WO2019097361A1 - Organic compound, light-emitting element, light-emitting device, electronic device, and illumination device - Google Patents

Organic compound, light-emitting element, light-emitting device, electronic device, and illumination device Download PDF

Info

Publication number
WO2019097361A1
WO2019097361A1 PCT/IB2018/058759 IB2018058759W WO2019097361A1 WO 2019097361 A1 WO2019097361 A1 WO 2019097361A1 IB 2018058759 W IB2018058759 W IB 2018058759W WO 2019097361 A1 WO2019097361 A1 WO 2019097361A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
group
substituted
ring
light
Prior art date
Application number
PCT/IB2018/058759
Other languages
French (fr)
Japanese (ja)
Other versions
WO2019097361A8 (en
Inventor
山口知也
吉住英子
木戸裕允
瀬尾哲史
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to CN201880074106.2A priority Critical patent/CN111727192A/en
Priority to JP2019554055A priority patent/JP7275042B2/en
Priority to KR1020207016179A priority patent/KR20200088367A/en
Publication of WO2019097361A1 publication Critical patent/WO2019097361A1/en
Publication of WO2019097361A8 publication Critical patent/WO2019097361A8/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair

Definitions

  • One embodiment of the present invention relates to an organic compound, a light-emitting element, a light-emitting device, an electronic device, and a lighting device.
  • one embodiment of the present invention is not limited thereto. That is, one aspect of the present invention relates to an object, a method, a manufacturing method, or a driving method. Alternatively, one aspect of the present invention relates to a process, a machine, a manufacture, or a composition (composition of matter). Further, specifically, a semiconductor device, a display device, a liquid crystal display device, and the like can be given as an example.
  • a light-emitting element (also referred to as an organic EL element) in which an EL layer is sandwiched between a pair of electrodes has characteristics such as thinness and lightness, high-speed response to input signals, and low power consumption. Has attracted attention as a next-generation flat panel display.
  • the light emitting element when a voltage is applied between a pair of electrodes, electrons and holes injected from each electrode are recombined in the EL layer, and the light emitting substance (organic compound) contained in the EL layer is in an excited state. It emits light when the excited state returns to the ground state.
  • a compound capable of converting energy in a singlet excited state into light emission is called a fluorescent compound (fluorescent material) and can convert energy in a triplet excited state into light emission.
  • fluorescent compound fluorescent material
  • phosphorescent compounds phosphorescent materials
  • the theoretical limit of the internal quantum efficiency (the ratio of photons generated to injected carriers) in the light emitting element using each light emitting material is the case of using a fluorescent material Is 25%, and 75% when a phosphorescent material is used.
  • novel organometallic complexes are provided.
  • a novel organometallic complex excellent in heat resistance is provided.
  • a novel organometallic complex which is not easily decomposed upon sublimation is provided.
  • a novel organometallic complex with high color purity is provided.
  • a novel organometallic complex with high molecular orientation is provided.
  • a novel organometallic complex which can be used for a light-emitting element is provided.
  • a novel organometallic complex which can be used for an EL layer of a light-emitting element is provided.
  • the present invention provides a highly efficient and highly reliable novel light-emitting element using the novel organometallic complex which is one embodiment of the present invention.
  • a novel light emitting device, a novel electronic device, or a novel lighting device is provided. Note that the descriptions of these objects do not disturb the existence of other objects. Further, one aspect of the present invention does not necessarily have to solve all of these problems. In addition, problems other than these are naturally apparent from the description of the specification, drawings, claims, etc., and other problems can be extracted from the descriptions of the specification, drawings, claims, etc. It is.
  • the pyrimidine ring coordinated to Ir has at least one phenyl group having a cyano group as a substituent, and a phenyl group having a cyano group is bonded to the 6 position of the pyrimidine ring.
  • It is an organometallic complex represented by the following general formula (G1).
  • R 1 to R 4 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 5 to 7 carbon atoms forming a ring. And a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms forming the ring.
  • R 5 to R 9 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a carbon number forming the ring It represents either a 3-12 substituted or unsubstituted heteroaryl group or a cyano group, and at least one represents a cyano group.
  • L represents a monoanionic ligand.
  • n represents an integer of 1 to 3.
  • Another embodiment of the present invention is an organometallic complex represented by the following general formula (G1).
  • R 1 to R 4 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 5 to 7 carbon atoms forming a ring. And a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms forming the ring.
  • R 5 to R 9 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a carbon number forming the ring It represents either a 3-12 substituted or unsubstituted heteroaryl group or a cyano group.
  • any one of R 6 to R 8 represents a cyano group.
  • L represents a monoanionic ligand.
  • n represents an integer of 1 to 3.
  • n 2
  • the monoanionic ligand is a monoanionic bidentate chelating ligand having a ⁇ -diketone structure, a monoanionic bidentate chelating ligand having a carboxyl group, a phenolic A metal-carbon bond is formed with iridium by a monoanionic bidentate chelate ligand having a hydroxyl group, a monoanionic bidentate chelate ligand in which both coordination elements are nitrogen, or cyclometalation Any one of aromatic heterocyclic bidentate ligands.
  • the monoanionic ligand is any one of the following general formulas (L1) to (L8).
  • R 71 to R 77 and R 87 to R 131 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, or 5 to 6 carbon atoms forming a ring.
  • a 1 ⁇ A 3 represents a sp 2 hybridized carbon, each having a sp 2 hybridized carbon bonded to the nitrogen or independently hydrogen or a substituent, the substituent is an alkyl group having 1 to 6 carbon atoms, a halogen group, It represents either a haloalkyl group having 1 to 6 carbon atoms or a substituted or unsubstituted phenyl group.
  • n 3.
  • Another embodiment of the present invention is an organometallic complex represented by the following general formula (G2).
  • R 1 to R 4 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 5 to 7 carbon atoms forming a ring. And a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms forming the ring.
  • R 5 to R 9 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a carbon number forming the ring It represents either a 3-12 substituted or unsubstituted heteroaryl group or a cyano group, and at least one represents a cyano group.
  • R 71 and R 73 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 5 to 7 carbon atoms forming a ring, a halogen group, a vinyl group, or a substituted group Or an unsubstituted haloalkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 6 carbon atoms, a substituted or unsubstituted alkylthio group having 1 to 6 carbon atoms, or a ring having 6 carbon atoms Represents a substituted or unsubstituted aryl group of -13.
  • Another embodiment of the present invention is an organometallic complex represented by the following general formula (G2).
  • R 1 to R 4 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 5 to 7 carbon atoms forming a ring. And a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms forming the ring.
  • R 5 to R 9 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a carbon number forming the ring It represents either a 3-12 substituted or unsubstituted heteroaryl group or a cyano group.
  • any one of R 6 to R 8 represents a cyano group.
  • R 71 and R 73 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 5 to 7 carbon atoms forming a ring, a halogen group, a vinyl group, or a substituted group Or an unsubstituted haloalkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 6 carbon atoms, a substituted or unsubstituted alkylthio group having 1 to 6 carbon atoms, or a ring having 6 carbon atoms Represents a substituted or unsubstituted aryl group of -13.
  • the pyrimidine ring coordinated to Ir has at least one phenyl group having a cyano group as a substituent, and the phenyl group having a cyano group in the para or meta position is a pyrimidine It is an organometallic complex bonded to the 6-position of the ring.
  • Another embodiment of the present invention is an organometallic complex represented by Structural Formula (100).
  • the pyrimidine ring coordinated to Ir has at least one phenyl group having a cyano group as a substituent, and the phenyl group having a cyano group is bonded to the 6 position of the pyrimidine ring A light emitting element using an organometallic complex.
  • a light-emitting element having another organic compound in addition to the above organometallic complex is also included in one embodiment of the present invention.
  • Another embodiment of the present invention is a light-emitting element using the organometallic complex which is one embodiment of the present invention described above.
  • an EL layer formed between a pair of electrodes and a light emitting element formed using the organometallic complex which is an embodiment of the present invention in the light emitting layer included in the EL layer are also included in an embodiment of the present invention.
  • a light-emitting device including a transistor, a substrate, and the like in addition to the light-emitting element is also included in the scope of the invention.
  • electronic devices and lighting devices having a microphone, a camera, an operation button, an external connection portion, a housing, a cover, a support, a speaker, and the like are also included in the scope of the invention.
  • the organometallic complex which is one embodiment of the present invention can be used in the light emitting layer of a light emitting element in combination with another organic compound. That is, since light emission from the triplet excited state can be obtained from the light emitting layer, the efficiency of the light emitting element can be increased, which is very effective. Therefore, a light-emitting element in which the organometallic complex which is one embodiment of the present invention is combined with another organic compound and used for the light-emitting layer is included in one embodiment of the present invention. Furthermore, in addition to the above, a third substance may be added to the light emitting layer.
  • one embodiment of the present invention includes a light-emitting device having a light-emitting element, and further includes a lighting device having a light-emitting device in its category.
  • a light emitting device herein refers to an image display device, or a light source (including a lighting device).
  • a module in which a connector such as a flexible printed circuit (FPC) or a TCP (Tape Carrier Package) is attached to a light emitting device a module in which a printed wiring board is provided ahead of TCP, or a chip on glass (COG) for a light emitting device
  • FPC flexible printed circuit
  • TCP Transmission Carrier Package
  • COG chip on glass
  • One aspect of the present invention can provide a novel organometallic complex.
  • a novel organometallic complex excellent in heat resistance can be provided.
  • one embodiment of the present invention can provide a novel organometallic complex with high color purity.
  • a novel organometallic complex with high molecular orientation can be provided.
  • a novel organometallic complex which can be used for a light-emitting element can be provided.
  • a novel organometallic complex which can be used for an EL layer of a light-emitting element can be provided.
  • a highly efficient and highly reliable novel light-emitting element using the novel organometallic complex which is one embodiment of the present invention can be provided.
  • a novel light-emitting device, a novel electronic device, or a novel lighting device can be provided. Note that the description of these effects does not disturb the existence of other effects. Note that one embodiment of the present invention does not necessarily have all of these effects. Note that effects other than these are naturally apparent from the description of the specification, drawings, claims and the like, and other effects can be extracted from the descriptions of the specification, drawings, claims and the like. It is.
  • FIG. 7 illustrates a light-emitting device.
  • FIG. 7 illustrates a light-emitting device.
  • 5A to 5C illustrate electronic devices.
  • 5A to 5C illustrate electronic devices.
  • FIG. The figure explaining a lighting installation.
  • 5A to 5C illustrate light-emitting elements.
  • FIG. 16 shows current density-luminance characteristics of the light-emitting element 1 and the comparative light-emitting element 2.
  • FIG. 16 shows current density-luminance characteristics of the light-emitting element 1 and the comparative light-emitting element 2.
  • FIG. 16 shows voltage-luminance characteristics of the light-emitting element 1 and the comparative light-emitting element 2.
  • FIG. 16 shows luminance-current efficiency characteristics of the light-emitting element 1 and the comparative light-emitting element 2.
  • FIG. 18 shows voltage-current characteristics of the light-emitting element 1 and the comparative light-emitting element 2.
  • FIG. 16 shows emission spectra of the light-emitting element 1 and the comparative light-emitting element 2.
  • FIG. 18 shows the reliability of the light-emitting element 1 and the comparative light-emitting element 2; The figure which shows the measurement result by a quadrupole mass spectrometer.
  • 11 shows an ultraviolet-visible absorption spectrum and an emission spectrum of a solution of an organometallic complex represented by a structural formula (112).
  • 16 shows an ultraviolet-visible absorption spectrum and an emission spectrum of a solution of an organometallic complex represented by a structural formula (114).
  • Embodiment 1 In this embodiment, an organometallic complex which is one embodiment of the present invention is described.
  • the pyrimidine ring coordinated to Ir has at least one phenyl group having a cyano group as a substituent, and the phenyl group having a cyano group is 6 It has a structure represented by the following general formula (G1) characterized by bonding to
  • R 1 to R 4 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 5 to 7 carbon atoms forming the ring, or a ring Or a substituted or unsubstituted aryl group having 6 to 13 carbon atoms that forms R.sup.13 or a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms that forms a ring.
  • R 5 to R 9 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a carbon number forming the ring It represents either a 3-12 substituted or unsubstituted heteroaryl group or a cyano group, and at least one represents a cyano group.
  • L represents a monoanionic ligand.
  • n represents an integer of 1 to 3.
  • the organometallic complex which is another aspect of the present invention has a structure represented by the above general formula (G1), and in the above general formula (G1), R 1 to R 4 are each independently hydrogen, It represents either an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, or a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms.
  • R 5 to R 9 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, or a substituted or unsubstituted heterocycloalkyl having 3 to 12 carbon atoms. It represents either an aryl group or a cyano group.
  • any one of R 6 to R 8 represents a cyano group.
  • L represents a monoanionic ligand.
  • n represents an integer of 1 to 3.
  • n in the general formula (G1) is 2.
  • the organometallic complex which is another aspect of the present invention is characterized in that the monoanionic ligand in the general formula (G1) is a monoanionic bidentate chelating ligand having a ⁇ -diketone structure, a carboxyl group A monoanionic bidentate chelate ligand having a monobasic, a monoanionic bidentate chelate ligand having a phenolic hydroxyl group, and a monoanionic bidentate chelate ligand in which both coordination elements are nitrogen Or an aromatic heterocyclic bidentate ligand which forms a metal-carbon bond with iridium by cyclometalation.
  • the monoanionic ligand in the general formula (G1) is a monoanionic bidentate chelating ligand having a ⁇ -diketone structure, a carboxyl group
  • a monoanionic bidentate chelate ligand having a monobasic a monoanionic bidentate chelate ligand having a phenolic
  • Another aspect of the present invention is an organometallic complex in which the monoanionic ligand in the general formula (G1) is any one of the following general formulas (L1) to (L8).
  • R 71 to R 77 and R 87 to R 131 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, or a substituent having 5 to 7 carbon atoms forming a ring.
  • a 1 ⁇ A 3 each represent a sp 2 hybridized carbon bonded to the nitrogen or independently hydrogen or sp 2 hybridized carbon having a substituent, said substituent is an alkyl group having 1 to 6 carbon atoms, a halogen group Or a haloalkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted phenyl group.
  • n in the general formula (G1) is 3.
  • an organometallic complex which is another embodiment of the present invention has a structure represented by the following general formula (G2).
  • R 1 to R 4 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 5 to 7 carbon atoms which forms a ring, or a ring Or a substituted or unsubstituted aryl group having 6 to 13 carbon atoms that forms R.sup.13 or a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms that forms a ring.
  • R 5 to R 9 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a carbon number forming the ring It represents either a 3-12 substituted or unsubstituted heteroaryl group or a cyano group, and at least one represents a cyano group.
  • R 71 and R 73 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 5 to 7 carbon atoms forming a ring, a halogen group, a vinyl group, or a substituted group Or an unsubstituted haloalkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 6 carbon atoms, a substituted or unsubstituted alkylthio group having 1 to 6 carbon atoms, or a ring having 6 carbon atoms Represents a substituted or unsubstituted aryl group of -13.
  • the organometallic complex which is another aspect of the present invention has a structure represented by the above general formula (G2), and in the above general formula (G2), R 1 to R 4 are each independently hydrogen, An alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 5 to 7 carbon atoms forming a ring, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming a ring, or a ring Or represents a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms.
  • R 5 to R 9 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a carbon number forming the ring It represents either a 3-12 substituted or unsubstituted heteroaryl group or a cyano group.
  • any one of R 6 to R 8 represents a cyano group.
  • R 71 and R 73 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 5 to 7 carbon atoms forming a ring, a halogen group, a vinyl group, or a substituted group Or an unsubstituted haloalkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 6 carbon atoms, a substituted or unsubstituted alkylthio group having 1 to 6 carbon atoms, or a ring having 6 carbon atoms Represents a substituted or unsubstituted aryl group of -13.
  • the substitution is preferably methyl group, ethyl group, n-propyl group, isopropyl group, sec-butyl group, alkyl group having 1 to 6 carbon atoms such as tert-butyl group, n-pentyl group, n-hexyl group, phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 1-naphthyl group, It represents substitution by a substituent such as an aryl group having 6 to 12 carbon atoms such as a 2-naphthyl group, a 2-biphenyl group, a 3-biphenyl group, and a 4-biphenyl group.
  • substituents may be bonded to each other to form a ring.
  • the aryl group is a 2-fluorenyl group having two phenyl groups at the 9-position as a substituent
  • the phenyl groups are bonded to each other to form a spiro-9,9'-bifluoren-2-yl group It is good. More specifically, for example, phenyl group, tolyl group, xylyl group, biphenyl group, indenyl group, naphthyl group, fluorenyl group and the like can be mentioned.
  • examples of the alkyl group having 1 to 6 carbon atoms in R 1 to R 9 in the formula include a methyl group.
  • the cycloalkyl group include a cyclopentyl group, a cyclohexyl group, a cycloheptyl group and the like.
  • the aryl group include a phenyl group, a biphenyl group, a naphthyl group, an indenyl group, a fluorenyl group and the like.
  • the heteroaryl group include triazinyl, pyrazinyl, pyrimidinyl, pyridinyl, quinolinyl, isoquinolinyl, benzothienyl, benzofuranyl, indolyl, dibenzothienyl, dibenzofuranyl, carbazolyl and the like. Can be mentioned.
  • organometallic complex represented by the structural formulas (100) to (134) is an example of the organometallic complex represented by the general formula (G1), and the organometallic complex according to one aspect of the present invention is Not limited to this.
  • mode of this invention is represented by the following general formula (G1)
  • G1-2 general formula (G1-2) shown below
  • the pyrimidine derivative represented by the following general formula (G0) (ligand contained in the general formula (G1)) can be conveniently synthesized, for example, by the synthesis method shown below. Here, three types of synthesis methods are shown: a first synthesis method, a second synthesis method, and a third synthesis method.
  • R 1 to R 4 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 5 to 7 carbon atoms which forms a ring,
  • the ring represents a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, or a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms forming the ring.
  • R 5 to R 9 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a carbon number forming the ring It represents either a 3-12 substituted or unsubstituted heteroaryl group or a cyano group, and at least one represents a cyano group.
  • X 1 and X 2 each represent a halogen
  • R 1 to R 4 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, or 5 carbon atoms forming a ring.
  • -7 substituted or unsubstituted cycloalkyl group, substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming a ring, or substituted or unsubstituted heteroaryl having 3 to 12 carbon atoms forming a ring Represents any of the groups.
  • R 5 to R 9 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a carbon number forming the ring It represents either a 3-12 substituted or unsubstituted heteroaryl group or a cyano group, and at least one represents a cyano group.
  • X 3 represents a halogen
  • B 1 represents a boronic acid or a boronic ester, a cyclic triol borate salt or the like.
  • the cyclic triol borate salt may use a potassium salt or a sodium salt.
  • R 1 to R 4 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 5 to 7 carbon atoms forming the ring, or 6 carbon atoms forming the ring It represents either a substituted or unsubstituted aryl group of ⁇ 13 or a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms forming a ring.
  • R 5 to R 9 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a carbon number forming the ring It represents either a 3-12 substituted or unsubstituted heteroaryl group or a cyano group, and at least one represents a cyano group.
  • the pyrimidine derivative represented by the above general formula (G0) has a benzene derivative-substituted diketone (A1 ′ ′) and formamide (A2 ′ ′) as a microwave as shown in the following synthesis scheme (A-1 ′ ′) It can be obtained by reacting using
  • R 1 to R 4 each independently represent a hydrogen, an alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted one having 5 to 7 carbon atoms forming a ring.
  • the cycloalkyl group is a cycloalkyl group, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming a ring, or a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms forming a ring.
  • R 5 to R 9 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a carbon number forming the ring It represents either a 3-12 substituted or unsubstituted heteroaryl group or a cyano group, and at least one represents a cyano group.
  • the organometallic complex represented by the above general formula (G1-1) is a metal compound of Group 9 or 10 containing a halogen (rhodium chloride hydrate, Palladium chloride, iridium chloride, iridium bromide, iridium iodide, potassium tetrachloroplatinate, etc., and a pyrimidine derivative represented by the general formula (G0), as a solventless or alcohol solvent (glycerol, ethylene glycol, 2 -An organic metal having a structure crosslinked with a halogen by heating in an inert gas atmosphere using methoxyethanol, 2-ethoxyethanol etc.) alone or a mixed solvent of one or more alcohol solvents and water
  • a dinuclear complex (B) which is a kind of complex and is a novel substance can be obtained.
  • a heating means An oil bath, a sand bath, or an aluminum block may be used.
  • An oil bath, a sand bath, or an aluminum block may
  • X represents a halogen
  • R 1 to R 4 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, or a substituent having 5 to 7 carbon atoms forming a ring.
  • R 5 to R 9 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a carbon number forming the ring It represents either a 3-12 substituted or unsubstituted heteroaryl group or a cyano group, and at least one represents a cyano group.
  • the binuclear complex (B) obtained in the above synthesis scheme (A-2) and the raw material HL of the monoanionic ligand are inactive
  • the proton of HL is eliminated and L is coordinated to the central metal M, whereby an organometallic complex represented by General Formula (G1-1) can be obtained.
  • a heating means An oil bath, a sand bath, or an aluminum block may be used.
  • a microwave it is also possible to use a microwave as a heating means.
  • L represents a monoanionic ligand
  • X represents a halogen
  • R 1 to R 4 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms
  • a substituted or unsubstituted heteroaryl group of R 5 to R 9 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a carbon number forming the ring It represents either a 3-12 substituted or unsubstituted heteroaryl group or a cyano group, and at least one represents a cyano group.
  • the organometallic complex represented by the above general formula (G1-2) is an iridium compound containing halogen (iridium chloride hydrate, iridium bromide, iridium iodide, Iridium acetate, ammonium hexachloroiridate, etc., or organic iridium complex compounds (acetylacetonato complex, diethyl sulfide complex, di- ⁇ -chloro bridged dinuclear complex, di- ⁇ -hydroxo bridged dinuclear complex, etc.), Obtained by mixing with a pyrimidine derivative represented by (G0), dissolving it in a solventless or alcohol solvent (glycerol, ethylene glycol, 2-methoxyethanol, 2-ethoxyethanol etc.) and heating it.
  • a solventless or alcohol solvent glycerol, ethylene glycol, 2-methoxyethanol, 2-ethoxyethanol etc.
  • R 1 to R 4 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted cycloalkyl having 5 to 7 carbon atoms forming a ring And a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms forming the ring.
  • R 5 to R 9 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a carbon number forming the ring It represents either a 3-12 substituted or unsubstituted heteroaryl group or a cyano group, and at least one represents a cyano group.
  • organometallic complex which is one embodiment of the present invention
  • a method of synthesizing an organometallic complex represented by General Formula (G1), General Formula (G1-1), and General Formula (G1-2) has been described.
  • the present invention is not limited thereto, and may be synthesized by other synthesis methods.
  • a light-emitting element a light-emitting device, an electronic device, or a lighting device with high emission efficiency can be realized.
  • a highly reliable light-emitting element, light-emitting device, electronic device, or lighting device can be realized.
  • one embodiment of the present invention has been described in this embodiment. Another embodiment of the present invention will be described in another embodiment. However, one embodiment of the present invention is not limited to these. That is, since various aspects of the invention are described in this embodiment and the other embodiments, one aspect of the present invention is not limited to a particular aspect. For example, although an example in the case of applying to a light-emitting element is shown as one embodiment of the present invention, one embodiment of the present invention is not limited thereto. Further, depending on the situation, one embodiment of the present invention may be applied to devices other than light-emitting elements. In addition, depending on the situation, one embodiment of the present invention may not be applied to a light-emitting element.
  • FIG. 1A illustrates a light-emitting element in which an EL layer is sandwiched between a pair of electrodes. Specifically, the EL layer 103 including a light emitting layer is sandwiched between the first electrode 101 and the second electrode 102.
  • FIG. 1B a plurality of (two layers in FIG. 1B) EL layers (103a and 103b) are provided between a pair of electrodes, and the charge generation layer 104 is interposed between the EL layers.
  • 6 shows a light emitting element with a stacked structure (tandem structure). Such a light emitting element having a tandem structure can realize a light emitting device which can be driven at low voltage and consumes low power.
  • the charge generation layer 104 injects electrons into one of the EL layers (103a or 103b) and the other EL layer (103b or 103a).
  • the charge generation layer 104 preferably has transparency to visible light (specifically, the visible light transmittance of the charge generation layer 104 is 40% or more) from the viewpoint of light extraction efficiency. In addition, the charge generation layer 104 functions even when the conductivity is lower than that of the first electrode 101 and the second electrode 102.
  • FIG. 1C shows a stack structure of the EL layer 103.
  • the EL layer 103 in the case where the first electrode 101 functions as an anode, the EL layer 103 includes a hole injection layer 111, a hole transport layer 112, and the like over the first electrode 101.
  • the light emitting layer 113, the electron transport layer 114, and the electron injection layer 115 are sequentially stacked.
  • each EL layer is sequentially stacked from the anode side as described above.
  • the stacking order is reversed.
  • the light-emitting layers 113 included in the EL layers (103, 103a, and 103b) each have a light-emitting substance or a plurality of substances in combination as appropriate, and can be configured to obtain fluorescence or phosphorescence which exhibits a desired emission color. be able to.
  • the light emitting layer 113 may have a stacked structure in which light emitting colors are different.
  • different materials may be used for the light-emitting substance and the other substances used for the stacked light-emitting layers.
  • different emission colors may be obtained from the plurality of EL layers (103a and 103b) illustrated in FIG. 1B.
  • different materials may be used for the light-emitting substances and other substances used for each light-emitting layer.
  • the obtained light emission may be strengthened by resonating the light emission obtained in the EL layers (103, 103a, 103b) between both electrodes.
  • a minute optical resonator (microcavity) structure is formed by using the first electrode 101 as a reflective electrode and the second electrode 102 as a semi-transmissive and semi-reflective electrode, and an EL layer is formed.
  • the light emission obtained from 103 can be intensified.
  • the first electrode 101 of the light emitting element is a reflective electrode having a laminated structure of a reflective conductive material and a light transmissive conductive material (transparent conductive film)
  • a film of a transparent conductive film Optical control can be performed by controlling the thickness.
  • the inter-electrode distance between the first electrode 101 and the second electrode 102 is near m ⁇ / 2 (where m is a natural number) with respect to the wavelength ⁇ of light obtained from the light emitting layer 113. It is preferable to adjust as follows.
  • an optical distance from the first electrode 101 to a region (light emitting region) from which the desired light of the light emitting layer 113 can be obtained is adjusted to be (2 m ′ + 1) ⁇ / 4 (where m ′ is a natural number) It is preferable to do.
  • the light emitting region referred to here indicates a recombination region of holes and electrons in the light emitting layer 113.
  • the spectrum of specific monochromatic light obtained from the light emitting layer 113 can be narrowed, and light emission with high color purity can be obtained.
  • the optical distance between the first electrode 101 and the second electrode 102 may be strictly referred to as the total thickness from the reflective region in the first electrode 101 to the reflective region in the second electrode 102. it can. However, since it is difficult to precisely determine the reflection area of the first electrode 101 and the second electrode 102, it is assumed that an arbitrary position of the first electrode 101 and the second electrode 102 is a reflection area. The above-mentioned effects can be sufficiently obtained.
  • the optical distance between the first electrode 101 and the light emitting layer from which desired light is obtained is strictly the optical distance between the reflective region of the first electrode 101 and the light emitting region in the light emitting layer from which desired light is obtained. It can be said that it is a distance.
  • any position of the first electrode 101 is a reflective region, Assuming that any position of the light emitting layer from which light is obtained is a light emitting region, the above effect can be sufficiently obtained.
  • the light-emitting element illustrated in FIG. 1C has a microcavity structure
  • light monochromatic light
  • EL layer is common. Therefore, it is not necessary to perform separate coloring (for example, RGB) to obtain different luminescent colors, and high definition can be achieved.
  • the combination with a colored layer is also possible.
  • power consumption can be reduced.
  • At least one of the first electrode 101 and the second electrode 102 is a light-transmitting electrode (a transparent electrode, a semitransparent / semireflective electrode, or the like) Do.
  • the translucent electrode is a transparent electrode
  • the visible light transmittance of the transparent electrode is 40% or more.
  • the reflectance of visible light of the semi-transmissive and semi-reflective electrode is 20% to 80%, preferably 40% to 70%.
  • these electrodes preferably have a resistivity of 1 ⁇ 10 ⁇ 2 ⁇ cm or less.
  • the first electrode 101 and the second electrode 102 is a reflective electrode (reflective electrode)
  • visible light of the reflective electrode The light reflectance is 40% to 100%, preferably 70% to 100%.
  • this electrode it is preferable that this electrode have a resistivity of 1 ⁇ 10 ⁇ 2 ⁇ cm or less.
  • First electrode and second electrode> As materials for forming the first electrode 101 and the second electrode 102, materials described below can be used in appropriate combination as long as the functions of the both electrodes in the above-described element structure can be satisfied. For example, metals, alloys, electrically conductive compounds, and mixtures thereof can be used as appropriate. Specifically, In-Sn oxide (also referred to as ITO), In-Si-Sn oxide (also referred to as ITSO), In-Zn oxide, and In-W-Zn oxide can be mentioned.
  • ITO In-Sn oxide
  • ITSO In-Si-Sn oxide
  • ITSO In-Zn oxide
  • In-W-Zn oxide In-W-Zn oxide
  • elements for example, lithium (Li), cesium (Cs), calcium (Ca), strontium (Sr)), europium (Eu), ytterbium, which belong to Group 1 or Group 2 of the periodic table of the elements not illustrated above. It is possible to use rare earth metals such as (Yb) and alloys containing these in combination as appropriate, graphene and the like.
  • the positive electrode of the EL layer 103 is formed on the first electrode 101.
  • the hole injection layer 111 and the hole transport layer 112 are sequentially laminated by vacuum evaporation.
  • the first electrode is formed.
  • the hole injection layer 111a of the EL layer 103a and the hole transport layer 112a of the EL layer 103a are sequentially laminated by vacuum evaporation, and after the EL layer 103a and the charge generation layer 104 are sequentially laminated, charge generation is performed.
  • the hole injection layer 111 b and the hole transport layer 112 b of the EL layer 103 b are similarly sequentially stacked on the layer 104.
  • the hole injection layer (111, 111a, 111b) is a layer for injecting holes from the first electrode 101 which is an anode or the charge generation layer (104) to the EL layer (103, 103a, 103b). And a layer containing a material having a high hole injection property.
  • Materials having high hole injection properties include transition metal oxides such as molybdenum oxide, vanadium oxide, ruthenium oxide, tungsten oxide, and manganese oxide.
  • transition metal oxides such as molybdenum oxide, vanadium oxide, ruthenium oxide, tungsten oxide, and manganese oxide.
  • phthalocyanine-based compounds such as phthalocyanine (abbreviation: H 2 Pc) and copper phthalocyanine (abbreviation: CuPC) can be used.
  • poly (N-vinylcarbazole) (abbreviation: PVK), poly (4-vinyltriphenylamine) (abbreviation: PVTPA), poly [N- (4), which is a high molecular compound (oligomer, dendrimer, polymer, etc.) - ⁇ N '-[4- (4-diphenylamino) phenyl] phenyl-N'-phenylamino ⁇ phenyl) methacrylamide] (abbreviation: PTPDMA), poly [N, N'-bis (4-butylphenyl)- N, N'-bis (phenyl) benzidine] (abbreviation: Poly-TPD) or the like can be used.
  • PVK poly (N-vinylcarbazole)
  • PVTPA poly (4-vinyltriphenylamine)
  • PVTPA poly [N- (4), which is a high molecular compound (oligomer, dendrimer, polymer, etc.
  • an acid such as poly (3,4-ethylenedioxythiophene) / poly (styrene sulfonic acid) (abbr .: PEDOT / PSS), polyaniline / poly (styrene sulfonic acid) (abbr .: PAni / PSS), etc.
  • Molecular compounds and the like can also be used.
  • a composite material including a hole transporting material and an acceptor property material can also be used as a material having a high hole injection property.
  • electrons are extracted from the hole transport material by the acceptor material to generate holes in the hole injection layer (111, 111a, 111b), and the holes are generated through the hole transport layers (112, 112a, 112b). Holes are injected into the light emitting layers (113, 113a, 113b).
  • the hole injection layer (111, 111a, 111b) may be formed as a single layer made of a composite material including a hole transporting material and an acceptor material (electron accepting material).
  • the material and the acceptor material (electron accepting material) may be stacked in separate layers.
  • the hole transport layer (112, 112a, 112b) emits holes injected from the first electrode 101 and the charge generation layer 104 by the hole injection layer (111, 111a, 111b) into the light emitting layer (113, 113a, 113b) transport layer.
  • the hole transport layer (112, 112a, 112b) is a layer containing a hole transport material.
  • the hole transporting material used for the hole transporting layer (112, 112a, 112b) in particular, one having a HOMO level equal to or close to the HOMO level of the hole injecting layer (111, 111a, 111b) is used Is preferred.
  • an oxide of a metal belonging to Groups 4 to 8 in the periodic table of elements can be used.
  • molybdenum oxide, vanadium oxide, niobium oxide, tantalum oxide, chromium oxide, tungsten oxide, manganese oxide, and rhenium oxide can be mentioned.
  • molybdenum oxide is particularly preferable because it is stable in the air, has low hygroscopicity, and is easy to handle.
  • organic acceptors such as quinodimethane derivatives, chloranil derivatives and hexaazatriphenylene derivatives can be used.
  • HAT-CN 7,7,8,8-tetracyano-2,3,5,6-tetrafluoroquinodimethane
  • chloranil 2, 3, 6, 7, 10, 11 -Hexacyano-1,4,5,8,9,12-hexaazatriphenylene
  • HAT-CN 2, 3, 6, 7, 10, 11 -Hexacyano-1,4,5,8,9,12-hexaazatriphenylene
  • a compound in which an electron withdrawing group is bonded to a condensed aromatic ring having a plurality of hetero atoms, such as HAT-CN is thermally stable and preferable.
  • [3] radialene derivatives having an electron withdrawing group are preferable because they have very high electron accepting properties, and specifically, ⁇ , ⁇ ′, ⁇ ′ ′- 1,2,3-cyclopropanetriylidenetris [4-cyano-2,3,5,6-tetrafluorobenzeneacetonitrile], ⁇ , ⁇ ′, ⁇ ′ ′-1,2,3-cyclopropanetriylidenetris [2,6-Dichloro-3,5-difluoro-4- (trifluoromethyl) benzeneacetonitrile], ⁇ , ⁇ ′, ⁇ ′ ′-1,2,3-cyclopropanetriylidenetris [2,3,4 , 5, 6-pentafluorobenzene acetonitrile] and the like.
  • a halogen group such as a fluoro group or a cyano group
  • a hole transporting material used for the hole injection layer (111, 111a, 111b) and the hole transporting layer (112, 112a, 112b) a substance having a hole mobility of 10 -6 cm 2 / Vs or more is used. preferable. Note that materials having hole transportability higher than electrons can be used other than these.
  • the hole transporting material is preferably a material having a high hole transporting property, such as a ⁇ electron excess heteroaromatic compound (for example, a compound having a carbazole skeleton or a compound having a furan skeleton) or a compound having an aromatic amine skeleton.
  • a ⁇ electron excess heteroaromatic compound for example, a compound having a carbazole skeleton or a compound having a furan skeleton
  • a compound having an aromatic amine skeleton for example, a compound having a carbazole skeleton or a compound having a furan skeleton
  • hole transporting material examples include 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (abbreviation: NPB or ⁇ -NPD), N, N′-bis (3) -Methylphenyl) -N, N'-diphenyl- [1,1'-biphenyl] -4,4'-diamine (abbreviation: TPD), 4,4'-bis [N- (spiro-9,9'-) Bifluoren-2-yl) -N-phenylamino] biphenyl (abbreviation: BSPB), 4-phenyl-4 ′-(9-phenylfluoren-9-yl) triphenylamine (abbreviation: BPAFLP), 4-phenyl-3 '-(9-phenylfluoren-9-yl) triphenylamine (abbreviation: mBPAFLP), N- (9,9-dimethyl-9H-fluor
  • poly (N-vinylcarbazole) (abbreviation: PVK), poly (4-vinyltriphenylamine) (abbreviation: PVTPA), poly [N- (4- ⁇ N '-[4- (4-diphenylamino)] Phenyl] phenyl-N'-phenylamino ⁇ phenyl) methacrylamide] (abbreviation: PTPDMA), poly [N, N'-bis (4-butylphenyl) -N, N'-bis (phenyl) benzidine] (abbreviation: Polymer compounds such as Poly-TPD) can also be used.
  • the hole transporting material is not limited to the above, and one or more known various materials may be combined to form a hole transporting layer (111, 111a, 111b) and a hole transporting layer as a hole transporting material.
  • (112, 112a, 112b) can be used.
  • the hole transport layers (112, 112a, 112b) may be formed of a plurality of layers, respectively. That is, for example, the first hole transport layer and the second hole transport layer may be stacked.
  • the light emitting layer 113a is formed on the hole transport layer 112a of the EL layer 103a by vacuum evaporation.
  • the light emitting layer 113b is formed on the hole transport layer 112b of the EL layer 103b by vacuum evaporation.
  • the light emitting layer (113, 113a, 113b, 113c) is a layer containing a light emitting substance.
  • a substance exhibiting a light-emitting color such as blue, purple, blue-purple, green, yellowish-green, yellow, orange, red and the like is appropriately used.
  • different light-emitting colors can be obtained (for example, white light emission obtained by combining light-emitting colors in complementary relationship).
  • a stacked structure in which one light emitting layer has different light emitting substances may be employed.
  • the light-emitting layer may have one or more kinds of organic compounds (host material, assist material).
  • organic compounds host material, assist material.
  • the organometallic complex which is one embodiment of the present invention can be used as the light-emitting substance.
  • the one or more organic compounds one or both of the hole transporting material and the electron transporting material described in this embodiment can be used.
  • the light-emitting substance that can be used for the light-emitting layer (113, 113a, 113b, 113c) is not particularly limited, and a light-emitting substance that changes singlet excitation energy to light emission in the visible light region or triplet excitation energy in the visible light region
  • a light-emitting substance that changes the light emission of Examples of the light emitting material include the following.
  • Examples of light-emitting substances that convert singlet excitation energy into light emission include substances that emit fluorescence (fluorescent materials).
  • fluorescent materials include fluorescent materials.
  • pyrene derivatives, anthracene derivatives, triphenylene derivatives, fluorene derivatives, carbazole derivatives, dibenzothiophene derivatives, dibenzofuran derivatives, dibenzo Examples include quinoxaline derivatives, quinoxaline derivatives, pyridine derivatives, pyrimidine derivatives, phenanthrene derivatives, naphthalene derivatives and the like. Particularly, pyrene derivatives are preferable because of high emission quantum yield.
  • pyrene derivatives include N, N'-bis (3-methylphenyl) -N, N'-bis [3- (9-phenyl-9H-fluoren-9-yl) phenyl] pyrene-1,6. -Diamine (abbreviation: 1,6mMemFLPAPrn), N, N'-diphenyl-N, N'-bis [4- (9-phenyl-9H-fluoren-9-yl) phenyl] pyrene-1,6-diamine (abbreviation) N, N'-bis (dibenzofuran-2-yl) -N, N'-diphenylpyrene-1,6-diamine (abbreviation: 1,6 FrAPrn), N, N'-bis (dibenzothiophene) -2-yl) -N, N'-diphenylpyrene-1,6-diamine (abbreviation: 1,6ThAPrn), N, N '-bis
  • a substance that emits phosphorescence (phosphorescent material) and thermally activated delayed fluorescence (TADF) material that exhibits thermally activated delayed fluorescence can be mentioned.
  • Examples of the phosphorescent material include organic metal complexes, metal complexes (platinum complexes), and rare earth metal complexes. Since these exhibit different emission colors (emission peaks) for each substance, they are appropriately selected and used as needed.
  • a phosphorescent material which exhibits blue or green and has a peak wavelength of emission spectrum of 450 nm or more and 570 nm or less, the following substances may be mentioned.
  • a phosphorescent material which exhibits a green or yellow color and has a peak wavelength of emission spectrum of 495 nm or more and 590 nm or less, the following substances can be mentioned.
  • tris (4-methyl-6-phenylpyrimidinato) iridium (III) (abbreviation: [Ir (mppm) 3 ]
  • tris (4-t-butyl-6-phenylpyrimidinato) iridium (III) (Abbreviation: [Ir (tBuppm) 3 ])
  • (acetylacetonato) bis (6-methyl-4-phenylpyrimidinato) iridium (III) abbreviation: [Ir (mppm) 2 (acac)]
  • Acetylacetonato) bis (6-tert-butyl-4-phenylpyrimidinato) iridium (III) (abbreviation: [Ir (tBuppm) 2 (acac)]
  • (acetylacetonato) bis [6- (2- (2-) Norbornyl) -4-phenylpyrimidinato] iridium (III) (abbreviation: [Ir
  • a phosphorescent material which exhibits yellow or red and has a peak wavelength of 570 nm or more and 750 nm or less in the light emission spectrum, the following substances may be mentioned.
  • organic compounds (host materials and assist materials) used for the light emitting layer (113, 113a, 113b, 113c) one or plural kinds of substances having energy gaps larger than the energy gap of the light emitting substance (guest material) are selected It may be used.
  • materials listed as the above-mentioned hole transporting material and materials listed as the electron transporting material described later can also be used as such an organic compound (host material, assist material).
  • the light-emitting substance is a fluorescent material
  • a bipolar material can be used as a host material, but a substance that satisfies the above conditions is more preferable.
  • anthracene derivatives and tetracene derivatives are also suitable.
  • a host material to be combined with a fluorescent light-emitting substance for example, 9-phenyl-3- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazole (abbreviation: PCzPA), PCPN, CzPA, 7- [4- (10-phenyl-9-anthryl) phenyl] -7H-dibenzo [c, g] carbazole (abbreviation: cgDBCzPA), 6- [3- (9,10-diphenyl-2-anthryl) phenyl] -Benzo [b] naphtho [1,2-d] furan (abbreviation: 2mBnfPPA), 9-phenyl-10- ⁇ 4- (9-phenyl-9H-fluoren-9-yl) biphenyl-4'-yl ⁇ anthracene (Abbreviation: FLPPA), 5,12-diphenyltetracene, 5,12-bis (biphen
  • the light-emitting substance is a phosphorescent material
  • an organic compound having a triplet excitation energy larger than the triplet excitation energy of the light-emitting substance (the energy difference between the ground state and the triplet excited state) may be selected as the host material.
  • a bipolar material can be used as a host material, but a substance that satisfies the above conditions is more preferable.
  • fused polycyclic aromatic compounds such as anthracene derivatives, phenanthrene derivatives, pyrene derivatives, chrysene derivatives, dibenzo [g, p] chrysene derivatives, and the like are also suitable.
  • a host material to be combined with a phosphorescent light-emitting substance for example, 9,10-diphenylanthracene (abbreviation: DPAnth), N, N-diphenyl-9- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazol-3-amine (abbreviation: CzA1PA), 4- (10-phenyl-9-anthryl) triphenylamine (abbreviation: DPhPA), YGAPA, PCAPA, PCAPBA, N- (9, 10-diphenyl-2) -Anthryl) -N, 9-diphenyl-9H-carbazol-3-amine (abbreviation: 2PCAPA), 6,12-dimethoxy-5,11-diphenylchrysene, N, N, N ', N', N ', N ′ ′, N ′ ′ ′, N ′ ′ ′-octaphenyldi
  • a compound which forms an exciplex with a phosphorescent substance it is preferable to use a compound which forms an exciplex with a phosphorescent substance.
  • ExTET Exciplex-Triplet Energy Transfer
  • various organic compounds can be appropriately combined and used, but in order to efficiently form an excited complex, a compound that easily receives holes (hole transportable material) and a compound that easily receives electrons (electrons It is particularly preferred to combine with a transportable material).
  • TADF material refers to a material that can up-convert a triplet excited state to a singlet excited state with slight thermal energy (reverse intersystem crossing) and efficiently exhibit light emission (fluorescence) from the singlet excited state. is there.
  • the energy difference between the triplet excitation level and the singlet excitation level is 0 eV or more and 0.2 eV or less, preferably 0 eV or more and 0.1 eV or less It can be mentioned.
  • the delayed fluorescence in the TADF material refers to light emission having a remarkably long life while having the same spectrum as normal fluorescence. The lifetime is 10 -6 seconds or more, preferably 10 -3 seconds or more.
  • TADF materials include fullerene and derivatives thereof, acridine derivatives such as proflavin, eosin and the like.
  • metal-containing porphyrins including magnesium (Mg), zinc (Zn), cadmium (Cd), tin (Sn), platinum (Pt), indium (In), palladium (Pd) and the like can be mentioned.
  • metal-containing porphyrin examples include protoporphyrin-tin fluoride complex (SnF 2 (Proto IX)), mesoporphyrin-tin fluoride complex (SnF 2 (Meso IX)), hematoporphyrin-tin fluoride complex (SnF 2) (Hemato IX), coproporphyrin tetramethyl ester-tin fluoride complex (SnF 2 (Copro III-4 Me)), octaethylporphyrin-tin fluoride complex (SnF 2 (OEP)), ethioporphyrin-tin fluoride complex (SnF 2 (Etio I)), octaethyl porphyrin-platinum chloride complex (PtCl 2 OEP), and the like.
  • SnF 2 Proto IX
  • SnF 2 mesoporphyrin-tin fluoride complex
  • TADF materials include 2- (biphenyl-4-yl) -4,6-bis (12-phenylindolo [2,3-a] carbazol-11-yl) -1,3,5-triazine Abbreviations: PIC-TRZ), 2- ⁇ 4- [3- (N-phenyl-9H-carbazol-3-yl) -9H-carbazol-9-yl] phenyl ⁇ -4,6-diphenyl-1,3, 5-triazine (abbreviation: PCCzPTzn), 2- [4- (10H-phenoxazin-10-yl) phenyl] -4,6-diphenyl-1,3,5-triazine (abbreviation: PXZ-TRZ), 3- [4- (5-phenyl-5,10-dihydrophenazine-10-yl) phenyl] -4,5-diphenyl-1,2,4-triazole (abbreviation: PPZ-3TPT), 3- (9,
  • the substance in which the ⁇ electron excess heteroaromatic ring and the ⁇ electron deficiency heteroaromatic ring are directly bonded has both the donor property of the ⁇ electron excess heteroaromatic ring and the acceptor activity of the ⁇ electron deficiency heteroaromatic ring. It is particularly preferable because the energy difference between the singlet excited state and the triplet excited state is reduced.
  • TADF material when using a TADF material, it can also be used in combination with another organic compound.
  • the light emitting layers (113, 113a, 113b, 113c) can be formed by appropriately using the above materials. Further, the above materials can be used to form the light emitting layers (113, 113a, 113b, 113c) by combining them with low molecular weight materials or high molecular weight materials.
  • the electron transporting layer 114a is formed over the light emitting layer 113a of the EL layer 103a.
  • the electron transport layer 114b is formed over the light emitting layer 113b of the EL layer 103b.
  • the electron transport layer (114, 114a, 114b) emits light injected from the second electrode 102 or the charge generation layer (104) by the electron injection layer (115, 115a, 115b) to the light emitting layer (113, 113a, 113b).
  • the electron transporting material used for the electron transporting layer (114, 114a, 114b) is preferably a substance having an electron mobility of 1 ⁇ 10 ⁇ 6 cm 2 / Vs or more. Note that materials that can transport electrons more than holes can be used.
  • metal complexes having a quinoline skeleton metal complexes having a benzoquinoline skeleton, metal complexes having an oxazole skeleton, metal complexes having a thiazole skeleton, etc., oxadiazole derivatives, triazole derivatives, imidazole derivatives, Oxazole derivatives, thiazole derivatives, phenanthroline derivatives, quinoline derivatives with quinoline ligands, benzoquinoline derivatives, quinoxaline derivatives, dibenzoquinoxaline derivatives, pyridine derivatives, bipyridine derivatives, pyrimidine derivatives, and other ⁇ -electron deficiency including nitrogen-containing heteroaromatic compounds Materials having high electron transportability such as heteroaromatic compounds can be used.
  • the electron transporting material include tris (8-quinolinolato) aluminum (III) (abbreviation: Alq 3 ), tris (4-methyl-8-quinolinolato) aluminum (III) (abbreviation: Almq 3 ), and bis ( 10-hydroxybenzo [h] quinolinato) beryllium (II) (abbreviation: BeBq 2 ), bis (2-methyl-8-quinolinolato) (4-phenylphenolato) aluminum (III) (abbreviation: BAlq), bis (8) -Quinolinolato) metal complexes having a quinoline skeleton such as zinc (II) (abbreviation: Znq) or a benzoquinoline skeleton, bis [2- (2-benzoxazolyl) phenolato] zinc (II) (abbreviation: ZnPBO), bis [2- (2-Benzothiazolyl) phenolato] zinc (II) (abbreviation: ZnBTZ),
  • poly (2,5-pyridinediyl) (abbreviation: PPy)
  • poly [(9,9-dihexylfluorene-2,7-diyl) -co- (pyridine-3,5-diyl)] (abbreviation: PF -Py)
  • PF -BPy poly [(9,9-dioctyl fluorene-2,7-diyl) -co- (2,2'-bipyridine-6,6'-diyl)]
  • the electron-transporting layer (114, 114a, 114b) is not limited to a single layer, and may have a structure in which two or more layers containing the above substances are stacked.
  • the electron injection layer 115a is formed on the electron transporting layer 114a of the EL layer 103a by a vacuum evaporation method. Thereafter, the EL layer 103a and the charge generation layer 104 are formed, and the electron transport layer 114b of the EL layer 103b is formed, and then the electron injection layer 115b is formed thereon by a vacuum evaporation method.
  • the electron injection layer (115, 115a, 115b) is a layer containing a substance having a high electron injection property.
  • an alkali metal such as lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF 2 ), lithium oxide (LiO x ), etc.
  • alkali Earth metals or compounds thereof can be used.
  • a rare earth metal compound such as erbium fluoride (ErF 3 ) can be used.
  • electride may be used for the electron injection layer (115, 115a, 115b). Examples of electride include a substance in which electrons are added to a mixed oxide of calcium and aluminum at a high concentration, and the like.
  • the substance which comprises the electron carrying layer (114, 114a, 114b) mentioned above can also be used.
  • a composite material formed by mixing an organic compound and an electron donor (donor) may be used for the electron injection layer (115, 115a, 115b).
  • a composite material is excellent in electron injectability and electron transportability because electrons are generated in the organic compound by the electron donor.
  • the organic compound is preferably a material excellent in transporting generated electrons, and specifically, for example, an electron transporting material (metal complex used for the electron transporting layer (114, 114a, 114b) described above And heteroaromatic compounds etc. can be used.
  • the electron donor any substance may be used as long as it exhibits an electron donating property to the organic compound.
  • alkali metals, alkaline earth metals and rare earth metals are preferable, and lithium, cesium, magnesium, calcium, erbium, ytterbium and the like can be mentioned.
  • alkali metal oxides and alkaline earth metal oxides are preferable, and lithium oxide, calcium oxide, barium oxide and the like can be mentioned.
  • Lewis bases such as magnesium oxide can be used.
  • an organic compound such as tetrathiafulvalene (abbreviation: TTF) can also be used.
  • the optical distance between the second electrode 102 and the light-emitting layer 113b is equal to that of light that the light-emitting layer 113b exhibits.
  • it is formed to be less than 1 ⁇ 4 of the wavelength ⁇ .
  • the thickness can be adjusted by changing the film thickness of the electron transport layer 114 b or the electron injection layer 115 b.
  • ⁇ Charge generation layer> In the light-emitting element shown in FIG. 1D, when a voltage is applied between the first electrode (anode) 101 and the second electrode (cathode) 102, the charge generation layer 104 generates electrons in the EL layer 103a. And inject holes into the EL layer 103b.
  • the charge generation layer 104 has a configuration in which an electron acceptor (acceptor) is added to a hole transport material, or a configuration in which an electron donor (donor) is added to an electron transport material. Good. Also, both of these configurations may be stacked. Note that by forming the charge generation layer 104 using the above-described material, an increase in driving voltage in the case where the EL layers are stacked can be suppressed.
  • the material described in this embodiment can be used as the hole transport material.
  • the electron acceptor include 7,7,8,8-tetracyano-2,3,5,6-tetrafluoroquinodimethane (abbreviation: F 4 -TCNQ), chloranil and the like.
  • oxides of metals belonging to Groups 4 to 8 of the periodic table can be given. Specifically, vanadium oxide, niobium oxide, tantalum oxide, chromium oxide, molybdenum oxide, tungsten oxide, manganese oxide, rhenium oxide and the like can be mentioned.
  • the material described in this embodiment can be used as the electron transport material.
  • the electron donor an alkali metal, an alkaline earth metal, a rare earth metal, a metal belonging to Groups 2 and 13 of the periodic table, or an oxide or carbonate thereof can be used.
  • lithium (Li), cesium (Cs), magnesium (Mg), calcium (Ca), ytterbium (Yb), indium (In), lithium oxide, cesium carbonate or the like is preferably used.
  • an organic compound such as tetrathianaphthacene may be used as the electron donor.
  • the light-emitting elements described in this embodiment can be formed over various substrates.
  • substrate is not limited to a specific thing.
  • the substrate include a semiconductor substrate (for example, a single crystal substrate or a silicon substrate), an SOI substrate, a glass substrate, a quartz substrate, a plastic substrate, a metal substrate, a stainless steel still substrate, a substrate having a stainless steel foil, a tungsten substrate, A substrate having a tungsten foil, a flexible substrate, a laminated film, a paper containing a fibrous material, or a base film may be mentioned.
  • barium borosilicate glass, alumino borosilicate glass, soda lime glass etc. are mentioned as an example of the material of a glass substrate.
  • plastics represented by polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyether sulfone (PES), acrylic resins, etc. Synthetic resins, polypropylene, polyester, polyvinyl fluoride, polyvinyl chloride, polyamide, polyimide, aramid resin, epoxy resin, inorganic vapor deposition film, papers, etc. may be mentioned.
  • a vacuum process such as an evaporation method or a solution process such as a spin coating method or an inkjet method can be used for manufacturing the light-emitting element described in this embodiment.
  • vapor deposition physical vapor deposition (PVD) such as sputtering, ion plating, ion beam deposition, molecular beam deposition, vacuum deposition, chemical vapor deposition (CVD) or the like is used. be able to.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • functional layers hole injection layers (111, 111a, 111b), hole transport layers (112, 112a, 112b), light emitting layers (113, 113a, 113b, 113c), and electron transport included in the EL layer of the light emitting device)
  • a vapor deposition method vacuum vapor deposition method etc.
  • a coating method dip coat method
  • Die coating method bar coating method
  • spin coating method spray coating method
  • printing method in jet method, screen (stencil printing) method, offset (planographic printing) method, flexo (letterpress printing) method, gravure method, micro contact It can form by methods, such as a method and a nanoimprint method.
  • a high molecular compound oligomer, dendrimer, polymer etc.
  • a medium molecular compound compound of intermediate region of low molecule and high molecule: molecular weight 400 to 4000
  • inorganic compound quantum dot material etc.
  • the quantum dot material a colloidal quantum dot material, an alloy type quantum dot material, a core / shell type quantum dot material, a core type quantum dot material, or the like can be used.
  • a light-emitting device which is one embodiment of the present invention will be described.
  • active matrix light emission in which a transistor (FET) 202 on a first substrate 201 and a light-emitting element (203R, 203G, 203B, 203W) are electrically connected to each other
  • the plurality of light emitting elements (203R, 203G, 203B, 203W) have a common EL layer 204, and the optical distance between the electrodes of each light emitting element is different according to the light emitting color of each light emitting element. It has a tuned microcavity structure.
  • it is a top emission type light emitting device in which light emission obtained from the EL layer 204 is emitted through the color filters (206R, 206G, and 206B) formed on the second substrate 205.
  • the light-emitting device illustrated in FIG. 2A is formed to function as the first electrode 207 as a reflective electrode.
  • the second electrode 208 is formed to function as a semi-transmissive and semi-reflective electrode. Note that an electrode material for forming the first electrode 207 and the second electrode 208 may be appropriately used with reference to the description of the other embodiments.
  • the light emitting element 203R is a red light emitting element
  • the light emitting element 203G is a green light emitting element
  • the light emitting element 203B is a blue light emitting element
  • the light emitting element 203W is a white light emitting element
  • the light emitting element 203R is adjusted so that the optical distance 200R is between the first electrode 207 and the second electrode 208
  • the light emitting element 203G includes the first electrode 207 and the second electrode.
  • the light distance between the light emitting element 203B and the second electrode 208 is adjusted to be an optical distance 200B.
  • optical adjustment can be performed by stacking the conductive layer 210R over the first electrode 207 in the light emitting element 203R and stacking the conductive layer 210G in the light emitting element 203G.
  • color filters (206R, 206G, and 206B) are formed on the second substrate 205.
  • the color filter is a filter that passes a specific wavelength range of visible light and blocks the specific wavelength range. Therefore, as shown in FIG. 2A, red light emission can be obtained from the light emitting element 203R by providing the color filter 206R which passes only the red wavelength region at a position overlapping with the light emitting element 203R. Further, by providing the color filter 206G which passes only the green wavelength region at a position overlapping with the light emitting element 203G, green light emission can be obtained from the light emitting element 203G.
  • blue light emission can be obtained from the light emitting element 203B by providing the color filter 206B that allows only the blue wavelength range to pass through at a position overlapping with the light emitting element 203B.
  • the light emitting element 203W can obtain white light emission without providing a color filter.
  • a black layer (black matrix) 209 may be provided at an end of one type of color filter.
  • the color filters (206R, 206G, 206B) and the black layer 209 may be covered with an overcoat layer using a transparent material.
  • FIG. 2A shows a light emitting device having a structure (top emission type) for emitting light to the second substrate 205 side
  • the light-emitting device may have a structure (bottom emission type) in which light is extracted to the side 201.
  • the first electrode 207 is formed to function as a semi-transmissive and semi-reflective electrode
  • the second electrode 208 is formed to function as a reflective electrode.
  • the first substrate 201 uses at least a light-transmitting substrate.
  • the color filters (206R ′, 206G ′, and 206B ′) may be provided closer to the first substrate 201 than the light-emitting elements (203R, 203G, and 203B) as illustrated in FIG. 2C.
  • FIG. 2A shows the case where the light-emitting element is a red light-emitting element, a green light-emitting element, a blue light-emitting element, or a white light-emitting element
  • the light-emitting element of one embodiment of the present invention is limited to that structure.
  • a yellow light emitting element or an orange light emitting element may be provided.
  • materials used for an EL layer a light emitting layer, a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, a charge generation layer, etc.
  • other embodiments are It may be used as appropriate with reference to the description of the embodiment. In that case, it is also necessary to appropriately select a color filter in accordance with the light emission color of the light emitting element.
  • Embodiment 4 In this embodiment mode, a light-emitting device which is one embodiment of the present invention will be described.
  • an active matrix light-emitting device or a passive matrix light-emitting device can be manufactured.
  • an active matrix light-emitting device has a structure in which a light-emitting element and a transistor (FET) are combined. Therefore, both passive matrix light-emitting devices and active matrix light-emitting devices are included in one embodiment of the present invention.
  • the light-emitting element described in any of the other embodiments can be applied to the light-emitting device described in this embodiment.
  • an active matrix light-emitting device is described with reference to FIG.
  • FIG. 3A is a top view showing the light emitting device 21, and FIG. 3B is a cross-sectional view of FIG. 3A taken along a dashed line A-A '.
  • the active matrix light-emitting device includes a pixel portion 302, a driver circuit portion (source line driver circuit) 303, and driver circuit portions (gate line driver circuits) (304a and 304b) provided over a first substrate 301. .
  • the pixel portion 302 and the driver circuit portions (303, 304 a, 304 b) are sealed between the first substrate 301 and the second substrate 306 by the sealant 305.
  • a lead wiring 307 is provided over the first substrate 301.
  • the lead wiring 307 is electrically connected to the FPC 308 which is an external input terminal.
  • the FPC 308 transmits signals (eg, video signals, clock signals, start signals, reset signals, and the like) and potentials from the outside to the driver circuit units (303, 304a, and 304b).
  • a printed wiring board (PWB) may be attached to the FPC 308. Note that the state in which the FPC and the PWB are attached is included in the light emitting device.
  • the pixel portion 302 is formed of a plurality of pixels including a FET (switching FET) 311, an FET (current control FET) 312, and a first electrode 313 electrically connected to the FET 312. Note that the number of FETs included in each pixel is not particularly limited, and can be appropriately set as needed.
  • the FETs 309, 310, 311, and 312 are not particularly limited, and, for example, transistors such as a staggered transistor or an inverted staggered transistor can be applied. In addition, a top gate type or bottom gate type transistor structure may be employed.
  • the crystallinity of the semiconductor that can be used for these FETs 309, 310, 311, and 312 is not particularly limited, and an amorphous semiconductor, a semiconductor having crystallinity (a microcrystalline semiconductor, a polycrystalline semiconductor, a single crystal semiconductor, Alternatively, any of semiconductors each having a crystal region in part may be used. Note that using a semiconductor having crystallinity is preferable because deterioration of transistor characteristics can be suppressed.
  • an element of Group 14 a compound semiconductor, an oxide semiconductor, an organic semiconductor, or the like can be used.
  • a semiconductor containing silicon, a semiconductor containing gallium arsenide, an oxide semiconductor containing indium, or the like can be used.
  • the driver circuit portion 303 includes an FET 309 and an FET 310.
  • the FET 309 and the FET 310 may be formed by a circuit including a unipolar (N-type or P-type) transistor, or may be formed by a CMOS circuit including an N-type transistor and a P-type transistor. It is good.
  • a driver circuit may be provided outside.
  • the end of the first electrode 313 is covered with an insulator 314.
  • an organic compound such as a negative photosensitive resin or a positive photosensitive resin (acrylic resin), or an inorganic compound such as silicon oxide, silicon oxynitride, or silicon nitride can be used.
  • the insulator 314 preferably has a curved surface having a curvature at the upper end or the lower end. Thereby, the coverage of the film formed in the upper layer of the insulator 314 can be made favorable.
  • the EL layer 315 and a second electrode 316 are stacked over the first electrode 313.
  • the EL layer 315 includes a light emitting layer, a hole injecting layer, a hole transporting layer, an electron transporting layer, an electron injecting layer, a charge generation layer, and the like.
  • the structure and materials described in the other embodiments can be applied to the structure of the light-emitting element 317 described in this embodiment.
  • the second electrode 316 is electrically connected to the FPC 308 which is an external input terminal.
  • light emitting element 317 Although only one light emitting element 317 is illustrated in the cross-sectional view in FIG. 3B, a plurality of light emitting elements are arranged in a matrix in the pixel portion 302. Light-emitting elements which can emit light of three types (R, G, and B) can be selectively formed in the pixel portion 302, so that a light-emitting device capable of full-color display can be formed. In addition to light emitting elements that can obtain three types (R, G, B) of light emissions, light emissions such as white (W), yellow (Y), magenta (M), cyan (C), etc. An element may be formed.
  • a light emitting device capable of full color display may be provided by combining with a color filter.
  • red (R), green (G), blue (B), cyan (C), magenta (M), yellow (Y) etc. can be used as a kind of color filter.
  • the FETs (309, 310, 311, and 312) and the light emitting element 317 on the first substrate 301 are attached to each other with the sealant 305 so that the second substrate 306 and the first substrate 301 are bonded to each other.
  • a structure provided in a space 318 surrounded by the second substrate 301 and the sealing material 305 is provided.
  • the space 318 may be filled with an inert gas (such as nitrogen or argon) or an organic substance (including the sealant 305).
  • the sealing material 305 an epoxy resin or glass frit can be used. Note that for the sealing material 305, it is preferable to use a material that does not transmit moisture or oxygen as much as possible.
  • the second substrate 306 a substrate which can be used for the first substrate 301 can be used similarly. Therefore, the various substrates described in the other embodiments can be used as appropriate.
  • the substrate in addition to a glass substrate and a quartz substrate, a plastic substrate made of FRP (Fiber-Reinforced Plastics), PVF (polyvinyl fluoride), polyester, an acrylic resin, or the like can be used.
  • FRP Fiber-Reinforced Plastics
  • PVF polyvinyl fluoride
  • polyester an acrylic resin, or the like
  • an active matrix light-emitting device can be obtained.
  • the FET and the light-emitting element may be formed directly on the flexible substrate, but the FET and the light-emitting element may be formed over another substrate having a peeling layer. After that, the FET and the light emitting element may be separated by a peeling layer by applying heat, force, laser irradiation or the like, and may be further transferred to a flexible substrate.
  • the peeling layer for example, a lamination of an inorganic film of a tungsten film and a silicon oxide film, an organic resin film such as polyimide, or the like can be used.
  • a flexible substrate in addition to a substrate capable of forming a transistor, a paper substrate, a cellophane substrate, an aramid film substrate, a polyimide film substrate, a cloth substrate (natural fiber (silk, cotton, linen), synthetic fiber ( Examples include nylon, polyurethane, polyester) or regenerated fibers (including acetate, cupra, rayon, regenerated polyester), leather substrates, rubber substrates and the like.
  • a substrate capable of forming a transistor, a paper substrate, a cellophane substrate, an aramid film substrate, a polyimide film substrate, a cloth substrate (natural fiber (silk, cotton, linen), synthetic fiber ( Examples include nylon, polyurethane, polyester) or regenerated fibers (including acetate, cupra, rayon, regenerated polyester), leather substrates, rubber substrates and the like.
  • the electronic devices illustrated in FIGS. 4A to 4E include a housing 7000, a display portion 7001, a speaker 7003, an LED lamp 7004, an operation key 7005 (including a power switch or an operation switch), a connection terminal 7006, Sensor 7007 (force, displacement, position, velocity, acceleration, angular velocity, rotation number, distance, light, liquid, magnetism, temperature, chemical substance, voice, time, hardness, electric field, current, voltage, electric power, radiation, flow rate, humidity (Including the function of measuring inclination, vibration, odor, or infrared), a microphone 7008, and the like.
  • FIG. 4A illustrates a mobile computer, which can include a switch 7009, an infrared port 7010, and the like in addition to the above components.
  • FIG. 4B shows a portable image reproducing apparatus (for example, a DVD reproducing apparatus) provided with a recording medium, which may have a second display portion 7002, a recording medium reading portion 7011, and the like in addition to those described above. it can.
  • a portable image reproducing apparatus for example, a DVD reproducing apparatus
  • a recording medium which may have a second display portion 7002, a recording medium reading portion 7011, and the like in addition to those described above. it can.
  • FIG. 4C illustrates a digital camera with a television receiving function, which can include an antenna 7014, a shutter button 7015, an image receiving unit 7016, and the like in addition to the above components.
  • FIG. 4D shows a portable information terminal.
  • the portable information terminal has a function of displaying information on three or more sides of the display portion 7001.
  • the information 7052, the information 7053, and the information 7054 are displayed on different sides.
  • the user can check the information 7053 displayed at a position where it can be observed from the upper side of the portable information terminal while the portable information terminal is stored in the chest pocket of the clothes. The user can confirm the display without taking out the portable information terminal from the pocket, and can determine, for example, whether or not to receive a call.
  • FIG. 4E illustrates a portable information terminal (including a smartphone), which can include the display portion 7001, an operation key 7005, and the like in the housing 7000.
  • the portable information terminal may be provided with a speaker 7003, a connection terminal 7006, a sensor 7007, and the like.
  • the portable information terminal can display text and image information on its multiple faces.
  • an example in which three icons 7050 are displayed is shown.
  • information 7051 indicated by a dashed rectangle can be displayed on another surface of the display portion 7001. Examples of the information 7051 include notification of arrival of e-mail, SNS, telephone etc., title of e-mail or SNS, sender's name, date, time, remaining amount of battery, strength of antenna reception, etc.
  • an icon 7050 or the like may be displayed at the position where the information 7051 is displayed.
  • FIG. 4F illustrates a large television set (also referred to as a television or a television receiver), which can include the housing 7000, the display portion 7001, and the like. Further, here, a structure in which the housing 7000 is supported by the stand 7018 is shown.
  • the television set can be operated by a separate remote control 7111 or the like.
  • the display portion 7001 may be provided with a touch sensor, or may be operated by touching the display portion 7001 with a finger or the like.
  • the remote controller 7111 may have a display unit for displaying information output from the remote controller 7111. Channels and volume can be controlled with an operation key or a touch panel included in the remote controller 7111, and an image displayed on the display portion 7001 can be manipulated.
  • the electronic devices illustrated in FIGS. 4A to 4F can have various functions. For example, a function to display various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a calendar, a function to display date or time, etc., a function to control processing by various software (programs) Wireless communication function, function to connect to various computer networks using wireless communication function, function to transmit or receive various data using wireless communication function, read out a program or data recorded in a recording medium A function to display on the display portion can be provided.
  • a function to display various information (still images, moving images, text images, etc.) on the display unit a touch panel function, a calendar, a function to display date or time, etc.
  • a function to control processing by various software (programs) Wireless communication function function to connect to various computer networks using wireless communication function, function to transmit or receive various data using wireless communication function, read out a program or data recorded in a recording medium
  • a function to display on the display portion can be provided.
  • the function of displaying image information mainly on one display unit and displaying character information mainly on another display unit or considering parallax in a plurality of display units It is possible to have a function of displaying a three-dimensional image and the like by displaying the captured image. Furthermore, in an electronic device having an image receiving unit, the function of capturing a still image, the function of capturing a moving image, the function of automatically or manually correcting the captured image, the captured image in a recording medium (externally or built in a camera) A function to save, a function to display a captured image on a display portion, and the like can be provided. Note that the electronic devices illustrated in FIGS. 4A to 4F can have various functions without limitation to the above.
  • FIG. 4G illustrates a watch-type portable information terminal, which can be used, for example, as a smart watch.
  • This wristwatch-type portable information terminal includes a housing 7000, a display portion 7001, operation buttons 7022 and 7023, a connection terminal 7024, a band 7025, a microphone 7026, a sensor 7029, a speaker 7030, and the like.
  • the display portion 7001 has a curved display surface and can perform display along the curved display surface.
  • this portable information terminal can perform hands-free communication by, for example, mutual communication with a headset capable of wireless communication.
  • data can be transmitted to another information terminal with each other and charging can be performed by the connection terminal 7024.
  • the charging operation can also be performed by wireless power feeding.
  • the display portion 7001 mounted in a housing 7000 which also serves as a bezel portion has a non-rectangular display area.
  • the display unit 7001 can display an icon indicating time, another icon, and the like. Further, the display unit 7001 may be a touch panel (input / output device) on which a touch sensor (input device) is mounted.
  • the smart watch illustrated in FIG. 4G can have various functions. For example, a function to display various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a calendar, a function to display date or time, etc., a function to control processing by various software (programs) Wireless communication function, function to connect to various computer networks using wireless communication function, function to transmit or receive various data using wireless communication function, read out a program or data recorded in a recording medium A function to display on the display portion can be provided.
  • a function to display various information still images, moving images, text images, etc.
  • a touch panel function a calendar
  • a function to display date or time etc.
  • a function to control processing by various software (programs) Wireless communication function function to connect to various computer networks using wireless communication function
  • function to transmit or receive various data using wireless communication function read out a program or data recorded in a recording medium
  • a function to display on the display portion can be provided.
  • a speaker inside the housing 7000, a speaker, a sensor (force, displacement, position, velocity, acceleration, angular velocity, rotation number, distance, light, liquid, magnetism, temperature, chemical substance, voice, time, hardness, electric field, current Voltage, power, radiation, flow rate, humidity, inclination, vibration, odor or infrared (including the function of measuring infrared), a microphone, and the like.
  • a sensor force, displacement, position, velocity, acceleration, angular velocity, rotation number, distance, light, liquid, magnetism, temperature, chemical substance, voice, time, hardness, electric field, current Voltage, power, radiation, flow rate, humidity, inclination, vibration, odor or infrared (including the function of measuring infrared), a microphone, and the like.
  • the light-emitting device which is one embodiment of the present invention and the display device including the light-emitting element which is one embodiment of the present invention can be used for each display portion of the electronic device described in this embodiment and has long lifetime. Can be realized.
  • FIG. 5A shows a portable information terminal 9310 in a developed state.
  • FIG. 5B shows the portable information terminal 9310 in the middle of changing from one of the expanded state or the folded state to the other.
  • FIG. 5C shows a portable information terminal 9310 in a folded state.
  • the portable information terminal 9310 is excellent in portability in the folded state, and in the expanded state, is excellent in viewability of display due to a wide seamless display area.
  • the display portion 9311 is supported by three housings 9315 connected by hinges 9313.
  • the display portion 9311 may be a touch panel (input / output device) on which a touch sensor (input device) is mounted.
  • the display portion 9311 can be reversibly deformed into a folded state from the expanded state by bending the space between the two housings 9315 through the hinges 9313.
  • the light-emitting device of one embodiment of the present invention can be used for the display portion 9311.
  • a long-life electronic device can be realized.
  • a display area 9312 in the display portion 9311 is a display area located on the side surface of the portable information terminal 9310 in a folded state. An information icon, a frequently used application, a shortcut of a program, and the like can be displayed in the display area 9312, and information confirmation and activation of the application and the like can be performed smoothly.
  • the present invention can be applied to the light 5101 (including the rear of the vehicle body) outside the automobile shown in FIG. 6A, the wheel 5102 of the tire, part or all of the door 5103, and the like. Further, the present invention can be applied to the display 5104, the handle 5105, the shift lever 5106, the seat 5107, the inner rear view mirror 5108, and the like inside the automobile shown in FIG. 6B. In addition, you may apply to a part of glass window.
  • an electronic device or a car to which the light-emitting device or the display device which is one embodiment of the present invention is applied can be obtained. In that case, a long-life electronic device can be realized.
  • applicable electronic devices and vehicles are not limited to those described in this embodiment, and can be applied in any field.
  • 7A and 7B show an example of a cross-sectional view of the lighting device.
  • 7A shows a bottom emission type lighting device which extracts light to the substrate side
  • FIG. 7B shows a top emission type lighting device which extracts light to the sealing substrate side.
  • the lighting device 4000 illustrated in FIG. 7A includes the light emitting element 4002 over the substrate 4001.
  • a substrate 4003 having unevenness is provided outside the substrate 4001.
  • the light-emitting element 4002 includes a first electrode 4004, an EL layer 4005, and a second electrode 4006.
  • the first electrode 4004 is electrically connected to the electrode 4007, and the second electrode 4006 is electrically connected to the electrode 4008.
  • an auxiliary wiring 4009 electrically connected to the first electrode 4004 may be provided.
  • an insulating layer 4010 is formed over the auxiliary wiring 4009.
  • the substrate 4001 and the sealing substrate 4011 are attached to each other by a sealing material 4012.
  • a desiccant 4013 is preferably provided between the sealing substrate 4011 and the light emitting element 4002. Note that since the substrate 4003 has unevenness as illustrated in FIG. 7A, the light extraction efficiency of the light-emitting element 4002 can be improved.
  • the lighting device 4200 in FIG. 7B includes a light emitting element 4202 over a substrate 4201.
  • the light emitting element 4202 has a first electrode 4204, an EL layer 4205, and a second electrode 4206.
  • the first electrode 4204 is electrically connected to the electrode 4207, and the second electrode 4206 is electrically connected to the electrode 4208.
  • an auxiliary wiring 4209 electrically connected to the second electrode 4206 may be provided.
  • an insulating layer 4210 may be provided below the auxiliary wiring 4209.
  • the substrate 4201 and the sealing substrate 4211 with unevenness are attached with a sealant 4212.
  • a barrier film 4213 and a planarization film 4214 may be provided between the sealing substrate 4211 and the light emitting element 4202. Note that the sealing substrate 4211 has unevenness as illustrated in FIG. 7B, so that the light extraction efficiency of the light-emitting element 4202 can be improved.
  • the ceiling light which is for indoor illumination is mentioned.
  • the ceiling lights include a ceiling direct attachment type and an in-ceiling type. Note that such a lighting device is configured by combining a light emitting device with a housing or a cover.
  • the light it is also possible to apply the light to the floor surface to improve the safety of the foot.
  • the size and shape can be changed as appropriate according to the size and structure of the room.
  • Sheet-like illumination can be used for a wide range of applications without taking up space because it is used by being attached to a wall surface. In addition, it is easy to increase the area. In addition, it can also be used for the wall surface and case which have a curved surface.
  • the light-emitting device of one embodiment of the present invention or a light-emitting element that is a portion thereof is applied to part of furniture provided in a room, and a lighting device having a function as furniture is provided.
  • a lighting device having a function as furniture is provided.
  • Step 1 Synthesis of 3,5-dimethyl-4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzonitrile>
  • a 3-neck flask equipped with a reflux condenser was charged with 10.06 g of 4-bromo-3,5-dimethylbenzonitrile, 18.35 g of bis (pinacolato) diboron, 21.73 g of potassium acetate, and 240 mL of dimethyl sulfoxide, and the interior was nitrogen-substituted .
  • Step 1 The synthesis scheme of Step 1 is shown in the following formula (a-1).
  • Step 2 Synthesis of 4- (4-cyano-2,6-dimethylphenyl) -6-phenylpyrimidine (abbreviation: Hppm-dmCP)>
  • Step 2 The synthesis scheme of Step 2 is shown in the following Formula (a-2).
  • Step 3 Di- ⁇ -chloro-tetrakis ⁇ 2- [6- (4-cyano-2,6-dimethylphenyl) -4-pyrimidinyl- ⁇ N 3 ] phenyl- ⁇ C ⁇ diiridium (III) (abbreviation: [ Synthesis of Ir (ppm-dmCP) 2 Cl] 2 )>
  • 15 mL of 2-ethoxyethanol and 5 mL of water, 1.60 g of Hppm-dmCP obtained in the above step 2, 0.81 g of iridium chloride hydrate (IrCl 3 ⁇ H 2 O) manufactured by Furuya Metal Co., Ltd.
  • the flask was charged with argon, and the inside of the flask was purged with argon.
  • Step 4 Synthesis of [Ir (ppm-dmCP) 2 (acac)]> 20 mL of 2-ethoxyethanol, the binuclear complex obtained in the above step 3, 1.44 g of [Ir (ppm-dmCP) 2 Cl] 2 , 0.41 g of acetylacetone (abbreviation: Hacac), 0.93 g of sodium carbonate, The flask was placed in a fitted eggplant flask, and the inside of the flask was purged with argon. Thereafter, it was irradiated with microwave (2.45 GHz 100 W) for 4 hours. The obtained residue was suction filtered with dichloromethane and the filtrate was concentrated.
  • microwave 2.45 GHz 100 W
  • 0.19 g of the obtained yellow-orange powder was purified by sublimation using a train sublimation method. The sublimation purification conditions were such that the solid was heated at 355 ° C. while flowing a pressure of 2.7 Pa and flowing argon gas at a flow rate of 11 mL / min. After sublimation purification, the objective yellow-orange solid was obtained in a yield of 0.092 g, 48%.
  • the synthesis scheme of Step 4 is shown in the following formula (a-4).
  • an ultraviolet-visible absorption spectrum (hereinafter simply referred to as “absorption spectrum”) and an emission spectrum of a dichloromethane solution of [Ir (ppm-dmCP) 2 (acac)] were measured.
  • a dichloromethane solution (0.011 mmol / L) was put in a quartz cell using a UV-visible spectrophotometer (V550 type manufactured by JASCO Corporation), and measurement was performed at room temperature.
  • a dichloromethane deoxygenated solution (0.011 mmol / L) is put in a quartz cell under a nitrogen atmosphere using an absolute PL quantum yield measurement apparatus (C11347-01 manufactured by Hamamatsu Photonics Co., Ltd.) Sealed tightly and measured at room temperature.
  • the measurement results of the obtained absorption spectrum and emission spectrum are shown in FIG.
  • the horizontal axis represents wavelength
  • the vertical axis represents absorption intensity and emission intensity.
  • the thin solid line in FIG. 9 indicates the absorption spectrum
  • the thick solid line indicates the emission spectrum.
  • the absorption spectrum shown in FIG. 9 shows the result which deducted the absorption spectrum which put only dichloromethane into a quartz cell and measured it from the absorption spectrum which put a dichloromethane solution (0.011 mmol / L) into a quartz cell and measured.
  • the organometallic complex which is one embodiment of the present invention, [Ir (ppm-dmCP) 2 (acac)] exhibits a light emission peak at 571 nm, and yellow light emission is observed from the dichloromethane solution.
  • the electron injection layer 915 is sequentially stacked, and the second electrode 903 is stacked on the electron injection layer 915.
  • the first electrode 901 was formed over the substrate 900.
  • the electrode area was 4 mm 2 (2 mm ⁇ 2 mm).
  • a glass substrate was used for the substrate 900.
  • the first electrode 901 was formed by depositing indium tin oxide containing silicon oxide (ITSO) to a thickness of 70 nm by a sputtering method.
  • ITSO indium tin oxide containing silicon oxide
  • the surface of the substrate was washed with water, baked at 200 ° C. for 1 hour, and subjected to UV ozone treatment for 370 seconds.
  • the substrate is introduced into a vacuum deposition apparatus whose inside is depressurized to about 10 -4 Pa, and vacuum baking is performed at 170 ° C. for 30 minutes in a heating chamber in the vacuum deposition apparatus, and then the substrate is released for about 30 minutes. It was cold.
  • the hole injecting layer 911 was formed over the first electrode 901.
  • the hole transport layer 912 was formed on the hole injection layer 911.
  • the hole transporting layer 912 was formed by evaporation using 4-phenyl-4 ′-(9-phenylfluoren-9-yl) triphenylamine (abbreviation: BPAFLP) so that the film thickness was 20 nm.
  • BPAFLP 4-phenyl-4 ′-(9-phenylfluoren-9-yl) triphenylamine
  • the light emitting layer 913 was formed over the hole transporting layer 912.
  • the co-evaporation was performed so as to be .075.
  • the film thickness was 40 nm.
  • the light emitting layer 913 in the case of the comparative light emitting element 2 uses 2mDBTBPDBq-II as a host material, PCBBiF as an assist material, bis ⁇ 2- [6- (2, 6-dimethylphenyl) as a guest material (phosphorescent material) -4-Pyrimidinyl- ⁇ N 3 ] phenyl- ⁇ C ⁇ (2,4-pentanedionato- ⁇ O, O ') iridium (III) (abbreviation: [Ir (ppm-dmp) 2 (acac)]), by weight
  • the film thickness was 40 nm.
  • the electron transporting layer 914 was formed over the light emitting layer 913.
  • the electron-transporting layer 914 has a film thickness of 20 nm of 2mDBTBPDBq-II and a film thickness of 15 nm of 2,9-bis (naphthalen-2-yl) -4,7-diphenyl-1,10-phenanthroline (abbr .: NBphen). It vapor-deposited one by one so that it might become.
  • the electron injection layer 915 was formed over the electron transport layer 914.
  • the electron injection layer 915 was formed by evaporation using lithium fluoride (LiF) so as to have a thickness of 1 nm.
  • a second electrode 903 was formed over the electron injection layer 915.
  • the second electrode 903 was formed by depositing aluminum to a thickness of 200 nm.
  • the second electrode 903 functions as a cathode.
  • a light-emitting element in which the EL layer 902 is sandwiched between the pair of electrodes is formed over the substrate 900.
  • the hole injecting layer 911, the hole transporting layer 912, the light emitting layer 913, the electron transporting layer 914, and the electron injecting layer 915 described in the above steps are functional layers which form the EL layer in one embodiment of the present invention.
  • all vapor deposition methods using resistance heating were used.
  • the light emitting element manufactured as described above is sealed by another substrate (not shown).
  • another substrate (not shown) coated with a sealant that solidifies with ultraviolet light is placed on the substrate 900 in a glove box under a nitrogen atmosphere.
  • the substrates were fixed so that the sealant was attached around the light emitting element formed on the substrate 900.
  • the sealing agent was solidified by irradiating ultraviolet light of 365 nm at 6 J / cm 2, and the sealing agent was stabilized by heat treatment at 80 ° C. for 1 hour.
  • Table 2 shows main initial characteristic values of each light emitting element in the vicinity of 1000 cd / m 2 .
  • the light emitting device 1 exhibits excellent device characteristics, but in particular, high external quantum efficiency is obtained as compared to the comparative light emitting device 2.
  • This can be understood as the effect of using the organometallic complex which is one embodiment of the present invention, [Ir (ppm-dmCP) 2 (acac)], in the light emitting layer of the light emitting element 1.
  • the pyrimidine ring coordinated to Ir has at least one phenyl group having a cyano group as a substituent.
  • a phenyl group having a cyano group is bonded to the 6-position of the pyrimidine ring, so the phenyl group having a cyano group bonded to the 6-position of the pyrimidine ring causes a horizontal direction with respect to the deposition substrate surface. It is considered that the light extraction efficiency is improved because the orientation of the
  • FIG. 15 shows emission spectra when current is supplied to the light-emitting element 1 and the comparative light-emitting element 2 at a current density of 2.5 mA / cm 2 .
  • the light-emitting element 1 has a light emission spectrum having a peak in the vicinity of 574 nm, which is derived from light emission of an organometallic complex contained in the light-emitting layer 913, [Ir (ppm-dmCP) 2 (acac)].
  • the comparative light-emitting element 2 also has a light emission spectrum having a peak at around 559 nm, which is derived from light emission of an organometallic complex contained in the light-emitting layer 913, [Ir (ppm-dmp) 2 (acac)].
  • the maximum light emission wavelength of the light emitting element 1 is shifted in the long wavelength direction compared to the comparative light emitting element 2.
  • the reliability test for the light emitting element 1 and the comparative light emitting element 2 was performed.
  • the results of the reliability test are shown in FIG. In FIG. 16, the vertical axis represents normalized luminance (%) when the initial luminance is 100%, and the horizontal axis represents driving time (h) of the element.
  • the current density was set to 50 mA / cm 2 to drive the light emitting element.
  • a quadrupole mass spectrometer (residue gas analyzer Qulee BGM-, manufactured by ULVAC, Inc.)
  • the pressure (detection partial pressure: Pa) of the specific gas corresponding to the mass-to-charge ratio in the measurement gas inside the chamber was measured using 202).
  • the abscissa represents the mass-to-charge ratio (m / z)
  • the ordinate represents the pressure of a specific gas (detected partial pressure: Pa) corresponding to the mass-to-charge ratio.
  • an organometallic complex which is one embodiment of the present invention, which is represented by a structural formula (112) of Embodiment 1, bis ⁇ 4,6-dimethyl-2- [6- (5-cyano-2-) Methylphenyl) -4-pyrimidinyl- ⁇ N 3 ] phenyl- ⁇ C ⁇ (2,2,6,6-tetramethyl-3,5-heptanedionato- ⁇ 2 O, O ′) iridium (III) (abbreviation: [Ir ( The synthesis method of dmppm-m5CP) 2 (dpm)] is demonstrated. The structure of [Ir (dmppm-m5CP) 2 (dpm)] is shown below.
  • Step 1 Synthesis of 4-chloro-6- (3,5-dimethylphenyl) pyrimidine> 8.97 g of 4,6-dichloropyrimidine, 9.01 g of 3,5-dimethylphenylboronic acid, 95 mL of 2 M aqueous sodium carbonate solution, and 360 mL of ethylene glycol dimethyl ether (abbreviation: DME) are placed in a three-necked flask equipped with a reflux condenser, Were replaced with nitrogen.
  • DME ethylene glycol dimethyl ether
  • Step 1 After degassing the inside of the flask by stirring under reduced pressure, 0.67 g of palladium (II) acetate (abbreviation: Pd (OAc) 2 ) and 1.61 g of triphenylphosphine (abbreviation: PPh 3 ) are added, and 110 ° C. is added. The mixture was stirred for 11 hours. After a predetermined time, extraction with ethyl acetate was performed. Then, the residue was purified by silica gel column chromatography using dichloromethane as a developing solvent to obtain the desired product (yellowish white solid, yield 7.60 g, yield 58%). The synthesis scheme of Step 1 is shown in the following formula (b-1).
  • Step 2 Synthesis of 4- (5-cyano-2-methylphenyl) -6- (3,5-dimethylphenyl) pyrimidine>
  • 5.21 g of 4-chloro-6- (3,5-dimethylphenyl) pyrimidine obtained in Step 1 above 5.00 g of 5-cyano-2-methylphenylboronic acid, 15.32 g of tripotassium phosphate
  • 240 mL of toluene and 24 mL of water were placed in a three-necked flask equipped with a reflux condenser, and the inside was purged with nitrogen.
  • the synthesis scheme of step 2 is shown in the following formula (b-2).
  • an ultraviolet-visible absorption spectrum (hereinafter simply referred to as “absorption spectrum”) and an emission spectrum of a dichloromethane solution of [Ir (dmppm-m5CP) 2 (dpm)] were measured.
  • a dichloromethane solution (0.010 mmol / L) was put in a quartz cell using a UV-visible spectrophotometer (V550 type manufactured by JASCO Corporation), and measurement was performed at room temperature.
  • a dichloromethane deoxygenated solution (0.010 mmol / L) is put into a quartz cell under a nitrogen atmosphere using an absolute PL quantum yield measurement apparatus (C11347-01 manufactured by Hamamatsu Photonics Co., Ltd.) Sealed tightly and measured at room temperature.
  • the measurement results of the obtained absorption spectrum and emission spectrum are shown in FIG.
  • the horizontal axis represents wavelength
  • the vertical axis represents absorption intensity and emission intensity.
  • the thin solid line in FIG. 19 indicates the absorption spectrum
  • the thick solid line indicates the emission spectrum.
  • the absorption spectrum shown in FIG. 19 shows the result which deducted the absorption spectrum which put only dichloromethane into the quartz cell and measured it from the absorption spectrum which put the dichloromethane solution (0.010 mmol / L) into the quartz cell and measured.
  • the organometallic complex which is one embodiment of the present invention [Ir (dmppm-m5CP) 2 (dpm)] exhibits a light emission peak at 613 nm, and red light emission is observed from the dichloromethane solution.
  • an organometallic complex which is one embodiment of the present invention, which is represented by a structural formula (114) of Embodiment 1, bis ⁇ 4,6-dimethyl-2- [6- (2-cyano-6-) Methylphenyl) -4-pyrimidinyl- ⁇ N 3 ] phenyl- ⁇ C ⁇ (2,2,6,6-tetramethyl-3,5-heptanedionato- ⁇ 2 O, O ′) iridium (III) (abbreviation: [Ir ( The synthesis method of dmppm-m2CP) 2 (dpm)] is demonstrated. The structure of [Ir (dmppm-m2CP) 2 (dpm)] is shown below.
  • Step 1 Synthesis of 4- (2-cyano-6-methylphenyl) -6- (3,5-dimethylphenyl) pyrimidine> 2.18 g of 4-chloro-6- (3,5-dimethylphenyl) pyrimidine, 2.90 g of 3-methyl-2- (tetramethyl-1,3,2-dioxaborolan-2-yl) benzonitrile, phosphoric acid 3 6.36 g of potassium, 100 mL of toluene and 10 mL of water were placed in a three-necked flask equipped with a reflux condenser, and the inside was purged with nitrogen.
  • Step 1 The synthesis scheme of Step 1 is shown in the following formula (c-1).
  • Step 3 Synthesis of [Ir (dmppm-m2CP) 2 (dpm)]>
  • 30 mL of 2-ethoxyethanol, the binuclear complex obtained in the above step 2, 1.86 g of [Ir (dmppm-m2CP) 2 Cl] 2, 0.61 g of dipivaloylmethane (abbreviation: Hdpm), sodium carbonate 1 18 g of the solution was placed in a round-bottomed flask equipped with a reflux condenser, and the inside of the flask was purged with argon. Then, it was irradiated for 5 hours with microwave (2.45 GHz 100 W). The obtained residue was suction filtered with dichloromethane and the filtrate was concentrated.
  • an ultraviolet-visible absorption spectrum (hereinafter simply referred to as “absorption spectrum”) and an emission spectrum of a dichloromethane solution of [Ir (dmppm-m2CP) 2 (dpm)] were measured.
  • a dichloromethane solution (0.010 mmol / L) was put in a quartz cell using a UV-visible spectrophotometer (V550 type manufactured by JASCO Corporation), and measurement was performed at room temperature.
  • a dichloromethane deoxygenated solution (0.010 mmol / L) is put into a quartz cell under a nitrogen atmosphere using an absolute PL quantum yield measurement apparatus (C11347-01 manufactured by Hamamatsu Photonics Co., Ltd.) Sealed tightly and measured at room temperature.
  • the measurement results of the obtained absorption spectrum and emission spectrum are shown in FIG.
  • the horizontal axis represents wavelength
  • the vertical axis represents absorption intensity and emission intensity.
  • the thin solid line in FIG. 21 indicates the absorption spectrum
  • the thick solid line indicates the emission spectrum.
  • the absorption spectrum shown in FIG. 21 shows the result which deducted the absorption spectrum which put only dichloromethane into the quartz cell and measured it from the absorption spectrum which put the dichloromethane solution (0.010 mmol / L) into the quartz cell and measured.
  • the organometallic complex which is one embodiment of the present invention [Ir (dmppm-m2CP) 2 (dpm)] exhibits a light emission peak at 621 nm, and red light emission is observed from the dichloromethane solution.
  • first electrode 102 second electrode 103: EL layer 103a, 103b: EL layer 104: charge generation layer 111, 111a, 111b: hole injection layer 112, 112a, 112b: positive Hole transport layer 113, 113a, 113b, 113c: light emitting layer, 114, 114a, 114b: electron transport layer, 115, 115a, 115b: electron injection layer, 200R, 200G, 200B: optical distance, 201: first substrate , 202: transistor (FET), 203R, 203G, 203B, 203W: light emitting element, 204: EL layer, 205: second substrate, 206R, 206G, 206B: color filter, 206R ', 206G', 206B ': color Filter, 207: first electrode, 208: second electrode, 209: black layer (black matrix), 10R, 210G: conductive layer, 301: first substrate, 302: pixel portion, 303

