JP2001224142A - Photovoltaic generation apparatus - Google Patents

Photovoltaic generation apparatus

Info

Publication number
JP2001224142A
JP2001224142A JP2000030339A JP2000030339A JP2001224142A JP 2001224142 A JP2001224142 A JP 2001224142A JP 2000030339 A JP2000030339 A JP 2000030339A JP 2000030339 A JP2000030339 A JP 2000030339A JP 2001224142 A JP2001224142 A JP 2001224142A
Authority
JP
Japan
Prior art keywords
voltage
power
storage battery
charging
night
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000030339A
Other languages
Japanese (ja)
Other versions
JP3687464B2 (en
Inventor
Mitsuru Matsukawa
満 松川
Yukio Shimomura
幸男 下村
Norio Sakae
紀雄 栄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2000030339A priority Critical patent/JP3687464B2/en
Publication of JP2001224142A publication Critical patent/JP2001224142A/en
Application granted granted Critical
Publication of JP3687464B2 publication Critical patent/JP3687464B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Abstract

PROBLEM TO BE SOLVED: To give priority to link operation in daytime for quickly charging a discharged battery during night and day and maintain the battery in a full- charge state to prepare for the next self-contained operation. SOLUTION: A controller 9 of a power converter 5, which converts inversely DC power of a solar cell 2 and a battery 3 into AC powers and supplies the AC powers to a load in a link operation and a self-contained operation and converts an AC power of a power system 13 into a DC power for charging in a charging operation, has a means, which distinguishes between day and night according to the magnitude of the voltage of the solar cell 2, a means which monitors the voltage of the battery 3 and a means, which during in a daytime when the system is normal, controls the power converter 5 to be in a charging operation every time when the voltage of the battery 3 is lowered to a discharge limit voltage, predetermined to be in a neighborhood of an overdischaging voltage, and, at night when the system is normal, controls the power converter 5 to be in a charging operation, each time when the voltage of the battery 3 is lowered to a lower limit voltage in a charging state, which is higher than the discharging limit voltage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池及び蓄電
池を直流電源として備え、連系運転,自立運転の機能を
有する太陽光発電装置に関し、詳しくはその蓄電池の充
電に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic power generator having a solar cell and a storage battery as a DC power supply and having a function of interconnection operation and independent operation, and more particularly to charging of the storage battery.

【0002】[0002]

【従来の技術】従来、連系運転及び自立運転の機能を有
する太陽光発電装置は、直流電源として、太陽電池及び
蓄電池を備える。
2. Description of the Related Art Conventionally, a photovoltaic power generator having a function of interconnection operation and independent operation includes a solar cell and a storage battery as a DC power supply.

【0003】そして、系統正常時は太陽電池及び蓄電池
の直流電力を静止型の電力変換装置(双方向コンバー
タ)に給電し、この装置の連系運転の電流制御の逆変換
により、前記直流電力を系統電源に同期した交流電力に
変換し、この電力を系統負荷に給電して分散型電源を形
成する。
When the system is normal, the DC power of the solar cell and the storage battery is supplied to a static power converter (bidirectional converter), and the DC power is converted by the inverse conversion of the current control of the interconnection operation of the device. The power is converted into AC power synchronized with the system power supply, and this power is supplied to the system load to form a distributed power supply.

【0004】また、災害等による系統停電時は電力電源
装置を電力系統から解列し、電力変換装置の自立運転の
定電圧制御の逆変換により、太陽電池及び蓄電池の直流
電力を系統電源の代わりの交流電力に変換し、この交流
電力を非常負荷等に給電する。
In the event of a power outage due to a disaster or the like, the power supply device is disconnected from the power system, and the DC power of the solar cell and the storage battery is replaced by the system power supply by the reverse conversion of the constant voltage control of the independent operation of the power conversion device. The AC power is supplied to an emergency load or the like.

【0005】ところで、夜間は太陽電池の出力が消失
し、蓄電池の電力だけでは連系運転を維持することが困
難になることから、連系運転を停止する。
[0005] By the way, at night, the output of the solar cell is lost, and it becomes difficult to maintain the interconnected operation only by the power of the storage battery. Therefore, the interconnected operation is stopped.

【0006】そして、自立運転によって放電した蓄電池
を充電するため、系統正常時、夜間になると、太陽電池
の発電停止またはタイマ制御により、電力変換装置を充
電運転に制御し、その順変換により、系統電源に基づく
充電用の直流電力を形成し、この直流電力により蓄電池
を充電してつぎの自立運転に備える。
[0006] In order to charge the storage battery discharged by the self-sustaining operation, when the system is normal and at night, the power conversion device is controlled to the charging operation by stopping the power generation of the solar cell or by timer control. DC power for charging is formed based on the power supply, and the storage battery is charged with the DC power to prepare for the next independent operation.

【0007】[0007]

【発明が解決しようとする課題】前記従来装置の場合、
太陽電池の出力が大きい昼間は連系運転を優先し、充電
運転による蓄電池の充電を、太陽電池の発電停止やタイ
マ制御に基づき、夜間にのみ行うため、つぎのような問
題点がある。
SUMMARY OF THE INVENTION In the case of the conventional device,
In the daytime when the output of the solar cell is large, the interconnection operation is prioritized, and the charging of the storage battery by the charging operation is performed only at night based on the stop of power generation of the solar cell and the timer control. Therefore, there are the following problems.

【0008】すなわち、昼間に系統停電が発生して自立
運転に切換わると、この自立運転中は、太陽電池の出力
では不足する電力が蓄電池によって補われる。
[0008] That is, when a system power failure occurs in the daytime and the operation is switched to the self-sustaining operation, the power that is insufficient with the output of the solar cell is supplemented by the storage battery during the self-sustaining operation.

【0009】そして、この自立運転によって、放電した
蓄電池は、夜間になるまで充電されない。
[0009] By this self-sustaining operation, the discharged storage battery is not charged until night.

