WO2013128731A1 - Independent power supply system - Google Patents

Independent power supply system Download PDF

Info

Publication number
WO2013128731A1
WO2013128731A1 PCT/JP2012/080661 JP2012080661W WO2013128731A1 WO 2013128731 A1 WO2013128731 A1 WO 2013128731A1 JP 2012080661 W JP2012080661 W JP 2012080661W WO 2013128731 A1 WO2013128731 A1 WO 2013128731A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power generation
supply system
charge
load
Prior art date
Application number
PCT/JP2012/080661
Other languages
French (fr)
Japanese (ja)
Inventor
内山 倫行
近藤 真一
永山 祐一
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to IN6999DEN2014 priority Critical patent/IN2014DN06999A/en
Publication of WO2013128731A1 publication Critical patent/WO2013128731A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/10The dispersed energy generation being of fossil origin, e.g. diesel generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to a stand-alone power supply system, and more particularly to a reduction in capacity of a power storage device.
  • Patent Document 1 an independent power supply system centering on a solar power generation device is disclosed in Patent Document 1, for example.
  • the output suppression state of the photovoltaic power generation device is controlled indirectly by changing the target frequency according to the state of charge (SOC) and charge / discharge power.
  • SOC state of charge
  • a technique for preventing system stoppage due to overcharging of a power storage device is described.
  • a power supply system that has a natural energy power generation device and a power storage device such as a solar power generation device and a wind power generation device and is operated independently from the power system, while maintaining the frequency and voltage in the independent system at appropriate values
  • a natural energy power generation device and a power storage device such as a solar power generation device and a wind power generation device and is operated independently from the power system
  • the frequency and voltage in the independent system at appropriate values
  • Patent Document 1 With the technology disclosed in Patent Document 1, it is possible to prevent operation stop due to overcharging of the power storage device, but avoid operation stop due to overdischarge of the storage battery, including at night when the output of solar power generation becomes zero. Therefore, it is necessary to separately provide a power source for adjustment such as a diesel engine, or it is necessary to increase the capacity of the power storage device, which may increase the installation cost.
  • an object of the present invention is to provide an independent power supply system that can reduce installation costs.
  • an independent power supply system includes a natural energy power generation device, a load device that has a load for adjustment and that operates by generated power from the natural energy power generation device, and the natural energy
  • An independent power supply system including a power generation device and a power storage device having a storage battery connected to the load device for charging and discharging, the independent power supply system using the weather prediction data of the load device Demand prediction data and power generation output prediction data of the natural energy power generation apparatus are calculated, and the storage battery is predicted to be charged by exceeding the maximum charge power of the storage battery by the demand prediction data and the power generation output prediction data.
  • the chromatography data which comprises suppressing the power consumption of the adjustment load when being discharged from the storage battery exceeds the maximum discharge power of the battery is predicted.
  • FIG. 1 is a configuration example of a stand-alone power supply system in Embodiment 1. It is the figure which represented typically the example of the output shift operation
  • FIG. 6 is a functional configuration diagram of a storage device internal control device according to a second embodiment. It is a functional block diagram of the solar power generation device control apparatus in Example 2.
  • FIG. 6 is a functional configuration diagram of a storage device internal control device according to a second embodiment. It is a functional block diagram of the solar power generation device control apparatus in Example 2.
  • FIG. 10 is a control flow diagram of the storage device internal control device according to the second embodiment. It is a control flowchart of the solar power generation device control apparatus in Example 2.
  • FIG. 6 is a control flow diagram of a control device in a load device in Embodiment 2. It is a figure showing the control operation of the stand-alone power supply system in Example 2. It is a control flow figure in the case of performing power factor adjustment driving
  • FIG. It is a figure explaining the control operation in the case of performing power factor adjustment driving
  • FIG. 10 is a control flow diagram utilizing a start / stop notice signal of a load device according to a fifth embodiment. It is a figure explaining the operation
  • FIG. 10 is a control flow diagram utilizing a start / stop notice signal of a load device according to a fifth embodiment. It is a figure explaining the operation
  • FIG. 1 is a diagram illustrating an outline of an independent power supply system to which centralized control is applied.
  • the stand-alone power supply system 10 includes a solar power generation device 2 whose power generation output varies according to solar radiation conditions, a power storage device 3 including a secondary battery such as a lead storage battery or a lithium ion battery,
  • the load device 4 is schematically configured by being connected to the power line 1 via the interconnection power receiving devices 25, 35, and 45, respectively.
  • the solar power generation device 2, the power storage device 3, and the load device 4 are respectively control devices. 5 is operated based on a control command transmitted from 5 through a line.
  • the control device 5 transmits weather forecast information transmitted through the public line 6, electric quantities such as electric power, voltage, and power factor transmitted from the solar power generation device 2, the power storage device 3, and the load device 4, and a charging state ( Based on an operation state signal such as SOC (State of Charge), it has a function of transmitting a control command such as a power generation output suppression amount, charge / discharge power, and load adjustment amount to each device.
  • the independent power supply system 10 does not include a power generator for adjusting the output of a rotating machine system having inertia such as a diesel generator. Therefore, the power storage device 3 is responsible for the operation for maintaining the voltage and frequency as a reference power source for the independent power supply system 10. For this purpose, the power storage device 3 performs an automatic voltage adjustment operation (AVR).
  • AVR automatic voltage adjustment operation
  • the solar power generation device 2 includes a solar power generation panel 21 and a grid protection function for converting the DC power generated by the solar power generation panel 21 into AC power, controlling the output, and connecting to the power line 1.
  • the interconnection power converter 22 incorporates a control device 220 having a function of communicating with the outside.
  • the power storage device 3 is a device that adjusts the power supply / demand balance of the independent power supply system 10 by charging or discharging, and converts DC power generated by the storage batteries 31A and 31B and the storage batteries 31A and 31B into AC power and controls it.
  • the interconnection power converters 32A and 32B having a protection function for connecting to the power line 1, the interconnection power receiving device 35 including a transformer, a switch, and the like, and the interconnection power converter 32A, Control commands such as charge / discharge power and operation / stop information to be transmitted to the power converter for interconnection connected to control the storage battery and its own voltage / current detection device (not shown) used for control / protection in 32B And the auxiliary device 34 of the storage batteries 31A and 31B.
  • the interconnection power converters 32A and 32B are effective for maintaining the frequency and voltage in the independent power supply system 10 within an appropriate range based on the control command from the control device 33 and the voltage / current information at its own end, respectively.
  • Has a function to control reactive power.
  • secondary batteries such as lead storage batteries, lithium ion batteries, sodium / sulfur batteries, and redox flow batteries can be applied.
  • these batteries need to be refreshed regularly, in order to allow the power supply system to stably supply power during that period, at least two sets can be independently operated. It is desirable.
  • the load device 4 includes an adjustment load 41 capable of adjusting power consumption, a load 42 having a function of notifying activation or stop at a predetermined timing, and a load adjustment command transmitted from the control device 5 to the adjustment load 41. And a control device 43 that transmits the start / stop notice signal transmitted from the load 42 and transmits it to the control device 5.
  • a self-end voltage / current detection device and other loads having no special function are also installed.
  • FIG. 2 schematically shows an operation pattern in the case where the output of the photovoltaic power generation apparatus 2 which is a basic operation method of the independent power supply system is shifted at night.
  • the solar power generation device 2 basically supplies generated power determined by the amount of solar radiation, and normally does not particularly limit output.
  • the figure is clear and shows an example in the case where the power generation output reaches the rated capacity.
  • the power storage device 3 charges the power generated by the solar power generation device 2 during the daytime and discharges it at night. A so-called peak shift operation is performed to supply power to the load, and the combined output shown in the figure is supplied to the load device 4 by both the solar power generation device 2 and the power storage device 3.
  • FIG. 3 is a diagram showing a functional configuration of the control device 5 of the independent power supply system in the present embodiment.
  • a control arithmetic unit 51 that calculates a control command such as a power generation output suppression / cancellation command, a charge / discharge power command or a load adjustment command transmitted to the solar power generation device 2, the power storage device 3 or the load device 4, and the amount of solar radiation, temperature, etc.
  • An input device 55 for inputting a command and a display device 56 for an operator to check an operation status and the like are provided.
  • the control calculation device 51 further includes a prediction calculation function 511, an output shift operation pattern generation function 512, and an output shift operation pattern correction function 513.
  • the prediction calculation function 511 is a solar power generation output prediction for predicting the power generation output of the solar power generation device 2 by using weather prediction data such as weather, solar radiation amount, and temperature stored in the weather data storage device 52 in advance.
  • a calculation unit 5111 and a demand power prediction calculation unit 5112 for predicting the demand power of the load device 4 are provided.
  • the output shift operation pattern generation function 512 includes a storage battery charge / discharge pattern calculation unit 5121 for calculating an initial set value of the charge / discharge pattern of the power storage device 3 using the prediction result of the photovoltaic power generation output and the demand power.
  • a photovoltaic power generation output suppression amount / load adjustment amount calculation unit 5123 for calculating a power generation output suppression amount of the photovoltaic power generation device 2 or an adjustment amount of the load device 4, an initial setting value of the charge / discharge pattern, and a solar power generation output suppression amount
  • Output shift operation pattern for generating output shift operation patterns of the photovoltaic power generator 2, the power storage device 3, and the load device 4 based on the adjustment amount of the load And a generation unit 5124.
  • the output shift operation pattern correction function 513 determines an SOC evaluation calculation unit 5131 that calculates the time transition of the charge / discharge state (SOC) of the power storage device 3 and whether or not the SOC level is within an appropriate range.
  • a correction unit 5134 is an index representing the remaining amount (charged electric energy) of the storage battery and is expressed as a percentage of the rated charge capacity.
  • control processing of the control device 5 of the independent power supply system 10 will be described with reference to FIG.
  • the process described below represents the process of the control arithmetic unit 51, and the case where the control cycle is set in the range of several minutes to 30 minutes will be described here in relation to the time resolution of the output shift operation pattern data. Furthermore, here, a case where the control cycle is 10 minutes will be described as an example.
  • weather forecast data such as the solar radiation amount Sr (W / m 2 ) and the outside air temperature To (° C.) collected and stored via the public line 6 and stored in the weather data storage device 52 are read.
  • data 48 points
  • data 48 points
  • data 48 points
  • Pf_m charge-discharge electric power
  • P BATT _m W of power storage device 3
  • the state of charge SOC %
  • the latest measurement data of the demand power Pd (W) of the load device 4 are read.
  • the charge / discharge power is expressed as positive discharge power and negative charge power.
  • Ppv (t) Sr (t) ⁇ Ks ⁇ Kpv ⁇ Kt (To) ⁇ Kb ⁇ Kc ⁇ Kpcs ⁇ K ⁇ (t) ⁇ 10 ⁇ 3 (kW) (1)
  • Ks Solar radiation correction coefficient
  • Kpv Panel capacity conversion coefficient
  • Kb Dirt coefficient
  • Kc Cable efficiency coefficient
  • Kpcs Power converter efficiency coefficient
  • the power demand of the load device 4 is predicted.
  • a statistical method, a metaheuristic method, or the like can be applied as a prediction method.
  • a prediction calculation is performed using weather prediction data as a parameter based on statistical processing of past demand power patterns stored in the measurement data storage device 53.
  • For each parameter it is possible to predict the power demand with relatively high accuracy by an algorithm that repeatedly corrects the degree of influence of the parameters so as to reduce the difference between the predicted value and the actually measured value. Specifically, this is performed as follows. First, a plurality of demand power patterns, such as seasons, days of the week, and weather, which are close in condition to the prediction target date, are extracted from the stored data in the measurement data storage device.
  • an average of the plurality of extracted demand power patterns is taken as a basic predicted demand power pattern Pd0 (t).
  • the correction factors G1 (t) and G2 (t) are added to the basic forecast demand power pattern Pd0 (t) based on the weather and temperature of the day, and the demand becomes forecast power demand data according to equation (2).
  • a predicted power value Pd (t) is calculated.
  • the correction coefficients G1 (t) and G2 (t) are sequentially corrected so that the difference between the predicted value and the actually measured value becomes small.
  • S45 represents processing of the output shift operation pattern generation function 512 shown in FIG.
  • S451 using the predicted value Ppv (t) of the power generation output of the solar power generation device 2 predicted by the formulas (1) and (2) and the predicted value Pd (t) of the demand power of the load device 4, the formula (3 ), The charge / discharge power P BATT (t) of the power storage device 3 is calculated from the difference between Pd (t) and Ppv (t) and set as an initial value.
  • P BATT (t) ⁇ Pcmax go to S453 (4) If P BATT (t)> Pdmax, go to S454 (5) If Pcmax ⁇ P BATT (t) ⁇ Pdmax, go to S455 (6) However, Pcmax: Maximum charge power (W) Pdmax: Maximum discharge power (W) And
  • ⁇ Pd (t) P BATT (t) ⁇ Pdmax (8)
  • P BATT (t) charge / discharge power
  • ⁇ Ppv (t) and ⁇ Pd (t) are set to zero.
  • S46 represents the process of the output shift operation pattern correction function 513 shown in FIG.
  • the charge / discharge power P BATT (t) * of the power storage device 3 calculated by the equation (11) is used to charge / charge 24 hours ahead (30 points, 48 points), which is the future time.
  • the discharge state SOC (t) is calculated by Equation (12). How many hours ahead is calculated, and how much time is divided between them varies depending on the installation environment and the like. Here, a case where 24 hours ahead is divided every 30 minutes is described as an example.
  • SOC (t) SOC (t ⁇ 1) + ((P BATT (t) * ⁇ 0.5) / Ph_rated) ⁇ 100 (%) (12)
  • Ph_rated is the rated capacity (Wh) of the power storage device 3.
  • the charge / discharge state SOC (t) of the power storage device 3 is determined as to whether or not the charge / discharge state is in an appropriate range as shown in equations (13) to (15).
  • ⁇ Ppv (t) * ((Smax ⁇ SOC (Tmax)) / 100 ⁇ Ph_rated) / ⁇ T (16)
  • Tmax is a time interval in which SOC (t) is maximum
  • the time interval Ts for starting the correction according to Equation (16) is from the current time interval to the time interval Tb at which SOC (t) starts to exceed Smax.
  • ⁇ Pd (t) * ((Smin ⁇ SOC (Tmin)) / 100 ⁇ Ph_rated) / ⁇ T '(17)
  • Tmin is a time interval in which SOC (t) is minimum
  • the time interval Ts for starting the correction according to Expression (17) is from the current time interval to the time interval Tc at which SOC (t) starts to exceed Smin.
  • the independent power supply system in the present embodiment, when the demand prediction data and the power generation output prediction data are predicted to charge the storage batteries 31A and 31B exceeding the maximum charging power of the storage batteries 31A and 31B.
  • the power generation output from the solar power generation device 2 is suppressed and the demand prediction data and the power generation output data predict that discharge from the storage batteries 31A and 31B exceeds the maximum discharge power of the storage batteries 31A and 31B. Since the power consumption of the adjustment load 41 is suppressed, it can be controlled so as not to exceed the maximum charge and discharge power of the storage batteries 31A and 31B. Therefore, it is necessary to separately provide an adjustment power source such as a diesel engine. Since there is no need to increase the capacity of the installation, the installation cost, which is the cost at the time of introduction, can be reduced.
  • the photovoltaic power generator 2 when the charge / discharge state of the storage battery in a predetermined future period is calculated in a predictive manner and the charge / discharge state in the future predetermined period is predicted to exceed the maximum charge power amount of the storage battery, the photovoltaic power generator 2 The power generation output from the control load 41 is suppressed, and the power consumption of the adjustment load 41 is suppressed when the charge / discharge state in the future predetermined period is predicted to be lower than the minimum charge power amount of the storage batteries 31A and 31B. Therefore, in addition to the above effects, the maximum charge and discharge power of the storage batteries 31A and 31B can be controlled with higher accuracy, and the capacity of the power storage device does not need to be further increased.
  • FIG. 6 is a schematic configuration example of an independent power supply system to which autonomous control is applied.
  • the major difference from FIG. 1 is that there is no control device for controlling the entire system of the independent power supply system 110, and means for measuring the combined output of the solar power generation device 102 and the power storage device 103, respectively. It is a point provided.
  • the photovoltaic power generation device 102 whose power generation output varies according to the solar radiation conditions, the power storage device 103 composed of a secondary battery such as a lead storage battery or a lithium ion battery, and the load device 104 are connected to the power receiving devices 25, 35, 45 for interconnection. Are connected to the power line 1 via the power line 1.
  • the solar power generation device 102, the power storage device 103, and the load device 104 are each operated based on a control command from the control device 105.
  • the control device 105 transmits the weather forecast information transmitted through the public line 6, the amount of electricity such as power, voltage, and power factor transmitted from the solar power generation device 102, the power storage device 103, and the load device 104, and the charging state ( Based on an operation state signal such as SOC (State of Charge), etc., each device has a function of transmitting control commands such as a power generation output suppression amount, charge / discharge power, and load adjustment amount.
  • the independent power supply system 110 does not include a power generator for adjusting the output of a rotating machine system having inertia such as a diesel generator. Therefore, the power storage device 103 is responsible for the operation for maintaining the voltage and frequency as a reference power source for the independent power supply system 110.
  • the power storage device 103 performs an automatic voltage adjustment operation (AVR).
  • AVR automatic voltage adjustment operation
  • the solar power generation device 102 and the load device 104 in order to assist the automatic voltage adjustment operation of the power storage device 103, temporary power generation output suppression or load adjustment is performed.
  • the solar power generation device 102, the power storage device 103, and the load device 104 are each autonomously operated by a control device that is included therein.
  • the photovoltaic power generation apparatus 102 includes a photovoltaic power generation panel 21 and an interconnection protection function for converting DC power generated by the photovoltaic power generation panel 21 into AC power, controlling the output, and connecting to the power line 1.
  • the interconnection power converter 122 incorporates a control device 320 having a communication function with the outside. The measurement value of the combined output of the solar power generation device 102 and the power storage device 103 is transmitted to the control device 320 of the interconnection power converter 122, and the power generation output is suppressed based on the voltage information at its own end.
  • the power storage device 103 is a device that adjusts the supply and demand balance of the power of the independent power supply system 110 by charging and discharging.
  • the interconnection power converters 32A and 32B having a protection function for connection to the power line 1, and the self-end voltage / current detection device used for control and protection performed by the interconnection power converters 32A and 32B (Not shown)
  • a control device 105 for determining a control command such as charge / discharge power and operation / stop information for transmission to a grid-connected power converter that controls the storage battery
  • an auxiliary machine 34 for the storage batteries 31A and 31B It consists of.
  • Each of the interconnection power converters 32A and 32B has a function of controlling the active / reactive power in order to maintain the frequency and voltage within an appropriate range based on the control command from the control device 105 and the voltage / current information at its own end. Have. In addition to the measurement value of the combined output of the solar power generation device 102 and the power storage device 103, weather control information is also transmitted to the control device 105 via the public line 6.
  • the storage batteries 31A and 31B secondary batteries such as lead storage batteries, lithium ion batteries, sodium / sulfur batteries, and redox flow batteries can be applied. In addition, since these batteries need to be refreshed regularly, in order to allow the power supply system to stably supply power during that period, at least two sets can be independently operated. There is a need. And it connects to the power line 1 through the power receiving apparatus 35 for interconnections, such as a transformer or a switch.
  • the load device 104 includes an adjustment load 41 that can adjust power consumption, a load 42 that does not have any other special functions, and a control device 143 that has a function of calculating a load adjustment amount from voltage information at its own end. Is done. Although not shown, a self-end voltage / current detection device is also installed.
  • FIGS. 7 to 9 are diagrams showing functional configurations of the control devices of the power storage device 103, the solar power generation device 102, and the load device 104 that constitute an independent power supply system to which autonomous control is applied.
  • 7 corresponds to the control device 105 of the power storage device 103
  • FIG. 8 corresponds to the control device 320 of the solar power generation device 2
  • FIG. 9 corresponds to the control device 143 of the load device 104.
  • control device 105 includes a control arithmetic device 51 that calculates a charge / discharge power command transmitted to the interconnection power converters 32 ⁇ / b> A and 32 ⁇ / b> B of the power storage device 103 and a voltage target command in the independent power supply system 110, and an amount of solar radiation.
  • a meteorological data storage device 52 that stores weather forecast data such as temperature and temperature
  • a measurement data storage device 53 that stores measurement data such as the amount of electricity at its own end and the combined output of the solar power generation device 102 and the power storage device 103
  • Input device 55 and a display device 56 for the operator to check the operation status and the like.
  • the control calculation device 51 includes a prediction calculation function 511, an output shift operation pattern generation function 512, and an output shift operation pattern correction function 513.
  • the prediction calculation function 511 is a solar power generation output prediction for predicting the power generation output of the solar power generation device 102 using weather prediction data such as weather, solar radiation amount, and temperature stored in the weather data storage device 52 in advance.
  • a calculation unit 5111 and a demand power prediction calculation unit 5112 for predicting the demand power of the load device 104 are included.
  • the output shift operation pattern generation function 512 includes a storage battery charge / discharge pattern calculation unit 5121 for calculating an initial set value of the charge / discharge pattern of the power storage device 103 using the prediction result of the photovoltaic power generation output and the demand power.
  • the charge / discharge level determination unit 5122 for determining whether or not the charge and discharge levels are in appropriate ranges with respect to the initial setting of the charge / discharge pattern, and the power generation output of the photovoltaic power generation apparatus 102 based on the determination result Of the solar power generation output suppression amount / load adjustment amount calculation unit 5123 for calculating the amount of suppression of the load or the load device 104, the initial setting value of the charge / discharge pattern, the amount of solar power generation output suppression, and the load adjustment amount.
  • the output shift operation pattern correction function 513 determines the SOC evaluation calculation unit 5131 for calculating the time transition of the charge / discharge state (SOC) of the power storage device 103 and whether the SOC level is within an appropriate range.
  • an output shift operation pattern correction unit 5134 that corrects the charge / discharge pattern of the power storage device 103 and the target voltage based on the correction calculation result of the suppression amount of the photovoltaic power generation output and the adjustment amount of the load.
  • the control device 320 of the interconnection power converter 122 of the solar power generation device 102 includes an output suppression amount calculation function 321 and a power control function 322.
  • the output suppression amount calculation function 321 reads the measured value of the self-end voltage and determines the level of the self-end voltage determination unit 3211 and the charge / discharge power of the storage battery using the self-generated power output and the measured value of the combined power.
  • the storage battery charge / discharge power calculation unit 3212 uses the storage battery charge / discharge power calculation unit 3212 to calculate, the charge / discharge state determination unit 3213 for determining the charge / discharge state from the charge / discharge power of the storage battery, the determination result of the self-end voltage and the charge / discharge state determination result of the storage battery It has a photovoltaic power generation output suppression control calculation unit 3214 that calculates a power generation output suppression amount, and a delay timer 3215 that holds an output suppression command for a predetermined time.
  • the power control function 322 generates and transmits a gate pulse signal that controls the output power of the interconnection power converter 122 using measured values of the voltage and current at its own end.
  • control device 143 of the load device 104 reads the measured value of the self-end voltage and determines its level, and the load limit that calculates the load limit amount from the self-end voltage determination result.
  • a control calculation unit 432 and a delay timer 433 for holding a load limit command for a predetermined time are provided.
  • FIG. 10 corresponds to the control device 105 of the power storage device 103
  • FIG. 11 corresponds to the control device 320 of the solar power generation device 102
  • FIG. 12 corresponds to the control device 143 of the load device 104.
  • FIG. 4 an example in which a range of several minutes to 30 minutes is set will be described.
  • a case where the control cycle is 10 minutes will be described.
  • weather forecast data such as solar radiation amount Sr (W / m 2 ) and outside temperature To (° C.) collected and stored via the public line 6 and stored in the weather data storage device 52 are displayed.
  • W solar radiation amount
  • To ° C.
  • the weather data storage device 52 it is assumed that a 30-minute value is stored.
  • the combined output Psum (W) and the power factor Pf of the photovoltaic power generation apparatus 2 and the power storage apparatus 103, which are regularly measured and processed as an average value for 10 minutes, the charge / discharge power P BATT ( W) and charge state SOC (%) are read.
  • the charge / discharge power P BATT is represented here as positive discharge power and negative charge power.
  • S86 represents the process of the output shift operation pattern correction function 513 shown in FIG. In S861, using the charge / discharge power P BATT (t) * of the power storage device 103 calculated by Expression (11), the charge / discharge state SOC (t ) Is calculated by Equation (12).
  • a command is directly sent from the control device 105 to each device through a line.
  • the control device 105 located inside the power storage device 103 receives a sun. Since the output suppression command cannot be directly transmitted to the photovoltaic power generation apparatus 102, the operation of suppressing the power generation output is indirectly performed by controlling the target voltage Vref of the independent power supply system 110. . That is, the target voltage Vref is temporarily set to a value Va larger than the rated voltage Vo in S864, and the photovoltaic power generation apparatus 102 suppresses the power generation output when the target voltage exceeds Va for a predetermined time or more. To be controlled.
  • the target voltage Vref is temporarily set to a value Vb smaller than the rated voltage Vo, and the load device 104 suppresses the demand power when the target voltage continues below Vb for a predetermined time or more. I tried to control it.
  • the charge / discharge power amount P BATT (t) * is corrected by Equation (20) using the charge / discharge pattern output suppression correction amount ⁇ Ppv * and the load adjustment correction amount ⁇ Pd * obtained in S862 to S867. Further, the target voltage Vref is set to Va (> Vo) or Vb ( ⁇ Vo) according to the state of SOC (t). In S47, the charge / discharge amount and the target voltage Vref are commanded to the interconnection power converters 32A and 32B as control commands.
  • the self-end voltage / current and the combined output Psum (W) of the photovoltaic power generation apparatus 102 and the power storage apparatus 103 that are periodically measured and processed as an average value for 10 minutes are read.
  • the charge / discharge power P BATT of the power storage device 103 is calculated as the difference between the combined output Psum and the self-generated power output Ppv.
  • the self-end voltage Vpv is compared with the reference voltage Va, and if the state where Vpv is smaller than Va continues, the output suppression amount ⁇ Ppv is set to zero.
  • the processing of the control device 43 of the load device 4 will be described with reference to FIG.
  • the voltage / current at the terminal is read.
  • the self-end voltage Vd is compared with the reference voltage Vb, and when the state where Vd is larger than Vb continues, the load adjustment amount ⁇ Pd is set to zero.
  • a predetermined value is set to ⁇ Pd in step S83c. After maintaining this state for a predetermined time, an output suppression command is transmitted.
  • FIG. 13 is a diagram illustrating a control operation when the state of charge SOC of the power storage device 103 exceeds the maximum charge amount or falls below the minimum charge amount during the autonomous control described with reference to FIGS. 7 to 12.
  • (A) in the figure is a case where the SOC exceeds the maximum charge amount.
  • the control device 105 of the power storage device 103 raises the target voltage Vref from the rated voltage Vo to Va at time T1.
  • the charging power of the power storage device 103 follows the decreasing direction (positive direction), and the terminal voltage instantaneously becomes Va.
  • the output Ppv of the photovoltaic power generation apparatus 102 is suppressed by a predetermined value ⁇ Ppv after being held until time T2.
  • the output is increased in the discharge direction so that the power storage device 103 follows up and compensates for the insufficient power generation amount, and the voltage is maintained at the reference value Va.
  • the target voltage is returned to the original Vo at time T3.
  • FIG. 5B shows a case where the SOC is below the minimum charge amount.
  • the control device 105 of the power storage device 103 has lowered the target voltage Vref from the rated voltage Vo to Vb.
  • the charging power of power storage device 103 follows the increasing direction (negative direction), and the terminal voltage instantaneously becomes Vb.
  • the demand power Pd of the load 2 is limited by a predetermined value ⁇ Pd.
  • the output is increased in the discharging direction so that the power storage device 103 follows up and compensates for the insufficient power generation amount, and the voltage is maintained at the reference value Vb. Thereafter, the target voltage is returned to the original Vo at time T7.
  • control device 105 having the control role as described in the first embodiment is arranged inside the power storage device 103 is described in the case where the autonomous control is used. Since the control device is arranged inside one device (regardless of whether it is inside the power storage device 103 or not), the output is directly suppressed with respect to the other device (the control device). -Commands such as power consumption suppression cannot be transmitted, and control is performed indirectly by controlling the target voltage in the independent power supply system 110. Specific control contents are as described above. By performing the target voltage control in this way, it is possible to perform the same control as the centralized control by the control device that is indirectly arranged in one device.
  • control contents can be made the same although there is a difference between direct and indirect, so that the effects described in the first embodiment can be obtained in the same way. become.
  • Example 3 an independent power supply system to which a photovoltaic power generation device that performs reactive power control by centralized control is applied as Example 3 will be described with reference to FIGS. 14 and 15.
  • FIG. 14 is a diagram illustrating a processing flow of the control device 5 when the solar power generation device 2 that performs reactive power control is applied to the independent power supply system 10 operated by centralized control.
  • the processing additionally performed in the first embodiment with respect to the present embodiment is performed by the control arithmetic device 51 in FIG. 3 used in the description of the first embodiment. Since the configuration of the independent power supply system 10 and the functional configuration of the control device 5 are the same as those described in FIGS. 3 and 4, detailed description thereof is omitted here.
  • the control cycle of the control arithmetic unit 51 is set in the range of several minutes to 30 minutes here because of the relationship with the time resolution of the output shift operation pattern data. For example, here, the control cycle is assumed to be 10 minutes.
  • the processing from S101 to S106 is the same as the processing from S41 to S46 shown in FIG. 4, and the description is omitted here.
  • the power factor commanded to the interconnection power converter 22 of the photovoltaic power generator 2 is calculated.
  • the measured value of the charge and discharge power of the storage battery is averaged by the moving average or the like in S1071, calculates the charge and discharge levels P BATT _ave power storage device 3.
  • a predetermined range for example, when there within 50% of the rated output sets the command value of the power factor 1 (S1073), a predetermined
  • the command value of the power factor Pf is set to the optimum power factor Pf OPT determined from the impedance of the local system (S1074).
  • the optimum power factor Pf OPT is approximately calculated in advance by Equation (21) as the ratio of the resistance R of the system impedance from the output end of the photovoltaic power generation device 2 to the connection point of the load device 4 and the reactance X. Is possible.
  • FIG. 6A shows a case where the photovoltaic power generation apparatus 2 does not perform reactive power control and always operates with a power factor of 1.
  • FIG. It is an example of the driving
  • the independent power supply system 10 in addition to the voltage fluctuation caused by the supply / demand imbalance described in each of the above embodiments, as shown in FIG. As a result, a combined voltage fluctuation is generated in which the voltage fluctuation generated by the output fluctuation on the impedance is superimposed.
  • the charge / discharge power is adjusted by the automatic voltage control of the power storage device 3 so as to control the target voltage including the voltage fluctuation.
  • the load device 4 and the solar power generation device 2 When the power fluctuation is large, the compensation amount of the power storage device 3 is increased.
  • FIG. 5B by operating the solar power generation device 2 at the optimum power factor determined by the formula (21), voltage fluctuation caused by output fluctuation of the solar power generation device 2 is suppressed. Therefore, the combined voltage fluctuation compensated by the power storage device 3 is only the voltage fluctuation due to the load device 4, and the compensation amount can be reduced.
  • other methods may be used as the power factor calculation method.
  • the rate command value is set to a value determined using the impedance of the power system in the stand-alone power supply system. This suppresses combined voltage fluctuations in which fluctuations in power consumption of the load device 4 and output fluctuations of the photovoltaic power generation device 2 act on the impedance are superimposed, thereby suppressing automatic voltage control (AVR) of the power storage device. It becomes possible to reduce the burden. Furthermore, if it is within the predetermined range, by setting the command value of the power factor of the solar power generation device 2 to 1, it is possible to perform the power generation operation without wasting power that can be generated.
  • the case where the first embodiment is applied together with the first embodiment is described.
  • the compensation which can be realized in the first embodiment is complementarily compensated. Better) and a more effective combination.
  • the control content is changed by comparing whether or not this average value is within a predetermined range. If the value does not have to be a value and varies in a correlated manner with the measurement value including the measurement value itself, the same control can be performed by determining the predetermined value together.
  • the comparison can be performed with high accuracy without being influenced by instantaneous fluctuations, which is beneficial because it increases reliability. This also applies to Example 4 below.
  • the independent power supply system to which the photovoltaic power generation apparatus that performs reactive power control by centralized control is described.
  • reactive power control is performed on the independent power supply system operated by autonomous control.
  • the case where the photovoltaic power generation apparatus to perform is applied is demonstrated using FIG.
  • the overall configuration of the stand-alone power supply system 110 in this embodiment is the same as that shown in FIG. 6, and thus detailed description thereof is omitted here.
  • FIG. 16 shows a flow of processing of the control device of the solar power generation apparatus 102 in the present embodiment.
  • the control flows of the power storage device 103 and the load device 104 are the same as those described in FIGS. 10 and 12, respectively.
  • the processing from S121 to S127 is the same as the processing from S81b to S87b shown in FIG. Therefore, description of these processes is omitted in this embodiment.
  • the driving power factor of the interconnection power converter 122 of the photovoltaic power generation apparatus 102 is calculated in the same manner as the process described in S107 of FIG. First, the measured value of the charge and discharge power of the storage battery is averaged by the moving average or the like in S1281, calculates the charge and discharge levels P BATT _ave of the power storage device 103.
  • a predetermined range for example, when there within 50% of the rated output sets the command value of the power factor 1 (S1283), a predetermined
  • the command value of the power factor Pf is set to the optimum power factor Pf OPT determined from the impedance of the local system (S1284).
  • the optimal power factor Pf OPT is calculated in advance by the formula (21) as a ratio of the low resistance component R and the reactance component X of the system impedance from the output terminal of the photovoltaic power generation device 102 to the connection point of the load device 104. Is possible.
  • the photovoltaic power generation apparatus 102 compares whether or not the average value of the measured values of the charge / discharge power of the storage batteries 31A and 31B is within a predetermined range.
  • the command value of the power factor of the device 102 By setting the command value of the power factor of the device 102 to a value determined using the impedance of the power system in the independent power supply system, independent power supply is possible even when autonomous control is performed regardless of centralized control.
  • the entire system can be operated in the same manner as in the third embodiment, and therefore the same effect can be obtained.
  • it is within the predetermined range by setting the command value of the power factor of the solar power generation device 2 to 1, it is possible to perform the power generation operation without wasting power that can be generated.
  • Example 5 A stand-alone power supply system using load start / stop information will be described with reference to FIGS. 17 and 18. Note that the configuration of the stand-alone power supply system 10 and the functional configuration of the control device 5 in this embodiment are the same as those described in FIGS. 3 and 4, and a description thereof is omitted here.
  • FIG. 17 shows a processing flow of the control device 5 when the load start / stop notice information is utilized in an independent power supply system operated by centralized control.
  • the process described below represents the process of the control arithmetic unit 51 of FIG. 3, and the control cycle is set in the range of several minutes to 30 minutes here in relation to the time resolution of the output shift operation pattern data. desirable. For example, here, the control cycle is assumed to be 10 minutes.
  • the processing from S131 to S136 is the same as the processing from S41 to S46 shown in FIG.
  • the control command based on the load start / stop notice information is calculated.
  • S 1371 it is determined whether or not there is a start / stop notice signal transmitted from the power storage device 3.
  • the output suppression amount of the solar power generation device 2 and the charge / discharge power adjustment amount of the power storage device 3 are calculated in S1372 by the method described below.
  • the adjustment amount of the load device 4 and the charge / discharge power adjustment amount of the power storage device 3 are calculated by the method described below in S1373. That is, as shown in FIG. 18B, when the activation notice signal is received at time T5, the load is activated at time T6 after a predetermined time, so that the adjustment load 41 of the load device 4 is adjusted in preparation for this. The amount is calculated, and the power consumption adjustment amount is commanded to the load device 4 in S139 through the power factor control calculation in S138. As a result, the power consumption is reduced, so that the charge / discharge power of the power storage device 3 is shifted in the charging direction (negative direction) so that supply and demand imbalance does not occur.
  • the power storage device 3 shifts in the charging direction and secures a sufficient compensation amount in the discharging direction, so that the rapid increase in power consumption can be absorbed by discharging. Thereafter, when the power consumption adjustment command of the load device 4 is canceled at a time T7 after a predetermined time, the charge / discharge power of the power storage device 3 shifts in the discharge direction so as to maintain the supply-demand balance.
  • the independent power supply system 10 can be used without increasing the capacity of the power storage device 3 even for large power fluctuations caused by steep load start and stop. It becomes possible to maintain a balance between supply and demand.
  • the case where it is applied in combination with the first embodiment has been described, and if it is applied together, the compensation that can be realized in the first embodiment is complementarily compensated. ) A more effective combination.
  • the contents described in the third embodiment can be applied together. In this case, it contributes most to the reduction in the capacity of the power storage device, and the introduction cost can be greatly reduced.