Abstract

The present invention provides a novel organometallic complex. The present invention also provides a novel organometallic complex having superior heat resistance. The present invention additionally provides a novel organometallic complex having excellent color purity. Specifically provided is an organometallic complex represented by general formula (G1) and characterized in that: a pyrimidine ring coordinated to Ir has at least one phenyl group having a cyano group as a substituent; and the phenyl group having the cyano group is bound to position 6 of the pyrimidine ring. (In the formula, R1 to R4 each independently represent hydrogen, a C1–6 alkyl group, a substituted or unsubstituted cycloalkyl group having five to seven ring-forming carbon atoms, a substituted or unsubstituted aryl group having six to 13 ring-forming carbon atoms, or a substituted or unsubstituted heteroaryl group having three to 12 ring-forming carbon atoms. R5 to R9 each independently represent hydrogen, a C1-6 alkyl group, a substituted or unsubstituted aryl group having six to 13 ring-forming carbon atoms, a substituted or unsubstituted heteroaryl group having three to 12 ring-forming carbon atoms, or a cyano group, with at least one of the radicals representing a cyano group. L represents a monoanionic ligand. n represents an integer from 1 to 3.)

Description

有機化合物、発光素子、発光装置、電子機器、および照明装置Organic compound, light emitting element, light emitting device, electronic device, and lighting device
本発明の一態様は、有機化合物、発光素子、発光装置、電子機器、および照明装置に関する。但し、本発明の一態様は、それらに限定されない。すなわち、本発明の一態様は、物、方法、製造方法、または駆動方法に関する。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関する。また、具体的には、半導体装置、表示装置、液晶表示装置などを一例として挙げることができる。 One embodiment of the present invention relates to an organic compound, a light-emitting element, a light-emitting device, an electronic device, and a lighting device. However, one embodiment of the present invention is not limited thereto. That is, one aspect of the present invention relates to an object, a method, a manufacturing method, or a driving method. Alternatively, one aspect of the present invention relates to a process, a machine, a manufacture, or a composition (composition of matter). Further, specifically, a semiconductor device, a display device, a liquid crystal display device, and the like can be given as an example.
一対の電極間にEL層を挟んでなる発光素子(有機EL素子ともいう)は、薄型軽量、入力信号に対する高速な応答性、低消費電力などの特性を有することから、これを適用したディスプレイは、次世代のフラットパネルディスプレイとして注目されている。 A light-emitting element (also referred to as an organic EL element) in which an EL layer is sandwiched between a pair of electrodes has characteristics such as thinness and lightness, high-speed response to input signals, and low power consumption. Has attracted attention as a next-generation flat panel display.
発光素子は、一対の電極間に電圧を印加することにより、各電極から注入された電子およびホールがEL層において再結合し、EL層に含まれる発光物質(有機化合物)が励起状態となり、その励起状態が基底状態に戻る際に発光する。なお、励起状態の種類としては、一重項励起状態(S)と三重項励起状態(T)とがあり、一重項励起状態からの発光が蛍光、三重項励起状態からの発光が燐光と呼ばれている。また、発光素子におけるそれらの統計的な生成比率は、S:T=1:3であると考えられている。 In the light emitting element, when a voltage is applied between a pair of electrodes, electrons and holes injected from each electrode are recombined in the EL layer, and the light emitting substance (organic compound) contained in the EL layer is in an excited state. It emits light when the excited state returns to the ground state. The types of excited states include singlet excited state (S * ) and triplet excited state (T * ), and the light emission from the singlet excited state is fluorescence, the light emission from the triplet excited state is phosphorescence and the like. being called. Also, their statistical generation ratio in the light emitting element is considered to be S * : T * = 1: 3.
また、上記発光物質のうち、一重項励起状態におけるエネルギーを発光に変換することが可能な化合物は蛍光性化合物(蛍光材料)と呼ばれ、三重項励起状態におけるエネルギーを発光に変換することが可能な化合物は燐光性化合物(燐光材料)と呼ばれる。 Further, among the above-mentioned light emitting substances, a compound capable of converting energy in a singlet excited state into light emission is called a fluorescent compound (fluorescent material) and can convert energy in a triplet excited state into light emission. Compounds are called phosphorescent compounds (phosphorescent materials).
従って、上記の生成比率を根拠にした時、上記各発光物質を用いた発光素子における内部量子効率(注入したキャリアに対して発生するフォトンの割合)の理論的限界は、蛍光材料を用いた場合は25%、燐光材料を用いた場合は75%となる。 Therefore, based on the above generation ratio, the theoretical limit of the internal quantum efficiency (the ratio of photons generated to injected carriers) in the light emitting element using each light emitting material is the case of using a fluorescent material Is 25%, and 75% when a phosphorescent material is used.
つまり、蛍光材料を用いた発光素子に比べて、燐光材料を用いた発光素子では、より高い効率を得ることが可能となる。そのため、近年では様々な種類の燐光材料の開発が盛んに行われている。特に、その燐光量子収率の高さゆえに、イリジウム等を中心金属とする有機金属錯体が注目されている(例えば、特許文献1。)。 That is, in the light emitting element using the phosphorescent material, higher efficiency can be obtained as compared with the light emitting element using the fluorescent material. Therefore, in recent years, various types of phosphorescent materials have been actively developed. In particular, an organometallic complex having iridium or the like as a central metal is attracting attention because of its high phosphorescence quantum yield (for example, Patent Document 1).
特開2009−023938号公報JP, 2009-023938, A
上述した特許文献1において報告されているように優れた特性を示す燐光材料の開発が進んでいるが、さらに良好な特性を示す新規材料の開発が望まれている。 Although development of a phosphorescent material exhibiting excellent characteristics as reported in Patent Document 1 described above is in progress, development of a new material exhibiting further excellent characteristics is desired.
そこで、本発明の一態様では、新規な有機金属錯体を提供する。また、本発明の一態様では、耐熱性に優れた新規な有機金属錯体を提供する。また、本発明の一態様では、昇華する際に分解しにくい新規な有機金属錯体を提供する。また、本発明の一態様では、色純度の良い新規な有機金属錯体を提供する。また、本発明の一態様では、分子の配向性の高い新規な有機金属錯体を提供する。また、本発明の一態様では、発光素子に用いることができる新規な有機金属錯体を提供する。また、本発明の一態様では、発光素子のEL層に用いることができる、新規な有機金属錯体を提供する。また、本発明の一態様である新規な有機金属錯体を用いた、高効率で信頼性の高い新規な発光素子を提供する。また、新規な発光装置、新規な電子機器、または新規な照明装置を提供する。なお、これらの課題の記載は、他の課題の存在を妨げるものではない。また、本発明の一態様は、必ずしも、これらの課題の全てを解決する必要はない。また、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。 Thus, in one aspect of the present invention, novel organometallic complexes are provided. In one embodiment of the present invention, a novel organometallic complex excellent in heat resistance is provided. In one aspect of the present invention, there is provided a novel organometallic complex which is not easily decomposed upon sublimation. In one aspect of the present invention, a novel organometallic complex with high color purity is provided. In one aspect of the present invention, a novel organometallic complex with high molecular orientation is provided. In one embodiment of the present invention, a novel organometallic complex which can be used for a light-emitting element is provided. In one embodiment of the present invention, a novel organometallic complex which can be used for an EL layer of a light-emitting element is provided. Further, the present invention provides a highly efficient and highly reliable novel light-emitting element using the novel organometallic complex which is one embodiment of the present invention. In addition, a novel light emitting device, a novel electronic device, or a novel lighting device is provided. Note that the descriptions of these objects do not disturb the existence of other objects. Further, one aspect of the present invention does not necessarily have to solve all of these problems. In addition, problems other than these are naturally apparent from the description of the specification, drawings, claims, etc., and other problems can be extracted from the descriptions of the specification, drawings, claims, etc. It is.
本発明の一態様は、Irに配位したピリミジン環が、置換基としてシアノ基を有するフェニル基を少なくとも一つ有し、かつ、シアノ基を有するフェニル基がピリミジン環の6位に結合する、下記一般式(G1)で表される有機金属錯体である。 In one embodiment of the present invention, the pyrimidine ring coordinated to Ir has at least one phenyl group having a cyano group as a substituent, and a phenyl group having a cyano group is bonded to the 6 position of the pyrimidine ring. It is an organometallic complex represented by the following general formula (G1).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
但し、一般式(G1)中、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、環を形成する炭素数が5~7の置換もしくは無置換のシクロアルキル基、環を形成する炭素数が6~13の置換もしくは無置換のアリール基、または環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基のいずれかを表す。また、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、環を形成する炭素数が6~13の置換もしくは無置換のアリール基、環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基、またはシアノ基のいずれかを表し、少なくとも一は、シアノ基を表す。また、Lは、モノアニオン性の配位子を表す。また、nは、1乃至3の整数を表す。 However, in the general formula (G1), R 1 to R 4 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 5 to 7 carbon atoms forming a ring. And a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms forming the ring. R 5 to R 9 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a carbon number forming the ring It represents either a 3-12 substituted or unsubstituted heteroaryl group or a cyano group, and at least one represents a cyano group. L represents a monoanionic ligand. Also, n represents an integer of 1 to 3.
また、本発明の別の一態様は、下記一般式(G1)で表される有機金属錯体である。 Another embodiment of the present invention is an organometallic complex represented by the following general formula (G1).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
但し、一般式(G1)中、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、環を形成する炭素数が5~7の置換もしくは無置換のシクロアルキル基、環を形成する炭素数が6~13の置換もしくは無置換のアリール基、または環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基のいずれかを表す。また、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、環を形成する炭素数が6~13の置換もしくは無置換のアリール基、環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基、またはシアノ基のいずれかを表す。また、R~Rのいずれか一は、シアノ基を表す。また、Lは、モノアニオン性の配位子を表す。また、nは、1乃至3の整数を表す。 However, in the general formula (G1), R 1 to R 4 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 5 to 7 carbon atoms forming a ring. And a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms forming the ring. R 5 to R 9 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a carbon number forming the ring It represents either a 3-12 substituted or unsubstituted heteroaryl group or a cyano group. In addition, any one of R 6 to R 8 represents a cyano group. L represents a monoanionic ligand. Also, n represents an integer of 1 to 3.
上記一般式(G1)で示す構成において、nは、2である。 In the configuration represented by the above general formula (G1), n is 2.
また、上記各構成において、モノアニオン性の配位子は、β−ジケトン構造を有するモノアニオン性の二座キレート配位子、カルボキシル基を有するモノアニオン性の二座キレート配位子、フェノール性水酸基を有するモノアニオン性の二座キレート配位子、二つの配位元素がいずれも窒素であるモノアニオン性の二座キレート配位子、またはシクロメタル化によりイリジウムと金属−炭素結合を形成する芳香族複素環二座配位子のいずれか一である。 Further, in each of the above configurations, the monoanionic ligand is a monoanionic bidentate chelating ligand having a β-diketone structure, a monoanionic bidentate chelating ligand having a carboxyl group, a phenolic A metal-carbon bond is formed with iridium by a monoanionic bidentate chelate ligand having a hydroxyl group, a monoanionic bidentate chelate ligand in which both coordination elements are nitrogen, or cyclometalation Any one of aromatic heterocyclic bidentate ligands.
また、上記各構成において、モノアニオン性の配位子は、下記一般式(L1)~(L8)のいずれか一である。 Further, in each of the above configurations, the monoanionic ligand is any one of the following general formulas (L1) to (L8).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
但し、上記一般式(L1)~(L8)中、R71~R77およびR87~R131は、それぞれ独立に水素、炭素数1~6のアルキル基、環を形成する炭素数が5~7の置換もしくは無置換のシクロアルキル基、ハロゲン基、ビニル基、置換もしくは無置換の炭素数1~6のハロアルキル基、置換もしくは無置換の炭素数1~6のアルコキシ基、置換もしくは無置換の炭素数1~6のアルキルチオ基、または環を形成する炭素数が6~13の置換もしくは無置換のアリール基を表す。また、A~Aは、それぞれ独立に窒素もしくは水素と結合するsp混成炭素、または置換基を有するsp混成炭素を表し、置換基は炭素数1~6のアルキル基、ハロゲン基、炭素数1~6のハロアルキル基、または置換もしくは無置換のフェニル基のいずれかを表す。 However, in the above general formulas (L1) to (L8), R 71 to R 77 and R 87 to R 131 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, or 5 to 6 carbon atoms forming a ring. 7 substituted or unsubstituted cycloalkyl groups, halogen groups, vinyl groups, substituted or unsubstituted haloalkyl groups having 1 to 6 carbon atoms, substituted or unsubstituted alkoxy groups having 1 to 6 carbon atoms, substituted or unsubstituted groups It represents an alkylthio group having 1 to 6 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 13 carbon atoms which forms a ring. Further, A 1 ~ A 3 represents a sp 2 hybridized carbon, each having a sp 2 hybridized carbon bonded to the nitrogen or independently hydrogen or a substituent, the substituent is an alkyl group having 1 to 6 carbon atoms, a halogen group, It represents either a haloalkyl group having 1 to 6 carbon atoms or a substituted or unsubstituted phenyl group.
また、上記一般式(G1)で示す構成において、nは、3である。 In the configuration represented by the above general formula (G1), n is 3.
また、本発明の別の一態様は、下記一般式(G2)で表される有機金属錯体である。 Another embodiment of the present invention is an organometallic complex represented by the following general formula (G2).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
但し、一般式(G2)中、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、環を形成する炭素数が5~7の置換もしくは無置換のシクロアルキル基、環を形成する炭素数が6~13の置換もしくは無置換のアリール基、または環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基のいずれかを表す。また、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、環を形成する炭素数が6~13の置換もしくは無置換のアリール基、環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基、またはシアノ基のいずれかを表し、少なくとも一は、シアノ基を表す。また、R71およびR73は、それぞれ独立に水素、炭素数1~6のアルキル基、環を形成する炭素数が5~7の置換もしくは無置換のシクロアルキル基、ハロゲン基、ビニル基、置換もしくは無置換の炭素数1~6のハロアルキル基、置換もしくは無置換の炭素数1~6のアルコキシ基、置換もしくは無置換の炭素数1~6のアルキルチオ基、または環を形成する炭素数が6~13の置換もしくは無置換のアリール基を表す。 However, in the general formula (G2), R 1 to R 4 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 5 to 7 carbon atoms forming a ring. And a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms forming the ring. R 5 to R 9 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a carbon number forming the ring It represents either a 3-12 substituted or unsubstituted heteroaryl group or a cyano group, and at least one represents a cyano group. R 71 and R 73 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 5 to 7 carbon atoms forming a ring, a halogen group, a vinyl group, or a substituted group Or an unsubstituted haloalkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 6 carbon atoms, a substituted or unsubstituted alkylthio group having 1 to 6 carbon atoms, or a ring having 6 carbon atoms Represents a substituted or unsubstituted aryl group of -13.
また、本発明の別の一態様は、下記一般式(G2)で表される有機金属錯体である。 Another embodiment of the present invention is an organometallic complex represented by the following general formula (G2).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
但し、一般式(G2)中、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、環を形成する炭素数が5~7の置換もしくは無置換のシクロアルキル基、環を形成する炭素数が6~13の置換もしくは無置換のアリール基、または環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基のいずれかを表す。また、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、環を形成する炭素数が6~13の置換もしくは無置換のアリール基、環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基、またはシアノ基のいずれかを表す。また、R~Rのいずれか一は、シアノ基を表す。また、R71およびR73は、それぞれ独立に水素、炭素数1~6のアルキル基、環を形成する炭素数が5~7の置換もしくは無置換のシクロアルキル基、ハロゲン基、ビニル基、置換もしくは無置換の炭素数1~6のハロアルキル基、置換もしくは無置換の炭素数1~6のアルコキシ基、置換もしくは無置換の炭素数1~6のアルキルチオ基、または環を形成する炭素数が6~13の置換もしくは無置換のアリール基を表す。 However, in the general formula (G2), R 1 to R 4 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 5 to 7 carbon atoms forming a ring. And a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms forming the ring. R 5 to R 9 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a carbon number forming the ring It represents either a 3-12 substituted or unsubstituted heteroaryl group or a cyano group. In addition, any one of R 6 to R 8 represents a cyano group. R 71 and R 73 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 5 to 7 carbon atoms forming a ring, a halogen group, a vinyl group, or a substituted group Or an unsubstituted haloalkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 6 carbon atoms, a substituted or unsubstituted alkylthio group having 1 to 6 carbon atoms, or a ring having 6 carbon atoms Represents a substituted or unsubstituted aryl group of -13.
本発明の別の一態様は、Irに配位したピリミジン環が、置換基としてシアノ基を有するフェニル基を少なくとも一つ有し、かつ、パラ位またはメタ位にシアノ基を有するフェニル基がピリミジン環の6位に結合する有機金属錯体である。 Another aspect of the present invention is that the pyrimidine ring coordinated to Ir has at least one phenyl group having a cyano group as a substituent, and the phenyl group having a cyano group in the para or meta position is a pyrimidine It is an organometallic complex bonded to the 6-position of the ring.
本発明の別の一態様は、構造式(100)で表される有機金属錯体である。 Another embodiment of the present invention is an organometallic complex represented by Structural Formula (100).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
本発明の別の一態様は、Irに配位したピリミジン環が、置換基としてシアノ基を有するフェニル基を少なくとも一つ有し、かつ、シアノ基を有するフェニル基がピリミジン環の6位に結合する、有機金属錯体を用いた発光素子である。なお、上記有機金属錯体に加えて他の有機化合物を有する発光素子も本発明の一態様に含める。 Another aspect of the present invention is that the pyrimidine ring coordinated to Ir has at least one phenyl group having a cyano group as a substituent, and the phenyl group having a cyano group is bonded to the 6 position of the pyrimidine ring A light emitting element using an organometallic complex. Note that a light-emitting element having another organic compound in addition to the above organometallic complex is also included in one embodiment of the present invention.
本発明の別の一態様は、上述した本発明の一態様である有機金属錯体を用いた発光素子である。なお、一対の電極間に有するEL層や、EL層に含まれる発光層に本発明の一態様である有機金属錯体を用いて形成された発光素子も本発明の一態様に含まれることとする。また、発光素子に加えて、トランジスタ、基板などを有する発光装置も発明の範疇に含める。さらに、これらの発光装置に加えて、マイク、カメラ、操作用ボタン、外部接続部、筐体、カバー、支持台または、スピーカ等を有する電子機器や照明装置も発明の範疇に含める。 Another embodiment of the present invention is a light-emitting element using the organometallic complex which is one embodiment of the present invention described above. Note that an EL layer formed between a pair of electrodes and a light emitting element formed using the organometallic complex which is an embodiment of the present invention in the light emitting layer included in the EL layer are also included in an embodiment of the present invention. . In addition, a light-emitting device including a transistor, a substrate, and the like in addition to the light-emitting element is also included in the scope of the invention. Furthermore, in addition to these light emitting devices, electronic devices and lighting devices having a microphone, a camera, an operation button, an external connection portion, a housing, a cover, a support, a speaker, and the like are also included in the scope of the invention.
本発明の一態様である有機金属錯体は、他の有機化合物と組み合わせて発光素子の発光層に用いることができる。すなわち、発光層から三重項励起状態からの発光を得ることが可能であるため、発光素子の高効率化が可能となり、非常に有効である。したがって、本発明の一態様である有機金属錯体と、他の有機化合物とを組み合わせて発光層に用いた発光素子は、本発明の一態様に含まれるものとする。さらに上記に加えて第3の物質を発光層に加えた構成としてもよい。 The organometallic complex which is one embodiment of the present invention can be used in the light emitting layer of a light emitting element in combination with another organic compound. That is, since light emission from the triplet excited state can be obtained from the light emitting layer, the efficiency of the light emitting element can be increased, which is very effective. Therefore, a light-emitting element in which the organometallic complex which is one embodiment of the present invention is combined with another organic compound and used for the light-emitting layer is included in one embodiment of the present invention. Furthermore, in addition to the above, a third substance may be added to the light emitting layer.
また、本発明の一態様は、発光素子を有する発光装置を含み、さらに発光装置を有する照明装置も範疇に含めるものである。従って、本明細書中における発光装置とは、画像表示デバイス、または光源(照明装置を含む)を指す。また、発光装置にコネクター、例えばFPC(Flexible printed circuit)もしくはTCP(Tape Carrier Package)が取り付けられたモジュール、TCPの先にプリント配線板が設けられたモジュール、または発光装置にCOG(Chip On Glass)方式によりIC(集積回路)が直接実装されたモジュールも全て発光装置に含むものとする。 Further, one embodiment of the present invention includes a light-emitting device having a light-emitting element, and further includes a lighting device having a light-emitting device in its category. Accordingly, a light emitting device herein refers to an image display device, or a light source (including a lighting device). In addition, a module in which a connector such as a flexible printed circuit (FPC) or a TCP (Tape Carrier Package) is attached to a light emitting device, a module in which a printed wiring board is provided ahead of TCP, or a chip on glass (COG) for a light emitting device It is assumed that all light emitting devices include modules in which ICs (integrated circuits) are directly mounted by a method.
本発明の一態様は、新規な有機金属錯体を提供することができる。また、耐熱性に優れた新規の有機金属錯体を提供することができる。また、昇華する際に分解しにくい新規の有機金属錯体を提供することができる。また、本発明の一態様は、色純度の良い新規な有機金属錯体を提供することができる。また、本発明の一態様では、分子の配向性の高い新規な有機金属錯体を提供することができる。また、本発明の一態様では、発光素子に用いることができる新規な有機金属錯体を提供することができる。また、本発明の一態様では、発光素子のEL層に用いることができる、新規な有機金属錯体を提供することができる。また、本発明の一態様である新規な有機金属錯体を用いた、高効率で信頼性の高い新規な発光素子を提供することができる。また、新規な発光装置、新規な電子機器、または新規な照明装置を提供することができる。なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。 One aspect of the present invention can provide a novel organometallic complex. In addition, a novel organometallic complex excellent in heat resistance can be provided. In addition, it is possible to provide a novel organometallic complex which is difficult to be decomposed at the time of sublimation. In addition, one embodiment of the present invention can provide a novel organometallic complex with high color purity. In one embodiment of the present invention, a novel organometallic complex with high molecular orientation can be provided. In one embodiment of the present invention, a novel organometallic complex which can be used for a light-emitting element can be provided. In one embodiment of the present invention, a novel organometallic complex which can be used for an EL layer of a light-emitting element can be provided. In addition, a highly efficient and highly reliable novel light-emitting element using the novel organometallic complex which is one embodiment of the present invention can be provided. In addition, a novel light-emitting device, a novel electronic device, or a novel lighting device can be provided. Note that the description of these effects does not disturb the existence of other effects. Note that one embodiment of the present invention does not necessarily have all of these effects. Note that effects other than these are naturally apparent from the description of the specification, drawings, claims and the like, and other effects can be extracted from the descriptions of the specification, drawings, claims and the like. It is.
発光素子の構造について説明する図。5A to 5C illustrate structures of light-emitting elements. 発光装置について説明する図。FIG. 7 illustrates a light-emitting device. 発光装置について説明する図。FIG. 7 illustrates a light-emitting device. 電子機器について説明する図。5A to 5C illustrate electronic devices. 電子機器について説明する図。5A to 5C illustrate electronic devices. 自動車について説明する図。FIG. 照明装置について説明する図。The figure explaining a lighting installation. 構造式(100)に示す有機金属錯体のH−NMRチャート。 1 H-NMR chart of an organometallic complex represented by a structural formula (100). 構造式(100)に示す有機金属錯体の溶液中の紫外・可視吸収スペクトル及び発光スペクトル。UV-visible absorption spectrum and emission spectrum of an organometallic complex represented by a structural formula (100) in a solution. 発光素子について説明する図。5A to 5C illustrate light-emitting elements. 発光素子1および比較発光素子2の電流密度−輝度特性を示す図。FIG. 16 shows current density-luminance characteristics of the light-emitting element 1 and the comparative light-emitting element 2. 発光素子1および比較発光素子2の電圧−輝度特性を示す図。FIG. 16 shows voltage-luminance characteristics of the light-emitting element 1 and the comparative light-emitting element 2. 発光素子1および比較発光素子2の輝度−電流効率特性を示す図。FIG. 16 shows luminance-current efficiency characteristics of the light-emitting element 1 and the comparative light-emitting element 2. 発光素子1および比較発光素子2の電圧−電流特性を示す図。FIG. 18 shows voltage-current characteristics of the light-emitting element 1 and the comparative light-emitting element 2. 発光素子1および比較発光素子2の発光スペクトルを示す図。FIG. 16 shows emission spectra of the light-emitting element 1 and the comparative light-emitting element 2. 発光素子1および比較発光素子2の信頼性を示す図。FIG. 18 shows the reliability of the light-emitting element 1 and the comparative light-emitting element 2; 四重極型質量分析計による測定結果を示す図。The figure which shows the measurement result by a quadrupole mass spectrometer. 構造式(112)に示す有機金属錯体のH−NMRチャート。 1 H-NMR chart of an organometallic complex represented by a structural formula (112). 構造式(112)に示す有機金属錯体の溶液中の紫外・可視吸収スペクトル及び発光スペクトル。11 shows an ultraviolet-visible absorption spectrum and an emission spectrum of a solution of an organometallic complex represented by a structural formula (112). 構造式(114)に示す有機金属錯体のH−NMRチャート。 1 H-NMR chart of an organometallic complex represented by a structural formula (114). 構造式(114)に示す有機金属錯体の溶液中の紫外・可視吸収スペクトル及び発光スペクトル。16 shows an ultraviolet-visible absorption spectrum and an emission spectrum of a solution of an organometallic complex represented by a structural formula (114).
以下、本発明の実施の態様について図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることが可能である。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and various changes in form and detail can be made without departing from the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited to the description of the embodiments below.
なお、図面等において示す各構成の、位置、大きさ、範囲などは、理解の簡単のため、実際の位置、大きさ、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面等に開示された位置、大きさ、範囲などに限定されない。 Note that the positions, sizes, ranges, and the like of the components shown in the drawings and the like may not represent actual positions, sizes, ranges, and the like for ease of understanding. Therefore, the disclosed invention is not necessarily limited to the position, size, range, and the like disclosed in the drawings and the like.
また、本明細書等において、図面を用いて発明の構成を説明するにあたり、同じものを指す符号は異なる図面間でも共通して用いる。 Further, in the present specification and the like, when describing the configuration of the invention using the drawings, reference numerals denoting the same parts are used in common among different drawings.
(実施の形態1)
本実施の形態では、本発明の一態様である有機金属錯体について説明する。
Embodiment 1
In this embodiment, an organometallic complex which is one embodiment of the present invention is described.
本発明の一態様である有機金属錯体は、Irに配位したピリミジン環が、置換基としてシアノ基を有するフェニル基を少なくとも一つ有し、かつ、シアノ基を有するフェニル基がピリミジン環の6位に結合することを特徴とする、下記一般式(G1)で表される構造を有する。 In the organometallic complex which is one embodiment of the present invention, the pyrimidine ring coordinated to Ir has at least one phenyl group having a cyano group as a substituent, and the phenyl group having a cyano group is 6 It has a structure represented by the following general formula (G1) characterized by bonding to
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
一般式(G1)において、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、環を形成する炭素数が5~7の置換もしくは無置換のシクロアルキル基、環を形成する炭素数が6~13の置換もしくは無置換のアリール基、または環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基のいずれかを表す。また、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、環を形成する炭素数が6~13の置換もしくは無置換のアリール基、環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基、またはシアノ基のいずれかを表し、少なくとも一は、シアノ基を表す。また、Lは、モノアニオン性の配位子を表す。また、nは、1乃至3の整数を表す。 In formula (G1), R 1 to R 4 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 5 to 7 carbon atoms forming the ring, or a ring Or a substituted or unsubstituted aryl group having 6 to 13 carbon atoms that forms R.sup.13 or a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms that forms a ring. R 5 to R 9 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a carbon number forming the ring It represents either a 3-12 substituted or unsubstituted heteroaryl group or a cyano group, and at least one represents a cyano group. L represents a monoanionic ligand. Also, n represents an integer of 1 to 3.
本発明の別の一態様である有機金属錯体は、上記一般式(G1)で表される構造を有し、上記一般式(G1)において、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数6~13のアリール基、置換もしくは無置換の炭素数3~12のヘテロアリール基のいずれかを表す。また、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数6~13のアリール基、置換もしくは無置換の炭素数3~12のヘテロアリール基、シアノ基のいずれかを表す。また、R~Rのいずれか一は、シアノ基を表す。Lは、モノアニオン性の配位子を表す。また、nは、1乃至3の整数を表す。 The organometallic complex which is another aspect of the present invention has a structure represented by the above general formula (G1), and in the above general formula (G1), R 1 to R 4 are each independently hydrogen, It represents either an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, or a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms. Further, R 5 to R 9 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, or a substituted or unsubstituted heterocycloalkyl having 3 to 12 carbon atoms. It represents either an aryl group or a cyano group. In addition, any one of R 6 to R 8 represents a cyano group. L represents a monoanionic ligand. Also, n represents an integer of 1 to 3.
本発明の別の一態様である有機金属錯体は、上記一般式(G1)中のnが2である。 In the organometallic complex which is another aspect of the present invention, n in the general formula (G1) is 2.
本発明の別の一態様である有機金属錯体は、上記一般式(G1)中のモノアニオン性の配位子が、β−ジケトン構造を有するモノアニオン性の二座キレート配位子、カルボキシル基を有するモノアニオン性の二座キレート配位子、フェノール性水酸基を有するモノアニオン性の二座キレート配位子、二つの配位元素がいずれも窒素であるモノアニオン性の二座キレート配位子、またはシクロメタル化によりイリジウムと金属−炭素結合を形成する芳香族複素環二座配位子のいずれか一である。 The organometallic complex which is another aspect of the present invention is characterized in that the monoanionic ligand in the general formula (G1) is a monoanionic bidentate chelating ligand having a β-diketone structure, a carboxyl group A monoanionic bidentate chelate ligand having a monobasic, a monoanionic bidentate chelate ligand having a phenolic hydroxyl group, and a monoanionic bidentate chelate ligand in which both coordination elements are nitrogen Or an aromatic heterocyclic bidentate ligand which forms a metal-carbon bond with iridium by cyclometalation.
本発明の別の一態様は、上記一般式(G1)中のモノアニオン性の配位子が、下記一般式(L1)~(L8)のいずれか一である有機金属錯体である。 Another aspect of the present invention is an organometallic complex in which the monoanionic ligand in the general formula (G1) is any one of the following general formulas (L1) to (L8).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
一般式(L1)~(L8)において、R71~R77およびR87~R131は、それぞれ独立に水素、炭素数1~6のアルキル基、環を形成する炭素数が5~7の置換もしくは無置換のシクロアルキル基、ハロゲン基、ビニル基、置換もしくは無置換の炭素数1~6のハロアルキル基、置換もしくは無置換の炭素数1~6のアルコキシ基、置換もしくは無置換の炭素数1~6のアルキルチオ基、または環を形成する炭素数が6~13の置換もしくは無置換のアリール基を表す。また、A~Aは、それぞれ独立に窒素もしくは水素と結合するsp混成炭素、または置換基を有するsp混成炭素を表し、前記置換基は炭素数1~6のアルキル基、ハロゲン基、炭素数1~6のハロアルキル基、または置換もしくは無置換のフェニル基のいずれかを表す。 In formulas (L1) to (L8), R 71 to R 77 and R 87 to R 131 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, or a substituent having 5 to 7 carbon atoms forming a ring. Or an unsubstituted cycloalkyl group, a halogen group, a vinyl group, a substituted or unsubstituted haloalkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 6 carbon atoms, a substituted or unsubstituted carbon atom having 1 And an alkylthio group of -6, or a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming a ring. Further, A 1 ~ A 3 each represent a sp 2 hybridized carbon bonded to the nitrogen or independently hydrogen or sp 2 hybridized carbon having a substituent, said substituent is an alkyl group having 1 to 6 carbon atoms, a halogen group Or a haloalkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted phenyl group.
本発明の別の一態様である有機金属錯体は、上記一般式(G1)中のnが3である。 In the organometallic complex which is another aspect of the present invention, n in the general formula (G1) is 3.
また、本発明の別の一態様である有機金属錯体は、下記一般式(G2)で表される構造を有する。 Further, an organometallic complex which is another embodiment of the present invention has a structure represented by the following general formula (G2).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
一般式(G2)において、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、環を形成する炭素数が5~7の置換もしくは無置換のシクロアルキル基、環を形成する炭素数が6~13の置換もしくは無置換のアリール基、または環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基のいずれかを表す。また、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、環を形成する炭素数が6~13の置換もしくは無置換のアリール基、環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基、またはシアノ基のいずれかを表し、少なくとも一は、シアノ基を表す。また、R71およびR73は、それぞれ独立に水素、炭素数1~6のアルキル基、環を形成する炭素数が5~7の置換もしくは無置換のシクロアルキル基、ハロゲン基、ビニル基、置換もしくは無置換の炭素数1~6のハロアルキル基、置換もしくは無置換の炭素数1~6のアルコキシ基、置換もしくは無置換の炭素数1~6のアルキルチオ基、または環を形成する炭素数が6~13の置換もしくは無置換のアリール基を表す。 In formula (G2), R 1 to R 4 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 5 to 7 carbon atoms which forms a ring, or a ring Or a substituted or unsubstituted aryl group having 6 to 13 carbon atoms that forms R.sup.13 or a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms that forms a ring. R 5 to R 9 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a carbon number forming the ring It represents either a 3-12 substituted or unsubstituted heteroaryl group or a cyano group, and at least one represents a cyano group. R 71 and R 73 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 5 to 7 carbon atoms forming a ring, a halogen group, a vinyl group, or a substituted group Or an unsubstituted haloalkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 6 carbon atoms, a substituted or unsubstituted alkylthio group having 1 to 6 carbon atoms, or a ring having 6 carbon atoms Represents a substituted or unsubstituted aryl group of -13.
本発明の別の一態様である有機金属錯体は、上記一般式(G2)で表される構造を有し、上記一般式(G2)において、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、環を形成する炭素数が5~7の置換もしくは無置換のシクロアルキル基、環を形成する炭素数が6~13の置換もしくは無置換のアリール基、または環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基のいずれかを表す。また、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、環を形成する炭素数が6~13の置換もしくは無置換のアリール基、環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基、またはシアノ基のいずれかを表す。また、R~Rのいずれか一は、シアノ基を表す。また、R71およびR73は、それぞれ独立に水素、炭素数1~6のアルキル基、環を形成する炭素数が5~7の置換もしくは無置換のシクロアルキル基、ハロゲン基、ビニル基、置換もしくは無置換の炭素数1~6のハロアルキル基、置換もしくは無置換の炭素数1~6のアルコキシ基、置換もしくは無置換の炭素数1~6のアルキルチオ基、または環を形成する炭素数が6~13の置換もしくは無置換のアリール基を表す。 The organometallic complex which is another aspect of the present invention has a structure represented by the above general formula (G2), and in the above general formula (G2), R 1 to R 4 are each independently hydrogen, An alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 5 to 7 carbon atoms forming a ring, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming a ring, or a ring Or represents a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms. R 5 to R 9 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a carbon number forming the ring It represents either a 3-12 substituted or unsubstituted heteroaryl group or a cyano group. In addition, any one of R 6 to R 8 represents a cyano group. R 71 and R 73 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 5 to 7 carbon atoms forming a ring, a halogen group, a vinyl group, or a substituted group Or an unsubstituted haloalkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 6 carbon atoms, a substituted or unsubstituted alkylthio group having 1 to 6 carbon atoms, or a ring having 6 carbon atoms Represents a substituted or unsubstituted aryl group of -13.
なお、上記一般式(G1)および上記一般式(G2)で表される有機金属錯体において、置換とは、好ましくは、メチル基、エチル基、n−プロピル基、イソプロピル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、n−ヘキシル基のような炭素数1~6のアルキル基や、フェニル基、o−トリル基、m−トリル基、p−トリル基、1−ナフチル基、2−ナフチル基、2−ビフェニル基、3−ビフェニル基、4−ビフェニル基のような炭素数6~12のアリール基のような置換基による置換を表す。また、これらの置換基は互いに結合し、環を形成していても良い。例えば、前記アリール基が、置換基として9位に二つのフェニル基を有する2−フルオレニル基である場合、該フェニル基が互いに結合し、スピロ−9,9’−ビフルオレン−2−イル基となっても良い。より具体的には、例えば、フェニル基、トリル基、キシリル基、ビフェニル基、インデニル基、ナフチル基、フルオレニル基などが挙げられる。 In the organometallic complexes represented by the above general formula (G1) and the above general formula (G2), the substitution is preferably methyl group, ethyl group, n-propyl group, isopropyl group, sec-butyl group, alkyl group having 1 to 6 carbon atoms such as tert-butyl group, n-pentyl group, n-hexyl group, phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 1-naphthyl group, It represents substitution by a substituent such as an aryl group having 6 to 12 carbon atoms such as a 2-naphthyl group, a 2-biphenyl group, a 3-biphenyl group, and a 4-biphenyl group. In addition, these substituents may be bonded to each other to form a ring. For example, when the aryl group is a 2-fluorenyl group having two phenyl groups at the 9-position as a substituent, the phenyl groups are bonded to each other to form a spiro-9,9'-bifluoren-2-yl group It is good. More specifically, for example, phenyl group, tolyl group, xylyl group, biphenyl group, indenyl group, naphthyl group, fluorenyl group and the like can be mentioned.
また、上記一般式(G1)および上記一般式(G2)で表される有機金属錯体において、式中の、R~Rにおける炭素数1~6のアルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、イソペンチル基、sec−ペンチル基、tert−ペンチル基、ネオペンチル基、ヘキシル基、イソヘキシル基、sec−ヘキシル基、tert−ヘキシル基、ネオヘキシル基、3−メチルペンチル基、2−メチルペンチル基、2−エチルブチル基、1,2−ジメチルブチル基、2,3−ジメチルブチル基等が挙げられる。 In the organometallic complexes represented by the above general formula (G1) and the above general formula (G2), examples of the alkyl group having 1 to 6 carbon atoms in R 1 to R 9 in the formula include a methyl group. , Ethyl, propyl, isopropyl, butyl, sec-butyl, isobutyl, tert-butyl, pentyl, isopentyl, sec-pentyl, tert-pentyl, neopentyl, hexyl, isohexyl Sec-hexyl group, tert-hexyl group, neohexyl group, 3-methylpentyl group, 2-methylpentyl group, 2-ethylbutyl group, 1,2-dimethylbutyl group, 2,3-dimethylbutyl group and the like. .
また、上記一般式(G1)および上記一般式(G2)で表される有機金属錯体において、式中の、R~Rにおける環を形成する炭素数が5~7の置換もしくは無置換のシクロアルキル基の具体例としては、シクロペンチル基、シクロヘキシル基、またはシクロヘプチル基等が挙げられる。 Furthermore, in the organometallic complexes represented by the above general formula (G1) and the above general formula (G2), the substituted or unsubstituted C 5 to 7 carbon atoms forming the ring in R 1 to R 9 in the formula Specific examples of the cycloalkyl group include a cyclopentyl group, a cyclohexyl group, a cycloheptyl group and the like.
また、上記一般式(G1)および上記一般式(G2)で表される有機金属錯体において、式中の、R~Rにおける環を形成する炭素数が6~13の置換もしくは無置換のアリール基の具体例としては、フェニル基、ビフェニル基、ナフチル基、インデニル基、またはフルオレニル基等が挙げられる。 In the organometallic complexes represented by the above general formula (G1) and the above general formula (G2), the substituted or unsubstituted C 6 to 13 carbon atoms forming the ring in R 1 to R 9 in the formula Specific examples of the aryl group include a phenyl group, a biphenyl group, a naphthyl group, an indenyl group, a fluorenyl group and the like.
また、上記一般式(G1)および上記一般式(G2)で表される有機金属錯体において、式中の、R~Rにおける環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基の具体例としては、トリアジニル基、ピラジニル基、ピリミジニル基、ピリジニル基、キノリニル基、イソキノリニル基、ベンゾチエニル基、ベンゾフラニル基、インドリル基、ジベンゾチエニル基、ジベンゾフラニル基、またはカルバゾリル基等が挙げられる。 In the organometallic complexes represented by the above general formula (G1) and the above general formula (G2), the substituted or unsubstituted carbon atoms having 3 to 12 carbon atoms forming the ring in R 1 to R 9 in the formula Specific examples of the heteroaryl group include triazinyl, pyrazinyl, pyrimidinyl, pyridinyl, quinolinyl, isoquinolinyl, benzothienyl, benzofuranyl, indolyl, dibenzothienyl, dibenzofuranyl, carbazolyl and the like. Can be mentioned.
次に、上述した本発明の一態様である有機金属錯体の具体的な構造式を下記に示す。 Next, specific structural formulas of the organometallic complex which is one embodiment of the present invention described above are shown below.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
なお、上記構造式(100)~(134)で表される有機金属錯体は、上記一般式(G1)で表される有機金属錯体の一例であり、本発明の一態様である有機金属錯体は、これに限られない。 Note that the organometallic complex represented by the structural formulas (100) to (134) is an example of the organometallic complex represented by the general formula (G1), and the organometallic complex according to one aspect of the present invention is Not limited to this.
次に、本発明の一態様である有機金属錯体の合成方法の一例について説明する。なお、本発明の一態様である有機金属錯体は、下記一般式(G1)で表されるが、ここでは、式中、n=2の場合(下記一般式(G1−1))の有機金属錯体と、n=3の場合(下記一般式(G1−2))の有機金属錯体の合成方法について説明する。 Next, an example of a synthesis method of an organometallic complex which is one embodiment of the present invention will be described. In addition, although the organometallic complex which is one aspect | mode of this invention is represented by the following general formula (G1), in the case here, in the formula, the organic metal in the case of n = 2 (the following general formula (G1-1)) A method of synthesizing a complex and an organometallic complex in the case of n = 3 (general formula (G1-2) shown below) will be described.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
≪一般式(G0)で表されるピリミジン誘導体の合成方法≫
まず、上記一般式(G1)に含まれるピリミジン誘導体(一般式(G0))の合成方法について説明する。
<< Synthesis Method of Pyrimidine Derivative Represented by General Formula (G0) >>
First, the synthesis method of the pyrimidine derivative (general formula (G0)) contained in the said general formula (G1) is demonstrated.
下記一般式(G0)で表されるピリミジン誘導体(一般式(G1)に含まれる配位子)は、例えば、以下に示す合成方法により簡便に合成することができる。ここでは、第1の合成方法、第2の合成方法、および第3の合成方法、の3種類の合成方法を示す。 The pyrimidine derivative represented by the following general formula (G0) (ligand contained in the general formula (G1)) can be conveniently synthesized, for example, by the synthesis method shown below. Here, three types of synthesis methods are shown: a first synthesis method, a second synthesis method, and a third synthesis method.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
上記一般式(G0)において、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、環を形成する炭素数が5~7の置換もしくは無置換のシクロアルキル基、環を形成する炭素数が6~13の置換もしくは無置換のアリール基、または環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基のいずれかを表す。また、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、環を形成する炭素数が6~13の置換もしくは無置換のアリール基、環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基、またはシアノ基のいずれかを表し、少なくとも一は、シアノ基を表す。 In the above general formula (G0), R 1 to R 4 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 5 to 7 carbon atoms which forms a ring, The ring represents a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, or a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms forming the ring. R 5 to R 9 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a carbon number forming the ring It represents either a 3-12 substituted or unsubstituted heteroaryl group or a cyano group, and at least one represents a cyano group.
<第1の合成方法>
上記一般式(G0)で表されるピリミジン誘導体は、下記合成スキーム(A−1)に示すように、ハロゲン化ベンゼン誘導体(A1)をアルキルリチウム等でリチオ化し、ピリミジンのハロゲン化物(A2)と反応させることにより得ることができる。
<First synthesis method>
As shown in the following synthesis scheme (A-1), the pyrimidine derivative represented by the above general formula (G0) is lithiated with an alkyllithium or the like to give a halogenated benzene derivative (A1) with a pyrimidine halide (A2) It can be obtained by reaction.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
上記合成スキーム(A−1)において、XおよびXはハロゲンを表し、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、環を形成する炭素数が5~7の置換もしくは無置換のシクロアルキル基、環を形成する炭素数が6~13の置換もしくは無置換のアリール基、または環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基のいずれかを表す。また、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、環を形成する炭素数が6~13の置換もしくは無置換のアリール基、環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基、またはシアノ基のいずれかを表し、少なくとも一は、シアノ基を表す。 In the above synthesis scheme (A-1), X 1 and X 2 each represent a halogen, and R 1 to R 4 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, or 5 carbon atoms forming a ring. -7 substituted or unsubstituted cycloalkyl group, substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming a ring, or substituted or unsubstituted heteroaryl having 3 to 12 carbon atoms forming a ring Represents any of the groups. R 5 to R 9 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a carbon number forming the ring It represents either a 3-12 substituted or unsubstituted heteroaryl group or a cyano group, and at least one represents a cyano group.
<第2の合成方法>
上記一般式(G0)で表されるピリミジン誘導体は、下記合成スキーム(A−1’)に示すように、ベンゼン誘導体のボロン酸(A1’)とピリミジンのハロゲン化物(A2’)とをカップリングすることにより得ることができる。
<Second composition method>
As shown in the following synthesis scheme (A-1 ′), the pyrimidine derivative represented by the above general formula (G0) couples a boronic acid (A1 ′) of a benzene derivative with a halide (A2 ′) of pyrimidine It can be obtained by
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
上記合成スキーム(A−1’)において、Xはハロゲンを表し、Bはボロン酸またはボロン酸エステルまたは環状トリオールボレート塩等を表す。また、環状トリオールボレート塩はリチウム塩の他に、カリウム塩、ナトリウム塩を用いても良い。R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、環を形成する炭素数が5~7の置換もしくは無置換のシクロアルキル基、環を形成する炭素数が6~13の置換もしくは無置換のアリール基、または環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基のいずれかを表す。また、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、環を形成する炭素数が6~13の置換もしくは無置換のアリール基、環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基、またはシアノ基のいずれかを表し、少なくとも一は、シアノ基を表す。 In the above synthesis scheme (A-1 ′), X 3 represents a halogen, and B 1 represents a boronic acid or a boronic ester, a cyclic triol borate salt or the like. In addition to the lithium salt, the cyclic triol borate salt may use a potassium salt or a sodium salt. R 1 to R 4 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 5 to 7 carbon atoms forming the ring, or 6 carbon atoms forming the ring It represents either a substituted or unsubstituted aryl group of ̃13 or a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms forming a ring. R 5 to R 9 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a carbon number forming the ring It represents either a 3-12 substituted or unsubstituted heteroaryl group or a cyano group, and at least one represents a cyano group.
<第3の合成方法>
上記一般式(G0)で表されるピリミジン誘導体は、下記合成スキーム(A−1’’)に示すように、ベンゼン誘導体置換のジケトン(A1’’)とホルムアミド(A2’’)とをマイクロ波を用いて反応させることにより得ることができる。
<Third synthesis method>
The pyrimidine derivative represented by the above general formula (G0) has a benzene derivative-substituted diketone (A1 ′ ′) and formamide (A2 ′ ′) as a microwave as shown in the following synthesis scheme (A-1 ′ ′) It can be obtained by reacting using
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
