を2kW・sにすると、需要電力量が2kW・s増加して22kW・sになる(当然ながら、第2蓄電装置3aの放電電力は0kW・sである)。供給電力量は20kW・sであるから、供給電力が2kW・s不足する。このように、供給電力量と需要電力量との差が大きくなり、ハンチング現象が抑制される。この場合、制御部23は、電力変換部21Sに入力電力の目標値として2kW・sを与え、これによって、電力系統5から2kW・sの入力電力を得る(図27(a)参照)。 On the other hand, when the control unit 23 executes the second hunting suppression control CNT 3B and sets the charging power (charging power amount) from the second power storage device 3a to 2 kW · s, the demand power amount increases by 2 kW · s and increases to 22 kW · s. (Of course, the discharge power of the second power storage device 3a is 0 kW · s). Since the power supply amount is 20 kW · s, the power supply is insufficient by 2 kW · s. In this way, the difference between the supplied power amount and the demand power amount becomes large, and the hunting phenomenon is suppressed. In this case, the control unit 23 gives 2 kW · s as the target value of the input power to the power conversion unit 21S, and thereby obtains input power of 2 kW · s from the power system 5 (see FIG. 27A).
 何れにせよ、このような蓄電装置3aの充電又は放電により電力変換回路20a及び電力系統5間に一定方向の継続的な電力の流れが生まれ、系統側ハンチング現象が抑制される。 In any case, the charging or discharging of the power storage device 3a causes a continuous flow of power in a certain direction between the power conversion circuit 20a and the power system 5, thereby suppressing the system-side hunting phenomenon.
 図28(a)及び(b)は、系統出力定量制御の実行期間中に行うことのできる抑制制御CNT3の概念図である。図29(a)及び(b)は、系統入力定量制御の実行期間中に行うことのできる抑制制御CNT3の概念図である。 FIGS. 28A and 28B are conceptual diagrams of the suppression control CNT 3 that can be performed during the execution period of the system output quantitative control. FIGS. 29A and 29B are conceptual diagrams of the suppression control CNT 3 that can be performed during the execution period of the system input quantitative control.
 図13(c)又は図16(c)の例のような蓄電側ハンチング現象が検出又は予測されたとき、制御部23は、抑制制御CNT3において、図28(a)又は図29(a)に示す如く、電力変換部21Baから所定電力量の充電電力が蓄電装置3aに供給されるように電力変換部21Baを制御する、或いは、図28(b)又は図29(b)に示す如く、蓄電装置3aから所定電力量の放電電力が電力変換部21Baに出力されるように電力変換部21Baを制御する。 When the storage-side hunting phenomenon as in the example of FIG. 13 (c) or FIG. 16 (c) is detected or predicted, the control unit 23 performs the suppression control CNT 3 in FIG. 28 (a) or FIG. 29 (a). As shown in FIG. 28, the power conversion unit 21Ba is controlled so that a predetermined amount of charging power is supplied from the power conversion unit 21Ba to the power storage device 3a, or as shown in FIG. 28 (b) or FIG. 29 (b), The power conversion unit 21Ba is controlled so that a predetermined amount of discharge power is output from the power storage device 3a to the power conversion unit 21Ba.
 図28(a)及び図29(a)の例において、蓄電装置3aの充電電力の全部又は一部は、蓄電装置3から供給されていると考えることもできるし、発電装置4又は電力系統5から供給されていると考えることもできる。 In the example of FIG. 28A and FIG. 29A, it can be considered that all or part of the charging power of the power storage device 3a is supplied from the power storage device 3, or the power generation device 4 or the power system 5 It can be thought that it is supplied from.
 系統出力定量制御の場合、供給電力量(発電装置4からの発電電力と第2蓄電装置3aからの放電電力との合計)と需要電力量(電力系統5への出力電力と第2蓄電装置3aへの充電電力との合計)とが比較される。 In the case of grid output quantitative control, the amount of supplied power (the sum of the generated power from the power generation device 4 and the discharge power from the second power storage device 3a) and the demand power (the output power to the power system 5 and the second power storage device 3a). And the total charging power).
 例えば、発電装置4の発電電力量が10kW・sであり、電力系統5の出力電力量が10kW・sである。この場合、制御部23が第1ハンチング抑制制御CNT3Aを実行して第2蓄電装置3aからの放電電力(放電電力量)を2kW・sにすると、供給電力量が2kW・s増加して12kW・sになる(当然ながら、第2蓄電装置3aの充電電力は0kW・sである)。需要電力量は10kW・sであるから、供給電力が2kW・s余る。このように、供給電力量と需要電力量との差が大きくなり、ハンチング現象が抑制される。この場合、制御部23は、電力変換部21Bに充電電力の目標値として2kW・sを与え、これによって、蓄電装置3に2kW・sの充電電力を供給する(図28(b)参照)。 For example, the power generation amount of the power generation device 4 is 10 kW · s, and the output power amount of the power system 5 is 10 kW · s. In this case, if the control unit 23 executes the first hunting suppression control CNT 3A and sets the discharge power (discharge power amount) from the second power storage device 3a to 2 kW · s, the supply power amount increases by 2 kW · s and increases to 12 kW. S (of course, the charging power of the second power storage device 3a is 0 kW · s). Since the amount of power demand is 10 kW · s, the supplied power is more than 2 kW · s. In this way, the difference between the supplied power amount and the demand power amount becomes large, and the hunting phenomenon is suppressed. In this case, the control unit 23 gives 2 kW · s as the target value of the charging power to the power conversion unit 21B, and thereby supplies the charging power of 2 kW · s to the power storage device 3 (see FIG. 28B).
 一方、制御部23が第2ハンチング抑制制御CNT3Bを実行して第2蓄電装置3aからの充電電力(充電電力量)を2kW・sにすると、需要電力量が2kW・s増加して12kW・sになる(当然ながら、第2蓄電装置3aの放電電力は0kW・sである)。供給電力量は10kW・sであるから、供給電力が2kW・s不足する。このように、供給電力量と需要電力量との差が大きくなり、ハンチング現象が抑制される。この場合、制御部23は、電力変換部21Bに放電電力の目標値として2kW・sを与え、これによって、蓄電装置3から2kW・sの放電電力を得る(図28(a)参照)。 On the other hand, when the control unit 23 executes the second hunting suppression control CNT 3B and sets the charging power (charging power amount) from the second power storage device 3a to 2 kW · s, the demand power amount increases by 2 kW · s and increases to 12 kW · s. (Of course, the discharge power of the second power storage device 3a is 0 kW · s). Since the power supply amount is 10 kW · s, the power supply is insufficient by 2 kW · s. In this way, the difference between the supplied power amount and the demand power amount becomes large, and the hunting phenomenon is suppressed. In this case, the control unit 23 gives 2 kW · s as the target value of the discharge power to the power conversion unit 21B, thereby obtaining 2 kW · s of discharge power from the power storage device 3 (see FIG. 28A).
 図28(b)及び図29(b)の例において、蓄電装置3aの放電電力の全部又は一部は、蓄電装置3へ出力されていると考えることもできるし、電力系統5又は直流負荷8へ出力されていると考えることもできる。 In the example of FIG. 28B and FIG. 29B, it can be considered that all or part of the discharged power of the power storage device 3a is output to the power storage device 3, or the power system 5 or the DC load 8 You can also think that it is output to.
 系統入力定量制御の場合、供給電力量(発電装置4からの発電電力と、電力系統5からの入力電力と、第2蓄電装置3aからの放電電力との合計)と需要電力量(直流負荷8の消費電力と第2蓄電装置3aへの充電電力との合計)とが比較される。 In the case of grid input quantitative control, the amount of supplied power (the sum of the generated power from the power generation device 4, the input power from the power system 5, and the discharge power from the second power storage device 3a) and the demand power (DC load 8). Power consumption and the sum of the charging power for the second power storage device 3a).
 例えば、発電装置4の発電電力量が10kW・sであり、電力系統5の入力電力量が10kW・sであり、直流負荷8の消費電力量が20kW・Sである。この場合、制御部23が第1ハンチング抑制制御CNT3Aを実行して第2蓄電装置3aからの放電電力(放電電力量)を2kW・sにすると、供給電力量が2kW・s増加して22kW・sになる(当然ながら、第2蓄電装置3aの充電電力は0kW・sである)。需要電力量は20kW・sであるから、供給電力が2kW・s余る。このように、供給電力量と需要電力量との差が大きくなり、ハンチング現象が抑制される。この場合、制御部23は、電力変換部21Bに充電電力の目標値として2kW・sを与え、これによって、蓄電装置3に2kW・sの充電電力を供給する(図29(b)参照)。 For example, the power generation amount of the power generation device 4 is 10 kW · s, the input power amount of the power system 5 is 10 kW · s, and the power consumption of the DC load 8 is 20 kW · S. In this case, if the control unit 23 executes the first hunting suppression control CNT 3A and sets the discharge power (discharge power amount) from the second power storage device 3a to 2 kW · s, the supply power amount increases by 2 kW · s and increases to 22 kW. S (of course, the charging power of the second power storage device 3a is 0 kW · s). Since the amount of power demand is 20 kW · s, the supplied power is more than 2 kW · s. In this way, the difference between the supplied power amount and the demand power amount becomes large, and the hunting phenomenon is suppressed. In this case, the control unit 23 gives 2 kW · s as the target value of the charging power to the power conversion unit 21B, and thereby supplies 2 kW · s of charging power to the power storage device 3 (see FIG. 29B).
 一方、制御部23が第2ハンチング抑制制御CNT3Bを実行して第2蓄電装置3aからの充電電力(充電電力量)を2kW・sにすると、需要電力量が2kW・s増加して22kW・sになる(当然ながら、第2蓄電装置3aの放電電力は0kW・sである)。供給電力量は20kW・sであるから、供給電力が2kW・s不足する。このように、供給電力量と需要電力量との差が大きくなり、ハンチング現象が抑制される。この場合、制御部23は、電力変換部21Bに放電電力の目標値として2kW・sを与え、これによって、蓄電装置3から2kW・sの放電電力を得る(図29(a)参照)。 On the other hand, when the control unit 23 executes the second hunting suppression control CNT 3B and sets the charging power (charging power amount) from the second power storage device 3a to 2 kW · s, the demand power amount increases by 2 kW · s and increases to 22 kW · s. (Of course, the discharge power of the second power storage device 3a is 0 kW · s). Since the power supply amount is 20 kW · s, the power supply is insufficient by 2 kW · s. In this way, the difference between the supplied power amount and the demand power amount becomes large, and the hunting phenomenon is suppressed. In this case, the control unit 23 gives 2 kW · s as the target value of the discharge power to the power conversion unit 21B, thereby obtaining 2 kW · s of discharge power from the power storage device 3 (see FIG. 29A).
 何れにせよ、このような蓄電装置3aの充電又は放電により電力変換回路20a及び蓄電装置3間に一定方向の継続的な電力の流れが生まれ、蓄電側ハンチング現象が抑制される。 In any case, the charging or discharging of the power storage device 3a causes a continuous flow of power between the power conversion circuit 20a and the power storage device 3 and suppresses the power storage-side hunting phenomenon.
 2.2 解除可否判定処理
 ハンチング抑制制御CNT3の実行期間中に成すことのできる解除可否判定処理は、第1実施形態で述べたものと同様である。即ち、充電定量制御、放電定量制御、系統出力定量制御又は系統入力定量制御を成している場合において抑制制御CNT3が実行されたとき、抑制制御CNT3の実行期間中において、制御部23は、夫々、上述の解除可否判定処理J1A、J1B、J1C又はJ1Dを成すことができる。解除可否判定処理J1A、J1B、J1C又はJ1Dについての第1実施形態の説明文を第3実施形態に適用する際、第1実施形態における符号“CNT1A”、“CNT1B”、“CNT1C”及び“CNT1D”を全て符号“CNT3”に読み替えると良い。
2.2 Release possibility determination process The release possibility determination process that can be performed during the execution period of the hunting suppression control CNT 3 is the same as that described in the first embodiment. That is, when the suppression control CNT 3 is executed when the charge quantitative control, the discharge quantitative control, the system output quantitative control, or the system input quantitative control is performed, during the execution period of the suppression control CNT 3 , the control unit 23 Each of the above-described release permission / inhibition determination processes J 1A , J 1B , J 1C, or J 1D can be performed. When applying the descriptive text of the first embodiment about the release possibility determination process J 1A , J 1B , J 1C or J 1D to the third embodiment, the symbols “CNT 1A ”, “CNT 1B ”, “CNT 1C ” and “CNT 1D ” should all be read as “CNT 3 ”.