Abstract

The purpose of the present invention is the provision of an independent power supply system that is capable of reducing the costs associated with installation. This independent power supply system is characterized by using weather forecast data to calculate demand prediction data for a load device and power output prediction data for a natural energy generator, limiting power output from the natural energy generator when it is predicted on the basis of the demand prediction data and the power output prediction data that charging of a battery will take place at a level surpassing the maximum charging power of the battery, and limiting power consumption by a load for adjustment when it is predicted on the basis of the demand prediction data and the power output prediction data that power discharge from the battery will surpass the maximum discharge power of the battery.

Description

独立型電力供給システムStand-alone power supply system
 本発明は独立型電力供給システムに関するものであり、特に蓄電装置の小容量化に関する。 The present invention relates to a stand-alone power supply system, and more particularly to a reduction in capacity of a power storage device.
 温暖化や酸性雨をはじめとする地球規模の環境問題の顕在化、化石資源の枯渇、エネルギーセキュリティー確保等への対応策として、風力や太陽光といった自然エネルギーを利用した発電設備の導入が進んでいる。 The introduction of power generation facilities that use natural energy such as wind and solar as a countermeasure against the emergence of global environmental problems such as global warming and acid rain, the depletion of fossil resources, and ensuring energy security Yes.
 特に熱帯地域における隔離地や過疎地の系統未整備地域では、現状では主にディーゼルエンジン発電機等により電力が供給されていることが多いが、日照条件がよく太陽光発電に適していることもあり、再生可能エネルギーを有効活用して経済性向上を図るとともに、低炭素社会の実現にも貢献可能な電力供給システムに対するニーズは高い。また、電力系統インフラが既に整備されている地域においても、自然災害等で電力系統が停止した場合に、需要家設備に設置されている太陽光発電システムを系統と切り離して自律運転させ、電力系統停止時にも負荷に対して安定かつ継続的に電力を供給するシステムへの期待が高まっている。 Especially in isolated areas and depopulated areas in tropical areas, where power is often supplied mainly by diesel engine generators, etc., the sunshine conditions are good and suitable for solar power generation. In addition, there is a great need for an electric power supply system that can contribute to the realization of a low-carbon society, while at the same time improving the economic efficiency by effectively using renewable energy. Even in areas where power system infrastructure has already been established, when the power system stops due to a natural disaster, etc., the solar power generation system installed in the customer's facility is separated from the system and is operated autonomously. There is an increasing expectation for a system that supplies power stably and continuously to a load even when it is stopped.
 自然エネルギーを利用した発電設備のうち、特に太陽光発電装置を中心とした独立型の電力供給システムとしては、例えば特許文献1に記載されたものがある。該特許文献には、蓄電装置で自動周波数制御する際に充電状態(SOC:State of Charge)や充放電電力に応じて目標周波数を変えて間接的に太陽光発電装置の出力抑制状態を制御し、蓄電装置の過充電によるシステム停止を防止する技術が記載されている。 Among the power generation facilities using natural energy, for example, an independent power supply system centering on a solar power generation device is disclosed in Patent Document 1, for example. In this patent document, when the automatic frequency control is performed by the power storage device, the output suppression state of the photovoltaic power generation device is controlled indirectly by changing the target frequency according to the state of charge (SOC) and charge / discharge power. A technique for preventing system stoppage due to overcharging of a power storage device is described.
特開2008-17652号公報JP 2008-17762 A
 太陽光発電装置や風力発電装置と言った自然エネルギー発電装置と蓄電装置を有して電力系統から独立して運用される電力供給システムに関して、独立系統内の周波数や電圧を適正値に維持しながら安定かつ継続的に負荷に電力を供給するためには、蓄電装置の過充電防止のみならず太陽光発電装置が発電しない夜間や雨天時の過放電を防止する必要がある。 With regard to a power supply system that has a natural energy power generation device and a power storage device such as a solar power generation device and a wind power generation device and is operated independently from the power system, while maintaining the frequency and voltage in the independent system at appropriate values In order to supply power to the load stably and continuously, it is necessary to prevent not only overcharging of the power storage device but also overdischarge at night or rainy weather when the solar power generation device does not generate power.
 特許文献1で開示されている技術では、蓄電装置の過充電による運転停止を防止することはできるが、太陽光発電の出力が零となる夜間も含めて蓄電池の過放電による運転停止を回避するためには、別途ディーゼルエンジン等の調整用電源を設ける必要があるか、蓄電装置の容量を大きくする必要があり、設置費用が大きくなってしまう恐れがあった。 With the technology disclosed in Patent Document 1, it is possible to prevent operation stop due to overcharging of the power storage device, but avoid operation stop due to overdischarge of the storage battery, including at night when the output of solar power generation becomes zero. Therefore, it is necessary to separately provide a power source for adjustment such as a diesel engine, or it is necessary to increase the capacity of the power storage device, which may increase the installation cost.
 そこで、本発明では、設置費用を少なくすることができる独立型電力供給システムを提供することを目的とする。 Therefore, an object of the present invention is to provide an independent power supply system that can reduce installation costs.
 上記課題を解決するために、本発明に係る独立型電力供給システムは、自然エネルギー発電装置と、調整用負荷を有すると共に前記自然エネルギー発電装置からの発電電力により動作する負荷装置と、前記自然エネルギー発電装置及び前記負荷装置に接続されて充放電を行う蓄電池を有する蓄電装置と、を備える独立型電力供給システムであって、該独立型電力供給システムは、気象予測データを用いて前記負荷装置の需要予測データ及び前記自然エネルギー発電装置の発電出力予測データを計算し、前記需要予測データ及び前記発電出力予測データにより、前記蓄電池の最大充電電力を超えて前記蓄電池に充電されることが予測される場合には前記自然エネルギー発電装置からの発電出力を抑制し、前記需要予測データ及び前記発電出力データにより、前記蓄電池の最大放電電力を超えて前記蓄電池から放電されることが予測される場合には前記調整用負荷の消費電力を抑制することを特徴とする。 In order to solve the above-described problems, an independent power supply system according to the present invention includes a natural energy power generation device, a load device that has a load for adjustment and that operates by generated power from the natural energy power generation device, and the natural energy An independent power supply system including a power generation device and a power storage device having a storage battery connected to the load device for charging and discharging, the independent power supply system using the weather prediction data of the load device Demand prediction data and power generation output prediction data of the natural energy power generation apparatus are calculated, and the storage battery is predicted to be charged by exceeding the maximum charge power of the storage battery by the demand prediction data and the power generation output prediction data. In the case, the power generation output from the natural energy power generation device is suppressed, the demand forecast data and the power generation output The chromatography data, which comprises suppressing the power consumption of the adjustment load when being discharged from the storage battery exceeds the maximum discharge power of the battery is predicted.
 本発明によれば、設置費用を少なくすることができる独立型電力供給システムを提供することが可能になる。 According to the present invention, it is possible to provide a stand-alone power supply system that can reduce installation costs.
実施例1における独立型電力供給システムの構成例である。1 is a configuration example of a stand-alone power supply system in Embodiment 1. 実施例1における独立型電力供給システムを構成する太陽光発電装置、蓄電装置の出力シフト運用の例を模式的に表した図である。It is the figure which represented typically the example of the output shift operation | movement of the solar power generation device which comprises the stand-alone power supply system in Example 1, and an electrical storage apparatus. 実施例1における独立型電力供給システムの制御装置の機能構成図である。It is a functional block diagram of the control apparatus of the stand-alone power supply system in Example 1. 実施例1における独立型電力供給システムの制御フロー図である。It is a control flow figure of the independent type electric power supply system in Example 1. 実施例1における独立型電力供給システムの制御動作を表す図である。It is a figure showing the control operation of the stand-alone power supply system in Example 1. 実施例2における独立型電力供給システムの構成例である。It is an example of a structure of the stand-alone power supply system in Example 2. 実施例2における蓄電装置内制御装置の機能構成図である。FIG. 6 is a functional configuration diagram of a storage device internal control device according to a second embodiment. 実施例2における太陽光発電装置内制御装置の機能構成図である。It is a functional block diagram of the solar power generation device control apparatus in Example 2. FIG. 実施例2における負荷装置内制御装置の機能構成図である。It is a functional block diagram of the control apparatus in a load apparatus in Example 2. FIG. 実施例2における蓄電装置内制御装置の制御フロー図である。FIG. 10 is a control flow diagram of the storage device internal control device according to the second embodiment. 実施例2における太陽光発電装置内制御装置の制御フロー図である。It is a control flowchart of the solar power generation device control apparatus in Example 2. 実施例2における負荷装置内制御装置の制御フロー図である。FIG. 6 is a control flow diagram of a control device in a load device in Embodiment 2. 実施例2における独立型電力供給システムの制御動作を表す図である。It is a figure showing the control operation of the stand-alone power supply system in Example 2. 実施例3における太陽光発電装置で力率調整運転を行う場合の制御フロー図である。It is a control flow figure in the case of performing power factor adjustment driving | operation with the solar power generation device in Example 3. FIG. 実施例3における太陽光発電装置で力率調整運転を行う場合の制御動作を説明する図である。It is a figure explaining the control operation in the case of performing power factor adjustment driving | operation with the solar power generation device in Example 3. FIG. 実施例4における太陽光発電装置で力率調整運転を行う場合の制御フロー図である。It is a control flow figure in the case of performing a power factor adjustment driving | operation with the solar power generation device in Example 4. FIG. 実施例5における負荷装置の起動停止予告信号を活用した制御フロー図である。FIG. 10 is a control flow diagram utilizing a start / stop notice signal of a load device according to a fifth embodiment. 実施例5における負荷装置の起動停止予告信号を活用した制御の動作を説明する図である。It is a figure explaining the operation | movement of the control using the start stop notification signal of the load apparatus in Example 5. FIG.
 以下、本発明を実施する上で好適な実施例について図面を用いて説明する。下記内容はあくまで実施の例であって発明の内容は下記特定の態様のみに限定されるものではなく、特許請求の範囲に記載された内容を満たす上で種々の態様に変形可能であることは言うまでもない。特に、下記実施例においては自然エネルギー発電の態様として太陽光発電の場合を例にして説明するが、本発明の内容が太陽光発電に限定されることを意図する趣旨でなく、無論風力発電と言った他の自然エネルギー発電も含めて適用が可能である。 Hereinafter, preferred embodiments for carrying out the present invention will be described with reference to the drawings. The following content is only an example of implementation, and the content of the invention is not limited to the following specific mode, and can be modified into various modes to satisfy the content described in the claims. Needless to say. In particular, in the following examples, the case of solar power generation will be described as an example of the form of natural energy power generation. However, the content of the present invention is not intended to be limited to solar power generation. It can be applied to other renewable energy generation.
 実施例1について図1ないし図5を用いて説明する。 
 図1は、集中制御を適用した独立型電力供給システムの概略を説明する図である。該図に示す様に、独立型電力供給システム10は、日射条件に応じて発電出力が変動する太陽光発電装置2と、鉛蓄電池やリチウムイオン電池等の二次電池からなる蓄電装置3と、負荷装置4がそれぞれ連系用受電装置25、35、45を介して電力線1に接続されることで概略構成されており、太陽光発電装置2、蓄電装置3、負荷装置4は、それぞれ制御装置5から回線を通じて伝送される制御指令に基づき運転される。制御装置5は、公衆回線6を介して伝送される気象予測情報や、太陽光発電装置2、蓄電装置3、負荷装置4から伝送される電力、電圧、力率等の電気量や充電状態(SOC: State of Charge)等の運転状態信号に基づき、各装置に発電出力の抑制量、充放電電力、負荷調整量等の制御指令を伝送する機能を有するものである。そして、本実施例に係る独立型電力供給システム10は、ディーゼル発電機等の慣性を有する回転機系の出力調整用の発電装置を備えていない。そこで、蓄電装置3が独立型電力供給システム10の基準電源として電圧、周波数を維持するための運転を担うこととなり、そのために蓄電装置3では自動電圧調整運転(AVR)を行う。一方、太陽光発電装置2や負荷装置4では、蓄電装置3の自動電圧調整運転を補助するために一時的な発電出力の抑制や負荷調整などを行うこととしている。
A first embodiment will be described with reference to FIGS.
FIG. 1 is a diagram illustrating an outline of an independent power supply system to which centralized control is applied. As shown in the figure, the stand-alone power supply system 10 includes a solar power generation device 2 whose power generation output varies according to solar radiation conditions, a power storage device 3 including a secondary battery such as a lead storage battery or a lithium ion battery, The load device 4 is schematically configured by being connected to the power line 1 via the interconnection power receiving devices 25, 35, and 45, respectively. The solar power generation device 2, the power storage device 3, and the load device 4 are respectively control devices. 5 is operated based on a control command transmitted from 5 through a line. The control device 5 transmits weather forecast information transmitted through the public line 6, electric quantities such as electric power, voltage, and power factor transmitted from the solar power generation device 2, the power storage device 3, and the load device 4, and a charging state ( Based on an operation state signal such as SOC (State of Charge), it has a function of transmitting a control command such as a power generation output suppression amount, charge / discharge power, and load adjustment amount to each device. The independent power supply system 10 according to the present embodiment does not include a power generator for adjusting the output of a rotating machine system having inertia such as a diesel generator. Therefore, the power storage device 3 is responsible for the operation for maintaining the voltage and frequency as a reference power source for the independent power supply system 10. For this purpose, the power storage device 3 performs an automatic voltage adjustment operation (AVR). On the other hand, in the solar power generation device 2 and the load device 4, in order to assist the automatic voltage adjustment operation of the power storage device 3, temporary power generation output suppression or load adjustment is performed.
 太陽光発電装置2は、太陽光発電パネル21と、太陽光発電パネル21で発電された直流電力を交流電力に変換しその出力を制御するとともに電力線1に接続するための連系保護機能を備えた連系用電力変換器22と、変圧器や開閉器等からなる連系用受電装置25と、連系用電力変換器22で行う制御・保護に用いる自端の電圧・電流検出装置(図示せず)と、で構成される。また、図示していないが、連系用電力変換器22には外部との通信機能を備えた制御装置220が組み込まれている。 The solar power generation device 2 includes a solar power generation panel 21 and a grid protection function for converting the DC power generated by the solar power generation panel 21 into AC power, controlling the output, and connecting to the power line 1. The interconnection power converter 22, the interconnection power receiving device 25 including a transformer, a switch, and the like, and a self-end voltage / current detection device used for control and protection performed by the interconnection power converter 22 (see FIG. Not shown). Although not shown, the interconnection power converter 22 incorporates a control device 220 having a function of communicating with the outside.
 蓄電装置3は、充電あるいは放電により独立型電力供給システム10の電力の需給バランスを調整する装置で、蓄電池31A、31Bと、蓄電池31A、31Bにより発生した直流電力を交流電力に変換しこれを制御するとともに、電力線1に接続するための保護機能を備えた連系用電力変換器32A、32Bと、変圧器や開閉器等からなる連系用受電装置35と、連系用電力変換器32A、32Bで行う制御・保護に用いる自端の電圧・電流検出装置(図示せず)と、蓄電池を制御する連系用電力変換装置に伝送するための充放電電力や運転/停止情報などの制御指令を決定する制御装置33と、蓄電池31A、31Bの補機34とで構成される。連系用電力変換器32A、32Bは、それぞれ制御装置33からの制御指令と自端の電圧・電流情報に基づいて独立型電力供給システム10内の周波数及び電圧を適正範囲に維持するために有効・無効電力を制御する機能を有する。蓄電池31A、31Bとしては、鉛蓄電池、リチウムイオン電池、ナトリウム・硫黄電池、レドックスフロー電池などの二次電池を適用することができる。また、これらの電池は定期的にリフレッシュ充電を行う必要があることから、その間にも電力供給システムが安定に電力を供給できるようにするために、少なくとも2組で独立運用が可能な構成とすることが望ましい。 The power storage device 3 is a device that adjusts the power supply / demand balance of the independent power supply system 10 by charging or discharging, and converts DC power generated by the storage batteries 31A and 31B and the storage batteries 31A and 31B into AC power and controls it. In addition, the interconnection power converters 32A and 32B having a protection function for connecting to the power line 1, the interconnection power receiving device 35 including a transformer, a switch, and the like, and the interconnection power converter 32A, Control commands such as charge / discharge power and operation / stop information to be transmitted to the power converter for interconnection connected to control the storage battery and its own voltage / current detection device (not shown) used for control / protection in 32B And the auxiliary device 34 of the storage batteries 31A and 31B. The interconnection power converters 32A and 32B are effective for maintaining the frequency and voltage in the independent power supply system 10 within an appropriate range based on the control command from the control device 33 and the voltage / current information at its own end, respectively.・ Has a function to control reactive power. As the storage batteries 31A and 31B, secondary batteries such as lead storage batteries, lithium ion batteries, sodium / sulfur batteries, and redox flow batteries can be applied. In addition, since these batteries need to be refreshed regularly, in order to allow the power supply system to stably supply power during that period, at least two sets can be independently operated. It is desirable.
 負荷装置4は、消費電力を調整可能な調整用負荷41と、起動あるいは停止を所定のタイミングで予告する機能を有する負荷42と、制御装置5から伝送された負荷調整指令を調整用負荷41に伝送するとともに負荷42から伝送された起動/停止の予告信号を受信し制御装置5に伝送する制御装置43と、で構成される。また、図示していないが、自端の電圧・電流検出装置やその他一般の特殊な機能を持たない負荷も設置されている。 The load device 4 includes an adjustment load 41 capable of adjusting power consumption, a load 42 having a function of notifying activation or stop at a predetermined timing, and a load adjustment command transmitted from the control device 5 to the adjustment load 41. And a control device 43 that transmits the start / stop notice signal transmitted from the load 42 and transmits it to the control device 5. Although not shown, a self-end voltage / current detection device and other loads having no special function are also installed.
 図2は、独立型電力供給システムの基本的な運用方法である太陽光発電装置2の出力を夜間にシフトする場合における運転パターンを模式的に表したものである。太陽光発電装置2は、基本的には日射量により定まる発電電力を供給するものとし、通常は特に出力制限などは行わない。該図は快晴で、発電出力が定格容量まで達する場合における例を表しており、蓄電装置3では昼間の時間帯は太陽光発電装置2の発電電力を充電し、これを夜間に放電することで負荷に電力を供給すると言う、いわゆるピークシフト運用を行い、太陽光発電装置2と蓄電装置3の両者で該図に示す合成出力を負荷装置4に供給する。 FIG. 2 schematically shows an operation pattern in the case where the output of the photovoltaic power generation apparatus 2 which is a basic operation method of the independent power supply system is shifted at night. The solar power generation device 2 basically supplies generated power determined by the amount of solar radiation, and normally does not particularly limit output. The figure is clear and shows an example in the case where the power generation output reaches the rated capacity. The power storage device 3 charges the power generated by the solar power generation device 2 during the daytime and discharges it at night. A so-called peak shift operation is performed to supply power to the load, and the combined output shown in the figure is supplied to the load device 4 by both the solar power generation device 2 and the power storage device 3.
 図3は、本実施例における独立型電力供給システムの制御装置5の機能構成を表した図である。太陽光発電装置2、蓄電装置3または負荷装置4に伝送する発電出力抑制/解除指令、充放電電力指令または負荷調整指令等の制御指令を演算する制御演算装置51と、日射量や気温等の気象予測データを保存する気象データ格納装置52と、太陽光発電装置2、蓄電装置3、負荷装置4から伝送された電気量や運転状態情報等の計測データを格納する計測データ格納装置53と、太陽光発電装置2、蓄電装置3、負荷装置4に伝送する制御指令や前記計測情報の送受信を制御するための信号入出力インタフェース装置54と、オペレータが制御指令を修正したりメンテナンスのための操作指令を入力したりするための入力装置55と、オペレータが運転状況等を確認するための表示装置56とを有している。 FIG. 3 is a diagram showing a functional configuration of the control device 5 of the independent power supply system in the present embodiment. A control arithmetic unit 51 that calculates a control command such as a power generation output suppression / cancellation command, a charge / discharge power command or a load adjustment command transmitted to the solar power generation device 2, the power storage device 3 or the load device 4, and the amount of solar radiation, temperature, etc. A weather data storage device 52 for storing weather forecast data, a measurement data storage device 53 for storing measurement data such as the amount of electricity and operating state information transmitted from the solar power generation device 2, the power storage device 3, and the load device 4, Signal input / output interface device 54 for controlling transmission / reception of measurement commands and control commands transmitted to the photovoltaic power generation device 2, the power storage device 3, and the load device 4, and operations for the operator to correct the control commands and perform maintenance An input device 55 for inputting a command and a display device 56 for an operator to check an operation status and the like are provided.
