WO2015111144A1 - Power supply system and energy management system used in same - Google Patents

Power supply system and energy management system used in same Download PDF

Info

Publication number
WO2015111144A1
WO2015111144A1 PCT/JP2014/051180 JP2014051180W WO2015111144A1 WO 2015111144 A1 WO2015111144 A1 WO 2015111144A1 JP 2014051180 W JP2014051180 W JP 2014051180W WO 2015111144 A1 WO2015111144 A1 WO 2015111144A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
storage battery
value
lead storage
voltage
Prior art date
Application number
PCT/JP2014/051180
Other languages
French (fr)
Japanese (ja)
Inventor
雅也 奥薗
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/051180 priority Critical patent/WO2015111144A1/en
Priority to JP2015527728A priority patent/JP5994027B2/en
Publication of WO2015111144A1 publication Critical patent/WO2015111144A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging

Definitions

  • the present invention relates to a power supply system for equipment having a lead storage battery and an energy management system used therefor.
  • Patent Document 1 As a method for controlling a secondary battery connected to an electric power system, there is a technique described in Patent Document 1.
  • communication characteristic detecting means for each of a plurality of batteries, communication characteristic detecting means for detecting characteristics of a communication path between the battery and the battery control system, and predetermined communication characteristics from a plurality of batteries based on the detection result. It is described that a battery that uses a communication path having characteristics within a range is selected as a candidate for adjusting the power of the power system, and an operation instruction that instructs charging or discharging is output and controlled.
  • the secondary battery control method determines a battery that satisfies a predetermined communication characteristic as a battery candidate for adjustment, and has a characteristic characteristic of a lead storage battery as a secondary battery. Not considered. That is, in the lead storage battery, the chargeable / dischargeable power decreases depending on the operating state (storage battery voltage during operation), and the lead battery may not be able to exhibit the original adjustment capability. Furthermore, the control method by patent document 1 controls charging / discharging of a secondary battery based on the operation state of the present installation. Therefore, if the supply and demand balance of the entire facility fluctuates, it may not be able to follow this and may deviate from stable control.
  • the present invention has been made in view of the above-described problems, and the object of the present invention is to provide a highly efficient and stable power supply system using a lead storage battery in consideration of the characteristics and supply / demand balance of the lead storage battery. It is to perform proper control.
  • the present invention has the following configuration.
  • a power supply system that receives power from a power system and a distributed power source and supplies power to a load device
  • a lead storage battery that stores received power from the power system and power generated by the distributed power source
  • a distributed power source and a lead storage battery A power adjustment device (PCS) that controls input / output of power and an energy management system (EMS) that monitors the power and voltage of each device in the system and controls the power adjustment device.
  • the energy management system includes a generated power prediction unit that predicts the generated power amount of the distributed power source, a demand power prediction unit that predicts the demand power amount of the load device, and the predicted generated power amount and the required power amount.
  • a storage battery target voltage calculation unit that calculates a target value of the operating voltage of the lead storage battery, and the power adjustment device is configured so that the operating voltage of the lead storage battery becomes a target value calculated by the energy management system. And control the power input and output of lead-acid battery.
  • the charging / discharging capacity of the lead storage battery is set to be large, so that efficient and stable control is achieved. It can be performed.
  • FIG. 1 is a diagram showing an overall configuration of a power supply system according to an embodiment of the present invention.
  • a lead storage battery is used as the secondary battery.
  • the power supply system is an energy management system (hereinafter abbreviated as EMS) 100 that monitors and controls the power and voltage of each device in the system, and an interconnection point that receives commercial power from the power company. 200, a distributed power source 310 such as solar power generation or wind power generation, a lead storage battery 320 that stores electric power generated by the distributed power source 310 or received power from the interconnection point 200, and distributed based on a control command from the EMS 100
  • a power adjustment device (hereinafter abbreviated as PCS) 300 that controls input / output of power from the power source 310 and the lead storage battery 320.
  • PCS power adjustment device
  • a car rental service and a car sharing service are assumed, in which an electric vehicle equipped with a secondary battery is lent. That is, a DC charger 400 that inputs AC power, converts the DC power to charge the electric vehicle 600, a DC discharger 410 that AC converts DC power discharged from the electric vehicle 600, and the electric vehicle 600 has a voltage of 200V or 100V.
  • An energy management system (EMS) 100 includes an input unit 110 that inputs the amount of power and voltage of each device, a generated power prediction unit 120 that predicts the amount of power generated by the distributed power source 310, and each device on the load side (DC charger) 400, DC discharger 410, AC charger 420, AC discharger 430, equipment load 500), the power demand prediction unit 130 for calculating the amount of power required, and the optimal storage battery voltage target value for the lead storage battery 320.
  • a storage battery target voltage calculation unit 140 and an output unit 150 that outputs a control signal such as a storage battery target voltage to the power adjustment device (PCS) 300 are provided.
  • the power demand prediction unit 130 uses the DC charger 400 and the AC charger 420 for the demand of the electric vehicle 600 based on the use reservation information of the service (car rental service or car sharing service) performed by the facility. Electric power can be predicted.
  • the feature of this embodiment is that the energy management system (EMS) 100 calculates the optimum operating voltage (target voltage) of the lead storage battery 320 based on the predicted generated power value and the predicted power demand value, and the power adjustment device ( PCS) 300.
  • the power conditioner (PCS) 300 controls power input / output of the distributed power supply 310 and the lead storage battery 320 so that the voltage of the lead storage battery 320 becomes the target voltage received from the EMS 100.
  • FIG. 2 is a diagram showing the relationship between the chargeable / dischargeable power of the lead storage battery and the storage battery voltage.
  • the chargeable / dischargeable power has a unique property that it depends on the storage battery voltage.
  • the dischargeable power 700 is small when the storage battery voltage is low, increases as the storage battery voltage increases, reaches a maximum value at the position 710, and does not change even if the storage battery voltage increases further.