 例えば、電力変換回路2(2a)は、第2出力処理では、需要電力を第1既定値から増やすように構成される。制御部23は、第1ハンチング抑制制御CNT3Aの実行中に供給電力と第1既定値との差が第1解除条件を満たした場合に、第1ハンチング抑制制御CNT3Aを終了するように構成される。第1解除条件は、供給電力と第1既定値との差の第1絶対値が第1閾値以上であること、第1絶対値が第1閾値以上である状態が所定の第1時間継続したこと、または、供給電力と第1既定値との差が正又は負である状態が所定の第2時間継続したこと、のいずれかである。 For example, the power conversion circuit 2 (2a) is configured to increase the demand power from the first predetermined value in the second output process. Control unit 23, the configuration in the case where the difference between the power supply and the first predetermined value during execution of the first hunting suppression control CNT 3A satisfies a first release condition, so as to end the first hunting suppression control CNT 3A Is done. The first release condition is that the first absolute value of the difference between the supplied power and the first predetermined value is equal to or greater than the first threshold, and the state where the first absolute value is equal to or greater than the first threshold continues for a predetermined first time. Or a state in which the difference between the supplied power and the first predetermined value is positive or negative has continued for a predetermined second time.
 また、電力変換回路2(2a)は、第2入力処理では、供給電力を第2既定値から増やすように構成される。制御部23は、第2ハンチング抑制制御の実行中に需要電力と第2既定値との差が第2解除条件を満たした場合に、第2ハンチング抑制制御CNT3Bを終了するように構成される。第2解除条件は、需要電力と第2既定値との差の第2絶対値が第2閾値以上であること、第2絶対値が第2閾値以上である状態が所定の第3時間継続したこと、または、需要電力と第2既定値との差が正又は負である状態が所定の第4時間継続したこと、のいずれかである。 Further, the power conversion circuit 2 (2a) is configured to increase the supply power from the second predetermined value in the second input process. The control unit 23 is configured to end the second hunting suppression control CNT 3B when the difference between the demand power and the second predetermined value satisfies the second release condition during the execution of the second hunting suppression control. . The second release condition is that the second absolute value of the difference between the demand power and the second predetermined value is equal to or greater than the second threshold, and the state where the second absolute value is equal to or greater than the second threshold continues for a predetermined third time. Or a state in which the difference between the demand power and the second predetermined value is positive or negative has continued for a predetermined fourth time.
 あるいは制御部23は、ハンチング抑制制御CNT3の実行中に供給電力と需要電力との差が解除条件を満たした場合に、ハンチング抑制制御CNT3を終了するように構成される。解除条件は、供給電力と需要電力との差の絶対値が所定の閾値以下であること、または、供給電力と需要電力との差の絶対値が所定の閾値以下である状態が所定時間継続したことである。所定の閾値は、ハンチング抑制制御の実行による供給電力と需要電力との差の変化の幅より小さい。あるいは、解除条件は、供給電力と需要電力との差が正また負である状態が所定時間継続したことである。 Or the control unit 23, when the difference between the power supply and demand electric power during the hunting prevention control CNT 3 satisfies the release condition, configured to terminate the hunting suppression control CNT 3. The cancellation condition is that the absolute value of the difference between the supplied power and the demand power is less than or equal to a predetermined threshold, or that the absolute value of the difference between the supplied power and the demand power is less than or equal to a predetermined threshold has continued for a predetermined time. That is. The predetermined threshold is smaller than the range of change in the difference between the supplied power and the demand power due to the execution of the hunting suppression control. Alternatively, the cancellation condition is that the state where the difference between the supplied power and the demand power is positive or negative continues for a predetermined time.
 なお、需要電力と供給電力とは、上述したように、充電定量制御、放電定量制御、系統出力定量制御、系統入力定量制御毎に異なる。 Note that, as described above, the demand power and the supplied power differ for each of the charge quantitative control, the discharge quantitative control, the system output quantitative control, and the system input quantitative control.
 充電定量制御及び抑制制御CNT3の実行中に判定処理J1Aにおける解除条件が満たされたとき、放電定量制御及び抑制制御CNT3の実行中に判定処理J1Bにおける解除条件が満たされたとき、系統出力定量制御及び抑制制御CNT3の実行中に判定処理J1Cにおける解除条件が満たされたとき、又は、系統入力定量制御及び抑制制御CNT3の実行中に判定処理J1Dにおける解除条件が満たされたとき、制御部23は抑制制御CNT3の実行を解除する、即ち、電力変換回路20a及び蓄電装置3a間の電力入出力を停止する(結果、蓄電装置3aの充電電力及び放電電力はゼロに戻る)。 When the release condition in the determination process J 1A is satisfied during the execution of the charge quantitative control and suppression control CNT 3 , and when the release condition in the determination process J 1B is satisfied during the execution of the discharge quantitative control and suppression control CNT 3 , When the release condition in the determination process J 1C is satisfied during the execution of the system output quantitative control and the suppression control CNT 3 , or the release condition in the determination process J 1D is satisfied during the execution of the system input quantitative control and the suppression control CNT 3 When this is done, the control unit 23 cancels the execution of the suppression control CNT 3 , that is, stops the power input / output between the power conversion circuit 20 a and the power storage device 3 a (as a result, the charging power and the discharging power of the power storage device 3 a are zero. Back to).
 また、第1実施形態で述べたのと同様、充電定量制御又は放電定量制御と抑制制御CNT3の実行期間中において、制御部23は、系統側ハンチング検出処理HD1Aを実行し、系統側ハンチング現象の発生が所定回数(1以上の任意の回数)以上観測されたときに解除条件が充足したと判断して、抑制制御CNT3の実行を解除するようにしても良い。同様に、系統出力定量制御又は系統入力定量制御と抑制制御CNT3の実行期間中において、制御部23は、蓄電側ハンチング検出処理HD1Cを実行し、蓄電側ハンチング現象の発生が所定回数(1以上の任意の回数)以上観測されたときに解除条件が充足したと判断して、抑制制御CNT3の実行を解除するようにしても良い。 As described in the first embodiment, the control unit 23 executes the system-side hunting detection process HD 1A during the charge quantitative control or the discharge quantitative control and the suppression control CNT 3 and executes the system-side hunting detection process HD 1A. The execution of the suppression control CNT 3 may be canceled by determining that the cancellation condition is satisfied when the occurrence of the phenomenon is observed a predetermined number of times (an arbitrary number of 1 or more). Similarly, during the execution period of the system output quantitative control or the system input quantitative control and the suppression control CNT 3 , the control unit 23 executes the power storage side hunting detection process HD 1C , and the power storage side hunting phenomenon occurs a predetermined number of times (1 It may be determined that the release condition has been satisfied when the number of observations above is observed, and the execution of the suppression control CNT 3 may be released.
 すなわち、制御部23は、ハンチング抑制制御CNT3の実行中に、入力処理と出力処理との切り替え動作が所定回数行われたか否かを判定し、切り替え動作が所定回数行われたと判定すると、ハンチング抑制制御CNT3を終了するように構成されていてもよい。なお、所定回数は1以上であればよい。 That is, the control unit 23 determines whether or not the switching operation between the input process and the output process has been performed a predetermined number of times during the execution of the hunting suppression control CNT 3 , and if it is determined that the switching operation has been performed the predetermined number of times, The suppression control CNT 3 may be configured to end. The predetermined number may be one or more.
 抑制制御の実行中に発電電力量の増大等が発生すると逆にハンチング現象が発生することもある。このような場合には、抑制制御の解除がハンチング現象の回避に資する。 逆 If an increase in the amount of generated power occurs during execution of suppression control, a hunting phenomenon may occur. In such a case, the release of the suppression control contributes to avoiding the hunting phenomenon.
 3. 動作フローチャート
 次に、図30を参照して電力変換装置2aの動作の流れを説明する。図30は、上述の各種定量制御に注目した、電力変換装置2aの動作フローチャートである。ステップS31~S33、S35及びS36は、夫々、図19のステップS11~S13、S15及びS16と同じものである。
3. Operation Flowchart Next, an operation flow of the power conversion device 2a will be described with reference to FIG. FIG. 30 is an operation flowchart of the power conversion device 2a focusing on the above-described various quantitative controls. Steps S31 to S33, S35 and S36 are the same as steps S11 to S13, S15 and S16 of FIG. 19, respectively.
 まず、ステップS31において、制御部23は、何れかの定量制御を実行開始する。 First, in step S31, the control unit 23 starts executing any quantitative control.
 その後、ステップS32において、制御部23は、入出力電力情報に基づき、上述のハンチング検出処理又は予測処理を行う。 Thereafter, in step S32, the control unit 23 performs the above-described hunting detection process or prediction process based on the input / output power information.
 続くステップS33において、制御部23は、ハンチング検出判定又は予測判定を成したかをチェックし、何れかの判定を成した場合にはステップS34への移行を発生させて、ハンチング抑制制御CNT3の実行を開始する(即ち、ハンチング抑制用の充放電を蓄電装置3aに行わせる)。 In subsequent step S33, the control unit 23 checks whether the hunting detection determination or the prediction determination is made, and if any of the determinations is made, the control unit 23 shifts to step S34 to perform the hunting suppression control CNT 3 . Execution is started (that is, charging / discharging for suppressing hunting is performed by the power storage device 3a).
 ハンチング抑制制御CNT3の実行開始後、制御部23は、ハンチング抑制制御CNT3の解除可否判定処理(J1A、J1B、J1C又はJ1D)を行う(ステップS35)。 After the execution of the hunting suppression control CNT 3 is started, the control unit 23 performs a hunting suppression control CNT 3 release possibility determination process (J 1A , J 1B , J 1C or J 1D ) (step S35).
 制御部23は、所定の解除条件の何れかが満たされるまでハンチング抑制制御CNT3の実行を継続し(ステップS35及びS36)、解除条件の充足が確認されるとハンチング抑制制御CNT3の実行を解除して(ステップS37)ステップS32に戻る。 Control unit 23 continues the execution of the hunting suppression control CNT 3 until either the predetermined release condition is satisfied (step S35 and S36), the execution of the is confirmed fulfillment of releasing condition hunting suppression control CNT 3 Cancel (step S37) and return to step S32.
 上述したように、ハンチング抑制制御CNT3の実行の解除によってハンチング抑制用の充放電(蓄電装置3aの充放電)が停止される。 As described above, (charging and discharging of the power storage device 3a) charging and discharging for hunting suppressed by canceling the execution of the hunting suppression control CNT 3 is stopped.