 そして制御演算装置51は更に、予測演算機能511と、出力シフト運転パターン生成機能512と、出力シフト運転パターン補正機能513とで構成されている。 The control calculation device 51 further includes a prediction calculation function 511, an output shift operation pattern generation function 512, and an output shift operation pattern correction function 513.
 予測演算機能511は、予め気象データ格納装置52に保存されている天候、日射量、気温等の気象予測データを用いて、太陽光発電装置2の発電出力を予測するための太陽光発電出力予測演算部5111と、負荷装置4の需要電力を予測するための需要電力予測演算部5112を有する。 The prediction calculation function 511 is a solar power generation output prediction for predicting the power generation output of the solar power generation device 2 by using weather prediction data such as weather, solar radiation amount, and temperature stored in the weather data storage device 52 in advance. A calculation unit 5111 and a demand power prediction calculation unit 5112 for predicting the demand power of the load device 4 are provided.
 出力シフト運転パターン生成機能512は、前記の太陽光発電出力および需要電力の予測結果を用いて蓄電装置3の充放電パターンの初期設定値を算出するための蓄電池充放電パターン演算部5121と、前記の充放電パターンの初期設定について、充電および放電のレベルがそれぞれ適正な範囲にあるか否かの判定を行う充放電レベル判定部5122と、充放電レベル判定部5122における判定結果に基づいて、太陽光発電装置2の発電出力の抑制量または負荷装置4の調整量を算出する太陽光発電出力抑制量・負荷調整量演算部5123、充放電パターンの初期設定値と太陽光発電出力の抑制量および負荷の調整量に基づき、太陽光発電装置2、蓄電装置3、負荷装置4の出力シフト運転パターンを生成する出力シフト運転パターン生成部5124とを有している。 The output shift operation pattern generation function 512 includes a storage battery charge / discharge pattern calculation unit 5121 for calculating an initial set value of the charge / discharge pattern of the power storage device 3 using the prediction result of the photovoltaic power generation output and the demand power. On the basis of the determination results in the charge / discharge level determination unit 5122 and the charge / discharge level determination unit 5122 for determining whether or not the charge and discharge levels are in appropriate ranges, respectively, A photovoltaic power generation output suppression amount / load adjustment amount calculation unit 5123 for calculating a power generation output suppression amount of the photovoltaic power generation device 2 or an adjustment amount of the load device 4, an initial setting value of the charge / discharge pattern, and a solar power generation output suppression amount, Output shift operation pattern for generating output shift operation patterns of the photovoltaic power generator 2, the power storage device 3, and the load device 4 based on the adjustment amount of the load And a generation unit 5124.
 さらに、出力シフト運転パターン補正機能513は、蓄電装置3の充放電状態(SOC)の時間推移を計算するSOC評価演算部5131と、前記SOCのレベルが適正な範囲にあるか否かの判定を行うSOCレベル判定部5132と、その判定結果に基づいて太陽光発電装置2の発電出力の抑制量あるいは負荷装置4の調整量を補正演算するための太陽光発電出力抑制量・負荷調整量補正演算部5133と、前記の太陽光発電出力の抑制量および負荷の調整量の補正演算結果に基づき、太陽光発電装置2、蓄電装置3、負荷装置4の出力シフト運転パターンを補正する出力シフト運転パターン補正部5134とで構成される。ここで、SOC(State of Charge)とは蓄電池の残量(充電電力量)を表す指標で定格充電容量に対する百分率で表される。 Furthermore, the output shift operation pattern correction function 513 determines an SOC evaluation calculation unit 5131 that calculates the time transition of the charge / discharge state (SOC) of the power storage device 3 and whether or not the SOC level is within an appropriate range. An SOC level determination unit 5132 to perform, and a photovoltaic power generation output suppression amount / load adjustment amount correction calculation for correcting and calculating a power generation output suppression amount of the solar power generation device 2 or an adjustment amount of the load device 4 based on the determination result Output shift operation pattern for correcting the output shift operation pattern of the solar power generation device 2, the power storage device 3, and the load device 4 based on the correction calculation result of the amount of suppression of the solar power generation output and the adjustment amount of the load. And a correction unit 5134. Here, SOC (State of Charge) is an index representing the remaining amount (charged electric energy) of the storage battery and is expressed as a percentage of the rated charge capacity.
 次に、図4を用いて独立型電力供給システム10の制御装置5の制御処理の流れについて説明する。以下に説明する処理は制御演算装置51の処理を表しており、その制御周期は出力シフト運転パターンデータの時間分解能との関係からここでは数分~30分の範囲に設定した場合について説明する。更に、ここでは制御周期を10分とする場合を例にして説明する。 Next, the flow of control processing of the control device 5 of the independent power supply system 10 will be described with reference to FIG. The process described below represents the process of the control arithmetic unit 51, and the case where the control cycle is set in the range of several minutes to 30 minutes will be described here in relation to the time resolution of the output shift operation pattern data. Furthermore, here, a case where the control cycle is 10 minutes will be described as an example.
 まず、S41では公衆回線6を介して収集、格納され気象データ格納装置52に保存されている日射量Sr(W/m2)、外気温To(℃)などの気象予測データを読込む。ここで、気象予測データは、一例として本実施例において30分値で24時間先までのデータ(48点分)が格納されているものとする。処理S42では、いずれも定期的に計測され10分間の平均値として処理されている太陽光発電装置2の発電出力Ppv_m(W)および力率Pf_m、蓄電装置3の充放電電力PBATT_m(W)および充電状態SOC(%)、負荷装置4の需要電力Pd(W)の直近の計測データを読込む。ここで、充放電電力は放電電力を正、充電電力を負として表すこととする。 First, in S41, weather forecast data such as the solar radiation amount Sr (W / m 2 ) and the outside air temperature To (° C.) collected and stored via the public line 6 and stored in the weather data storage device 52 are read. Here, as an example of the weather forecast data, it is assumed that data (48 points) up to 24 hours ahead with 30-minute values in this embodiment is stored. In processing S42, either periodically measured and processed by that power generation output Ppv_m photovoltaic device 2 as an average of 10 minutes (W) and power factor Pf_m, charge-discharge electric power P BATT _m (W of power storage device 3 ), The state of charge SOC (%), and the latest measurement data of the demand power Pd (W) of the load device 4 are read. Here, the charge / discharge power is expressed as positive discharge power and negative charge power.
 S43では、S42で読込んだ日射量及び気温の予測データを用いて、太陽光発電装置2の24時間先までの発電出力データとなる発電出力Ppv(t)(t=1~48)の予測計算を行う。具体的には、各時間区間の日射量予測値Sr(t)(W/m2)と外気温予測値To(t)(℃)、および前回の予測値と直近の計測値の比Kα(t)を用いて、下記数式(1)により各係数値の積から各時間区間の発電出力を予測する。 In S43, using the solar radiation amount and temperature prediction data read in S42, the power generation output Ppv (t) (t = 1 to 48) as power generation output data up to 24 hours ahead of the solar power generation device 2 is predicted. Perform the calculation. Specifically, the solar radiation amount predicted value Sr (t) (W / m 2 ) and the outside air temperature predicted value To (t) (° C.) in each time interval, and the ratio Kα ( Using t), the power generation output in each time interval is predicted from the product of the coefficient values according to the following formula (1).
  Ppv(t)=Sr(t)・Ks・Kpv・Kt(To)・Kb・Kc
        ・Kpcs・Kα(t)×10-3(kW)      (1)
 但し、
    Ks:日射量補正係数    Kpv:パネル容量換算係数
    Kt(To):温度補正係数  Kb:汚れ係数
    Kc:ケーブル効率係数   Kpcs:電力変換器効率係数
    Kα(t):直近計測値/前回予測値
とする。
Ppv (t) = Sr (t) · Ks · Kpv · Kt (To) · Kb · Kc
・ Kpcs ・ Kα (t) × 10 −3 (kW) (1)
However,
Ks: Solar radiation correction coefficient Kpv: Panel capacity conversion coefficient Kt (To): Temperature correction coefficient Kb: Dirt coefficient Kc: Cable efficiency coefficient Kpcs: Power converter efficiency coefficient Kα (t): Latest measurement value / previous prediction value .
 S44では、負荷装置4の需要電力を予測する。本発明では予測手法としては統計的手法やメタヒューリスティック手法等を適用することができる。例えば、統計的手法では、計測データ格納装置53に保存されている過去の需要電力パターンを統計処理したものをベースとし、気象予測データをパラメータとして予測演算を行う。各パラメータについて、それらの影響度を、予測値と実測値の差を少なくするように、徐々に修正する処理を繰返し行うアルゴリズムにより、比較的精度良く需要電力を予測することができる。具体的には、次のようにして行う。まず、季節、曜日、天気など、予測対象日と条件が近い複数の需要電力パターンを計測データ格納装置の保存データから抽出する。次に、抽出した複数の需要電力パターンの平均をとり、基本的な予測需要電力パターンPd0(t)とする。最後に、基本的な予測需要電力パターンPd0(t)に、当日の天候、気温などによる補正係数G1(t)、G2(t)を加え、(2)式により需要電力の予測データとなる需要電力の予測値Pd(t)を計算する。 In S44, the power demand of the load device 4 is predicted. In the present invention, a statistical method, a metaheuristic method, or the like can be applied as a prediction method. For example, in the statistical method, a prediction calculation is performed using weather prediction data as a parameter based on statistical processing of past demand power patterns stored in the measurement data storage device 53. For each parameter, it is possible to predict the power demand with relatively high accuracy by an algorithm that repeatedly corrects the degree of influence of the parameters so as to reduce the difference between the predicted value and the actually measured value. Specifically, this is performed as follows. First, a plurality of demand power patterns, such as seasons, days of the week, and weather, which are close in condition to the prediction target date, are extracted from the stored data in the measurement data storage device. Next, an average of the plurality of extracted demand power patterns is taken as a basic predicted demand power pattern Pd0 (t). Finally, the correction factors G1 (t) and G2 (t) are added to the basic forecast demand power pattern Pd0 (t) based on the weather and temperature of the day, and the demand becomes forecast power demand data according to equation (2). A predicted power value Pd (t) is calculated.
  Pd(t)=Pd0(t)+G1(t)+G2(t)         (2)
 但し、
    G1(t):天候による需要電力の補正係数
    G2(t):気温による需要電力の補正係数
とする。
Pd (t) = Pd0 (t) + G1 (t) + G2 (t) (2)
However,
G1 (t): Correction factor for demand power due to weather G2 (t): Correction factor for demand power due to temperature
 補正係数G1(t)、G2(t)は、予測値と実測値の差が小さくなるように逐次修正されている。 The correction coefficients G1 (t) and G2 (t) are sequentially corrected so that the difference between the predicted value and the actually measured value becomes small.
 S45は、図3に示した出力シフト運転パターン生成機能512の処理を表している。S451では、数式(1)(2)により予測された太陽光発電装置2の発電出力の予測値Ppv(t)、負荷装置4の需要電力の予測値Pd(t)を用いて、数式(3)によりPd(t)とPpv(t)の差分から、蓄電装置3の充放電電力PBATT(t)を計算し、初期値として設定する。 S45 represents processing of the output shift operation pattern generation function 512 shown in FIG. In S451, using the predicted value Ppv (t) of the power generation output of the solar power generation device 2 predicted by the formulas (1) and (2) and the predicted value Pd (t) of the demand power of the load device 4, the formula (3 ), The charge / discharge power P BATT (t) of the power storage device 3 is calculated from the difference between Pd (t) and Ppv (t) and set as an initial value.
  PBATT(t)=Pd(t)-Ppv(t)               (3)
 次に、S452では蓄電装置3の充放電パターンの初期設定値PBATT(t)について、数式(4)~(6)のように充電および放電のレベルがそれぞれ適正な範囲にあるか否かの判定を行う。
P BATT (t) = Pd (t) −Ppv (t) (3)
Next, in S452, whether or not the charge and discharge levels are within the appropriate ranges as shown in equations (4) to (6) for the initial set value P BATT (t) of the charge / discharge pattern of the power storage device 3. Make a decision.
  PBATT(t)<Pcmax ならば S453へ          (4)
  PBATT(t)>Pdmax ならば S454へ          (5)
  Pcmax≦PBATT(t)≦Pdmax ならば S455へ    (6)
 但し、
    Pcmax:最大充電電力(W)
    Pdmax:最大放電電力(W)
とする。
If P BATT (t) <Pcmax, go to S453 (4)
If P BATT (t)> Pdmax, go to S454 (5)
If Pcmax ≦ P BATT (t) ≦ Pdmax, go to S455 (6)
However,
Pcmax: Maximum charge power (W)
Pdmax: Maximum discharge power (W)
And
 数式(4)のように、PBATT(t)が最大充電電力Pcmaxを超過(絶対値として。充電電力なので符号は負であり、大小関係で言うと逆転する)する場合には、独立型電力供給システム10内で需要電力よりも発電電力が多くなっているため、S453で太陽光発電装置2の出力抑制量ΔPpv(t)を数式(7)により計算し、設定(抑制)する。 In the case where P BATT (t) exceeds the maximum charging power Pcmax (as an absolute value. The sign is negative because it is charging power and reverses in terms of the magnitude relationship) as shown in Equation (4), the independent power Since the generated power is larger than the demand power in the supply system 10, the output suppression amount ΔPpv (t) of the solar power generation device 2 is calculated by Equation (7) and set (suppressed) in S453.
  ΔPpv(t)=PBATT(t)-Pcmax            (7)
 また、数式(5)のように、PBATT(t)が最大放電電力Pdmaxを超過する場合には、独立型電力供給システム10内で発電電力よりも需要電力が多くなっているため、S454で負荷装置4の消費電力を調整可能な調整用負荷41の調整量ΔPd(t)を数式(8)により計算し、設定(抑制)する。
ΔPpv (t) = P BATT (t) −Pcmax (7)
Further, as shown in Equation (5), when P BATT (t) exceeds the maximum discharge power Pdmax, the demand power is larger than the generated power in the independent power supply system 10, so in S454 The adjustment amount ΔPd (t) of the adjustment load 41 capable of adjusting the power consumption of the load device 4 is calculated by Expression (8) and set (suppressed).
  ΔPd(t)=PBATT(t)-Pdmax             (8)
 数式(6)のように、充放電電力PBATT(t)が適正範囲に収まっている場合には、ΔPpv(t)、ΔPd(t)を零に設定する。
ΔPd (t) = P BATT (t) −Pdmax (8)
When the charge / discharge power P BATT (t) is within an appropriate range as expressed by Equation (6), ΔPpv (t) and ΔPd (t) are set to zero.
 S455では、S452~454で求めた出力抑制量ΔPpv(t)、負荷調整量ΔPd(t)を用いて、出力シフト運転パターンとして、太陽光発電出力Ppv(t)*、負荷の消費電力Pd(t)*、蓄電池充放電パターンPBATT(t)*を生成する。 In S455, using the output suppression amount ΔPpv (t) and load adjustment amount ΔPd (t) obtained in S452 to 454, the photovoltaic power generation output Ppv (t) * and the load power consumption Pd ( t) * and storage battery charge / discharge pattern P BATT (t) * are generated.
  Ppv(t)*=Ppv(t)+ΔPpv(t)           (9)
  Pd(t)*=Pd(t)+ΔPd(t)             (10)
  PBATT(t)*=PBATT(t)-ΔPpv(t)+ΔPd(t)      (11)
 上記手法までに基づいて作成された出力シフト運転パターンであっても、蓄電装置の小容量化をある程度達成することができる。以下では、更にその精度を上げるべく出力シフト運転パターンの補正について説明する。
Ppv (t) * = Ppv (t) + ΔPpv (t) (9)
Pd (t) * = Pd (t) + ΔPd (t) (10)
P BATT (t) * = P BATT (t) −ΔPpv (t) + ΔPd (t) (11)
Even with the output shift operation pattern created based on the above method, the capacity of the power storage device can be reduced to some extent. Hereinafter, correction of the output shift operation pattern will be described in order to further increase the accuracy.
 S46は、図3に示した出力シフト運転パターン補正機能513の処理を表している。S461では、数式(11)により計算された蓄電装置3の充放電電力PBATT(t)*を用いて、現在時刻から将来の時間となる24時間先(30分値で48点分)の充放電状態SOC(t)を数式(12)により計算する。何時間先を計算し、その間を如何ほどの所定時間で区分するかは、設置環境等によっても変化する。ここでは、24時間先までを30分毎に区分する場合を例にして説明している。 S46 represents the process of the output shift operation pattern correction function 513 shown in FIG. In S461, the charge / discharge power P BATT (t) * of the power storage device 3 calculated by the equation (11) is used to charge / charge 24 hours ahead (30 points, 48 points), which is the future time. The discharge state SOC (t) is calculated by Equation (12). How many hours ahead is calculated, and how much time is divided between them varies depending on the installation environment and the like. Here, a case where 24 hours ahead is divided every 30 minutes is described as an example.
  SOC(t)=SOC(t-1)+((PBATT(t)*×0.5)/Ph_rated)
        ×100(%)               (12)
 ここで、Ph_ratedは蓄電装置3の定格容量(Wh)である。
SOC (t) = SOC (t−1) + ((P BATT (t) * × 0.5) / Ph_rated)
× 100 (%) (12)
Here, Ph_rated is the rated capacity (Wh) of the power storage device 3.
 次に、462では、蓄電装置3の充放電状態SOC(t)について、数式(13)~(15)のように充放電状態が適正な範囲にあるか否かの判定を行う。 Next, at 462, the charge / discharge state SOC (t) of the power storage device 3 is determined as to whether or not the charge / discharge state is in an appropriate range as shown in equations (13) to (15).
  Smin≦SOC(t)≦Smax ならば S465へ   (13)
  SOC(t)>Smax ならば S463へ        (14)
  SOC(t)<Smin ならば S464へ        (15)
 但し、
    Smax:最大充電電力量(%)  
    Smin:最小充電電力量(%)
とする。
If Smin ≦ SOC (t) ≦ Smax, go to S465 (13)
If SOC (t)> Smax, go to S463 (14)
If SOC (t) <Smin, go to S464 (15)
However,
Smax: Maximum charge energy (%)
Smin: Minimum charge energy (%)
And
 数式(13)の場合、図5(a)に示すように充放電状態SOC(t)が適正範囲に収まっているため、処理S45で求めた出力シフト運転パターンPpv(t)*、Pd(t)*、PBATT(t)*をさらに補正する必要はない。 In the case of Expression (13), since the charge / discharge state SOC (t) is within the appropriate range as shown in FIG. 5A, the output shift operation patterns Ppv (t) * , Pd (t ) * , P BATT (t) * need not be further corrected.
 数式(14)のようにSOC(t)が最大充電電力量Smaxを超過する場合、すなわち図5(b)のように例えば需要電力の予測値が前回の予測値よりも減少し太陽光発電の出力が過剰になり時間区間TbでSOCが最大充電電力量Smaxを超過する場合には、同図の点線のように太陽光発電装置2の出力Ppvを抑制して蓄電装置3の充電量を制限することにより、充電状態SOC(t)が超過することを防止する。そのため、S463において太陽光発電装置2の出力抑制量ΔPpv(t)*を数式(16)により計算し、設定する。 When SOC (t) exceeds the maximum charge power amount Smax as shown in Equation (14), that is, as shown in FIG. 5B, for example, the predicted value of demand power decreases from the previous predicted value, and the photovoltaic power generation When the output becomes excessive and the SOC exceeds the maximum charge power amount Smax in the time interval Tb, the output Ppv of the solar power generation device 2 is suppressed and the charge amount of the power storage device 3 is limited as shown by the dotted line in FIG. This prevents the state of charge SOC (t) from exceeding. Therefore, in S463, the output suppression amount ΔPpv (t) * of the solar power generation device 2 is calculated and set by Expression (16).
  ΔPpv(t)*=((Smax-SOC(Tmax))/100
          ×Ph_rated)/ΔT          (16)
 ここで、TmaxはSOC(t)が最大となる時間区間でありΔTは太陽光発電装置2の出力を抑制する時間区間幅(=Te-Ts)である。数式(16)による補正を開始する時間区間Tsは、現在の時間区間からSOC(t)がSmaxを超過し始める時間区間Tbまでの間とする。
ΔPpv (t) * = ((Smax−SOC (Tmax)) / 100
× Ph_rated) / ΔT (16)
Here, Tmax is a time interval in which SOC (t) is maximum, and ΔT is a time interval width (= Te−Ts) for suppressing the output of the photovoltaic power generator 2. The time interval Ts for starting the correction according to Equation (16) is from the current time interval to the time interval Tb at which SOC (t) starts to exceed Smax.
 数式(15)のようにSOC(t)が最小充電電力量Sminを下回る場合、すなわち図5(c)のように例えば太陽光発電出力の予測値が時間区間Tcで前回の予測値よりも減少し発電量が不足する場合には、同図の点線のように負荷装置4の需要電力Pdを制限して蓄電装置3の充電量を増加することにより、充電状態SOC(t)が不足することを防止する。そのため、S464において負荷装置4の調整量ΔPd(t)*を数式(17)により計算し設定する。 When SOC (t) falls below the minimum charge power amount Smin as shown in Equation (15), that is, as shown in FIG. 5C, for example, the predicted value of the photovoltaic power generation output decreases from the previous predicted value in the time interval Tc. However, when the power generation amount is insufficient, the state of charge SOC (t) is insufficient by limiting the demand power Pd of the load device 4 and increasing the charge amount of the power storage device 3 as indicated by the dotted line in FIG. To prevent. Therefore, in S464, the adjustment amount ΔPd (t) * of the load device 4 is calculated and set by Expression (17).
  ΔPd(t)*=((Smin-SOC(Tmin))/100
        ×Ph_rated)/ΔT′           (17)
 ここで、TminはSOC(t)が最小となる時間区間でありΔT′は負荷装置4の需要電力を制限する時間区間幅(=Te-Ts)である。数式(17)による補正を開始する時間区間Tsは、現在の時間区間からSOC(t)がSminを超過し始める時間区間Tcまでの間とする。
ΔPd (t) * = ((Smin−SOC (Tmin)) / 100
× Ph_rated) / ΔT '(17)
Here, Tmin is a time interval in which SOC (t) is minimum, and ΔT ′ is a time interval width (= Te−Ts) for limiting the power demand of the load device 4. The time interval Ts for starting the correction according to Expression (17) is from the current time interval to the time interval Tc at which SOC (t) starts to exceed Smin.