  • the rechargeable power 800 is small when the storage battery voltage is low, increases as the storage battery voltage increases, reaches a maximum value at a position indicated by reference numeral 810, and rapidly decreases as the storage battery voltage increases further.
  • the maximum dischargeable power position 710 and the maximum chargeable power position 810 do not match, and the maximum chargeable power position 810 is slightly lower than the maximum dischargeable power position 710.
  • the chargeable / dischargeable power of the lead storage battery 320 depends on the storage battery voltage, so the performance of the lead storage battery 320 is maximized by setting and using the storage battery voltage so that the chargeable / dischargeable power is maximized. it can.
  • the optimum voltage value between charging and discharging.
  • priority is given to the characteristics of the chargeable power 800 having a steeper change gradient, and the storage battery voltage that gives the maximum point 810 is set as the optimum voltage Vopt.
  • the other dischargeable electric power 700 is not a maximum value but is a relatively high value. Therefore, it can be said that the optimum voltage Vopt satisfies both the charging and discharging conditions.
  • the lead storage battery 320 charges surplus power out of the power generated by the distributed power source 310 or supplies (discharges) power used by load devices (DC charger 400, AC charger 420, equipment load 500). It is necessary to do. Therefore, the storage battery voltage is not fixed to a constant value, but varies within a certain range. In this case, it is preferable in terms of efficiency that the operating range 900 is set before the optimum voltage Vopt of the lead storage battery 320. This is because when the optimum voltage Vopt (maximum point 810) is exceeded, the chargeable power 800 rapidly decreases. In addition, the voltage range of the operating range 900 varies depending on the charge / discharge amount of the lead storage battery 320.
  • the voltage operating range 900 of the lead storage battery 320 is set as close as possible to the optimum voltage Vopt. Therefore, in the EMS 100, the storage battery target voltage calculation unit 140 calculates the operation target voltage Vt of the lead storage battery 320 based on the generated power predicted value from the generated power prediction unit 120 and the demand power predicted value from the demand power prediction unit 130. To PCS300. The PCS 300 sets a target voltage Vt for the lead storage battery 320 and performs charge / discharge control of the lead storage battery 320. The target voltage Vt is set as follows according to the generated power predicted value and the demand power predicted value.
  • FIG. 3 is a diagram showing a target voltage Vt1 set for the lead storage battery in case 1.
  • the target voltage Vt1 in case 1 is set in the vicinity of the optimum voltage Vopt, as indicated by reference numeral 910. In this case, since both the predicted power generation value and the predicted power demand value are small, the fluctuation of the storage battery voltage is small, and the operating point can be kept near the optimum voltage Vopt.
  • FIG. 4 is a diagram showing a target voltage Vt2 set for the lead storage battery in case 2.
  • the target voltage Vt2 in case 2 is set at a position lower than the optimum voltage Vopt, as indicated by reference numeral 920.
  • the generated power prediction value is large, and surplus power of the power generated by the distributed power source 310 can be charged.
  • the lead storage battery 320 is charged over time, and the storage battery voltage changes in the direction of the arrow 921, but is controlled so as not to exceed the optimum voltage Vopt indicated by reference numeral 922.
  • FIG. 5 is a diagram showing the target voltage Vt3 set for the lead storage battery in Case 3.
  • FIG. The target voltage Vt3 in case 3 is set in the vicinity of the optimum voltage Vopt as indicated by reference numeral 930. This is because the predicted power demand is large, and discharge from the lead storage battery 320 to the load device is possible. Thereafter, the lead storage battery 320 is discharged over time, and the storage battery voltage changes in the direction of the arrow 931, for example, to a position indicated by reference numeral 932.
  • FIG. 6 is a diagram showing a target voltage Vt4 set for the lead storage battery in case 4.
  • the target voltage Vt4 in case 4 is set at a position lower than the optimum voltage Vopt, as indicated by reference numeral 940.
  • both the predicted generated power value and the predicted power demand value are large, and both the charging operation and the discharging operation of the lead storage battery 320 are enabled.
  • control is performed so as to change in the direction of arrow 941 and not exceed the optimum voltage Vopt indicated by reference numeral 942.
  • the direction changes in the direction of the arrow 943 and drops to the position indicated by the reference numeral 944, for example.
  • the target voltage Vt is set lower than the optimum voltage Vopt, but how much lower the target voltage Vt is set is determined by the storage battery target voltage calculation unit 140. That is, the target voltage Vt is determined by predicting the difference amount (surplus power) between the generated power predicted value and the demand power predicted value. Further, it goes without saying that whether or not the predicted charging power or discharging power can be handled by the current storage battery voltage of the lead storage battery 320 is taken into consideration.
  • the lead storage battery 320 operates in a range near the optimum voltage Vopt, so that the chargeable / dischargeable power of the lead storage battery 320 can be increased, and a power supply system with high power efficiency is realized. Moreover, since the operating point of the lead storage battery 320 is set by predicting the generated power and the demand power, stable control can be performed even if the supply-demand balance fluctuates.
  • various inventions can be formed by appropriately combining a plurality of components. That is, even if some constituent elements are deleted from all the constituent elements shown in the embodiment or a plurality of constituent elements are combined, it is within the scope of the present invention.
  • EMS Energy management system
  • 110 input unit
  • 120 Generated power prediction unit
  • 130 Power demand prediction unit
  • 140 Storage battery target voltage calculation unit
  • 150 output unit
  • 200 connection point
  • 310 distributed power supply
  • 320 lead acid battery
  • 400 DC charger
  • 410 DC discharger
  • 420 AC charger
  • 430 AC discharger
  • 500 equipment load
  • 600 electric car
  • 700 Dischargeable power
  • 710 Maximum dischargeable power position
  • 800 rechargeable power
  • 810 Maximum chargeable power position
  • 910 Target voltage Vt1 (case 1)
  • 920 Target voltage Vt2 (Case 2)
  • 930 target voltage Vt3 (case 3)
  • 940 target voltage Vt4 (case 4), Vopt: optimal voltage.

Abstract

 A power supply system in which a lead storage cell is used, wherein stable and highly efficient control is performed in consideration of the properties of the lead storage cell and the supply-demand balance. A lead storage cell (320) stores power generated by a distributed power source (310) and power received from a power system. An energy management system (EMS) (100) forecasts the amount of power generated by the distributed power source (310) and the amount of power demanded by load devices (400-600), and correspondingly calculates a target value for the operation voltage of the lead storage cell (320). A power conditioning system (PCS) (300) controls the input/output of power with respect to the distributed power supply (310) and the lead storage cell (320) so that the operation voltage of the lead storage cell (320) reaches the target value calculated by the EMS (100).