 4. 本実施形態の電力変換装置2の特徴
 本実施形態の電力変換装置2(2a)は、以下の第1の特徴を有する。第1の特徴では、電力変換装置2aは、電力変換回路20(20a)と、制御部23と、を備える。電力変換回路20aは、充電及び放電が可能な第1蓄電装置3に接続される第1蓄電側回路(電力変換部21B)、充電及び放電が可能な第2蓄電装置3aに接続される第2蓄電側回路(電力変換部21Ba)、発電を行って発電電力を出力する発電装置4に接続される発電側回路(電力変換部21G)及び電力系統5に接続される系統側回路(電力変換部21S)を有する。電力変換回路20aは、電力変換を介して第1蓄電装置3、第2蓄電装置3a、発電装置4及び電力系統5間における送電及び受電を行うように構成される。制御部23は、電力変換回路20aを制御することで送電及び受電を制御するように構成される。制御部23は、発電電力の不足分又は余剰分を電力変換回路20a及び電力系統5間の電力の入出力にて吸収しつつ、発電装置4の発電電力を用いて第1蓄電装置3を一定の第1基準条件下で充電する、又は、発電装置4の発電電力及び第1蓄電装置3の放電電力を用いて電力変換回路20aに接続された負荷及び二次電池の少なくとも一方に電力供給を行うべく第1蓄電装置3を一定の第2基準条件下で放電させる定量制御を実行する。定量制御において、電力変換回路20a及び電力系統5間の電力の入出力の切り替えが所定時間内に所定回数以上検出されたとき、或いは、発電装置4の発電電力量又は発電電力量に応じた値と第1基準条件又は第2基準条件とに基づいて切り替えの発生が予測されたとき、制御部23は、電力変換回路20aから第2蓄電装置3aへの電力出力又は第2蓄電装置3aから電力変換回路20aへの電力入力を行うことで切り替えを抑制する抑制制御を実行する。
4). Features of Power Converter 2 of the Present Embodiment The power converter 2 (2a) of the present embodiment has the following first features. In the first feature, the power conversion device 2 a includes a power conversion circuit 20 (20 a) and a control unit 23. The power conversion circuit 20a includes a first power storage side circuit (power conversion unit 21B) connected to the first power storage device 3 capable of charging and discharging, and a second power source connected to the second power storage device 3a capable of charging and discharging. A power storage side circuit (power conversion unit 21Ba), a power generation side circuit (power conversion unit 21G) connected to the power generation device 4 that generates power and outputs generated power, and a system side circuit (power conversion unit) connected to the power system 5 21S). The power conversion circuit 20a is configured to transmit and receive power between the first power storage device 3, the second power storage device 3a, the power generation device 4, and the power system 5 through power conversion. The control unit 23 is configured to control power transmission and power reception by controlling the power conversion circuit 20a. The controller 23 absorbs the shortage or surplus of the generated power at the input / output of power between the power conversion circuit 20a and the power system 5, and uses the generated power of the power generation device 4 to keep the first power storage device 3 constant. Or supplying power to at least one of the load and the secondary battery connected to the power conversion circuit 20a using the generated power of the power generation device 4 and the discharge power of the first power storage device 3. Quantitative control for discharging the first power storage device 3 under a certain second reference condition is performed. In the quantitative control, when the input / output switching between the power conversion circuit 20a and the power system 5 is detected more than a predetermined number of times within a predetermined time, or the generated power amount of the power generation device 4 or a value corresponding to the generated power amount When the occurrence of switching is predicted based on the first reference condition or the second reference condition, the control unit 23 outputs power from the power conversion circuit 20a to the second power storage device 3a or power from the second power storage device 3a. The suppression control which suppresses switching by performing the electric power input to the conversion circuit 20a is performed.
 本実施形態の電力変換装置2(2a)は、以下の第2の特徴を有する。第2の特徴では、電力変換装置2aは、電力変換回路20(20a)と、制御部23と、を備える。電力変換回路20aは、充電及び放電が可能な第1蓄電装置3に接続される第1蓄電側回路(電力変換部21B)、充電及び放電が可能な第2蓄電装置3aに接続される第2蓄電側回路(電力変換部21Ba)、発電を行って発電電力を出力する発電装置4に接続される発電側回路(電力変換部21G)及び電力系統5に接続される系統側回路(電力変換部21S)を有する。電力変換回路20aは、電力変換を介して第1蓄電装置3、第2蓄電装置3a、発電装置4及び電力系統5間における送電及び受電を行うように構成される。制御部23は、電力変換回路20aを制御することで送電及び受電を制御するように構成される。制御部23は、発電電力の不足分又は余剰分を第1蓄電装置3の充電又は放電にて吸収しつつ、発電装置4の発電電力を用いて電力変換回路20aから電力系統5へ一定の第1基準条件下で電力を出力する、又は、発電電力と電力系統5から電力変換回路20aへの入力電力とを用いて電力変換回路20aに接続された負荷及び二次電池の少なくとも一方に電力供給を行うべく電力系統5から電力変換回路20aへ一定の第2基準条件で電力を入力する定量制御を実行する。定量制御において、電力変換回路20a及び第1蓄電装置3間の電力の入出力の切り替えが所定時間内に所定回数以上検出されたとき、或いは、発電装置4の発電電力量又は発電電力量に応じた値と第1基準条件又は第2基準条件とに基づいて切り替えの発生が予測されたとき、制御部23は、電力変換回路20aから第2蓄電装置3aへの電力出力又は第2蓄電装置3aから電力変換回路20aへの電力入力を行うことで切り替えを抑制する抑制制御を実行する。 The power conversion device 2 (2a) of the present embodiment has the following second feature. In the second feature, the power conversion device 2 a includes a power conversion circuit 20 (20 a) and a control unit 23. The power conversion circuit 20a includes a first power storage side circuit (power conversion unit 21B) connected to the first power storage device 3 capable of charging and discharging, and a second power source connected to the second power storage device 3a capable of charging and discharging. A power storage side circuit (power conversion unit 21Ba), a power generation side circuit (power conversion unit 21G) connected to the power generation device 4 that generates power and outputs generated power, and a system side circuit (power conversion unit) connected to the power system 5 21S). The power conversion circuit 20a is configured to transmit and receive power between the first power storage device 3, the second power storage device 3a, the power generation device 4, and the power system 5 through power conversion. The control unit 23 is configured to control power transmission and power reception by controlling the power conversion circuit 20a. The control unit 23 absorbs the deficiency or surplus of the generated power by charging or discharging the first power storage device 3 and uses the generated power of the power generation device 4 to transfer the constant power from the power conversion circuit 20a to the power system 5. Power is output under one reference condition, or power is supplied to at least one of a load and a secondary battery connected to the power conversion circuit 20a using generated power and input power from the power system 5 to the power conversion circuit 20a. Quantitative control for inputting electric power from the power system 5 to the power conversion circuit 20a under a constant second reference condition is performed. In the quantitative control, when switching of power input / output between the power conversion circuit 20a and the first power storage device 3 is detected more than a predetermined number of times within a predetermined time, or depending on the generated power amount or the generated power amount of the power generating device 4 When occurrence of switching is predicted based on the measured value and the first reference condition or the second reference condition, the control unit 23 outputs power from the power conversion circuit 20a to the second power storage device 3a or the second power storage device 3a. The suppression control which suppresses switching by performing the electric power input to the power converter circuit 20a from is performed.
 本実施形態の電力変換装置2は、第1または第2の特徴に加えて、以下の第3の特徴を有する。第3の特徴では、制御部23は、抑制制御の実行期間中において、発電装置4の発電電力量又は発電電力量に応じた値と、第1基準条件又は第2基準条件とに基づき、の解除条件が満たされると判断した場合に、抑制制御の実行を解除する。 The power conversion device 2 of the present embodiment has the following third feature in addition to the first or second feature. In the third feature, the control unit 23 performs the control based on the value of the generated power amount or the generated power amount of the power generation device 4 and the first reference condition or the second reference condition during the execution period of the suppression control. When it is determined that the release condition is satisfied, the execution of the suppression control is released.
 本実施形態の電力変換装置2は、第1または第2の特徴に加えて、以下の第4の特徴を有する。第4の特徴では、制御部23は、抑制制御の実行期間中において、切り替えが検出されたとき抑制制御の実行を解除する。 The power conversion device 2 of the present embodiment has the following fourth feature in addition to the first or second feature. In the fourth feature, the control unit 23 cancels the execution of the suppression control when switching is detected during the execution period of the suppression control.
 なお、電力変換装置2は、第1の特徴と第2の特徴との少なくとも1つを有していればよい。第3および第4の特徴は任意の特徴である。 In addition, the power converter device 2 should just have at least 1 of a 1st characteristic and a 2nd characteristic. The third and fourth features are optional features.
 以上述べたように、第3実施形態に係るハンチング抑制制御CNT3によっても、第1実施形態と同様、電力系統5の安定性に影響を与えるような系統側ハンチング現象又は蓄電装置3に悪影響を与えかねない蓄電側ハンチング現象を適切に抑制することが可能である。したがって、本実施形態によれば、ハンチング現象の抑制に寄与する電力変換装置2aを提供することが可能である。 As described above, the hunting suppression control CNT 3 according to the third embodiment also has an adverse effect on the system-side hunting phenomenon or the power storage device 3 that affects the stability of the power system 5 as in the first embodiment. It is possible to appropriately suppress the storage-side hunting phenomenon that may be applied. Therefore, according to the present embodiment, it is possible to provide the power conversion device 2a that contributes to the suppression of the hunting phenomenon.
 また、第3実施形態におけるハンチング抑制制御CNT3は定量制御に影響を与えないため、ハンチング抑制制御CNT3の実行期間中も所望通りの定量制御を継続できる。但し、第3実施形態のハンチング抑制制御CNT3では、本来必要の無い充放電を蓄電装置3aに行わせることになる。この点、ハンチング抑制制御CNT3の実行時に解除条件の充足有無を監視し、その実行を解除してもハンチング現象が発生しない又は発生しにくいと判断されたときにハンチング抑制制御CNT3を解除する方法を採用することにより、ハンチング現象を極力回避しながら、不必要な充放電をなるだけ抑制することができる。 Further, since the hunting suppression control CNT 3 in the third embodiment does not affect the quantitative control, the desired quantitative control can be continued during the execution period of the hunting suppression control CNT 3 . However, the hunting suppression control CNT 3 of the third embodiment causes the power storage device 3a to perform charge / discharge that is not originally required. In this regard, whether or not the release condition is satisfied is monitored when the hunting suppression control CNT 3 is executed, and the hunting suppression control CNT 3 is released when it is determined that the hunting phenomenon does not occur or hardly occurs even when the execution is canceled. By adopting the method, unnecessary charging / discharging can be suppressed as much as possible while avoiding the hunting phenomenon as much as possible.
 尚、ハンチング予測処理を用いずにハンチング検出処理を用いる場合は、ハンチング現象の発生を検出した後にハンチング抑制制御が実行されるため、多少のハンチング現象の発生を許容することになる。これに対し、ハンチング予測処理を用いるようにすれば、ハンチング現象の発生を完全に或いは殆ど完全に回避することができる。但し、ハンチング予測処理を用いる場合は、ハンチング検出処理を用いる場合と比べて、上記不必要な充放電の実行時間が多くなり、システム全体の効率が低下する(不必要な充放電に伴う電力変換損失がシステム全体の効率を低下させる)。ハンチング現象抑制とシステムの効率の、どちらを優先するかに応じて、ハンチング検出処理及び予測処理のどちらを実行するかを設定すれば良い。 Note that, when the hunting detection process is used without using the hunting prediction process, the hunting suppression control is executed after the occurrence of the hunting phenomenon is detected, so that some hunting phenomenon is allowed to occur. On the other hand, if the hunting prediction process is used, the occurrence of the hunting phenomenon can be completely or almost completely avoided. However, when the hunting prediction process is used, the unnecessary charge / discharge execution time increases as compared with the case where the hunting detection process is used, and the efficiency of the entire system is reduced (power conversion associated with unnecessary charge / discharge). Loss reduces overall system efficiency). Whether to execute the hunting detection process or the prediction process may be set according to which of the hunting phenomenon suppression and the system efficiency is given priority.
 また、電力供給システム1aに設けられた2つの蓄電装置の内、どちらを蓄電装置3に設定し、どちらを蓄電装置3aに設定するのかは自由である。2つの蓄電装置の内の任意の一方を蓄電装置3として選択すると共に他方を蓄電装置3aとして選択する選択処理を制御部23が成すようにしてもよい。制御部23は、2つの蓄電装置の夫々の劣化度合い(例えば、SOH(State Of Health))を求め、劣化度合いに応じて上記選択処理を行うようにしても良い。また、ハンチング抑制制御CNT3において、蓄電装置3aに充電と放電のどちらを行わせるのかを予め固定的に定めておくようにしても良いし、制御部23が蓄電装置3aの残容量に応じて決定するようにしてもよい。 Moreover, which of the two power storage devices provided in the power supply system 1a is set as the power storage device 3 and which is set as the power storage device 3a is arbitrary. The control unit 23 may perform a selection process of selecting any one of the two power storage devices as the power storage device 3 and selecting the other as the power storage device 3a. The control unit 23 may obtain the degree of deterioration (for example, SOH (State Of Health)) of each of the two power storage devices and perform the selection process according to the degree of deterioration. Further, in the hunting suppression control CNT 3 , it may be fixed in advance whether the power storage device 3 a is to be charged or discharged, or the control unit 23 may determine according to the remaining capacity of the power storage device 3 a. It may be determined.
 (変形等)
 本発明の実施形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。以上の実施形態は、あくまでも、本発明の実施形態の例であって、本発明ないし各構成要件の用語の意義は、以上の実施形態に記載されたものに制限されるものではない。上述の説明文中に示した具体的な数値は、単なる例示であって、当然の如く、それらを様々な数値に変更することができる。上述の実施形態に適用可能な注釈事項として、以下に、注釈1~注釈8を記す。各注釈に記載した内容は、矛盾なき限り、任意に組み合わせることが可能である。
(Deformation etc.)