【0010】そのため系統復旧後、蓄電池が充電される
までの間に再び系統停電が発生すると、自立運転に切換
わっても短時間に給電の不足を招来し、自立運転可能な
時間が短くなり、場合によっては、自立運転が行えない
事態も生じる。
[0010] Therefore, if a power failure occurs again after the system is restored and before the storage battery is charged, shortage of power supply is caused in a short time even if the operation is switched to the independent operation, and the time during which the independent operation is possible is shortened. In some cases, self-sustaining operation cannot be performed.

【0011】また、夜間の蓄電池の充電に長時間を要
し、充電を完了して自立運転可能な状態になるまでに時
間がかかる。
Further, it takes a long time to charge the storage battery at night, and it takes a long time to complete the charging and to be able to operate independently.

【0012】そして、自立運転に備えるため、蓄電池は
極力満充電状態に保持することが望ましい。
In order to prepare for the self-sustaining operation, it is desirable to keep the storage battery in a fully charged state as much as possible.

【0013】本発明は、昼間は連系運転を優先して放電
した蓄電池を昼夜の別なくすみやかに充電し、かつ、蓄
電池を極力満充電状態に保ってつぎの自立運転に備える
ようにすることを課題とする。
According to the present invention, a storage battery discharged in priority in the daytime with a priority on interconnection operation is charged promptly without depending on day and night, and the storage battery is kept as fully charged as possible to prepare for the next independent operation. As an issue.

【0014】[0014]

【課題を解決するための手段】前記の課題を解決するた
めに、本発明の太陽光発電装置においては、直流電源を
形成する太陽電池及び蓄電池と、連系運転,自立運転に
より太陽電池及び蓄電池の直流電力を交流電力に逆変換
して負荷給電し,充電運転により電力系統の交流電力を
充電用の直流電力に順変換して蓄電池に供給する静止型
の電力変換装置と、この電力変換装置の運転を制御する
制御装置とを備え、この制御装置に、太陽電池の電圧の
大小から昼間と夜間とを判別する昼夜判別手段と、蓄電
池の電圧を監視する充放電監視手段と、昼夜判別手段の
判別と充放電監視手段の監視とに基づき,系統正常時の
昼間は前記蓄電池の電圧が過放電電圧近傍に設定した放
電限界電圧に低下する毎に前記蓄電池の電圧が設定した
満充電電圧に上昇するまで電力変換装置を充電運転に制
御し,系統正常時の夜間は蓄電池の電圧が放電限界電圧
より高い充電状態の下限電圧に低下する毎に蓄電池の電
圧が満充電電圧に上昇するまで電力変換装置を充電運転
に制御する充電制御手段とを設ける。
In order to solve the above-mentioned problems, in a photovoltaic power generator according to the present invention, a solar cell and a storage battery forming a DC power supply, and a solar cell and a storage battery are operated by an interconnection operation and an independent operation. A stationary power converter that converts DC power of AC power into AC power in reverse, feeds the load, and performs charging operation to convert AC power of the power system into DC power for charging and supplies it to the storage battery. A control device for controlling the operation of the solar cell, the control device includes day / night determining means for determining daytime and nighttime from the magnitude of the voltage of the solar cell, charge / discharge monitoring means for monitoring the voltage of the storage battery, day / night determining means In the daytime when the system is normal, whenever the voltage of the storage battery drops to the discharge limit voltage set near the overdischarge voltage, the voltage of the storage battery changes to the set full charge voltage based on the determination of Rise Until the battery voltage drops to the lower limit voltage of the state of charge that is higher than the discharge limit voltage during the night when the system is normal, and the power converter continues to charge until the battery voltage rises to the full charge voltage. Charge control means for controlling the apparatus to perform a charge operation.

【0015】したがって、系統正常時の昼間は連系運転
が優先され、自立運転によって蓄電池が放電限界電圧以
下に放電したときのみ、系統復帰後、充電運転によって
すみやかに蓄電池が満充電状態に充電される。
Therefore, in the daytime when the system is normal, the interconnection operation is prioritized. Only when the storage battery is discharged to the discharge limit voltage or less by the self-sustaining operation, after the system is restored, the storage battery is immediately charged to the fully charged state by the charging operation. You.

【0016】また、系統正常時の夜間は蓄電池が自然放
電等で充電維持状態の下限電圧に低下すると、充電運転
が行われて蓄電池が確実に満充電状態に保たれる。
If the storage battery falls to the lower limit voltage of the charge maintaining state due to spontaneous discharge or the like during the night when the system is normal, the charging operation is performed and the storage battery is reliably maintained in the fully charged state.

【0017】そのため、昼間は連系運転を優先しつつ放
電した蓄電池を昼夜の別なくすみやかに充電し、しか
も、夜間の充電により蓄電池を極力満充電状態に保って
つぎの自立運転に備えることができる。
For this reason, the discharged storage battery is charged promptly in the daytime with priority given to the interconnection operation, day and night, and the storage battery is kept fully charged as much as possible by night charging to prepare for the next independent operation. it can.

【0018】[0018]

【発明の実施の形態】本発明の実施の1形態につき、図
1〜図5を参照して説明する。図1は回路構成を示し、
分散設置した複数のACアレイ部1a,1b,…,1n
は、直流電源として太陽電池2及び蓄電池3を備え、太
陽電池2の直流出力を逆流防止ダイオード4を介して双
方向インバータからなる静止型の電力変換装置5に供給
し、蓄電池3の直流出力を充放電路切換回路6の逆流防
止ダイオード6aを介して電力変換装置5に供給する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a circuit configuration,
A plurality of AC array units 1a, 1b,.
Includes a solar cell 2 and a storage battery 3 as a DC power supply, supplies a DC output of the solar cell 2 to a stationary power converter 5 composed of a bidirectional inverter via a backflow prevention diode 4, and outputs a DC output of the storage battery 3 The power is supplied to the power converter 5 via the backflow prevention diode 6a of the charge / discharge path switching circuit 6.