 S465では、S452~454で求めた出力抑制補正量ΔPpv*、負荷調整補正量ΔPd*を用いて、455で求めた出力シフト運転パターンPpv(t)*、Pd(t)*、PBATT(t)*を補正する。 In S465, using the output suppression correction amount ΔPpv * and load adjustment correction amount ΔPd * obtained in S452 to 454, output shift operation patterns Ppv (t) * , Pd (t) * , P BATT (t ) Correct * .
  Ppv(t)**=Ppv(t)*+ΔPpv(t)*         (18)
  Pd(t)**=Pd(t)*+ΔPd(t)*            (19)
  PBATT(t)**=PBATT(t)*-ΔPpv(t)*+ΔPd(t)*     (20)
 S47では、数式(18)~(20)で求めた運転パターンから制御指令を生成し、太陽光発電装置2、蓄電装置3、負荷装置4へ指令する。
Ppv (t) ** = Ppv (t) * + ΔPpv (t) * (18)
Pd (t) ** = Pd (t) * + ΔPd (t) * (19)
P BATT (t) ** = P BATT (t) * − ΔPpv (t) * + ΔPd (t) * (20)
In S47, a control command is generated from the operation pattern obtained by the formulas (18) to (20), and commanded to the solar power generation device 2, the power storage device 3, and the load device 4.
 本実施例における独立型電力供給システムによれば、前記需要予測データ及び前記発電出力予測データにより、蓄電池31A、31Bの最大充電電力を超えて蓄電池31A、31Bに充電されることが予測される場合には太陽光発電装置2からの発電出力を抑制し、需要予測データ及び発電出力データにより、蓄電池31A、31Bの最大放電電力を超えて蓄電池31A、31Bから放電されることが予測される場合には調整用負荷41の消費電力を抑制する様にしたので、蓄電池31A、31Bの最大充電及び放電電力を超えない様に制御でき、故に別途ディーゼルエンジン等の調整用電源を設ける必要も、蓄電装置の容量を大きくする必要もいずれもないので、導入時のコストとなる設置費用を少なくすることができる。 According to the independent power supply system in the present embodiment, when the demand prediction data and the power generation output prediction data are predicted to charge the storage batteries 31A and 31B exceeding the maximum charging power of the storage batteries 31A and 31B. In the case where the power generation output from the solar power generation device 2 is suppressed and the demand prediction data and the power generation output data predict that discharge from the storage batteries 31A and 31B exceeds the maximum discharge power of the storage batteries 31A and 31B. Since the power consumption of the adjustment load 41 is suppressed, it can be controlled so as not to exceed the maximum charge and discharge power of the storage batteries 31A and 31B. Therefore, it is necessary to separately provide an adjustment power source such as a diesel engine. Since there is no need to increase the capacity of the installation, the installation cost, which is the cost at the time of introduction, can be reduced.
 更に、将来の所定期間における蓄電池の充放電状態を予測的に計算し、該将来の所定期間における充放電状態が蓄電池の最大充電電力量を超えることが予測される場合には太陽光発電装置2からの発電出力を抑制し、該将来の所定期間における充放電状態が蓄電池31A、31Bの最小充電電力量を下回ることが予測される場合には調整用負荷41の消費電力を抑制する様にしたので、上記効果に加えて、更に精度良く蓄電池31A、31Bの最大充電及び放電電力を超えない様に制御できるようになり、一層蓄電装置の容量を大きくせずとも良くなる。 Furthermore, when the charge / discharge state of the storage battery in a predetermined future period is calculated in a predictive manner and the charge / discharge state in the future predetermined period is predicted to exceed the maximum charge power amount of the storage battery, the photovoltaic power generator 2 The power generation output from the control load 41 is suppressed, and the power consumption of the adjustment load 41 is suppressed when the charge / discharge state in the future predetermined period is predicted to be lower than the minimum charge power amount of the storage batteries 31A and 31B. Therefore, in addition to the above effects, the maximum charge and discharge power of the storage batteries 31A and 31B can be controlled with higher accuracy, and the capacity of the power storage device does not need to be further increased.
 また本実施例によれば、ディーゼル発電機等の化石燃料を用いた調整用電源を必要としないため、CO2を排出せずに電力を供給することができ、燃料供給に関する費用を削減することができる。 In addition, according to the present embodiment, since a power source for adjustment using fossil fuel such as a diesel generator is not required, it is possible to supply power without discharging CO 2, and to reduce costs related to fuel supply. Can do.
 次に、本発明の他の実施形態である自律制御を適用した独立型電力供給システムについて図6ないし図13を用いて説明する。実施例1では集中制御を適用した場合について説明したが、本実施例では自律制御を適用した場合について説明する。 Next, an independent power supply system to which autonomous control according to another embodiment of the present invention is applied will be described with reference to FIGS. In the first embodiment, the case where the centralized control is applied has been described. In this embodiment, the case where the autonomous control is applied will be described.
 図6は、自律制御を適用した独立型電力供給システムの概略の構成例である。図1との大きな相違点としては、独立型電力供給システム110の全系を制御する制御装置がない点、及び、太陽光発電装置102や蓄電装置103にそれぞれ両者の合成出力を計測する手段を設けた点である。 FIG. 6 is a schematic configuration example of an independent power supply system to which autonomous control is applied. The major difference from FIG. 1 is that there is no control device for controlling the entire system of the independent power supply system 110, and means for measuring the combined output of the solar power generation device 102 and the power storage device 103, respectively. It is a point provided.
 日射条件に応じて発電出力が変動する太陽光発電装置102と、鉛蓄電池やリチウムイオン電池等の二次電池からなる蓄電装置103と、負荷装置104がそれぞれ連系用受電装置25、35、45を介して電力線1に接続されることで概略構成されており、太陽光発電装置102、蓄電装置103、負荷装置104は、それぞれ制御装置105からの制御指令に基づき運転される。制御装置105は、公衆回線6を介して伝送される気象予測情報や、太陽光発電装置102、蓄電装置103、負荷装置104から伝送される電力、電圧、力率等の電気量や充電状態(SOC: State of Charge)等の運転状態信号に基づき、各装置に発電出力の抑制量、充放電電力、負荷調整量等の制御指令を伝送する機能を有するものである。そして、本実施例に係る独立型電力供給システム110は、ディーゼル発電機等の慣性を有する回転機系の出力調整用の発電装置を備えていない。そこで、蓄電装置103が独立型電力供給システム110の基準電源として電圧、周波数を維持するための運転を担うこととなり、そのために蓄電装置103では自動電圧調整運転(AVR)を行う。一方、太陽光発電装置102や負荷装置104では、蓄電装置103の自動電圧調整運転を補助するために一時的な発電出力の抑制や負荷調整などを行うこととしている。そして、本実施形態では太陽光発電装置102、蓄電装置103、負荷装置104は、それぞれ自身が内部に有する制御装置によって自律的に運転される。 The photovoltaic power generation device 102 whose power generation output varies according to the solar radiation conditions, the power storage device 103 composed of a secondary battery such as a lead storage battery or a lithium ion battery, and the load device 104 are connected to the power receiving devices 25, 35, 45 for interconnection. Are connected to the power line 1 via the power line 1. The solar power generation device 102, the power storage device 103, and the load device 104 are each operated based on a control command from the control device 105. The control device 105 transmits the weather forecast information transmitted through the public line 6, the amount of electricity such as power, voltage, and power factor transmitted from the solar power generation device 102, the power storage device 103, and the load device 104, and the charging state ( Based on an operation state signal such as SOC (State of Charge), etc., each device has a function of transmitting control commands such as a power generation output suppression amount, charge / discharge power, and load adjustment amount. In addition, the independent power supply system 110 according to the present embodiment does not include a power generator for adjusting the output of a rotating machine system having inertia such as a diesel generator. Therefore, the power storage device 103 is responsible for the operation for maintaining the voltage and frequency as a reference power source for the independent power supply system 110. For this purpose, the power storage device 103 performs an automatic voltage adjustment operation (AVR). On the other hand, in the solar power generation device 102 and the load device 104, in order to assist the automatic voltage adjustment operation of the power storage device 103, temporary power generation output suppression or load adjustment is performed. In the present embodiment, the solar power generation device 102, the power storage device 103, and the load device 104 are each autonomously operated by a control device that is included therein.
 太陽光発電装置102は、太陽光発電パネル21と、太陽光発電パネル21で発電された直流電力を交流電力に変換しその出力を制御するとともに電力線1に接続するための連系保護機能を備えた連系用電力変換器122と、変圧器や開閉器等からなる連系用受電装置25と、連系用電力変換器122で行う制御・保護に用いる自端の電圧・電流検出装置(図示せず)と、で構成される。また、図示していないが、連系用電力変換器122には外部との通信機能を備えた制御装置320が組み込まれている。この連系用電力変換器122の制御装置320には太陽光発電装置102および蓄電装置103の合成出力の計測値が伝送されており、自端の電圧情報に基づき発電出力抑制を行う。 The photovoltaic power generation apparatus 102 includes a photovoltaic power generation panel 21 and an interconnection protection function for converting DC power generated by the photovoltaic power generation panel 21 into AC power, controlling the output, and connecting to the power line 1. The interconnection power converter 122, the interconnection power receiving device 25 including a transformer, a switch, and the like, and the self-end voltage / current detection device used for control and protection performed by the interconnection power converter 122 (see FIG. Not shown). Although not shown, the interconnection power converter 122 incorporates a control device 320 having a communication function with the outside. The measurement value of the combined output of the solar power generation device 102 and the power storage device 103 is transmitted to the control device 320 of the interconnection power converter 122, and the power generation output is suppressed based on the voltage information at its own end.
 蓄電装置103は、充放電により独立型電力供給システム110の電力の需給バランスを調整する装置で、蓄電池31A、31Bと、蓄電池31A、31Bにより発生した直流電力を交流電力に変換しこの出力を制御するとともに、電力線1に接続するための保護機能を備えた連系用電力変換器32A、32Bと、連系用電力変換器32A、32Bで行う制御・保護に用いる自端の電圧・電流検出装置(図示せず)と、蓄電池を制御する連系用電力変換器に伝送するための充放電電力や運転/停止情報などの制御指令を決定する制御装置105と、蓄電池31A、31Bの補機34とで構成される。連系用電力変換器32A、32Bは、それぞれ制御装置105からの制御指令と自端の電圧・電流情報に基づいて周波数及び電圧を適正範囲に維持するために有効・無効電力を制御する機能を有する。制御装置105には、太陽光発電装置102及び蓄電装置103の合成出力の計測値が伝送されているほか、公衆回線6を介して気象予測情報も伝送される。蓄電池31A、31Bとしては、鉛蓄電池、リチウムイオン電池、ナトリウム・硫黄電池、レドックスフロー電池などの二次電池を適用することができる。また、これらの電池は定期的にリフレッシュ充電を行う必要があることから、その間にも電力供給システムが安定に電力を供給できるようにするために、少なくとも2組で独立運用が可能な構成とする必要がある。そして、変圧器や開閉器等からなる連系用受電装置35を介して電力線1に接続される。 The power storage device 103 is a device that adjusts the supply and demand balance of the power of the independent power supply system 110 by charging and discharging. In addition, the interconnection power converters 32A and 32B having a protection function for connection to the power line 1, and the self-end voltage / current detection device used for control and protection performed by the interconnection power converters 32A and 32B (Not shown), a control device 105 for determining a control command such as charge / discharge power and operation / stop information for transmission to a grid-connected power converter that controls the storage battery, and an auxiliary machine 34 for the storage batteries 31A and 31B It consists of. Each of the interconnection power converters 32A and 32B has a function of controlling the active / reactive power in order to maintain the frequency and voltage within an appropriate range based on the control command from the control device 105 and the voltage / current information at its own end. Have. In addition to the measurement value of the combined output of the solar power generation device 102 and the power storage device 103, weather control information is also transmitted to the control device 105 via the public line 6. As the storage batteries 31A and 31B, secondary batteries such as lead storage batteries, lithium ion batteries, sodium / sulfur batteries, and redox flow batteries can be applied. In addition, since these batteries need to be refreshed regularly, in order to allow the power supply system to stably supply power during that period, at least two sets can be independently operated. There is a need. And it connects to the power line 1 through the power receiving apparatus 35 for interconnections, such as a transformer or a switch.
 負荷装置104は消費電力を調整可能な調整用負荷41と、その他一般の特殊な機能を持たない負荷42と、自端の電圧情報から負荷調整量を算出する機能を有する制御装置143とで構成される。図示していないが、自端の電圧・電流検出装置も設置されている。 The load device 104 includes an adjustment load 41 that can adjust power consumption, a load 42 that does not have any other special functions, and a control device 143 that has a function of calculating a load adjustment amount from voltage information at its own end. Is done. Although not shown, a self-end voltage / current detection device is also installed.
 図7ないし図9は、自律制御を適用した独立型電力供給システムを構成する蓄電装置103、太陽光発電装置102、負荷装置104の各制御装置の機能構成を表した図である。図7は蓄電装置103の制御装置105、図8は太陽光発電装置2の制御装置320、図9は負荷装置104の制御装置143にそれぞれ対応する。 7 to 9 are diagrams showing functional configurations of the control devices of the power storage device 103, the solar power generation device 102, and the load device 104 that constitute an independent power supply system to which autonomous control is applied. 7 corresponds to the control device 105 of the power storage device 103, FIG. 8 corresponds to the control device 320 of the solar power generation device 2, and FIG. 9 corresponds to the control device 143 of the load device 104.
 図7において制御装置105は蓄電装置103の連系用電力変換器32A、32Bに伝送する充放電電力指令および独立型電力供給システム110内の電圧目標指令を演算する制御演算装置51と、日射量や気温等の気象予測データを保存する気象データ格納装置52と、自端の電気量および太陽光発電装置102と蓄電装置103の合成出力等の計測データを格納する計測データ格納装置53と、連系用電力変換器32A、32Bに伝送する制御指令や前記計測情報の送受信を制御するための信号入出力インタフェース装置54と、オペレータが制御指令を修正したりメンテナンスのための操作指令を入力したりするための入力装置55と、オペレータが運転状況等を確認するための表示装置56とで構成される。 In FIG. 7, the control device 105 includes a control arithmetic device 51 that calculates a charge / discharge power command transmitted to the interconnection power converters 32 </ b> A and 32 </ b> B of the power storage device 103 and a voltage target command in the independent power supply system 110, and an amount of solar radiation. A meteorological data storage device 52 that stores weather forecast data such as temperature and temperature, a measurement data storage device 53 that stores measurement data such as the amount of electricity at its own end and the combined output of the solar power generation device 102 and the power storage device 103, The control command transmitted to the system power converters 32A and 32B and the signal input / output interface device 54 for controlling transmission / reception of the measurement information, and the operator corrects the control command or inputs an operation command for maintenance. Input device 55 and a display device 56 for the operator to check the operation status and the like.
 制御演算装置51は、予測演算機能511と、出力シフト運転パターン生成機能512と、出力シフト運転パターン補正機能513とで構成されている。 The control calculation device 51 includes a prediction calculation function 511, an output shift operation pattern generation function 512, and an output shift operation pattern correction function 513.
 予測演算機能511は、予め気象データ格納装置52に保存されている天候、日射量、気温等の気象予測データを用いて、太陽光発電装置102の発電出力を予測するための太陽光発電出力予測演算部5111、並びに負荷装置104の需要電力を予測するための需要電力予測演算部5112を有する。 The prediction calculation function 511 is a solar power generation output prediction for predicting the power generation output of the solar power generation device 102 using weather prediction data such as weather, solar radiation amount, and temperature stored in the weather data storage device 52 in advance. A calculation unit 5111 and a demand power prediction calculation unit 5112 for predicting the demand power of the load device 104 are included.
 出力シフト運転パターン生成機能512は、前記の太陽光発電出力および需要電力の予測結果を用いて蓄電装置103の充放電パターンの初期設定値を算出するための蓄電池充放電パターン演算部5121と、前記の充放電パターンの初期設定について、充電および放電のレベルがそれぞれ適正な範囲にあるか否かの判定を行う充放電レベル判定部5122と、その判定結果に基づいて太陽光発電装置102の発電出力の抑制量、あるいは負荷装置104の調整量を算出する太陽光発電出力抑制量・負荷調整量演算部5123と、充放電パターンの初期設定値と太陽光発電出力の抑制量および負荷の調整量に基づき、太陽光発電装置102、蓄電装置103、負荷装置104の出力シフト運転パターンを生成する出力シフト運転パターン生成部5124とで構成される。さらに、出力シフト運転パターン補正機能513は、蓄電装置103の充放電状態(SOC)の時間推移を計算するSOC評価演算部5131と、前記SOCのレベルが適正な範囲にあるか否かの判定を行うSOCレベル判定部5132と、その判定結果に基づいて太陽光発電装置2の出力抑制量と負荷調整量の補正量を推定するとともに、独立系統内の電圧目標値を設定する目標電圧設定部5133と、前記の太陽光発電出力の抑制量および負荷の調整量の補正演算結果に基づき、蓄電装置103の充放電パターン、目標電圧の補正を行う出力シフト運転パターン補正部5134とで構成される。 The output shift operation pattern generation function 512 includes a storage battery charge / discharge pattern calculation unit 5121 for calculating an initial set value of the charge / discharge pattern of the power storage device 103 using the prediction result of the photovoltaic power generation output and the demand power. The charge / discharge level determination unit 5122 for determining whether or not the charge and discharge levels are in appropriate ranges with respect to the initial setting of the charge / discharge pattern, and the power generation output of the photovoltaic power generation apparatus 102 based on the determination result Of the solar power generation output suppression amount / load adjustment amount calculation unit 5123 for calculating the amount of suppression of the load or the load device 104, the initial setting value of the charge / discharge pattern, the amount of solar power generation output suppression, and the load adjustment amount. Based on the output shift operation pattern generation for generating the output shift operation patterns of the solar power generation device 102, the power storage device 103, and the load device 104 based on Composed of the part 5124. Furthermore, the output shift operation pattern correction function 513 determines the SOC evaluation calculation unit 5131 for calculating the time transition of the charge / discharge state (SOC) of the power storage device 103 and whether the SOC level is within an appropriate range. An SOC level determination unit 5132 to be performed, and a target voltage setting unit 5133 that estimates a correction amount of the output suppression amount and the load adjustment amount of the photovoltaic power generation apparatus 2 based on the determination result and sets a voltage target value in the independent system. And an output shift operation pattern correction unit 5134 that corrects the charge / discharge pattern of the power storage device 103 and the target voltage based on the correction calculation result of the suppression amount of the photovoltaic power generation output and the adjustment amount of the load.
 図8において、太陽光発電装置102の連系用電力変換器122の制御装置320は、出力抑制量演算機能321、電力制御機能322とで構成されている。出力抑制量演算機能321は、自端電圧の計測値を読込んでそのレベル判定を行う自端電圧判定部3211と、自端の発電出力および合成電力の計測値を用いて蓄電池の充放電電力を計算する蓄電池充放電電力演算部3212と、前記の蓄電池の充放電電力から充放電状態を判定する充放電状態判定部3213と、自端電圧の判定結果および蓄電池の充放電状態判定結果を用いて発電出力の抑制量を計算する太陽光発電出力抑制制御演算部3214と、所定時間だけ出力抑制指令を保持するための遅延タイマ3215とを有する。電力制御機能322では、自端の電圧、電流の計測値を用いて連系用電力変換器122の出力電力を制御するゲートパルス信号を生成、伝送する。 In FIG. 8, the control device 320 of the interconnection power converter 122 of the solar power generation device 102 includes an output suppression amount calculation function 321 and a power control function 322. The output suppression amount calculation function 321 reads the measured value of the self-end voltage and determines the level of the self-end voltage determination unit 3211 and the charge / discharge power of the storage battery using the self-generated power output and the measured value of the combined power. Using the storage battery charge / discharge power calculation unit 3212 to calculate, the charge / discharge state determination unit 3213 for determining the charge / discharge state from the charge / discharge power of the storage battery, the determination result of the self-end voltage and the charge / discharge state determination result of the storage battery It has a photovoltaic power generation output suppression control calculation unit 3214 that calculates a power generation output suppression amount, and a delay timer 3215 that holds an output suppression command for a predetermined time. The power control function 322 generates and transmits a gate pulse signal that controls the output power of the interconnection power converter 122 using measured values of the voltage and current at its own end.
 図9において、負荷装置104の制御装置143は、自端電圧の計測値を読込んでそのレベル判定を行う自端電圧判定部431と、自端の電圧判定結果から負荷制限量を演算する負荷制限制御演算部432と、所定時間だけ負荷制限指令を保持するための遅延タイマ433とを有する。 In FIG. 9, the control device 143 of the load device 104 reads the measured value of the self-end voltage and determines its level, and the load limit that calculates the load limit amount from the self-end voltage determination result. A control calculation unit 432 and a delay timer 433 for holding a load limit command for a predetermined time are provided.