The embodiment of the present invention can be appropriately modified in various ways within the scope of the technical idea shown in the claims. The above embodiment is merely an example of the embodiment of the present invention, and the meaning of the term of the present invention or each constituent element is not limited to that described in the above embodiment. The specific numerical values shown in the above description are merely examples, and as a matter of course, they can be changed to various numerical values. As annotations applicable to the above-described embodiment, notes 1 to 8 are described below. The contents described in each comment can be arbitrarily combined as long as there is no contradiction.
 (注釈1)
 上述の各実施形態では、蓄電装置3の充電電力量を一定することを充電基準条件が指定していると想定し、これに伴い、充電定量制御が蓄電装置3の充電電力量を一定に保つ制御であることを想定した。しかしながら、充電定量制御が蓄電装置3を一定の充電基準条件下で充電させるものである限り、充電定量制御は各実施形態で例示したものに限定されない。即ち例えば、充電定量制御は、蓄電装置3を一定の電流値で充電させる制御(定電流充電制御)であっても良いし、蓄電装置3を一定の電圧値で充電させる制御(定電圧充電制御)であっても良い。同様に、放電定量制御が蓄電装置3を一定の放電基準条件下で放電させるものである限り、放電定量制御は各実施形態で例示したものに限定されず、例えば、放電定量制御は、蓄電装置3を一定の電流値で放電させる制御(定電流放電制御)であっても良い。
(Note 1)
In each of the above-described embodiments, it is assumed that the charging reference condition specifies that the charging power amount of the power storage device 3 is constant, and accordingly, the charge quantitative control keeps the charging power amount of the power storage device 3 constant. Assumed to be control. However, as long as charge quantitative control is what charges the electrical storage apparatus 3 on fixed charge reference conditions, charge quantitative control is not limited to what was illustrated in each embodiment. That is, for example, the charge quantitative control may be control (constant current charge control) for charging the power storage device 3 with a constant current value, or control for charging the power storage device 3 with a constant voltage value (constant voltage charge control). ). Similarly, as long as the discharge quantitative control is to discharge the power storage device 3 under a certain discharge reference condition, the discharge quantitative control is not limited to those exemplified in each embodiment. 3 may be controlled to discharge at a constant current value (constant current discharge control).
 同様に、系統出力定量制御が電力変換回路(20又は20a)から電力系統5へ一定の系統出力基準条件下で電力出力させるものである限り、系統出力定量制御は各実施形態で例示したものに限定されず、例えば、系統出力定量制御は、電力変換回路(20又は20a)から電力系統5への出力電流値(実効値)を一定に保つ制御であっても良い。同様に、系統入力定量制御が電力系統5から電力変換回路(20又は20a)へ一定の系統入力基準条件下で電力入力させるものである限り、系統入力定量制御は各実施形態で例示したものに限定されず、例えば、系統入力定量制御は、電力系統5から電力変換回路(20又は20a)への入力電流値(実効値)を一定に保つ制御であっても良い。 Similarly, as long as the system output quantitative control is to output power from the power conversion circuit (20 or 20a) to the power system 5 under a certain system output reference condition, the system output quantitative control is as exemplified in each embodiment. For example, the system output quantitative control may be control that keeps the output current value (effective value) from the power conversion circuit (20 or 20a) to the power system 5 constant. Similarly, as long as the system input quantitative control is to input power from the power system 5 to the power conversion circuit (20 or 20a) under a certain system input reference condition, the system input quantitative control is as illustrated in each embodiment. For example, the system input quantitative control may be control that keeps the input current value (effective value) from the power system 5 to the power conversion circuit (20 or 20a) constant.
 (注釈2)
 注釈1の記載からも理解されるように、充電定量制御において、制御部23は、電力についての充電指令量PB *の代わりに、電力変換部21Bから蓄電装置3に供給される充電電流の電流値IBを指定する充電指令量IB *を生成して電力変換部21Bに与えても良く、電力変換部21Bは、充電指令量IB *にて指定された電流値を持つ充電電流を蓄電装置3に供給するべく充電用電力変換を行っても良い。充電定量制御において、制御部23は、充電指令量IB *に蓄電用基準電流量IBREFの値を代入することで蓄電装置3を一定の蓄電用基準電流量IBREFで充電させることができる。この場合、充電基準条件は蓄電装置3を一定の蓄電用基準電流量IBREFで充電することを指定していることになる。尚、本明細書において、用語“電流値”と用語“電流量”は同義であり、用語“電圧値”と用語“電圧量”は同義である。
(Note 2)
As can be understood from the description in Note 1, in charge quantitative control, the control unit 23 determines the charge current supplied from the power conversion unit 21B to the power storage device 3 instead of the charge command amount P B * for power. The charge command amount I B * designating the current value I B may be generated and given to the power conversion unit 21B. The power conversion unit 21B has a charge current having a current value designated by the charge command amount I B * . May be converted to supply power to the power storage device 3. In the charge quantitative control, the control unit 23 can charge the power storage device 3 with a constant reference current amount I BREF for storage by substituting the value of the reference current amount I BREF for storage into the charge command amount I B *. . In this case, the charge reference condition specifies that the power storage device 3 is charged with a constant reference current amount I BREF for power storage. In this specification, the term “current value” and the term “current amount” are synonymous, and the term “voltage value” and the term “voltage amount” are synonymous.
 同様に、放電定量制御において、制御部23は、電力についての放電指令量PB *の代わりに、蓄電装置3の放電電流の電流値IBを指定する放電指令量IB *を生成して電力変換部21Bに与えても良く、電力変換部21Bは、放電指令量IB *にて指定された電流値を持つ放電電流が蓄電装置3から出力されるように放電用電力変換を行っても良い。放電定量制御において、制御部23は、放電指令量IB *に蓄電用基準電流量IBREFの値を代入することで蓄電装置3を一定の蓄電用基準電流量IBREFで放電させることができる。この場合、放電基準条件は蓄電装置3を一定の蓄電用基準電流量IBREFで放電させることを指定していることになる。 Similarly, in the discharge quantitative control, the control unit 23 generates a discharge command amount I B * that specifies the current value I B of the discharge current of the power storage device 3 instead of the discharge command amount P B * for power. The power conversion unit 21B may perform the discharge power conversion so that a discharge current having a current value specified by the discharge command amount I B * is output from the power storage device 3. Also good. In the discharge quantitative control, the control unit 23 can discharge the power storage device 3 with a constant reference current amount I BREF for storage by substituting the value of the reference current amount I BREF for storage into the discharge command amount I B *. . In this case, the discharge reference condition specifies that the power storage device 3 is discharged with a constant reference current amount I BREF for power storage.
 同様に、系統出力定量制御において、制御部23は、電力についての系統出力指令量PS *の代わりに、電力変換部21Sから電力系統5への出力電流の電流値ISを指定する系統出力指令量IS *を生成して電力変換部21Sに与えても良く、電力変換部21Sは、系統出力指令量IS *にて指定された電流値を持つ電流が電力変換部21Sから電力系統5へ出力されるように系統出力用電力変換を行っても良い。系統出力定量制御において、制御部23は、系統出力指令量IS *に系統用基準電流量ISREFの値を代入することで電力変換部21Sから電力系統5へ一定の電流量ISREFで電流出力を行わせることができる。この場合、系統出力基準条件は電力変換回路(20又は20a)から電力系統5に対して一定の系統用基準電流量ISREFで電流出力を行うことを指定していることになる。 Similarly, in the grid output quantitative control, the control unit 23 designates the current value I S of the output current from the power conversion unit 21S to the power system 5 instead of the grid output command amount P S * for power. The command amount I S * may be generated and given to the power conversion unit 21S. The power conversion unit 21S receives a current having a current value specified by the system output command amount I S * from the power conversion unit 21S. System output power conversion may be performed so that the power is output to 5. In the system output quantitative control, the control unit 23 substitutes the value of the system reference current amount I SREF into the system output command amount I S * to transfer the current from the power conversion unit 21S to the power system 5 with a constant current amount I SREF . Output can be performed. In this case, the grid output reference condition specifies that the power output from the power conversion circuit (20 or 20a) to the power grid 5 is performed with a constant grid reference current amount I SREF .
 同様に、系統入力定量制御において、制御部23は、電力についての系統入力指令量PS *の代わりに、電力系統5から電力変換部21Sへの入力電流の電流値ISを指定する系統入力指令量IS *を生成して電力変換部21Sに与えても良く、電力変換部21Sは、系統入力指令量IS *にて指定された電流値を持つ電流が電力系統5から電力変換部21Sへ入力されるように系統入力用電力変換を行っても良い。系統入力定量制御において、制御部23は、系統入力指令量IS *に系統用基準電流量ISREFの値を代入することで電力系統5から電力変換部21Sへ一定の電流量ISREFで電流入力を行わせることができる。この場合、系統入力基準条件は電力系統5から電力変換回路(20又は20a)に対して一定の系統用基準電流量ISREFで電流入力を行うことを指定していることになる。 Similarly, in the system input quantitative control, the control unit 23 specifies the current value I S of the input current from the power system 5 to the power conversion unit 21S instead of the system input command amount P S * for power. The command amount I S * may be generated and given to the power conversion unit 21S. The power conversion unit 21S receives a current having a current value specified by the system input command amount I S * from the power system 5 and converts it into a power conversion unit. System input power conversion may be performed so as to be input to 21S. In the system input quantitative control, the control unit 23 substitutes the value of the system reference current amount I SREF into the system input command amount I S * to transfer a current with a constant current amount I SREF from the power system 5 to the power conversion unit 21S. Input can be made. In this case, the grid input reference condition specifies that the current input from the power grid 5 to the power conversion circuit (20 or 20a) is performed with a constant grid reference current amount I SREF .
 (注釈3)
 発電装置4の発電電力量に依存する電圧値と電流値の双方を用いた予測処理HP1A及びHP1B並びに解除可否判定処理J1A及びJ1Bを上述した。しかしながら、電圧値VG及び電圧値VB間の比、電圧値VINT及び電圧値VB間の比、又は、電圧値VG、VB及びVINTが制御部23にとって既知であるならば、制御部23は、発電装置4の発電電力量に応じた電流値の情報のみを用いて、即ち電流値IG又はIGINTのみを用いて予測処理HP1A及びHP1B並びに解除可否判定処理J1A及びJ1Bを成すこともできる。この際、上述の処理HP1A、HP1B、J1A及びJ1Bにおいて、既知の電圧の情報を用いて任意の“電力量”及び“電力量を表す記号”を“電流値”及び“電流値を表す記号”に変換すれば良く、この変換を介して実現される処理は、上述の処理HP1A、HP1B、J1A及びJ1Bと等価である。
(Note 3)
The prediction processes HP 1A and HP 1B and the release possibility determination processes J 1A and J 1B using both the voltage value and the current value depending on the amount of power generated by the power generation device 4 have been described above. However, if the ratio between the voltage value V G and the voltage value V B , the ratio between the voltage value V INT and the voltage value V B , or the voltage values V G , V B and V INT are known to the control unit 23. The control unit 23 uses only the information on the current value corresponding to the amount of power generated by the power generation device 4, that is, uses only the current value I G or I GINT to perform the prediction processes HP 1A and HP 1B and the cancelability determination process J 1A and J 1B can also be formed. At this time, in the above-described processes HP 1A , HP 1B , J 1A and J 1B , arbitrary “power amount” and “symbol representing power amount” are set to “current value” and “current value” using known voltage information. The process realized through this conversion is equivalent to the processes HP 1A , HP 1B , J 1A and J 1B described above.
 例えば、説明の簡略化上、電力変換部21G及び21Bの電力変換効率を100%とみなせば、|PB’-PBREF|=|IG・VG-IBREF・VB|=|IGINT・VINT-IBREF・VB|である(予測処理HP1A参照)。故に、比“VG/VB”又は比“VINT/VB”が既知であるならば、予測処理HP1Aにおいて、絶対値|PB’-PBREF|の代わりに絶対値|IG・VG/VB-IBREF|又は|IGINT・VINT/VB-IBREF|を用い(これが上記変換に相当する)、絶対値|IG・VG/VB-IBREF|又は|IGINT・VINT/VB-IBREF|を上記閾値TH1Aと比較すればよい。 For example, if the power conversion efficiency of the power conversion units 21G and 21B is regarded as 100% for the sake of simplification of description, | P B '−P BREF | = | I G · V G −I BREF · V B | = | I GINT · V INT −I BREF · V B | (see prediction process HP 1A ). Therefore, if the ratio "V G / V B" or the ratio "V INT / V B" is known, in the prediction processing HP 1A, the absolute value | P B '-P BREF | absolute value instead of | I G V G / V B -I BREF | or | I GINT · V INT / V B -I BREF | (this corresponds to the above conversion), and the absolute value | I G · V G / V B -I BREF | Or | I GINT · V INT / V B −I BREF | may be compared with the threshold value TH 1A .