Description

電力供給システム及びこれに用いるエネルギーマネジメントシステムPower supply system and energy management system used therefor
 本発明は、鉛蓄電池を有する設備の電力供給システム及びこれに用いるエネルギーマネジメントシステムに関する。 The present invention relates to a power supply system for equipment having a lead storage battery and an energy management system used therefor.
 近年、地球温暖化で二酸化炭素の削減が世界的に叫ばれており、また化石燃料が枯渇しつつあることを反映して、再生可能電力へのシフトが進んでいる。再生可能電力は、太陽光や風力などの自然エネルギーを基に発電するものであるため、その発電量は不安定である。そこで、二次電池を用いて、発電電力が需用電力を上回った場合に余剰電力を蓄え、需用電力が発電電力を上回った場合に蓄えていた電力を供給することができるエネルギーマネジメントシステム(EMS)が注目されている。その場合の二次電池としては、鉛蓄電池は他の二次電池と比較し容量当たりの価格が安く、民生用から産業用まで幅広く利用されている。 In recent years, reduction of carbon dioxide has been screamed worldwide due to global warming, and the shift to renewable electricity is progressing reflecting the depletion of fossil fuels. Renewable power is generated based on natural energy such as sunlight and wind power, so the amount of power generation is unstable. Therefore, using a secondary battery, an energy management system that can store surplus power when the generated power exceeds demand power and supply the stored power when the demand power exceeds generated power ( EMS) is drawing attention. As a secondary battery in such a case, a lead-acid battery has a lower price per capacity than other secondary batteries, and is widely used from consumer use to industrial use.
 電力系統に接続された二次電池を制御する方法としては、特許文献1に記載の技術がある。同文献には、複数の電池の各々について、電池と電池制御システムとの間の通信経路の特性を検出する通信特性検出手段と、検出結果に基づいて、複数の電池の中から、所定通信特性範囲内の特性を有する通信経路を使用する電池を、電力系統の電力を調整するための候補として選択し、充電または放電を指示する動作指示を出力して制御することが記載されている。 As a method for controlling a secondary battery connected to an electric power system, there is a technique described in Patent Document 1. In the same document, for each of a plurality of batteries, communication characteristic detecting means for detecting characteristics of a communication path between the battery and the battery control system, and predetermined communication characteristics from a plurality of batteries based on the detection result. It is described that a battery that uses a communication path having characteristics within a range is selected as a candidate for adjusting the power of the power system, and an operation instruction that instructs charging or discharging is output and controlled.
国際公開WO2013/042474号公報International Publication WO2013 / 042474
 しかしながら、特許文献1に開示された技術による二次電池の制御方法は、所定通信特性を満足する電池を調整用の電池候補として決定するものであり、二次電池としての鉛蓄電池特有の性質が考慮されていない。すなわち鉛蓄電池は、動作状態(動作時の蓄電池電圧)によっては充放電可能電力が低下し、鉛蓄電池本来の調整能力を発揮できないことがある。さらに、特許文献1による制御方法は、現在の設備の動作状態をもとに二次電池の充放電を制御するものである。よって、設備全体の需給バランスが変動すると、これに追従できず、安定な制御から外れる場合がある。 However, the secondary battery control method according to the technique disclosed in Patent Document 1 determines a battery that satisfies a predetermined communication characteristic as a battery candidate for adjustment, and has a characteristic characteristic of a lead storage battery as a secondary battery. Not considered. That is, in the lead storage battery, the chargeable / dischargeable power decreases depending on the operating state (storage battery voltage during operation), and the lead battery may not be able to exhibit the original adjustment capability. Furthermore, the control method by patent document 1 controls charging / discharging of a secondary battery based on the operation state of the present installation. Therefore, if the supply and demand balance of the entire facility fluctuates, it may not be able to follow this and may deviate from stable control.
 そこで、本発明は、上記の課題を鑑みてなされたもので、その目的とするところは、鉛蓄電池を使用する電力供給システムにおいて、鉛蓄電池の特性と需給バランスを考慮して、効率が高く安定な制御を行うことである。 Therefore, the present invention has been made in view of the above-described problems, and the object of the present invention is to provide a highly efficient and stable power supply system using a lead storage battery in consideration of the characteristics and supply / demand balance of the lead storage battery. It is to perform proper control.
 上記の課題を解決するために、本発明では以下の構成とした。電力系統と分散型電源から受電して負荷機器に電力を供給する電力供給システムにおいて、電力系統からの受電電力と分散型電源で発電した電力を蓄電する鉛蓄電池と、分散型電源と鉛蓄電池の電力の入出力を制御する電力調整装置(PCS)と、当該システム内の各機器の電力と電圧を監視し電力調整装置に対する制御を行うエネルギーマネジメントシステム(EMS)と、を備える。エネルギーマネジメントシステムは、分散型電源の発電電力量を予測する発電電力予測部と、負荷機器の需要電力量を予測する需用電力予測部と、予測した発電電力量と需用電力量に応じて、鉛蓄電池の動作電圧の目標値を計算する蓄電池目標電圧計算部と、を有し、電力調整装置は、鉛蓄電池の動作電圧がエネルギーマネジメントシステムにて計算した目標値となるよう、分散型電源と鉛蓄電池の電力の入出力を制御する。 In order to solve the above problems, the present invention has the following configuration. In a power supply system that receives power from a power system and a distributed power source and supplies power to a load device, a lead storage battery that stores received power from the power system and power generated by the distributed power source, and a distributed power source and a lead storage battery A power adjustment device (PCS) that controls input / output of power and an energy management system (EMS) that monitors the power and voltage of each device in the system and controls the power adjustment device. The energy management system includes a generated power prediction unit that predicts the generated power amount of the distributed power source, a demand power prediction unit that predicts the demand power amount of the load device, and the predicted generated power amount and the required power amount. A storage battery target voltage calculation unit that calculates a target value of the operating voltage of the lead storage battery, and the power adjustment device is configured so that the operating voltage of the lead storage battery becomes a target value calculated by the energy management system. And control the power input and output of lead-acid battery.