上記合成スキーム(A−1’’)において、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、環を形成する炭素数が5~7の置換もしくは無置換のシクロアルキル基、環を形成する炭素数が6~13の置換もしくは無置換のアリール基、または環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基のいずれかを表す。また、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、環を形成する炭素数が6~13の置換もしくは無置換のアリール基、環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基、またはシアノ基のいずれかを表し、少なくとも一は、シアノ基を表す。 In the above synthesis scheme (A-1 ′ ′), R 1 to R 4 each independently represent a hydrogen, an alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted one having 5 to 7 carbon atoms forming a ring. The cycloalkyl group is a cycloalkyl group, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming a ring, or a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms forming a ring. R 5 to R 9 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a carbon number forming the ring It represents either a 3-12 substituted or unsubstituted heteroaryl group or a cyano group, and at least one represents a cyano group.
なお、上記の合成方法において用いた化合物(A1)、(A2)、(A1’)、(A2’)、(A1’’)、および(A2’’)は、様々な種類が市販されているか、あるいは合成可能であるため、一般式(G0)で表されるピリミジン誘導体は容易に数多くの種類を合成することができる。したがって、本発明の一態様である、有機金属錯体は、その配位子のバリエーションが豊富であるという特徴がある。 In addition, various types of the compounds (A1), (A2), (A1 ′), (A2 ′), (A1 ′ ′) and (A2 ′ ′) used in the above synthesis method are commercially available. Since pyrimidine derivatives can be synthesized, pyrimidine derivatives represented by General Formula (G0) can be easily synthesized in many types. Therefore, the organometallic complex which is one aspect of the present invention is characterized in being rich in variations of the ligand.
≪一般式(G1−1)で表される有機金属錯体の合成方法≫
上記一般式(G1−1)で表される有機金属錯体の合成方法について説明する。
<< Synthesis Method of Organometallic Complex Represented by General Formula (G1-1) >>
The synthesis method of the organometallic complex represented by the above general formula (G1-1) will be described.
上記一般式(G1−1)で表される有機金属錯体は、下記合成スキーム(A−2)に示すように、ハロゲンを含む第9族または第10族の金属化合物(塩化ロジウム水和物、塩化パラジウム、塩化イリジウム、臭化イリジウム、ヨウ化イリジウム、テトラクロロ白金酸カリウムなど)と、一般式(G0)で表されるピリミジン誘導体と、を無溶媒またはアルコール系溶媒(グリセロール、エチレングリコール、2−メトキシエタノール、2−エトキシエタノールなど)単独、あるいはアルコール系溶媒1種類以上と水との混合溶媒を用いて、不活性ガス雰囲気にて加熱することにより、ハロゲンで架橋された構造を有する有機金属錯体の一種であり、新規物質である複核錯体(B)を得ることができる。加熱手段として特に限定はなく、オイルバス、サンドバス、又はアルミブロックを用いてもよい。また、マイクロ波を加熱手段として用いることも可能である。 As shown in the following synthesis scheme (A-2), the organometallic complex represented by the above general formula (G1-1) is a metal compound of Group 9 or 10 containing a halogen (rhodium chloride hydrate, Palladium chloride, iridium chloride, iridium bromide, iridium iodide, potassium tetrachloroplatinate, etc., and a pyrimidine derivative represented by the general formula (G0), as a solventless or alcohol solvent (glycerol, ethylene glycol, 2 -An organic metal having a structure crosslinked with a halogen by heating in an inert gas atmosphere using methoxyethanol, 2-ethoxyethanol etc.) alone or a mixed solvent of one or more alcohol solvents and water A dinuclear complex (B) which is a kind of complex and is a novel substance can be obtained. There is no limitation in particular as a heating means, An oil bath, a sand bath, or an aluminum block may be used. Moreover, it is also possible to use a microwave as a heating means.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
上記合成スキーム(A−2)において、Xはハロゲンを表し、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、環を形成する炭素数が5~7の置換もしくは無置換のシクロアルキル基、環を形成する炭素数が6~13の置換もしくは無置換のアリール基、または環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基のいずれかを表す。また、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、環を形成する炭素数が6~13の置換もしくは無置換のアリール基、環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基、またはシアノ基のいずれかを表し、少なくとも一は、シアノ基を表す。 In the above synthesis scheme (A-2), X represents a halogen, and R 1 to R 4 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, or a substituent having 5 to 7 carbon atoms forming a ring. Or an unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming a ring, or a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms forming a ring Represents R 5 to R 9 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a carbon number forming the ring It represents either a 3-12 substituted or unsubstituted heteroaryl group or a cyano group, and at least one represents a cyano group.
次に、下記合成スキーム(A−3)に示すように、上述の合成スキーム(A−2)で得られる複核錯体(B)と、モノアニオン性の配位子の原料HLとを、不活性ガス雰囲気にて反応させることにより、HLのプロトンが脱離してLが中心金属Mに配位し、一般式(G1−1)で表される有機金属錯体を得ることができる。加熱手段として特に限定はなく、オイルバス、サンドバス、又はアルミブロックを用いてもよい。また、マイクロ波を加熱手段として用いることも可能である。 Next, as shown in the following synthesis scheme (A-3), the binuclear complex (B) obtained in the above synthesis scheme (A-2) and the raw material HL of the monoanionic ligand are inactive By reacting in a gas atmosphere, the proton of HL is eliminated and L is coordinated to the central metal M, whereby an organometallic complex represented by General Formula (G1-1) can be obtained. There is no limitation in particular as a heating means, An oil bath, a sand bath, or an aluminum block may be used. Moreover, it is also possible to use a microwave as a heating means.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
上記合成スキーム(A−3)において、Lはモノアニオン性の配位子を表し、Xはハロゲンを表し、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、環を形成する炭素数が5~7の置換もしくは無置換のシクロアルキル基、環を形成する炭素数が6~13の置換もしくは無置換のアリール基、または環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基のいずれかを表す。また、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、環を形成する炭素数が6~13の置換もしくは無置換のアリール基、環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基、またはシアノ基のいずれかを表し、少なくとも一は、シアノ基を表す。 In the above synthesis scheme (A-3), L represents a monoanionic ligand, X represents a halogen, R 1 to R 4 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, A substituted or unsubstituted cycloalkyl group having 5 to 7 carbon atoms forming the ring, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or 3 to 12 carbon atoms forming the ring Or a substituted or unsubstituted heteroaryl group of R 5 to R 9 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a carbon number forming the ring It represents either a 3-12 substituted or unsubstituted heteroaryl group or a cyano group, and at least one represents a cyano group.
≪一般式(G1−2)で表される有機金属錯体の合成方法≫
上記一般式(G1−2)で表される有機金属錯体の合成方法について説明する。
<< Synthesis Method of Organometallic Complex Represented by General Formula (G1-2) >>
The synthesis method of the organometallic complex represented by the above general formula (G1-2) will be described.
上記一般式(G1−2)で表される有機金属錯体は、下記合成スキーム(A−4)に示すように、ハロゲンを含むイリジウム化合物(塩化イリジウム水和物、臭化イリジウム、ヨウ化イリジウム、酢酸イリジウム、ヘキサクロロイリジウム酸アンモニウム等)、または有機イリジウム錯体化合物(アセチルアセトナト錯体、ジエチルスルフィド錯体、ジ−μ−クロロ架橋二核錯体、ジ−μ−ヒドロキソ架橋二核錯体等)と、一般式(G0)で表されるピリミジン誘導体と、を混合し、無溶媒、またはアルコール系溶媒(グリセロール、エチレングリコール、2−メトキシエタノール、2−エトキシエタノール等)に溶解させた後、加熱することにより得られる。 As shown in the following synthesis scheme (A-4), the organometallic complex represented by the above general formula (G1-2) is an iridium compound containing halogen (iridium chloride hydrate, iridium bromide, iridium iodide, Iridium acetate, ammonium hexachloroiridate, etc., or organic iridium complex compounds (acetylacetonato complex, diethyl sulfide complex, di-μ-chloro bridged dinuclear complex, di-μ-hydroxo bridged dinuclear complex, etc.), Obtained by mixing with a pyrimidine derivative represented by (G0), dissolving it in a solventless or alcohol solvent (glycerol, ethylene glycol, 2-methoxyethanol, 2-ethoxyethanol etc.) and heating it. Be
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
上記合成スキーム(A−4)において、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、環を形成する炭素数が5~7の置換もしくは無置換のシクロアルキル基、環を形成する炭素数が6~13の置換もしくは無置換のアリール基、または環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基のいずれかを表す。また、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、環を形成する炭素数が6~13の置換もしくは無置換のアリール基、環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基、またはシアノ基のいずれかを表し、少なくとも一は、シアノ基を表す。 In the above synthesis scheme (A-4), R 1 to R 4 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted cycloalkyl having 5 to 7 carbon atoms forming a ring And a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms forming the ring. R 5 to R 9 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a carbon number forming the ring It represents either a 3-12 substituted or unsubstituted heteroaryl group or a cyano group, and at least one represents a cyano group.
以上、本発明の一態様である有機金属錯体として、一般式(G1)、一般式(G1−1)、および一般式(G1−2)でそれぞれ表される有機金属錯体の合成方法について説明したが、本発明はこれに限定されることはなく、他の合成方法によって合成してもよい。 In the above, as an organometallic complex which is one embodiment of the present invention, a method of synthesizing an organometallic complex represented by General Formula (G1), General Formula (G1-1), and General Formula (G1-2) has been described. However, the present invention is not limited thereto, and may be synthesized by other synthesis methods.
また、本発明の一態様である有機金属錯体を用いることで、発光効率の高い発光素子、発光装置、電子機器、または照明装置を実現することができる。また、信頼性の高い発光素子、発光装置、電子機器、または照明装置を実現することができる。 In addition, by using the organometallic complex which is one embodiment of the present invention, a light-emitting element, a light-emitting device, an electronic device, or a lighting device with high emission efficiency can be realized. In addition, a highly reliable light-emitting element, light-emitting device, electronic device, or lighting device can be realized.
なお、本実施の形態において、本発明の一態様について述べた。また、他の実施の形態において、本発明の一態様について述べる。ただし、本発明の一態様は、これらに限定されない。つまり、本実施の形態および他の実施の形態では、様々な発明の態様が記載されているため、本発明の一態様は、特定の態様に限定されない。例えば、本発明の一態様として、発光素子に適用した場合の例を示したが、本発明の一態様は、これに限定されない。また、状況に応じて、本発明の一態様は、発光素子以外のものに適用してもよい。また、状況に応じて、本発明の一態様は、発光素子に適用しなくてもよい。 Note that one embodiment of the present invention has been described in this embodiment. Another embodiment of the present invention will be described in another embodiment. However, one embodiment of the present invention is not limited to these. That is, since various aspects of the invention are described in this embodiment and the other embodiments, one aspect of the present invention is not limited to a particular aspect. For example, although an example in the case of applying to a light-emitting element is shown as one embodiment of the present invention, one embodiment of the present invention is not limited thereto. Further, depending on the situation, one embodiment of the present invention may be applied to devices other than light-emitting elements. In addition, depending on the situation, one embodiment of the present invention may not be applied to a light-emitting element.
本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用いることができる。 The structure described in this embodiment can be combined as appropriate with any of the structures described in the other embodiments.
(実施の形態2)
本実施の形態では、本発明の一態様である発光素子について説明する。なお、本実施の形態で説明する発光素子には、本発明の一態様である有機金属錯体を用いることができる。
Second Embodiment
In this embodiment, a light-emitting element which is one embodiment of the present invention will be described. Note that the organometallic complex which is one embodiment of the present invention can be used for the light-emitting element described in this embodiment.
≪発光素子の基本的な構造≫
図1(A)には、一対の電極間にEL層を挟んでなる発光素子を示す。具体的には、第1の電極101と第2の電極102との間に発光層を含むEL層103が挟まれた構造を有する。
«Basic structure of light emitting element»
FIG. 1A illustrates a light-emitting element in which an EL layer is sandwiched between a pair of electrodes. Specifically, the EL layer 103 including a light emitting layer is sandwiched between the first electrode 101 and the second electrode 102.
図1(B)には、一対の電極間に複数(図1(B)では、2層)のEL層(103a、103b)を有し、EL層の間に電荷発生層104を挟んでなる積層構造(タンデム構造)の発光素子を示す。このようなタンデム構造の発光素子は、低電圧駆動が可能で消費電力が低い発光装置を実現することができる。 In FIG. 1B, a plurality of (two layers in FIG. 1B) EL layers (103a and 103b) are provided between a pair of electrodes, and the charge generation layer 104 is interposed between the EL layers. 6 shows a light emitting element with a stacked structure (tandem structure). Such a light emitting element having a tandem structure can realize a light emitting device which can be driven at low voltage and consumes low power.
なお、電荷発生層104は、第1の電極101と第2の電極102に電圧を印加したときに、一方のEL層(103aまたは103b)に電子を注入し、他方のEL層(103bまたは103a)に正孔を注入する機能を有する。従って、図1(B)において、第1の電極101に第2の電極102よりも電位が高くなるように電圧を印加すると、電荷発生層104からEL層103aに電子が注入され、EL層103bに正孔が注入される。 Note that when voltage is applied to the first electrode 101 and the second electrode 102, the charge generation layer 104 injects electrons into one of the EL layers (103a or 103b) and the other EL layer (103b or 103a). ) Has a function of injecting holes. Therefore, in FIG. 1B, when a voltage is applied to the first electrode 101 so that the potential is higher than that of the second electrode 102, electrons are injected from the charge generation layer 104 to the EL layer 103a, and the EL layer 103b is formed. Holes are injected into the
電荷発生層104は、光の取り出し効率の点から、可視光に対して透光性を有する(具体的には、電荷発生層104に対する可視光の透過率が、40%以上)ことが好ましい。また、電荷発生層104は、第1の電極101や第2の電極102よりも低い導電率であっても機能する。 The charge generation layer 104 preferably has transparency to visible light (specifically, the visible light transmittance of the charge generation layer 104 is 40% or more) from the viewpoint of light extraction efficiency. In addition, the charge generation layer 104 functions even when the conductivity is lower than that of the first electrode 101 and the second electrode 102.
図1(C)には、EL層103の積層構造について示す。図1(C)において、第1の電極101が陽極として機能する場合、EL層103は、第1の電極101上に、正孔(ホール)注入層111、正孔(ホール)輸送層112、発光層113、電子輸送層114、電子注入層115が順次積層された構造を有する。図1(B)に示すタンデム構造のように複数のEL層を有する場合も、各EL層が、陽極側から上記のように順次積層される構造とする。なお、第1の電極101が陰極で、第2の電極102が陽極の場合は、積層順は逆になる。 FIG. 1C shows a stack structure of the EL layer 103. In FIG. 1C, in the case where the first electrode 101 functions as an anode, the EL layer 103 includes a hole injection layer 111, a hole transport layer 112, and the like over the first electrode 101. The light emitting layer 113, the electron transport layer 114, and the electron injection layer 115 are sequentially stacked. Also in the case where a plurality of EL layers are provided as in a tandem structure illustrated in FIG. 1B, each EL layer is sequentially stacked from the anode side as described above. When the first electrode 101 is a cathode and the second electrode 102 is an anode, the stacking order is reversed.
EL層(103、103a、103b)に含まれる発光層113は、それぞれ発光物質や複数の物質を適宜組み合わせて有しており、所望の発光色を呈する蛍光発光や燐光発光が得られる構成とすることができる。また、発光層113を発光色の異なる積層構造としてもよい。なお、この場合、積層された各発光層に用いる発光物質やその他の物質は、それぞれ異なる材料を用いればよい。また、図1(B)に示す複数のEL層(103a、103b)から、それぞれ異なる発光色が得られる構成としても良い。この場合も各発光層に用いる発光物質やその他の物質を異なる材料とすればよい。 The light-emitting layers 113 included in the EL layers (103, 103a, and 103b) each have a light-emitting substance or a plurality of substances in combination as appropriate, and can be configured to obtain fluorescence or phosphorescence which exhibits a desired emission color. be able to. Alternatively, the light emitting layer 113 may have a stacked structure in which light emitting colors are different. In this case, different materials may be used for the light-emitting substance and the other substances used for the stacked light-emitting layers. Alternatively, different emission colors may be obtained from the plurality of EL layers (103a and 103b) illustrated in FIG. 1B. Also in this case, different materials may be used for the light-emitting substances and other substances used for each light-emitting layer.
また、本発明の一態様である発光素子において、EL層(103、103a、103b)で得られた発光を両電極間で共振させることにより、得られる発光を強める構成としても良い。例えば、図1(C)において、第1の電極101を反射電極とし、第2の電極102を半透過・半反射電極とすることにより微小光共振器(マイクロキャビティ)構造を形成し、EL層103から得られる発光を強めることができる。 In the light-emitting element which is one embodiment of the present invention, the obtained light emission may be strengthened by resonating the light emission obtained in the EL layers (103, 103a, 103b) between both electrodes. For example, in FIG. 1C, a minute optical resonator (microcavity) structure is formed by using the first electrode 101 as a reflective electrode and the second electrode 102 as a semi-transmissive and semi-reflective electrode, and an EL layer is formed. The light emission obtained from 103 can be intensified.
なお、発光素子の第1の電極101が、反射性を有する導電性材料と透光性を有する導電性材料(透明導電膜)との積層構造からなる反射電極である場合、透明導電膜の膜厚を制御することにより光学調整を行うことができる。具体的には、発光層113から得られる光の波長λに対して、第1の電極101と、第2の電極102との電極間距離がmλ/2(ただし、mは自然数)近傍となるように調整するのが好ましい。 In the case where the first electrode 101 of the light emitting element is a reflective electrode having a laminated structure of a reflective conductive material and a light transmissive conductive material (transparent conductive film), a film of a transparent conductive film Optical control can be performed by controlling the thickness. Specifically, the inter-electrode distance between the first electrode 101 and the second electrode 102 is near mλ / 2 (where m is a natural number) with respect to the wavelength λ of light obtained from the light emitting layer 113. It is preferable to adjust as follows.
また、発光層113から得られる所望の光(波長:λ)を増幅させるために、第1の電極101から発光層113の所望の光が得られる領域(発光領域)までの光学距離と、第2の電極102から発光層113の所望の光が得られる領域(発光領域)までの光学距離と、をそれぞれ(2m’+1)λ/4(ただし、m’は自然数)近傍となるように調節するのが好ましい。なお、ここでいう発光領域とは、発光層113における正孔(ホール)と電子との再結合領域を示す。 In addition, in order to amplify a desired light (wavelength: λ) obtained from the light emitting layer 113, an optical distance from the first electrode 101 to a region (light emitting region) from which the desired light of the light emitting layer 113 can be obtained The optical distance from the electrode 102 of 2 to the region (light emitting region) from which desired light of the light emitting layer 113 can be obtained is adjusted to be (2 m ′ + 1) λ / 4 (where m ′ is a natural number) It is preferable to do. Note that the light emitting region referred to here indicates a recombination region of holes and electrons in the light emitting layer 113.
このような光学調整を行うことにより、発光層113から得られる特定の単色光のスペクトルを狭線化させ、色純度の良い発光を得ることができる。 By performing such optical adjustment, the spectrum of specific monochromatic light obtained from the light emitting layer 113 can be narrowed, and light emission with high color purity can be obtained.
但し、上記の場合、第1の電極101と第2の電極102との光学距離は、厳密には第1の電極101における反射領域から第2の電極102における反射領域までの総厚ということができる。しかし、第1の電極101や第2の電極102における反射領域を厳密に決定することは困難であるため、第1の電極101と第2の電極102の任意の位置を反射領域と仮定することで充分に上述の効果を得ることができるものとする。また、第1の電極101と、所望の光が得られる発光層との光学距離は、厳密には第1の電極101における反射領域と、所望の光が得られる発光層における発光領域との光学距離であるということができる。しかし、第1の電極101における反射領域や、所望の光が得られる発光層における発光領域を厳密に決定することは困難であるため、第1の電極101の任意の位置を反射領域、所望の光が得られる発光層の任意の位置を発光領域と仮定することで充分に上述の効果を得ることができるものとする。 However, in the above case, the optical distance between the first electrode 101 and the second electrode 102 may be strictly referred to as the total thickness from the reflective region in the first electrode 101 to the reflective region in the second electrode 102. it can. However, since it is difficult to precisely determine the reflection area of the first electrode 101 and the second electrode 102, it is assumed that an arbitrary position of the first electrode 101 and the second electrode 102 is a reflection area. The above-mentioned effects can be sufficiently obtained. In addition, the optical distance between the first electrode 101 and the light emitting layer from which desired light is obtained is strictly the optical distance between the reflective region of the first electrode 101 and the light emitting region in the light emitting layer from which desired light is obtained. It can be said that it is a distance. However, since it is difficult to strictly determine the reflective region in the first electrode 101 and the light emitting region in the light emitting layer from which desired light is obtained, any position of the first electrode 101 is a reflective region, Assuming that any position of the light emitting layer from which light is obtained is a light emitting region, the above effect can be sufficiently obtained.
図1(C)に示す発光素子が、マイクロキャビティ構造を有する場合、EL層が共通であっても異なる波長の光(単色光)を取り出すことができる。従って、異なる発光色を得るための塗り分け(例えば、RGB)が不要となり、高精細化が可能となる。また、着色層(カラーフィルタ)との組み合わせも可能である。また、特定波長の正面方向の発光強度を強めることが可能なため、低消費電力化を図ることができる。 When the light-emitting element illustrated in FIG. 1C has a microcavity structure, light (monochromatic light) with different wavelengths can be extracted even when the EL layer is common. Therefore, it is not necessary to perform separate coloring (for example, RGB) to obtain different luminescent colors, and high definition can be achieved. Moreover, the combination with a colored layer (color filter) is also possible. In addition, since it is possible to intensify the light emission intensity in the front direction of the specific wavelength, power consumption can be reduced.
なお、上述した本発明の一態様である発光素子において、第1の電極101と第2の電極102の少なくとも一方は、透光性を有する電極(透明電極、半透過・半反射電極など)とする。透光性を有する電極が透明電極の場合、透明電極の可視光の透過率は、40%以上とする。また、半透過・半反射電極の場合、半透過・半反射電極の可視光の反射率は、20%以上80%以下、好ましくは40%以上70%以下とする。また、これらの電極は、抵抗率が1×10−2Ωcm以下とするのが好ましい。 Note that in the light-emitting element that is one embodiment of the present invention described above, at least one of the first electrode 101 and the second electrode 102 is a light-transmitting electrode (a transparent electrode, a semitransparent / semireflective electrode, or the like) Do. When the translucent electrode is a transparent electrode, the visible light transmittance of the transparent electrode is 40% or more. In the case of a semi-transmissive semi-reflective electrode, the reflectance of visible light of the semi-transmissive and semi-reflective electrode is 20% to 80%, preferably 40% to 70%. In addition, these electrodes preferably have a resistivity of 1 × 10 −2 Ωcm or less.
また、上述した本発明の一態様である発光素子において、第1の電極101と第2の電極102の一方が、反射性を有する電極(反射電極)である場合、反射性を有する電極の可視光の反射率は、40%以上100%以下、好ましくは70%以上100%以下とする。また、この電極は、抵抗率が1×10−2Ωcm以下とするのが好ましい。 In the light-emitting element which is one embodiment of the present invention described above, in the case where one of the first electrode 101 and the second electrode 102 is a reflective electrode (reflective electrode), visible light of the reflective electrode The light reflectance is 40% to 100%, preferably 70% to 100%. In addition, it is preferable that this electrode have a resistivity of 1 × 10 −2 Ωcm or less.
≪発光素子の具体的な構造および作製方法≫
次に、本発明の一態様である発光素子の具体的な構造および作製方法について説明する。なお、図1(A)~図1(E)において、符号が共通である場合は説明も共通とする。
<< Specific structure and manufacturing method of light emitting element >>
Next, a specific structure and a manufacturing method of a light-emitting element which is one embodiment of the present invention will be described. Note that, in FIG. 1 (A) to FIG. 1 (E), when the reference numerals are common, the description is also common.
<第1の電極および第2の電極>
第1の電極101および第2の電極102を形成する材料としては、上述した素子構造における両電極の機能が満たせるのであれば、以下に示す材料を適宜組み合わせて用いることができる。例えば、金属、合金、電気伝導性化合物、およびこれらの混合物などを適宜用いることができる。具体的には、In−Sn酸化物(ITOともいう)、In−Si−Sn酸化物(ITSOともいう)、In−Zn酸化物、In−W−Zn酸化物が挙げられる。その他、アルミニウム(Al)、チタン(Ti)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、ガリウム(Ga)、亜鉛(Zn)、インジウム(In)、スズ(Sn)、モリブデン(Mo)、タンタル(Ta)、タングステン(W)、パラジウム(Pd)、金(Au)、白金(Pt)、銀(Ag)、イットリウム(Y)、ネオジム(Nd)などの金属、およびこれらを適宜組み合わせて含む合金を用いることもできる。その他、上記例示のない元素周期表の第1族または第2族に属する元素(例えば、リチウム(Li)、セシウム(Cs)、カルシウム(Ca)、ストロンチウム(Sr))、ユウロピウム(Eu)、イッテルビウム(Yb)などの希土類金属およびこれらを適宜組み合わせて含む合金、その他グラフェン等を用いることができる。
<First electrode and second electrode>
As materials for forming the first electrode 101 and the second electrode 102, materials described below can be used in appropriate combination as long as the functions of the both electrodes in the above-described element structure can be satisfied. For example, metals, alloys, electrically conductive compounds, and mixtures thereof can be used as appropriate. Specifically, In-Sn oxide (also referred to as ITO), In-Si-Sn oxide (also referred to as ITSO), In-Zn oxide, and In-W-Zn oxide can be mentioned. In addition, aluminum (Al), titanium (Ti), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), gallium (Ga), zinc (Zn) ), Indium (In), tin (Sn), molybdenum (Mo), tantalum (Ta), tungsten (W), palladium (Pd), gold (Au), platinum (Pt), silver (Ag), yttrium (Y) And metals such as neodymium (Nd), and alloys containing these in combination as appropriate. In addition, elements (for example, lithium (Li), cesium (Cs), calcium (Ca), strontium (Sr)), europium (Eu), ytterbium, which belong to Group 1 or Group 2 of the periodic table of the elements not illustrated above. It is possible to use rare earth metals such as (Yb) and alloys containing these in combination as appropriate, graphene and the like.
図1に示す発光素子において、図1(C)のように積層構造を有するEL層103を有し、第1の電極101が陽極である場合、第1の電極101上にEL層103の正孔注入層111、正孔輸送層112が真空蒸着法により順次積層形成される。また、図1(D)のように、積層構造を有する複数のEL層(103a、103b)が電荷発生層104を挟んで積層され、第1の電極101が陽極である場合、第1の電極101上にEL層103aの正孔注入層111a、正孔輸送層112aが真空蒸着法により順次積層形成されるだけでなく、EL層103a、電荷発生層104が順次積層形成された後、電荷発生層104上にEL層103bの正孔注入層111b、正孔輸送層112bが同様に順次積層形成される。 When the light emitting element shown in FIG. 1 includes the EL layer 103 having a stacked structure as shown in FIG. 1C and the first electrode 101 is an anode, the positive electrode of the EL layer 103 is formed on the first electrode 101. The hole injection layer 111 and the hole transport layer 112 are sequentially laminated by vacuum evaporation. In addition, as illustrated in FIG. 1D, in the case where the plurality of EL layers (103a and 103b) having a stacked structure are stacked with the charge generation layer 104 interposed therebetween and the first electrode 101 is an anode, the first electrode is formed. The hole injection layer 111a of the EL layer 103a and the hole transport layer 112a of the EL layer 103a are sequentially laminated by vacuum evaporation, and after the EL layer 103a and the charge generation layer 104 are sequentially laminated, charge generation is performed. The hole injection layer 111 b and the hole transport layer 112 b of the EL layer 103 b are similarly sequentially stacked on the layer 104.
<正孔注入層および正孔輸送層>
正孔注入層(111、111a、111b)は、陽極である第1の電極101や電荷発生層(104)からEL層(103、103a、103b)に正孔(ホール)を注入する層であり、正孔注入性の高い材料を含む層である。
Hole Injection Layer and Hole Transport Layer
The hole injection layer (111, 111a, 111b) is a layer for injecting holes from the first electrode 101 which is an anode or the charge generation layer (104) to the EL layer (103, 103a, 103b). And a layer containing a material having a high hole injection property.
正孔注入性の高い材料としては、モリブデン酸化物やバナジウム酸化物、ルテニウム酸化物、タングステン酸化物、マンガン酸化物等の遷移金属酸化物が挙げられる。この他、フタロシアニン(略称:HPc)や銅フタロシアニン(略称:CuPC)等のフタロシアニン系の化合物、等を用いることができる。 Materials having high hole injection properties include transition metal oxides such as molybdenum oxide, vanadium oxide, ruthenium oxide, tungsten oxide, and manganese oxide. In addition to these, phthalocyanine-based compounds such as phthalocyanine (abbreviation: H 2 Pc) and copper phthalocyanine (abbreviation: CuPC) can be used.
また、低分子化合物である、4,4’,4’’−トリス(N,N−ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ビフェニル(略称:DPAB)、N,N’−ビス{4−[ビス(3−メチルフェニル)アミノ]フェニル}−N,N’−ジフェニル−(1,1’−ビフェニル)−4,4’−ジアミン(略称:DNTPD)、1,3,5−トリス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ベンゼン(略称:DPA3B)、3−[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA1)、3,6−ビス[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA2)、3−[N−(1−ナフチル)−N−(9−フェニルカルバゾール−3−イル)アミノ]−9−フェニルカルバゾール(略称:PCzPCN1)等の芳香族アミン化合物、等を用いることができる。 In addition, 4,4 ′, 4 ′ ′-tris (N, N-diphenylamino) triphenylamine (abbreviation: TDATA), 4,4 ′, 4 ′ ′-tris [N- (3), which is a low molecular weight compound. -Methylphenyl) -N-phenylamino] triphenylamine (abbreviation: MTDATA), 4,4'-bis [N- (4-diphenylaminophenyl) -N-phenylamino] biphenyl (abbreviation: DPAB), N, N'-bis {4- [bis (3-methylphenyl) amino] phenyl} -N, N'-diphenyl- (1,1'-biphenyl) -4,4'-diamine (abbreviation: DNTPD), 1, 1 3,5-Tris [N- (4-diphenylaminophenyl) -N-phenylamino] benzene (abbreviation: DPA3B), 3- [N- (9-phenylcarbazol-3-yl) -N-phenylamine [3]-9-phenylcarbazole (abbr .: PCzPCA1), 3, 6-bis [N- (9-phenylcarbazol-3-yl) -N-phenylamino] -9-phenylcarbazole (abbr .: PCzPCA2), 3- Aromatic amine compounds such as [N- (1-naphthyl) -N- (9-phenylcarbazol-3-yl) amino] -9-phenylcarbazole (abbreviation: PCzPCN1) and the like can be used.
また、高分子化合物(オリゴマー、デンドリマー、ポリマー等)である、ポリ(N−ビニルカルバゾール)(略称:PVK)、ポリ(4−ビニルトリフェニルアミン)(略称:PVTPA)、ポリ[N−(4−{N’−[4−(4−ジフェニルアミノ)フェニル]フェニル−N’−フェニルアミノ}フェニル)メタクリルアミド](略称:PTPDMA)、ポリ[N,N’−ビス(4−ブチルフェニル)−N,N’−ビス(フェニル)ベンジジン](略称:Poly−TPD)等を用いることができる。または、ポリ(3,4−エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(略称:PEDOT/PSS)、ポリアニリン/ポリ(スチレンスルホン酸)(略称:PAni/PSS)等の酸を添加した高分子系化合物、等を用いることもできる。 In addition, poly (N-vinylcarbazole) (abbreviation: PVK), poly (4-vinyltriphenylamine) (abbreviation: PVTPA), poly [N- (4), which is a high molecular compound (oligomer, dendrimer, polymer, etc.) -{N '-[4- (4-diphenylamino) phenyl] phenyl-N'-phenylamino} phenyl) methacrylamide] (abbreviation: PTPDMA), poly [N, N'-bis (4-butylphenyl)- N, N'-bis (phenyl) benzidine] (abbreviation: Poly-TPD) or the like can be used. Alternatively, an acid such as poly (3,4-ethylenedioxythiophene) / poly (styrene sulfonic acid) (abbr .: PEDOT / PSS), polyaniline / poly (styrene sulfonic acid) (abbr .: PAni / PSS), etc. Molecular compounds and the like can also be used.
また、正孔注入性の高い材料としては、正孔輸送性材料とアクセプター性材料(電子受容性材料)を含む複合材料を用いることもできる。この場合、アクセプター性材料により正孔輸送性材料から電子が引き抜かれて正孔注入層(111、111a、111b)で正孔が発生し、正孔輸送層(112、112a、112b)を介して発光層(113、113a、113b)に正孔が注入される。なお、正孔注入層(111、111a、111b)は、正孔輸送性材料とアクセプター性材料(電子受容性材料)を含む複合材料からなる単層で形成しても良いが、正孔輸送性材料とアクセプター性材料(電子受容性材料)とをそれぞれ別の層で積層して形成しても良い。 In addition, as a material having a high hole injection property, a composite material including a hole transporting material and an acceptor property material (electron accepting material) can also be used. In this case, electrons are extracted from the hole transport material by the acceptor material to generate holes in the hole injection layer (111, 111a, 111b), and the holes are generated through the hole transport layers (112, 112a, 112b). Holes are injected into the light emitting layers (113, 113a, 113b). The hole injection layer (111, 111a, 111b) may be formed as a single layer made of a composite material including a hole transporting material and an acceptor material (electron accepting material). The material and the acceptor material (electron accepting material) may be stacked in separate layers.
正孔輸送層(112、112a、112b)は、正孔注入層(111、111a、111b)によって、第1の電極101や電荷発生層104から注入された正孔を発光層(113、113a、113b)に輸送する層である。なお、正孔輸送層(112、112a、112b)は、正孔輸送性材料を含む層である。正孔輸送層(112、112a、112b)に用いる正孔輸送性材料は、特に正孔注入層(111、111a、111b)のHOMO準位と同じ、あるいは近いHOMO準位を有するものを用いることが好ましい。 The hole transport layer (112, 112a, 112b) emits holes injected from the first electrode 101 and the charge generation layer 104 by the hole injection layer (111, 111a, 111b) into the light emitting layer (113, 113a, 113b) transport layer. The hole transport layer (112, 112a, 112b) is a layer containing a hole transport material. As the hole transporting material used for the hole transporting layer (112, 112a, 112b), in particular, one having a HOMO level equal to or close to the HOMO level of the hole injecting layer (111, 111a, 111b) is used Is preferred.
正孔注入層(111、111a、111b)に用いるアクセプター性材料としては、元素周期表における第4族乃至第8族に属する金属の酸化物を用いることができる。具体的には、酸化モリブデン、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化タングステン、酸化マンガン、酸化レニウムが挙げられる。中でも特に、酸化モリブデンは大気中でも安定であり、吸湿性が低く、扱いやすいため好ましい。その他、キノジメタン誘導体やクロラニル誘導体、ヘキサアザトリフェニレン誘導体などの有機アクセプターを用いることができる。具体的には、7,7,8,8−テトラシアノ−2,3,5,6−テトラフルオロキノジメタン(略称:F−TCNQ)、クロラニル、2,3,6,7,10,11−ヘキサシアノ−1,4,5,8,9,12−ヘキサアザトリフェニレン(略称:HAT−CN)等を用いることができる。特に、HAT−CNのように複素原子を複数有する縮合芳香環に電子吸引基が結合している化合物が、熱的に安定であり好ましい。また、電子吸引基(特にフルオロ基のようなハロゲン基やシアノ基)を有する[3]ラジアレン誘導体は、電子受容性が非常に高いため好ましく、具体的にはα,α’,α’’−1,2,3−シクロプロパントリイリデントリス[4−シアノ−2,3,5,6−テトラフルオロベンゼンアセトニトリル]、α,α’,α’’−1,2,3−シクロプロパントリイリデントリス[2,6−ジクロロ−3,5−ジフルオロ−4−(トリフルオロメチル)ベンゼンアセトニトリル]、α,α’,α’’−1,2,3−シクロプロパントリイリデントリス[2,3,4,5,6−ペンタフルオロベンゼンアセトニトリル]などが挙げられる。 As the acceptor property material used for the hole injecting layer (111, 111a, 111b), an oxide of a metal belonging to Groups 4 to 8 in the periodic table of elements can be used. Specifically, molybdenum oxide, vanadium oxide, niobium oxide, tantalum oxide, chromium oxide, tungsten oxide, manganese oxide, and rhenium oxide can be mentioned. Among them, molybdenum oxide is particularly preferable because it is stable in the air, has low hygroscopicity, and is easy to handle. In addition, organic acceptors such as quinodimethane derivatives, chloranil derivatives and hexaazatriphenylene derivatives can be used. Specifically, 7,7,8,8-tetracyano-2,3,5,6-tetrafluoroquinodimethane (abbreviation: F 4 -TCNQ), chloranil, 2, 3, 6, 7, 10, 11 -Hexacyano-1,4,5,8,9,12-hexaazatriphenylene (abbreviation: HAT-CN) etc. can be used. In particular, a compound in which an electron withdrawing group is bonded to a condensed aromatic ring having a plurality of hetero atoms, such as HAT-CN, is thermally stable and preferable. Also, [3] radialene derivatives having an electron withdrawing group (in particular, a halogen group such as a fluoro group or a cyano group) are preferable because they have very high electron accepting properties, and specifically, α, α ′, α ′ ′- 1,2,3-cyclopropanetriylidenetris [4-cyano-2,3,5,6-tetrafluorobenzeneacetonitrile], α, α ′, α ′ ′-1,2,3-cyclopropanetriylidenetris [2,6-Dichloro-3,5-difluoro-4- (trifluoromethyl) benzeneacetonitrile], α, α ′, α ′ ′-1,2,3-cyclopropanetriylidenetris [2,3,4 , 5, 6-pentafluorobenzene acetonitrile] and the like.
正孔注入層(111、111a、111b)および正孔輸送層(112、112a、112b)に用いる正孔輸送性材料としては、10−6cm/Vs以上の正孔移動度を有する物質が好ましい。なお、電子よりも正孔の輸送性の高い物質であれば、これら以外のものを用いることができる。 As a hole transporting material used for the hole injection layer (111, 111a, 111b) and the hole transporting layer (112, 112a, 112b), a substance having a hole mobility of 10 -6 cm 2 / Vs or more is used. preferable. Note that materials having hole transportability higher than electrons can be used other than these.
正孔輸送性材料としては、π電子過剰型複素芳香族化合物(例えばカルバゾール骨格を有する化合物やフラン骨格を有する化合物)や芳香族アミン骨格を有する化合物等の正孔輸送性の高い材料が好ましい。 The hole transporting material is preferably a material having a high hole transporting property, such as a π electron excess heteroaromatic compound (for example, a compound having a carbazole skeleton or a compound having a furan skeleton) or a compound having an aromatic amine skeleton.
正孔輸送性材料の具体例としては、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPBまたはα−NPD)、N,N’−ビス(3−メチルフェニル)−N,N’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン(略称:TPD)、4,4’−ビス[N−(スピロ−9,9’−ビフルオレン−2−イル)−N−フェニルアミノ]ビフェニル(略称:BSPB)、4−フェニル−4’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:BPAFLP)、4−フェニル−3’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:mBPAFLP)、N−(9,9−ジメチル−9H−フルオレン−2−イル)−N−{9,9−ジメチル−2−[N’−フェニル−N’−(9,9−ジメチル−9H−フルオレン−2−イル)アミノ]−9H−フルオレン−7−イル}フェニルアミン(略称:DFLADFL)、N−(9,9−ジメチル−2−ジフェニルアミノ−9H−フルオレン−7−イル)ジフェニルアミン(略称:DPNF)、2−[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]スピロ−9,9’−ビフルオレン(略称:DPASF)、4−フェニル−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBA1BP)、3−[4−(9−フェナントリル)−フェニル]−9−フェニル−9H−カルバゾール(略称:PCPPn)、N−(4−ビフェニル)−N−(9,9−ジメチル−9H−フルオレン−2−イル)−9−フェニル−9H−カルバゾール−3−アミン(略称:PCBiF)、N−(1,1’−ビフェニル−4−イル)−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]−9,9−ジメチル−9H−フルオレン−2−アミン(略称:PCBBiF)、4,4’−ジフェニル−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBBi1BP)、4−(1−ナフチル)−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBANB)、4,4’−ジ(1−ナフチル)−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBNBB)、4−フェニルジフェニル−(9−フェニル−9H−カルバゾール−3−イル)アミン(略称:PCA1BP)、N,N’−ビス(9−フェニルカルバゾール−3−イル)−N,N’−ジフェニルベンゼン−1,3−ジアミン(略称:PCA2B)、N,N’,N’’−トリフェニル−N,N’,N’’−トリス(9−フェニルカルバゾール−3−イル)ベンゼン−1,3,5−トリアミン(略称:PCA3B)、9,9−ジメチル−N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]フルオレン−2−アミン(略称:PCBAF)、N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]スピロ−9,9’−ビフルオレン−2−アミン(略称:PCBASF)、2−[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]スピロ−9,9’−ビフルオレン(略称:PCASF)、2,7−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]スピロ−9,9’−ビフルオレン(略称:DPA2SF)、N−[4−(9H−カルバゾール−9−イル)フェニル]−N−(4−フェニル)フェニルアニリン(略称:YGA1BP)、N,N’−ビス[4−(カルバゾール−9−イル)フェニル]−N,N’−ジフェニル−9,9−ジメチルフルオレン−2,7−ジアミン(略称:YGA2F)などの芳香族アミン化合物等を用いることができる。また、3−[4−(1−ナフチル)−フェニル]−9−フェニル−9H−カルバゾール(略称:PCPN)、4,4’,4’’−トリス(カルバゾール−9−イル)トリフェニルアミン(略称:TCTA)、4,4’,4’’−トリス[N−(1−ナフチル)−N−フェニルアミノ]トリフェニルアミン(略称:1−TNATA)、4,4’,4’’−トリス(N,N−ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミン(略称:m−MTDATA)、N,N’−ジ(p−トリル)−N,N’−ジフェニル−p−フェニレンジアミン(略称:DTDPPA)、4,4’−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ビフェニル(略称:DPAB)、N,N’−ビス{4−[ビス(3−メチルフェニル)アミノ]フェニル}−N,N’−ジフェニル−(1,1’−ビフェニル)−4,4’−ジアミン(略称:DNTPD)、1,3,5−トリス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ベンゼン(略称:DPA3B)等の芳香族アミン骨格を有する化合物、1,3−ビス(N−カルバゾリル)ベンゼン(略称:mCP)、4,4’−ジ(N−カルバゾリル)ビフェニル(略称:CBP)、3,6−ビス(3,5−ジフェニルフェニル)−9−フェニルカルバゾール(略称:CzTP)、3,3’−ビス(9−フェニル−9H−カルバゾール)(略称:PCCP)、3−[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzDPA1)、3,6−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzDPA2)、3,6−ビス[N−(4−ジフェニルアミノフェニル)−N−(1−ナフチル)アミノ]−9−フェニルカルバゾール(略称:PCzTPN2)、3−[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA1)、3,6−ビス[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA2)、3−[N−(1−ナフチル)−N−(9−フェニルカルバゾール−3−イル)アミノ]−9−フェニルカルバゾール(略称:PCzPCN1)、1,3,5−トリス[4−(N−カルバゾリル)フェニル]ベンゼン(略称:TCPB)、9−[4−(10−フェニル−9−アントラセニル)フェニル]−9H−カルバゾール(略称:CzPA)等のカルバゾール骨格を有する化合物、4,4’,4’’−(ベンゼン−1,3,5−トリイル)トリ(ジベンゾチオフェン)(略称:DBT3P−II)、2,8−ジフェニル−4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]ジベンゾチオフェン(略称:DBTFLP−III)、4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]−6−フェニルジベンゾチオフェン(略称:DBTFLP−IV)などのチオフェン骨格を有する化合物、4,4’,4’’−(ベンゼン−1,3,5−トリイル)トリ(ジベンゾフラン)(略称:DBF3P−II)、4−{3−[3−(9−フェニル−9H−フルオレン−9−イル)フェニル]フェニル}ジベンゾフラン(略称:mmDBFFLBi−II)等のフラン骨格を有する化合物が挙げられる。 Specific examples of the hole transporting material include 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (abbreviation: NPB or α-NPD), N, N′-bis (3) -Methylphenyl) -N, N'-diphenyl- [1,1'-biphenyl] -4,4'-diamine (abbreviation: TPD), 4,4'-bis [N- (spiro-9,9'-) Bifluoren-2-yl) -N-phenylamino] biphenyl (abbreviation: BSPB), 4-phenyl-4 ′-(9-phenylfluoren-9-yl) triphenylamine (abbreviation: BPAFLP), 4-phenyl-3 '-(9-phenylfluoren-9-yl) triphenylamine (abbreviation: mBPAFLP), N- (9,9-dimethyl-9H-fluoren-2-yl) -N- {9,9-dimethyl-2- [N'-pheny -N '-(9,9-dimethyl-9H-fluoren-2-yl) amino] -9H-fluoren-7-yl} phenylamine (abbreviation: DFLADFL), N- (9,9-dimethyl-2-diphenyl) Amino-9H-fluoren-7-yl) diphenylamine (abbreviation: DPNF), 2- [N- (4-diphenylaminophenyl) -N-phenylamino] spiro-9,9'-bifluorene (abbreviation: DPASF), 4 -Phenyl-4 '-(9-phenyl-9H-carbazol-3-yl) triphenylamine (abbreviation: PCBA1BP), 3- [4- (9-phenanthryl) -phenyl] -9-phenyl-9H-carbazole ( Abbreviations: PCPPn), N- (4-biphenyl) -N- (9,9-dimethyl-9H-fluoren-2-yl) -9-phenyl-9H -Carbazol-3-amine (abbreviation: PCBiF), N- (1,1'-biphenyl-4-yl) -N- [4- (9-phenyl-9H-carbazol-3-yl) phenyl] -9, 9-Dimethyl-9H-fluoren-2-amine (abbreviation: PCBBiF), 4,4′-diphenyl-4 ′ ′-(9-phenyl-9H-carbazol-3-yl) triphenylamine (abbreviation: PCBBi1BP), 4- (1-Naphthyl) -4 ′-(9-phenyl-9H-carbazol-3-yl) triphenylamine (abbreviation: PCBANB), 4,4′-di (1-naphthyl) -4 ′ ′-( 9-phenyl-9H-carbazol-3-yl) triphenylamine (abbreviation: PCBNBB), 4-phenyldiphenyl- (9-phenyl-9H-carbazol-3-yl) amine Abbreviations: PC1 BP), N, N'-bis (9-phenylcarbazol-3-yl) -N, N'-diphenylbenzene-1,3-diamine (abbreviation: PCA2B), N, N ', N' '- Triphenyl-N, N ', N' '-tris (9-phenylcarbazol-3-yl) benzene-1,3,5-triamine (abbreviation: PCA3B), 9,9-dimethyl-N-phenyl-N- [4- (9-phenyl-9H-carbazol-3-yl) phenyl] fluoren-2-amine (abbreviation: PCBAF), N-phenyl-N- [4- (9-phenyl-9H-carbazol-3-yl) ) Phenyl] spiro-9,9'-bifluoren-2-amine (abbreviation: PCBASF), 2- [N- (9-phenylcarbazol-3-yl) -N-phenylamino] spiro-9,9 -Bifluorene (abbreviation: PCASF), 2,7-bis [N- (4-diphenylaminophenyl) -N-phenylamino] spiro-9,9'-bifluorene (abbreviation: DPA2SF), N- [4- (9H) -Carbazol-9-yl) phenyl] -N- (4-phenyl) phenylaniline (abbreviation: YGA1BP), N, N'-bis [4- (carbazol-9-yl) phenyl] -N, N'-diphenyl An aromatic amine compound such as -9,9-dimethylfluorene-2,7-diamine (abbreviation: YGA2F) can be used. In addition, 3- [4- (1-naphthyl) -phenyl] -9-phenyl-9H-carbazole (abbreviation: PCPN), 4,4 ′, 4 ′ ′-tris (carbazol-9-yl) triphenylamine Abbreviations: TCTA), 4,4 ′, 4 ′ ′-tris [N- (1-naphthyl) -N-phenylamino] triphenylamine (abbreviation: 1-TNATA), 4,4 ′, 4 ′ ′-tris (N, N-diphenylamino) triphenylamine (abbreviation: TDATA), 4,4 ′, 4 ′ ′-tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine (abbreviation: m- MTDATA), N, N'-di (p-tolyl) -N, N'-diphenyl-p-phenylenediamine (abbreviation: DTDPPA), 4,4'-bis [N- (4-diphenylaminophenyl) -N - Nylamino] biphenyl (abbr .: DPAB), N, N'-bis {4- [bis (3-methylphenyl) amino] phenyl} -N, N'-diphenyl- (1,1'-biphenyl) -4,4 Compounds having an aromatic amine skeleton such as' -diamine (abbreviation: DNTPD), 1,3,5-tris [N- (4-diphenylaminophenyl) -N-phenylamino] benzene (abbreviation: DPA3B), 3-bis (N-carbazolyl) benzene (abbreviation: mCP), 4,4′-di (N-carbazolyl) biphenyl (abbreviation: CBP), 3,6-bis (3,5-diphenylphenyl) -9-phenyl Carbazole (abbreviation: CzTP), 3,3'-bis (9-phenyl-9H-carbazole) (abbreviation: PCCP), 3- [N- (4-diphenylaminophenyl) -N- 3, 4-bis [N- (4-diphenylaminophenyl) -N-phenylamino] -9-phenylcarbazole (abbreviation: PCzDPA2), 3, 6-bisphenylamino] -9-phenylcarbazole (abbreviation: PCzDPA1) [N- (4-Diphenylaminophenyl) -N- (1-naphthyl) amino] -9-phenylcarbazole (abbreviation: PCzTPN2), 3- [N- (9-phenylcarbazol-3-yl) -N-phenyl Amino] -9-phenylcarbazole (abbreviation: PCzPCA1), 3, 6-bis [N- (9-phenylcarbazol-3-yl) -N-phenylamino] -9-phenylcarbazole (abbreviation: PCzPCA2), 3- [N- (1-Naphthyl) -N- (9-phenylcarbazol-3-yl) amino] -9-phenyl Carbazole (abbreviation: PCzPCN1), 1,3,5-tris [4- (N-carbazolyl) phenyl] benzene (abbreviation: TCPB), 9- [4- (10-phenyl-9-anthracenyl) phenyl] -9H- A compound having a carbazole skeleton such as carbazole (abbreviation: CzPA), 4,4 ′, 4 ′ ′-(benzene-1,3,5-triyl) tri (dibenzothiophene) (abbreviation: DBT3P-II), 2, 8 -Diphenyl-4- [4- (9-phenyl-9H-fluoren-9-yl) phenyl] dibenzothiophene (abbreviation: DBTFLP-III), 4- [4- (9-phenyl-9H-fluoren-9-yl] Compounds having a thiophene skeleton such as phenyl) -6-phenyldibenzothiophene (abbreviation: DBTFLP-IV), 4, 4 ′, 4 ′ -(Benzene-1,3,5-triyl) tri (dibenzofuran) (abbreviation: DBF3P-II), 4- {3- [3- (9-phenyl-9H-fluoren-9-yl) phenyl] phenyl} dibenzofuran The compound which has furan skeletons, such as (abbreviation: mmDBFFLBi-II), is mentioned.
さらに、ポリ(N−ビニルカルバゾール)(略称:PVK)、ポリ(4−ビニルトリフェニルアミン)(略称:PVTPA)、ポリ[N−(4−{N’−[4−(4−ジフェニルアミノ)フェニル]フェニル−N’−フェニルアミノ}フェニル)メタクリルアミド](略称:PTPDMA)、ポリ[N,N’−ビス(4−ブチルフェニル)−N,N’−ビス(フェニル)ベンジジン](略称:Poly−TPD)などの高分子化合物を用いることもできる。 Furthermore, poly (N-vinylcarbazole) (abbreviation: PVK), poly (4-vinyltriphenylamine) (abbreviation: PVTPA), poly [N- (4- {N '-[4- (4-diphenylamino)] Phenyl] phenyl-N'-phenylamino} phenyl) methacrylamide] (abbreviation: PTPDMA), poly [N, N'-bis (4-butylphenyl) -N, N'-bis (phenyl) benzidine] (abbreviation: Polymer compounds such as Poly-TPD) can also be used.
但し、正孔輸送性材料は、上記に限られることなく公知の様々な材料を1種または複数種組み合わせて正孔輸送性材料として正孔注入層(111、111a、111b)および正孔輸送層(112、112a、112b)に用いることができる。なお、正孔輸送層(112、112a、112b)は、各々複数の層から形成されていても良い。すなわち、例えば第1の正孔輸送層と第2の正孔輸送層とが積層されていても良い。 However, the hole transporting material is not limited to the above, and one or more known various materials may be combined to form a hole transporting layer (111, 111a, 111b) and a hole transporting layer as a hole transporting material. (112, 112a, 112b) can be used. The hole transport layers (112, 112a, 112b) may be formed of a plurality of layers, respectively. That is, for example, the first hole transport layer and the second hole transport layer may be stacked.
図1(D)に示す発光素子において、EL層103aの正孔輸送層112a上に発光層113aが真空蒸着法により形成される。また、EL層103aおよび電荷発生層104が形成された後、EL層103bの正孔輸送層112b上に発光層113bが真空蒸着法により形成される。 In the light emitting element shown in FIG. 1D, the light emitting layer 113a is formed on the hole transport layer 112a of the EL layer 103a by vacuum evaporation. After the EL layer 103a and the charge generation layer 104 are formed, the light emitting layer 113b is formed on the hole transport layer 112b of the EL layer 103b by vacuum evaporation.
<発光層>
発光層(113、113a、113b、113c)は、発光物質を含む層である。なお、発光物質としては、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、赤色などの発光色を呈する物質を適宜用いる。また、複数の発光層(113a、113b、113c)に異なる発光物質を用いることにより異なる発光色を呈する構成(例えば、補色の関係にある発光色を組み合わせて得られる白色発光)とすることができる。さらに、一つの発光層が異なる発光物質を有する積層構造であっても良い。
<Light emitting layer>
The light emitting layer (113, 113a, 113b, 113c) is a layer containing a light emitting substance. Note that as the light-emitting substance, a substance exhibiting a light-emitting color such as blue, purple, blue-purple, green, yellowish-green, yellow, orange, red and the like is appropriately used. In addition, by using different light-emitting substances for the plurality of light-emitting layers (113a, 113b, and 113c), different light-emitting colors can be obtained (for example, white light emission obtained by combining light-emitting colors in complementary relationship). . Furthermore, a stacked structure in which one light emitting layer has different light emitting substances may be employed.
また、発光層(113、113a、113b、113c)は、発光物質(ゲスト材料)に加えて、1種または複数種の有機化合物(ホスト材料、アシスト材料)を有していても良い。なお、発光物質としては、本発明の一態様である有機金属錯体を用いることができる。また、1種または複数種の有機化合物としては、本実施の形態で説明する正孔輸送性材料や電子輸送性材料の一方または両方を用いることができる。 In addition to the light-emitting substance (guest material), the light-emitting layer (113, 113a, 113b, 113c) may have one or more kinds of organic compounds (host material, assist material). Note that the organometallic complex which is one embodiment of the present invention can be used as the light-emitting substance. Further, as the one or more organic compounds, one or both of the hole transporting material and the electron transporting material described in this embodiment can be used.