 次に、図10を用いて自律制御時の独立型電力供給システムの各装置の制御処理の流れについて説明する。図10は蓄電装置103の制御装置105、図11は太陽光発電装置102の制御装置320、図12は負荷装置104の制御装置143にそれぞれ対応する。以下では図4と同様に、数分~30分の範囲に設定した例について説明する。また、ここでは制御周期を10分とした場合について説明する。 Next, the flow of control processing of each device of the independent power supply system during autonomous control will be described with reference to FIG. 10 corresponds to the control device 105 of the power storage device 103, FIG. 11 corresponds to the control device 320 of the solar power generation device 102, and FIG. 12 corresponds to the control device 143 of the load device 104. In the following, as in FIG. 4, an example in which a range of several minutes to 30 minutes is set will be described. Here, a case where the control cycle is 10 minutes will be described.
 まず、図10において、S81では公衆回線6を介して収集、格納され気象データ格納装置52に保存されている日射量Sr(W/m2)、外気温To(℃)などの気象予測データを読込む。ここでは、例えば30分値で格納されているものとする。S82では、いずれも定期的に計測され10分間の平均値として処理されている太陽光発電装置2と蓄電装置103の合成出力Psum(W)および力率Pf、自端の充放電電力PBATT(W)および充電状態SOC(%)を読込む。実施例1と同様に、ここでも充放電電力PBATTは放電電力を正、充電電力を負として表す。 First, in FIG. 10, in S81, weather forecast data such as solar radiation amount Sr (W / m 2 ) and outside temperature To (° C.) collected and stored via the public line 6 and stored in the weather data storage device 52 are displayed. Read. Here, for example, it is assumed that a 30-minute value is stored. In S82, the combined output Psum (W) and the power factor Pf of the photovoltaic power generation apparatus 2 and the power storage apparatus 103, which are regularly measured and processed as an average value for 10 minutes, the charge / discharge power P BATT ( W) and charge state SOC (%) are read. As in the first embodiment, the charge / discharge power P BATT is represented here as positive discharge power and negative charge power.
 S83、S84、S85では、それぞれ太陽光発電装置102の発電出力の予測値、負荷装置104の需要電力の予測値、出力シフト運転パターンを計算するが、これらは図4で述べた方法と同様であるためここでは説明は省略する。 In S83, S84, and S85, the predicted value of the power generation output of the photovoltaic power generation apparatus 102, the predicted value of the demand power of the load apparatus 104, and the output shift operation pattern are calculated, respectively, which are the same as the method described in FIG. Therefore, the description is omitted here.
 S86は、図7に示した出力シフト運転パターン補正機能513の処理を表している。S861では、数式(11)により計算された蓄電装置103の充放電電力PBATT(t)*を用いて、現在時刻から24時間先(30分値で48点分)の充放電状態SOC(t)を数式(12)により計算する。 S86 represents the process of the output shift operation pattern correction function 513 shown in FIG. In S861, using the charge / discharge power P BATT (t) * of the power storage device 103 calculated by Expression (11), the charge / discharge state SOC (t ) Is calculated by Equation (12).
 次に、S862では、蓄電装置103の充放電状態SOC(t)について、数式(13)~(15)のように充放電状態が適正な範囲にあるか否かの判定を行う。 Next, in S862, with respect to the charge / discharge state SOC (t) of the power storage device 103, it is determined whether or not the charge / discharge state is within an appropriate range as represented by equations (13) to (15).
 数式(13)の場合、図5(a)に示すように充放電状態SOC(t)が適正範囲に収まっているため、S45で求めた出力シフト運転パターンPpv(t)*、Pd(t)*、PBATT(t)*をさらに補正する必要はない。 In the case of Expression (13), as shown in FIG. 5A, the charge / discharge state SOC (t) is within the appropriate range, so that the output shift operation pattern Ppv (t) * , Pd (t) obtained in S45. * , P BATT (t) * need not be further corrected.
 数式(14)のようにSOC(t)が最大充電電力量Smaxを超過する場合、すなわち図5(b)のように例えば需要電力の予測値が時間区間Tbで前回の予測値よりも減少し太陽光発電の出力が過剰になる場合には、同図の点線のように太陽光発電装置102の出力Ppvを抑制して蓄電装置103の充電量を制限することにより、充電状態SOC(t)が超過することを防止する。そのため、処理S863において太陽光発電装置102の出力抑制量ΔPpv(t)*を数式(16)により計算し設定する。ところで、実施例1における集中制御の場合には回線を通じて制御装置105から各装置に対して直接指令を送っていたが、自律制御の場合には蓄電装置103の内部に位置する制御装置105から太陽光発電装置102に対して直接的に出力抑制指令を伝送することはできないため、独立型電力供給システム110の目標電圧Vrefを制御することで間接的に発電出力の抑制動作を行わせるようにした。すなわち、S864により目標電圧Vrefを一時的に定格電圧Voよりも大きな値Vaに設定し、太陽光発電装置102では目標電圧が所定の時間以上、Vaを超過した状態が継続すると発電出力を抑制するように制御するようにした。 When SOC (t) exceeds the maximum charge power amount Smax as shown in Equation (14), that is, for example, as shown in FIG. 5B, the predicted value of demand power decreases from the previous predicted value in the time interval Tb. When the output of solar power generation becomes excessive, the state of charge SOC (t) is controlled by limiting the charge amount of the power storage device 103 by suppressing the output Ppv of the solar power generation device 102 as shown by the dotted line in FIG. To prevent excess. Therefore, in process S863, the output suppression amount ΔPpv (t) * of the photovoltaic power generation apparatus 102 is calculated and set by Expression (16). By the way, in the case of the centralized control in the first embodiment, a command is directly sent from the control device 105 to each device through a line. However, in the case of the autonomous control, the control device 105 located inside the power storage device 103 receives a sun. Since the output suppression command cannot be directly transmitted to the photovoltaic power generation apparatus 102, the operation of suppressing the power generation output is indirectly performed by controlling the target voltage Vref of the independent power supply system 110. . That is, the target voltage Vref is temporarily set to a value Va larger than the rated voltage Vo in S864, and the photovoltaic power generation apparatus 102 suppresses the power generation output when the target voltage exceeds Va for a predetermined time or more. To be controlled.
 また、数式(15)のようにSOC(t)が最小充電電力量Sminを下回る場合、すなわち図5(c)のように例えば太陽光発電出力の予測値が時間区間Tcで前回の予測値よりも減少し発電量が不足する場合には、同図の点線のように負荷装置4の需要電力Pdを制限して蓄電装置103の充電量を増加することにより、充電状態SOC(t)が不足することを防止する。そのため、S866において負荷装置104の調整量ΔPd(t)*を数式(17)により計算し設定する。上記と同様に、自律制御の場合には制御装置105から負荷装置104に対しても直接的に需要電力の調整指令を伝送することはできないため、独立系統内の目標電圧を制御することで間接的に需要電力の調整動作を行わせるようにした。すなわち、S867により目標電圧Vrefを一時的に定格電圧Voよりも小さな値Vbに設定し、負荷装置104では目標電圧が所定の時間以上、Vbを下回った状態が継続すると需要電力を抑制するように制御するようにした。 Further, when SOC (t) is lower than the minimum charge power amount Smin as shown in Equation (15), that is, for example, as shown in FIG. 5C, the predicted value of the photovoltaic power generation output is more than the previous predicted value in the time interval Tc. If the power generation amount is insufficient and the power generation amount is insufficient, the demand state Pd of the load device 4 is limited and the charge amount of the power storage device 103 is increased as shown by the dotted line in FIG. To prevent. Therefore, in S866, the adjustment amount ΔPd (t) * of the load device 104 is calculated and set by Expression (17). Similarly to the above, in the case of autonomous control, since it is not possible to directly transmit a demand power adjustment command from the control device 105 to the load device 104, it is indirectly controlled by controlling the target voltage in the independent system. To adjust the power demand. That is, in S867, the target voltage Vref is temporarily set to a value Vb smaller than the rated voltage Vo, and the load device 104 suppresses the demand power when the target voltage continues below Vb for a predetermined time or more. I tried to control it.
 S868では、S862~S867で求めた充放電パターン出力抑制補正量ΔPpv*、負荷調整補正量ΔPd*を用いて、数式(20)により充放電電力量PBATT(t)*を補正する。また、目標電圧VrefをSOC(t)の状態に応じてVa(>Vo)、あるいはVb(<Vo)に設定する。S47では、制御指令として上記の充放電量、目標電圧Vrefを連系用電力変換器32A、32Bに指令する。 In S868, the charge / discharge power amount P BATT (t) * is corrected by Equation (20) using the charge / discharge pattern output suppression correction amount ΔPpv * and the load adjustment correction amount ΔPd * obtained in S862 to S867. Further, the target voltage Vref is set to Va (> Vo) or Vb (<Vo) according to the state of SOC (t). In S47, the charge / discharge amount and the target voltage Vref are commanded to the interconnection power converters 32A and 32B as control commands.
 次に、図11を用いて、太陽光発電装置2の連系用電力変換器122の制御装置320の処理について説明する。S81bでは自端の電圧・電流、および定期的に計測され10分間の平均値として処理されている太陽光発電装置102と蓄電装置103の合成出力Psum(W)を読込む。S82bでは、合成出力Psumと自端の発電出力Ppvとの差として、蓄電装置103の充放電電力PBATTを計算する。S83bでは自端の電圧Vpvと参照電圧Vaを比較し、VpvがVaよりも小さい状態が継続する場合には出力抑制量ΔPpvを零に設定する。VpvがVaよりも大きい状態が継続する場合には、S84bにおいて蓄電池が充電状態(PBATT<0)の場合には、ΔPpvに所定の値を設定し、蓄電池が放電状態(PBATT≧0)の場合にはΔPpvを零に設定する。所定の時間、この状態を保持したのち出力抑制指令を図8の電力制御機能322で伝送する。 Next, the processing of the control device 320 of the interconnection power converter 122 of the solar power generation device 2 will be described with reference to FIG. In S81b, the self-end voltage / current and the combined output Psum (W) of the photovoltaic power generation apparatus 102 and the power storage apparatus 103 that are periodically measured and processed as an average value for 10 minutes are read. In S82b, the charge / discharge power P BATT of the power storage device 103 is calculated as the difference between the combined output Psum and the self-generated power output Ppv. In S83b, the self-end voltage Vpv is compared with the reference voltage Va, and if the state where Vpv is smaller than Va continues, the output suppression amount ΔPpv is set to zero. When the state where Vpv is larger than Va continues, if the storage battery is in a charged state (P BATT <0) in S84b, a predetermined value is set for ΔPpv, and the storage battery is in a discharged state (P BATT ≧ 0). In this case, ΔPpv is set to zero. After maintaining this state for a predetermined time, an output suppression command is transmitted by the power control function 322 of FIG.
 同様に、図12を用いて、負荷装置4の制御装置43の処理について説明する。S81cでは自端の電圧・電流を読込む。S82cでは自端の電圧Vdと参照電圧Vbを比較し、VdがVbよりも大きい状態が継続する場合には負荷調整量ΔPdを零に設定する。VdがVbよりも小さい状態が継続する場合には、処理S83cにおいてΔPdに所定の値を設定する。所定の時間、この状態を保持したのち出力抑制指令を伝送する。 Similarly, the processing of the control device 43 of the load device 4 will be described with reference to FIG. In S81c, the voltage / current at the terminal is read. In S82c, the self-end voltage Vd is compared with the reference voltage Vb, and when the state where Vd is larger than Vb continues, the load adjustment amount ΔPd is set to zero. When the state where Vd is smaller than Vb continues, a predetermined value is set to ΔPd in step S83c. After maintaining this state for a predetermined time, an output suppression command is transmitted.
 図13は、図7ないし図12で説明した自律制御時において、蓄電装置103の充電状態SOCが最大充電量を超過、あるいは最小充電量を下回る場合の制御動作を説明した図である。 FIG. 13 is a diagram illustrating a control operation when the state of charge SOC of the power storage device 103 exceeds the maximum charge amount or falls below the minimum charge amount during the autonomous control described with reference to FIGS. 7 to 12.
 同図(a)はSOCが最大充電量を超過する場合である。この場合、SOCが最大充電量Smaxを超過する可能性があるため、時刻T1において蓄電装置103の制御装置105では目標電圧Vrefを定格電圧VoからVaに引き上げる。その結果、T1において蓄電装置103の充電電力が減少方向(正の方向)に追従し端子電圧は瞬時にVaになる。その状態で時刻T2まで保持したのち太陽光発電装置102の出力Ppvを所定値ΔPpvだけ抑制する。その結果、蓄電装置103が追従して不足した発電量を補うように放電方向に出力を増加させ、電圧は参照値Vaに維持される。その後、時刻T3において目標電圧をもとのVoに戻す。 (A) in the figure is a case where the SOC exceeds the maximum charge amount. In this case, since the SOC may exceed the maximum charge amount Smax, the control device 105 of the power storage device 103 raises the target voltage Vref from the rated voltage Vo to Va at time T1. As a result, at T1, the charging power of the power storage device 103 follows the decreasing direction (positive direction), and the terminal voltage instantaneously becomes Va. In this state, the output Ppv of the photovoltaic power generation apparatus 102 is suppressed by a predetermined value ΔPpv after being held until time T2. As a result, the output is increased in the discharge direction so that the power storage device 103 follows up and compensates for the insufficient power generation amount, and the voltage is maintained at the reference value Va. Thereafter, the target voltage is returned to the original Vo at time T3.
 一方、同図(b)はSOCが最小充電量を下回る場合である。この場合、SOCが最充電量Sminを下回る可能性があるため、蓄電装置103の制御装置105では目標電圧Vrefを定格電圧VoからVbに引き下げられた。その結果、T5において蓄電装置103の充電電力が増加方向(負の方向)に追従し端子電圧は瞬時にVbになる。その状態で時刻T6まで保持したのち負荷2の需要電力Pdを所定値ΔPdだけ制限する。その結果、蓄電装置103が追従して不足した発電量を補うに放電方向に出力を増加させ、電圧は参照値Vbに維持される。その後、時刻T7において目標電圧をもとのVoに戻す。 On the other hand, FIG. 5B shows a case where the SOC is below the minimum charge amount. In this case, since the SOC may be lower than the maximum charge amount Smin, the control device 105 of the power storage device 103 has lowered the target voltage Vref from the rated voltage Vo to Vb. As a result, at T5, the charging power of power storage device 103 follows the increasing direction (negative direction), and the terminal voltage instantaneously becomes Vb. In this state, after holding until time T6, the demand power Pd of the load 2 is limited by a predetermined value ΔPd. As a result, the output is increased in the discharging direction so that the power storage device 103 follows up and compensates for the insufficient power generation amount, and the voltage is maintained at the reference value Vb. Thereafter, the target voltage is returned to the original Vo at time T7.
 本実施例で説明した様に、実施例1に示した集中制御に限らず、自律制御とすることも可能である。本実施例では自律制御を用いた場合について、実施例1で説明した様な制御の役割を有する制御装置105を蓄電装置103の内部に配置した場合について説明している。(蓄電装置103の内部であるかによらず、他の装置も含めて)制御装置が一つの装置内部に配置されているため、直接的に他の装置(の制御装置)に対して出力抑制・消費電力抑制等の指令を伝送することができず、独立型電力供給システム110における目標電圧の制御を行うことで間接的に制御を行っている。具体的な制御内容は上述した通りである。この様に目標電圧制御を行うことを介して、間接的に一つの装置内部に配置される制御装置により、集中制御と同じ様な制御を行うことを可能としている。 As explained in the present embodiment, not only the central control shown in the first embodiment but also autonomous control is possible. In the present embodiment, the case where the control device 105 having the control role as described in the first embodiment is arranged inside the power storage device 103 is described in the case where the autonomous control is used. Since the control device is arranged inside one device (regardless of whether it is inside the power storage device 103 or not), the output is directly suppressed with respect to the other device (the control device). -Commands such as power consumption suppression cannot be transmitted, and control is performed indirectly by controlling the target voltage in the independent power supply system 110. Specific control contents are as described above. By performing the target voltage control in this way, it is possible to perform the same control as the centralized control by the control device that is indirectly arranged in one device.
 そして、自律制御を用いた場合であっても、直接的か間接的かの相違こそあるものの制御内容は同様にすることができるので、実施例1で述べた各効果も同様に得ることが可能になる。 Even if autonomous control is used, the control contents can be made the same although there is a difference between direct and indirect, so that the effects described in the first embodiment can be obtained in the same way. become.
 次に、実施例3として集中制御により無効電力制御を行う太陽光発電装置を適用した独立型電力供給システムについて図14及び図15を用いて説明する。 Next, an independent power supply system to which a photovoltaic power generation device that performs reactive power control by centralized control is applied as Example 3 will be described with reference to FIGS. 14 and 15.
 図14は、集中制御により運用される独立型電力供給システム10に無効電力制御を行う太陽光発電装置2を適用した場合の制御装置5の処理の流れについて説明した図である。本実施例について実施例1に追加的に行う処理は、実施例1の説明で用いた図3における制御演算装置51で行われる。独立型電力供給システム10の構成、制御装置5の機能構成はそれぞれ図3、図4に記載のものと同様であるため、ここでの詳細説明は省略する。 FIG. 14 is a diagram illustrating a processing flow of the control device 5 when the solar power generation device 2 that performs reactive power control is applied to the independent power supply system 10 operated by centralized control. The processing additionally performed in the first embodiment with respect to the present embodiment is performed by the control arithmetic device 51 in FIG. 3 used in the description of the first embodiment. Since the configuration of the independent power supply system 10 and the functional configuration of the control device 5 are the same as those described in FIGS. 3 and 4, detailed description thereof is omitted here.
 制御演算装置51の制御周期は出力シフト運転パターンデータの時間分解能との関係からここでは数分~30分の範囲に設定する。例えば、ここでは制御周期を10分として説明する。同図において、S101からS106までの処理は、図4に示したS41からS46までの処理と同様であり、ここでは説明を省略する。S107では太陽光発電装置2の連系用電力変換器22に指令する力率を演算する。まず、S1071で蓄電池の充放電電力の計測値を移動平均等により平均化し、蓄電装置3の充放電レベルPBATT_aveを計算する。次に、S1072にて充放電レベルPBATT_aveを閾値と比較し、所定の範囲、例えば、定格出力の50%以内にある場合には力率の指令値を1に設定し(S1073)、所定の範囲を逸脱した場合には力率Pfの指令値を構内系統のインピーダンスから定まる最適な力率PfOPTに設定する(S1074)。ここで、最適な力率PfOPTは太陽光発電装置2の出力端から負荷装置4の接続点までの系統インピーダンスの抵抗分R、リアクタンス分Xの比として予め数式(21)により近似的に計算することが可能である。 The control cycle of the control arithmetic unit 51 is set in the range of several minutes to 30 minutes here because of the relationship with the time resolution of the output shift operation pattern data. For example, here, the control cycle is assumed to be 10 minutes. In the figure, the processing from S101 to S106 is the same as the processing from S41 to S46 shown in FIG. 4, and the description is omitted here. In S107, the power factor commanded to the interconnection power converter 22 of the photovoltaic power generator 2 is calculated. First, the measured value of the charge and discharge power of the storage battery is averaged by the moving average or the like in S1071, calculates the charge and discharge levels P BATT _ave power storage device 3. Then compared with a threshold charge and discharge levels P BATT _ave at S1072, a predetermined range, for example, when there within 50% of the rated output sets the command value of the power factor 1 (S1073), a predetermined When deviating from the range, the command value of the power factor Pf is set to the optimum power factor Pf OPT determined from the impedance of the local system (S1074). Here, the optimum power factor Pf OPT is approximately calculated in advance by Equation (21) as the ratio of the resistance R of the system impedance from the output end of the photovoltaic power generation device 2 to the connection point of the load device 4 and the reactance X. Is possible.
  PfOPT≒R/X                     (21)
 次に、図15を用いて集中制御を適用した独立型電力供給システムの太陽光発電装置で力率調整運転を行う場合の制御内容について説明する。同図(a)は太陽光発電装置2で無効電力制御を行わず常に力率1で運転する場合、同図(b)は出力補償可能量が適正範囲よりも低下し太陽光発電装置2で最適力率運転を行う場合の運転結果の例である。独立型電力供給システム10では、上記各実施例で説明した需給アンバランスにより発生する電圧変動に加えて、同図(a)に示すように負荷装置4の消費電力の変動や太陽光発電装置2の出力変動がインピーダンスに作用して発生する電圧変動が重畳した合成の電圧変動も発生する。上記各実施例で説明した内容でも、この電圧変動も含めて目標電圧に制御する様、蓄電装置3の自動電圧制御により充放電電力が調整されるが、負荷装置4や太陽光発電装置2の電力変動が大きい場合になると蓄電装置3の補償量が大きくなってしまう。これに対して同図(b)の様に、太陽光発電装置2を数式(21)で定まる最適な力率で運転することにより太陽光発電装置2の出力変動で生じる電圧変動は抑制されるため、蓄電装置3が補償する合成の電圧変動は負荷装置4による電圧変動分だけとなり補償量は小さくすることが可能となる。力率計算方法としては勿論、他の方法を用いることも考えられる。
Pf OPT ≒ R / X (21)
Next, the contents of control when performing power factor adjustment operation with a solar power generation device of an independent power supply system to which centralized control is applied will be described using FIG. FIG. 6A shows a case where the photovoltaic power generation apparatus 2 does not perform reactive power control and always operates with a power factor of 1. FIG. It is an example of the driving | running result in performing an optimal power factor driving | operation. In the independent power supply system 10, in addition to the voltage fluctuation caused by the supply / demand imbalance described in each of the above embodiments, as shown in FIG. As a result, a combined voltage fluctuation is generated in which the voltage fluctuation generated by the output fluctuation on the impedance is superimposed. Even in the contents described in the above embodiments, the charge / discharge power is adjusted by the automatic voltage control of the power storage device 3 so as to control the target voltage including the voltage fluctuation. However, the load device 4 and the solar power generation device 2 When the power fluctuation is large, the compensation amount of the power storage device 3 is increased. On the other hand, as shown in FIG. 5B, by operating the solar power generation device 2 at the optimum power factor determined by the formula (21), voltage fluctuation caused by output fluctuation of the solar power generation device 2 is suppressed. Therefore, the combined voltage fluctuation compensated by the power storage device 3 is only the voltage fluctuation due to the load device 4, and the compensation amount can be reduced. Of course, other methods may be used as the power factor calculation method.