 本発明によれば、鉛蓄電池を使用する電力供給システムにおいて、設備内での電力の需給バランスが変動しても鉛蓄電池の充放電能力が大きくなるよう設定することで、効率が高く安定な制御を行うことができる。 According to the present invention, in a power supply system using a lead storage battery, even if the power supply / demand balance in the facility fluctuates, the charging / discharging capacity of the lead storage battery is set to be large, so that efficient and stable control is achieved. It can be performed.
本発明の実施形態に係る電力供給システムの全体構成を示す図。The figure which shows the whole structure of the electric power supply system which concerns on embodiment of this invention. 鉛蓄電池の充放電可能電力と蓄電池電圧の関係を示す図。The figure which shows the relationship between the electric power which can be charged / discharged of a lead storage battery, and a storage battery voltage. ケース1における鉛蓄電池に設定する目標電圧Vt1を示す図。The figure which shows the target voltage Vt1 set to the lead acid battery in case 1. FIG. ケース2における鉛蓄電池に設定する目標電圧Vt2を示す図。The figure which shows the target voltage Vt2 set to the lead acid battery in case 2. FIG. ケース3における鉛蓄電池に設定する目標電圧Vt3を示す図。The figure which shows the target voltage Vt3 set to the lead acid battery in case 3. FIG. ケース4における鉛蓄電池に設定する目標電圧Vt4を示す図。The figure which shows the target voltage Vt4 set to the lead acid battery in case 4. FIG.
 以下、本発明の実施形態について図面を参照して説明する。
  図1は、本発明の実施形態に係る電力供給システムの全体構成を示す図である。本実施例では二次電池として鉛蓄電池を使用している。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing an overall configuration of a power supply system according to an embodiment of the present invention. In this embodiment, a lead storage battery is used as the secondary battery.
 電力供給システムは、電力供給側として、システム内の各機器の電力と電圧を監視しその制御を行うエネルギーマネジメントシステム(以下、EMSと略す)100と、電力会社から商用電力を受電する連系点200と、太陽光発電や風力発電などの分散型電源310と、分散型電源310で発電した電力や連系点200からの受電電力を蓄電する鉛蓄電池320と、EMS100からの制御指令に基づき分散型電源310と鉛蓄電池320の電力の入出力を制御する電力調整装置(以下、PCSと略す)300と、を備える。 The power supply system is an energy management system (hereinafter abbreviated as EMS) 100 that monitors and controls the power and voltage of each device in the system, and an interconnection point that receives commercial power from the power company. 200, a distributed power source 310 such as solar power generation or wind power generation, a lead storage battery 320 that stores electric power generated by the distributed power source 310 or received power from the interconnection point 200, and distributed based on a control command from the EMS 100 A power adjustment device (hereinafter abbreviated as PCS) 300 that controls input / output of power from the power source 310 and the lead storage battery 320.
 また電力需要側の設備の例として、二次電池を搭載した電気自動車を貸し出すことを事業とするレンタカーサービスやカーシェアリングサービスを想定している。すなわち、交流電力を入力し直流変換して電気自動車600へ充電する直流充電器400と、電気自動車600から放電された直流電力を交流変換する直流放電器410と、電気自動車600に200Vまたは100Vの交流電力で充電する交流充電器420と、電気自動車600から200Vまたは100Vの交流電力で放電する交流放電器430と、設備内で使用する照明や機器動作のために電力を消費する設備負荷500などが接続される。 In addition, as an example of equipment on the power demand side, a car rental service and a car sharing service are assumed, in which an electric vehicle equipped with a secondary battery is lent. That is, a DC charger 400 that inputs AC power, converts the DC power to charge the electric vehicle 600, a DC discharger 410 that AC converts DC power discharged from the electric vehicle 600, and the electric vehicle 600 has a voltage of 200V or 100V. An AC charger 420 that charges with AC power, an AC discharger 430 that discharges with 200V or 100V AC power from the electric vehicle 600, an equipment load 500 that consumes power for lighting and equipment operations used in the equipment, etc. Is connected.
 エネルギーマネジメントシステム(EMS)100は、各機器の電力量や電圧値を入力する入力部110、分散型電源310の発電電力量を予測する発電電力予測部120、負荷側の各機器(直流充電器400、直流放電器410、交流充電器420、交流放電器430、設備負荷500)が必要とする電力量を計算する需用電力予測部130、鉛蓄電池320の最適な蓄電池電圧目標値を計算する蓄電池目標電圧計算部140、電力調整装置(PCS)300に対して蓄電池目標電圧などの制御信号を出力する出力部150を備えている。ここで需用電力予測部130は、前記設備の行うサービス(レンタカーサービスやカーシェアリングサービス)の利用予約情報を基に、前記直流充電器400と交流充電器420を用いた電気自動車600の需用電力を予測することができる。 An energy management system (EMS) 100 includes an input unit 110 that inputs the amount of power and voltage of each device, a generated power prediction unit 120 that predicts the amount of power generated by the distributed power source 310, and each device on the load side (DC charger) 400, DC discharger 410, AC charger 420, AC discharger 430, equipment load 500), the power demand prediction unit 130 for calculating the amount of power required, and the optimal storage battery voltage target value for the lead storage battery 320. A storage battery target voltage calculation unit 140 and an output unit 150 that outputs a control signal such as a storage battery target voltage to the power adjustment device (PCS) 300 are provided. Here, the power demand prediction unit 130 uses the DC charger 400 and the AC charger 420 for the demand of the electric vehicle 600 based on the use reservation information of the service (car rental service or car sharing service) performed by the facility. Electric power can be predicted.
 本実施例の特徴は、エネルギーマネジメントシステム(EMS)100は、発電電力予測値と需用電力予測値を基に、鉛蓄電池320の最適な動作電圧(目標電圧)を計算し、電力調整装置(PCS)300に送信する。電力調整装置(PCS)300は、鉛蓄電池320の電圧が、EMS100から受信した目標電圧となるよう、分散型電源310と鉛蓄電池320の電力の入出力を制御する。 The feature of this embodiment is that the energy management system (EMS) 100 calculates the optimum operating voltage (target voltage) of the lead storage battery 320 based on the predicted generated power value and the predicted power demand value, and the power adjustment device ( PCS) 300. The power conditioner (PCS) 300 controls power input / output of the distributed power supply 310 and the lead storage battery 320 so that the voltage of the lead storage battery 320 becomes the target voltage received from the EMS 100.