【0019】このとき、太陽電池2の出力電圧は20V
前後であり、蓄電池3の出力電圧が電力変換装置5の入
力定格に応じて、例えば200V程度であれば、電力変
換装置5において、太陽電池2の出力が昇圧されて蓄電
池3の出力に並列合成される。
At this time, the output voltage of the solar cell 2 is 20 V
Before and after the output voltage of the storage battery 3 is, for example, about 200 V according to the input rating of the power conversion device 5, the output of the solar cell 2 is boosted in the power conversion device 5 and is combined with the output of the storage battery 3 in parallel. Is done.

【0020】また、太陽電池2,蓄電池3の電圧を直流
電圧検出器7,8により検出し、その検出出力を制御装
置9に供給する。
The voltages of the solar cell 2 and the storage battery 3 are detected by DC voltage detectors 7 and 8, and the detected output is supplied to a control device 9.

【0021】さらに、制御装置9は通信線10を介して
系統連系保護装置11の主制御装置12に接続され、電
力系統13の系統電源14の停電等の系統異常が発生す
ると、計器用変圧器15の2次側に設けられた保護装置
11の系統連系保護リレー16の接点信号に基づき、主
制御装置12から通信線10を介して各ACアレイ部1
a〜1nの制御装置9に系統異常が通知される。
Further, the control device 9 is connected to the main control device 12 of the system interconnection protection device 11 via the communication line 10 and, when a system abnormality such as a power failure of the system power supply 14 of the power system 13 occurs, a voltage transformer for the instrument is provided. Each of the AC array units 1 through the communication line 10 from the main controller 12 based on the contact signal of the system interconnection protection relay 16 of the protection device 11 provided on the secondary side of the switch 15.
A system abnormality is notified to the control devices 9 of a to 1n.

【0022】そして、制御装置9はマイクロコンピュー
タのソフトウェア処理により、つぎの各手段を備える。 (a)直流電圧検出器7の検出出力に基づき、太陽電池
2の電圧の大小から昼間と夜間とを判別する昼夜判別手
段 (b)直流電圧検出器8の検出出力に基づき、蓄電池3
の電圧を監視する充放電監視手段 (c)昼夜判別手段の判別と充放電監視手段の監視とに
基づき,系統異常の通知がない系統正常時の昼間は蓄電
池3の電圧が過放電電圧近傍に設定した放電限界電圧に
低下する毎に蓄電池3の電圧が設定した満充電電圧に上
昇するまで電力変換装置5を充電運転に制御し,系統正
常時の夜間は蓄電池3の電圧が放電限界電圧より高い充
電状態の下限電圧に低下する毎に蓄電池3の電圧が満充
電電圧に上昇するまで電力変換装置5を充電運転に制御
する充電制御手段
The control device 9 has the following units by software processing of a microcomputer. (A) Day / night discriminating means for discriminating between daytime and nighttime from the magnitude of the voltage of the solar cell 2 based on the detection output of the DC voltage detector 7 (b) Storage battery 3 based on the detection output of the DC voltage detector 8
(C) Based on the determination by the day / night determining means and the monitoring by the charging / discharging monitoring means, the voltage of the storage battery 3 becomes close to the overdischarge voltage during the daytime when the system is normal and there is no notification of the system abnormality. Whenever the voltage of the storage battery 3 drops to the set discharge limit voltage, the power converter 5 is controlled to the charging operation until the voltage of the storage battery 3 rises to the set full charge voltage. Charge control means for controlling the power conversion device 5 to charge operation until the voltage of the storage battery 3 rises to the full charge voltage every time the voltage drops to the lower limit voltage of the high charge state

【0023】そして、これらの手段に基づき、制御装置
9は図2のフローチャートに示すように動作して電力変
換装置5を連系運転、自立運転、充電運転に制御する。
Based on these means, the control device 9 operates as shown in the flowchart of FIG. 2 to control the power conversion device 5 to the interconnection operation, the independent operation, and the charging operation.

【0024】つぎに、制御装置9の制御について説明す
る。まず、図2のステップS1 で電力変換装置5の運転
モードの設定を判別し、連系運転モードの設定時はステ
ップS2に移行して系統正常か否かを判別する。
Next, control of the control device 9 will be described. First, to determine the setting of the operating mode of the power converter 5 in step S 1 in FIG. 2, when setting the interconnected operation mode determines whether the system normally proceeds to step S 2.

【0025】そして、系統正常で連系運転モードが設定
されていると、ステップS3 に移行して太陽電池2の電
圧の大小から昼間と夜間とを判別する。
[0025] When the grid normal and interconnected operation mode is set, determines the day and night on the magnitude of the voltage of the solar cell 2 proceeds to step S 3.

【0026】ところで、太陽電池2の昼間の発電電圧が
20V以上あり、夜間の電圧が10V以下になる場合、
電力変換装置5が連系運転と自立運転とのハンチング運
転にならないようにするため、ステップS2 の判定にお
いては、太陽電池2の電圧の変化傾向の監視に基づき、
図3に示すように、太陽電池2の電圧が上昇するとき
は、20Vをしきい値とし、20Vに上昇したときに破
線の夜間の判定から実線の昼間の判定に変え、太陽電池
2の電圧が低下するときは、10Vをしきい値とし、1
0V以下に低下したときに昼間の判定から夜間の判定に
変える。
By the way, when the daytime power generation voltage of the solar cell 2 is 20 V or more and the nighttime voltage becomes 10 V or less,
Since the power converter 5 so as not to hunting operation between autonomous operation and interconnected operation, in the determination of step S 2, based on the monitoring of the change tendency of the voltage of the solar cell 2,
As shown in FIG. 3, when the voltage of the solar cell 2 rises, the threshold value is set to 20 V. When the voltage rises to 20 V, the determination of the night time indicated by the broken line is changed to the determination of the daytime indicated by the solid line. Is reduced, the threshold is set to 10 V
When the voltage falls to 0 V or less, the judgment is changed from daytime judgment to nighttime judgment.