 同様に、電圧値VG及び電圧値(実効値)VS間の比、電圧値VINT及び電圧値(実効値)VSの比、又は、電圧値VG、VS及びVINTが制御部23にとって既知であるならば、制御部23は、電流値IG又はIGINTのみを用いて予測処理HP1C及びHP1D並びに解除可否判定処理J1C及びJ1Dを成すこともできる。この際、上述の処理HP1C、HP1C、J1C及びJ1Dにおいて、既知の電圧の情報を用いて任意の“電力量”及び“電力量を表す記号”を“電流値”及び“電流値を表す記号”に変換すれば良く、この変換を介して実現される処理は、上述の処理HP1C、HP1C、J1C及びJ1Dと等価である。 Similarly, the ratio between the voltage value V G and the voltage value (effective value) V S , the ratio of the voltage value V INT and the voltage value (effective value) V S , or the voltage values V G , V S and V INT are controlled. If it is known to the unit 23, the control unit 23 can also perform the prediction processes HP 1C and HP 1D and the release possibility determination processes J 1C and J 1D using only the current value I G or I GINT . At this time, in the above-described processes HP 1C , HP 1C , J 1C and J 1D , arbitrary “power amount” and “symbol representing power amount” are set to “current value” and “current value” using information on known voltages. The process realized through this conversion is equivalent to the processes HP 1C , HP 1C , J 1C and J 1D described above.
 同様に、第2実施形態において、電圧値VG及び電圧値VB間の比、電圧値VINT及び電圧値VB間の比、電圧値VG及び電圧値(実効値)VS間の比、電圧値VINT及び電圧値(実効値)VSの比、電圧値VG、VB及びVINT、又は、電圧値VG、VS及びVINTが制御部23にとって既知であるならば、制御部23は、電流値IG又はIGINTのみを用いて解除可否判定処理J2を成すこともできる。この際、上述の解除可否判定処理J2において、既知の電圧の情報を用いて任意の“電力量”及び“電力量を表す記号”を“電流値”及び“電流値を表す記号”に変換すれば良く、この変換を介して実現される処理は、上述の解除可否判定処理J2と等価である。 Similarly, in the second embodiment, the ratio between the voltage value V G and the voltage value V B , the ratio between the voltage value V INT and the voltage value V B, and between the voltage value V G and the voltage value (effective value) V S. If the ratio, voltage value V INT and voltage value (effective value) V S , voltage values V G , V B and V INT , or voltage values V G , V S and V INT are known to the control unit 23 if, the control unit 23 can also form a release determination process J 2 using only current value I G or I GINT. At this time, in the above-described release possibility determination process J 2 , arbitrary “power amount” and “symbol representing power amount” are converted into “current value” and “symbol representing current value” using known voltage information. it is sufficient, processing realized through this transform is equivalent to the release determination process J 2 above.
 (注釈4)
 上述したように、充電定量制御では蓄電装置3の充電の条件(以下、充電条件という)が充電基準条件にて指定され、放電定量制御では蓄電装置3の放電の条件(以下、放電条件という)が放電基準条件にて指定され、系統出力定量制御では電力変換回路(20又は20a)から電力系統5への電力の出力条件(以下、系統出力条件という)が系統出力基準条件にて指定され、系統入力定量制御では電力系統5から電力変換回路(20又は20a)への電力の入力条件(以下、系統入力条件という)が系統入力基準条件にて指定されている。
(Note 4)
As described above, in charging quantitative control, the charging condition of the power storage device 3 (hereinafter referred to as charging condition) is specified by the charging reference condition, and in discharging quantitative control, the discharging condition of the power storage device 3 (hereinafter referred to as discharging condition). Is specified in the discharge reference condition, and in the grid output quantitative control, the power output condition from the power conversion circuit (20 or 20a) to the power grid 5 (hereinafter referred to as the grid output condition) is specified in the grid output reference condition. In the system input quantitative control, the power input condition (hereinafter referred to as system input condition) from the power system 5 to the power conversion circuit (20 or 20a) is designated by the system input reference condition.
 第1実施形態では、充電基準条件が蓄電用基準電力量PBREFを定めていることを想定した上で、充電条件を充電基準条件から変化させるハンチング抑制制御CNT1Aの具体的方法を説明したが、上述の方法は、充電条件を充電基準条件から変化させるための一手法に過ぎない。 In the first embodiment, the specific method of the hunting suppression control CNT 1A for changing the charging condition from the charging reference condition is described, assuming that the charging reference condition defines the storage reference power amount P BREF. The above-described method is only one method for changing the charging condition from the charging reference condition.
 即ち、抑制制御CNT1Aは、蓄電装置3の充電条件(充電における電力量、電流値又は電圧値の条件)を充電基準条件から変化させることのできる任意の方法によって実現可能である。例えば、充電定量制御において、制御部23が電流値IBを指定する電流指令量IB *を電力変換部21Bに与えている場合、即ち制御部23が電流値IBの制御を介して充電定量制御を実現している場合においてハンチング抑制制御CNT1Aを成すとき、制御部23は、電流指令量IB *を充電基準条件に従う電流値(IBREF)から変化させることで充電条件を充電基準条件から変化させてもよい。或いは例えば、充電定量制御において、制御部23が電圧値VBを指定する電圧指令量VB *を電力変換部21Bに与えている場合、即ち制御部23が電圧値VBの制御を介して充電定量制御を実現している場合においてハンチング抑制制御CNT1Aを成すとき、制御部23は、電圧指令量VB *を充電基準条件に従う電圧量VBREFから変化させることで充電条件を充電基準条件から変化させてもよい(PBREF=IBREF×VBREF)。何れにせよ、抑制制御CNT1Aによる充電条件の変化は蓄電装置3の充電電力量の変化(例えば、PBREFからの変化)を伴う。 In other words, the suppression control CNT 1A can be realized by any method that can change the charging condition of the power storage device 3 (condition of the electric energy, current value, or voltage value in charging) from the charging reference condition. For example, in the charging quantitative control, when the control unit 23 has given current instruction values I B * which specifies the current value I B to the power conversion unit 21B, that is, the control unit 23 via the control of the current value I B charge When the hunting suppression control CNT 1A is performed in the case where the quantitative control is realized, the control unit 23 changes the current command amount I B * from the current value (I BREF ) according to the charge reference condition, thereby changing the charge condition to the charge reference. You may change from conditions. Alternatively, for example, in the charging quantitative control, when the control unit 23 has given voltage command value V B * that specifies the voltage value V B to the power conversion unit 21B, that is, the control unit 23 via the control voltage value V B When realizing the hunting suppression control CNT 1A when the charge quantitative control is realized, the control unit 23 changes the voltage command amount V B * from the voltage amount V BREF according to the charge reference condition, thereby changing the charge condition to the charge reference condition. (P BREF = I BREF × V BREF ). In any case, a change in the charging condition by the suppression control CNT 1A is accompanied by a change in the amount of charge power of the power storage device 3 (for example, a change from P BREF ).
 同様に、抑制制御CNT1Bは、蓄電装置3の放電条件(放電における電力量、電流値又は電圧値の条件)を放電基準条件から変化させることのできる任意の方法によって実現可能である。例えば、放電定量制御において、制御部23が電流値IBを指定する電流指令量IB *を電力変換部21Bに与えている場合、即ち制御部23が電流値IBの制御を介して放電定量制御を実現している場合においてハンチング抑制制御CNT1Bを成すとき、制御部23は、電流指令量IB *を放電基準条件に従う電流値(IBREF)から変化させることで放電条件を放電基準条件から変化させてもよい。或いは例えば、放電定量制御において、制御部23が電圧値VBを指定する電圧指令量VB *を電力変換部21Bに与えている場合、即ち制御部23が電圧値VBの制御を介して放電定量制御を実現している場合においてハンチング抑制制御CNT1Bを成すとき、制御部23は、電圧指令量VB *を放電基準条件に従う電圧量VBREFから変化させることで放電条件を放電基準条件から変化させてもよい。何れにせよ、抑制制御CNT1Bによる放電条件の変化は蓄電装置3の放電電力量の変化(例えば、PBREFからの変化)を伴う。 Similarly, the suppression control CNT 1B can be realized by any method that can change the discharge condition of the power storage device 3 (the condition of the electric energy, current value, or voltage value in discharge) from the discharge reference condition. For example, in the discharge quantitative control, when the control unit 23 has given current instruction values I B * which specifies the current value I B to the power conversion unit 21B, that is, the control unit 23 via the control of the current value I B discharge When realizing the hunting suppression control CNT 1B in the case of realizing the quantitative control, the control unit 23 changes the discharge condition by changing the current command amount I B * from the current value (I BREF ) according to the discharge reference condition. You may change from conditions. Alternatively, for example, in the discharge quantitative control, when the control unit 23 has given voltage command value V B * that specifies the voltage value V B to the power conversion unit 21B, that is, the control unit 23 via the control voltage value V B When the hunting suppression control CNT 1B is performed in the case where the discharge quantitative control is realized, the control unit 23 changes the discharge condition by changing the voltage command amount V B * from the voltage amount V BREF according to the discharge reference condition. It may be changed from In any case, a change in the discharge condition by the suppression control CNT 1B is accompanied by a change in the amount of discharge power of the power storage device 3 (for example, a change from P BREF ).
 PB *、IB *及びVB *は、何れも、充電条件又は放電条件を指定する指令量(充放電指令量)の一種である。PBREF、IBREF及びVBREFは、何れも、充電基準条件又は放電基準条件に従った基準量(充放電基準量)の一種である。 Each of P B * , I B *, and V B * is a kind of command amount (charge / discharge command amount) that specifies a charging condition or a discharging condition. P BREF , I BREF, and V BREF are all types of reference amounts (charge / discharge reference amounts) according to the charge reference condition or the discharge reference condition.
 同様に、抑制制御CNT1Cは、系統出力条件(電力変換回路(20又は20a)から電力系統5への電力出力における電力量、電流値又は電圧値の条件)を系統出力基準条件から変化させることのできる任意の方法によって実現可能である。例えば、系統出力定量制御において、制御部23が電流値ISを指定する電流指令量IS *を電力変換部21Sに与えている場合、即ち制御部23が電流値ISの制御を介して系統出力定量制御を実現している場合においてハンチング抑制制御CNT1Cを成すとき、制御部23は、電流指令量IS *を系統出力基準条件に従う電流値(ISREF)から変化させることで系統出力条件を系統出力基準条件から変化させてもよい。或いは例えば、系統出力定量制御において、制御部23が電圧値VSを指定する電圧指令量VS *を電力変換部21Sに与えている場合、即ち制御部23が電圧値VSの制御を介して系統出力定量制御を実現している場合においてハンチング抑制制御CNT1Cを成すとき、制御部23は、電圧指令量VS *を系統出力基準条件に従う電圧量VSREFから変化させることで系統出力条件を系統出力基準条件から変化させてもよい(PSREF=ISREF×VSREF)。何れにせよ、抑制制御CNT1Cによる系統出力条件の変化は電力変換回路(20又は20a)から電力系統5への出力電力量の変化(例えば、PSREFからの変化)を伴う。 Similarly, the suppression control CNT 1C changes the grid output condition (the condition of the electric energy, current value, or voltage value in the power output from the power conversion circuit (20 or 20a) to the power grid 5) from the grid output reference condition. It can be realized by an arbitrary method. For example, the channel output quantitative control, the current instruction values I S * by the control unit 23 specifies the current value I S If given to the power conversion unit 21S, i.e. the control unit 23 via the control of the current value I S When the hunting suppression control CNT 1C is realized in the case where the system output quantitative control is realized, the control unit 23 changes the current command amount I S * from the current value (I SREF ) according to the system output reference condition to output the system output. The condition may be changed from the system output reference condition. Alternatively, for example, in the channel output quantitative control, when the control unit 23 has given voltage command value V S * to specify the voltage value V S to the power conversion unit 21S, i.e. the control unit 23 via the control voltage value V S When the system output quantitative control is realized, when the hunting suppression control CNT 1C is performed, the control unit 23 changes the voltage command amount V S * from the voltage amount V SREF according to the system output reference condition, thereby generating the system output condition. May be changed from the system output reference condition (P SREF = I SREF × V SREF ). In any case, a change in the system output condition by the suppression control CNT 1C is accompanied by a change in the output power amount from the power conversion circuit (20 or 20a) to the power system 5 (for example, a change from P SREF ).