 図2は、鉛蓄電池の充放電可能電力と蓄電池電圧の関係を示す図である。鉛蓄電池320の場合、充電/放電可能電力は蓄電池電圧に依存するという特有の性質がある。放電可能電力700は、蓄電池電圧が低い場合は小さく、蓄電池電圧が高くなるに従って大きくなり、符号710の位置で最大値となり、それ以上蓄電池電圧が高くなっても変化しない。一方、充電可能電力800は、蓄電池電圧が低い場合は小さく、蓄電池電圧が高くなるに従って大きくなり、符号810の位置で最大値となり、それ以上蓄電池電圧が高くなると急激に小さくなる。放電可能電力の最大位置710と充電可能電力の最大位置810の電圧は一致せず、充電可能電力の最大位置810は、放電可能電力の最大位置710の電圧よりもやや低い位置にある。 FIG. 2 is a diagram showing the relationship between the chargeable / dischargeable power of the lead storage battery and the storage battery voltage. In the case of the lead storage battery 320, the chargeable / dischargeable power has a unique property that it depends on the storage battery voltage. The dischargeable power 700 is small when the storage battery voltage is low, increases as the storage battery voltage increases, reaches a maximum value at the position 710, and does not change even if the storage battery voltage increases further. On the other hand, the rechargeable power 800 is small when the storage battery voltage is low, increases as the storage battery voltage increases, reaches a maximum value at a position indicated by reference numeral 810, and rapidly decreases as the storage battery voltage increases further. The maximum dischargeable power position 710 and the maximum chargeable power position 810 do not match, and the maximum chargeable power position 810 is slightly lower than the maximum dischargeable power position 710.
 このように鉛蓄電池320の充電/放電可能電力は蓄電池電圧に依存するので、充電/放電可能電力が最大となるように蓄電池電圧を設定して使用することで、鉛蓄電池320のパフォーマンスを最大化できる。ただし、充電時と放電時とで最適電圧値にずれがある。本実施例では、変化の勾配がより急峻である充電可能電力800の特性を優先し、その最大点810を与える蓄電池電圧を最適電圧Voptとした。その最適電圧Voptにおいては、他方の放電可能電力700は最大値とはならないものの比較的高い値となるため、最適電圧Voptは充電時と放電時の双方の条件を満足していると言える。 In this way, the chargeable / dischargeable power of the lead storage battery 320 depends on the storage battery voltage, so the performance of the lead storage battery 320 is maximized by setting and using the storage battery voltage so that the chargeable / dischargeable power is maximized. it can. However, there is a difference in the optimum voltage value between charging and discharging. In this embodiment, priority is given to the characteristics of the chargeable power 800 having a steeper change gradient, and the storage battery voltage that gives the maximum point 810 is set as the optimum voltage Vopt. At the optimum voltage Vopt, the other dischargeable electric power 700 is not a maximum value but is a relatively high value. Therefore, it can be said that the optimum voltage Vopt satisfies both the charging and discharging conditions.
 一方、鉛蓄電池320は、分散型電源310で発電した電力のうち余剰電力を充電したり、負荷機器(直流充電器400、交流充電器420、設備負荷500)で使用する電力を供給(放電)したりする必要がある。よって、蓄電池電圧は一定値に固定される訳ではなく、ある幅で変動する。その場合の動作範囲900は、鉛蓄電池320の最適電圧Voptの手前に設定するのが効率上好ましい。なぜなら、最適電圧Vopt(最大点810)を超えると、充電可能電力800が急減するからである。また、動作範囲900の電圧幅の大きさは鉛蓄電池320の充放電量で変化する。 On the other hand, the lead storage battery 320 charges surplus power out of the power generated by the distributed power source 310 or supplies (discharges) power used by load devices (DC charger 400, AC charger 420, equipment load 500). It is necessary to do. Therefore, the storage battery voltage is not fixed to a constant value, but varies within a certain range. In this case, it is preferable in terms of efficiency that the operating range 900 is set before the optimum voltage Vopt of the lead storage battery 320. This is because when the optimum voltage Vopt (maximum point 810) is exceeded, the chargeable power 800 rapidly decreases. In addition, the voltage range of the operating range 900 varies depending on the charge / discharge amount of the lead storage battery 320.
 このように本実施例では、鉛蓄電池320の電圧の動作範囲900をできるだけ最適電圧Voptの近くに設定する。そのためEMS100において、発電電力予測部120からの発電電力予測値と需用電力予測部130からの需用電力予測値を基に、蓄電池目標電圧計算部140は鉛蓄電池320の動作目標電圧Vtを計算し、PCS300に伝える。PCS300は、鉛蓄電池320に対し目標電圧Vtを設定して、鉛蓄電池320の充放電制御を行う。目標電圧Vtは、発電電力予測値と需用電力予測値の大きさに応じて以下のように設定する。 Thus, in this embodiment, the voltage operating range 900 of the lead storage battery 320 is set as close as possible to the optimum voltage Vopt. Therefore, in the EMS 100, the storage battery target voltage calculation unit 140 calculates the operation target voltage Vt of the lead storage battery 320 based on the generated power predicted value from the generated power prediction unit 120 and the demand power predicted value from the demand power prediction unit 130. To PCS300. The PCS 300 sets a target voltage Vt for the lead storage battery 320 and performs charge / discharge control of the lead storage battery 320. The target voltage Vt is set as follows according to the generated power predicted value and the demand power predicted value.
 <ケース1>発電電力予測値が小さく、需用電力予測値も小さい場合。
  図3は、ケース1における鉛蓄電池に設定する目標電圧Vt1を示す図である。ケース1での目標電圧Vt1は、符号910で示すように、最適電圧Vopt近傍に設定する。この場合、発電電力予測値と需要電力予測値はいずれも小さいので、この先の蓄電池電圧の変動も小さく、動作点は最適電圧Vopt近傍に留めることができる。
<Case 1> The predicted generated power value is small and the predicted power demand value is also small.
FIG. 3 is a diagram showing a target voltage Vt1 set for the lead storage battery in case 1. FIG. The target voltage Vt1 in case 1 is set in the vicinity of the optimum voltage Vopt, as indicated by reference numeral 910. In this case, since both the predicted power generation value and the predicted power demand value are small, the fluctuation of the storage battery voltage is small, and the operating point can be kept near the optimum voltage Vopt.
 <ケース2>発電電力予測値が大きく、需用電力予測値が小さい場合。
  図4は、ケース2における鉛蓄電池に設定する目標電圧Vt2を示す図である。ケース2での目標電圧Vt2は、符号920で示すように、最適電圧Voptよりも低い位置に設定する。この場合、発電電力予測値が大きく、分散型電源310で発電した電力の余剰電力を充電可能とするためである。その後、時間経過により鉛蓄電池320への充電が行われ、蓄電池電圧は矢印921の方向へ推移するが、符号922で示す最適電圧Voptを超えないように制御する。
<Case 2> When the predicted power generation value is large and the predicted power demand value is small.