 本実施例では、蓄電池の充放電電力の計測値の平均値が所定の範囲内であるか否かを比較し、閾値を超過して所定の範囲外になれば、太陽光発電装置2の力率の指令値を独立型電力供給システム内の電力系統のインピーダンスを用いて定める値に設定して運転している。これにより、負荷装置4の消費電力の変動や太陽光発電装置2の出力変動がインピーダンスに作用して発生する電圧変動が重畳した合成の電圧変動を抑制し、蓄電装置の自動電圧制御(AVR)の負担を軽減することが可能となる。更に、所定の範囲内であれば、太陽光発電装置2の力率の指令値を1に設定することで、発電可能な出力を無駄にせずに発電運転を行うことができる。 In the present embodiment, whether or not the average value of the measured values of the charge / discharge power of the storage battery is within a predetermined range is compared, and if the threshold value is exceeded and falls outside the predetermined range, the power of the photovoltaic power generation device 2 The rate command value is set to a value determined using the impedance of the power system in the stand-alone power supply system. This suppresses combined voltage fluctuations in which fluctuations in power consumption of the load device 4 and output fluctuations of the photovoltaic power generation device 2 act on the impedance are superimposed, thereby suppressing automatic voltage control (AVR) of the power storage device. It becomes possible to reduce the burden. Furthermore, if it is within the predetermined range, by setting the command value of the power factor of the solar power generation device 2 to 1, it is possible to perform the power generation operation without wasting power that can be generated.
 尚、本実施例では実施例1と併せて適用する場合について説明しており、併せて適用した場合には実施例1で実現できる補償分を補完的に補償することになるので、(相性が良く、)より効果的な組合せとなる。しかしながら、実施例1と併せて用いることなく本実施例で記載した様に制御することも勿論可能であり、その場合にも電圧変動を抑制することができるので、蓄電装置の小容量化には寄与する。 In the present embodiment, the case where the first embodiment is applied together with the first embodiment is described. When the second embodiment is applied together, the compensation which can be realized in the first embodiment is complementarily compensated. Better) and a more effective combination. However, it is of course possible to perform the control as described in the present embodiment without using it in combination with the first embodiment, and in this case, voltage fluctuation can be suppressed, so that the capacity of the power storage device can be reduced. Contribute.
 また本実施例では蓄電池の充放電電力の計測値の平均値に着目し、この平均値が所定の範囲内であるか否か比較することで制御内容を変化させていたが、計測値の平均値でなくても良く、計測値自身を含め計測値と相関的に変動する値であれば、所定値も併せて定める様にすることで、同様の制御が可能である。計測値の平均値を用いた場合には、瞬間的な変動に左右されることなく精度良く比較を行うことができるので、信頼性が高くなり有益である。この点については下記実施例4でも同様である。 Further, in this embodiment, attention is paid to the average value of the measured value of the charge / discharge power of the storage battery, and the control content is changed by comparing whether or not this average value is within a predetermined range. If the value does not have to be a value and varies in a correlated manner with the measurement value including the measurement value itself, the same control can be performed by determining the predetermined value together. When the average value of the measurement values is used, the comparison can be performed with high accuracy without being influenced by instantaneous fluctuations, which is beneficial because it increases reliability. This also applies to Example 4 below.
 実施例3では、集中制御により無効電力制御を行う太陽光発電装置を適用した独立型電力供給システムについて説明したが、本実施例では自律制御により運用される独立型電力供給システムに無効電力制御を行う太陽光発電装置を適用した場合について図16を用いて説明する。本実施例における独立型電力供給システム110全体の構成は図6に記載のものと同様であるため、ここでの詳細説明は省略する。 In the third embodiment, the independent power supply system to which the photovoltaic power generation apparatus that performs reactive power control by centralized control is described. However, in this embodiment, reactive power control is performed on the independent power supply system operated by autonomous control. The case where the photovoltaic power generation apparatus to perform is applied is demonstrated using FIG. The overall configuration of the stand-alone power supply system 110 in this embodiment is the same as that shown in FIG. 6, and thus detailed description thereof is omitted here.
 図16は本実施例における太陽光発電装置102の制御装置の処理の流れを表したものである。尚、蓄電装置103、負荷装置104の制御フローについてはそれぞれ図10、図12で説明した内容と同様である。また、図12において、S121からS127の処理は図11に示したS81bからS87bの処理と同様である。よって、これらの処理については本実施例内での説明を省略する。 FIG. 16 shows a flow of processing of the control device of the solar power generation apparatus 102 in the present embodiment. Note that the control flows of the power storage device 103 and the load device 104 are the same as those described in FIGS. 10 and 12, respectively. In FIG. 12, the processing from S121 to S127 is the same as the processing from S81b to S87b shown in FIG. Therefore, description of these processes is omitted in this embodiment.
 S128では図14のS107で説明した処理と同様に、太陽光発電装置102の連系用電力変換器122の運転力率を演算する。まず、S1281で蓄電池の充放電電力の計測値を移動平均等により平均化し、蓄電装置103の充放電レベルPBATT_aveを計算する。次に、S1282にて充放電レベルPBATT_aveを閾値と比較し、所定の範囲、例えば、定格出力の50%以内にある場合には力率の指令値を1に設定し(S1283)、所定の範囲を逸脱した場合には力率Pfの指令値を構内系統のインピーダンスから定まる最適な力率PfOPTに設定する(S1284)。ここで、最適な力率PfOPTは太陽光発電装置102の出力端から負荷装置104の接続点までの系統インピーダンスの低抗分R、リアクタンス分Xの比として予め数式(21)により計算することが可能である。 In S128, the driving power factor of the interconnection power converter 122 of the photovoltaic power generation apparatus 102 is calculated in the same manner as the process described in S107 of FIG. First, the measured value of the charge and discharge power of the storage battery is averaged by the moving average or the like in S1281, calculates the charge and discharge levels P BATT _ave of the power storage device 103. Then compared with a threshold charge and discharge levels P BATT _ave at S1282, a predetermined range, for example, when there within 50% of the rated output sets the command value of the power factor 1 (S1283), a predetermined When deviating from the above range, the command value of the power factor Pf is set to the optimum power factor Pf OPT determined from the impedance of the local system (S1284). Here, the optimal power factor Pf OPT is calculated in advance by the formula (21) as a ratio of the low resistance component R and the reactance component X of the system impedance from the output terminal of the photovoltaic power generation device 102 to the connection point of the load device 104. Is possible.
 本実施例では、太陽光発電装置102で蓄電池31A、31Bの充放電電力の計測値の平均値が所定の範囲内であるか否かを比較し、所定の範囲外であれば、太陽光発電装置102の力率の指令値を独立型電力供給システム内の電力系統のインピーダンスを用いて定める値に設定することで、集中制御によらず自律制御を行う場合であっても、独立型電力供給システム全体として実施例3と同様の運転を行うことができ、従って同様の効果を奏することができる。更に、所定の範囲内であれば、太陽光発電装置2の力率の指令値を1に設定することで、発電可能な出力を無駄にせずに発電運転を行うことができる。 In the present embodiment, the photovoltaic power generation apparatus 102 compares whether or not the average value of the measured values of the charge / discharge power of the storage batteries 31A and 31B is within a predetermined range. By setting the command value of the power factor of the device 102 to a value determined using the impedance of the power system in the independent power supply system, independent power supply is possible even when autonomous control is performed regardless of centralized control. The entire system can be operated in the same manner as in the third embodiment, and therefore the same effect can be obtained. Furthermore, if it is within the predetermined range, by setting the command value of the power factor of the solar power generation device 2 to 1, it is possible to perform the power generation operation without wasting power that can be generated.
 尚、本実施例では実施例2と併せて適用する場合について説明しており、併せて適用した場合には実施例2で実現できる補償分を補完的に補償することになるので、(相性が良く、)より効果的な組合せとなる。しかしながら、実施例2とは併せて用いることなく本実施例で記載した様に制御することも勿論可能であり、その場合にも電圧変動を抑制することができるので、蓄電装置の小容量化には寄与する。 In addition, in this embodiment, the case where it is applied in combination with the embodiment 2 is described, and if it is applied together, the compensation that can be realized in the embodiment 2 is complementarily compensated. Better) and a more effective combination. However, it is of course possible to perform the control as described in the present embodiment without using it together with the second embodiment, and in this case as well, voltage fluctuation can be suppressed, so that the capacity of the power storage device can be reduced. Will contribute.
 実施例5として負荷の起動/停止情報を活用した独立型電力供給システムについて図17及び図18を用いて説明する。なお、本実施形態における独立型電力供給システム10の構成、制御装置5の機能構成はそれぞれ図3、図4に記載のものと同様であり、ここでの説明は省略する。 Example 5 A stand-alone power supply system using load start / stop information will be described with reference to FIGS. 17 and 18. Note that the configuration of the stand-alone power supply system 10 and the functional configuration of the control device 5 in this embodiment are the same as those described in FIGS. 3 and 4, and a description thereof is omitted here.
 図17に集中制御により運用される独立型電力供給システムに負荷の起動停止予告情報を活用した場合の制御装置5の処理の流れを示す。以下に説明する処理は図3の制御演算装置51の処理を表しており、その制御周期は出力シフト運転パターンデータの時間分解能との関係からここでは数分~30分の範囲に設定するのが望ましい。例えば、ここでは制御周期を10分として説明する。 FIG. 17 shows a processing flow of the control device 5 when the load start / stop notice information is utilized in an independent power supply system operated by centralized control. The process described below represents the process of the control arithmetic unit 51 of FIG. 3, and the control cycle is set in the range of several minutes to 30 minutes here in relation to the time resolution of the output shift operation pattern data. desirable. For example, here, the control cycle is assumed to be 10 minutes.
 図17において、S131からS136までの処理は、図4に示したS41からS46までの処理と同様であり、ここでは説明を省略する。S137では、負荷の起動停止予告情報に基づく制御指令を演算する部分である。まず、S1371において蓄電装置3から伝送された起動停止予告信号の有無を判定する。負荷の停止予告信号を受信している場合には、S1372において以下に説明する方法で太陽光発電装置2の出力抑制量および蓄電装置3の充放電電力調整量を計算する。 In FIG. 17, the processing from S131 to S136 is the same as the processing from S41 to S46 shown in FIG. In S137, the control command based on the load start / stop notice information is calculated. First, in S 1371, it is determined whether or not there is a start / stop notice signal transmitted from the power storage device 3. When the load stop notice signal is received, the output suppression amount of the solar power generation device 2 and the charge / discharge power adjustment amount of the power storage device 3 are calculated in S1372 by the method described below.
 即ち、図18(a)に示すように、時刻T1で停止予告信号を受信すると、所定時間経過後の時刻T2にて負荷が停止されるため、負荷停止に備えて太陽光発電装置2の出力抑制量を計算し、S138の力率制御演算を経てS139により太陽光発電装置2に出力抑制を指令する。これにより発電量が減少するため、需給アンバランスが生じないように蓄電装置3の充放電電力が放電方向(正の方向)にシフトする。この状態において時刻T2で負荷が停止すると、蓄電装置3は放電方向にシフトして十分な充電方向の補償量を確保しているため、消費電力の急減を充電により吸収することが可能となる。 That is, as shown in FIG. 18 (a), when the stop notice signal is received at time T1, the load is stopped at time T2 after a predetermined time has elapsed. The amount of suppression is calculated, and after the power factor control calculation in S138, the output suppression is instructed to the photovoltaic power generation apparatus 2 in S139. As a result, the amount of power generation is reduced, and the charge / discharge power of the power storage device 3 is shifted in the discharge direction (positive direction) so that supply and demand imbalance does not occur. When the load stops at time T2 in this state, the power storage device 3 shifts in the discharging direction and secures a sufficient compensation amount in the charging direction, so that it is possible to absorb a sudden decrease in power consumption by charging.
 負荷の起動予告信号を受信している場合には、S1373において以下に説明する方法で負荷装置4の調整量および蓄電装置3の充放電電力調整量を計算する。すなわち、図18(b)に示すように、時刻T5で起動予告信号を受信すると所定時間を経て時刻T6にて負荷が起動されるため、これに備えて負荷装置4の調整用負荷41の調整量を計算し、S138の力率制御演算を経てS139により負荷装置4に消費電力の調整量を指令する。これにより消費電力が減少するため、需給アンバランスが生じないように蓄電装置3の充放電電力が充電方向(負の方向)にシフトする。この状態において時刻T2で負荷が起動すると、蓄電装置3は充電方向にシフトして十分な放電方向の補償量を確保しているため、消費電力の急増を放電により吸収することが可能となる。その後、所定の時間を経て時刻T7で負荷装置4の消費電力の調整指令を解除すると、蓄電装置3の充放電電力は需給バランスを維持するように放電方向に移行する。 When the load start warning signal is received, the adjustment amount of the load device 4 and the charge / discharge power adjustment amount of the power storage device 3 are calculated by the method described below in S1373. That is, as shown in FIG. 18B, when the activation notice signal is received at time T5, the load is activated at time T6 after a predetermined time, so that the adjustment load 41 of the load device 4 is adjusted in preparation for this. The amount is calculated, and the power consumption adjustment amount is commanded to the load device 4 in S139 through the power factor control calculation in S138. As a result, the power consumption is reduced, so that the charge / discharge power of the power storage device 3 is shifted in the charging direction (negative direction) so that supply and demand imbalance does not occur. When the load is activated at time T2 in this state, the power storage device 3 shifts in the charging direction and secures a sufficient compensation amount in the discharging direction, so that the rapid increase in power consumption can be absorbed by discharging. Thereafter, when the power consumption adjustment command of the load device 4 is canceled at a time T7 after a predetermined time, the charge / discharge power of the power storage device 3 shifts in the discharge direction so as to maintain the supply-demand balance.
 本実施例では負荷が起動を停止する予告情報である起動停止予告情報が受信された場合、太陽光発電装置2の出力を抑制し、負荷が起動する予告情報である起動予告情報が受信された場合、調整用負荷41の消費電力を抑制することで、負荷の起動、停止時の急峻により生ずる大きな電力変動に対しても、蓄電装置3の容量を増加させることなく独立型電力供給システム10の需給バランスを維持することが可能となる。 In this embodiment, when the start stop notice information that is the notice information that the load stops starting is received, the output of the photovoltaic power generation apparatus 2 is suppressed, and the start notice information that is the notice information that the load starts is received. In this case, by suppressing the power consumption of the adjustment load 41, the independent power supply system 10 can be used without increasing the capacity of the power storage device 3 even for large power fluctuations caused by steep load start and stop. It becomes possible to maintain a balance between supply and demand.
 本実施例では、負荷の起動停止予告情報に基づき、太陽光発電装置2の発電出力の抑制や、負荷装置4の消費電力の調整を行うことにより蓄電装置3の充放電レベルを予め調整し必要な補償量を確保するものである。 In the present embodiment, it is necessary to adjust the charge / discharge level of the power storage device 3 in advance by suppressing the power generation output of the solar power generation device 2 or adjusting the power consumption of the load device 4 based on the load start / stop notification information. Secure compensation amount.
 本実施例では実施例1と併せて適用する場合について説明しており、併せて適用した場合には実施例1で実現できる補償分を補完的に補償することになるので、(相性が良く、)より効果的な組合せとなる。しかしながら、実施例1と併せて用いることなく本実施例で記載した様に制御することも勿論可能であり、その場合にも電圧変動を抑制することができるので、蓄電装置の小容量化には寄与する。加えて、実施例3で説明した内容とも更に併せて適用することも可能である。この場合、蓄電装置の小容量化には最も寄与することになり、導入コストを大きく減らすことが可能になる。 In the present embodiment, the case where it is applied in combination with the first embodiment has been described, and if it is applied together, the compensation that can be realized in the first embodiment is complementarily compensated. ) A more effective combination. However, it is of course possible to perform the control as described in the present embodiment without using it in combination with the first embodiment, and in this case, voltage fluctuation can be suppressed, so that the capacity of the power storage device can be reduced. Contribute. In addition, the contents described in the third embodiment can be applied together. In this case, it contributes most to the reduction in the capacity of the power storage device, and the introduction cost can be greatly reduced.
 上記各実施例で説明した内容については、電力会社の電力系統と連系することなく、複数の太陽光発電装置及び蓄電装置のみにより、夜間も含めて蓄電池の過充電および過放電を防止し、かつ太陽光発電や負荷の急峻な電力変動に対して周波数と電圧を維持しながら安定した電力供給を実現することが可能である。 For the contents described in each of the above embodiments, without being linked to the power system of the power company, only a plurality of photovoltaic power generation devices and power storage devices prevent overcharge and overdischarge of the storage battery, including at night, In addition, stable power supply can be realized while maintaining the frequency and voltage against photovoltaic power generation and steep power fluctuations of the load.
 尚、各実施例で説明した数式・パラメータなどは一例として説明したものであって、無論ここで記載されていない手法を適用することを排除するものでないことは言うまでもない。 It should be noted that the mathematical formulas and parameters described in the embodiments are described as examples, and it goes without saying that it is not excluded to apply methods not described here.
1 電力線
2、102 太陽光発電装置
3、103 蓄電装置
4、104 負荷装置
5、33、43、143、320 制御装置
6 公衆回線
10、110 独立型電力供給システム
21 太陽光発電パネル
22、32A、32B、122 連系用電力変換器
25、35、45 連系用受電装置
31A、31B 蓄電池
34 補機
41 調整用負荷
42 負荷
44 系統連系装置
51 制御演算装置
52 気象データ格納装置
53 計測データ格納装置
54 信号入出力インタフェース装置
55 入力装置
56 表示装置
321 出力抑制量演算機能
322 電力制御機能
431、3211 自端電圧判定部
432 負荷制限制御演算部
433、3215 遅延タイマ
511 予測演算機能
512 出力シフト運転パターン生成機能
513 出力シフト運転パターン補正機能
3212 蓄電池充放電電力演算部
3213 充放電状態判定部
3214 太陽光発電出力抑制制御演算部
5111 太陽光発電出力予測演算部
5112 需要電力予測演算部
5121 蓄電池充放電パターン演算部
5122 充放電レベル判定部
5123 太陽光発電出力抑制量・負荷調整量演算部
5124 出力シフト運転パターン生成部
5131 SOC評価演算部
5132 SOCレベル判定部
5133 太陽光発電出力抑制量・負荷調整量補正演算部
5134 出力シフト運転パターン補正部
DESCRIPTION OF SYMBOLS 1 Power line 2,102 Solar power generation device 3,103 Power storage device 4,104 Load device 5,33,43,143,320 Control device 6 Public line 10,110 Stand-alone power supply system 21 Solar power generation panel 22,32A, 32B, 122 Interconnection power converters 25, 35, 45 Interconnection power receiving devices 31A, 31B Storage battery 34 Auxiliary machine 41 Adjustment load 42 Load 44 System interconnection device 51 Control arithmetic device 52 Weather data storage device 53 Measurement data storage Device 54 Signal input / output interface device 55 Input device 56 Display device 321 Output suppression amount calculation function 322 Power control function 431, 3211 Self-end voltage determination unit 432 Load limit control calculation unit 433, 3215 Delay timer 511 Prediction calculation function 512 Output shift operation Pattern generation function 513 Output shift operation pattern correction function 3212 Battery charge / discharge power calculation unit 3213 Charge / discharge state determination unit 3214 Solar power generation output suppression control calculation unit 5111 Solar power generation output prediction calculation unit 5112 Demand power prediction calculation unit 5121 Storage battery charge / discharge pattern calculation unit 5122 Charge / discharge level determination unit 5123 Sun Photovoltaic output suppression amount / load adjustment amount calculation unit 5124 Output shift operation pattern generation unit 5131 SOC evaluation calculation unit 5132 SOC level determination unit 5133 Solar power generation output suppression amount / load adjustment amount correction calculation unit 5134 Output shift operation pattern correction unit