 同様に、抑制制御CNT1Dは、系統入力条件(電力系統5から電力変換回路(20又は20a)への電力入力における電力量、電流値又は電圧値の条件)を系統入力基準条件から変化させることのできる任意の方法によって実現可能である。例えば、系統入力定量制御において、制御部23が電流値ISを指定する電流指令量IS *を電力変換部21Sに与えている場合、即ち制御部23が電流値ISの制御を介して系統入力定量制御を実現している場合においてハンチング抑制制御CNT1Dを成すとき、制御部23は、電流指令量IS *を系統入力基準条件に従う電流値(ISREF)から変化させることで系統入力条件を系統入力基準条件から変化させてもよい。或いは例えば、系統入力定量制御において、制御部23が電圧値VSを指定する電圧指令量VS *を電力変換部21Sに与えている場合、即ち制御部23が電圧値VSの制御を介して系統入力定量制御を実現している場合においてハンチング抑制制御CNT1Dを成すとき、制御部23は、電圧指令量VS *を系統入力基準条件に従う電圧量VSREFから変化させることで系統入力条件を系統入力基準条件から変化させてもよい。何れにせよ、抑制制御CNT1Dによる系統入力条件の変化は電力系統5から電力変換回路(20又は20a)への入力電力量の変化(例えば、PSREFからの変化)を伴う。 Similarly, the suppression control CNT 1D changes the system input condition (the condition of the electric energy, current value, or voltage value in the power input from the power system 5 to the power conversion circuit (20 or 20a)) from the system input reference condition. It can be realized by an arbitrary method. For example, the system inputs quantitative control, the current instruction values I S * by the control unit 23 specifies the current value I S If given to the power conversion unit 21S, i.e. the control unit 23 via the control of the current value I S When the hunting suppression control CNT 1D is performed in the case where the system input quantitative control is realized, the control unit 23 changes the current command amount I S * from the current value (I SREF ) according to the system input reference condition, thereby inputting the system input. The condition may be changed from the system input reference condition. Alternatively, for example, in the system input quantitative control, when the control unit 23 has given voltage command value V S * to specify the voltage value V S to the power conversion unit 21S, i.e. the control unit 23 via the control voltage value V S When the system input quantitative control is realized, when the hunting suppression control CNT 1D is performed, the control unit 23 changes the voltage command amount V S * from the voltage amount V SREF according to the system input reference condition, thereby changing the system input condition. May be changed from the system input reference condition. In any case, a change in the grid input condition by the suppression control CNT 1D is accompanied by a change in the amount of input power from the power grid 5 to the power conversion circuit (20 or 20a) (for example, a change from P SREF ).
 PS *、IS *及びVS *は、何れも、系統出力条件又は系統入力条件を指定する指令量(系統入出力指令量)の一種である。PSREF、ISREF及びVSREFは、何れも、系統出力基準条件又は系統入力基準条件に従った基準量(系統入出力基準量)の一種である。 P S * , I S *, and V S * are all types of command quantities (system input / output command quantities) that specify system output conditions or system input conditions. P SREF , I SREF, and V SREF are all types of reference quantities (system input / output reference quantities) according to system output reference conditions or system input reference conditions.
 (注釈5)
 制御部23が取得すべき入出力電力情報に電圧値、電流値及び電力量を表す情報が全て含まれている必要は必ずしも無い。第1~第3実施形態において、入出力電力情報は、電圧値を表す電圧情報(即ち、VB、VG、VS及びVINT、又は、VB、VBa、VG、VS及びVINT)、電流値を表す電流情報(即ち、IB、IG、IS、IBINT、IGINT及びISINT、又は、IB、IBa、IG、IS、IBINT、IBINTa、IGINT及びISINT)、及び、電力量を表す電力情報(即ち、PB、PG、PS、PBINT、PGINT及びPSINT、又は、PB、PBa、PG、PS、PBINT、PBINTa、PGINT及びPSINT)の内、少なくとも1つの情報を含んでいれば良い。
(Note 5)
The input / output power information to be acquired by the control unit 23 is not necessarily required to include all information indicating the voltage value, current value, and power amount. In the first to third embodiments, the input / output power information includes voltage information representing voltage values (that is, V B , V G , V S and V INT , or V B , V Ba , V G , V S and V INT ), current information indicating a current value (ie, I B , I G , I S , I BINT , I GINT and I SINT , or I B , I Ba , I G , I S , I BINT , I BINTa , I GINT and I SINT ) and power information representing the amount of power (ie, P B , P G , P S , P BINT , P GINT and P SINT , or P B , P Ba , P G , P S , P BINT , P BINTa , P GINT, and P SINT ) as long as they include at least one piece of information.
 (注釈6)
 電力変換部21B、21Ba、21G及び21Sは、夫々、蓄電装置3、蓄電装置3a、発電装置4及び電力系統5に接続される第1蓄電側回路、第2蓄電側回路、発電側回路及び系統側回路の例であり、第1蓄電側回路、第2蓄電側回路、発電側回路又は系統側回路に、電力変換部21B、21Ba、21G又は21Sを形成する回路以外の回路が更に含まれていても良い。
(Note 6)
The power conversion units 21B, 21Ba, 21G, and 21S respectively include a first power storage side circuit, a second power storage side circuit, a power generation side circuit, and a system connected to the power storage device 3, the power storage device 3a, the power generation device 4, and the power system 5. This is an example of the side circuit, and the first power storage side circuit, the second power storage side circuit, the power generation side circuit, or the system side circuit further includes a circuit other than the circuit that forms the power conversion unit 21B, 21Ba, 21G, or 21S. May be.
 (注釈7)
 第1~第3実施形態の夫々において、図31に示す如く、中間配線22に対し直流負荷8と二次電池8aが接続されていても良い。二次電池8aは、任意の種類の1以上の二次電池(例えばリチウムイオン電池、ニッケル水素電池)から成る。二次電池8aは、例えば、電気自動車等の電動車両に搭載される電池である。中間配線22に対し直流負荷8と二次電池8aが接続される場合、第1~第3実施形態の説明文を含む上述の各説明文において、直流負荷8へ送られる電力を直流負荷8及び二次電池8aへ送られる電力とみなせば良く、即ち例えば、直流負荷8の消費電力を直流負荷8の消費電力及び二次電池8aの充電電力との合計とみなすと共に直流負荷8への供給電力を直流負荷8及び二次電池8aへの供給電力とみなせば良い。尚、中間配線22に対し直流負荷8と二次電池8aが接続される場合、中間配線22と直流負荷8及び二次電池8aとの間に1以上の電力変換部を介在させても良い。
(Note 7)
In each of the first to third embodiments, the DC load 8 and the secondary battery 8a may be connected to the intermediate wiring 22 as shown in FIG. The secondary battery 8a is composed of one or more secondary batteries of any type (for example, a lithium ion battery or a nickel metal hydride battery). The secondary battery 8a is a battery mounted on an electric vehicle such as an electric vehicle, for example. When the DC load 8 and the secondary battery 8a are connected to the intermediate wiring 22, in each of the above-mentioned explanations including the explanations of the first to third embodiments, the electric power sent to the DC load 8 and the DC load 8 and What is necessary is just to consider it as the electric power sent to the secondary battery 8a, that is, for example, the power consumption of the DC load 8 is regarded as the sum of the power consumption of the DC load 8 and the charging power of the secondary battery 8a and the power supplied to the DC load 8 May be regarded as the power supplied to the DC load 8 and the secondary battery 8a. When the DC load 8 and the secondary battery 8a are connected to the intermediate wiring 22, one or more power conversion units may be interposed between the intermediate wiring 22, the DC load 8, and the secondary battery 8a.
 或いは、第1~第3実施形態の夫々において、図32に示す如く、中間配線22に対し直流負荷8の代わりに二次電池8aが接続されていても良い。図32に示す構成では、中間配線22に直流負荷8が接続されていない。中間配線22に対し直流負荷8が接続されずに二次電池8aが接続される場合、第1~第3実施形態の説明文を含む上述の各説明文において、直流負荷8へ送られる電力を二次電池8aへ送られる電力とみなせば良く、即ち例えば、直流負荷8の消費電力を二次電池8aの充電電力とみなすと共に直流負荷8への供給電力を二次電池8aへの供給電力とみなせば良い。尚、中間配線22に対し直流負荷8が接続されずに二次電池8aが接続される場合、中間配線22と二次電池8aとの間に電力変換部を介在させても良い。 Alternatively, in each of the first to third embodiments, as shown in FIG. 32, a secondary battery 8 a may be connected to the intermediate wiring 22 instead of the DC load 8. In the configuration shown in FIG. 32, the DC load 8 is not connected to the intermediate wiring 22. In the case where the secondary battery 8a is connected to the intermediate wiring 22 without being connected to the DC load 8, the power sent to the DC load 8 in each of the above description including the description of the first to third embodiments What is necessary is just to regard the power sent to the secondary battery 8a, that is, for example, the power consumption of the DC load 8 is regarded as the charging power of the secondary battery 8a and the power supplied to the DC load 8 is the power supplied to the secondary battery 8a. You should consider it. When the secondary battery 8a is connected to the intermediate wiring 22 without connecting the DC load 8, a power conversion unit may be interposed between the intermediate wiring 22 and the secondary battery 8a.
 (注釈8)
 制御部23を、ハードウェア、或いは、ハードウェアとソフトウェアの組み合わせによって構成することができる。ソフトウェアを用いて実現される機能をプログラムとして記述し、該プログラムをプログラム実行装置(例えばコンピュータ)上で実行することによって、その機能を実現するようにしてもよい。具体的には例えば、制御部23にCPU(Central Processing Unit)を設けておき、図示されないフラッシュメモリに格納されたプログラムを当該CPUに実行させることで、必要な機能を実現することができる。
(Note 8)
The control unit 23 can be configured by hardware or a combination of hardware and software. A function realized using software may be described as a program, and the function may be realized by executing the program on a program execution device (for example, a computer). Specifically, for example, a CPU (Central Processing Unit) is provided in the control unit 23, and a necessary function can be realized by causing the CPU to execute a program stored in a flash memory (not shown).

Claims (28)

  1.  電力変換回路と、
     制御部と、
     を備え、
     前記電力変換回路は、
      電力供給装置から電力を受け取る受電機能と、
      電力需要装置に電力を供給する送電機能と、
      電力補助装置に電力を供給する出力処理と前記電力補助装置から電力を取得する入力処理とを選択的に実行する入出力選択機能と、
      前記制御部からの指示に応じて、前記電力供給装置から受け取る電力である供給電力と前記電力需要装置に供給する電力である需要電力との少なくとも一方を調整する調整機能と、
     を有し、
     前記制御部は、
      前記供給電力を前記需要電力と比較し、
      前記供給電力が前記需要電力より多ければ、前記供給電力の余剰分が前記電力補助装置に供給されるように前記電力変換回路に前記出力処理を実行させ、
      前記供給電力が前記需要電力より少なければ、前記供給電力の不足分が前記電力補助装置からの電力で補われるように前記電力変換回路に前記入力処理を実行させる
     ように構成され、
     前記制御部は、前記電力変換回路でハンチング現象が発生するイベントが起きたか否かを判定し、前記イベントが起きたと判定するとハンチング抑制制御を実行するように構成され、
     前記制御部は、前記ハンチング抑制制御では、前記供給電力と前記需要電力との差が大きくなるように前記電力変換回路に前記指示を与えるように構成される
     ことを特徴とする電力変換装置。
    A power conversion circuit;
    A control unit;
    With
    The power conversion circuit includes:
    A power receiving function for receiving power from a power supply device;
    A power transmission function for supplying power to the power demand device;
    An input / output selection function for selectively executing output processing for supplying power to the power auxiliary device and input processing for acquiring power from the power auxiliary device;
    In accordance with an instruction from the control unit, an adjustment function for adjusting at least one of supply power that is power received from the power supply device and demand power that is power supplied to the power demand device;
    Have
    The controller is
    Comparing the supply power with the demand power;
    If the supply power is greater than the demand power, the power conversion circuit is configured to execute the output process so that a surplus of the supply power is supplied to the power auxiliary device,
    If the supply power is less than the demand power, the power conversion circuit is configured to execute the input process so that the shortage of the supply power is supplemented with the power from the power auxiliary device,
    The controller is configured to determine whether or not an event that causes a hunting phenomenon has occurred in the power conversion circuit, and to execute hunting suppression control when determining that the event has occurred,
    The said control part is comprised so that the said instruction | indication may be given to the said power converter circuit so that the difference of the said supplied power and the said demand power may become large in the said hunting suppression control.