【0027】そして、連系運転が行われる系統正常時の
昼間は、昼間の判別に基づき、ステップS4 に移行し、
蓄電池3の電圧が過放電電圧近傍の例えば180Vに設
定した図4の(a)の放電限界電圧V1以下か否かを判
別する。
[0027] Then, the daytime when the system successfully interconnection operation is performed on the basis of the daytime determination, the process proceeds to step S 4,
Voltage of the battery 3, it is determined whether or not the discharge limit voltages V 1 below in FIG. 4 is set to over-discharge voltage near the example 180 V (a).

【0028】このとき、蓄電池3が充電状態に保たれて
その電圧がV1 より高ければ、ステップS4からステッ
プS5を介してステップS6 に移行し、連系運転指令を
発生する。
[0028] At this time, is higher than the voltage is V 1 battery 3 is kept at a charged state, the process proceeds to step S 6 through step S 5 from step S 4, generates interconnected operation command.

【0029】そして、この連系運転指令に基づき、電力
変換装置5を系統電源14に同期して連系運転し、太陽
電池2,蓄電池3の直流出力を、電力変換装置5の電流
制御の逆変換により、系統電源14に同期した交流電力
に変換し、この交流電力を電力系統14の負荷に供給し
て分散型電源を形成する。
Then, based on the interconnection operation command, the power converter 5 is operated in synchronization with the system power supply 14, and the DC output of the solar battery 2 and the storage battery 3 is changed to the reverse of the current control of the power converter 5. The conversion converts the AC power into AC power synchronized with the system power supply 14 and supplies the AC power to the load of the power system 14 to form a distributed power supply.

【0030】この連系運転中に災害等で系統停電になる
と、ステップS2からステップS7に移動して連系運転を
停止する。
[0030] At mains failure a disaster or the like during the interconnected operation, stopping the interconnected operation moves from step S 2 to step S 7.

【0031】その後、自動又は手動で自立運転モードが
設定されると、ステップS1 からステップS8 に移行し
て自立運転指令を発生し、この指令に基づき、電力変換
装置5を電力系統13から解列して自立運転し、太陽電
池2,蓄電池3の直流出力を、定電圧制御された系統周
波数の交流電力に逆変換して電力系統13から解列され
た非常負荷(図示せず)等に給電する。
[0031] After that, when automatically or manually isolated operation mode is set, the self-sustained operation command is issued shifts from step S 1 to step S 8, based on the command, the power converter 5 from the power grid 13 Emergency load (not shown) etc. disconnected from the power system 13 by disconnecting and operating independently, inverting the DC output of the solar cell 2 and the storage battery 3 into AC power of a system frequency controlled at a constant voltage, and the like. Power.

【0032】このとき、各ACアレイ部1a〜1n間の
同期をとるため、例えば主制御装置12から各ACアレ
イ部1a〜1nの制御装置9に、同期制御のタイミング
信号が供給され、このタイミング信号に基づき、各AC
アレイ部1a〜1nの電力変換装置5が同期して自立運
転される。
At this time, in order to synchronize the AC array units 1a to 1n, for example, a timing signal for synchronization control is supplied from the main control unit 12 to the control unit 9 of each of the AC array units 1a to 1n. Based on the signal, each AC
The power converters 5 of the array units 1a to 1n are operated independently in synchronization.

【0033】そして、系統電源14が復帰すると、ステ
ップS9 からステップS10に移動し、自立運転が停止さ
れる。
[0033] Then, when the system power supply 14 is restored, moves from step S 9 to step S 10, autonomous operation is stopped.

【0034】その後、連系運転モードに設定され、この
とき、昼間であれば、ステップS1,S2,S3,S4の処
理が順に実行される。
Thereafter, the operation mode is set to the interconnection operation mode. At this time, in the daytime, the processing of steps S 1 , S 2 , S 3 , and S 4 is sequentially performed.

【0035】そして、直前の自立運転により蓄電池3が
放電し、その電圧が放電限界電圧V 1以下に低下してい
ると、ステップS4からステップS11に移行して充電運
転指令を発生する。
Then, the storage battery 3 becomes
Discharge, and the voltage becomes the discharge limit voltage V 1Has dropped below
Then, step SFourTo step S11Transfer to charging
Generate a rotation command.

【0036】この充電運転指令に基づき、制御装置9は
電力変換装置5に充電運転を指令するとともに充放電路
切換回路6の充電路スイッチ6bを閉成する。
Based on the charging operation command, the control device 9 instructs the power conversion device 5 to perform a charging operation and closes the charging path switch 6b of the charging / discharging path switching circuit 6.

【0037】そして、電力変換装置5の順変換により、
系統電源14から充電用の直流電力を形成し、この直流
電力をスイッチ6bを介して蓄電池3に供給し、この蓄
電池3を充電する。
Then, by the forward conversion of the power converter 5,
DC power for charging is formed from the system power supply 14, and the DC power is supplied to the storage battery 3 via the switch 6b, and the storage battery 3 is charged.

【0038】この充電により蓄電池3が満充電状態に充
電され、その電圧が満充電電圧の上限の例えば230V
に設定した図4の(a)の満充電電圧V2に上昇する
と、ステップS12からステップS13に移行して充電運転
を終了する。
By this charging, the storage battery 3 is charged to a fully charged state, and its voltage is equal to the upper limit of the full charge voltage, for example, 230 V
When raised to a full charge voltage V 2 of FIG. 4 (a) set at, and ends the charging operation shifts from step S 12 to step S 13.