Claims (10)

  1.  自然エネルギー発電装置と、調整用負荷を有すると共に前記自然エネルギー発電装置からの発電電力により動作する負荷装置と、前記自然エネルギー発電装置及び前記負荷装置に接続されて充放電を行う蓄電池を有する蓄電装置と、を備える独立型電力供給システムであって、
     該独立型電力供給システムは、気象予測データを用いて前記負荷装置の需要予測データ及び前記自然エネルギー発電装置の発電出力予測データを計算し、
     前記需要予測データ及び前記発電出力予測データにより、前記蓄電池の最大充電電力を超えて前記蓄電池に充電されることが予測される場合には前記自然エネルギー発電装置からの発電出力を抑制し、
     前記需要予測データ及び前記発電出力データにより、前記蓄電池の最大放電電力を超えて前記蓄電池から放電されることが予測される場合には前記調整用負荷の消費電力を抑制することを特徴とする独立型電力供給システム。
    An energy storage device having a natural energy power generation device, a load device having an adjustment load and operating with power generated from the natural energy power generation device, and a storage battery connected to the natural energy power generation device and the load device for charging and discharging An independent power supply system comprising:
    The independent power supply system calculates demand prediction data of the load device and power generation output prediction data of the natural energy power generation device using weather prediction data,
    When the demand prediction data and the power generation output prediction data are predicted to charge the storage battery beyond the maximum charging power of the storage battery, the power generation output from the natural energy power generation device is suppressed,
    When the demand prediction data and the power generation output data predict that the storage battery is discharged beyond the maximum discharge power of the storage battery, the power consumption of the adjustment load is suppressed. Type power supply system.
  2.  請求項1に記載の独立型電力供給システムであって、
     該独立型電力供給システムは、前記需要予測データ、前記発電出力予測データ及び前記蓄電池の定格容量を用いて将来の所定期間における前記蓄電池の充放電状態を予測的に計算し、
     前記将来の所定期間における前記充放電状態が前記蓄電池の最大充電電力量を超えることが予測される場合には前記自然エネルギー発電装置からの発電出力を抑制し、
     前記将来の所定期間における前記充放電状態が前記蓄電池の最小充電電力量を下回ることが予測される場合には前記調整用負荷の消費電力を抑制することを特徴とする独立型電力供給システム。
    The stand-alone power supply system according to claim 1,
    The independent power supply system predictively calculates the charge / discharge state of the storage battery in a predetermined future period using the demand prediction data, the power generation output prediction data, and the rated capacity of the storage battery,
    In the case where it is predicted that the charge / discharge state in the future predetermined period will exceed the maximum charge power amount of the storage battery, the power generation output from the natural energy power generation device is suppressed,
    An independent power supply system that suppresses power consumption of the adjustment load when the charge / discharge state in the future predetermined period is predicted to be lower than the minimum charge power amount of the storage battery.
  3.  請求項2に記載の独立型電力供給システムであって、
     更に制御装置を備えており、
     該制御装置は、前記負荷装置の需要予測データ及び前記自然エネルギー発電装置の発電出力予測データの計算と、前記自然エネルギー発電装置からの発電出力を抑制する指令及び前記調整用負荷の消費電力を抑制する指令の出力、を行うことを特徴とする独立型電力供給システム。
    A stand-alone power supply system according to claim 2,
    It also has a control device,
    The control device suppresses power demand of the load device and calculation of power generation output prediction data of the natural energy power generation device, a command for suppressing power generation output from the natural energy power generation device, and power consumption of the adjustment load. A stand-alone power supply system that outputs a command to perform the operation.
  4.  請求項3に記載の独立型電力供給システムであって、
     前記制御装置は、前記自然エネルギー発電装置、前記負荷装置または前記蓄電装置の外部に配置されると共に、回線を通じて前記自然エネルギー発電装置、前記負荷装置及び前記蓄電装置に制御指令を出力することを特徴とする独立型電力供給システム。
    A stand-alone power supply system according to claim 3,
    The control device is disposed outside the natural energy power generation device, the load device, or the power storage device, and outputs a control command to the natural energy power generation device, the load device, and the power storage device through a line. Independent power supply system.
  5.  請求項2に記載の独立型電力供給システムであって、前記制御装置は前記蓄電装置の内部に配置され、
     更に制御装置を備えており、
     該制御装置は、前記負荷装置の需要予測データ及び前記自然エネルギー発電装置の発電出力予測データの計算と、前記独立型電力供給システムの目標電圧の制御を行い、
     該目標電圧の制御は、前記将来の所定期間における前記充放電状態が前記蓄電池の最大充電電力量を超えることが予測される場合には前記目標電圧を一時的に定格電圧よりも大きな値に設定し、前記将来の所定期間における前記充放電状態が前記蓄電池の最小充電電力量を下回ることが予測される場合には前記目標電圧を一時的に定格電圧よりも小さな値に設定することで行い、
     前記自然エネルギー発電装置では前記目標電圧が所定時間以上に亘って定格電圧を超過した場合、前記自然エネルギー発電装置からの発電出力を抑制し、
     前記負荷装置では前記目標電圧が所定時間以上に亘って定格電圧を下回った場合、前記調整用負荷の消費電力を抑制することを特徴とする独立型電力供給システム。
    The stand-alone power supply system according to claim 2, wherein the control device is disposed inside the power storage device,
    It also has a control device,
    The control device performs calculation of demand prediction data of the load device and power generation output prediction data of the natural energy power generation device, and control of a target voltage of the independent power supply system,
    The target voltage is controlled by temporarily setting the target voltage to a value larger than the rated voltage when the charge / discharge state in the future predetermined period is predicted to exceed the maximum charge power amount of the storage battery. And when it is predicted that the charge / discharge state in the future predetermined period will be less than the minimum charge power amount of the storage battery, the target voltage is temporarily set to a value smaller than the rated voltage,
    In the natural energy power generation device, when the target voltage exceeds a rated voltage over a predetermined time, the power generation output from the natural energy power generation device is suppressed,
    In the load device, when the target voltage falls below a rated voltage for a predetermined time or more, the power consumption of the adjustment load is suppressed.
  6.  請求項2ないし4のいずれか一つに記載の独立型電力供給システムであって、
     前記蓄電池の充放電電力の計測値または該計測値の平均値が所定の範囲内であるか否かを比較し、
     所定の範囲外であれば、前記自然エネルギー発電装置の力率の指令値を前記独立型電力供給システム内の電力系統のインピーダンスを用いて定める値に設定することを特徴とする独立型電力供給システム。
    A stand-alone power supply system according to any one of claims 2 to 4,
    Compare the measured value of charge / discharge power of the storage battery or whether the average value of the measured value is within a predetermined range,
    If it is out of a predetermined range, the command value of the power factor of the natural energy power generation apparatus is set to a value determined using the impedance of the power system in the independent power supply system. .
  7.  請求項6に記載の独立型電力供給システムであって、
     前記蓄電池の充放電電力の計測値または該計測値の平均値が所定の範囲内であれば、前記自然エネルギー発電装置の力率の指令値を1に設定することを特徴とする独立型電力供給システム。
    The stand-alone power supply system according to claim 6,
    If the measured value of the charge / discharge power of the storage battery or the average value of the measured values is within a predetermined range, the command value of the power factor of the natural energy power generation apparatus is set to 1, independent power supply system.
  8.  請求項5に記載の独立型電力供給システムであって、
     前記蓄電池の充放電電力の計測値または該計測値の平均値が所定の範囲内であるか否かを比較し、
     所定の範囲内であれば、前記自然エネルギー発電装置の力率の指令値を1に設定し、
     所定の範囲外であれば、前記自然エネルギー発電装置の力率の指令値を前記独立型電力供給システム内の電力系統のインピーダンスを用いて定める値に設定することを特徴とする独立型電力供給システム。
    The stand-alone power supply system according to claim 5,
    Compare the measured value of charge / discharge power of the storage battery or whether the average value of the measured value is within a predetermined range,
    If it is within a predetermined range, the command value of the power factor of the natural energy power generation device is set to 1,
    If it is out of a predetermined range, the command value of the power factor of the natural energy power generation apparatus is set to a value determined using the impedance of the power system in the independent power supply system. .
  9.  請求項2ないし4、6または7のいずれか一つに記載の独立型電力供給システムであって、
     該独立型電力供給システムは、
     前記負荷が起動を停止する予告情報である起動停止予告情報が受信された場合、前記自然エネルギー発電装置の出力を抑制し、
     前記負荷が起動する予告情報である起動予告情報が受信された場合、前記調整用負荷の消費電力を抑制することを特徴とする独立型電力供給システム。
    A stand-alone power supply system according to any one of claims 2 to 4, 6 or 7,
    The independent power supply system is
    When the start / stop notice information that is the notice information that the load stops starting is received, the output of the natural energy power generation device is suppressed,
    A stand-alone power supply system that suppresses power consumption of the adjustment load when start notice information, which is notice information for starting the load, is received.
  10.  請求項1ないし9のいずれか一つに記載の独立型電力供給システムであって、
     前記自然エネルギー発電装置は太陽光発電パネルを有する太陽光発電装置であることを特徴とする独立型電力供給システム。
    A stand-alone power supply system according to any one of claims 1 to 9,
    The natural energy power generation apparatus is a solar power generation apparatus having a solar power generation panel.
PCT/JP2012/080661 2012-02-27 2012-11-28 Independent power supply system WO2013128731A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
IN6999DEN2014 IN2014DN06999A (en) 2012-02-27 2012-11-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-039526 2012-02-27
JP2012039526A JP5625005B2 (en) 2012-02-27 2012-02-27 Stand-alone power supply system