  2.  前記指示は、前記需要電力の目標値であり、
     前記電力変換回路は、前記制御部から前記目標値を受け取ると、前記需要電力を前記目標値に調整するように構成され、
     前記制御部は、前記イベントが起きたと判定するまでは、前記目標値を既定値に設定する通常制御を実行するように構成され、
     前記制御部は、前記ハンチング抑制制御では、前記目標値を前記既定値と異なる値に設定するように構成される
     ことを特徴とする請求項1に記載の電力変換装置。
    The instruction is a target value of the demand power,
    The power conversion circuit is configured to adjust the demand power to the target value when receiving the target value from the control unit,
    The control unit is configured to perform normal control for setting the target value to a default value until it is determined that the event has occurred,
    The power conversion device according to claim 1, wherein the control unit is configured to set the target value to a value different from the predetermined value in the hunting suppression control.
  3.  前記電力供給装置は、発電装置であり、
     前記電力需要装置は、蓄電装置と電力系統とのいずれか一方であり、
     前記電力補助装置は、前記蓄電装置と前記電力系統とのいずれか他方である
     ことを特徴とする請求項2に記載の電力変換装置。
    The power supply device is a power generation device,
    The power demand device is one of a power storage device and a power system,
    The power converter according to claim 2, wherein the power auxiliary device is the other of the power storage device and the power system.
  4.  前記電力供給装置は、発電装置と、電源装置と、を含み、
     前記供給電力は、前記発電装置から供給される電力である発電電力と、前記電源装置から得られる電力である電源電力との合計であり、
     前記指示は、前記電源電力の目標値であり、
     前記電力変換回路は、前記目標値を受け取ると、前記電源電力を前記目標値に調整するように構成され、
     前記制御部は、前記イベントが起きたと判定するまでは、前記目標値を既定値に設定する通常制御を実行するように構成され、
     前記制御部は、前記ハンチング抑制制御では、前記目標値を前記既定値と異なる値に設定するように構成される
     ことを特徴とする請求項1に記載の電力変換装置。
    The power supply device includes a power generation device and a power supply device,
    The supplied power is a total of generated power that is power supplied from the power generator and power source power that is power obtained from the power supply device,
    The instruction is a target value of the power supply power,
    The power conversion circuit is configured to adjust the power supply power to the target value upon receiving the target value;
    The control unit is configured to perform normal control for setting the target value to a default value until it is determined that the event has occurred,
    The power conversion device according to claim 1, wherein the control unit is configured to set the target value to a value different from the predetermined value in the hunting suppression control.
  5.  前記電源装置は、蓄電装置と電力系統とのいずれか一方であり、
     前記電力補助装置は、前記蓄電装置と前記電力系統とのいずれか他方である
     ことを特徴とする請求項4に記載の電力変換装置。
    The power supply device is one of a power storage device and a power system,
    The power converter according to claim 4, wherein the power auxiliary device is one of the power storage device and the power system.
  6.  前記電力供給装置は、発電装置を含み、
     前記供給電力は、前記発電装置から得られる電力である発電電力を含み、
     前記指示は、前記発電電力の目標値であり、
     前記電力変換回路は、前記目標値を受け取ると、前記発電電力が前記目標値となるように前記発電装置を制御するように構成され、
     前記制御部は、前記イベントが起きたと判定するまでは、前記目標値を既定値に設定する通常制御を実行するように構成され、
     前記制御部は、前記ハンチング抑制制御では、前記目標値を前記既定値と異なる値に設定するように構成される
     ことを特徴とする請求項1に記載の電力変換装置。
    The power supply device includes a power generation device,
    The supplied power includes generated power that is power obtained from the power generator,
    The instruction is a target value of the generated power,
    When the power conversion circuit receives the target value, the power conversion circuit is configured to control the power generation device so that the generated power becomes the target value.
    The control unit is configured to perform normal control for setting the target value to a default value until it is determined that the event has occurred,
    The power conversion device according to claim 1, wherein the control unit is configured to set the target value to a value different from the predetermined value in the hunting suppression control.
  7.  前記発電装置は、太陽電池であり、
     前記電力変換回路は、前記指示に応じて前記太陽電池の動作点を変更することで前記発電電力を調整するように構成される
     ことを特徴とする請求項6に記載の電力変換装置。
    The power generation device is a solar cell,
    The power conversion device according to claim 6, wherein the power conversion circuit is configured to adjust the generated power by changing an operating point of the solar cell in accordance with the instruction.
  8.  前記既定値は、前記太陽電池の最大電力に対応する値である
     ことを特徴とする請求項7に記載の電力変換装置。
    The power conversion device according to claim 7, wherein the predetermined value is a value corresponding to the maximum power of the solar cell.
  9.  前記電力需要装置は、蓄電装置と電力系統とのいずれか一方であり、
     前記電力補助装置は、前記蓄電装置と前記電力系統とのいずれか他方である
     ことを特徴とする請求項6に記載の電力変換装置。
    The power demand device is one of a power storage device and a power system,
    The power converter according to claim 6, wherein the power auxiliary device is one of the power storage device and the power system.
  10.  前記電力供給装置は、電源装置をさらに含み、
     前記供給電力は、前記発電装置から供給される電力である発電電力と、前記電源装置から得られる電力である電源電力との合計であり、
     前記電源装置は、蓄電装置と電力系統とのいずれか一方であり、
     前記電力補助装置は、前記蓄電装置と前記電力系統とのいずれか他方である
     ことを特徴とする請求項6に記載の電力変換装置。
    The power supply device further includes a power supply device,
    The supplied power is a total of generated power that is power supplied from the power generator and power source power that is power obtained from the power supply device,
    The power supply device is one of a power storage device and a power system,
    The power converter according to claim 6, wherein the power auxiliary device is one of the power storage device and the power system.
  11.  前記電力変換回路は、第2出力処理と第2入力処理とを選択的に実行する第2入出力選択機能を有し、
     前記電力変換回路は、前記第2出力処理では、第2電力補助装置に電力を供給することで前記第2電力補助装置を前記電力需要装置の一部として用いて前記需要電力を増やすように構成され、
     前記電力変換回路は、前記第2入力処理では、前記第2電力補助装置から電力を取得することで前記第2電力補助装置を前記電力供給装置の一部として用いて前記供給電力を増やすように構成され、
     前記ハンチング抑制制御は、前記電力変換回路に前記第2出力処理を実行させる第1ハンチング抑制制御と、前記電力変換回路に前記第2入力処理を実行させる第2ハンチング抑制制御と、を含み、
     前記制御部は、前記イベントが起きたと判定すると、前記供給電力と前記需要電力との差が大きくなるように前記第1ハンチング抑制制御と前記第2ハンチング抑制制御とのいずれか一方を実行するように構成される
     ことを特徴とする請求項1に記載の電力変換装置。
    The power conversion circuit has a second input / output selection function for selectively executing a second output process and a second input process,
    The power conversion circuit is configured to increase the demand power by using the second power auxiliary device as a part of the power demand device by supplying power to the second power auxiliary device in the second output process. And
    In the second input process, the power conversion circuit obtains power from the second power auxiliary device to increase the supply power by using the second power auxiliary device as a part of the power supply device. Configured,
    The hunting suppression control includes a first hunting suppression control that causes the power conversion circuit to execute the second output process, and a second hunting suppression control that causes the power conversion circuit to execute the second input process.
    When the control unit determines that the event has occurred, the control unit executes any one of the first hunting suppression control and the second hunting suppression control so that a difference between the supplied power and the demand power is increased. It is comprised by these. The power converter device of Claim 1 characterized by the above-mentioned.
  12.  前記第2電力補助装置は、第2蓄電装置であり、
     前記電力変換回路は、前記第2出力処理では前記第2蓄電装置を充電し、前記第2入力処理では前記第2蓄電装置を放電させるように構成される
     ことを特徴とする請求項11に記載の電力変換装置。
    The second power auxiliary device is a second power storage device,
    The power conversion circuit is configured to charge the second power storage device in the second output process and to discharge the second power storage device in the second input process. Power converter.
  13.  前記制御部は、前記イベントが起きたと判定した場合に、前記第2蓄電装置の電力の残量を所定値と比較するように構成され、
     前記制御部は、前記残量が前記所定値未満であれば前記第1ハンチング抑制制御を実行し、前記残量が前記所定値以上であれば前記第2ハンチング抑制制御を実行するように構成される
     ことを特徴とする請求項12に記載の電力変換装置。
    The control unit is configured to compare the remaining amount of power of the second power storage device with a predetermined value when it is determined that the event has occurred,
    The control unit is configured to execute the first hunting suppression control if the remaining amount is less than the predetermined value, and to execute the second hunting suppression control if the remaining amount is equal to or greater than the predetermined value. The power conversion device according to claim 12, wherein
  14.  前記電力供給装置は、発電装置であり、
     前記電力需要装置は、蓄電装置と電力系統とのいずれか一方であり、
     前記電力補助装置は、前記蓄電装置と前記電力系統とのいずれか他方である
     ことを特徴とする請求項11に記載の電力変換装置。
    The power supply device is a power generation device,
    The power demand device is one of a power storage device and a power system,
    The power converter according to claim 11, wherein the power auxiliary device is one of the power storage device and the power system.
  15.  前記電力供給装置は、発電装置と、電源装置と、を含み、
     前記電源装置は、蓄電装置と電力系統とのいずれか一方であり、
     前記電力補助装置は、前記蓄電装置と前記電力系統とのいずれか他方である
     ことを特徴とする請求項11に記載の電力変換装置。
    The power supply device includes a power generation device and a power supply device,
    The power supply device is one of a power storage device and a power system,
    The power converter according to claim 11, wherein the power auxiliary device is one of the power storage device and the power system.
  16.  前記制御部は、前記ハンチング抑制制御の実行中に前記供給電力と前記需要電力との差が解除条件を満たした場合に、前記ハンチング抑制制御を終了するように構成される
     ことを特徴とする請求項1に記載の電力変換装置。
    The control unit is configured to end the hunting suppression control when a difference between the supplied power and the demand power satisfies a release condition during execution of the hunting suppression control. Item 4. The power conversion device according to Item 1.
  17.  前記解除条件は、前記供給電力と前記需要電力との差の絶対値が所定の閾値以下であること、または、前記供給電力と前記需要電力との差の絶対値が所定の閾値以下である状態が所定時間継続したことであり、
     前記所定の閾値は、前記ハンチング抑制制御の実行による前記供給電力と前記需要電力との差の変化の幅より小さい
     ことを特徴とする請求項16に記載の電力変換装置。
    The release condition is that the absolute value of the difference between the supplied power and the demand power is not more than a predetermined threshold, or the absolute value of the difference between the supply power and the demand power is not more than a predetermined threshold Has continued for a predetermined time,
    The power conversion device according to claim 16, wherein the predetermined threshold value is smaller than a change width of a difference between the supplied power and the demand power due to the execution of the hunting suppression control.
  18.  前記解除条件は、前記供給電力と前記需要電力との差が正また負である状態が所定時間継続したことである
     ことを特徴とする請求項16に記載の電力変換装置。
    The power conversion apparatus according to claim 16, wherein the cancellation condition is that a state where a difference between the supplied power and the demand power is positive or negative continues for a predetermined time.
  19.  前記制御部は、前記ハンチング抑制制御の実行中に前記供給電力と前記既定値との差が解除条件を満たした場合に、前記ハンチング抑制制御を終了するように構成され、
     前記解除条件は、
      前記差の絶対値が閾値以上であること、
      前記差の絶対値が前記閾値以上である状態が所定の第1時間継続したこと、
      または、前記差が正又は負である状態が所定の第2時間継続したこと、
     のいずれかである
     ことを特徴とする請求項2に記載の電力変換装置。
    The control unit is configured to end the hunting suppression control when a difference between the supplied power and the predetermined value satisfies a release condition during execution of the hunting suppression control,
    The release condition is
    The absolute value of the difference is greater than or equal to a threshold,
    A state in which the absolute value of the difference is equal to or greater than the threshold continues for a predetermined first time;
    Or that the difference is positive or negative for a predetermined second time period,
    It is either of these. The power converter device of Claim 2 characterized by the above-mentioned.