発光層(113、113a、113b、113c)に用いることができる発光物質としては、特に限定は無く、一重項励起エネルギーを可視光領域の発光に変える発光物質、または三重項励起エネルギーを可視光領域の発光に変える発光物質を用いることができる。なお、上記発光物質としては、例えば、以下のようなものが挙げられる。 The light-emitting substance that can be used for the light-emitting layer (113, 113a, 113b, 113c) is not particularly limited, and a light-emitting substance that changes singlet excitation energy to light emission in the visible light region or triplet excitation energy in the visible light region A light-emitting substance that changes the light emission of Examples of the light emitting material include the following.
一重項励起エネルギーを発光に変える発光物質としては、蛍光を発する物質(蛍光材料)が挙げられ、例えば、ピレン誘導体、アントラセン誘導体、トリフェニレン誘導体、フルオレン誘導体、カルバゾール誘導体、ジベンゾチオフェン誘導体、ジベンゾフラン誘導体、ジベンゾキノキサリン誘導体、キノキサリン誘導体、ピリジン誘導体、ピリミジン誘導体、フェナントレン誘導体、ナフタレン誘導体などが挙げられる。特にピレン誘導体は発光量子収率が高いので好ましい。ピレン誘導体の具体例としては、N,N’−ビス(3−メチルフェニル)−N,N’−ビス[3−(9−フェニル−9H−フルオレン−9−イル)フェニル]ピレン−1,6−ジアミン(略称:1,6mMemFLPAPrn)、N,N’−ジフェニル−N,N’−ビス[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]ピレン−1,6−ジアミン(略称:1,6FLPAPrn)、N,N’−ビス(ジベンゾフラン−2−イル)−N,N’−ジフェニルピレン−1,6−ジアミン(略称:1,6FrAPrn)、N,N’−ビス(ジベンゾチオフェン−2−イル)−N,N’−ジフェニルピレン−1,6−ジアミン(略称:1,6ThAPrn)、N,N’−(ピレン−1,6−ジイル)ビス[(N−フェニルベンゾ[b]ナフト[1,2−d]フラン)−6−アミン](略称:1,6BnfAPrn)、N,N’−(ピレン−1,6−ジイル)ビス[(N−フェニルベンゾ[b]ナフト[1,2−d]フラン)−8−アミン](略称:1,6BnfAPrn−02)、N,N’−(ピレン−1,6−ジイル)ビス[(6,N−ジフェニルベンゾ[b]ナフト[1,2−d]フラン)−8−アミン](略称:1,6BnfAPrn−03)などが挙げられる。 Examples of light-emitting substances that convert singlet excitation energy into light emission include substances that emit fluorescence (fluorescent materials). For example, pyrene derivatives, anthracene derivatives, triphenylene derivatives, fluorene derivatives, carbazole derivatives, dibenzothiophene derivatives, dibenzofuran derivatives, dibenzo Examples include quinoxaline derivatives, quinoxaline derivatives, pyridine derivatives, pyrimidine derivatives, phenanthrene derivatives, naphthalene derivatives and the like. Particularly, pyrene derivatives are preferable because of high emission quantum yield. Specific examples of pyrene derivatives include N, N'-bis (3-methylphenyl) -N, N'-bis [3- (9-phenyl-9H-fluoren-9-yl) phenyl] pyrene-1,6. -Diamine (abbreviation: 1,6mMemFLPAPrn), N, N'-diphenyl-N, N'-bis [4- (9-phenyl-9H-fluoren-9-yl) phenyl] pyrene-1,6-diamine (abbreviation) N, N'-bis (dibenzofuran-2-yl) -N, N'-diphenylpyrene-1,6-diamine (abbreviation: 1,6 FrAPrn), N, N'-bis (dibenzothiophene) -2-yl) -N, N'-diphenylpyrene-1,6-diamine (abbreviation: 1,6ThAPrn), N, N '-(pyrene-1,6-diyl) bis [(N-phenylbenzo [b ] [1,2-d] furan) -6-amine] (abbreviation: 1,6BnfAPrn), N, N '-(pyrene-1,6-diyl) bis [(N-phenylbenzo [b] naphtho [1] , 2-d] furan) -8-amine] (abbreviation: 1, 6BnfAPrn-02), N, N'- (pyrene-1, 6-diyl) bis [(6, N- diphenylbenzo [b] naphtho [ 1,2-d] furan) -8-amine] (abbreviation: 1, 6BnfAPrn-03) and the like.
その他にも、5,6−ビス[4−(10−フェニル−9−アントリル)フェニル]−2,2’−ビピリジン(略称:PAP2BPy)、5,6−ビス[4’−(10−フェニル−9−アントリル)ビフェニル−4−イル]−2,2’−ビピリジン(略称:PAPP2BPy)、N,N’−ビス[4−(9H−カルバゾール−9−イル)フェニル]−N,N’−ジフェニルスチルベン−4,4’−ジアミン(略称:YGA2S)、4−(9H−カルバゾール−9−イル)−4’−(10−フェニル−9−アントリル)トリフェニルアミン(略称:YGAPA)、4−(9H−カルバゾール−9−イル)−4’−(9,10−ジフェニル−2−アントリル)トリフェニルアミン(略称:2YGAPPA)、N,9−ジフェニル−N−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール−3−アミン(略称:PCAPA)、4−(10−フェニル−9−アントリル)−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBAPA)、4−[4−(10−フェニル−9−アントリル)フェニル]−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBAPBA)、ペリレン、2,5,8,11−テトラ(tert−ブチル)ペリレン(略称:TBP)、N,N’’−(2−tert−ブチルアントラセン−9,10−ジイルジ−4,1−フェニレン)ビス[N,N’,N’−トリフェニル−1,4−フェニレンジアミン](略称:DPABPA)、N,9−ジフェニル−N−[4−(9,10−ジフェニル−2−アントリル)フェニル]−9H−カルバゾール−3−アミン(略称:2PCAPPA)、N−[4−(9,10−ジフェニル−2−アントリル)フェニル]−N,N’,N’−トリフェニル−1,4−フェニレンジアミン(略称:2DPAPPA)等を用いることができる。 In addition, 5,6-bis [4- (10-phenyl-9-anthryl) phenyl] -2,2'-bipyridine (abbreviation: PAP2BPy), 5,6-bis [4 '-(10-phenyl-) 9-anthryl) biphenyl-4-yl] -2,2′-bipyridine (abbreviation: PAPP2BPy), N, N′-bis [4- (9H-carbazol-9-yl) phenyl] -N, N′-diphenyl Stilbene-4,4′-diamine (abbreviation: YGA2S), 4- (9H-carbazol-9-yl) -4 ′-(10-phenyl-9-anthryl) triphenylamine (abbreviation: YGAPA), 4- (4) 9H-carbazol-9-yl) -4 '-(9,10-diphenyl-2-anthryl) triphenylamine (abbreviation: 2YGAPPA), N, 9-diphenyl-N- [4- (10) Phenyl-9-anthryl) phenyl] -9H-carbazol-3-amine (abbreviation: PCAPA), 4- (10-phenyl-9-anthryl) -4 ′-(9-phenyl-9H-carbazol-3-yl) Triphenylamine (abbreviation: PCBAPA), 4- [4- (10-phenyl-9-anthryl) phenyl] -4 '-(9-phenyl-9H-carbazol-3-yl) triphenylamine (abbreviation: PCBAPBA) Perylene, 2,5,8,11-tetra (tert-butyl) perylene (abbreviation: TBP), N, N ''-(2-tert-butylanthracene-9,10-diyldi-4,1-phenylene) Bis [N, N ′, N′-triphenyl-1,4-phenylenediamine] (abbreviation: DPABPA), N, 9-diphenyl-N- [4- ( , 10-Diphenyl-2-anthryl) phenyl] -9H-carbazol-3-amine (abbreviation: 2PCAPPA), N- [4- (9,10-diphenyl-2-anthryl) phenyl] -N, N ′, N It is possible to use '-triphenyl-1,4-phenylenediamine (abbreviation: 2DPAPPA) or the like.
また、三重項励起エネルギーを発光に変える発光物質としては、例えば、燐光を発する物質(燐光材料)や熱活性化遅延蛍光を示す熱活性化遅延蛍光(Thermally activated delayed fluorescence:TADF)材料が挙げられる。 In addition, as a light-emitting substance that converts triplet excitation energy into light emission, for example, a substance that emits phosphorescence (phosphorescent material) and thermally activated delayed fluorescence (TADF) material that exhibits thermally activated delayed fluorescence can be mentioned. .
燐光材料としては、有機金属錯体、金属錯体(白金錯体)、希土類金属錯体等が挙げられる。これらは、物質ごとに異なる発光色(発光ピーク)を示すため、必要に応じて適宜選択して用いる。 Examples of the phosphorescent material include organic metal complexes, metal complexes (platinum complexes), and rare earth metal complexes. Since these exhibit different emission colors (emission peaks) for each substance, they are appropriately selected and used as needed.
青色または緑色を呈し、発光スペクトルのピーク波長が450nm以上570nm以下である燐光材料としては、以下のような物質が挙げられる。 As a phosphorescent material which exhibits blue or green and has a peak wavelength of emission spectrum of 450 nm or more and 570 nm or less, the following substances may be mentioned.
例えば、トリス{2−[5−(2−メチルフェニル)−4−(2,6−ジメチルフェニル)−4H−1,2,4−トリアゾール−3−イル−κN2]フェニル−κC}イリジウム(III)(略称:[Ir(mpptz−dmp)])、トリス(5−メチル−3,4−ジフェニル−4H−1,2,4−トリアゾラト)イリジウム(III)(略称:[Ir(Mptz)])、トリス[4−(3−ビフェニル)−5−イソプロピル−3−フェニル−4H−1,2,4−トリアゾラト]イリジウム(III)(略称:[Ir(iPrptz−3b)])、トリス[3−(5−ビフェニル)−5−イソプロピル−4−フェニル−4H−1,2,4−トリアゾラト]イリジウム(III)(略称:[Ir(iPr5btz)])、のような4H−トリアゾール骨格を有する有機金属錯体、トリス[3−メチル−1−(2−メチルフェニル)−5−フェニル−1H−1,2,4−トリアゾラト]イリジウム(III)(略称:[Ir(Mptz1−mp)])、トリス(1−メチル−5−フェニル−3−プロピル−1H−1,2,4−トリアゾラト)イリジウム(III)(略称:[Ir(Prptz1−Me)])のような1H−トリアゾール骨格を有する有機金属錯体、fac−トリス[1−(2,6−ジイソプロピルフェニル)−2−フェニル−1H−イミダゾール]イリジウム(III)(略称:[Ir(iPrpmi)])、トリス[3−(2,6−ジメチルフェニル)−7−メチルイミダゾ[1,2−f]フェナントリジナト]イリジウム(III)(略称:[Ir(dmpimpt−Me)])のようなイミダゾール骨格を有する有機金属錯体、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)テトラキス(1−ピラゾリル)ボラート(略称:FIr6)、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)ピコリナート(略称:FIrpic)、ビス{2−[3’,5’−ビス(トリフルオロメチル)フェニル]ピリジナト−N,C2’}イリジウム(III)ピコリナート(略称:[Ir(CFppy)(pic)])、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)アセチルアセトナート(略称:FIracac)のように電子吸引基を有するフェニルピリジン誘導体を配位子とする有機金属錯体等が挙げられる。 For example, tris {2- [5- (2-methylphenyl) -4- (2,6-dimethylphenyl) -4H-1,2,4-triazol-3-yl-κN2] phenyl-κC} iridium (III) ) (Abbreviation: [Ir (mpptz-dmp) 3 ]), tris (5-methyl-3,4-diphenyl-4H-1,2,4-triazolato) iridium (III) (abbreviation: [Ir (Mptz) 3] ], Tris [4- (3-biphenyl) -5-isopropyl-3-phenyl-4H-1,2,4-triazolato] iridium (III) (abbreviation: [Ir (iPrptz-3b) 3 ]), tris [3- (5-biphenyl) -5-isopropyl-4-phenyl-4H-1,2,4-triazolato] iridium (III) (abbreviation: [Ir (iPr5btz) 3] ), like An organometallic complex having a 4H-triazole skeleton, tris [3-methyl-1- (2-methylphenyl) -5-phenyl-1H-1,2,4-triazolato] iridium (III) (abbreviation: [Ir (Mptz1) -Mp) 3 ]), tris (1-methyl-5-phenyl-3-propyl-1H-1,2,4-triazolato) iridium (III) (abbreviation: [Ir (Prptz1-Me) 3 ]) and the like Organometallic complex having a 1H-triazole skeleton, fac-tris [1- (2,6-diisopropylphenyl) -2-phenyl-1H-imidazole] iridium (III) (abbreviation: [Ir (iPrpmi) 3 ]), Tris [3- (2,6-dimethylphenyl) -7-methylimidazo [1,2-f] phenanthridinato] iridium (III) : [Ir (dmpimpt-Me) 3] an organometallic complex having an imidazole skeleton, such as), bis [2- (4 ', 6'-difluorophenyl) pyridinato -N, C 2'] iridium (III) tetrakis ( 1-pyrazolyl) borate (abbreviation: FIr6), bis [2- (4 ′, 6′-difluorophenyl) pyridinato-N, C 2 ′ ] iridium (III) picolinate (abbreviation: FIrpic), bis {2- [3 ', 5'-bis (trifluoromethyl) phenyl] pyridinato-N, C 2' } iridium (III) picolinate (abbreviation: [Ir (CF 3 ppy) 2 (pic)]), bis [2- (4 ') , 6'-difluorophenyl) pyridinato -N, C 2 '] iridium (III) acetylacetonate (abbreviation: FIracac) having a electron-withdrawing group such as Organometallic complexes of phenylpyridine derivative ligand.
緑色または黄色を呈し、発光スペクトルのピーク波長が495nm以上590nm以下である燐光材料としては、以下のような物質が挙げられる。 As a phosphorescent material which exhibits a green or yellow color and has a peak wavelength of emission spectrum of 495 nm or more and 590 nm or less, the following substances can be mentioned.
例えば、トリス(4−メチル−6−フェニルピリミジナト)イリジウム(III)(略称:[Ir(mppm)])、トリス(4−t−ブチル−6−フェニルピリミジナト)イリジウム(III)(略称:[Ir(tBuppm)])、(アセチルアセトナト)ビス(6−メチル−4−フェニルピリミジナト)イリジウム(III)(略称:[Ir(mppm)(acac)])、(アセチルアセトナト)ビス(6−tert−ブチル−4−フェニルピリミジナト)イリジウム(III)(略称:[Ir(tBuppm)(acac)])、(アセチルアセトナト)ビス[6−(2−ノルボルニル)−4−フェニルピリミジナト]イリジウム(III)(略称:[Ir(nbppm)(acac)])、(アセチルアセトナト)ビス[5−メチル−6−(2−メチルフェニル)−4−フェニルピリミジナト]イリジウム(III)(略称:[Ir(mpmppm)(acac)])、(アセチルアセトナト)ビス{4,6−ジメチル−2−[6−(2,6−ジメチルフェニル)−4−ピリミジニル−κN3]フェニル−κC}イリジウム(III)(略称:[Ir(dmppm−dmp)(acac)])、(アセチルアセトナト)ビス(4,6−ジフェニルピリミジナト)イリジウム(III)(略称:[Ir(dppm)(acac)])のようなピリミジン骨格を有する有機金属錯体、(アセチルアセトナト)ビス(3,5−ジメチル−2−フェニルピラジナト)イリジウム(III)(略称:[Ir(mppr−Me)(acac)])、(アセチルアセトナト)ビス(5−イソプロピル−3−メチル−2−フェニルピラジナト)イリジウム(III)(略称:[Ir(mppr−iPr)(acac)])のようなピラジン骨格を有する有機金属錯体、トリス(2−フェニルピリジナト−N,C2’)イリジウム(III)(略称:[Ir(ppy)])、ビス(2−フェニルピリジナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(ppy)(acac)])、ビス(ベンゾ[h]キノリナト)イリジウム(III)アセチルアセトナート(略称:[Ir(bzq)(acac)])、トリス(ベンゾ[h]キノリナト)イリジウム(III)(略称:[Ir(bzq)])、トリス(2−フェニルキノリナト−N,C2’)イリジウム(III)(略称:[Ir(pq)])、ビス(2−フェニルキノリナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(pq)(acac)])のようなピリジン骨格を有する有機金属錯体、ビス(2,4−ジフェニル−1,3−オキサゾラト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(dpo)(acac)])、ビス{2−[4’−(パーフルオロフェニル)フェニル]ピリジナト−N,C2’}イリジウム(III)アセチルアセトナート(略称:[Ir(p−PF−ph)(acac)])、ビス(2−フェニルベンゾチアゾラト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(bt)(acac)])などの有機金属錯体の他、トリス(アセチルアセトナト)(モノフェナントロリン)テルビウム(III)(略称:[Tb(acac)(Phen)])のような希土類金属錯体が挙げられる。 For example, tris (4-methyl-6-phenylpyrimidinato) iridium (III) (abbreviation: [Ir (mppm) 3 ]), tris (4-t-butyl-6-phenylpyrimidinato) iridium (III) (Abbreviation: [Ir (tBuppm) 3 ]), (acetylacetonato) bis (6-methyl-4-phenylpyrimidinato) iridium (III) (abbreviation: [Ir (mppm) 2 (acac)]), ( Acetylacetonato) bis (6-tert-butyl-4-phenylpyrimidinato) iridium (III) (abbreviation: [Ir (tBuppm) 2 (acac)]), (acetylacetonato) bis [6- (2- (2-) Norbornyl) -4-phenylpyrimidinato] iridium (III) (abbreviation: [Ir (nbppm) 2 (acac)]), (acetylacetona) G) Bis [5-methyl-6- (2-methylphenyl) -4-phenylpyrimidinato] iridium (III) (abbreviation: [Ir (mpm ppm) 2 (acac)]), (acetylacetonato) bis { 4,6-Dimethyl-2- [6- (2,6-dimethylphenyl) -4-pyrimidinyl-κN3] phenyl-κC} iridium (III) (abbreviation: [Ir (dmppm-dmp) 2 (acac)]) , (Acetylacetonato) bis (4,6-diphenylpyrimidinato) iridium (III) (abbreviation: Organometallic complex having a pyrimidine skeleton such as [Ir (dppm) 2 (acac)]), (acetylacetonato) ) bis (3,5-dimethyl-2-phenylpyrazinato) iridium (III) (abbreviation: [Ir (mppr-Me) 2 (acac)]), ( Sechiruasetonato) bis (5-isopropyl-3-methyl-2-phenylpyrazinato) iridium (III) (abbreviation: [Ir (mppr-iPr) 2 (acac)]) organometallic complex having a pyrazine skeleton, such as, Tris (2-phenylpyridinato-N, C 2 ′ ) iridium (III) (abbreviation: [Ir (ppy) 3 ]), bis (2-phenyl pyridinato-N, C 2 ′ ) iridium (III) Acetylacetonate (abbreviation: [Ir (ppy) 2 (acac)]), bis (benzo [h] quinolinato) iridium (III) acetylacetonate (abbreviation: [Ir (bzq) 2 (acac)]), tris benzo [h] quinolinato) iridium (III) (abbreviation: [Ir (bzq) 3] ), tris (2-phenylquinolinato -N, C 2 ') b Indium (III) (abbreviation: [Ir (pq) 3] ), bis (2-phenylquinolinato--N, C 2 ') iridium (III) acetylacetonate (abbreviation: [Ir (pq) 2 ( acac)] An organometallic complex having a pyridine skeleton such as bis), bis (2,4-diphenyl-1,3-oxazolato-N, C 2 ′ ) iridium (III) acetylacetonate (abbreviation: [Ir (dpo) 2 (acac) )), Bis {2- [4 ′-(perfluorophenyl) phenyl] pyridinato-N, C 2 ′ } iridium (III) acetylacetonate (abbreviation: [Ir (p-PF-ph) 2 (acac) An organic compound such as bis (2-phenylbenzothiazolato-N, C 2 ′ ) iridium (III) acetylacetonate (abbreviation: [Ir (bt) 2 (acac)]) Other than metal complexes, rare earth metal complexes such as tris (acetylacetonato) (monophenanthroline) terbium (III) (abbreviation: [Tb (acac) 3 (Phen)]) can be given.
黄色または赤色を呈し、発光スペクトルのピーク波長が570nm以上750nm以下である燐光材料としては、以下のような物質が挙げられる。 As a phosphorescent material which exhibits yellow or red and has a peak wavelength of 570 nm or more and 750 nm or less in the light emission spectrum, the following substances may be mentioned.
例えば、(ジイソブチリルメタナト)ビス[4,6−ビス(3−メチルフェニル)ピリミジナト]イリジウム(III)(略称:[Ir(5mdppm)(dibm)])、ビス[4,6−ビス(3−メチルフェニル)ピリミジナト](ジピバロイルメタナト)イリジウム(III)(略称:[Ir(5mdppm)(dpm)])、(ジピバロイルメタナト)ビス[4,6−ジ(ナフタレン−1−イル)ピリミジナト]イリジウム(III)(略称:[Ir(d1npm)(dpm)])のようなピリミジン骨格を有する有機金属錯体、(アセチルアセトナト)ビス(2,3,5−トリフェニルピラジナト)イリジウム(III)(略称:[Ir(tppr)(acac)])、ビス(2,3,5−トリフェニルピラジナト)(ジピバロイルメタナト)イリジウム(III)(略称:[Ir(tppr)(dpm)])、(アセチルアセトナト)ビス[2,3−ビス(4−フルオロフェニル)キノキサリナト]イリジウム(III)(略称:[Ir(Fdpq)(acac)])のようなピラジン骨格を有する有機金属錯体や、トリス(1−フェニルイソキノリナト−N,C2’)イリジウム(III)(略称:[Ir(piq)])、ビス(1−フェニルイソキノリナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(piq)(acac)])のようなピリジン骨格を有する有機金属錯体、2,3,7,8,12,13,17,18−オクタエチル−21H,23H−ポルフィリン白金(II)(略称:[PtOEP])のような白金錯体、トリス(1,3−ジフェニル−1,3−プロパンジオナト)(モノフェナントロリン)ユーロピウム(III)(略称:[Eu(DBM)(Phen)])、トリス[1−(2−テノイル)−3,3,3−トリフルオロアセトナト](モノフェナントロリン)ユーロピウム(III)(略称:[Eu(TTA)(Phen)])のような希土類金属錯体が挙げられる。 For example, (diisobutyrylmethanato) bis [4,6-bis (3-methylphenyl) pyrimidinato] iridium (III) (abbreviation: [Ir (5mdppm) 2 (dibm)]), bis [4,6-bis ( 3-Methylphenyl) pyrimidinato] (dipivaloylmethanato) iridium (III) (abbreviation: [Ir (5mdppm) 2 (dpm)]), (dipivaloylmethanato) bis [4,6-di (naphthalene-) 1-yl) pyrimidinato] iridium (III) (abbreviation: [Ir (d1 npm) 2 (dpm)]), an organometallic complex having a pyrimidine skeleton, (acetylacetonato) bis (2,3,5-triphenyl) Pirajinato) iridium (III) (abbreviation: [Ir (tppr) 2 ( acac)]), bis (2,3,5-triphenylpyrazinato (Dipivaloylmethanato) iridium (III) (abbreviation: [Ir (tppr) 2 ( dpm)]), ( acetylacetonato) bis [2,3-bis (4-fluorophenyl) quinoxalinato] iridium (III) An organometallic complex having a pyrazine skeleton such as (abbreviation: [Ir (Fdpq) 2 (acac)]), tris (1-phenylisoquinolinato-N, C 2 ′ ) iridium (III) (abbreviation: [Ir (Piq) 3 ]), bis (1-phenylisoquinolinato-N, C 2 ′ ) iridium (III) acetylacetonate (abbreviation: [Ir (piq) 2 (acac)]) has a pyridine skeleton such as Organometallic complexes, 2,3,7,8,12,13,17,18-octaethyl-21H, 23H-porphyrin platinum (II) (abbreviation: [PtOEP ) Platinum complex, tris such as (1,3-diphenyl-1,3-propanedionato) (monophenanthroline) europium (III) (abbreviation: [Eu (DBM) 3 ( Phen)]), tris [1- Examples include rare earth metal complexes such as (2-thenoyl) -3,3,3-trifluoroacetonato] (monophenanthroline) europium (III) (abbreviation: [Eu (TTA) 3 (Phen)]).
発光層(113、113a、113b、113c)に用いる有機化合物(ホスト材料、アシスト材料)としては、発光物質(ゲスト材料)のエネルギーギャップより大きなエネルギーギャップを有する物質を、一種もしくは複数種選択して用いればよい。なお、上述した正孔輸送性材料として挙げたものや、後述する電子輸送性材料として挙げられる材料をこのような有機化合物(ホスト材料、アシスト材料)として用いることもできる。 As organic compounds (host materials and assist materials) used for the light emitting layer (113, 113a, 113b, 113c), one or plural kinds of substances having energy gaps larger than the energy gap of the light emitting substance (guest material) are selected It may be used. In addition, materials listed as the above-mentioned hole transporting material and materials listed as the electron transporting material described later can also be used as such an organic compound (host material, assist material).
発光物質が蛍光材料である場合、ホスト材料としては一重項励起状態のエネルギー準位が大きく、三重項励起状態のエネルギー準位が小さい有機化合物を用いるのが好ましい。なお、本実施の形態で示す正孔輸送性の材料や電子輸送性の材料の他、バイポーラ性の材料をホスト材料として用いることができるが、上記の条件を満たす物質であれば、より好ましい。例えば、アントラセン誘導体やテトラセン誘導体なども好適である。 When the light-emitting substance is a fluorescent material, it is preferable to use, as the host material, an organic compound having a large energy level in a singlet excited state and a small energy level in a triplet excited state. Note that in addition to the hole transporting material and the electron transporting material described in this embodiment, a bipolar material can be used as a host material, but a substance that satisfies the above conditions is more preferable. For example, anthracene derivatives and tetracene derivatives are also suitable.
従って、蛍光性の発光物質と組み合わせるホスト材料としては、例えば、9−フェニル−3−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(略称:PCzPA)、PCPN、CzPA、7−[4−(10−フェニル−9−アントリル)フェニル]−7H−ジベンゾ[c,g]カルバゾール(略称:cgDBCzPA)、6−[3−(9,10−ジフェニル−2−アントリル)フェニル]−ベンゾ[b]ナフト[1,2−d]フラン(略称:2mBnfPPA)、9−フェニル−10−{4−(9−フェニル−9H−フルオレン−9−イル)ビフェニル−4’−イル}アントラセン(略称:FLPPA)、5,12−ジフェニルテトラセン、5,12−ビス(ビフェニル−2−イル)テトラセンなどが挙げられる。 Therefore, as a host material to be combined with a fluorescent light-emitting substance, for example, 9-phenyl-3- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazole (abbreviation: PCzPA), PCPN, CzPA, 7- [4- (10-phenyl-9-anthryl) phenyl] -7H-dibenzo [c, g] carbazole (abbreviation: cgDBCzPA), 6- [3- (9,10-diphenyl-2-anthryl) phenyl] -Benzo [b] naphtho [1,2-d] furan (abbreviation: 2mBnfPPA), 9-phenyl-10- {4- (9-phenyl-9H-fluoren-9-yl) biphenyl-4'-yl} anthracene (Abbreviation: FLPPA), 5,12-diphenyltetracene, 5,12-bis (biphenyl-2-yl) tetracene and the like. .
発光物質が燐光材料である場合、ホスト材料としては発光物質の三重項励起エネルギー(基底状態と三重項励起状態とのエネルギー差)よりも三重項励起エネルギーの大きい有機化合物を選択すれば良い。なお、本実施の形態で示す正孔輸送性の材料や電子輸送性の材料の他、バイポーラ性の材料をホスト材料として用いることができるが、上記の条件を満たす物質であれば、より好ましい。例えば、アントラセン誘導体、フェナントレン誘導体、ピレン誘導体、クリセン誘導体、ジベンゾ[g,p]クリセン誘導体等の縮合多環芳香族化合物なども好適である。 When the light-emitting substance is a phosphorescent material, an organic compound having a triplet excitation energy larger than the triplet excitation energy of the light-emitting substance (the energy difference between the ground state and the triplet excited state) may be selected as the host material. Note that in addition to the hole transporting material and the electron transporting material described in this embodiment, a bipolar material can be used as a host material, but a substance that satisfies the above conditions is more preferable. For example, fused polycyclic aromatic compounds such as anthracene derivatives, phenanthrene derivatives, pyrene derivatives, chrysene derivatives, dibenzo [g, p] chrysene derivatives, and the like are also suitable.
従って、燐光性の発光物質と組み合わせるホスト材料としては、例えば、9,10−ジフェニルアントラセン(略称:DPAnth)、N,N−ジフェニル−9−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール−3−アミン(略称:CzA1PA)、4−(10−フェニル−9−アントリル)トリフェニルアミン(略称:DPhPA)、YGAPA、PCAPA、PCAPBA、N−(9,10−ジフェニル−2−アントリル)−N,9−ジフェニル−9H−カルバゾール−3−アミン(略称:2PCAPA)、6,12−ジメトキシ−5,11−ジフェニルクリセン、N,N,N’,N’,N’’,N’’,N’’’,N’’’−オクタフェニルジベンゾ[g,p]クリセン−2,7,10,15−テトラアミン(略称:DBC1)、CzPA、3,6−ジフェニル−9−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(略称:DPCzPA)、9,10−ビス(3,5−ジフェニルフェニル)アントラセン(略称:DPPA)、9,10−ジ(2−ナフチル)アントラセン(略称:DNA)、2−tert−ブチル−9,10−ジ(2−ナフチル)アントラセン(略称:t−BuDNA)、9,9’−ビアントリル(略称:BANT)、9,9’−(スチルベン−3,3’−ジイル)ジフェナントレン(略称:DPNS)、9,9’−(スチルベン−4,4’−ジイル)ジフェナントレン(略称:DPNS2)、1,3,5−トリ(1−ピレニル)ベンゼン(略称:TPB3)等が挙げられる。 Therefore, as a host material to be combined with a phosphorescent light-emitting substance, for example, 9,10-diphenylanthracene (abbreviation: DPAnth), N, N-diphenyl-9- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazol-3-amine (abbreviation: CzA1PA), 4- (10-phenyl-9-anthryl) triphenylamine (abbreviation: DPhPA), YGAPA, PCAPA, PCAPBA, N- (9, 10-diphenyl-2) -Anthryl) -N, 9-diphenyl-9H-carbazol-3-amine (abbreviation: 2PCAPA), 6,12-dimethoxy-5,11-diphenylchrysene, N, N, N ', N', N '', N ′ ′, N ′ ′ ′, N ′ ′ ′-octaphenyldibenzo [g, p] chrysene-2,7,10,15-tetraa (Abbreviation: DBC1), CzPA, 3,6-diphenyl-9- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazole (abbreviation: DPCzPA), 9,10-bis (3,5) -Diphenylphenyl) anthracene (abbreviation: DPPA), 9,10-di (2-naphthyl) anthracene (abbreviation: DNA), 2-tert-butyl-9,10-di (2-naphthyl) anthracene (abbreviation: t-) BuDNA), 9,9′-bianthryl (abbreviation: BANT), 9,9 ′-(stilbene-3,3′-diyl) diphenanthrene (abbreviation: DPNS), 9,9 ′-(stilbene-4,4 ′) -Diyl) diphenanthrene (abbreviation: DPNS2), 1,3,5-tri (1-pyrenyl) benzene (abbreviation: TPB3), and the like.
また、発光層(113、113a、113b、113c)に複数の有機化合物を用いる場合、励起錯体を形成する化合物を燐光発光物質と混合して用いることが好ましい。なお、このような構成とすることにより、励起錯体から発光物質へのエネルギー移動であるExTET(Exciplex−Triplet Energy Transfer)を用いた発光を得ることができる。この場合、様々な有機化合物を適宜組み合わせて用いることができるが、効率よく励起錯体を形成するためには、正孔を受け取りやすい化合物(正孔輸送性材料)と、電子を受け取りやすい化合物(電子輸送性材料)とを組み合わせることが特に好ましい。 In the case where a plurality of organic compounds are used for the light emitting layer (113, 113a, 113b, 113c), it is preferable to use a compound which forms an exciplex with a phosphorescent substance. Note that, with such a configuration, light emission using ExTET (Exciplex-Triplet Energy Transfer), which is energy transfer from an exciplex to a light-emitting substance, can be obtained. In this case, various organic compounds can be appropriately combined and used, but in order to efficiently form an excited complex, a compound that easily receives holes (hole transportable material) and a compound that easily receives electrons (electrons It is particularly preferred to combine with a transportable material).
TADF材料とは、三重項励起状態をわずかな熱エネルギーによって一重項励起状態にアップコンバート(逆項間交差)が可能で、一重項励起状態からの発光(蛍光)を効率よく呈する材料のことである。また、熱活性化遅延蛍光が効率良く得られる条件としては、三重項励起準位と一重項励起準位のエネルギー差が0eV以上0.2eV以下、好ましくは0eV以上0.1eV以下であることが挙げられる。また、TADF材料における遅延蛍光とは、通常の蛍光と同様のスペクトルを持ちながら、寿命が著しく長い発光をいう。その寿命は、10−6秒以上、好ましくは10−3秒以上である。 TADF material refers to a material that can up-convert a triplet excited state to a singlet excited state with slight thermal energy (reverse intersystem crossing) and efficiently exhibit light emission (fluorescence) from the singlet excited state. is there. In addition, as a condition under which thermally activated delayed fluorescence can be efficiently obtained, the energy difference between the triplet excitation level and the singlet excitation level is 0 eV or more and 0.2 eV or less, preferably 0 eV or more and 0.1 eV or less It can be mentioned. Moreover, the delayed fluorescence in the TADF material refers to light emission having a remarkably long life while having the same spectrum as normal fluorescence. The lifetime is 10 -6 seconds or more, preferably 10 -3 seconds or more.
TADF材料としては、例えば、フラーレンやその誘導体、プロフラビン等のアクリジン誘導体、エオシン等が挙げられる。また、マグネシウム(Mg)、亜鉛(Zn)、カドミウム(Cd)、スズ(Sn)、白金(Pt)、インジウム(In)、もしくはパラジウム(Pd)等を含む金属含有ポルフィリンが挙げられる。金属含有ポルフィリンとしては、例えば、プロトポルフィリン−フッ化スズ錯体(SnF(Proto IX))、メソポルフィリン−フッ化スズ錯体(SnF(Meso IX))、ヘマトポルフィリン−フッ化スズ錯体(SnF(Hemato IX))、コプロポルフィリンテトラメチルエステル−フッ化スズ錯体(SnF(Copro III−4Me))、オクタエチルポルフィリン−フッ化スズ錯体(SnF(OEP))、エチオポルフィリン−フッ化スズ錯体(SnF(Etio I))、オクタエチルポルフィリン−塩化白金錯体(PtClOEP)等が挙げられる。 Examples of TADF materials include fullerene and derivatives thereof, acridine derivatives such as proflavin, eosin and the like. In addition, metal-containing porphyrins including magnesium (Mg), zinc (Zn), cadmium (Cd), tin (Sn), platinum (Pt), indium (In), palladium (Pd) and the like can be mentioned. Examples of the metal-containing porphyrin include protoporphyrin-tin fluoride complex (SnF 2 (Proto IX)), mesoporphyrin-tin fluoride complex (SnF 2 (Meso IX)), hematoporphyrin-tin fluoride complex (SnF 2) (Hemato IX), coproporphyrin tetramethyl ester-tin fluoride complex (SnF 2 (Copro III-4 Me)), octaethylporphyrin-tin fluoride complex (SnF 2 (OEP)), ethioporphyrin-tin fluoride complex (SnF 2 (Etio I)), octaethyl porphyrin-platinum chloride complex (PtCl 2 OEP), and the like.
その他のTADF材料としては、2−(ビフェニル−4−イル)−4,6−ビス(12−フェニルインドロ[2,3−a]カルバゾール−11−イル)−1,3,5−トリアジン(略称:PIC−TRZ)、2−{4−[3−(N−フェニル−9H−カルバゾール−3−イル)−9H−カルバゾール−9−イル]フェニル}−4,6−ジフェニル−1,3,5−トリアジン(略称:PCCzPTzn)、2−[4−(10H−フェノキサジン−10−イル)フェニル]−4,6−ジフェニル−1,3,5−トリアジン(略称:PXZ−TRZ)、3−[4−(5−フェニル−5,10−ジヒドロフェナジン−10−イル)フェニル]−4,5−ジフェニル−1,2,4−トリアゾール(略称:PPZ−3TPT)、3−(9,9−ジメチル−9H−アクリジン−10−イル)−9H−キサンテン−9−オン(略称:ACRXTN)、ビス[4−(9,9−ジメチル−9,10−ジヒドロアクリジン)フェニル]スルホン(略称:DMAC−DPS)、10−フェニル−10H,10’H−スピロ[アクリジン−9,9’−アントラセン]−10’−オン(略称:ACRSA)等のπ電子過剰型複素芳香環及びπ電子不足型複素芳香環を有する複素環化合物を用いることができる。なお、π電子過剰型複素芳香環とπ電子不足型複素芳香環とが直接結合した物質は、π電子過剰型複素芳香環のドナー性とπ電子不足型複素芳香環のアクセプター性が共に強くなり、一重項励起状態と三重項励起状態のエネルギー差が小さくなるため、特に好ましい。 Other TADF materials include 2- (biphenyl-4-yl) -4,6-bis (12-phenylindolo [2,3-a] carbazol-11-yl) -1,3,5-triazine Abbreviations: PIC-TRZ), 2- {4- [3- (N-phenyl-9H-carbazol-3-yl) -9H-carbazol-9-yl] phenyl} -4,6-diphenyl-1,3, 5-triazine (abbreviation: PCCzPTzn), 2- [4- (10H-phenoxazin-10-yl) phenyl] -4,6-diphenyl-1,3,5-triazine (abbreviation: PXZ-TRZ), 3- [4- (5-phenyl-5,10-dihydrophenazine-10-yl) phenyl] -4,5-diphenyl-1,2,4-triazole (abbreviation: PPZ-3TPT), 3- (9, 9- Dimethyl- H-acridin-10-yl) -9H-xanthen-9-one (abbreviation: ACRXTN), bis [4- (9,9-dimethyl-9,10-dihydroacridine) phenyl] sulfone (abbreviation: DMAC-DPS) Π-electron excess heteroaromatic ring and π electron-deficient heteroaromatic ring such as 10-phenyl-10H, 10'H-spiro [acridin-9,9'-anthracene] -10'-one (abbreviation: ACRSA) The heterocyclic compound which it has can be used. The substance in which the π electron excess heteroaromatic ring and the π electron deficiency heteroaromatic ring are directly bonded has both the donor property of the π electron excess heteroaromatic ring and the acceptor activity of the π electron deficiency heteroaromatic ring. It is particularly preferable because the energy difference between the singlet excited state and the triplet excited state is reduced.
なお、TADF材料を用いる場合、他の有機化合物と組み合わせて用いることもできる。 In addition, when using a TADF material, it can also be used in combination with another organic compound.
上記の材料を適宜用いることにより、発光層(113、113a、113b、113c)を形成することができる。また、上記の材料は、低分子材料や高分子材料と組み合わせることにより発光層(113、113a、113b、113c)の形成に用いることができる。 The light emitting layers (113, 113a, 113b, 113c) can be formed by appropriately using the above materials. Further, the above materials can be used to form the light emitting layers (113, 113a, 113b, 113c) by combining them with low molecular weight materials or high molecular weight materials.
図1(D)に示す発光素子においては、EL層103aの発光層113a上に電子輸送層114aが形成される。また、EL層103aおよび電荷発生層104が形成された後、EL層103bの発光層113b上に電子輸送層114bが形成される。 In the light emitting element shown in FIG. 1D, the electron transporting layer 114a is formed over the light emitting layer 113a of the EL layer 103a. In addition, after the EL layer 103a and the charge generation layer 104 are formed, the electron transport layer 114b is formed over the light emitting layer 113b of the EL layer 103b.
<電子輸送層>
電子輸送層(114、114a、114b)は、電子注入層(115、115a、115b)によって、第2の電極102や電荷発生層(104)から注入された電子を発光層(113、113a、113b)に輸送する層である。なお、電子輸送層(114、114a、114b)は、電子輸送性材料を含む層である。電子輸送層(114、114a、114b)に用いる電子輸送性材料は、1×10−6cm/Vs以上の電子移動度を有する物質が好ましい。なお、正孔よりも電子の輸送性の高い物質であれば、これら以外のものを用いることができる。
<Electron transport layer>
The electron transport layer (114, 114a, 114b) emits light injected from the second electrode 102 or the charge generation layer (104) by the electron injection layer (115, 115a, 115b) to the light emitting layer (113, 113a, 113b). Transport to the Note that the electron transporting layers (114, 114a, 114b) are layers containing an electron transporting material. The electron transporting material used for the electron transporting layer (114, 114a, 114b) is preferably a substance having an electron mobility of 1 × 10 −6 cm 2 / Vs or more. Note that materials that can transport electrons more than holes can be used.
電子輸送性材料としては、キノリン骨格を有する金属錯体、ベンゾキノリン骨格を有する金属錯体、オキサゾール骨格を有する金属錯体、チアゾール骨格を有する金属錯体等の他、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、オキサゾール誘導体、チアゾール誘導体、フェナントロリン誘導体、キノリン配位子を有するキノリン誘導体、ベンゾキノリン誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、ピリジン誘導体、ビピリジン誘導体、ピリミジン誘導体、その他含窒素複素芳香族化合物を含むπ電子不足型複素芳香族化合物等の電子輸送性の高い材料を用いることができる。 As the electron transporting material, metal complexes having a quinoline skeleton, metal complexes having a benzoquinoline skeleton, metal complexes having an oxazole skeleton, metal complexes having a thiazole skeleton, etc., oxadiazole derivatives, triazole derivatives, imidazole derivatives, Oxazole derivatives, thiazole derivatives, phenanthroline derivatives, quinoline derivatives with quinoline ligands, benzoquinoline derivatives, quinoxaline derivatives, dibenzoquinoxaline derivatives, pyridine derivatives, bipyridine derivatives, pyrimidine derivatives, and other π-electron deficiency including nitrogen-containing heteroaromatic compounds Materials having high electron transportability such as heteroaromatic compounds can be used.
電子輸送性材料の具体例としては、トリス(8−キノリノラト)アルミニウム(III)(略称:Alq)、トリス(4−メチル−8−キノリノラト)アルミニウム(III)(略称:Almq)、ビス(10−ヒドロキシベンゾ[h]キノリナト)ベリリウム(II)(略称:BeBq)、ビス(2−メチル−8−キノリノラト)(4−フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8−キノリノラト)亜鉛(II)(略称:Znq)等のキノリン骨格またはベンゾキノリン骨格を有する金属錯体、ビス[2−(2−ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2−(2−ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)、ビス[2−(2−ヒドロキシフェニル)ベンゾチアゾラト]亜鉛(II)(略称:Zn(BTZ))等のオキサゾール骨格またはチアゾール骨格を有する金属錯体等が挙げられる。 Specific examples of the electron transporting material include tris (8-quinolinolato) aluminum (III) (abbreviation: Alq 3 ), tris (4-methyl-8-quinolinolato) aluminum (III) (abbreviation: Almq 3 ), and bis ( 10-hydroxybenzo [h] quinolinato) beryllium (II) (abbreviation: BeBq 2 ), bis (2-methyl-8-quinolinolato) (4-phenylphenolato) aluminum (III) (abbreviation: BAlq), bis (8) -Quinolinolato) metal complexes having a quinoline skeleton such as zinc (II) (abbreviation: Znq) or a benzoquinoline skeleton, bis [2- (2-benzoxazolyl) phenolato] zinc (II) (abbreviation: ZnPBO), bis [2- (2-Benzothiazolyl) phenolato] zinc (II) (abbreviation: ZnBTZ), bis [2- (2- (2-) Rokishifeniru) -benzothiazolato] zinc (II) (abbreviation: Zn (BTZ) 2) metal complex having oxazole skeleton or thiazole skeleton of the like.
また、金属錯体以外にも2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾール(略称:PBD)、1,3−ビス[5−(p−tert−ブチルフェニル)−1,3,4−オキサジアゾール−2−イル]ベンゼン(略称:OXD−7)、9−[4−(5−フェニル−1,3,4−オキサジアゾール−2−イル)フェニル]−9H−カルバゾール(略称:CO11)等のオキサジアゾール誘導体、3−(4’−tert−ブチルフェニル)−4−フェニル−5−(4’’−ビフェニル)−1,2,4−トリアゾール(略称:TAZ)、3−(4−tert−ブチルフェニル)−4−(4−エチルフェニル)−5−(4−ビフェニリル)−1,2,4−トリアゾール(略称:p−EtTAZ)等のトリアゾール誘導体、2,2’,2’’−(1,3,5−ベンゼントリイル)トリス(1−フェニル−1H−ベンゾイミダゾール)(略称:TPBI)、2−[3−(ジベンゾチオフェン−4−イル)フェニル]−1−フェニル−1H−ベンゾイミダゾール(略称:mDBTBIm−II)等のイミダゾール誘導体(ベンゾイミダゾール誘導体を含む)や、4,4’−ビス(5−メチルベンゾオキサゾール−2−イル)スチルベン(略称:BzOs)などのオキサゾール誘導体、バソフェナントロリン(略称:Bphen)、バソキュプロイン(略称:BCP)、2,9−ビス(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン(略称:NBphen)などのフェナントロリン誘導体、2−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2mDBTPDBq−II)、2−[3’−(ジベンゾチオフェン−4−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mDBTBPDBq−II)、2−[3’−(9H−カルバゾール−9−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mCzBPDBq)、2−[4−(3,6−ジフェニル−9H−カルバゾール−9−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2CzPDBq−III)、7−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:7mDBTPDBq−II)、及び、6−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:6mDBTPDBq−II)等のキノキサリン誘導体、またはジベンゾキノキサリン誘導体、3,5−ビス[3−(9H−カルバゾール−9−イル)フェニル]ピリジン(略称:35DCzPPy)、1,3,5−トリ[3−(3−ピリジル)フェニル]ベンゼン(略称:TmPyPB)等のピリジン誘導体、4,6−ビス[3−(フェナントレン−9−イル)フェニル]ピリミジン(略称:4,6mPnP2Pm)、4,6−ビス[3−(4−ジベンゾチエニル)フェニル]ピリミジン(略称:4,6mDBTP2Pm−II)、4,6−ビス[3−(9H−カルバゾール−9−イル)フェニル]ピリミジン(略称:4,6mCzP2Pm)等のピリミジン誘導体、2−{4−[3−(N−フェニル−9H−カルバゾール−3−イル)−9H−カルバゾール−9−イル]フェニル}−4,6−ジフェニル−1,3,5−トリアジン(略称:PCCzPTzn)等のトリアジン誘導体を用いることができる。 In addition to metal complexes, 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole (abbreviation: PBD), 1,3-bis [5- (4) p-tert-Butylphenyl) -1,3,4-oxadiazol-2-yl] benzene (abbreviation: OXD-7), 9- [4- (5-phenyl-1,3,4-oxadiazole) Oxadiazole derivatives such as -2-yl) phenyl] -9H-carbazole (abbreviation: CO11), 3- (4'-tert-butylphenyl) -4-phenyl-5- (4 ''-biphenyl) -1 2,4-triazole (abbreviation: TAZ), 3- (4-tert-butylphenyl) -4- (4-ethylphenyl) -5- (4-biphenylyl) -1,2,4-triazole (abbreviation: such as p-EtTAZ) An azole derivative, 2,2 ′, 2 ′ ′-(1,3,5-benzenetriyl) tris (1-phenyl-1H-benzoimidazole) (abbreviation: TPBI), 2- [3- (dibenzothiophene-4) Imidazole derivatives (including benzimidazole derivatives) such as -yl) phenyl] -1-phenyl-1H-benzoimidazole (abbreviation: mDBTBIm-II) and 4,4'-bis (5-methylbenzoxazol-2-yl) ) Oxazole derivatives such as stilbene (abbreviation: BzOs), bathophenanthroline (abbreviation: Bphen), bathocuproin (abbreviation: BCP), 2,9-bis (naphthalen-2-yl) -4,7-diphenyl-1,10- Phenanthroline derivatives such as phenanthroline (abbreviation: NBphen), 2- [3- (dibenzothione) -4-yl) phenyl] dibenzo [f, h] quinoxaline (abbreviation: 2mDBTPDBq-II), 2- [3 ′-(dibenzothiophen-4-yl) biphenyl-3-yl] dibenzo [f, h] quinoxaline (Abbreviation: 2mDBTBPDBq-II), 2- [3 '-(9H-carbazol-9-yl) biphenyl-3-yl] dibenzo [f, h] quinoxaline (abbreviation: 2mCzBPDBq), 2- [4- (3, 6-Diphenyl-9H-carbazol-9-yl) phenyl] dibenzo [f, h] quinoxaline (abbreviation: 2CzPDBq-III), 7- [3- (dibenzothiophen-4-yl) phenyl] dibenzo [f, h] Quinoxaline (abbreviation: 7mDBTPDBq-II), and 6- [3- (dibenzothiophen-4-yl) phenyl] dibe Quinoxaline derivatives such as nzo [f, h] quinoxaline (abbr .: 6mDBTPDBq-II) or dibenzoquinoxaline derivatives, 3,5-bis [3- (9H-carbazol-9-yl) phenyl] pyridine (abbr .: 35DCzPPy) And pyridine derivatives such as 1,3,5-tri [3- (3-pyridyl) phenyl] benzene (abbreviation: TmPyPB); 4,6-bis [3- (phenanthrene-9-yl) phenyl] pyrimidine (abbreviation: 4,6mPnP2Pm), 4,6-bis [3- (4-dibenzothienyl) phenyl] pyrimidine (abbreviation: 4,6mDBTP2Pm-II), 4,6-bis [3- (9H-carbazol-9-yl) phenyl A pyrimidine derivative such as pyrimidine (abbreviation: 4,6mCzP2Pm), 2- {4- [3- (N-phenyl-) H- carbazol-3-yl) -9H- carbazol-9-yl] phenyl} -4,6-diphenyl-1,3,5-triazine (abbreviation: PCCzPTzn) can be used triazine derivatives and the like.
また、ポリ(2,5−ピリジンジイル)(略称:PPy)、ポリ[(9,9−ジヘキシルフルオレン−2,7−ジイル)−co−(ピリジン−3,5−ジイル)](略称:PF−Py)、ポリ[(9,9−ジオクチルフルオレン−2,7−ジイル)−co−(2,2’−ビピリジン−6,6’−ジイル)](略称:PF−BPy)のような高分子化合物を用いることもできる。 In addition, poly (2,5-pyridinediyl) (abbreviation: PPy), poly [(9,9-dihexylfluorene-2,7-diyl) -co- (pyridine-3,5-diyl)] (abbreviation: PF -Py), as high as poly [(9,9-dioctyl fluorene-2,7-diyl) -co- (2,2'-bipyridine-6,6'-diyl)] (abbreviation: PF-BPy) Molecular compounds can also be used.
また、電子輸送層(114、114a、114b)は、単層のものだけでなく、上記物質からなる層が2層以上積層した構造であってもよい。 The electron-transporting layer (114, 114a, 114b) is not limited to a single layer, and may have a structure in which two or more layers containing the above substances are stacked.
次に、図1(D)に示す発光素子において、EL層103aの電子輸送層114a上に電子注入層115aが真空蒸着法により形成される。その後、EL層103aおよび電荷発生層104が形成され、EL層103bの電子輸送層114bまで形成された後、上に電子注入層115bが真空蒸着法により形成される。 Next, in the light emitting element shown in FIG. 1D, the electron injection layer 115a is formed on the electron transporting layer 114a of the EL layer 103a by a vacuum evaporation method. Thereafter, the EL layer 103a and the charge generation layer 104 are formed, and the electron transport layer 114b of the EL layer 103b is formed, and then the electron injection layer 115b is formed thereon by a vacuum evaporation method.
<電子注入層>
電子注入層(115、115a、115b)は、電子注入性の高い物質を含む層である。電子注入層(115、115a、115b)には、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)、リチウム酸化物(LiO)等のようなアルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。また、フッ化エルビウム(ErF)のような希土類金属化合物を用いることができる。また、電子注入層(115、115a、115b)にエレクトライドを用いてもよい。エレクトライドとしては、例えば、カルシウムとアルミニウムの混合酸化物に電子を高濃度添加した物質等が挙げられる。なお、上述した電子輸送層(114、114a、114b)を構成する物質を用いることもできる。
<Electron injection layer>
The electron injection layer (115, 115a, 115b) is a layer containing a substance having a high electron injection property. In the electron injection layer (115, 115a, 115b), an alkali metal such as lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF 2 ), lithium oxide (LiO x ), etc., alkali Earth metals or compounds thereof can be used. Alternatively, a rare earth metal compound such as erbium fluoride (ErF 3 ) can be used. Alternatively, electride may be used for the electron injection layer (115, 115a, 115b). Examples of electride include a substance in which electrons are added to a mixed oxide of calcium and aluminum at a high concentration, and the like. In addition, the substance which comprises the electron carrying layer (114, 114a, 114b) mentioned above can also be used.
また、電子注入層(115、115a、115b)に、有機化合物と電子供与体(ドナー)とを混合してなる複合材料を用いてもよい。このような複合材料は、電子供与体によって有機化合物に電子が発生するため、電子注入性および電子輸送性に優れている。この場合、有機化合物としては、発生した電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述した電子輸送層(114、114a、114b)に用いる電子輸送性材料(金属錯体や複素芳香族化合物等)を用いることができる。電子供与体としては、有機化合物に対し電子供与性を示す物質であればよい。具体的には、アルカリ金属やアルカリ土類金属や希土類金属が好ましく、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、アルカリ金属酸化物やアルカリ土類金属酸化物が好ましく、リチウム酸化物、カルシウム酸化物、バリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。 Alternatively, a composite material formed by mixing an organic compound and an electron donor (donor) may be used for the electron injection layer (115, 115a, 115b). Such a composite material is excellent in electron injectability and electron transportability because electrons are generated in the organic compound by the electron donor. In this case, the organic compound is preferably a material excellent in transporting generated electrons, and specifically, for example, an electron transporting material (metal complex used for the electron transporting layer (114, 114a, 114b) described above And heteroaromatic compounds etc. can be used. As the electron donor, any substance may be used as long as it exhibits an electron donating property to the organic compound. Specifically, alkali metals, alkaline earth metals and rare earth metals are preferable, and lithium, cesium, magnesium, calcium, erbium, ytterbium and the like can be mentioned. Further, alkali metal oxides and alkaline earth metal oxides are preferable, and lithium oxide, calcium oxide, barium oxide and the like can be mentioned. Also, Lewis bases such as magnesium oxide can be used. Alternatively, an organic compound such as tetrathiafulvalene (abbreviation: TTF) can also be used.
なお、図1(D)に示す発光素子において、発光層113bから得られる光を増幅させる場合には、第2の電極102と、発光層113bとの光学距離が、発光層113bが呈する光の波長λの1/4未満となるように形成するのが好ましい。この場合、電子輸送層114bまたは電子注入層115bの膜厚を変えることにより、調整することができる。 In the light-emitting element illustrated in FIG. 1D, in the case of amplifying light obtained from the light-emitting layer 113b, the optical distance between the second electrode 102 and the light-emitting layer 113b is equal to that of light that the light-emitting layer 113b exhibits. Preferably, it is formed to be less than 1⁄4 of the wavelength λ. In this case, the thickness can be adjusted by changing the film thickness of the electron transport layer 114 b or the electron injection layer 115 b.
<電荷発生層>
図1(D)に示す発光素子において、電荷発生層104は、第1の電極(陽極)101と第2の電極(陰極)102との間に電圧を印加したときに、EL層103aに電子を注入し、EL層103bに正孔を注入する機能を有する。なお、電荷発生層104は、正孔輸送性材料に電子受容体(アクセプター)が添加された構成であっても、電子輸送性材料に電子供与体(ドナー)が添加された構成であってもよい。また、これらの両方の構成が積層されていても良い。なお、上述した材料を用いて電荷発生層104を形成することにより、EL層が積層された場合における駆動電圧の上昇を抑制することができる。
<Charge generation layer>
In the light-emitting element shown in FIG. 1D, when a voltage is applied between the first electrode (anode) 101 and the second electrode (cathode) 102, the charge generation layer 104 generates electrons in the EL layer 103a. And inject holes into the EL layer 103b. The charge generation layer 104 has a configuration in which an electron acceptor (acceptor) is added to a hole transport material, or a configuration in which an electron donor (donor) is added to an electron transport material. Good. Also, both of these configurations may be stacked. Note that by forming the charge generation layer 104 using the above-described material, an increase in driving voltage in the case where the EL layers are stacked can be suppressed.
電荷発生層104において、正孔輸送性材料に電子受容体が添加された構成とする場合、正孔輸送性材料としては、本実施の形態で示した材料を用いることができる。また、電子受容体としては、7,7,8,8−テトラシアノ−2,3,5,6−テトラフルオロキノジメタン(略称:F−TCNQ)、クロラニル等を挙げることができる。また元素周期表における第4族乃至第8族に属する金属の酸化物を挙げることができる。具体的には、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化モリブデン、酸化タングステン、酸化マンガン、酸化レニウムなどが挙げられる。 In the case where the charge generation layer 104 has a structure in which an electron acceptor is added to the hole transport material, the material described in this embodiment can be used as the hole transport material. In addition, examples of the electron acceptor include 7,7,8,8-tetracyano-2,3,5,6-tetrafluoroquinodimethane (abbreviation: F 4 -TCNQ), chloranil and the like. Further, oxides of metals belonging to Groups 4 to 8 of the periodic table can be given. Specifically, vanadium oxide, niobium oxide, tantalum oxide, chromium oxide, molybdenum oxide, tungsten oxide, manganese oxide, rhenium oxide and the like can be mentioned.
電荷発生層104において、電子輸送性材料に電子供与体が添加された構成とする場合、電子輸送性材料としては、本実施の形態で示した材料を用いることができる。また、電子供与体としては、アルカリ金属またはアルカリ土類金属または希土類金属または元素周期表における第2、第13族に属する金属およびその酸化物、炭酸塩を用いることができる。具体的には、リチウム(Li)、セシウム(Cs)、マグネシウム(Mg)、カルシウム(Ca)、イッテルビウム(Yb)、インジウム(In)、酸化リチウム、炭酸セシウムなどを用いることが好ましい。また、テトラチアナフタセンのような有機化合物を電子供与体として用いてもよい。 In the case where the charge generation layer 104 has a structure in which an electron donor is added to the electron transport material, the material described in this embodiment can be used as the electron transport material. As the electron donor, an alkali metal, an alkaline earth metal, a rare earth metal, a metal belonging to Groups 2 and 13 of the periodic table, or an oxide or carbonate thereof can be used. Specifically, lithium (Li), cesium (Cs), magnesium (Mg), calcium (Ca), ytterbium (Yb), indium (In), lithium oxide, cesium carbonate or the like is preferably used. In addition, an organic compound such as tetrathianaphthacene may be used as the electron donor.
<基板>
本実施の形態で示した発光素子は、様々な基板上に形成することができる。なお、基板の種類は、特定のものに限定されることはない。基板の一例としては、半導体基板(例えば単結晶基板又はシリコン基板)、SOI基板、ガラス基板、石英基板、プラスチック基板、金属基板、ステンレス・スチル基板、ステンレス・スチル・ホイルを有する基板、タングステン基板、タングステン・ホイルを有する基板、可撓性基板、貼り合わせフィルム、繊維状の材料を含む紙、又は基材フィルムなどが挙げられる。
<Board>
The light-emitting elements described in this embodiment can be formed over various substrates. In addition, the kind of board | substrate is not limited to a specific thing. Examples of the substrate include a semiconductor substrate (for example, a single crystal substrate or a silicon substrate), an SOI substrate, a glass substrate, a quartz substrate, a plastic substrate, a metal substrate, a stainless steel still substrate, a substrate having a stainless steel foil, a tungsten substrate, A substrate having a tungsten foil, a flexible substrate, a laminated film, a paper containing a fibrous material, or a base film may be mentioned.
なお、ガラス基板の材料の一例としては、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス、又はソーダライムガラスなどが挙げられる。また、可撓性基板、貼り合わせフィルム、基材フィルムなどの一例としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)に代表されるプラスチック、アクリル樹脂等の合成樹脂、ポリプロピレン、ポリエステル、ポリフッ化ビニル、ポリ塩化ビニル、ポリアミド、ポリイミド、アラミド樹脂、エポキシ樹脂、無機蒸着フィルム、又は紙類などが挙げられる。 In addition, barium borosilicate glass, alumino borosilicate glass, soda lime glass etc. are mentioned as an example of the material of a glass substrate. In addition, as an example of a flexible substrate, a laminated film, a base film, etc., plastics represented by polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyether sulfone (PES), acrylic resins, etc. Synthetic resins, polypropylene, polyester, polyvinyl fluoride, polyvinyl chloride, polyamide, polyimide, aramid resin, epoxy resin, inorganic vapor deposition film, papers, etc. may be mentioned.
なお、本実施の形態で示す発光素子の作製には、蒸着法などの真空プロセスや、スピンコート法やインクジェット法などの溶液プロセスを用いることができる。蒸着法を用いる場合には、スパッタ法、イオンプレーティング法、イオンビーム蒸着法、分子線蒸着法、真空蒸着法などの物理蒸着法(PVD法)や、化学蒸着法(CVD法)等を用いることができる。特に発光素子のEL層に含まれる機能層(正孔注入層(111、111a、111b)、正孔輸送層(112、112a、112b)、発光層(113、113a、113b、113c)、電子輸送層(114、114a、114b)、電子注入層(115、115a、115b))、および電荷発生層(104、104a、104b)については、蒸着法(真空蒸着法等)、塗布法(ディップコート法、ダイコート法、バーコート法、スピンコート法、スプレーコート法等)、印刷法(インクジェット法、スクリーン(孔版印刷)法、オフセット(平版印刷)法、フレキソ(凸版印刷)法、グラビア法、マイクロコンタクト法、ナノインプリント法等)などの方法により形成することができる。 Note that a vacuum process such as an evaporation method or a solution process such as a spin coating method or an inkjet method can be used for manufacturing the light-emitting element described in this embodiment. In the case of using vapor deposition, physical vapor deposition (PVD) such as sputtering, ion plating, ion beam deposition, molecular beam deposition, vacuum deposition, chemical vapor deposition (CVD) or the like is used. be able to. In particular, functional layers (hole injection layers (111, 111a, 111b), hole transport layers (112, 112a, 112b), light emitting layers (113, 113a, 113b, 113c), and electron transport included in the EL layer of the light emitting device) For the layer (114, 114a, 114b), the electron injection layer (115, 115a, 115b), and the charge generation layer (104, 104a, 104b), a vapor deposition method (vacuum vapor deposition method etc.), a coating method (dip coat method) , Die coating method, bar coating method, spin coating method, spray coating method, etc., printing method (ink jet method, screen (stencil printing) method, offset (planographic printing) method, flexo (letterpress printing) method, gravure method, micro contact It can form by methods, such as a method and a nanoimprint method.