Publications (1)

Publication Number Publication Date
WO2013128731A1 true WO2013128731A1 (en) 2013-09-06

Family

ID=49081952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080661 WO2013128731A1 (en) 2012-02-27 2012-11-28 Independent power supply system

Country Status (3)

Country Link
JP (1) JP5625005B2 (en)
IN (1) IN2014DN06999A (en)
WO (1) WO2013128731A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016034831A1 (en) * 2014-09-05 2016-03-10 Electricite De France Improved management of an electrical power generation facility
WO2016084903A1 (en) * 2014-11-28 2016-06-02 日本電気株式会社 Electric power management device, electric power management system, electric power management method, and program
WO2016084347A1 (en) * 2014-11-25 2016-06-02 日本電気株式会社 Energy management apparatus, energy management method, and program recording medium
JPWO2017130307A1 (en) * 2016-01-27 2018-04-12 三菱電機株式会社 Management apparatus and control method
WO2019097582A1 (en) * 2017-11-14 2019-05-23 Tdk株式会社 Dc power supply system
WO2020161765A1 (en) * 2019-02-04 2020-08-13 Tdk株式会社 Direct-current power supply system

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2831361C (en) * 2012-10-31 2016-10-04 Hitachi, Ltd. Power generation system, backup power supply, data center installation method, power generation system controller, power system, and power generation system operating method
JP6255894B2 (en) * 2013-10-24 2018-01-10 富士電機株式会社 Self-sustaining operation system, self-sustaining operation control device, and storage battery system
JP6300144B2 (en) * 2014-01-16 2018-03-28 日本無線株式会社 Independent power supply system and control method of independent power supply system
JP5994027B2 (en) * 2014-01-22 2016-09-21 株式会社日立製作所 Power supply system and energy management system used therefor
FR3017727B1 (en) * 2014-02-14 2016-02-26 Edf En Nouvelles SOLUTIONS FOR FORECASTING, MANAGING AND STABILIZING SUPPLY, TO A NETWORK FOR THE TRANSPORT OF ELECTRICITY, ENERGY FROM A SOURCE OF RENEWABLE ELECTRIC ENERGY AS A FUNCTION OF FIXED OBJECTIVES IN REAL-TIME
JP6317987B2 (en) * 2014-04-21 2018-04-25 京セラ株式会社 Power control system, power control apparatus, and power control method
CN103986190B (en) * 2014-05-26 2016-03-23 电子科技大学 Based on the wind-solar-storage joint electricity generation system smooth control method of generated output curve
JP6257453B2 (en) * 2014-06-10 2018-01-10 大阪瓦斯株式会社 Electricity supply and demand system
JP6487196B2 (en) * 2014-12-10 2019-03-20 三星エスディアイ株式会社SAMSUNG SDI Co., LTD. Power supply system and base station system
CN104600724B (en) * 2014-12-31 2018-03-20 国家电网公司 A kind of DC power modulation method of the out-of-limit control of complex AC section power
JP6544554B2 (en) * 2015-01-13 2019-07-17 清水建設株式会社 Power management system, power management method
JP2016167913A (en) * 2015-03-09 2016-09-15 清水建設株式会社 Power supply system and power supply method
JP6747428B2 (en) * 2015-03-20 2020-08-26 日本電気株式会社 Control device, power generation control device and control system
JP6235061B2 (en) * 2015-03-27 2017-11-22 株式会社九電工 Power supply system using renewable energy-based power generation facilities
WO2016158777A1 (en) * 2015-03-27 2016-10-06 株式会社九電工 Power supply system in which renewable energy-utilizing power generation facility is used
US20180159335A1 (en) * 2015-05-27 2018-06-07 Nec Corporation Electric power generation control device, control device, control method and recording medium
US10476272B2 (en) * 2015-09-01 2019-11-12 Toshiba Mitsubishi—Electric Industrial Systems Corporation Power generation facility and power generation control device
JP6616720B2 (en) * 2016-03-29 2019-12-04 株式会社日立製作所 Distributed power controller
WO2018193689A1 (en) * 2017-04-19 2018-10-25 住友電気工業株式会社 Method for operating storage battery, storage battery system, and program
WO2019087322A1 (en) * 2017-11-01 2019-05-09 Tdk株式会社 Dc power feeding system
WO2020021677A1 (en) 2018-07-26 2020-01-30 東芝三菱電機産業システム株式会社 Power conversion device and power conversion system
US10697432B2 (en) * 2018-08-03 2020-06-30 General Electric Company Wind farm energy storage device for curtailment and auxiliary loads use
EP3869657A4 (en) 2018-10-18 2022-07-13 NGK Insulators, Ltd. Energy management system, independent system, and independent system operation method
JP7146938B2 (en) * 2018-10-18 2022-10-04 日本碍子株式会社 Energy management systems, independent systems, and methods of operating independent systems
JP7317438B2 (en) * 2019-03-13 2023-07-31 オーナンバ株式会社 Power controller for self-consumption photovoltaic power generation system
JP7252116B2 (en) * 2019-11-22 2023-04-04 株式会社日立製作所 Renewable energy power generation system
JP7414038B2 (en) 2021-07-12 2024-01-16 株式会社村田製作所 power conditioner
JP7375964B2 (en) 2022-02-01 2023-11-08 株式会社村田製作所 power control system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008148442A (en) * 2006-12-08 2008-06-26 Daiwa House Ind Co Ltd Charging/discharging control system of power storage section in natural energy utilizing power generation system
JP2008154360A (en) * 2006-12-18 2008-07-03 Mitsubishi Heavy Ind Ltd Power storage unit, and hybrid distributed power system
JP2011125122A (en) * 2009-12-09 2011-06-23 Sony Corp Battery control system, battery control device, and method and program for controlling battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007295680A (en) * 2006-04-24 2007-11-08 Matsushita Electric Ind Co Ltd Load control device
JP5351798B2 (en) * 2010-02-26 2013-11-27 三菱重工業株式会社 Charging system and its control method and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008148442A (en) * 2006-12-08 2008-06-26 Daiwa House Ind Co Ltd Charging/discharging control system of power storage section in natural energy utilizing power generation system
JP2008154360A (en) * 2006-12-18 2008-07-03 Mitsubishi Heavy Ind Ltd Power storage unit, and hybrid distributed power system
JP2011125122A (en) * 2009-12-09 2011-06-23 Sony Corp Battery control system, battery control device, and method and program for controlling battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016034831A1 (en) * 2014-09-05 2016-03-10 Electricite De France Improved management of an electrical power generation facility
US10312726B2 (en) 2014-09-05 2019-06-04 Electricite De France Method and system using weighted generation capacity to improve management of electrical power generation facility
US10389165B2 (en) 2014-11-25 2019-08-20 Nec Corporation Energy management apparatus, energy management method and program recording medium
WO2016084347A1 (en) * 2014-11-25 2016-06-02 日本電気株式会社 Energy management apparatus, energy management method, and program recording medium
JPWO2016084347A1 (en) * 2014-11-25 2017-09-07 日本電気株式会社 Energy management apparatus, energy management method and program
WO2016084903A1 (en) * 2014-11-28 2016-06-02 日本電気株式会社 Electric power management device, electric power management system, electric power management method, and program
JPWO2016084903A1 (en) * 2014-11-28 2017-09-07 日本電気株式会社 Power management apparatus, power management system, power management method, and program
US10763671B2 (en) 2014-11-28 2020-09-01 Nec Corporation Power management apparatus, power management system, power management method, and non-transitory storage medium
US10700524B2 (en) 2016-01-27 2020-06-30 Mitsubishi Electric Corporation Management device and control method
JPWO2017130307A1 (en) * 2016-01-27 2018-04-12 三菱電機株式会社 Management apparatus and control method
WO2019097582A1 (en) * 2017-11-14 2019-05-23 Tdk株式会社 Dc power supply system
WO2020161765A1 (en) * 2019-02-04 2020-08-13 Tdk株式会社 Direct-current power supply system
JPWO2020161765A1 (en) * 2019-02-04 2021-12-02 Tdk株式会社 DC power supply system
US11411400B2 (en) 2019-02-04 2022-08-09 Tdk Corporation DC power supply system
JP7207437B2 (en) 2019-02-04 2023-01-18 Tdk株式会社 DC power supply system

Also Published As

Publication number Publication date
JP5625005B2 (en) 2014-11-12
IN2014DN06999A (en) 2015-04-10
JP2013176234A (en) 2013-09-05

Similar Documents

Publication Publication Date Title
JP5625005B2 (en) Stand-alone power supply system
US10355517B2 (en) Storage-battery control device, storage-battery charge/discharge system, photovoltaic power generation system, and storage-battery control method
JP4759587B2 (en) Wind farm
US8922056B2 (en) Power interchange system for interchanging electric energy between a battery and an electric grid, method for interchanging electric energy between a battery and an electric grid and application of the power interchange system
JP5882156B2 (en) Power control device
JP5584763B2 (en) DC power distribution system
JP5738212B2 (en) Power storage type power generation system
JP6304008B2 (en) Power supply system
JP5485224B2 (en) Independent operation power supply system
US9331512B2 (en) Power control device and power control method for measuring open-circuit voltage of battery
EP3018787B1 (en) Microgrid control device and control method therefor
US9337682B2 (en) Charging control device, solar power generation system and charging control method
US20140176051A1 (en) Charging system, charging apparatus, and charging method
JPWO2011052314A1 (en) Secondary battery control method and power storage device
WO2015001767A1 (en) Control device and power management system
US11929621B2 (en) Power control apparatus, control method for power control apparatus, and distributed power generating system
WO2019193837A1 (en) Power generating system and its control method
JP2018007323A (en) Power variation control device and method
WO2018138710A1 (en) Dc power supply system
JP2003018763A (en) Energy prediction method in solar power generation
JP2015213409A (en) Load leveling device
JP2016015803A (en) Load leveler
JP2018121450A (en) Charge and discharge device
WO2019087322A1 (en) Dc power feeding system
WO2019097582A1 (en) Dc power supply system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12869927

Country of ref document: EP

Kind code of ref document: A1