  20.  前記制御部は、前記ハンチング抑制制御の実行中に前記発電電力と前記既定値との合計値と前記需用電力との差が解除条件を満たした場合に、前記ハンチング抑制制御を終了するように構成され、
     前記解除条件は、
      前記差の絶対値が閾値以上であること、
      前記差の絶対値が前記閾値以上である状態が所定の第1時間継続したこと、
      または、前記差が正又は負である状態が所定の第2時間継続したこと、
     のいずれかである
     ことを特徴とする請求項4に記載の電力変換装置。
    The control unit ends the hunting suppression control when a difference between a total value of the generated power and the predetermined value and the demand power satisfies a release condition during the execution of the hunting suppression control. Configured,
    The release condition is
    The absolute value of the difference is greater than or equal to a threshold,
    A state in which the absolute value of the difference is equal to or greater than the threshold continues for a predetermined first time;
    Or that the difference is positive or negative for a predetermined second time period,
    It is either of these. The power converter device of Claim 4 characterized by the above-mentioned.
  21.  前記制御部は、前記ハンチング抑制制御の実行中に前記需要電力と前記既定値との差が解除条件を満たした場合に、前記ハンチング抑制制御を終了するように構成され、
     前記解除条件は、
      前記差の絶対値が閾値以上であること、
      前記差の絶対値が前記閾値以上である状態が所定の第1時間継続したこと、
      または、前記差が正又は負である状態が所定の第2時間継続したこと、
     のいずれかである
     ことを特徴とする請求項9に記載の電力変換装置。
    The control unit is configured to end the hunting suppression control when a difference between the demand power and the predetermined value satisfies a release condition during execution of the hunting suppression control,
    The release condition is
    The absolute value of the difference is greater than or equal to a threshold,
    A state in which the absolute value of the difference is equal to or greater than the threshold continues for a predetermined first time;
    Or that the difference is positive or negative for a predetermined second time period,
    It is either of these. The power converter device of Claim 9 characterized by the above-mentioned.
  22.  前記制御部は、前記ハンチング抑制制御の実行中に前記電源電力と前記既定値との合計値と前記需用電力との差が解除条件を満たした場合に、前記ハンチング抑制制御を終了するように構成され、
     前記解除条件は、
      前記差の絶対値が閾値以上であること、
      前記差の絶対値が前記閾値以上である状態が所定の第1時間継続したこと、
      または、前記差が正又は負である状態が所定の第2時間継続したこと、
     のいずれかである
     ことを特徴とする請求項10に記載の電力変換装置。
    The control unit ends the hunting suppression control when the difference between the total value of the power source power and the predetermined value and the demand power satisfies the release condition during the execution of the hunting suppression control. Configured,
    The release condition is
    The absolute value of the difference is greater than or equal to a threshold,
    A state in which the absolute value of the difference is equal to or greater than the threshold continues for a predetermined first time;
    Or that the difference is positive or negative for a predetermined second time period,
    It is either of these. The power converter device of Claim 10 characterized by the above-mentioned.
  23.  前記電力変換回路は、前記第2出力処理では、前記需要電力を第1既定値から増やすように構成され、
     前記制御部は、前記第1ハンチング抑制制御の実行中に前記供給電力と前記第1既定値との差が第1解除条件を満たした場合に、前記第1ハンチング抑制制御を終了するように構成され、
     前記第1解除条件は、
      前記供給電力と前記第1既定値との差の第1絶対値が第1閾値以上であること、
      前記第1絶対値が前記第1閾値以上である状態が所定の第1時間継続したこと、
      または、前記供給電力と前記第1既定値との差が正又は負である状態が所定の第2時間継続したこと、
     のいずれかである
     ことを特徴とする請求項11に記載の電力変換装置。
    The power conversion circuit is configured to increase the demand power from a first predetermined value in the second output process,
    The control unit is configured to end the first hunting suppression control when a difference between the supplied power and the first predetermined value satisfies a first release condition during execution of the first hunting suppression control. And
    The first release condition is
    A first absolute value of a difference between the supplied power and the first predetermined value is not less than a first threshold;
    A state in which the first absolute value is equal to or greater than the first threshold has continued for a predetermined first time;
    Alternatively, a state where a difference between the supplied power and the first predetermined value is positive or negative continues for a predetermined second time,
    It is either of these. The power converter device of Claim 11 characterized by the above-mentioned.
  24.  前記電力変換回路は、前記第2入力処理では、前記供給電力を第2既定値から増やすように構成され、
     前記制御部は、前記第2ハンチング抑制制御の実行中に前記需要電力と前記第2既定値との差が第2解除条件を満たした場合に、前記第2ハンチング抑制制御を終了するように構成され、
     前記第2解除条件は、
      前記需要電力と前記第2既定値との差の第2絶対値が第2閾値以上であること、
      前記第2絶対値が前記第2閾値以上である状態が所定の第3時間継続したこと、
      または、前記需要電力と前記第2既定値との差が正又は負である状態が所定の第4時間継続したこと、
     のいずれかである
     ことを特徴とする請求項11に記載の電力変換装置。
    The power conversion circuit is configured to increase the supply power from a second predetermined value in the second input process,
    The control unit is configured to end the second hunting suppression control when a difference between the demand power and the second predetermined value satisfies a second release condition during execution of the second hunting suppression control. And
    The second release condition is:
    A second absolute value of a difference between the demand power and the second predetermined value is not less than a second threshold;
    The state in which the second absolute value is equal to or greater than the second threshold has continued for a predetermined third time;
    Alternatively, a state where a difference between the demand power and the second predetermined value is positive or negative has continued for a predetermined fourth time,
    It is either of these. The power converter device of Claim 11 characterized by the above-mentioned.
  25.  前記制御部は、前記ハンチング抑制制御の実行中に、前記入力処理と前記出力処理との切り替え動作が所定回数行われたか否かを判定し、前記切り替え動作が所定回数行われたと判定すると、前記ハンチング抑制制御を終了するように構成される
     ことを特徴とする請求項1に記載の電力変換装置。
    The controller determines whether or not the switching operation between the input process and the output process has been performed a predetermined number of times during the execution of the hunting suppression control, and determines that the switching operation has been performed a predetermined number of times, The power conversion device according to claim 1, wherein the power conversion device is configured to end the hunting suppression control.
  26.  前記制御部は、前記電力変換回路が前記出力処理と前記入力処理との切り替え動作を所定時間内に所定回数以上行った場合に、前記イベントが起きたと判定するように構成される
     ことを特徴とする請求項1に記載の電力変換装置。
    The control unit is configured to determine that the event has occurred when the power conversion circuit performs a switching operation between the output process and the input process a predetermined number of times within a predetermined time. The power conversion device according to claim 1.
  27.  前記制御部は、前記供給電力と前記需要電力との差の絶対値が判定値以下であるか否かを判定し、前記絶対値が前記判定値以下であると判定した場合に前記イベントが起きたと判定するように構成される
     ことを特徴とする請求項1に記載の電力変換装置。
    The control unit determines whether or not an absolute value of a difference between the supplied power and the demand power is equal to or less than a determination value, and the event occurs when it is determined that the absolute value is equal to or less than the determination value. The power conversion device according to claim 1, wherein the power conversion device is configured to determine that the power conversion has occurred.
  28.  前記制御部は、前記供給電力と前記需要電力との差の絶対値が判定値以下である状態が判定時間継続したか否かを判定し、前記状態が前記判定時間継続したと判定した場合に前記イベントが起きたと判定するように構成される
     ことを特徴とする請求項1に記載の電力変換装置。
    The control unit determines whether or not a state in which an absolute value of a difference between the supplied power and the demand power is equal to or less than a determination value has continued for a determination time, and determines that the state has continued for the determination time The power conversion device according to claim 1, wherein the power conversion device is configured to determine that the event has occurred.
PCT/JP2012/083675 2011-12-28 2012-12-26 Power conversion apparatus WO2013099957A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011287461A JP5899477B2 (en) 2011-12-28 2011-12-28 Power converter
JP2011287472A JP5899479B2 (en) 2011-12-28 2011-12-28 Power converter
JP2011-287461 2011-12-28
JP2011-287467 2011-12-28
JP2011-287472 2011-12-28
JP2011287467A JP5899478B2 (en) 2011-12-28 2011-12-28 Power converter

Publications (1)

Publication Number Publication Date
WO2013099957A1 true WO2013099957A1 (en) 2013-07-04

Family

ID=48697438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083675 WO2013099957A1 (en) 2011-12-28 2012-12-26 Power conversion apparatus

Country Status (1)

Country Link
WO (1) WO2013099957A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105830333A (en) * 2013-12-18 2016-08-03 大宇造船海洋株式会社 Apparatus and method for supplying hybrid power of offshore plant
JP2021035151A (en) * 2019-08-23 2021-03-01 川崎重工業株式会社 Power control system and electrical power system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0471334A (en) * 1990-07-11 1992-03-05 Fuji Electric Co Ltd Hunting prevention device of inverter for system interlocking power source
JPH08280136A (en) * 1995-04-05 1996-10-22 Fuji Electric Co Ltd Method for controlling distributed power supply linked with power system
JP2001224142A (en) * 2000-02-08 2001-08-17 Nissin Electric Co Ltd Photovoltaic generation apparatus
JP2008154334A (en) * 2006-12-15 2008-07-03 Matsushita Electric Ind Co Ltd Power conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0471334A (en) * 1990-07-11 1992-03-05 Fuji Electric Co Ltd Hunting prevention device of inverter for system interlocking power source
JPH08280136A (en) * 1995-04-05 1996-10-22 Fuji Electric Co Ltd Method for controlling distributed power supply linked with power system
JP2001224142A (en) * 2000-02-08 2001-08-17 Nissin Electric Co Ltd Photovoltaic generation apparatus
JP2008154334A (en) * 2006-12-15 2008-07-03 Matsushita Electric Ind Co Ltd Power conditioner

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105830333A (en) * 2013-12-18 2016-08-03 大宇造船海洋株式会社 Apparatus and method for supplying hybrid power of offshore plant
EP3086463A4 (en) * 2013-12-18 2017-08-09 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Apparatus and method for supplying hybrid power of offshore plant
EP3086461A4 (en) * 2013-12-18 2017-09-20 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Apparatus and method for supplying hybrid power of offshore plant
US9954357B2 (en) 2013-12-18 2018-04-24 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Apparatus and method for supplying hybrid power of offshore plant
JP2021035151A (en) * 2019-08-23 2021-03-01 川崎重工業株式会社 Power control system and electrical power system
WO2021039144A1 (en) * 2019-08-23 2021-03-04 川崎重工業株式会社 Power control system and power supply system
JP7398902B2 (en) 2019-08-23 2023-12-15 川崎重工業株式会社 Power control system and power supply system

Similar Documents

Publication Publication Date Title
US9735619B2 (en) Power conversion device
US20120176095A1 (en) Electric power management system
JP5882156B2 (en) Power control device
US10084314B2 (en) Storage battery equipment
WO2016185660A1 (en) Distributed power supply system, and control method of distributed power supply system
JP5410911B2 (en) Storage battery deterioration determination method and deterioration determination apparatus, and storage battery charging method and charging apparatus
WO2011052314A1 (en) Method for controlling secondary cell and power storage device
JP2014529161A (en) Storage battery control method, storage battery control device, and power control system
JP2021093788A (en) Charging device and charging method
JP5899478B2 (en) Power converter
JP5899479B2 (en) Power converter
WO2013099957A1 (en) Power conversion apparatus
JP6712802B2 (en) Power storage system, control device, and power storage device
JP6386536B2 (en) Supply and demand control device, supply and demand control method
JP5946983B1 (en) Supply and demand control device, supply and demand control method
JP5901495B2 (en) Output stabilization controller for distributed power supply
JP6722295B2 (en) Power conversion system, power supply system, and power conversion device
WO2018138710A1 (en) Dc power supply system
JP5899477B2 (en) Power converter
JP2015508498A (en) Method and system for estimating discharge capacity of electrical energy storage device
JP2023030289A (en) Control device for battery unit
JP6865651B2 (en) Distributed power system
JP2013090460A (en) Power generation control unit of photovoltaic power generation system
JP6699575B2 (en) Battery control device
JP2016140188A (en) Electric power system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12862001

Country of ref document: EP

Kind code of ref document: A1