なお、本実施の形態で示す発光素子のEL層(103、103a、103b)を構成する各機能層(正孔注入層(111、111a、111b)、正孔輸送層(112、112a、112b)、発光層(113、113a、113b、113c)、電子輸送層(114、114a、114b)、電子注入層(115、115a、115b))や電荷発生層(104、104a、104b)は、上述した材料に限られることはなく、それ以外の材料であっても各層の機能を満たせるものであれば組み合わせて用いることができる。一例としては、高分子化合物(オリゴマー、デンドリマー、ポリマー等)、中分子化合物(低分子と高分子の中間領域の化合物:分子量400~4000)、無機化合物(量子ドット材料等)等を用いることができる。また、量子ドット材料としては、コロイド状量子ドット材料、合金型量子ドット材料、コア・シェル型量子ドット材料、コア型量子ドット材料などを用いることができる。 Note that functional layers (hole injection layers (111, 111a, and 111b) and hole transport layers (112, 112a, and 112b) included in the EL layers (103, 103a, and 103b) of the light-emitting element described in this embodiment mode) , The light emitting layer (113, 113a, 113b, 113c), the electron transport layer (114, 114a, 114b), the electron injection layer (115, 115a, 115b)) and the charge generation layer (104, 104a, 104b) are described above. There is no limitation to the materials, and any other materials can be used in combination as long as they can satisfy the function of each layer. As an example, it is possible to use a high molecular compound (oligomer, dendrimer, polymer etc.), a medium molecular compound (compound of intermediate region of low molecule and high molecule: molecular weight 400 to 4000), inorganic compound (quantum dot material etc.) it can. In addition, as the quantum dot material, a colloidal quantum dot material, an alloy type quantum dot material, a core / shell type quantum dot material, a core type quantum dot material, or the like can be used.
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができるものとする。 The structure described in this embodiment can be used in appropriate combination with the structure described in any of the other embodiments.
(実施の形態3)
本実施の形態では、本発明の一態様である発光装置について説明する。なお、図2(A)に示す発光装置は、第1の基板201上のトランジスタ(FET)202と発光素子(203R、203G、203B、203W)が電気的に接続されてなるアクティブマトリクス型の発光装置であり、複数の発光素子(203R、203G、203B、203W)は、共通のEL層204を有し、また、各発光素子の発光色に応じて、各発光素子の電極間の光学距離が調整されたマイクロキャビティ構造を有する。また、EL層204から得られた発光が第2の基板205に形成されたカラーフィルタ(206R、206G、206B)を介して射出されるトップエミッション型の発光装置である。
Third Embodiment
In this embodiment mode, a light-emitting device which is one embodiment of the present invention will be described. Note that in the light-emitting device illustrated in FIG. 2A, active matrix light emission in which a transistor (FET) 202 on a first substrate 201 and a light-emitting element (203R, 203G, 203B, 203W) are electrically connected to each other The plurality of light emitting elements (203R, 203G, 203B, 203W) have a common EL layer 204, and the optical distance between the electrodes of each light emitting element is different according to the light emitting color of each light emitting element. It has a tuned microcavity structure. In addition, it is a top emission type light emitting device in which light emission obtained from the EL layer 204 is emitted through the color filters (206R, 206G, and 206B) formed on the second substrate 205.
図2(A)に示す発光装置は、第1の電極207を反射電極として機能するように形成する。また、第2の電極208を半透過・半反射電極として機能するように形成する。なお、第1の電極207および第2の電極208を形成する電極材料としては、他の実施形態の記載を参照し、適宜用いればよい。 The light-emitting device illustrated in FIG. 2A is formed to function as the first electrode 207 as a reflective electrode. In addition, the second electrode 208 is formed to function as a semi-transmissive and semi-reflective electrode. Note that an electrode material for forming the first electrode 207 and the second electrode 208 may be appropriately used with reference to the description of the other embodiments.
また、図2(A)において、例えば、発光素子203Rを赤色発光素子、発光素子203Gを緑色発光素子、発光素子203Bを青色発光素子、発光素子203Wを白色発光素子とする場合、図2(B)に示すように発光素子203Rは、第1の電極207と第2の電極208との間が光学距離200Rとなるように調整し、発光素子203Gは、第1の電極207と第2の電極208との間が光学距離200Gとなるように調整し、発光素子203Bは、第1の電極207と第2の電極208との間が光学距離200Bとなるように調整する。なお、図2(B)に示すように、発光素子203Rにおいて導電層210Rを第1の電極207に積層し、発光素子203Gにおいて導電層210Gを積層することにより、光学調整を行うことができる。 In FIG. 2A, for example, when the light emitting element 203R is a red light emitting element, the light emitting element 203G is a green light emitting element, the light emitting element 203B is a blue light emitting element, and the light emitting element 203W is a white light emitting element , The light emitting element 203R is adjusted so that the optical distance 200R is between the first electrode 207 and the second electrode 208, and the light emitting element 203G includes the first electrode 207 and the second electrode. The light distance between the light emitting element 203B and the second electrode 208 is adjusted to be an optical distance 200B. Note that as shown in FIG. 2B, optical adjustment can be performed by stacking the conductive layer 210R over the first electrode 207 in the light emitting element 203R and stacking the conductive layer 210G in the light emitting element 203G.
第2の基板205には、カラーフィルタ(206R、206G、206B)が形成されている。なお、カラーフィルタは、可視光のうち特定の波長域を通過させ、特定の波長域を阻止するフィルタである。従って、図2(A)に示すように、発光素子203Rと重なる位置に赤の波長域のみを通過させるカラーフィルタ206Rを設けることにより、発光素子203Rから赤色発光を得ることができる。また、発光素子203Gと重なる位置に緑の波長域のみを通過させるカラーフィルタ206Gを設けることにより、発光素子203Gから緑色発光を得ることができる。また、発光素子203Bと重なる位置に青の波長域のみを通過させるカラーフィルタ206Bを設けることにより、発光素子203Bから青色発光を得ることができる。但し、発光素子203Wは、カラーフィルタを設けることなく白色発光を得ることができる。なお、1種のカラーフィルタの端部には、黒色層(ブラックマトリックス)209が設けられていてもよい。さらに、カラーフィルタ(206R、206G、206B)や黒色層209は、透明な材料を用いたオーバーコート層で覆われていても良い。 On the second substrate 205, color filters (206R, 206G, and 206B) are formed. The color filter is a filter that passes a specific wavelength range of visible light and blocks the specific wavelength range. Therefore, as shown in FIG. 2A, red light emission can be obtained from the light emitting element 203R by providing the color filter 206R which passes only the red wavelength region at a position overlapping with the light emitting element 203R. Further, by providing the color filter 206G which passes only the green wavelength region at a position overlapping with the light emitting element 203G, green light emission can be obtained from the light emitting element 203G. Further, blue light emission can be obtained from the light emitting element 203B by providing the color filter 206B that allows only the blue wavelength range to pass through at a position overlapping with the light emitting element 203B. However, the light emitting element 203W can obtain white light emission without providing a color filter. A black layer (black matrix) 209 may be provided at an end of one type of color filter. Furthermore, the color filters (206R, 206G, 206B) and the black layer 209 may be covered with an overcoat layer using a transparent material.
図2(A)では、第2の基板205側に発光を取り出す構造(トップエミッション型)の発光装置を示したが、図2(C)に示すようにFET202が形成されている第1の基板201側に光を取り出す構造(ボトムエミッション型)の発光装置としても良い。なお、ボトムエミッション型の発光装置の場合には、第1の電極207を半透過・半反射電極として機能するように形成し、第2の電極208を反射電極として機能するように形成する。また、第1の基板201は、少なくとも透光性の基板を用いる。また、カラーフィルタ(206R’、206G’、206B’)は、図2(C)に示すように発光素子(203R、203G、203B)よりも第1の基板201側に設ければよい。 Although FIG. 2A shows a light emitting device having a structure (top emission type) for emitting light to the second substrate 205 side, a first substrate in which an FET 202 is formed as shown in FIG. 2C. The light-emitting device may have a structure (bottom emission type) in which light is extracted to the side 201. Note that in the case of a bottom emission type light emitting device, the first electrode 207 is formed to function as a semi-transmissive and semi-reflective electrode, and the second electrode 208 is formed to function as a reflective electrode. In addition, the first substrate 201 uses at least a light-transmitting substrate. The color filters (206R ′, 206G ′, and 206B ′) may be provided closer to the first substrate 201 than the light-emitting elements (203R, 203G, and 203B) as illustrated in FIG. 2C.
また、図2(A)において、発光素子が、赤色発光素子、緑色発光素子、青色発光素子、白色発光素子の場合について示したが、本発明の一態様である発光素子はその構成に限られることはなく、黄色の発光素子や橙色の発光素子を有する構成であっても良い。なお、これらの発光素子を作製するためにEL層(発光層、正孔注入層、正孔輸送層、電子輸送層、電子注入層、電荷発生層など)に用いる材料としては、他の実施の形態の記載を参照し、適宜用いればよい。なお、その場合には、また、発光素子の発光色に応じてカラーフィルタを適宜選択する必要がある。 Although FIG. 2A shows the case where the light-emitting element is a red light-emitting element, a green light-emitting element, a blue light-emitting element, or a white light-emitting element, the light-emitting element of one embodiment of the present invention is limited to that structure. Alternatively, a yellow light emitting element or an orange light emitting element may be provided. In addition, as materials used for an EL layer (a light emitting layer, a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, a charge generation layer, etc.) for producing these light emitting elements, other embodiments are It may be used as appropriate with reference to the description of the embodiment. In that case, it is also necessary to appropriately select a color filter in accordance with the light emission color of the light emitting element.
以上のような構成とすることにより、複数の発光色を呈する発光素子を備えた発光装置を得ることができる。 By adopting the above-described configuration, it is possible to obtain a light emitting device provided with a light emitting element exhibiting a plurality of light emitting colors.
なお、本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができるものとする。 Note that the structure described in this embodiment can be combined as appropriate with any of the structures described in the other embodiments.
(実施の形態4)
本実施の形態では、本発明の一態様である発光装置について説明する。
Embodiment 4
In this embodiment mode, a light-emitting device which is one embodiment of the present invention will be described.
本発明の一態様である発光素子の素子構成を適用することで、アクティブマトリクス型の発光装置やパッシブマトリクス型の発光装置を作製することができる。なお、アクティブマトリクス型の発光装置は、発光素子とトランジスタ(FET)とを組み合わせた構成を有する。従って、パッシブマトリクス型の発光装置、アクティブマトリクス型の発光装置は、いずれも本発明の一態様に含まれる。なお、本実施の形態に示す発光装置には、他の実施の形態で説明した発光素子を適用することが可能である。 By applying the element configuration of the light-emitting element which is one embodiment of the present invention, an active matrix light-emitting device or a passive matrix light-emitting device can be manufactured. Note that an active matrix light-emitting device has a structure in which a light-emitting element and a transistor (FET) are combined. Therefore, both passive matrix light-emitting devices and active matrix light-emitting devices are included in one embodiment of the present invention. Note that the light-emitting element described in any of the other embodiments can be applied to the light-emitting device described in this embodiment.
本実施の形態では、アクティブマトリクス型の発光装置について図3を用いて説明する。 In this embodiment mode, an active matrix light-emitting device is described with reference to FIG.
なお、図3(A)は発光装置21を示す上面図であり、図3(B)は図3(A)を鎖線A−A’で切断した断面図である。アクティブマトリクス型の発光装置は、第1の基板301上に設けられた画素部302、駆動回路部(ソース線駆動回路)303と、駆動回路部(ゲート線駆動回路)(304a、304b)を有する。画素部302および駆動回路部(303、304a、304b)は、シール材305によって、第1の基板301と第2の基板306との間に封止される。 3A is a top view showing the light emitting device 21, and FIG. 3B is a cross-sectional view of FIG. 3A taken along a dashed line A-A '. The active matrix light-emitting device includes a pixel portion 302, a driver circuit portion (source line driver circuit) 303, and driver circuit portions (gate line driver circuits) (304a and 304b) provided over a first substrate 301. . The pixel portion 302 and the driver circuit portions (303, 304 a, 304 b) are sealed between the first substrate 301 and the second substrate 306 by the sealant 305.
また、第1の基板301上には、引き回し配線307が設けられる。引き回し配線307は、外部入力端子であるFPC308と電気的に接続される。なお、FPC308は、駆動回路部(303、304a、304b)に外部からの信号(例えば、ビデオ信号、クロック信号、スタート信号、リセット信号等)や電位を伝達する。また、FPC308にはプリント配線基板(PWB)が取り付けられていても良い。なお、これらFPCやPWBが取り付けられた状態は、発光装置に含まれる。 In addition, over the first substrate 301, a lead wiring 307 is provided. The lead wiring 307 is electrically connected to the FPC 308 which is an external input terminal. Note that the FPC 308 transmits signals (eg, video signals, clock signals, start signals, reset signals, and the like) and potentials from the outside to the driver circuit units (303, 304a, and 304b). In addition, a printed wiring board (PWB) may be attached to the FPC 308. Note that the state in which the FPC and the PWB are attached is included in the light emitting device.
次に、図3(B)に断面構造を示す。 Next, a cross-sectional structure is shown in FIG.
画素部302は、FET(スイッチング用FET)311、FET(電流制御用FET)312、およびFET312と電気的に接続された第1の電極313を有する複数の画素により形成される。なお、各画素が有するFETの数は、特に限定されることはなく、必要に応じて適宜設けることができる。 The pixel portion 302 is formed of a plurality of pixels including a FET (switching FET) 311, an FET (current control FET) 312, and a first electrode 313 electrically connected to the FET 312. Note that the number of FETs included in each pixel is not particularly limited, and can be appropriately set as needed.
FET309、310、311、312は、特に限定されることはなく、例えば、スタガ型や逆スタガ型などのトランジスタを適用することができる。また、トップゲート型やボトムゲート型などのトランジスタ構造であってもよい。 The FETs 309, 310, 311, and 312 are not particularly limited, and, for example, transistors such as a staggered transistor or an inverted staggered transistor can be applied. In addition, a top gate type or bottom gate type transistor structure may be employed.
なお、これらのFET309、310、311、312に用いることのできる半導体の結晶性については特に限定されず、非晶質半導体、結晶性を有する半導体(微結晶半導体、多結晶半導体、単結晶半導体、又は一部に結晶領域を有する半導体)のいずれを用いてもよい。なお、結晶性を有する半導体を用いることで、トランジスタ特性の劣化を抑制できるため好ましい。 The crystallinity of the semiconductor that can be used for these FETs 309, 310, 311, and 312 is not particularly limited, and an amorphous semiconductor, a semiconductor having crystallinity (a microcrystalline semiconductor, a polycrystalline semiconductor, a single crystal semiconductor, Alternatively, any of semiconductors each having a crystal region in part may be used. Note that using a semiconductor having crystallinity is preferable because deterioration of transistor characteristics can be suppressed.
また、これらの半導体としては、例えば、第14族の元素、化合物半導体、酸化物半導体、有機半導体などを用いることができる。代表的には、シリコンを含む半導体、ガリウムヒ素を含む半導体、インジウムを含む酸化物半導体などを適用することができる。 Moreover, as these semiconductors, for example, an element of Group 14, a compound semiconductor, an oxide semiconductor, an organic semiconductor, or the like can be used. Typically, a semiconductor containing silicon, a semiconductor containing gallium arsenide, an oxide semiconductor containing indium, or the like can be used.
駆動回路部303は、FET309とFET310とを有する。なお、FET309とFET310は、単極性(N型またはP型のいずれか一方のみ)のトランジスタを含む回路で形成されても良いし、N型のトランジスタとP型のトランジスタを含むCMOS回路で形成されても良い。また、外部に駆動回路を有する構成としても良い。 The driver circuit portion 303 includes an FET 309 and an FET 310. Note that the FET 309 and the FET 310 may be formed by a circuit including a unipolar (N-type or P-type) transistor, or may be formed by a CMOS circuit including an N-type transistor and a P-type transistor. It is good. In addition, a driver circuit may be provided outside.
第1の電極313の端部は、絶縁物314により覆われている。なお、絶縁物314には、ネガ型の感光性樹脂や、ポジ型の感光性樹脂(アクリル樹脂)などの有機化合物や、酸化シリコン、酸化窒化シリコン、窒化シリコン等の無機化合物を用いることができる。絶縁物314の上端部または下端部には、曲率を有する曲面を有するのが好ましい。これにより、絶縁物314の上層に形成される膜の被覆性を良好なものとすることができる。 The end of the first electrode 313 is covered with an insulator 314. Note that for the insulator 314, an organic compound such as a negative photosensitive resin or a positive photosensitive resin (acrylic resin), or an inorganic compound such as silicon oxide, silicon oxynitride, or silicon nitride can be used. . The insulator 314 preferably has a curved surface having a curvature at the upper end or the lower end. Thereby, the coverage of the film formed in the upper layer of the insulator 314 can be made favorable.
第1の電極313上には、EL層315及び第2の電極316が積層形成される。EL層315は、発光層、正孔注入層、正孔輸送層、電子輸送層、電子注入層、電荷発生層等を有する。 An EL layer 315 and a second electrode 316 are stacked over the first electrode 313. The EL layer 315 includes a light emitting layer, a hole injecting layer, a hole transporting layer, an electron transporting layer, an electron injecting layer, a charge generation layer, and the like.
なお、本実施の形態で示す発光素子317の構成は、他の実施の形態で説明した構成や材料を適用することができる。なお、ここでは図示しないが、第2の電極316は外部入力端子であるFPC308に電気的に接続されている。 Note that the structure and materials described in the other embodiments can be applied to the structure of the light-emitting element 317 described in this embodiment. Although not shown here, the second electrode 316 is electrically connected to the FPC 308 which is an external input terminal.
また、図3(B)に示す断面図では発光素子317を1つのみ図示しているが、画素部302において、複数の発光素子がマトリクス状に配置されているものとする。画素部302には、3種類(R、G、B)の発光が得られる発光素子をそれぞれ選択的に形成し、フルカラー表示可能な発光装置を形成することができる。また、3種類(R、G、B)の発光が得られる発光素子の他に、例えば、ホワイト(W)、イエロー(Y)、マゼンタ(M)、シアン(C)等の発光が得られる発光素子を形成してもよい。例えば、3種類(R、G、B)の発光が得られる発光素子に上述の数種類の発光が得られる発光素子を追加することにより、色純度の向上、消費電力の低減等の効果を得ることができる。また、カラーフィルタと組み合わせることによってフルカラー表示可能な発光装置としてもよい。なお、カラーフィルタの種類としては、赤(R)、緑(G)、青(B)、シアン(C)、マゼンタ(M)、イエロー(Y)等を用いることができる。 Although only one light emitting element 317 is illustrated in the cross-sectional view in FIG. 3B, a plurality of light emitting elements are arranged in a matrix in the pixel portion 302. Light-emitting elements which can emit light of three types (R, G, and B) can be selectively formed in the pixel portion 302, so that a light-emitting device capable of full-color display can be formed. In addition to light emitting elements that can obtain three types (R, G, B) of light emissions, light emissions such as white (W), yellow (Y), magenta (M), cyan (C), etc. An element may be formed. For example, by adding light emitting elements that can obtain the above-described several types of light emission to light emitting elements that can obtain three types of light emission (R, G, B), effects such as improvement in color purity and reduction in power consumption can be obtained. Can. Alternatively, a light emitting device capable of full color display may be provided by combining with a color filter. In addition, as a kind of color filter, red (R), green (G), blue (B), cyan (C), magenta (M), yellow (Y) etc. can be used.
第1の基板301上のFET(309、310、311、312)や、発光素子317は、第2の基板306と第1の基板301とをシール材305により貼り合わせることにより、第1の基板301、第2の基板306、およびシール材305で囲まれた空間318に備えられた構造を有する。なお、空間318には、不活性気体(窒素やアルゴン等)や有機物(シール材305を含む)で充填されていてもよい。 The FETs (309, 310, 311, and 312) and the light emitting element 317 on the first substrate 301 are attached to each other with the sealant 305 so that the second substrate 306 and the first substrate 301 are bonded to each other. A structure provided in a space 318 surrounded by the second substrate 301 and the sealing material 305 is provided. The space 318 may be filled with an inert gas (such as nitrogen or argon) or an organic substance (including the sealant 305).
シール材305には、エポキシ系樹脂やガラスフリットを用いることができる。なお、シール材305には、できるだけ水分や酸素を透過しない材料を用いることが好ましい。また、第2の基板306は、第1の基板301に用いることができるものを同様に用いることができる。従って、他の実施の形態で説明した様々な基板を適宜用いることができるものとする。基板としてガラス基板や石英基板の他、FRP(Fiber−Reinforced Plastics)、PVF(ポリビニルフロライド)、ポリエステルまたはアクリル樹脂等からなるプラスチック基板を用いることができる。シール材としてガラスフリットを用いる場合には、接着性の観点から第1の基板301及び第2の基板306はガラス基板であることが好ましい。 For the sealing material 305, an epoxy resin or glass frit can be used. Note that for the sealing material 305, it is preferable to use a material that does not transmit moisture or oxygen as much as possible. In addition, as the second substrate 306, a substrate which can be used for the first substrate 301 can be used similarly. Therefore, the various substrates described in the other embodiments can be used as appropriate. As the substrate, in addition to a glass substrate and a quartz substrate, a plastic substrate made of FRP (Fiber-Reinforced Plastics), PVF (polyvinyl fluoride), polyester, an acrylic resin, or the like can be used. When a glass frit is used as the sealing material, the first substrate 301 and the second substrate 306 are preferably glass substrates from the viewpoint of adhesion.
以上のようにして、アクティブマトリクス型の発光装置を得ることができる。 As described above, an active matrix light-emitting device can be obtained.
また、アクティブマトリクス型の発光装置を可撓性基板に形成する場合、可撓性基板上にFETと発光素子とを直接形成しても良いが、剥離層を有する別の基板にFETと発光素子を形成した後、熱、力、レーザ照射などを与えることによりFETと発光素子を剥離層で剥離し、さらに可撓性基板に転載して作製しても良い。なお、剥離層としては、例えば、タングステン膜と酸化シリコン膜との無機膜の積層や、ポリイミド等の有機樹脂膜等を用いることができる。また可撓性基板としては、トランジスタを形成することが可能な基板に加え、紙基板、セロファン基板、アラミドフィルム基板、ポリイミドフィルム基板、布基板(天然繊維(絹、綿、麻)、合成繊維(ナイロン、ポリウレタン、ポリエステル)若しくは再生繊維(アセテート、キュプラ、レーヨン、再生ポリエステル)などを含む)、皮革基板、又はゴム基板などが挙げられる。これらの基板を用いることにより、耐久性や耐熱性に優れ、軽量化および薄型化を図ることができる。 In the case of forming an active matrix light-emitting device over a flexible substrate, the FET and the light-emitting element may be formed directly on the flexible substrate, but the FET and the light-emitting element may be formed over another substrate having a peeling layer. After that, the FET and the light emitting element may be separated by a peeling layer by applying heat, force, laser irradiation or the like, and may be further transferred to a flexible substrate. Note that as the peeling layer, for example, a lamination of an inorganic film of a tungsten film and a silicon oxide film, an organic resin film such as polyimide, or the like can be used. As a flexible substrate, in addition to a substrate capable of forming a transistor, a paper substrate, a cellophane substrate, an aramid film substrate, a polyimide film substrate, a cloth substrate (natural fiber (silk, cotton, linen), synthetic fiber ( Examples include nylon, polyurethane, polyester) or regenerated fibers (including acetate, cupra, rayon, regenerated polyester), leather substrates, rubber substrates and the like. By using such a substrate, it is possible to achieve excellent durability and heat resistance, and to achieve weight reduction and thickness reduction.
なお、本実施の形態に示す構成は、他の実施の形態に示した構成を適宜組み合わせて用いることができる。 Note that the structure described in this embodiment can be combined with any of the structures described in the other embodiments as appropriate.
(実施の形態5)
本実施の形態では、本発明の一態様である発光素子、本発明の一態様である発光素子を有する発光装置を適用して完成させた様々な電子機器や自動車の一例について、説明する。なお、発光装置は、本実施の形態で説明する電子機器において、主に表示部に適用することができる。
Fifth Embodiment
In this embodiment, an example of a light-emitting element which is one embodiment of the present invention and various electronic devices and vehicles which are completed by applying a light-emitting device including the light-emitting element which is one embodiment of the present invention will be described. Note that the light-emitting device can be mainly applied to a display portion in the electronic device described in this embodiment.
図4(A)乃至図4(E)に示す電子機器は、筐体7000、表示部7001、スピーカ7003、LEDランプ7004、操作キー7005(電源スイッチ、又は操作スイッチを含む)、接続端子7006、センサ7007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい、又は赤外線を測定する機能を含むもの)、マイクロフォン7008、等を有することができる。 The electronic devices illustrated in FIGS. 4A to 4E include a housing 7000, a display portion 7001, a speaker 7003, an LED lamp 7004, an operation key 7005 (including a power switch or an operation switch), a connection terminal 7006, Sensor 7007 (force, displacement, position, velocity, acceleration, angular velocity, rotation number, distance, light, liquid, magnetism, temperature, chemical substance, voice, time, hardness, electric field, current, voltage, electric power, radiation, flow rate, humidity (Including the function of measuring inclination, vibration, odor, or infrared), a microphone 7008, and the like.
図4(A)はモバイルコンピュータであり、上述したものの他に、スイッチ7009、赤外線ポート7010、等を有することができる。 FIG. 4A illustrates a mobile computer, which can include a switch 7009, an infrared port 7010, and the like in addition to the above components.
図4(B)は記録媒体を備えた携帯型の画像再生装置(たとえば、DVD再生装置)であり、上述したものの他に、第2表示部7002、記録媒体読込部7011、等を有することができる。 FIG. 4B shows a portable image reproducing apparatus (for example, a DVD reproducing apparatus) provided with a recording medium, which may have a second display portion 7002, a recording medium reading portion 7011, and the like in addition to those described above. it can.
図4(C)はテレビ受像機能付きデジタルカメラであり、上述したものの他に、アンテナ7014、シャッターボタン7015、受像部7016、等を有することができる。 FIG. 4C illustrates a digital camera with a television receiving function, which can include an antenna 7014, a shutter button 7015, an image receiving unit 7016, and the like in addition to the above components.
図4(D)は携帯情報端末である。携帯情報端末は、表示部7001の3面以上に情報を表示する機能を有する。ここでは、情報7052、情報7053、情報7054がそれぞれ異なる面に表示されている例を示す。例えば使用者は、洋服の胸ポケットに携帯情報端末を収納した状態で、携帯情報端末の上方から観察できる位置に表示された情報7053を確認することもできる。使用者は、携帯情報端末をポケットから取り出すことなく表示を確認し、例えば電話を受けるか否かを判断できる。 FIG. 4D shows a portable information terminal. The portable information terminal has a function of displaying information on three or more sides of the display portion 7001. Here, an example is shown in which the information 7052, the information 7053, and the information 7054 are displayed on different sides. For example, the user can check the information 7053 displayed at a position where it can be observed from the upper side of the portable information terminal while the portable information terminal is stored in the chest pocket of the clothes. The user can confirm the display without taking out the portable information terminal from the pocket, and can determine, for example, whether or not to receive a call.
図4(E)は携帯情報端末(スマートフォンを含む)であり、筐体7000に、表示部7001、操作キー7005、等を有することができる。なお、携帯情報端末は、スピーカ7003、接続端子7006、センサ7007等を設けてもよい。また、携帯情報端末は、文字や画像情報をその複数の面に表示することができる。ここでは3つのアイコン7050を表示した例を示している。また、破線の矩形で示す情報7051を表示部7001の他の面に表示することもできる。情報7051の一例としては、電子メール、SNS、電話などの着信の通知、電子メールやSNSなどの題名、送信者名、日時、時刻、バッテリーの残量、アンテナ受信の強度などがある。または、情報7051が表示されている位置にはアイコン7050などを表示してもよい。 FIG. 4E illustrates a portable information terminal (including a smartphone), which can include the display portion 7001, an operation key 7005, and the like in the housing 7000. Note that the portable information terminal may be provided with a speaker 7003, a connection terminal 7006, a sensor 7007, and the like. In addition, the portable information terminal can display text and image information on its multiple faces. Here, an example in which three icons 7050 are displayed is shown. Further, information 7051 indicated by a dashed rectangle can be displayed on another surface of the display portion 7001. Examples of the information 7051 include notification of arrival of e-mail, SNS, telephone etc., title of e-mail or SNS, sender's name, date, time, remaining amount of battery, strength of antenna reception, etc. Alternatively, an icon 7050 or the like may be displayed at the position where the information 7051 is displayed.
図4(F)は、大型のテレビジョン装置(テレビ、又はテレビジョン受信機ともいう)であり、筐体7000、表示部7001、等を有することができる。また、ここでは、スタンド7018により筐体7000を支持した構成を示している。また、テレビジョン装置の操作は、別体のリモコン操作機7111、等により行うことができる。なお、表示部7001にタッチセンサを備えていてもよく、指等で表示部7001に触れることで操作してもよい。リモコン操作機7111は、当該リモコン操作機7111から出力する情報を表示する表示部を有していてもよい。リモコン操作機7111が備える操作キーまたはタッチパネルにより、チャンネル及び音量の操作を行うことができ、表示部7001に表示される画像を操作することができる。 FIG. 4F illustrates a large television set (also referred to as a television or a television receiver), which can include the housing 7000, the display portion 7001, and the like. Further, here, a structure in which the housing 7000 is supported by the stand 7018 is shown. In addition, the television set can be operated by a separate remote control 7111 or the like. Note that the display portion 7001 may be provided with a touch sensor, or may be operated by touching the display portion 7001 with a finger or the like. The remote controller 7111 may have a display unit for displaying information output from the remote controller 7111. Channels and volume can be controlled with an operation key or a touch panel included in the remote controller 7111, and an image displayed on the display portion 7001 can be manipulated.
図4(A)乃至図4(F)に示す電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付又は時刻などを表示する機能、様々なソフトウエア(プログラム)によって処理を制御する機能、無線通信機能、無線通信機能を用いて様々なコンピュータネットワークに接続する機能、無線通信機能を用いて様々なデータの送信又は受信を行う機能、記録媒体に記録されているプログラム又はデータを読み出して表示部に表示する機能、等を有することができる。さらに、複数の表示部を有する電子機器においては、一つの表示部を主として画像情報を表示し、別の一つの表示部を主として文字情報を表示する機能、または、複数の表示部に視差を考慮した画像を表示することで立体的な画像を表示する機能、等を有することができる。さらに、受像部を有する電子機器においては、静止画を撮影する機能、動画を撮影する機能、撮影した画像を自動または手動で補正する機能、撮影した画像を記録媒体(外部又はカメラに内蔵)に保存する機能、撮影した画像を表示部に表示する機能、等を有することができる。なお、図4(A)乃至図4(F)に示す電子機器が有することのできる機能はこれらに限定されず、様々な機能を有することができる。 The electronic devices illustrated in FIGS. 4A to 4F can have various functions. For example, a function to display various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a calendar, a function to display date or time, etc., a function to control processing by various software (programs) Wireless communication function, function to connect to various computer networks using wireless communication function, function to transmit or receive various data using wireless communication function, read out a program or data recorded in a recording medium A function to display on the display portion can be provided. Furthermore, in an electronic device having a plurality of display units, the function of displaying image information mainly on one display unit and displaying character information mainly on another display unit or considering parallax in a plurality of display units It is possible to have a function of displaying a three-dimensional image and the like by displaying the captured image. Furthermore, in an electronic device having an image receiving unit, the function of capturing a still image, the function of capturing a moving image, the function of automatically or manually correcting the captured image, the captured image in a recording medium (externally or built in a camera) A function to save, a function to display a captured image on a display portion, and the like can be provided. Note that the electronic devices illustrated in FIGS. 4A to 4F can have various functions without limitation to the above.
図4(G)は、腕時計型の携帯情報端末であり、例えばスマートウォッチとして用いることができる。この腕時計型の携帯情報端末は、筐体7000、表示部7001、操作用ボタン7022、7023、接続端子7024、バンド7025、マイクロフォン7026、センサ7029、スピーカ7030等を有している。表示部7001は、表示面が湾曲しており、湾曲した表示面に沿って表示を行うことができる。また、この携帯情報端末は、例えば無線通信可能なヘッドセットとの相互通信によりハンズフリーでの通話が可能である。なお、接続端子7024により、他の情報端末と相互にデータ伝送を行うことや、充電を行うこともできる。充電動作は無線給電により行うこともできる。 FIG. 4G illustrates a watch-type portable information terminal, which can be used, for example, as a smart watch. This wristwatch-type portable information terminal includes a housing 7000, a display portion 7001, operation buttons 7022 and 7023, a connection terminal 7024, a band 7025, a microphone 7026, a sensor 7029, a speaker 7030, and the like. The display portion 7001 has a curved display surface and can perform display along the curved display surface. In addition, this portable information terminal can perform hands-free communication by, for example, mutual communication with a headset capable of wireless communication. Note that data can be transmitted to another information terminal with each other and charging can be performed by the connection terminal 7024. The charging operation can also be performed by wireless power feeding.
ベゼル部分を兼ねる筐体7000に搭載された表示部7001は、非矩形状の表示領域を有している。表示部7001は、時刻を表すアイコン、その他のアイコン等を表示することができる。また、表示部7001は、タッチセンサ(入力装置)を搭載したタッチパネル(入出力装置)であってもよい。 The display portion 7001 mounted in a housing 7000 which also serves as a bezel portion has a non-rectangular display area. The display unit 7001 can display an icon indicating time, another icon, and the like. Further, the display unit 7001 may be a touch panel (input / output device) on which a touch sensor (input device) is mounted.
なお、図4(G)に示すスマートウォッチは、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付又は時刻などを表示する機能、様々なソフトウエア(プログラム)によって処理を制御する機能、無線通信機能、無線通信機能を用いて様々なコンピュータネットワークに接続する機能、無線通信機能を用いて様々なデータの送信又は受信を行う機能、記録媒体に記録されているプログラム又はデータを読み出して表示部に表示する機能、等を有することができる。 Note that the smart watch illustrated in FIG. 4G can have various functions. For example, a function to display various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a calendar, a function to display date or time, etc., a function to control processing by various software (programs) Wireless communication function, function to connect to various computer networks using wireless communication function, function to transmit or receive various data using wireless communication function, read out a program or data recorded in a recording medium A function to display on the display portion can be provided.
また、筐体7000の内部に、スピーカ、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい又は赤外線を測定する機能を含むもの)、マイクロフォン等を有することができる。 Also, inside the housing 7000, a speaker, a sensor (force, displacement, position, velocity, acceleration, angular velocity, rotation number, distance, light, liquid, magnetism, temperature, chemical substance, voice, time, hardness, electric field, current Voltage, power, radiation, flow rate, humidity, inclination, vibration, odor or infrared (including the function of measuring infrared), a microphone, and the like.
なお、本発明の一態様である発光装置および本発明の一態様である発光素子を有する表示装置は、本実施の形態に示す電子機器の各表示部に用いることができ、長寿命な電子機器を実現できる。 Note that the light-emitting device which is one embodiment of the present invention and the display device including the light-emitting element which is one embodiment of the present invention can be used for each display portion of the electronic device described in this embodiment and has long lifetime. Can be realized.
また、発光装置を適用した電子機器として、図5(A)乃至(C)に示すような折りたたみ可能な携帯情報端末が挙げられる。図5(A)には、展開した状態の携帯情報端末9310を示す。また、図5(B)には、展開した状態又は折りたたんだ状態の一方から他方に変化する途中の状態の携帯情報端末9310を示す。さらに、図5(C)には、折りたたんだ状態の携帯情報端末9310を示す。携帯情報端末9310は、折りたたんだ状態では可搬性に優れ、展開した状態では、継ぎ目のない広い表示領域により表示の一覧性に優れる。 Further, as an electronic device to which the light emitting device is applied, a foldable portable information terminal as shown in FIGS. 5A to 5C can be given. FIG. 5A shows a portable information terminal 9310 in a developed state. FIG. 5B shows the portable information terminal 9310 in the middle of changing from one of the expanded state or the folded state to the other. Further, FIG. 5C shows a portable information terminal 9310 in a folded state. The portable information terminal 9310 is excellent in portability in the folded state, and in the expanded state, is excellent in viewability of display due to a wide seamless display area.
表示部9311はヒンジ9313によって連結された3つの筐体9315に支持されている。なお、表示部9311は、タッチセンサ(入力装置)を搭載したタッチパネル(入出力装置)であってもよい。また、表示部9311は、ヒンジ9313を介して2つの筐体9315間を屈曲させることにより、携帯情報端末9310を展開した状態から折りたたんだ状態に可逆的に変形させることができる。なお、本発明の一態様の発光装置は、表示部9311に用いることができる。また、長寿命な電子機器を実現できる。表示部9311における表示領域9312は折りたたんだ状態の携帯情報端末9310の側面に位置する表示領域である。表示領域9312には、情報アイコンや使用頻度の高いアプリやプログラムのショートカットなどを表示させることができ、情報の確認やアプリなどの起動をスムーズに行うことができる。 The display portion 9311 is supported by three housings 9315 connected by hinges 9313. Note that the display portion 9311 may be a touch panel (input / output device) on which a touch sensor (input device) is mounted. In addition, the display portion 9311 can be reversibly deformed into a folded state from the expanded state by bending the space between the two housings 9315 through the hinges 9313. Note that the light-emitting device of one embodiment of the present invention can be used for the display portion 9311. In addition, a long-life electronic device can be realized. A display area 9312 in the display portion 9311 is a display area located on the side surface of the portable information terminal 9310 in a folded state. An information icon, a frequently used application, a shortcut of a program, and the like can be displayed in the display area 9312, and information confirmation and activation of the application and the like can be performed smoothly.
また、発光装置を適用した自動車について、図6(A)(B)に示す。すなわち、発光装置を、自動車と一体にして設けることができる。具体的には、図6(A)に示す自動車の外側のライト5101(車体後部も含む)、タイヤのホイール5102、ドア5103の一部または全体などに適用することができる。また、図6(B)に示す自動車の内側の表示部5104、ハンドル5105、シフトレバー5106、座席シート5107、インナーリアビューミラー5108等に適用することができる。その他、ガラス窓の一部に適用してもよい。 6A and 6B show an automobile to which the light emitting device is applied. That is, the light emitting device can be provided integrally with the automobile. Specifically, the present invention can be applied to the light 5101 (including the rear of the vehicle body) outside the automobile shown in FIG. 6A, the wheel 5102 of the tire, part or all of the door 5103, and the like. Further, the present invention can be applied to the display 5104, the handle 5105, the shift lever 5106, the seat 5107, the inner rear view mirror 5108, and the like inside the automobile shown in FIG. 6B. In addition, you may apply to a part of glass window.
以上のようにして、本発明の一態様である発光装置や表示装置を適用した電子機器や自動車を得ることができる。なお、その場合には、長寿命な電子機器を実現できる。なお、適用できる電子機器や自動車は、本実施の形態に示したものに限らず、あらゆる分野において適用することが可能である。 As described above, an electronic device or a car to which the light-emitting device or the display device which is one embodiment of the present invention is applied can be obtained. In that case, a long-life electronic device can be realized. Note that applicable electronic devices and vehicles are not limited to those described in this embodiment, and can be applied in any field.
なお、本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用いることができる。 Note that the structure described in this embodiment can be combined as appropriate with any of the structures described in the other embodiments.
(実施の形態6)
本実施の形態では、本発明の一態様である発光装置、またはその一部である発光素子を適用して作製される照明装置の構成について図7を用いて説明する。
Sixth Embodiment
In this embodiment, a structure of a lighting device manufactured using the light-emitting device which is one embodiment of the present invention or a light-emitting element which is a part of the light-emitting device is described with reference to FIG.
図7(A)、(B)は、照明装置の断面図の一例を示す。なお、図7(A)は基板側に光を取り出すボトムエミッション型の照明装置であり、図7(B)は、封止基板側に光を取り出すトップエミッション型の照明装置である。 7A and 7B show an example of a cross-sectional view of the lighting device. 7A shows a bottom emission type lighting device which extracts light to the substrate side, and FIG. 7B shows a top emission type lighting device which extracts light to the sealing substrate side.
図7(A)に示す照明装置4000は、基板4001上に発光素子4002を有する。また、基板4001の外側に凹凸を有する基板4003を有する。発光素子4002は、第1の電極4004と、EL層4005と、第2の電極4006を有する。 The lighting device 4000 illustrated in FIG. 7A includes the light emitting element 4002 over the substrate 4001. In addition, a substrate 4003 having unevenness is provided outside the substrate 4001. The light-emitting element 4002 includes a first electrode 4004, an EL layer 4005, and a second electrode 4006.
第1の電極4004は、電極4007と電気的に接続され、第2の電極4006は電極4008と電気的に接続される。また、第1の電極4004と電気的に接続される補助配線4009を設けてもよい。なお、補助配線4009上には、絶縁層4010が形成されている。 The first electrode 4004 is electrically connected to the electrode 4007, and the second electrode 4006 is electrically connected to the electrode 4008. In addition, an auxiliary wiring 4009 electrically connected to the first electrode 4004 may be provided. Note that an insulating layer 4010 is formed over the auxiliary wiring 4009.
また、基板4001と封止基板4011は、シール材4012で接着されている。また、封止基板4011と発光素子4002の間には、乾燥剤4013が設けられていることが好ましい。なお、基板4003は、図7(A)のような凹凸を有するため、発光素子4002で生じた光の取り出し効率を向上させることができる。 Further, the substrate 4001 and the sealing substrate 4011 are attached to each other by a sealing material 4012. In addition, a desiccant 4013 is preferably provided between the sealing substrate 4011 and the light emitting element 4002. Note that since the substrate 4003 has unevenness as illustrated in FIG. 7A, the light extraction efficiency of the light-emitting element 4002 can be improved.
図7(B)の照明装置4200は、基板4201上に発光素子4202を有する。発光素子4202は第1の電極4204と、EL層4205と、第2の電極4206とを有する。 The lighting device 4200 in FIG. 7B includes a light emitting element 4202 over a substrate 4201. The light emitting element 4202 has a first electrode 4204, an EL layer 4205, and a second electrode 4206.
第1の電極4204は、電極4207と電気的に接続され、第2の電極4206は電極4208と電気的に接続される。また第2の電極4206と電気的に接続される補助配線4209を設けてもよい。また、補助配線4209の下部に、絶縁層4210を設けてもよい。 The first electrode 4204 is electrically connected to the electrode 4207, and the second electrode 4206 is electrically connected to the electrode 4208. In addition, an auxiliary wiring 4209 electrically connected to the second electrode 4206 may be provided. In addition, an insulating layer 4210 may be provided below the auxiliary wiring 4209.
基板4201と凹凸のある封止基板4211は、シール材4212で接着されている。また、封止基板4211と発光素子4202の間にバリア膜4213および平坦化膜4214を設けてもよい。なお、封止基板4211は、図7(B)のような凹凸を有するため、発光素子4202で生じた光の取り出し効率を向上させることができる。 The substrate 4201 and the sealing substrate 4211 with unevenness are attached with a sealant 4212. In addition, a barrier film 4213 and a planarization film 4214 may be provided between the sealing substrate 4211 and the light emitting element 4202. Note that the sealing substrate 4211 has unevenness as illustrated in FIG. 7B, so that the light extraction efficiency of the light-emitting element 4202 can be improved.
また、これらの照明装置の応用例としては、室内の照明用であるシーリングライトが挙げられる。シーリングライトには、天井直付型や天井埋め込み型等がある。なお、このような照明装置は、発光装置を筐体やカバーと組み合わせることにより構成される。 Moreover, as an application example of these illuminating devices, the ceiling light which is for indoor illumination is mentioned. The ceiling lights include a ceiling direct attachment type and an in-ceiling type. Note that such a lighting device is configured by combining a light emitting device with a housing or a cover.
その他にも床面に灯りを照射し、足元の安全性を高めることができる足元灯などへの応用も可能である。足元灯は、例えば、寝室や階段や通路などに使用するのが有効である。その場合、部屋の広さや構造に応じて適宜サイズや形状を変えることができる。また、発光装置と支持台とを組み合わせて構成される据え置き型の照明装置とすることも可能である。 In addition to this, it is also possible to apply the light to the floor surface to improve the safety of the foot. For example, it is effective to use a foot lamp for a bedroom, a staircase, or a passage. In that case, the size and shape can be changed as appropriate according to the size and structure of the room. Moreover, it is also possible to set it as the stationary type illuminating device comprised combining a light-emitting device and a support stand.
また、シート状の照明装置(シート状照明)として応用することも可能である。シート状照明は、壁面に張り付けて使用するため、場所を取らず幅広い用途に用いることができる。なお、大面積化も容易である。なお、曲面を有する壁面や筐体に用いることもできる。 Moreover, it is also possible to apply as a sheet-like illuminating device (sheet-like illumination). Sheet-like lighting can be used for a wide range of applications without taking up space because it is used by being attached to a wall surface. In addition, it is easy to increase the area. In addition, it can also be used for the wall surface and case which have a curved surface.
なお、上記以外にも室内に備えられた家具の一部に本発明の一態様である発光装置、またはその一部である発光素子を適用し、家具としての機能を備えた照明装置とすることができる。 Note that in addition to the above, the light-emitting device of one embodiment of the present invention or a light-emitting element that is a portion thereof is applied to part of furniture provided in a room, and a lighting device having a function as furniture is provided. Can.
以上のように、発光装置を適用した様々な照明装置が得られる。なお、これらの照明装置は本発明の一態様に含まれるものとする。 As described above, various lighting devices to which the light emitting device is applied can be obtained. Note that these lighting devices are included in one embodiment of the present invention.
また、本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用いることができる。 The structure described in this embodiment can be used in appropriate combination with the structure described in any of the other embodiments.
≪合成例1≫
本実施例では、実施の形態1の構造式(100)で表される本発明の一態様である有機金属錯体、ビス{2−[6−(4−シアノ−2,6−ジメチルフェニル)−4−ピリミジニル−κN]フェニル−κC}(2,4−ペンタンジオナト−κO,O’)イリジウム(III)(略称:[Ir(ppm−dmCP)(acac)])の合成方法について説明する。なお、[Ir(ppm−dmCP)(acac)]の構造を以下に示す。
«Synthesis example 1»
In this example, an organometallic complex which is one embodiment of the present invention represented by Structural Formula (100) of Embodiment 1, bis {2- [6- (4-cyano-2,6-dimethylphenyl)- Description of the synthesis method of 4-pyrimidinyl-κN 3 ] phenyl-κC} (2,4-pentanedionato-κO, O ') iridium (III) (abbreviation: [Ir (ppm-dmCP) 2 (acac)]) Do. The structure of [Ir (ppm-dmCP) 2 (acac)] is shown below.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
<ステップ1:3,5−ジメチル−4−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)ベンゾニトリルの合成>
4−ブロモ−3,5−ジメチルベンゾニトリル10.06g、ビス(ピナコラート)ジボロン18.35g、酢酸カリウム21.73g、ジメチルスルホキシド240mLを、還流管を付けた三口フラスコに入れ、内部を窒素置換した。フラスコ内を減圧下で撹拌することで脱気した後、[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン付加物(略称:Pd(dppf)Cl・CHCl)0.59g、2−ジシクロヘキシルホスフィノ−2’,6’−ジメトキシビフェニル(略称:S−Phos)0.59gを加え、100℃で32時間半撹拌した。所定時間経過後、トルエンによる抽出を行った。その後、ヘキサン:酢酸エチル=10:1を展開溶媒とするシリカゲルカラムクロマトグラフィーで精製し、目的物を得た(白色固体、収量5.89g、収率48%)。ステップ1の合成スキームを下記式(a−1)に示す。
<Step 1: Synthesis of 3,5-dimethyl-4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzonitrile>
A 3-neck flask equipped with a reflux condenser was charged with 10.06 g of 4-bromo-3,5-dimethylbenzonitrile, 18.35 g of bis (pinacolato) diboron, 21.73 g of potassium acetate, and 240 mL of dimethyl sulfoxide, and the interior was nitrogen-substituted . After degassing the inside of the flask by stirring under reduced pressure, [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) dichloride dichloromethane adduct (abbreviation: Pd (dppf) Cl 2 · CH 2 Cl 2 2 ) 0.59 g and 0.59 g of 2-dicyclohexylphosphino-2 ', 6'-dimethoxybiphenyl (abbreviation: S-Phos) were added, and the mixture was stirred at 100 DEG C. for 32 hours. After a predetermined time, extraction with toluene was performed. Then, the residue was purified by silica gel column chromatography using hexane: ethyl acetate = 10: 1 as a developing solvent to obtain the desired product (white solid, yield 5.89 g, yield 48%). The synthesis scheme of Step 1 is shown in the following formula (a-1).
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
<ステップ2:4−(4−シアノ−2,6−ジメチルフェニル)−6−フェニルピリミジン(略称:Hppm−dmCP)の合成>
次に、4−クロロ−6−フェニルピリミジン0.74g、上記ステップ1で得られた、3,5−ジメチル−4−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)ベンゾニトリル1.28g、リン酸三カリウム3.23g、トルエン43mL、水4.3mLを、還流管を付けた三口フラスコに入れ、内部を窒素置換した。
<Step 2: Synthesis of 4- (4-cyano-2,6-dimethylphenyl) -6-phenylpyrimidine (abbreviation: Hppm-dmCP)>
Next, 0.74 g of 4-chloro-6-phenylpyrimidine, 3,5-dimethyl-4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolane obtained in Step 1 above) -2-yl) 1.28 g of benzonitrile, 3.23 g of tripotassium phosphate, 43 mL of toluene, and 4.3 mL of water were placed in a three-necked flask equipped with a reflux condenser, and the inside was purged with nitrogen.
フラスコ内を減圧下で撹拌して脱気した後、トリス(ジベンジリデンアセトン)ジパラジウム(0)(略称:Pd(dba))0.094g、トリス(2,6−ジメトキシフェニル)ホスフィン(略称:P(2,6−MeOPh))0.19gを加え、110℃で23時間撹拌した。所定時間経過後、トルエンによる抽出を行った。その後、ヘキサン:酢酸エチル=5:1を展開溶媒とするシリカゲルカラムクロマトグラフィーで精製し、目的のピリミジン誘導体、Hppm−dmCPを得た(白色固体、収量0.97g、収率88%)。ステップ2の合成スキームを下記式(a−2)に示す。 The inside of the flask is stirred and degassed under reduced pressure, and then 0.094 g of tris (dibenzylideneacetone) dipalladium (0) (abbreviation: Pd 2 (dba) 3 ), tris (2,6-dimethoxyphenyl) phosphine ( Abbreviation: 0.19 g of P (2, 6- MeOPh) 3 ) was added, and the mixture was stirred at 110 ° C for 23 hours. After a predetermined time, extraction with toluene was performed. Then, it refine | purified by silica gel column chromatography using hexane: ethyl acetate = 5: 1 as a developing solvent, and obtained the target pyrimidine derivative, Hppm-dmCP (white solid, yield 0.97 g, yield 88%). The synthesis scheme of Step 2 is shown in the following Formula (a-2).