【0039】そして、ステップS1 処理に戻り、このと
き、連系運転モードに設定されていると、ステップ
2,S3,S4,S5,S6 の制御により、連系運転が指
令されて電力変換装置5が再び連系運転される。
Then, the process returns to the step S 1. At this time, if the interconnected operation mode is set, the interconnected operation is instructed by the control of steps S 2 , S 3 , S 4 , S 5 and S 6. Then, the power conversion device 5 is connected again.

【0040】したがって、系統正常時の昼間は、蓄電池
3の電圧が放電限界電圧V1 に低下する毎に、図4の
(b)に示すように、電力変換装置5が連系運転から充
電運転に切換わり、蓄電池3が満充電状態に充電され
る。
[0040] Thus, the daytime when the system normally, every time the voltage of the storage battery 3 is reduced to the discharge limit voltage V 1, as shown in (b) of FIG. 4, the power converter 5 charging operation from interconnected operation And the storage battery 3 is charged to a fully charged state.

【0041】このとき、太陽電池2の発電電力が大き
く、この発電電力によっても蓄電池3が充電され、蓄電
池3の充電が短時間で終了する。
At this time, the power generated by the solar cell 2 is large, and the storage battery 3 is charged by the generated power, and the charging of the storage battery 3 is completed in a short time.

【0042】そして、蓄電池3が放電限界電圧V1 に低
下するまでは充電が行われないため、系統正常時の昼間
には、連系運転を極力妨げないようにして自立運転で放
電した蓄電池の充電がすみやかに行われる。
[0042] Then, since the up storage battery 3 is reduced to the discharge limit voltages V 1 not performed charge, in the daytime when the system normally discharges in isolated operation performed to minimize disturb the interconnected operation was the accumulator Charging is performed promptly.

【0043】つぎに、系統正常時の夜間には、太陽電池
2が発電を停止してその出力が消失するため、連系運転
は行われず、蓄電池3を充電するしきい値の電圧が、昼
間の放電限界電圧V1より高い図5の(a)の充電状態
の下限電圧V3に変更され、この電圧V3は例えば225
Vである。
Next, during the night when the system is normal, since the solar cell 2 stops generating power and its output disappears, the interconnection operation is not performed, and the voltage of the threshold for charging the storage battery 3 is changed to the daytime. been changed to the lower limit voltage V 3 of the charge state of the discharge limit voltages V 1 higher than FIG. 5 (a), the the voltage V 3, for example 225
V.

【0044】そして、蓄電池3が一度満充電状態に充電
されると、夜間は、この電圧が自然放電等でV2からV3
に低下する毎に、ステップS3 からステップS14を介し
てステップS11に移り、充電運転指令を発生して電力変
換装置5を充電運転し、その後、ステップS3 からステ
ップS14,S15を介してステップS12に移行する処理の
くり返しにより、蓄電池3を満充電状態に充電する。
Once the storage battery 3 is charged to a full charge state, this voltage is changed from V 2 to V 3 by natural discharge or the like at night.
Each time drops, the flow proceeds to step S 11 from step S 3 through the step S 14, and charge operation of power converter 5 generates a charging operation instruction, then step S 14, S 15 from the step S 3 the repetition of the processing proceeds to step S 12 via, for charging the battery 3 in a fully charged state.

【0045】なお、図5の(a)の電圧V2,V3の幅W
(=V2−V3)が蓄電池3の充電維持幅である。
The width W of the voltages V 2 and V 3 shown in FIG.
(= V 2 −V 3 ) is the charge maintenance width of the storage battery 3.

【0046】したがって、系統正常時の夜間は、蓄電池
3の電圧が充電状態の下限電圧V3に低下する毎に、図
5の(b)に示すように、電力変換装置5が充電運転さ
れて蓄電池3が満充電状態に充電され、常に蓄電池3の
満充電状態でつぎの自立運転に備えることができる。
Therefore, during the night when the system is normal, every time the voltage of the storage battery 3 drops to the lower limit voltage V 3 of the charged state, the power converter 5 is charged and operated as shown in FIG. The storage battery 3 is charged to a fully charged state, and the storage battery 3 can be always ready for the next self-sustaining operation in the fully charged state.

【0047】そのため、昼間は連系運転を優先しつつ放
電した蓄電池3を昼夜の別なくすみやかに充電してつぎ
の自立運転に備えることができ、系統復帰後に再び系統
停電が発生しても確実に自立運転によって非常負荷等の
給電を行うことができる。
Therefore, during the daytime, the discharged storage battery 3 can be quickly charged day and night while giving priority to the interconnection operation to prepare for the next self-sustaining operation. In addition, power supply such as an emergency load can be performed by the self-sustaining operation.

【0048】しかも、夜間は自然放電に対しても充電を
行って蓄電池3を極力満充電状態に保つことができ、自
立運転可能な時間を十分に長くすることができる。
In addition, during the night, the storage battery 3 can be maintained in a fully charged state by charging even for spontaneous discharge, and the time during which the battery can be operated independently can be sufficiently lengthened.

【0049】そして、電圧V1,V2,V3 は蓄電池3の
特性等に応じて適当に設定してよいのは勿論である。
The voltages V 1 , V 2 , and V 3 may be appropriately set according to the characteristics of the storage battery 3 and the like.

【0050】また、1個のACアレイ部で形成された太
陽光発電装置等にも同様に適用できるのは勿論であり、
本発明は直流電源として太陽光電池の他に蓄電池を備
え、この蓄電池を電力変換装置の順変換で充電する種々
の太陽光発電装置に適用することができる。
It is needless to say that the present invention can be similarly applied to a photovoltaic power generator or the like formed by one AC array section.
INDUSTRIAL APPLICABILITY The present invention can be applied to various solar power generation devices that include a storage battery in addition to a solar battery as a DC power supply, and charge the storage battery by forward conversion of a power conversion device.