FIG. 4 is a diagram showing a target voltage Vt2 set for the lead storage battery in case 2. As shown in FIG. The target voltage Vt2 in case 2 is set at a position lower than the optimum voltage Vopt, as indicated by reference numeral 920. In this case, the generated power prediction value is large, and surplus power of the power generated by the distributed power source 310 can be charged. Thereafter, the lead storage battery 320 is charged over time, and the storage battery voltage changes in the direction of the arrow 921, but is controlled so as not to exceed the optimum voltage Vopt indicated by reference numeral 922.
 <ケース3>発電電力予測値が小さく、需用電力予測値が大きい場合。
  図5は、ケース3における鉛蓄電池に設定する目標電圧Vt3を示す図である。ケース3での目標電圧Vt3は、符号930で示すように、最適電圧Vopt近傍に設定する。この場合、需要電力予測値が大きく、鉛蓄電池320から負荷機器への放電を可能とするためである。その後、時間経過により鉛蓄電池320からの放電が行われ、蓄電池電圧は矢印931の方向へ推移し、例えば符号932で示す位置まで低下する。
<Case 3> When the predicted power generation value is small and the predicted power demand value is large.
FIG. 5 is a diagram showing the target voltage Vt3 set for the lead storage battery in Case 3. FIG. The target voltage Vt3 in case 3 is set in the vicinity of the optimum voltage Vopt as indicated by reference numeral 930. This is because the predicted power demand is large, and discharge from the lead storage battery 320 to the load device is possible. Thereafter, the lead storage battery 320 is discharged over time, and the storage battery voltage changes in the direction of the arrow 931, for example, to a position indicated by reference numeral 932.
 <ケース4>発電電力予測値が大きく、需用電力予測値も大きい場合。
  図6は、ケース4における鉛蓄電池に設定する目標電圧Vt4を示す図である。ケース4での目標電圧Vt4は、符号940で示すように、最適電圧Voptよりも低い位置に設定する。この場合、発電電力予測値と需要電力予測値はいずれも大きく、鉛蓄電池320の充電動作と放電動作の両方を可能とするためである。その後、時間経過により充電動作が勝る期間では矢印941の方向に推移し、符号942で示す最適電圧Voptを超えないように制御する。逆に、放電動作が勝る期間では矢印943の方向に推移し、例えば符号944で示す位置まで低下する。
<Case 4> When the predicted generated power is large and the predicted power demand is large.
FIG. 6 is a diagram showing a target voltage Vt4 set for the lead storage battery in case 4. FIG. The target voltage Vt4 in case 4 is set at a position lower than the optimum voltage Vopt, as indicated by reference numeral 940. In this case, both the predicted generated power value and the predicted power demand value are large, and both the charging operation and the discharging operation of the lead storage battery 320 are enabled. Thereafter, during the period in which the charging operation wins over time, control is performed so as to change in the direction of arrow 941 and not exceed the optimum voltage Vopt indicated by reference numeral 942. On the contrary, in the period in which the discharge operation is prevailing, the direction changes in the direction of the arrow 943 and drops to the position indicated by the reference numeral 944, for example.
 上記のケース2とケース4では、目標電圧Vtは最適電圧Voptよりも低く設定するが、どれだけ低く設定するかは、蓄電池目標電圧計算部140が決定する。すなわち、発電電力予測値と需用電力予測値の差分量(余剰電力)を予測して、目標電圧Vtを決定する。また、鉛蓄電池320の現在の蓄電池電圧により、予測した充電電力又は放電電力が対応可能か否かを考慮することは言うまでもない。 In the case 2 and the case 4 described above, the target voltage Vt is set lower than the optimum voltage Vopt, but how much lower the target voltage Vt is set is determined by the storage battery target voltage calculation unit 140. That is, the target voltage Vt is determined by predicting the difference amount (surplus power) between the generated power predicted value and the demand power predicted value. Further, it goes without saying that whether or not the predicted charging power or discharging power can be handled by the current storage battery voltage of the lead storage battery 320 is taken into consideration.
 上記したいずれのケースでも、鉛蓄電池320はその最適電圧Voptの近くの範囲で動作することから、鉛蓄電池320の充電/放電可能電力を大きくとれ、電力効率の良い電力供給システムが実現する。また、発電電力や需要電力を予測して鉛蓄電池320の動作点を設定しているので、需給バランスが変動しても安定な制御を行うことができる。 In any of the cases described above, the lead storage battery 320 operates in a range near the optimum voltage Vopt, so that the chargeable / dischargeable power of the lead storage battery 320 can be increased, and a power supply system with high power efficiency is realized. Moreover, since the operating point of the lead storage battery 320 is set by predicting the generated power and the demand power, stable control can be performed even if the supply-demand balance fluctuates.
 以上述べた実施例において、複数の構成要素の適宜な組み合わせにより種々の発明を形成することができる。すなわち、前記実施例に示す全構成要素から幾つかの構成要素を削除したり、構成要素を複数組み合わせたりしても、本発明の範疇である。 In the embodiments described above, various inventions can be formed by appropriately combining a plurality of components. That is, even if some constituent elements are deleted from all the constituent elements shown in the embodiment or a plurality of constituent elements are combined, it is within the scope of the present invention.
 100:エネルギーマネジメントシステム(EMS)、
 110:入力部、
 120:発電電力予測部、
 130:需用電力予測部、
 140:蓄電池目標電圧計算部、
 150:出力部、
 200:連系点、
 300:電力調整装置(PCS)、
 310:分散型電源、
 320:鉛蓄電池、
 400:直流充電器、
 410:直流放電器、
 420:交流充電器、
 430:交流放電器、
 500:設備負荷、
 600:電気自動車、
 700:放電可能電力、
 710:放電可能電力最大位置、
 800:充電可能電力、
 810:充電可能電力最大位置、
 910:目標電圧Vt1(ケース1)、
 920:目標電圧Vt2(ケース2)、
 930:目標電圧Vt3(ケース3)、
 940:目標電圧Vt4(ケース4)、
 Vopt:最適電圧。
100: Energy management system (EMS),
110: input unit,
120: Generated power prediction unit,
130: Power demand prediction unit,
140: Storage battery target voltage calculation unit,
150: output unit,
200: connection point
300: Power conditioner (PCS),
310: distributed power supply,
320: lead acid battery,
400: DC charger,
410: DC discharger,
420: AC charger,
430: AC discharger,
500: equipment load,
600: electric car,
700: Dischargeable power,
710: Maximum dischargeable power position,
800: rechargeable power,
810: Maximum chargeable power position,
910: Target voltage Vt1 (case 1),
920: Target voltage Vt2 (Case 2),
930: target voltage Vt3 (case 3),
940: target voltage Vt4 (case 4),
Vopt: optimal voltage.