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
<ステップ3:ジ−μ−クロロ−テトラキス{2−[6−(4−シアノ−2,6−ジメチルフェニル)−4−ピリミジニル−κN]フェニル−κC}ジイリジウム(III)(略称:[Ir(ppm−dmCP)Cl])の合成>
次に、2−エトキシエタノール15mLと水5mL、上記ステップ2で得たHppm−dmCP1.60g、塩化イリジウム水和物(IrCl・HO)(フルヤ金属社製)0.81gを、還流管を付けたナスフラスコに入れ、フラスコ内をアルゴン置換した。その後、マイクロ波(2.45GHz 100W)を3時間照射し、反応させた。所定時間経過後、得られた残渣をメタノールで吸引ろ過、洗浄し、複核錯体[Ir(ppm−dmCP)Cl]を得た(橙色固体、収量1.45g、収率67%)。ステップ3の合成スキームを下記式(a−3)に示す。
<Step 3: Di-μ-chloro-tetrakis {2- [6- (4-cyano-2,6-dimethylphenyl) -4-pyrimidinyl-κN 3 ] phenyl-κC} diiridium (III) (abbreviation: [ Synthesis of Ir (ppm-dmCP) 2 Cl] 2 )>
Next, 15 mL of 2-ethoxyethanol and 5 mL of water, 1.60 g of Hppm-dmCP obtained in the above step 2, 0.81 g of iridium chloride hydrate (IrCl 3 · H 2 O) (manufactured by Furuya Metal Co., Ltd.) The flask was charged with argon, and the inside of the flask was purged with argon. Thereafter, microwave (2.45 GHz 100 W) was irradiated for 3 hours to react. After elapse of a predetermined time, the obtained residue was suction-filtered and washed with methanol to obtain a dinuclear complex [Ir (ppm-dmCP) 2 Cl] 2 (orange solid, yield 1.45 g, yield 67%). The synthesis scheme of Step 3 is shown in the following formula (a-3).
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
<ステップ4:[Ir(ppm−dmCP)(acac)]の合成>
2−エトキシエタノール20mL、上記ステップ3で得た複核錯体、[Ir(ppm−dmCP)Cl] 1.44g、アセチルアセトン(略称:Hacac)0.41g、炭酸ナトリウム0.93gを、還流管を付けたナスフラスコに入れ、フラスコ内をアルゴン置換した。その後、マイクロ波(2.45GHz 100W)を4時間照射した。得られた残渣を、ジクロロメタンで吸引ろ過した後、濾液を濃縮した。得られた固体を、ヘキサン:酢酸エチル=2:1を展開溶媒とするシリカゲルカラムクロマトグラフィーにより精製した後、ジクロロメタンとメタノールの混合溶媒にて再結晶することにより、有機金属錯体、[Ir(ppm−dmCP)(acac)]を黄橙色粉末として得た(収量0.19g、収率7%)。得られた黄橙色粉末0.19gを、トレインサブリメーション法により昇華精製した。昇華精製条件は、圧力2.7Pa、アルゴンガスを流量11mL/minで流しながら、355℃で固体を加熱した。昇華精製後、目的物の黄橙色固体を収量0.092g、収率48%で得た。ステップ4の合成スキームを下記式(a−4)に示す。
<Step 4: Synthesis of [Ir (ppm-dmCP) 2 (acac)]>
20 mL of 2-ethoxyethanol, the binuclear complex obtained in the above step 3, 1.44 g of [Ir (ppm-dmCP) 2 Cl] 2 , 0.41 g of acetylacetone (abbreviation: Hacac), 0.93 g of sodium carbonate, The flask was placed in a fitted eggplant flask, and the inside of the flask was purged with argon. Thereafter, it was irradiated with microwave (2.45 GHz 100 W) for 4 hours. The obtained residue was suction filtered with dichloromethane and the filtrate was concentrated. The obtained solid is purified by silica gel column chromatography using hexane: ethyl acetate = 2: 1 as a developing solvent, and then recrystallized with a mixed solvent of dichloromethane and methanol to obtain an organometallic complex, [Ir (ppm) -DmCP) 2 (acac)] was obtained as a yellowish orange powder (yield 0.19 g, 7%). 0.19 g of the obtained yellow-orange powder was purified by sublimation using a train sublimation method. The sublimation purification conditions were such that the solid was heated at 355 ° C. while flowing a pressure of 2.7 Pa and flowing argon gas at a flow rate of 11 mL / min. After sublimation purification, the objective yellow-orange solid was obtained in a yield of 0.092 g, 48%. The synthesis scheme of Step 4 is shown in the following formula (a-4).
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
上記ステップ4で得られた黄橙色固体の核磁気共鳴分光法(H−NMR)による分析結果を下記に示す。また、H−NMRチャートを図8に示す。この結果から、本実施例において、上述の構造式(100)で表される有機金属錯体、[Ir(ppm−dmCP)(acac)]が得られたことがわかった。 The analysis result by nuclear magnetic resonance spectroscopy ( 1 H-NMR) of the yellow-orange solid obtained in the above step 4 is shown below. Moreover, a 1 H-NMR chart is shown in FIG. From this result, it is found that the organometallic complex represented by the above structural formula (100), [Ir (ppm-dmCP) 2 (acac)] was obtained in this example.
H−NMR.δ(CDCl):1.86(s,6H),2.29(s,12H),5.36(s,1H),6.44(d,2H),6.86(t,2H),6.91(t,2H),7.52(s,4H),7.66(d,2H),7.68(s,2H),9.25(s,2H). 1 H-NMR. δ (CDCl 3 ): 1.86 (s, 6 H), 2. 29 (s, 12 H), 5. 36 (s, 1 H), 6. 44 (d, 2 H), 6. 86 (t, 2 H) , 6.91 (t, 2H), 7.52 (s, 4H), 7.66 (d, 2H), 7.68 (s, 2H), 9.25 (s, 2H).
次に、[Ir(ppm−dmCP)(acac)]のジクロロメタン溶液の紫外可視吸収スペクトル(以下、単に「吸収スペクトル」という)及び発光スペクトルを測定した。 Next, an ultraviolet-visible absorption spectrum (hereinafter simply referred to as “absorption spectrum”) and an emission spectrum of a dichloromethane solution of [Ir (ppm-dmCP) 2 (acac)] were measured.
吸収スペクトルの測定には、紫外可視分光光度計((株)日本分光製 V550型)を用い、ジクロロメタン溶液(0.011mmol/L)を石英セルに入れ、室温で測定を行った。また、発光スペクトルの測定には、絶対PL量子収率測定装置((株)浜松ホトニクス製 C11347−01)を用い、窒素雰囲気下でジクロロメタン脱酸素溶液(0.011mmol/L)を石英セルに入れ、密栓し、室温で測定を行った。 For measurement of the absorption spectrum, a dichloromethane solution (0.011 mmol / L) was put in a quartz cell using a UV-visible spectrophotometer (V550 type manufactured by JASCO Corporation), and measurement was performed at room temperature. In addition, for the measurement of the emission spectrum, a dichloromethane deoxygenated solution (0.011 mmol / L) is put in a quartz cell under a nitrogen atmosphere using an absolute PL quantum yield measurement apparatus (C11347-01 manufactured by Hamamatsu Photonics Co., Ltd.) Sealed tightly and measured at room temperature.
得られた吸収スペクトル及び発光スペクトルの測定結果を図9に示す。横軸は波長、縦軸は吸収強度および発光強度を表す。また、図9における細い実線は吸収スペクトルを示し、太い実線は発光スペクトルを示す。なお、図9に示す吸収スペクトルは、ジクロロメタン溶液(0.011mmol/L)を石英セルに入れて測定した吸収スペクトルから、ジクロロメタンのみを石英セルに入れて測定した吸収スペクトルを差し引いた結果を示す。 The measurement results of the obtained absorption spectrum and emission spectrum are shown in FIG. The horizontal axis represents wavelength, and the vertical axis represents absorption intensity and emission intensity. The thin solid line in FIG. 9 indicates the absorption spectrum, and the thick solid line indicates the emission spectrum. In addition, the absorption spectrum shown in FIG. 9 shows the result which deducted the absorption spectrum which put only dichloromethane into a quartz cell and measured it from the absorption spectrum which put a dichloromethane solution (0.011 mmol / L) into a quartz cell and measured.
図9の結果より、本発明の一態様である有機金属錯体、[Ir(ppm−dmCP)(acac)]は、571nmに発光ピークを示し、ジクロロメタン溶液からは黄色の発光が観測された。 From the results in FIG. 9, the organometallic complex which is one embodiment of the present invention, [Ir (ppm-dmCP) 2 (acac)] exhibits a light emission peak at 571 nm, and yellow light emission is observed from the dichloromethane solution.
本実施例では、本発明の一態様である発光素子として、実施例1で説明したビス{2−[6−(4−シアノ−2,6−ジメチルフェニル)−4−ピリミジニル−κN]フェニル−κC}(2,4−ペンタンジオナト−κO,O’)イリジウム(III)(略称:[Ir(ppm−dmCP)(acac)])(構造式(100))を発光層に用いた発光素子1、および比較のための発光素子として、ビス{2−[6−(2,6−ジメチルフェニル)−4−ピリミジニル−κN]フェニル−κC}(2,4−ペンタンジオナト−κO,O’)イリジウム(III)(略称:[Ir(ppm−dmp)(acac)])(構造式(200))を発光層に用いた比較発光素子2について、素子構造、作製方法およびその特性について説明する。なお、本実施例で用いる発光素子の素子構造を図10に示し、具体的な構成について表1に示す。また、本実施例で用いる材料の化学式を以下に示す。 In this example, as a light-emitting element which is one embodiment of the present invention, bis {2- [6- (4-cyano-2,6-dimethylphenyl) -4-pyrimidinyl-κN 3 ] phenyl described in Example 1 is described. -ΚC} (2,4-pentanedionato-κO, O ') iridium (III) (abbreviation: [Ir (ppm-dmCP) 2 (acac)]) (structural formula (100)) was used for the light emitting layer Light-emitting element 1 and, as a light-emitting element for comparison, bis {2- [6- (2,6-dimethylphenyl) -4-pyrimidinyl-κN 3 ] phenyl-κC} (2,4-pentanedionato-κO , O ′) Iridium (III) (abbreviation: [Ir (ppm-dmp) 2 (acac)]) (Structural Formula (200)) for the light emitting layer of the comparative light emitting element 2 Describe the characteristics . The element structure of the light emitting element used in this embodiment is shown in FIG. 10, and the specific configuration is shown in Table 1. In addition, chemical formulas of materials used in this example are shown below.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
≪発光素子の作製≫
本実施例で示す発光素子は、図10に示すように基板900上に形成された第1の電極901上に正孔注入層911、正孔輸送層912、発光層913、電子輸送層914、電子注入層915が順次積層され、電子注入層915上に第2の電極903が積層された構造を有する。
«Fabrication of light emitting element»
In the light emitting element shown in this embodiment, a hole injecting layer 911, a hole transporting layer 912, a light emitting layer 913, an electron transporting layer 914, and a first electrode 901 formed on a substrate 900 as shown in FIG. The electron injection layer 915 is sequentially stacked, and the second electrode 903 is stacked on the electron injection layer 915.
まず、基板900上に第1の電極901を形成した。電極面積は、4mm(2mm×2mm)とした。また、基板900には、ガラス基板を用いた。また、第1の電極901は、酸化珪素を含むインジウム錫酸化物(ITSO)をスパッタリング法により、70nmの膜厚で成膜して形成した。 First, the first electrode 901 was formed over the substrate 900. The electrode area was 4 mm 2 (2 mm × 2 mm). For the substrate 900, a glass substrate was used. The first electrode 901 was formed by depositing indium tin oxide containing silicon oxide (ITSO) to a thickness of 70 nm by a sputtering method.
ここで、前処理として、基板の表面を水で洗浄し、200℃で1時間焼成した後、UVオゾン処理を370秒行った。その後、10−4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において、170℃で30分間の真空焼成を行った後、基板を30分程度放冷した。 Here, as pretreatment, the surface of the substrate was washed with water, baked at 200 ° C. for 1 hour, and subjected to UV ozone treatment for 370 seconds. After that, the substrate is introduced into a vacuum deposition apparatus whose inside is depressurized to about 10 -4 Pa, and vacuum baking is performed at 170 ° C. for 30 minutes in a heating chamber in the vacuum deposition apparatus, and then the substrate is released for about 30 minutes. It was cold.
次に、第1の電極901上に正孔注入層911を形成した。正孔注入層911は、真空蒸着装置内を10−4Paに減圧した後、4,4’,4’’−(ベンゼン−1,3,5−トリイル)トリ(ジベンゾチオフェン)(略称:DBT3P−II)と酸化モリブデンとを、DBT3P−II:酸化モリブデン=2:1(質量比)とし、膜厚が55nmとなるように共蒸着して形成した。 Next, the hole injecting layer 911 was formed over the first electrode 901. After reducing the pressure in the vacuum evaporation system to 10 −4 Pa, the hole injection layer 911 is 4,4 ′, 4 ′ ′-(benzene-1,3,5-triyl) tri (dibenzothiophene) (abbreviation: DBT3P) -II) and molybdenum oxide were formed by co-evaporation such that the film thickness was 55 nm, with DBT3P-II: molybdenum oxide = 2: 1 (mass ratio).
次に、正孔注入層911上に正孔輸送層912を形成した。正孔輸送層912は、4−フェニル−4’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:BPAFLP)を用い、膜厚が20nmになるように蒸着して形成した。 Next, the hole transport layer 912 was formed on the hole injection layer 911. The hole transporting layer 912 was formed by evaporation using 4-phenyl-4 ′-(9-phenylfluoren-9-yl) triphenylamine (abbreviation: BPAFLP) so that the film thickness was 20 nm.
次に、正孔輸送層912上に発光層913を形成した。 Next, the light emitting layer 913 was formed over the hole transporting layer 912.
発光素子1の場合の発光層913は、ホスト材料として、2mDBTBPDBq−IIを用い、アシスト材料としてPCBBiF、ゲスト材料(燐光材料)として、本発明の一態様である有機金属錯体、ビス{2−[6−(4−シアノ−2,6−ジメチルフェニル)−4−ピリミジニル−κN]フェニル−κC}(2,4−ペンタンジオナト−κO,O’)イリジウム(III)(略称:[Ir(ppm−dmCP)(acac)])(構造式:100)を用い、重量比が2mDBTBPDBq−II:PCBBiF:[Ir(ppm−dmCP)(acac)]=0.75:0.25:0.075となるように共蒸着した。なお、膜厚は、40nmとした。 The light-emitting layer 913 in the case of the light-emitting element 1 uses 2mDBTBPDBq-II as a host material, PCBBiF as an assist material, and an organometallic complex which is one embodiment of the present invention as a guest material (phosphorescent material); 6- (4-Cyano-2,6-dimethylphenyl) -4-pyrimidinyl-κN 3 ] phenyl-κC} (2,4-pentanedionato-κO, O ′) iridium (III) (abbreviation: [Ir ( Using ppm-dmCP) 2 (acac)]) (structural formula: 100), the weight ratio is 2mDBTBPDBq-II: PCBBiF: [Ir (ppm-dmCP) 2 (acac)] = 0.75: 0.25: 0 The co-evaporation was performed so as to be .075. The film thickness was 40 nm.
比較発光素子2の場合の発光層913は、ホスト材料として、2mDBTBPDBq−IIを用い、アシスト材料としてPCBBiF、ゲスト材料(燐光材料)として、ビス{2−[6−(2,6−ジメチルフェニル)−4−ピリミジニル−κN]フェニル−κC}(2,4−ペンタンジオナト−κO,O’)イリジウム(III)(略称:[Ir(ppm−dmp)(acac)])を用い、重量比が2mDBTBPDBq−II:PCBBiF:[Ir(ppm−dmp)(acac)]=0.75:0.25:0.075となるように共蒸着した。なお、膜厚は、40nmとした。 The light emitting layer 913 in the case of the comparative light emitting element 2 uses 2mDBTBPDBq-II as a host material, PCBBiF as an assist material, bis {2- [6- (2, 6-dimethylphenyl) as a guest material (phosphorescent material) -4-Pyrimidinyl-κN 3 ] phenyl-κC} (2,4-pentanedionato-κO, O ') iridium (III) (abbreviation: [Ir (ppm-dmp) 2 (acac)]), by weight The co-evaporation was performed such that the ratio was 2 m DBT BP DB q-II: PCBBiF: [Ir (ppm-dmp) 2 (acac)] = 0.75: 0.25: 0.075. The film thickness was 40 nm.
次に、発光層913上に電子輸送層914を形成した。電子輸送層914は、2mDBTBPDBq−IIの膜厚が20nm、2,9−ビス(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン(略称:NBphen)の膜厚が15nmとなるように順次蒸着して形成した。 Next, the electron transporting layer 914 was formed over the light emitting layer 913. The electron-transporting layer 914 has a film thickness of 20 nm of 2mDBTBPDBq-II and a film thickness of 15 nm of 2,9-bis (naphthalen-2-yl) -4,7-diphenyl-1,10-phenanthroline (abbr .: NBphen). It vapor-deposited one by one so that it might become.
次に、電子輸送層914上に電子注入層915を形成した。電子注入層915は、フッ化リチウム(LiF)を用い、膜厚が1nmになるように蒸着して形成した。 Next, the electron injection layer 915 was formed over the electron transport layer 914. The electron injection layer 915 was formed by evaporation using lithium fluoride (LiF) so as to have a thickness of 1 nm.
次に、電子注入層915上に第2の電極903を形成した。第2の電極903は、アルミニウムを蒸着法により、膜厚が200nmとなるように形成した。なお、本実施例において、第2の電極903は、陰極として機能する。 Next, a second electrode 903 was formed over the electron injection layer 915. The second electrode 903 was formed by depositing aluminum to a thickness of 200 nm. In the present embodiment, the second electrode 903 functions as a cathode.
以上の工程により、基板900上に一対の電極間にEL層902を挟んでなる発光素子を形成した。なお、上記工程で説明した正孔注入層911、正孔輸送層912、発光層913、電子輸送層914、電子注入層915は、本発明の一態様におけるEL層を構成する機能層である。また、上述した作製方法における蒸着工程では、全て抵抗加熱法による蒸着法を用いた。 Through the above steps, a light-emitting element in which the EL layer 902 is sandwiched between the pair of electrodes is formed over the substrate 900. Note that the hole injecting layer 911, the hole transporting layer 912, the light emitting layer 913, the electron transporting layer 914, and the electron injecting layer 915 described in the above steps are functional layers which form the EL layer in one embodiment of the present invention. Further, in the vapor deposition step in the above-described manufacturing method, all vapor deposition methods using resistance heating were used.
また、上記に示すように作製した発光素子は、別の基板(図示せず)により封止される。なお、別の基板(図示せず)を用いた封止の際は、窒素雰囲気のグローブボックス内において、紫外光により固化するシール剤を塗布した別の基板(図示せず)を基板900上に固定し、基板900上に形成された発光素子の周囲にシール剤が付着するよう基板同士を接着させた。封止時には365nmの紫外光を6J/cm照射しシール剤を固化し、80℃にて1時間熱処理することによりシール剤を安定化させた。 In addition, the light emitting element manufactured as described above is sealed by another substrate (not shown). Note that when sealing using another substrate (not shown), another substrate (not shown) coated with a sealant that solidifies with ultraviolet light is placed on the substrate 900 in a glove box under a nitrogen atmosphere. The substrates were fixed so that the sealant was attached around the light emitting element formed on the substrate 900. At the time of sealing, the sealing agent was solidified by irradiating ultraviolet light of 365 nm at 6 J / cm 2, and the sealing agent was stabilized by heat treatment at 80 ° C. for 1 hour.
≪発光素子の動作特性≫
作製した各発光素子の動作特性について測定した。なお、測定は室温(25℃に保たれた雰囲気)で行った。また、結果を図11~図14に示す。
<< Operation characteristics of light emitting element >>
It measured about the operating characteristic of each produced light emitting element. The measurement was performed at room temperature (in the atmosphere kept at 25 ° C.). The results are shown in FIG. 11 to FIG.
以下の表2に1000cd/m付近における各発光素子の主な初期特性値を示す。 Table 2 below shows main initial characteristic values of each light emitting element in the vicinity of 1000 cd / m 2 .
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
上記結果から、発光素子1は、良好な素子特性を示すが、特に比較発光素子2に比べて高い外部量子効率が得られている。これは、発光素子1の発光層に本発明の一態様である有機金属錯体、[Ir(ppm−dmCP)(acac)]を用いたことによる効果であると解することができる。 From the above results, the light emitting device 1 exhibits excellent device characteristics, but in particular, high external quantum efficiency is obtained as compared to the comparative light emitting device 2. This can be understood as the effect of using the organometallic complex which is one embodiment of the present invention, [Ir (ppm-dmCP) 2 (acac)], in the light emitting layer of the light emitting element 1.
すなわち、本発明の一態様である有機金属錯体、[Ir(ppm−dmCP)(acac)]は、Irに配位したピリミジン環が、置換基としてシアノ基を有するフェニル基を少なくとも一つ有し、かつ、シアノ基を有するフェニル基がピリミジン環の6位に結合する構造を有するため、ピリミジン環の6位に結合したシアノ基を有するフェニル基に起因して、蒸着基板面に対する水平方向への分子の配向性が高まるため、光取り出し効率を向上させると考えられる。 That is, in the organometallic complex which is one embodiment of the present invention, [Ir (ppm-dmCP) 2 (acac)], the pyrimidine ring coordinated to Ir has at least one phenyl group having a cyano group as a substituent. And a phenyl group having a cyano group is bonded to the 6-position of the pyrimidine ring, so the phenyl group having a cyano group bonded to the 6-position of the pyrimidine ring causes a horizontal direction with respect to the deposition substrate surface. It is considered that the light extraction efficiency is improved because the orientation of the
また、発光素子1および比較発光素子2に2.5mA/cmの電流密度で電流を流した際の発光スペクトルを、図15に示す。図15において、発光素子1は、発光層913に含まれる有機金属錯体、[Ir(ppm−dmCP)(acac)]の発光に由来して、574nm付近にピークを有する発光スペクトルを示す。また、比較発光素子2は、発光層913に含まれる有機金属錯体、[Ir(ppm−dmp)(acac)]の発光に由来して、559nm付近にピークを有する発光スペクトルを示す。なお、発光素子1は比較発光素子2に比べて極大発光波長が長波長方向にシフトしている。これは、発光素子1は、発光層913に含まれる有機金属錯体、[Ir(ppm−dmCP)(acac)]において、配位子のピリミジン環が有するフェニル基が、置換基としてシアノ基を有することにより、配位子のLUMOが下がるためである。従って、極大発光波長を長波長方向にシフトさせ、赤色発光域に発光波長を調整したい場合に、本発明の一態様である有機金属錯体は好適であるといえる。 In addition, FIG. 15 shows emission spectra when current is supplied to the light-emitting element 1 and the comparative light-emitting element 2 at a current density of 2.5 mA / cm 2 . In FIG. 15, the light-emitting element 1 has a light emission spectrum having a peak in the vicinity of 574 nm, which is derived from light emission of an organometallic complex contained in the light-emitting layer 913, [Ir (ppm-dmCP) 2 (acac)]. The comparative light-emitting element 2 also has a light emission spectrum having a peak at around 559 nm, which is derived from light emission of an organometallic complex contained in the light-emitting layer 913, [Ir (ppm-dmp) 2 (acac)]. The maximum light emission wavelength of the light emitting element 1 is shifted in the long wavelength direction compared to the comparative light emitting element 2. This is because, in the light-emitting element 1, an organic metal complex contained in the light-emitting layer 913, [Ir (ppm-dmCP) 2 (acac)], the phenyl group which the pyrimidine ring of the ligand has has a cyano group as a substituent By having it, it is because LUMO of a ligand falls. Therefore, when it is desired to shift the maximum light emission wavelength to the long wavelength direction and adjust the light emission wavelength to the red light emission region, it can be said that the organometallic complex which is one embodiment of the present invention is suitable.
次に、発光素子1および比較発光素子2に対する信頼性試験を行った。信頼性試験の結果を図16に示す。図16において、縦軸は初期輝度を100%とした時の規格化輝度(%)を示し、横軸は素子の駆動時間(h)を示す。なお、信頼性試験は、電流密度を50mA/cmに設定し、発光素子を駆動させた。 Next, the reliability test for the light emitting element 1 and the comparative light emitting element 2 was performed. The results of the reliability test are shown in FIG. In FIG. 16, the vertical axis represents normalized luminance (%) when the initial luminance is 100%, and the horizontal axis represents driving time (h) of the element. In the reliability test, the current density was set to 50 mA / cm 2 to drive the light emitting element.
信頼性試験の結果より、発光素子1は、比較発光素子2に比べて、高い信頼性を示すことが分かった。これは、本発明の一態様である有機金属錯体、[Ir(ppm−dmCP)(acac)](構造式(100))を発光素子1の発光層に用いたことによる効果といえる。なお、[Ir(ppm−dmCP)(acac)]は、分子構造上、置換基としてシアノ基を有するため昇華温度が高いにもかかわらず、分解しにくく、耐熱性が高いという特徴を有する。従って、昇華精製による熱分解を問題とせず、高純度な[Ir(ppm−dmCP)(acac)]を用いることができるため、発光素子1の信頼性が向上したと言える。 From the results of the reliability test, it was found that Light-emitting Element 1 exhibited higher reliability than Comparative Light-emitting Element 2. This can be said to be the effect of using the organometallic complex which is one embodiment of the present invention, [Ir (ppm-dmCP) 2 (acac)] (structural formula (100)) for the light emitting layer of the light emitting element 1. [Ir (ppm-dmCP) 2 (acac)] has a feature that it is difficult to be decomposed and has high heat resistance despite having a high sublimation temperature because of having a cyano group as a substituent on the molecular structure. Therefore, since high purity [Ir (ppm-dmCP) 2 (acac)] can be used without causing thermal decomposition by sublimation purification, it can be said that the reliability of the light-emitting element 1 is improved.
また、発光素子1および比較発光素子2の発光層の蒸着時に蒸着チャンバー内で発生する脱離ガスについて分析するために、四重極型質量分析計(ULVAC社製、残留ガス分析計 Qulee BGM−202)を用いてチャンバー内部の被測定ガス中の質量電荷比に対応する特定ガスの圧力(検出分圧:Pa)を測定した。結果を図17に示す。なお、図17では、横軸に質量電荷比(m/z)、縦軸に質量電荷比に対応する特定ガスの圧力(検出分圧:Pa)を示す。また、図17中のB.G.は、各発光素子を蒸着する直前のチャンバー内部で測定されたガス中の質量電荷比に対応する特定ガスの圧力(検出分圧:Pa)を測定した結果である。この結果から、発光素子1の発光層に用いた、[Ir(ppm−dmCP)(acac)]は、比較発光素子2の発光層に用いた、[Ir(ppm−dmp)(acac)]に比べて、昇華温度が高いにもかかわらず脱離ガス成分の検出が少なかった。このことから、[Ir(ppm−dmCP)(acac)]は、[Ir(ppm−dmp)(acac)]よりも熱分解しにくいことがいえる。つまり、本実施例で合成した有機金属錯体[Ir(ppm−dmCP)(acac)]は、シアノ基を置換基に含むことにより、昇華温度が高くなったにもかかわらず、熱分解しにくい(低分子量の分解物が生成しにくい)構造であることが確認された。 Also, in order to analyze the desorbed gas generated in the deposition chamber during deposition of the light emitting layers of the light emitting element 1 and the comparative light emitting element 2, a quadrupole mass spectrometer (residue gas analyzer Qulee BGM-, manufactured by ULVAC, Inc.) The pressure (detection partial pressure: Pa) of the specific gas corresponding to the mass-to-charge ratio in the measurement gas inside the chamber was measured using 202). The results are shown in FIG. In FIG. 17, the abscissa represents the mass-to-charge ratio (m / z), and the ordinate represents the pressure of a specific gas (detected partial pressure: Pa) corresponding to the mass-to-charge ratio. In addition, B. in FIG. G. These are the results of measuring the pressure (detection partial pressure: Pa) of the specific gas corresponding to the mass-to-charge ratio in the gas measured inside the chamber immediately before vapor deposition of each light emitting element. From this result, [Ir (ppm-dmCP) 2 (acac)] used for the light emitting layer of the light emitting element 1 was used for the light emitting layer of the comparative light emitting element 2, [Ir (ppm-dmp) 2 (acac) Although the sublimation temperature was high, the detection of the desorbed gas component was less than that of the above. From this, it can be said that [Ir (ppm-dmCP) 2 (acac)] is less likely to be thermally decomposed than [Ir (ppm-dmp) 2 (acac)]. That is, although the organometallic complex [Ir (ppm-dmCP) 2 (acac)] synthesized in this example contains a cyano group as a substituent, it is difficult to be thermally decomposed although the sublimation temperature is increased. It was confirmed that this was a structure (it was difficult to form low molecular weight degradation products).
≪合成例2≫
本実施例では、実施の形態1の構造式(112)で表される本発明の一態様である有機金属錯体、ビス{4,6−ジメチル−2−[6−(5−シアノ−2−メチルフェニル)−4−ピリミジニル−κN]フェニル−κC}(2,2,6,6−テトラメチル−3,5−ヘプタンジオナト−κO,O’)イリジウム(III)(略称:[Ir(dmppm−m5CP)(dpm)])の合成方法について説明する。なお、[Ir(dmppm−m5CP)(dpm)]の構造を以下に示す。
«Synthesis example 2»
In this example, an organometallic complex which is one embodiment of the present invention, which is represented by a structural formula (112) of Embodiment 1, bis {4,6-dimethyl-2- [6- (5-cyano-2-) Methylphenyl) -4-pyrimidinyl-κN 3 ] phenyl-κC} (2,2,6,6-tetramethyl-3,5-heptanedionato-κ 2 O, O ′) iridium (III) (abbreviation: [Ir ( The synthesis method of dmppm-m5CP) 2 (dpm)] is demonstrated. The structure of [Ir (dmppm-m5CP) 2 (dpm)] is shown below.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
<ステップ1:4−クロロ−6−(3,5−ジメチルフェニル)ピリミジンの合成>
4,6−ジクロロピリミジン8.97g、3,5−ジメチルフェニルボロン酸9.01g、2M炭酸ナトリウム水溶液95mL、エチレングリコールジメチルエーテル(略称:DME)360mLを、還流管を付けた三口フラスコに入れ、内部を窒素置換した。フラスコ内を減圧下で撹拌することで脱気した後、酢酸パラジウム(II)(略称:Pd(OAc))0.67g、トリフェニルホスフィン(略称:PPh)1.61gを加え、110℃で11時間撹拌した。所定時間経過後、酢酸エチルによる抽出を行った。その後、ジクロロメタンを展開溶媒とするシリカゲルカラムクロマトグラフィーで精製し、目的物を得た(黄白色固体、収量7.60g、収率58%)。ステップ1の合成スキームを下記式(b−1)に示す。
<Step 1: Synthesis of 4-chloro-6- (3,5-dimethylphenyl) pyrimidine>
8.97 g of 4,6-dichloropyrimidine, 9.01 g of 3,5-dimethylphenylboronic acid, 95 mL of 2 M aqueous sodium carbonate solution, and 360 mL of ethylene glycol dimethyl ether (abbreviation: DME) are placed in a three-necked flask equipped with a reflux condenser, Were replaced with nitrogen. After degassing the inside of the flask by stirring under reduced pressure, 0.67 g of palladium (II) acetate (abbreviation: Pd (OAc) 2 ) and 1.61 g of triphenylphosphine (abbreviation: PPh 3 ) are added, and 110 ° C. is added. The mixture was stirred for 11 hours. After a predetermined time, extraction with ethyl acetate was performed. Then, the residue was purified by silica gel column chromatography using dichloromethane as a developing solvent to obtain the desired product (yellowish white solid, yield 7.60 g, yield 58%). The synthesis scheme of Step 1 is shown in the following formula (b-1).
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
<ステップ2:4−(5−シアノ−2−メチルフェニル)−6−(3,5−ジメチルフェニル)ピリミジンの合成>
次に、上記ステップ1で得られた4−クロロ−6−(3,5−ジメチルフェニル)ピリミジン5.21g、5−シアノ−2−メチルフェニルボロン酸5.00g、リン酸三カリウム15.32g、トルエン240mL、水24mLを、還流管を付けた三口フラスコに入れ、内部を窒素置換した。
<Step 2: Synthesis of 4- (5-cyano-2-methylphenyl) -6- (3,5-dimethylphenyl) pyrimidine>
Next, 5.21 g of 4-chloro-6- (3,5-dimethylphenyl) pyrimidine obtained in Step 1 above, 5.00 g of 5-cyano-2-methylphenylboronic acid, 15.32 g of tripotassium phosphate Then, 240 mL of toluene and 24 mL of water were placed in a three-necked flask equipped with a reflux condenser, and the inside was purged with nitrogen.
フラスコ内を減圧下で撹拌して脱気した後、トリス(ジベンジリデンアセトン)ジパラジウム(0)(略称:Pd(dba))0.88g、トリス(2,6−ジメトキシフェニル)ホスフィン(略称:(2,6−MeOPh)P)1.68gを加え、110℃で65時間半撹拌した。所定時間経過後、トルエンによる抽出を行った。その後、ジクロロメタン:酢酸エチル=20:1を展開溶媒とするシリカゲルカラムクロマトグラフィーで精製し、目的のピリミジン誘導体、Hdmppm−m5CPを得た(白色固体、収量4.31g、収率60%)。ステップ2の合成スキームを下記式(b−2)に示す。 The inside of the flask is stirred and degassed under reduced pressure, and then 0.88 g of tris (dibenzylideneacetone) dipalladium (0) (abbreviation: Pd 2 (dba) 3 ), tris (2,6-dimethoxyphenyl) phosphine ( Abbreviation: 1.68 g of (2,6-MeOPh) 3 P) was added, and the mixture was stirred at 110 ° C. for half an hour. After a predetermined time, extraction with toluene was performed. Then, the target pyrimidine derivative, Hdmppm-m5CP, was obtained by purification with silica gel column chromatography using dichloromethane: ethyl acetate = 20: 1 as a developing solvent (white solid, yield 4.31 g, yield 60%). The synthesis scheme of step 2 is shown in the following formula (b-2).
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
<ステップ3:ジ−μ−クロロ−テトラキス{4,6−ジメチル−2−[6−(5−シアノ−2−メチルフェニル)−4−ピリミジニル−κN]フェニル−κC}ジイリジウム(III)(略称:[Ir(dmppm−m5CP)Cl])の合成>
次に、2−エトキシエタノール30mLと水10mL、上記ステップ2で得たHdmppm−m5CP(略称)3.92g、塩化イリジウム水和物(IrCl・HO)(フルヤ金属社製)1.81gを、還流管を付けたナスフラスコに入れ、フラスコ内をアルゴン置換した。その後、マイクロ波(2.45GHz 100W)を3時間半照射し、反応させた。所定時間経過後、得られた残渣をメタノールで吸引ろ過、洗浄し、複核錯体[Ir(dmppm−m5CP)Cl]を得た(橙色固体、収量4.49g、収率91%)。また、ステップ3の合成スキームを下記式(b−3)に示す。
<Step 3: Di-μ-chloro-tetrakis {4,6-dimethyl-2- [6- (5-cyano-2-methylphenyl) -4-pyrimidinyl-κN 3 ] phenyl-κC} diiridium (III) Synthesis of (abbreviation: [Ir (dmppm-m5CP) 2 Cl] 2 )>
Next, 30 mL of 2-ethoxyethanol and 10 mL of water, 3.92 g of Hdmppm-m5CP (abbreviation) obtained in the above step 2, and 1.81 g of iridium chloride hydrate (IrCl 3 · H 2 O) (manufactured by Furuya Metal Co., Ltd.) Was placed in a round-bottomed flask equipped with a reflux condenser, and the inside of the flask was purged with argon. Thereafter, microwave (2.45 GHz 100 W) was irradiated for 3 and a half hours to cause reaction. After a predetermined time elapsed, the obtained residue was suction-filtered and washed with methanol to obtain a dinuclear complex [Ir (dmppm-m5CP) 2 Cl] 2 (orange solid, yield 4.49 g, yield 91%). In addition, a synthesis scheme of Step 3 is shown in the following formula (b-3).
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
<ステップ4:ビス{4,6−ジメチル−2−[6−(5−シアノ−2−メチルフェニル)−4−ピリミジニル−κN]フェニル−κC}(2,2,6,6−テトラメチル−3,5−ヘプタンジオナト−κO,O’)イリジウム(III)(略称:[Ir(dmppm−m5CP)(dpm)]の合成>
次に、2−エトキシエタノール20mL、上記ステップ3で得た複核錯体、[Ir(dmppm−m5CP)Cl] 4.48g、ジピバロイルメタン(略称:Hdpm)1.51g、炭酸ナトリウム2.90gを、還流管を付けたナスフラスコに入れ、フラスコ内をアルゴン置換した。
<Step 4: Bis {4,6-dimethyl-2- [6- (5-cyano-2-methylphenyl) -4-pyrimidinyl-κN 3 ] phenyl-κC} (2,2,6,6-tetramethyl Synthesis of 3,5-heptanedionato-κ 2 O, O ') iridium (III) (abbreviation: [Ir (dmppm-m5CP) 2 (dpm)]>
Next, 20 mL of 2-ethoxyethanol, the binuclear complex obtained in the above step 3, 4.48 g of [Ir (dmppm-m5CP) 2 Cl] 2 , 1.51 g of dipivaloylmethane (abbreviation: Hdpm), sodium carbonate 2 .90g was put into an eggplant flask equipped with a reflux condenser, and the inside of the flask was purged with argon.
その後、マイクロ波(2.45GHz 100W)を6時間照射した。得られた残渣を、ジクロロメタンで吸引ろ過した後、濾液を濃縮した。得られた固体を、ジクロロメタンを展開溶媒とするシリカゲルカラムクロマトグラフィーにより精製することにより、有機金属錯体、[Ir(dmppm−m5CP)(dpm)]を赤色固体として得た(収量0.028g、収率0.5%)。ステップ4の合成スキームを下記式(b−4)に示す。 Thereafter, microwave (2.45 GHz 100 W) was irradiated for 6 hours. The obtained residue was suction filtered with dichloromethane and the filtrate was concentrated. The obtained solid was purified by silica gel column chromatography using dichloromethane as a developing solvent to obtain an organic metal complex, [Ir (dmppm-m5CP) 2 (dpm)] as a red solid (yield: 0.028 g, Yield 0.5%). The synthesis scheme of Step 4 is shown in the following formula (b-4).
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
ステップ4で得られた赤色固体の核磁気共鳴分光法(H−NMR)による分析結果を下記に示す。また、H−NMRチャートを図18に示す。この結果から、本実施例において、上述の構造式(112)で表される有機金属錯体、[Ir(dmppm−m5CP)(dpm)]が得られたことがわかった。 The analysis result by nuclear magnetic resonance spectroscopy ( 1 H-NMR) of the red solid obtained in Step 4 is shown below. In addition, a 1 H-NMR chart is shown in FIG. From this result, it is found that the organometallic complex represented by the above structural formula (112), [Ir (dmppm-m5CP) 2 (dpm)] was obtained in this example.
H−NMR.δ(CDCl):0.89(s,18H),1.52(s,6H),2.29(s,6H),2.54(s,6H),5.62(s,1H),6.66(s,2H),7.48−7.52(m,4H),7.68(d,2H),7.86(d,4H),8.89(s,2H). 1 H-NMR. δ (CDCl 3 ): 0.89 (s, 18 H), 1.52 (s, 6 H), 2. 29 (s, 6 H), 2.54 (s, 6 H), 5.62 (s, 1 H) , 6.66 (s, 2 H), 7.48-7.52 (m, 4 H), 7.68 (d, 2 H), 7.86 (d, 4 H), 8.89 (s, 2 H).
次に、[Ir(dmppm−m5CP)(dpm)]のジクロロメタン溶液の紫外可視吸収スペクトル(以下、単に「吸収スペクトル」という)及び発光スペクトルを測定した。 Next, an ultraviolet-visible absorption spectrum (hereinafter simply referred to as “absorption spectrum”) and an emission spectrum of a dichloromethane solution of [Ir (dmppm-m5CP) 2 (dpm)] were measured.
吸収スペクトルの測定には、紫外可視分光光度計((株)日本分光製 V550型)を用い、ジクロロメタン溶液(0.010mmol/L)を石英セルに入れ、室温で測定を行った。また、発光スペクトルの測定には、絶対PL量子収率測定装置((株)浜松ホトニクス製 C11347−01)を用い、窒素雰囲気下でジクロロメタン脱酸素溶液(0.010mmol/L)を石英セルに入れ、密栓し、室温で測定を行った。 For measurement of the absorption spectrum, a dichloromethane solution (0.010 mmol / L) was put in a quartz cell using a UV-visible spectrophotometer (V550 type manufactured by JASCO Corporation), and measurement was performed at room temperature. In addition, for measurement of the emission spectrum, a dichloromethane deoxygenated solution (0.010 mmol / L) is put into a quartz cell under a nitrogen atmosphere using an absolute PL quantum yield measurement apparatus (C11347-01 manufactured by Hamamatsu Photonics Co., Ltd.) Sealed tightly and measured at room temperature.
得られた吸収スペクトル及び発光スペクトルの測定結果を図19に示す。横軸は波長、縦軸は吸収強度および発光強度を表す。また、図19における細い実線は吸収スペクトルを示し、太い実線は発光スペクトルを示す。なお、図19に示す吸収スペクトルは、ジクロロメタン溶液(0.010mmol/L)を石英セルに入れて測定した吸収スペクトルから、ジクロロメタンのみを石英セルに入れて測定した吸収スペクトルを差し引いた結果を示す。 The measurement results of the obtained absorption spectrum and emission spectrum are shown in FIG. The horizontal axis represents wavelength, and the vertical axis represents absorption intensity and emission intensity. The thin solid line in FIG. 19 indicates the absorption spectrum, and the thick solid line indicates the emission spectrum. In addition, the absorption spectrum shown in FIG. 19 shows the result which deducted the absorption spectrum which put only dichloromethane into the quartz cell and measured it from the absorption spectrum which put the dichloromethane solution (0.010 mmol / L) into the quartz cell and measured.
図19の結果より、本発明の一態様である有機金属錯体、[Ir(dmppm−m5CP)(dpm)]は、613nmに発光ピークを示し、ジクロロメタン溶液からは赤色の発光が観測された。 From the results in FIG. 19, the organometallic complex which is one embodiment of the present invention, [Ir (dmppm-m5CP) 2 (dpm)] exhibits a light emission peak at 613 nm, and red light emission is observed from the dichloromethane solution.
≪合成例3≫
本実施例では、実施の形態1の構造式(114)で表される本発明の一態様である有機金属錯体、ビス{4,6−ジメチル−2−[6−(2−シアノ−6−メチルフェニル)−4−ピリミジニル−κN]フェニル−κC}(2,2,6,6−テトラメチル−3,5−ヘプタンジオナト−κO,O’)イリジウム(III)(略称:[Ir(dmppm−m2CP)(dpm)])の合成方法について説明する。なお、[Ir(dmppm−m2CP)(dpm)]の構造を以下に示す。
«Synthesis example 3»
In this example, an organometallic complex which is one embodiment of the present invention, which is represented by a structural formula (114) of Embodiment 1, bis {4,6-dimethyl-2- [6- (2-cyano-6-) Methylphenyl) -4-pyrimidinyl-κN 3 ] phenyl-κC} (2,2,6,6-tetramethyl-3,5-heptanedionato-κ 2 O, O ′) iridium (III) (abbreviation: [Ir ( The synthesis method of dmppm-m2CP) 2 (dpm)] is demonstrated. The structure of [Ir (dmppm-m2CP) 2 (dpm)] is shown below.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
<ステップ1:4−(2−シアノ−6−メチルフェニル)−6−(3,5−ジメチルフェニル)ピリミジンの合成>
4−クロロ−6−(3,5−ジメチルフェニル)ピリミジン2.18g、3−メチル−2−(テトラメチル−1,3,2−ジオキサボロラン−2−イル)ベンゾニトリル2.90g、リン酸三カリウム6.36g、トルエン100mL、水10mLを、還流管を付けた三口フラスコに入れ、内部を窒素置換した。
<Step 1: Synthesis of 4- (2-cyano-6-methylphenyl) -6- (3,5-dimethylphenyl) pyrimidine>
2.18 g of 4-chloro-6- (3,5-dimethylphenyl) pyrimidine, 2.90 g of 3-methyl-2- (tetramethyl-1,3,2-dioxaborolan-2-yl) benzonitrile, phosphoric acid 3 6.36 g of potassium, 100 mL of toluene and 10 mL of water were placed in a three-necked flask equipped with a reflux condenser, and the inside was purged with nitrogen.
フラスコ内を減圧下で撹拌して脱気した後、トリス(ジベンジリデンアセトン)ジパラジウム(0)(略称:Pd(dba))0.28g、トリス(2,6−ジメトキシフェニル)ホスフィン(略称:(2,6−MeOPh)P)0.54gを加え、110℃で17時間撹拌した。所定時間経過後、トルエンによる抽出を行った。その後、ヘキサン:酢酸エチル=2:1を展開溶媒とするフラッシュカラムクロマトグラフィーで精製し、目的のピリミジン誘導体、Hdmppm−m2CPを得た(白色固体、収量2.08g、収率70%)。ステップ1の合成スキームを下記式(c−1)に示す。 The inside of the flask is stirred and degassed under reduced pressure, and then 0.28 g of tris (dibenzylideneacetone) dipalladium (0) (abbreviation: Pd 2 (dba) 3 ), tris (2,6-dimethoxyphenyl) phosphine ( Abbreviation: 0.54 g of (2, 6-MeOPh) 3 P) was added, and the mixture was stirred at 110 ° C for 17 hours. After a predetermined time, extraction with toluene was performed. Thereafter, purification was performed by flash column chromatography using hexane: ethyl acetate = 2: 1 as a developing solvent to obtain the target pyrimidine derivative Hdmppm-m2CP (white solid, yield 2.08 g, yield 70%). The synthesis scheme of Step 1 is shown in the following formula (c-1).
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
<ステップ2:ジ−μ−クロロ−テトラキス{4,6−ジメチル−2−[6−(2−シアノ−6−メチルフェニル)−4−ピリミジニル−κN]フェニル−κC}ジイリジウム(III)(略称:[Ir(dmppm−m2CP)Cl])の合成>
次に、2−エトキシエタノール30mLと水10mL、上記ステップ1で得たHdmppm−m2CP(略称)2.08g、塩化イリジウム水和物(IrCl・HO)(フルヤ金属社製)1.01gを、還流管を付けたナスフラスコに入れ、フラスコ内をアルゴン置換した。その後、マイクロ波(2.45GHz 100W)を2時間照射し、反応させた。所定時間経過後、得られた残渣をメタノールで吸引ろ過、洗浄し、複核錯体[Ir(dmppm−m2CP)Cl]を得た(赤茶色固体、収量1.88g、収率69%)。また、ステップ2の合成スキームを下記式(c−2)に示す。
<Step 2: Di-μ-chloro-tetrakis {4,6-dimethyl-2- [6- (2-cyano-6-methylphenyl) -4-pyrimidinyl-κN 3 ] phenyl-κC} diiridium (III) Synthesis of (abbreviation: [Ir (dmppm-m2CP) 2 Cl] 2 )>
Next, 30 mL of 2-ethoxyethanol and 10 mL of water, 2.08 g of Hdmppm-m2CP (abbreviation) obtained in the above step 1, and 1.01 g of iridium chloride hydrate (IrCl 3 · H 2 O) (manufactured by Furuya Metal Co., Ltd.) Was placed in a round-bottomed flask equipped with a reflux condenser, and the inside of the flask was purged with argon. Thereafter, microwave (2.45 GHz 100 W) was irradiated for 2 hours to react. After lapse of a predetermined time, the obtained residue was suction-filtered and washed with methanol to obtain a dinuclear complex [Ir (dmppm-m2CP) 2 Cl] 2 (reddish brown solid, yield 1.88 g, yield 69%). In addition, a synthesis scheme of Step 2 is shown in the following formula (c-2).
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
<ステップ3:[Ir(dmppm−m2CP)(dpm)]の合成>
次に、2−エトキシエタノール30mL、上記ステップ2で得た複核錯体、[Ir(dmppm−m2CP)Cl] 1.86g、ジピバロイルメタン(略称:Hdpm)0.61g、炭酸ナトリウム1.18gを、還流管を付けたナスフラスコに入れ、フラスコ内をアルゴン置換した。その後、マイクロ波(2.45GHz 100W)を5時間照射した。得られた残渣を、ジクロロメタンで吸引ろ過した後、濾液を濃縮した。得られた固体を、ジクロロメタンを展開溶媒とするシリカゲルカラムクロマトグラフィーにより精製することにより、有機金属錯体、[Ir(dmppm−m2CP)(dpm)]を赤色固体として得た(収量0.050g、収率2%)。ステップ3の合成スキームを下記式(c−3)に示す。
<Step 3: Synthesis of [Ir (dmppm-m2CP) 2 (dpm)]>
Next, 30 mL of 2-ethoxyethanol, the binuclear complex obtained in the above step 2, 1.86 g of [Ir (dmppm-m2CP) 2 Cl] 2, 0.61 g of dipivaloylmethane (abbreviation: Hdpm), sodium carbonate 1 18 g of the solution was placed in a round-bottomed flask equipped with a reflux condenser, and the inside of the flask was purged with argon. Then, it was irradiated for 5 hours with microwave (2.45 GHz 100 W). The obtained residue was suction filtered with dichloromethane and the filtrate was concentrated. The obtained solid was purified by silica gel column chromatography using dichloromethane as a developing solvent to obtain an organic metal complex, [Ir (dmppm-m2CP) 2 (dpm)] as a red solid (yield 0.050 g, 2% yield). The synthesis scheme of Step 3 is shown in the following formula (c-3).
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
ステップ3で得られた赤色固体の核磁気共鳴分光法(H−NMR)による分析結果を下記に示す。また、H−NMRチャートを図20に示す。この結果から、本実施例において、上述の構造式(114)で表される有機金属錯体、[Ir(dmppm−m2CP)(dpm)]が得られたことがわかった。 The analysis result by nuclear magnetic resonance spectroscopy ( 1 H-NMR) of the red solid obtained in Step 3 is shown below. In addition, a 1 H-NMR chart is shown in FIG. From this result, it is found that the organometallic complex represented by the above structural formula (114), [Ir (dmppm-m2CP) 2 (dpm)] was obtained in this example.
H−NMR.δ(CDCl):0.92(s,18H),1.53(s,6H).2.27(s,6H),2.31(s,6H),5.65(s,1H),6.65(s,2H),7.48−7.51(m,4H),7.61(d,2H),7.70(d,2H),7.85(s,2H),8.97(s,2H). 1 H-NMR. δ (CDCl 3 ): 0.92 (s, 18 H), 1.53 (s, 6 H). 2.27 (s, 6H), 2.31 (s, 6H), 5.65 (s, 1H), 6.65 (s, 2H), 7.48-7.51 (m, 4H), 7 61 (d, 2 H), 7. 70 (d, 2 H), 7. 85 (s, 2 H), 8. 97 (s, 2 H).
次に、[Ir(dmppm−m2CP)(dpm)]のジクロロメタン溶液の紫外可視吸収スペクトル(以下、単に「吸収スペクトル」という)及び発光スペクトルを測定した。 Next, an ultraviolet-visible absorption spectrum (hereinafter simply referred to as “absorption spectrum”) and an emission spectrum of a dichloromethane solution of [Ir (dmppm-m2CP) 2 (dpm)] were measured.
吸収スペクトルの測定には、紫外可視分光光度計((株)日本分光製 V550型)を用い、ジクロロメタン溶液(0.010mmol/L)を石英セルに入れ、室温で測定を行った。また、発光スペクトルの測定には、絶対PL量子収率測定装置((株)浜松ホトニクス製 C11347−01)を用い、窒素雰囲気下でジクロロメタン脱酸素溶液(0.010mmol/L)を石英セルに入れ、密栓し、室温で測定を行った。 For measurement of the absorption spectrum, a dichloromethane solution (0.010 mmol / L) was put in a quartz cell using a UV-visible spectrophotometer (V550 type manufactured by JASCO Corporation), and measurement was performed at room temperature. In addition, for measurement of the emission spectrum, a dichloromethane deoxygenated solution (0.010 mmol / L) is put into a quartz cell under a nitrogen atmosphere using an absolute PL quantum yield measurement apparatus (C11347-01 manufactured by Hamamatsu Photonics Co., Ltd.) Sealed tightly and measured at room temperature.
得られた吸収スペクトル及び発光スペクトルの測定結果を図21に示す。横軸は波長、縦軸は吸収強度および発光強度を表す。また、図21における細い実線は吸収スペクトルを示し、太い実線は発光スペクトルを示す。なお、図21に示す吸収スペクトルは、ジクロロメタン溶液(0.010mmol/L)を石英セルに入れて測定した吸収スペクトルから、ジクロロメタンのみを石英セルに入れて測定した吸収スペクトルを差し引いた結果を示す。 The measurement results of the obtained absorption spectrum and emission spectrum are shown in FIG. The horizontal axis represents wavelength, and the vertical axis represents absorption intensity and emission intensity. The thin solid line in FIG. 21 indicates the absorption spectrum, and the thick solid line indicates the emission spectrum. In addition, the absorption spectrum shown in FIG. 21 shows the result which deducted the absorption spectrum which put only dichloromethane into the quartz cell and measured it from the absorption spectrum which put the dichloromethane solution (0.010 mmol / L) into the quartz cell and measured.
図21の結果より、本発明の一態様である有機金属錯体、[Ir(dmppm−m2CP)(dpm)]は、621nmに発光ピークを示し、ジクロロメタン溶液からは赤色の発光が観測された。 From the results in FIG. 21, the organometallic complex which is one embodiment of the present invention, [Ir (dmppm-m2CP) 2 (dpm)] exhibits a light emission peak at 621 nm, and red light emission is observed from the dichloromethane solution.
≪合成例4≫
本実施例では、実施の形態1の構造式(117)で表される本発明の一態様である有機金属錯体、ビス{4,6−ジメチル−2−[6−(2,6−ジシアノフェニル)−4−ピリミジニル−κN]フェニル−κC}(2,2,6,6−テトラメチル−3,5−ヘプタンジオナト−κO,O’)イリジウム(III)(略称:[Ir(dmppm−dCP)(dpm)])の合成方法について説明する。なお、[Ir(dmppm−dCP)(dpm)]の構造を以下に示す。
«Synthesis example 4»
In this example, an organometallic complex which is one embodiment of the present invention represented by a structural formula (117) of Embodiment 1, bis {4,6-dimethyl-2- [6- (2,6-dicyanophenyl ) -4-Pyrimidinyl-κN 3 ] phenyl-κC} (2,2,6,6-tetramethyl-3,5-heptanedionato-κO, O ′) iridium (III) (abbreviation: [Ir (dmppm-dCP)] A method of synthesizing 2 (dpm)] will be described. The structure of [Ir (dmppm-dCP) 2 (dpm)] is shown below.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
また、[Ir(dmppm−dCP)(dpm)]の合成方法を下記式(d−1)~下記式(d−4)の合成スキームに示す。 In addition, a synthesis method of [Ir (dmppm-dCP) 2 (dpm)] is shown in a synthesis scheme of the following formula (d-1) to the following formula (d-4).
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
101:第1の電極、102:第2の電極、103:EL層、103a、103b:EL層、104:電荷発生層、111、111a、111b:正孔注入層、112、112a、112b:正孔輸送層、113、113a、113b、113c:発光層、114、114a、114b:電子輸送層、115、115a、115b:電子注入層、200R、200G、200B:光学距離、201:第1の基板、202:トランジスタ(FET)、203R、203G、203B、203W:発光素子、204:EL層、205:第2の基板、206R、206G、206B:カラーフィルタ、206R’、206G’、206B’:カラーフィルタ、207:第1の電極、208:第2の電極、209:黒色層(ブラックマトリックス)、210R、210G:導電層、301:第1の基板、302:画素部、303:駆動回路部(ソース線駆動回路)、304a、304b:駆動回路部(ゲート線駆動回路)、305:シール材、306:第2の基板、307:引き回し配線、308:FPC、309:FET、310:FET、311:FET、312:FET、313:第1の電極、314:絶縁物、315:EL層、316:第2の電極、317:発光素子、318:空間、900:基板、901:第1の電極、902:EL層、903:第2の電極、911:正孔注入層、912:正孔輸送層、913:発光層、914:電子輸送層、915:電子注入層、4000:照明装置、4001:基板、4002:発光素子、4003:基板、4004:第1の電極、4005:EL層、4006:第2の電極、4007:電極、4008:電極、4009:補助配線、4010:絶縁層、4011:封止基板、4012:シール材、4013:乾燥剤、4015:拡散板、4200:照明装置、4201:基板、4202:発光素子、4204:第1の電極、4205:EL層、4206:第2の電極、4207:電極、4208:電極、4209:補助配線、4210:絶縁層、4211:封止基板、4212:シール材、4213:バリア膜、4214:平坦化膜、4215:拡散板、5101:ライト、5102:ホイール、5103:ドア、5104:表示部、5105:ハンドル、5106:シフトレバー、5107:座席シート、5108:インナーリアビューミラー、7000:筐体、7001:表示部、7002:第2表示部、7003:スピーカ、7004:LEDランプ、7005:操作キー、7006:接続端子、7007:センサ、7008:マイクロフォン、7009:スイッチ、7010:赤外線ポート、7011:記録媒体読込部、7012:支持部、7013:イヤホン、7014:アンテナ、7015:シャッターボタン、7016:受像部、7018:スタンド、7020:カメラ、7021:外部接続部、7022、7023:操作用ボタン、7024:接続端子、7025:バンド、、7026:マイクロフォン、7027:時刻を表すアイコン、7028:その他のアイコン、7029:センサ、7030:スピーカ、7052、7053、7054:情報、9310:携帯情報端末、9311:表示部、9312:表示領域、9313:ヒンジ、9315:筐体、 101: first electrode 102: second electrode 103: EL layer 103a, 103b: EL layer 104: charge generation layer 111, 111a, 111b: hole injection layer 112, 112a, 112b: positive Hole transport layer 113, 113a, 113b, 113c: light emitting layer, 114, 114a, 114b: electron transport layer, 115, 115a, 115b: electron injection layer, 200R, 200G, 200B: optical distance, 201: first substrate , 202: transistor (FET), 203R, 203G, 203B, 203W: light emitting element, 204: EL layer, 205: second substrate, 206R, 206G, 206B: color filter, 206R ', 206G', 206B ': color Filter, 207: first electrode, 208: second electrode, 209: black layer (black matrix), 10R, 210G: conductive layer, 301: first substrate, 302: pixel portion, 303: drive circuit portion (source line drive circuit), 304a, 304b: drive circuit portion (gate line drive circuit), 305: seal material, 306: second substrate, 307: lead wiring, 308: FPC, 309: FET, 310: FET, 311: FET, 312: FET, 313: first electrode, 314: insulator, 315: EL layer, 316 A second electrode, 317: a light emitting element, 318: space, 900: a substrate, 901: a first electrode, 902: an EL layer, 903: a second electrode, 911: a hole injection layer, 912: a hole transport Layer 913: light emitting layer 914: electron transport layer 915: electron injection layer 4000: lighting device 4001: substrate 4002: light emitting element 4003: substrate 4004 first electrode 400 : EL layer, 4006: second electrode, 4007: electrode, 4008: electrode, 4009: auxiliary wiring, 4010: insulating layer, 4011: sealing substrate, 4012: sealing material, 4013: desiccant, 4015: diffusion plate, 4200: lighting device, 4201: substrate, 4202: light emitting element, 4204: first electrode, 4205: EL layer, 4206: second electrode, 4207: electrode, 4208: electrode, 4209: auxiliary wiring, 4210: insulating layer , 4211: sealing substrate, 4212: sealing material, 4213: barrier film, 4214: flattening film, 4215: diffusion plate, 5101: light, 5102: wheel, 5103: door, 5104: display portion, 5105: handle, 5106 : Shift lever, 5107: Seat, 5108: Inner rear view mirror, 7000: Housing, 7001: Table Display portion 7002: second display portion 7003: speaker 7004: LED lamp 7005: operation key 7006: connection terminal 7007: sensor 7008: microphone 7009: switch 7010: infrared port 7011: recording medium Reading unit 7012: Support unit 7013: Earphone, 7014: Antenna, 7015: Shutter button, 7016: Image receiving unit, 7018: Stand, 7020: Camera, 7021: External connection unit, 7022, 7023: Operation button, 7024: Connection terminal, 7025: Band, 7026: Microphone, 7027: Icon indicating time, 7028: Other icon, 7029: Sensor, 7030: Speaker, 7052, 7053, 7054: Information, 9310: Personal Digital Assistant, 9311: Display Department 9 12: display area, 9313: Hinge, 9315: casing,