【0051】[0051]

【発明の効果】本発明は、以下に記載する効果を奏す
る。制御装置9による電力変換装置5の運転制御によ
り、系統正常時の昼間は連系運転が優先され、自立運転
によって蓄電池3が放電限界電圧以下に放電したときの
み、系統復帰後、充電運転によって蓄電池3を満充電状
態に充電することができる。
The present invention has the following effects. Due to the operation control of the power conversion device 5 by the control device 9, the interconnection operation is prioritized in the daytime when the system is normal, and only when the storage battery 3 is discharged to the discharge limit voltage or less by the independent operation, after the system is restored, the storage operation is performed by the charging operation. 3 can be charged to a fully charged state.

【0052】また、系統正常時の夜間は蓄電池3が自然
放電等で充電維持状態の下限電圧に低下する毎に充電運
転が行われ、蓄電池3を確実に満充電状態に保つことが
できる。
In addition, during the night when the system is normal, the charging operation is performed every time the storage battery 3 drops to the lower limit voltage of the charge maintaining state due to spontaneous discharge or the like, and the storage battery 3 can be reliably maintained in the fully charged state.

【0053】したがって、昼間は連系運転を優先しつつ
放電した蓄電池3を昼夜の別なくすみやかに充電し、し
かも、夜間の充電により蓄電池3を極力満充電状態に保
ってつぎの自立運転に備えることができ、この種の太陽
光発電装置の蓄電池3の充電性能を著しく向上すること
ができる。
Accordingly, during the daytime, the discharged storage battery 3 is charged promptly in the daytime and nighttime while giving priority to the interconnection operation, and the storage battery 3 is kept as fully charged as possible by nighttime charging to prepare for the next independent operation. As a result, the charging performance of the storage battery 3 of this type of solar power generation device can be significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の1形態のブロック結線図であ
る。
FIG. 1 is a block connection diagram of an embodiment of the present invention.

【図2】図1の動作説明用のフローチャートである。FIG. 2 is a flowchart for explaining the operation of FIG. 1;

【図3】図1の昼間と夜間の判定の説明図である。FIG. 3 is an explanatory diagram of determination of daytime and nighttime in FIG. 1;

【図4】(a),(b)は昼間の蓄電池の電圧波形,充
電期間の説明図である。
FIGS. 4A and 4B are explanatory diagrams of a voltage waveform and a charging period of a storage battery during daytime.

【図5】(a),(b)は夜間の蓄電池の電圧波形,充
電期間の説明図である。
FIGS. 5A and 5B are explanatory diagrams of a voltage waveform and a charging period of a storage battery at night.

【符号の説明】[Explanation of symbols]

2 太陽電池 3 蓄電池 5 電力変換装置 9 制御装置 13 電力系統 14 系統電源 2 solar cell 3 storage battery 5 power conversion device 9 control device 13 power system 14 system power supply

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02J 7/35 H02J 7/35 K (72)発明者 栄 紀雄 京都市右京区梅津高畝町47番地 日新電機 株式会社内 Fターム(参考) 5G003 AA01 AA06 BA01 CA14 CC02 DA07 DA13 DA18 GB06 5G015 GA02 GA05 JA05 JA06 JA26 JA32 JA34 JA52 JA64 5G066 HA30 HB06 HB09 JA07 JB03 5H420 BB03 BB14 CC03 CC06 DD03 EA48 EB13 EB26 EB39 FF03 FF22 LL10 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H02J 7/35 H02J 7/35 K (72) Inventor Norio Saka 47-Umezu Takaune-cho, Ukyo-ku, Kyoto Nissin Electric F term (reference) in stock 5G003 AA01 AA06 BA01 CA14 CC02 DA07 DA13 DA18 GB06 5G015 GA02 GA05 JA05 JA06 JA26 JA32 JA34 JA52 JA64 5G066 HA30 HB06 HB09 JA07 JB03 5H420 BB03 BB14 CC03 CC06 DD03 EA48 EB13 EB26 EB39 FF39 EB39 FF39

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 系統正常時の連系運転により分散型電源
を形成し、系統停電時は電力系統から解列されて自立運
転される太陽光発電装置において、 直流電源を形成する太陽電池及び蓄電池と、 連系運転,自立運転により前記太陽電池及び前記蓄電池
の直流電力を交流電力に逆変換して負荷給電し,充電運
転により電力系統の交流電力を充電用の直流電力に順変
換して前記蓄電池に供給する静止型の電力変換装置と、 該電力変換装置の運転を制御する制御装置とを備え、 前記制御装置に、 前記太陽電池の電圧の大小から昼間と夜間とを判別する
昼夜判別手段と、 前記蓄電池の電圧を監視する充放電監視手段と、 前記昼夜判別手段の判別と前記充放電監視手段の監視と
に基づき,系統正常時の昼間は前記蓄電池の電圧が過放
電電圧近傍に設定した放電限界電圧に低下する毎に前記
蓄電池の電圧が設定した満充電電圧に上昇するまで前記
電力変換装置を充電運転に制御し,系統正常時の夜間は
前記蓄電池の電圧が前記放電限界電圧より高い充電状態
の下限電圧に低下する毎に前記蓄電池の電圧が前記満充
電電圧に上昇するまで前記電力変換装置を充電運転に制
御する充電制御手段とを設けたことを特徴とする太陽光
発電装置。
A solar cell and a storage battery forming a DC power supply in a photovoltaic power generation device that forms a distributed power supply by grid-connected operation when the system is normal and that is disconnected from the power system and operates independently when a power outage occurs The DC power of the solar cell and the storage battery is inversely converted into AC power by a grid connection operation and an independent operation to supply AC power to the load, and the AC power of the power system is converted into DC power for charging by a charging operation. A stationary power converter that supplies the storage battery; and a controller that controls the operation of the power converter. The controller has a day / night determining unit that determines day and night based on the voltage of the solar cell. Charge / discharge monitoring means for monitoring the voltage of the storage battery; and, based on the determination by the day / night determination means and the monitoring by the charge / discharge monitoring means, the voltage of the storage battery is set to be close to the overdischarge voltage during daytime when the system is normal. Control the power converter to a charging operation until the voltage of the storage battery rises to the set full charge voltage every time the battery voltage drops to the discharge limit voltage, and the voltage of the storage battery becomes lower than the discharge limit voltage at night when the system is normal. Charge control means for controlling the power converter to perform a charge operation until the voltage of the storage battery rises to the full charge voltage each time the voltage drops to the lower limit voltage of a high state of charge; .
JP2000030339A 2000-02-08 2000-02-08 Solar power plant Expired - Fee Related JP3687464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000030339A JP3687464B2 (en) 2000-02-08 2000-02-08 Solar power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000030339A JP3687464B2 (en) 2000-02-08 2000-02-08 Solar power plant