Claims (6)

  1.  電力系統と分散型電源から受電して負荷機器に電力を供給する電力供給システムにおいて、
     前記電力系統からの受電電力と前記分散型電源で発電した電力を蓄電する鉛蓄電池と、
     前記分散型電源と前記鉛蓄電池の電力の入出力を制御する電力調整装置(PCS)と、
     当該システム内の各機器の電力と電圧を監視し前記電力調整装置に対する制御を行うエネルギーマネジメントシステム(EMS)と、を備え、
     前記エネルギーマネジメントシステムは、
     前記分散型電源の発電電力量を予測する発電電力予測部と、
     前記負荷機器の需要電力量を予測する需用電力予測部と、
     前記予測した発電電力量と需用電力量に応じて、前記鉛蓄電池の動作電圧の目標値を計算する蓄電池目標電圧計算部と、を有し、
     前記電力調整装置は、前記鉛蓄電池の動作電圧が前記エネルギーマネジメントシステムにて計算した目標値となるよう、前記分散型電源と前記鉛蓄電池の電力の入出力を制御することを特徴とする電力供給システム。
    In a power supply system that receives power from a power system and a distributed power source and supplies power to a load device,
    A lead-acid battery that stores received power from the power system and power generated by the distributed power source; and
    A power conditioner (PCS) that controls input / output of power of the distributed power source and the lead acid battery;
    An energy management system (EMS) that monitors the power and voltage of each device in the system and controls the power conditioner;
    The energy management system
    A generated power prediction unit for predicting the generated power amount of the distributed power source;
    A demand power prediction unit for predicting the demand power amount of the load device;
    A storage battery target voltage calculation unit that calculates a target value of the operating voltage of the lead storage battery according to the predicted amount of generated power and the amount of power for demand;
    The power adjustment device controls input / output of power of the distributed power source and the lead storage battery so that an operating voltage of the lead storage battery becomes a target value calculated by the energy management system. system.
  2.  請求項1に記載の電力供給システムにおいて、
     前記鉛蓄電池の充電可能電力が最大となる蓄電池電圧を最適値としたとき、
     前記エネルギーマネジメントシステムの蓄電池目標電圧計算部は、
     前記発電電力予測値が大きく前記需用電力予測値が小さい場合には、前記鉛蓄電池の動作電圧の目標値を、前記最適値よりも低い値に設定することを特徴とする電力供給システム。
    The power supply system according to claim 1,
    When the storage battery voltage at which the rechargeable power of the lead storage battery is maximized is an optimum value,
    The storage battery target voltage calculator of the energy management system is:
    When the predicted power generation value is large and the predicted power demand value is small, the target value of the operating voltage of the lead storage battery is set to a value lower than the optimum value.
  3.  請求項1に記載の電力供給システムにおいて、
     前記鉛蓄電池の充電可能電力が最大となる蓄電池電圧を最適値としたとき、
     前記エネルギーマネジメントシステムの蓄電池目標電圧計算部は、
     前記発電電力予測値が小さく前記需用電力予測値が大きい場合には、前記鉛蓄電池の動作電圧の目標値を、前記最適値近傍の値に設定することを特徴とする電力供給システム。
    The power supply system according to claim 1,
    When the storage battery voltage at which the rechargeable power of the lead storage battery is maximized is an optimum value,
    The storage battery target voltage calculator of the energy management system is:
    When the predicted generated power value is small and the predicted power demand value is large, the target value of the operating voltage of the lead storage battery is set to a value near the optimum value.
  4.  電力系統からの受電電力と分散型電源で発電した電力を鉛蓄電池に蓄電し、前記分散型電源と前記鉛蓄電池の電力の入出力を制御する電力調整装置(PCS)を介して負荷機器に電力を供給する電力供給システムに用いるエネルギーマネジメントシステム(EMS)であって、
     前記分散型電源の発電電力量を予測する発電電力予測部と、
     前記負荷機器の需要電力量を予測する需用電力予測部と、
     前記予測した発電電力量と需用電力量に応じて、前記鉛蓄電池の動作電圧の目標値を計算する蓄電池目標電圧計算部と、を備え、
     前記電力調整装置に対し、前記鉛蓄電池の動作電圧が前記蓄電池目標電圧計算部にて計算した目標値となるよう、前記分散型電源と前記鉛蓄電池の電力の入出力を制御させることを特徴とするエネルギーマネジメントシステム。
    The power received by the power system and the power generated by the distributed power source are stored in a lead storage battery, and power is supplied to a load device via a power regulator (PCS) that controls input / output of the power of the distributed power source and the lead storage battery. An energy management system (EMS) used in a power supply system for supplying
    A generated power prediction unit for predicting the generated power amount of the distributed power source;
    A demand power prediction unit for predicting the demand power amount of the load device;
    A storage battery target voltage calculation unit that calculates a target value of the operating voltage of the lead storage battery according to the predicted amount of generated power and amount of power for demand, and
    The power adjustment device is configured to control input / output of power of the distributed power source and the lead storage battery so that an operating voltage of the lead storage battery becomes a target value calculated by the storage battery target voltage calculation unit. Energy management system.
  5.  請求項4に記載のエネルギーマネジメントシステムにおいて、
     前記鉛蓄電池の充電可能電力が最大となる蓄電池電圧を最適値としたとき、
     前記蓄電池目標電圧計算部は、
     前記発電電力予測値が大きく前記需用電力予測値が小さい場合には、前記鉛蓄電池の動作電圧の目標値を、前記最適値よりも低い値に設定することを特徴とするエネルギーマネジメントシステム。
    In the energy management system according to claim 4,
    When the storage battery voltage at which the rechargeable power of the lead storage battery is maximized is an optimum value,
    The storage battery target voltage calculator is
    When the predicted generated power value is large and the predicted power demand value is small, the target value of the operating voltage of the lead storage battery is set to a value lower than the optimum value.
  6.  請求項4に記載のエネルギーマネジメントシステムにおいて、
     前記鉛蓄電池の充電可能電力が最大となる蓄電池電圧を最適値としたとき、
     前記蓄電池目標電圧計算部は、
     前記発電電力予測値が小さく前記需用電力予測値が大きい場合には、前記鉛蓄電池の動作電圧の目標値を、前記最適値近傍の値に設定することを特徴とするエネルギーマネジメントシステム。
    In the energy management system according to claim 4,
    When the storage battery voltage at which the rechargeable power of the lead storage battery is maximized is an optimum value,
    The storage battery target voltage calculator is
    When the predicted generated power value is small and the predicted power demand value is large, the target value of the operating voltage of the lead storage battery is set to a value near the optimum value.
PCT/JP2014/051180 2014-01-22 2014-01-22 Power supply system and energy management system used in same WO2015111144A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/051180 WO2015111144A1 (en) 2014-01-22 2014-01-22 Power supply system and energy management system used in same
JP2015527728A JP5994027B2 (en) 2014-01-22 2014-01-22 Power supply system and energy management system used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/051180 WO2015111144A1 (en) 2014-01-22 2014-01-22 Power supply system and energy management system used in same