Claims (16)

  1.  一般式(G1)で表される有機金属錯体。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(G1)中、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、環を形成する炭素数が5~7の置換もしくは無置換のシクロアルキル基、環を形成する炭素数が6~13の置換もしくは無置換のアリール基、または環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基のいずれかを表す。また、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、環を形成する炭素数が6~13の置換もしくは無置換のアリール基、環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基、またはシアノ基のいずれかを表し、少なくとも一は、シアノ基を表す。また、Lは、モノアニオン性の配位子を表す。また、nは、1乃至3の整数を表す。)
    An organometallic complex represented by General Formula (G1).
    Figure JPOXMLDOC01-appb-C000001
    (In the general formula (G1), R 1 to R 4 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 5 to 7 carbon atoms which forms a ring, the number of carbon atoms carbon atoms in a ring to form a 6 substituted or unsubstituted aryl group having to 13 or ring, represents one of a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms. also, R 5 - R 9 independently represents hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a substituent having 3 to 12 carbon atoms forming the ring Or at least one represents a cyano group, and L represents a monoanionic ligand, and n is 1 to 3. Represents an integer)
  2.  一般式(G1)で表される有機金属錯体。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(G1)中、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、環を形成する炭素数が5~7の置換もしくは無置換のシクロアルキル基、環を形成する炭素数が6~13の置換もしくは無置換のアリール基、または環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基のいずれかを表す。また、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、環を形成する炭素数が6~13の置換もしくは無置換のアリール基、環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基、またはシアノ基のいずれかを表す。また、R~Rのいずれか一は、シアノ基を表す。また、Lは、モノアニオン性の配位子を表す。また、nは、1乃至3の整数を表す。)
    An organometallic complex represented by General Formula (G1).
    Figure JPOXMLDOC01-appb-C000002
    (In the general formula (G1), R 1 to R 4 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 5 to 7 carbon atoms which forms a ring, the number of carbon atoms carbon atoms in a ring to form a 6 substituted or unsubstituted aryl group having to 13 or ring, represents one of a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms. also, R 5 - R 9 independently represents hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a substituent having 3 to 12 carbon atoms forming the ring Or a substituted heteroaryl group or a cyano group, and any one of R 6 to R 8 represents a cyano group, and L represents a monoanionic ligand. And n represents an integer of 1 to 3.)
  3.  請求項1または請求項2において、
     前記nは、2である有機金属錯体。
    In claim 1 or claim 2,
    The organometallic complex wherein n is 2.
  4.  請求項1乃至請求項3のいずれか一において、
     前記モノアニオン性の配位子は、β−ジケトン構造を有するモノアニオン性の二座キレート配位子、カルボキシル基を有するモノアニオン性の二座キレート配位子、フェノール性水酸基を有するモノアニオン性の二座キレート配位子、二つの配位元素がいずれも窒素であるモノアニオン性の二座キレート配位子、またはシクロメタル化によりイリジウムと金属−炭素結合を形成する芳香族複素環二座配位子のいずれか一である有機金属錯体。
    In any one of claims 1 to 3,
    The monoanionic ligand is a monoanionic bidentate chelate ligand having a β-diketone structure, a monoanionic bidentate chelate ligand having a carboxyl group, a monoanionic property having a phenolic hydroxyl group , A monoanionic bidentate chelate ligand in which both coordination elements are nitrogen, or an aromatic heterocyclic bidentate which forms a metal-carbon bond with iridium by cyclometalation An organometallic complex which is any one of ligands.
  5.  請求項1乃至請求項3のいずれか一において、
     前記モノアニオン性の配位子は、下記一般式(L1)~(L8)のいずれか一である有機金属錯体。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R71~R77およびR87~R131は、それぞれ独立に水素、炭素数1~6のアルキル基、環を形成する炭素数が5~7の置換もしくは無置換のシクロアルキル基、ハロゲン基、ビニル基、置換もしくは無置換の炭素数1~6のハロアルキル基、置換もしくは無置換の炭素数1~6のアルコキシ基、置換もしくは無置換の炭素数1~6のアルキルチオ基、または環を形成する炭素数が6~13の置換もしくは無置換のアリール基を表す。また、A~Aは、それぞれ独立に窒素もしくは水素と結合するsp混成炭素、または置換基を有するsp混成炭素を表し、前記置換基は炭素数1~6のアルキル基、ハロゲン基、炭素数1~6のハロアルキル基、または置換もしくは無置換のフェニル基のいずれかを表す。)
    In any one of claims 1 to 3,
    An organometallic complex in which the monoanionic ligand is any one of the following general formulas (L1) to (L8).
    Figure JPOXMLDOC01-appb-C000003
    (Wherein, R 71 to R 77 and R 87 to R 131 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 5 to 7 carbon atoms forming a ring A halogen group, a vinyl group, a substituted or unsubstituted haloalkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 6 carbon atoms, a substituted or unsubstituted alkylthio group having 1 to 6 carbon atoms, or A substituted or unsubstituted aryl group having 6 to 13 carbon atoms which forms a ring, or A 1 to A 3 are sp 2 hybrid carbons independently bonded to nitrogen or hydrogen, or sp having a substituent. 2 represents a mixed carbon, and the substituent represents an alkyl group having 1 to 6 carbon atoms, a halogen group, a haloalkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted phenyl group.)
  6.  請求項1または請求項2において、
     前記nは、3である有機金属錯体。
    In claim 1 or claim 2,
    The organometallic complex in which n is 3.
  7.  一般式(G2)で表される有機金属錯体。
    Figure JPOXMLDOC01-appb-C000004
    (一般式(G2)中、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、環を形成する炭素数が5~7の置換もしくは無置換のシクロアルキル基、環を形成する炭素数が6~13の置換もしくは無置換のアリール基、環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基のいずれかを表す。また、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、環を形成する炭素数が6~13の置換もしくは無置換のアリール基、環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基、シアノ基のいずれかを表し、少なくとも一は、シアノ基を表す。また、R71およびR73は、それぞれ独立に水素、炭素数1~6のアルキル基、環を形成する炭素数が5~7の置換もしくは無置換のシクロアルキル基、ハロゲン基、ビニル基、置換もしくは無置換の炭素数1~6のハロアルキル基、置換もしくは無置換の炭素数1~6のアルコキシ基、置換もしくは無置換の炭素数1~6のアルキルチオ基、または環を形成する炭素数が6~13の置換もしくは無置換のアリール基を表す。)
    An organometallic complex represented by General Formula (G2).
    Figure JPOXMLDOC01-appb-C000004
    (In the general formula (G2), R 1 to R 4 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 5 to 7 carbon atoms forming a ring, R 5 to R represent a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms forming the ring. 9 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, a substitution or 3 to 12 carbon atoms forming the ring R 71 and R 73 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, or a ring, each of which represents a cyano group. Or substituted carbon atoms having 5 to 7 carbon atoms Aroalkyl group, a halogen group, a vinyl group, a substituted or unsubstituted haloalkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 6 carbon atoms, a substituted or unsubstituted alkylthio group having 1 to 6 carbon atoms Or a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring)
  8.  一般式(G2)で表される有機金属錯体。
    Figure JPOXMLDOC01-appb-C000005
    (一般式(G2)中、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、環を形成する炭素数が5~7の置換もしくは無置換のシクロアルキル基、環を形成する炭素数が6~13の置換もしくは無置換のアリール基、または環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基のいずれかを表す。また、R~Rは、それぞれ独立に、水素、炭素数1~6のアルキル基、環を形成する炭素数が6~13の置換もしくは無置換のアリール基、環を形成する炭素数が3~12の置換もしくは無置換のヘテロアリール基、またはシアノ基のいずれかを表す。また、R~Rのいずれか一は、シアノ基を表す。また、R71およびR73は、それぞれ独立に水素、炭素数1~6のアルキル基、環を形成する炭素数が5~7の置換もしくは無置換のシクロアルキル基、ハロゲン基、ビニル基、置換もしくは無置換の炭素数1~6のハロアルキル基、置換もしくは無置換の炭素数1~6のアルコキシ基、置換もしくは無置換の炭素数1~6のアルキルチオ基、または環を形成する炭素数が6~13の置換もしくは無置換のアリール基を表す。)
    An organometallic complex represented by General Formula (G2).
    Figure JPOXMLDOC01-appb-C000005
    (In the general formula (G2), R 1 to R 4 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted cycloalkyl group having 5 to 7 carbon atoms forming a ring, the number of carbon atoms carbon atoms in a ring to form a 6 substituted or unsubstituted aryl group having to 13 or ring, represents one of a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms. also, R 5 - R 9 independently represents hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms forming the ring, or a substituent having 3 to 12 carbon atoms forming the ring Or a substituted or unsubstituted heteroaryl group or a cyano group, and any one of R 6 to R 8 represents a cyano group, and R 71 and R 73 each independently represent hydrogen or carbon; The alkyl group of the number 1-6, the carbon number which forms a ring is 5 To 7 substituted or unsubstituted cycloalkyl group, halogen group, vinyl group, substituted or unsubstituted haloalkyl group having 1 to 6 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 6 carbon atoms, substituted or unsubstituted group Or an alkylthio group having 1 to 6 carbon atoms or a substituted or unsubstituted aryl group having 6 to 13 carbon atoms which forms a ring).
  9.  下記構造式(100)で表される有機金属錯体。
    Figure JPOXMLDOC01-appb-C000006
    An organometallic complex represented by the following structural formula (100).
    Figure JPOXMLDOC01-appb-C000006
  10.  請求項1乃至請求項9のいずれか一に記載の有機金属錯体を用いた発光素子。 A light emitting device using the organometallic complex according to any one of claims 1 to 9.
  11.  一対の電極間にEL層を有し、
     前記EL層は、請求項1乃至請求項9のいずれか一に記載の有機金属錯体を有する発光素子。
    Has an EL layer between a pair of electrodes,
    A light emitting device comprising the organometallic complex according to any one of claims 1 to 9, wherein the EL layer.
  12.  一対の電極間にEL層を有し、
     前記EL層は、発光層を有し、
     前記発光層は、請求項1乃至請求項9のいずれか一に記載の有機金属錯体を有する発光素子。
    Has an EL layer between a pair of electrodes,
    The EL layer has a light emitting layer,
    A light emitting device comprising the organometallic complex according to any one of claims 1 to 9, wherein the light emitting layer.
  13.  一対の電極間にEL層を有し、
     前記EL層は、発光層を有し、
     前記発光層は、複数の有機化合物を有し、
     前記複数の有機化合物のうち一は、請求項1乃至請求項9のいずれか一に記載の有機金属錯体である発光素子。
    Has an EL layer between a pair of electrodes,
    The EL layer has a light emitting layer,
    The light emitting layer comprises a plurality of organic compounds,
    A light emitting device in which one of the plurality of organic compounds is the organometallic complex according to any one of claims 1 to 9.
  14.  請求項10乃至請求項13のいずれか一に記載の発光素子と、
    トランジスタ、または基板と、
    を有する発光装置。
    A light emitting element according to any one of claims 10 to 13;
    A transistor, or a substrate,
    A light emitting device having
  15.  請求項14に記載の発光装置と、
     マイク、カメラ、操作用ボタン、外部接続部、または、スピーカと、
    を有する電子機器。
    A light emitting device according to claim 14;
    Microphone, camera, operation button, external connection unit, or speaker
    Electronic equipment having.
  16.  請求項14に記載の発光装置と、
     筐体、カバー、または、支持台と、
    を有する照明装置。
    A light emitting device according to claim 14;
    A housing, a cover, or a support,
    A lighting device having
PCT/IB2018/058759 2017-11-17 2018-11-08 Organic compound, light-emitting element, light-emitting device, electronic device, and illumination device WO2019097361A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880074106.2A CN111727192A (en) 2017-11-17 2018-11-08 Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
JP2019554055A JP7275042B2 (en) 2017-11-17 2018-11-08 Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
KR1020207016179A KR20200088367A (en) 2017-11-17 2018-11-08 Organic compounds, light emitting elements, light emitting devices, electronic devices, and lighting devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017221650 2017-11-17
JP2017-221650 2017-11-17