Publications (2)

Publication Number Publication Date
JP2001224142A true JP2001224142A (en) 2001-08-17
JP3687464B2 JP3687464B2 (en) 2005-08-24

Family

ID=18555365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000030339A Expired - Fee Related JP3687464B2 (en) 2000-02-08 2000-02-08 Solar power plant

Country Status (1)

Country Link
JP (1) JP3687464B2 (en)

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2249147A1 (en) * 2004-07-01 2006-03-16 Fundacion Robotiker Intelligent photovoltaic module, has inverter that supplies alternating current to tracking algorithm point maximum power unit, and direct current to direct current converter controlled by maximum power unit
WO2008075586A1 (en) * 2006-12-19 2008-06-26 Panasonic Corporation Power supply system, power supply control method of power supply system, power supply control program of power supply system, and computer readable recording medium having power supply control program of power supply system recorded thereon
KR101040642B1 (en) * 2010-12-15 2011-06-10 주식회사 유니테스트 Power supply appartus using solar cell module
JP2012210081A (en) * 2011-03-30 2012-10-25 Sanyo Electric Co Ltd Electric power supply system
JP2012210074A (en) * 2011-03-30 2012-10-25 Sanyo Electric Co Ltd Electric power supply system
WO2013001746A1 (en) * 2011-06-30 2013-01-03 三洋電機株式会社 Inverter and power conversion device equipped with same
JP2013524749A (en) * 2010-03-31 2013-06-17 シェンゼェン ビーワイディー オート アールアンドディー カンパニー リミテッド Home energy control system and control method thereof
WO2013099957A1 (en) * 2011-12-28 2013-07-04 三洋電機株式会社 Power conversion apparatus
US8810066B2 (en) 2009-12-17 2014-08-19 Samsung Sdi Co., Ltd. Power storage system and method of controlling the same
US8938323B2 (en) 2010-02-25 2015-01-20 Samsung Sdi Co., Ltd. Power storage system and method of controlling the same
WO2015040724A1 (en) * 2013-09-19 2015-03-26 東芝三菱電機産業システム株式会社 Storage battery system
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
JP2015192488A (en) * 2014-03-27 2015-11-02 北陸電力株式会社 Power supply device and obstacle light system
US9218013B2 (en) * 2007-11-14 2015-12-22 Tigo Energy, Inc. Method and system for connecting solar cells or slices in a panel system
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
JP2016127762A (en) * 2015-01-07 2016-07-11 三菱電機株式会社 Power supply system
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9438035B2 (en) 2003-05-28 2016-09-06 Solaredge Technologies Ltd. Power converter for a solar panel
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
JP7276738B1 (en) 2021-12-23 2023-05-18 貴宏 田中 Self-energy surplus/deficiency information generating device and self-energy surplus/deficiency information generating method. A photovoltaic system, a microgrid energy supply and demand system, and a microgrid energy supply and demand method.
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
WO2023119725A1 (en) * 2021-12-23 2023-06-29 貴宏 田中 Private energy surplus/shortage information generation device, private energy surplus/shortage information generation method, solar power generation system, micro grid energy supply and demand system, and micro grid energy supply and demand method
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163008A1 (en) 2018-02-21 2019-08-29 Tdk株式会社 Dc feeding system