Publications (1)

Publication Number Publication Date
WO2015111144A1 true WO2015111144A1 (en) 2015-07-30

Family

ID=53680976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051180 WO2015111144A1 (en) 2014-01-22 2014-01-22 Power supply system and energy management system used in same

Country Status (2)

Country Link
JP (1) JP5994027B2 (en)
WO (1) WO2015111144A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105244900A (en) * 2015-11-20 2016-01-13 许继集团有限公司 Frequency shift control-based micro grid off-grid energy balance control method
CN105576710A (en) * 2016-02-18 2016-05-11 东南大学 Configuration method for distributed power supply in comprehensive energy system
CN106229992A (en) * 2016-08-29 2016-12-14 西电通用电气自动化有限公司 Energy management method for micro-grid under electricity market
CN110380441A (en) * 2019-07-19 2019-10-25 国电南瑞科技股份有限公司 The locking of identification extra-high voltage direct-current, the steady control criterion method and apparatus for restarting state
WO2020155303A1 (en) * 2019-02-01 2020-08-06 国网江苏省电力有限公司 Battery energy storage network load interaction method, terminal, system and medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012165501A (en) * 2011-01-17 2012-08-30 Jc Service Co Ltd Multi-base point connection type power saving control system
JP2013165534A (en) * 2010-06-03 2013-08-22 Sanyo Electric Co Ltd Power supply control device
JP2013176234A (en) * 2012-02-27 2013-09-05 Hitachi Ltd Stand-alone power supply system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5639540B2 (en) * 2011-06-29 2014-12-10 株式会社日立製作所 Storage battery supply and demand plan creation device and storage battery supply and demand plan creation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013165534A (en) * 2010-06-03 2013-08-22 Sanyo Electric Co Ltd Power supply control device
JP2012165501A (en) * 2011-01-17 2012-08-30 Jc Service Co Ltd Multi-base point connection type power saving control system
JP2013176234A (en) * 2012-02-27 2013-09-05 Hitachi Ltd Stand-alone power supply system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105244900A (en) * 2015-11-20 2016-01-13 许继集团有限公司 Frequency shift control-based micro grid off-grid energy balance control method
CN105576710A (en) * 2016-02-18 2016-05-11 东南大学 Configuration method for distributed power supply in comprehensive energy system
CN106229992A (en) * 2016-08-29 2016-12-14 西电通用电气自动化有限公司 Energy management method for micro-grid under electricity market
WO2020155303A1 (en) * 2019-02-01 2020-08-06 国网江苏省电力有限公司 Battery energy storage network load interaction method, terminal, system and medium
US11081885B2 (en) 2019-02-01 2021-08-03 State Grid Jiangsu Electric Power Co., Ltd. Battery energy storage grid-load interactive method, terminal, system and medium for superimposed control
CN110380441A (en) * 2019-07-19 2019-10-25 国电南瑞科技股份有限公司 The locking of identification extra-high voltage direct-current, the steady control criterion method and apparatus for restarting state
CN110380441B (en) * 2019-07-19 2021-01-22 国电南瑞科技股份有限公司 Stability control criterion method and device for identifying locking and restarting states of extra-high voltage direct current

Also Published As

Publication number Publication date
JPWO2015111144A1 (en) 2017-03-23
JP5994027B2 (en) 2016-09-21

Similar Documents

Publication Publication Date Title
JP5327407B2 (en) Storage battery system and control method thereof
EP3029804B1 (en) Charging facility and energy management method for charging facility
EP2587623B1 (en) Dc power distribution system
JP6304008B2 (en) Power supply system
JP5738212B2 (en) Power storage type power generation system
WO2010016158A1 (en) Secondary battery control apparatus and control method
US20130187466A1 (en) Power management system
JP4369450B2 (en) Power supply system
US10084314B2 (en) Storage battery equipment
JP2008283853A (en) Method for charging battery of autonomic system
JP5994027B2 (en) Power supply system and energy management system used therefor
JPWO2010125878A1 (en) Control apparatus and control method
JP2013176282A (en) Power generation system provided with power generation facilities and power storage device, control method thereof and program
JP2014131369A (en) Power control system
US9608449B2 (en) Power system and control method of the power system
KR101215396B1 (en) Hybrid smart grid uninterruptible power supply using discharge current control
KR102053812B1 (en) Method and system for controlling power conversion system connected to hybrid battery
JP2016041002A (en) Charging/discharging control device and charging/discharging control method
JP6055968B2 (en) Power system
JP2013031349A (en) Storage battery system
JP7331562B2 (en) Power supply and demand control system, power supply and demand control device, and power supply and demand control method
JP2019030162A (en) Distribution-type power supply system
JP6351200B2 (en) Power supply system
JP6865651B2 (en) Distributed power system
WO2019097582A1 (en) Dc power supply system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015527728

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14879303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14879303

Country of ref document: EP

Kind code of ref document: A1