Publications (2)

Publication Number Publication Date
WO2019097361A1 true WO2019097361A1 (en) 2019-05-23
WO2019097361A8 WO2019097361A8 (en) 2020-08-20

Family

ID=66538945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/058759 WO2019097361A1 (en) 2017-11-17 2018-11-08 Organic compound, light-emitting element, light-emitting device, electronic device, and illumination device

Country Status (4)

Country Link
JP (1) JP7275042B2 (en)
KR (1) KR20200088367A (en)
CN (1) CN111727192A (en)
WO (1) WO2019097361A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149030A (en) * 2010-10-22 2012-08-09 Semiconductor Energy Lab Co Ltd Organometallic complex, light-emitting element, light-emitting device, electronic device and lighting device
CN104610370A (en) * 2015-01-12 2015-05-13 苏州大学 Iridium complex containing 4-phenylpyrimidine structure and application of iridium complex

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009023938A (en) 2007-07-19 2009-02-05 Showa Denko Kk Iridium complex compound, organic electroluminescent device and use thereof
JP5530695B2 (en) * 2008-10-23 2014-06-25 株式会社半導体エネルギー研究所 Organometallic complex, light emitting element, and electronic device
KR20100047466A (en) * 2008-10-29 2010-05-10 다우어드밴스드디스플레이머티리얼 유한회사 Novel compounds for electronic material and organic electronic device using the same
KR20140078683A (en) * 2011-09-30 2014-06-25 유디씨 아일랜드 리미티드 Organic electroluminescent element and novel iridium complex
US9960371B2 (en) * 2015-12-18 2018-05-01 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149030A (en) * 2010-10-22 2012-08-09 Semiconductor Energy Lab Co Ltd Organometallic complex, light-emitting element, light-emitting device, electronic device and lighting device
CN104610370A (en) * 2015-01-12 2015-05-13 苏州大学 Iridium complex containing 4-phenylpyrimidine structure and application of iridium complex

Also Published As

Publication number Publication date
KR20200088367A (en) 2020-07-22
WO2019097361A8 (en) 2020-08-20
JPWO2019097361A1 (en) 2020-12-03
JP7275042B2 (en) 2023-05-17
CN111727192A (en) 2020-09-29

Similar Documents

Publication Publication Date Title
JP7247388B2 (en) Compound
KR102579973B1 (en) Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
JP7144161B2 (en) organic compounds, light-emitting elements, light-emitting devices, electronic devices, and lighting devices
JP7143310B2 (en) organic compounds, light-emitting elements, light-emitting devices, electronic devices, and lighting devices
JP2018052929A (en) Organometallic complex, light-emitting element, light-emitting device, electronic apparatus, and lighting device
JP7170930B1 (en) Light-emitting device, light-emitting device, electronic device, and lighting device
JP2019189540A (en) Organic compound, light emitting element, light emitting device, electronic apparatus, and illumination device
WO2019229584A1 (en) Organic compound, light-emitting element, light-emitting device, electronic equipment, and lighting device
JPWO2020026088A1 (en) Light emitting elements, light emitting devices, electronic devices, and lighting devices
WO2020136496A1 (en) Organic compound, light-emitting device, light-emitting apparatus, electronic instrument, and illumination apparatus
WO2020121097A1 (en) Light emitting device, light emitting apparatus, electronic device and lighting device
JP7275042B2 (en) Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
JP2019127483A (en) Organic compound, light-emitting element, light-emitting device, electronic apparatus, and lighting device
JP7287953B2 (en) Organometallic complex, light-emitting device, light-emitting device, electronic device, and lighting device
JPWO2019097361A6 (en) Organic compounds, light emitting elements, light emitting devices, electronic devices, and lighting devices
WO2020058811A1 (en) Organic compound, light-emitting device, light-emitting equipment, electronic device, and illumination device
WO2020109922A1 (en) Composition for light emitting devices
WO2018189623A1 (en) Organic metal complex, light emitting element, light emitting device, electronic device, and lighting device
WO2019012373A1 (en) Organic compound, light-emitting element, light-emitting device, electronic device, and illumination device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879485

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019554055

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207016179

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18879485

Country of ref document: EP

Kind code of ref document: A1