Cited By (146)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11075518B2 (en) 2003-05-28 2021-07-27 Solaredge Technologies Ltd. Power converter for a solar panel
US11476663B2 (en) 2003-05-28 2022-10-18 Solaredge Technologies Ltd. Power converter for a solar panel
US10135241B2 (en) 2003-05-28 2018-11-20 Solaredge Technologies, Ltd. Power converter for a solar panel
US10910834B2 (en) 2003-05-28 2021-02-02 Solaredge Technologies Ltd. Power converter for a solar panel
US11658508B2 (en) 2003-05-28 2023-05-23 Solaredge Technologies Ltd. Power converter for a solar panel
US9438035B2 (en) 2003-05-28 2016-09-06 Solaredge Technologies Ltd. Power converter for a solar panel
US11817699B2 (en) 2003-05-28 2023-11-14 Solaredge Technologies Ltd. Power converter for a solar panel
US11824398B2 (en) 2003-05-28 2023-11-21 Solaredge Technologies Ltd. Power converter for a solar panel
ES2249147A1 (en) * 2004-07-01 2006-03-16 Fundacion Robotiker Intelligent photovoltaic module, has inverter that supplies alternating current to tracking algorithm point maximum power unit, and direct current to direct current converter controlled by maximum power unit
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11961922B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11073543B2 (en) 2006-12-06 2021-07-27 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US11002774B2 (en) 2006-12-06 2021-05-11 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11043820B2 (en) 2006-12-06 2021-06-22 Solaredge Technologies Ltd. Battery power delivery module
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
WO2008075586A1 (en) * 2006-12-19 2008-06-26 Panasonic Corporation Power supply system, power supply control method of power supply system, power supply control program of power supply system, and computer readable recording medium having power supply control program of power supply system recorded thereon
JP2008154392A (en) * 2006-12-19 2008-07-03 Matsushita Electric Ind Co Ltd Power system, power supply control method of power system, and power supply control program of power system
US10516336B2 (en) 2007-08-06 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US9218013B2 (en) * 2007-11-14 2015-12-22 Tigo Energy, Inc. Method and system for connecting solar cells or slices in a panel system
US11329599B2 (en) 2007-11-14 2022-05-10 Tigo Energy, Inc. Method and system for connecting solar cells or slices in a panel system
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11693080B2 (en) 2007-12-05 2023-07-04 Solaredge Technologies Ltd. Parallel connected inverters
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11183969B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10644589B2 (en) 2007-12-05 2020-05-05 Solaredge Technologies Ltd. Parallel connected inverters
US11894806B2 (en) 2007-12-05 2024-02-06 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US8810066B2 (en) 2009-12-17 2014-08-19 Samsung Sdi Co., Ltd. Power storage system and method of controlling the same
US8938323B2 (en) 2010-02-25 2015-01-20 Samsung Sdi Co., Ltd. Power storage system and method of controlling the same
JP2013524749A (en) * 2010-03-31 2013-06-17 シェンゼェン ビーワイディー オート アールアンドディー カンパニー リミテッド Home energy control system and control method thereof
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11070051B2 (en) 2010-11-09 2021-07-20 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US11271394B2 (en) 2010-12-09 2022-03-08 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
KR101040642B1 (en) * 2010-12-15 2011-06-10 주식회사 유니테스트 Power supply appartus using solar cell module
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
JP2012210081A (en) * 2011-03-30 2012-10-25 Sanyo Electric Co Ltd Electric power supply system
JP2012210074A (en) * 2011-03-30 2012-10-25 Sanyo Electric Co Ltd Electric power supply system
WO2013001746A1 (en) * 2011-06-30 2013-01-03 三洋電機株式会社 Inverter and power conversion device equipped with same
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
WO2013099957A1 (en) * 2011-12-28 2013-07-04 三洋電機株式会社 Power conversion apparatus
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9639106B2 (en) 2012-03-05 2017-05-02 Solaredge Technologies Ltd. Direct current link circuit
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US11177768B2 (en) 2012-06-04 2021-11-16 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US11742777B2 (en) 2013-03-14 2023-08-29 Solaredge Technologies Ltd. High frequency multi-level inverter
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US11545912B2 (en) 2013-03-14 2023-01-03 Solaredge Technologies Ltd. High frequency multi-level inverter
US11424617B2 (en) 2013-03-15 2022-08-23 Solaredge Technologies Ltd. Bypass mechanism
US10651647B2 (en) 2013-03-15 2020-05-12 Solaredge Technologies Ltd. Bypass mechanism
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
WO2015040724A1 (en) * 2013-09-19 2015-03-26 東芝三菱電機産業システム株式会社 Storage battery system
JPWO2015040724A1 (en) * 2013-09-19 2017-03-02 東芝三菱電機産業システム株式会社 Battery system
US10044200B2 (en) 2013-09-19 2018-08-07 Toshiba Mitsubishi-Electric Industrial Systems Corporation Storage battery system
US11632058B2 (en) 2014-03-26 2023-04-18 Solaredge Technologies Ltd. Multi-level inverter
US11296590B2 (en) 2014-03-26 2022-04-05 Solaredge Technologies Ltd. Multi-level inverter
US10886831B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US10886832B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US11855552B2 (en) 2014-03-26 2023-12-26 Solaredge Technologies Ltd. Multi-level inverter
JP2015192488A (en) * 2014-03-27 2015-11-02 北陸電力株式会社 Power supply device and obstacle light system
JP2016127762A (en) * 2015-01-07 2016-07-11 三菱電機株式会社 Power supply system
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US11201476B2 (en) 2016-04-05 2021-12-14 Solaredge Technologies Ltd. Photovoltaic power device and wiring
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
JP7276738B1 (en) 2021-12-23 2023-05-18 貴宏 田中 Self-energy surplus/deficiency information generating device and self-energy surplus/deficiency information generating method. A photovoltaic system, a microgrid energy supply and demand system, and a microgrid energy supply and demand method.
WO2023119725A1 (en) * 2021-12-23 2023-06-29 貴宏 田中 Private energy surplus/shortage information generation device, private energy surplus/shortage information generation method, solar power generation system, micro grid energy supply and demand system, and micro grid energy supply and demand method

Also Published As

Publication number Publication date
JP3687464B2 (en) 2005-08-24

Similar Documents

Publication Publication Date Title
JP2001224142A (en) Photovoltaic generation apparatus
JP4846597B2 (en) DC / DC converter and distributed power generation system including the same
US11073807B2 (en) Method and apparatus for activation and de-activation of power conditioners in distributed resource island systems using low voltage AC
WO2012124130A1 (en) Power control device and power control method
JP2000116010A (en) Distributed power supply system
JP2008022650A (en) Self-sustained operation assist device and power supply system
JP6668991B2 (en) Power supply device and power supply system
JP5614626B2 (en) Power system
JP2011010412A (en) Autonomous operation control system of important load
KR101793579B1 (en) Dc-ac common bus type hybrid power system
CN110176788B (en) Power storage system and power storage device
JPH09191565A (en) Dc distribution system
JP2001008383A (en) Photovoltaic power generating set
JPH1023671A (en) Power conditioner and dispersed power supplying system
JPH1023673A (en) Power conditioner and dispersed power supplying system
JP2010142076A (en) Independent operation system utilizing generation power supply unit for energy storage and emergency
JP2016039685A (en) Controller, power storage system comprising the same, and control method and control program for the same
KR102113868B1 (en) System for power controlling of grid-connected solar inverter
JPH0951638A (en) Distributed power supply
JP3147724B2 (en) Distributed power supply
JP2002315231A (en) Uninterruptible power source equipment
JP2001178024A (en) Emergency power supply unit
JP6671979B2 (en) Power supply switching device
JP7272190B2 (en) Power conversion equipment, grid connection system
JP3208284B2 (en) Solar power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees