WO2018189623A1 - Organic metal complex, light emitting element, light emitting device, electronic device, and lighting device - Google Patents

Organic metal complex, light emitting element, light emitting device, electronic device, and lighting device Download PDF

Info

Publication number
WO2018189623A1
WO2018189623A1 PCT/IB2018/052309 IB2018052309W WO2018189623A1 WO 2018189623 A1 WO2018189623 A1 WO 2018189623A1 IB 2018052309 W IB2018052309 W IB 2018052309W WO 2018189623 A1 WO2018189623 A1 WO 2018189623A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
abbreviation
layer
phenyl
emitting element
Prior art date
Application number
PCT/IB2018/052309
Other languages
French (fr)
Japanese (ja)
Inventor
山口知也
吉住英子
渡部剛吉
渡部智美
瀬尾哲史
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to JP2019512043A priority Critical patent/JPWO2018189623A1/en
Publication of WO2018189623A1 publication Critical patent/WO2018189623A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/06Electrode terminals

Definitions

  • One embodiment of the present invention relates to an organometallic complex.
  • the present invention relates to an organometallic complex that can convert energy in a triplet excited state into light emission.
  • the present invention relates to a light-emitting element, a light-emitting device, an electronic device, and a lighting device each using an organometallic complex.
  • one embodiment of the present invention is not limited to the above technical field.
  • the technical field of one embodiment of the invention disclosed in this specification and the like relates to an object, a method, or a manufacturing method.
  • one embodiment of the present invention relates to a process, a machine, a manufacture, or a composition (composition of matter).
  • a semiconductor device, a display device, a liquid crystal display device, and the like can be given as examples.
  • a light-emitting element (also referred to as an organic EL element) having an organic compound that is a light-emitting substance between a pair of electrodes has characteristics such as thin and light weight, high-speed response, and low-voltage driving. It is attracting attention as a flat panel display.
  • this light-emitting element when a voltage is applied, electrons and holes injected from the electrode are recombined, whereby the light-emitting substance enters an excited state, and emits light when the excited state returns to the ground state.
  • the types of excited states include a singlet excited state (S * ) and a triplet excited state (T * ). Light emitted from the singlet excited state is fluorescent, and light emitted from the triplet excited state is phosphorescent. being called.
  • fluorescent compounds fluorescent materials
  • phosphorescent material phosphorescent material
  • the theoretical limit of the internal quantum efficiency (ratio of photons generated with respect to injected carriers) in a light emitting device using each of the above light emitting substances is limited when a fluorescent material is used. Is 25%, and is 75% when a phosphorescent material is used.
  • a novel organometallic complex is provided.
  • a novel organometallic complex with high emission efficiency is provided.
  • Another embodiment of the present invention provides a novel organometallic complex that can be used for a light-emitting element.
  • Another embodiment of the present invention provides a novel organometallic complex that can be used for an EL layer of a light-emitting element.
  • a novel light-emitting element is provided.
  • a novel light-emitting device, a novel electronic device, or a novel lighting device is provided. Note that the description of these problems does not disturb the existence of other problems. Note that one embodiment of the present invention does not necessarily have to solve all of these problems. Issues other than these will be apparent from the description of the specification, drawings, claims, etc., and other issues can be extracted from the descriptions of the specification, drawings, claims, etc. It is.
  • One embodiment of the present invention is an organometallic complex including an imidazolyl skeleton containing a carbene carbon, a ligand having a triazine skeleton, and iridium.
  • Another embodiment of the present invention is an organometallic complex represented by General Formula (G1) below.
  • R 1 to R 8 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted monocyclic saturated hydrocarbon having 5 to 7 carbon atoms, substituted or It represents an unsubstituted polycyclic saturated hydrocarbon having 7 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, or a cyano group.
  • R 1 and R 2 may form a ring structure by a substituted or unsubstituted saturated or unsaturated condensed ring, and the ring structure is either a hydrocarbon ring compound or a heterocyclic compound .
  • Another embodiment of the present invention is an organometallic complex represented by General Formula (G2) below.
  • R 3 to R 12 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted monocyclic saturated hydrocarbon having 5 to 7 carbon atoms, substituted or It represents an unsubstituted polycyclic saturated hydrocarbon having 7 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, or a cyano group.
  • A, b, c, and d are either carbon or nitrogen.
  • Another embodiment of the present invention is an organometallic complex represented by General Formula (G3) below.
  • R 3 to R 8 and R 13 to R 16 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted monocyclic group having 5 to 7 carbon atoms. It represents a saturated hydrocarbon, a substituted or unsubstituted polycyclic saturated hydrocarbon having 7 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, or a cyano group.
  • the organometallic complex which is one embodiment of the present invention described above includes an imidazolyl skeleton containing a carbene carbon, a ligand having a triazine skeleton, and iridium.
  • the triazine skeleton has an electron donating property due to an excess of ⁇ electrons. That is, since electrons are donated from triazine to Ir, HOMO-LUMO can be lowered. Accordingly, carrier injectability can be improved, and thus, driving voltage of the light-emitting element can be reduced by using the light-emitting element.
  • the conjugation spreads by introducing triazine, the spectrum can be shifted by a long wavelength, and a desired emission color can be obtained. Note that a long wavelength shift of the spectrum is synonymous with a decrease in excitation energy, and the ratio of non-radiative deactivation is decreased due to this, so that the quantum yield can be increased.
  • Another embodiment of the present invention is an organometallic complex represented by the following structural formula (100).
  • the organometallic complex which is one embodiment of the present invention can emit phosphorescence, that is, energy in a triplet excited state can be converted into light emission, high efficiency can be obtained by application to a light-emitting element. Is possible and is very effective. Therefore, a light-emitting element using the organometallic complex which is one embodiment of the present invention is included in one embodiment of the present invention.
  • Another embodiment of the present invention includes an EL layer between a pair of electrodes, the EL layer includes a light-emitting layer, and the light-emitting layer includes any of the organometallic complexes described above. It is.
  • Another embodiment of the present invention includes an EL layer between a pair of electrodes, the EL layer includes a light-emitting layer, the light-emitting layer includes a plurality of organic compounds, and the plurality of organic compounds.
  • One is a light-emitting element having any of the organometallic complexes described above.
  • one embodiment of the present invention includes not only a light-emitting device having a light-emitting element but also a lighting device having a light-emitting device. Therefore, the light-emitting device in this specification refers to an image display device or a light source (including a lighting device).
  • a connector having a light emitting device such as an FPC (Flexible Printed Circuit) or TCP (Tape Carrier Package), a module having a printed wiring board provided on the end of TCP, or a COG (Chip On Glass) on the light emitting element
  • the light emitting device also includes all modules on which IC (integrated circuit) is directly mounted by the method.
  • a novel organometallic complex can be provided.
  • a novel organometallic complex with high emission efficiency can be provided.
  • a novel organometallic complex that can be used for a light-emitting element can be provided.
  • a novel organometallic complex that can be used for an EL layer of a light-emitting element can be provided.
  • a novel light-emitting element using a novel organometallic complex can be provided.
  • a novel light-emitting device, a novel electronic device, or a novel lighting device can be provided. Note that the description of these effects does not disturb the existence of other effects.
  • FIG. 4A and 4B illustrate a structure of a light-emitting element.
  • FIG. 6 illustrates a light-emitting device.
  • FIG. 6 illustrates a light-emitting device.
  • 6A and 6B illustrate electronic devices.
  • 6A and 6B illustrate electronic devices.
  • 1 H-NMR chart of an organometallic complex [fac-Ir (5tznpmb) 3 ]).
  • the ultraviolet-visible absorption spectrum and emission spectrum of an organometallic complex [fac-Ir (5tznpmb) 3 ]
  • 1 H-NMR chart of an organometallic complex [mer-Ir (5tznpmb) 3 ]).
  • the ultraviolet-visible absorption spectrum and emission spectrum of an organometallic complex [mer-Ir (5tznpmb) 3 ]).
  • 3A and 3B illustrate a light-emitting element.
  • FIG. 9 shows an emission spectrum of the light-emitting element 1.
  • the organometallic complex described in this embodiment includes a ligand having an imidazolyl skeleton including a carbene carbon and a triazine skeleton, and iridium, and has a structure represented by the following general formula (G1).
  • R 1 to R 8 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted monocyclic saturated hydrocarbon having 5 to 7 carbon atoms, substituted or It represents an unsubstituted polycyclic saturated hydrocarbon having 7 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, or a cyano group.
  • R 1 and R 2 may form a ring structure by a substituted or unsubstituted saturated or unsaturated condensed ring, and the ring structure is either a hydrocarbon ring compound or a heterocyclic compound .
  • the organometallic complex described in this embodiment is represented by the following general formula (G2).
  • R 3 to R 12 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted monocyclic saturated hydrocarbon having 5 to 7 carbon atoms, substituted or It represents an unsubstituted polycyclic saturated hydrocarbon having 7 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, or a cyano group.
  • A, b, c, and d are either carbon or nitrogen.
  • the organometallic complex described in this embodiment is represented by the following general formula (G3).
  • R 3 to R 8 and R 13 to R 16 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted monocyclic group having 5 to 7 carbon atoms. It represents a saturated hydrocarbon, a substituted or unsubstituted polycyclic saturated hydrocarbon having 7 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, or a cyano group.
  • the substituent is a methyl group Alkyl group having 1 to 6 carbon atoms such as ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, cyclopentyl group, cyclohexyl group, C5-C7 cycloalkyl group such as cycloheptyl group, 8,9,10-trinorbornanyl group, C6-C12 such as phenyl group, naphthyl group and biphenyl group Aryl groups, and the like.
  • Alkyl group having 1 to 6 carbon atoms such as ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, cyclopentyl group,
  • alkyl group having 1 to 6 carbon atoms in the general formulas (G1) to (G3) include methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, isobutyl group, tert-butyl group, pentyl group, isopentyl group, sec-pentyl group, tert-pentyl group, neopentyl group, hexyl group, isohexyl group, 3-methylpentyl group, 2-methylpentyl group, 2-ethylbutyl group, 1,2 -A dimethylbutyl group, a 2, 3- dimethylbutyl group, etc. are mentioned.
  • Specific examples of the monocyclic saturated hydrocarbon having 5 to 7 carbon atoms in the general formulas (G1) to (G3) include a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a 2-methylcyclohexyl group, and the like. It is done.
  • polycyclic saturated hydrocarbon having 7 to 10 carbon atoms in the general formulas (G1) to (G3) include 8,9,10-trinorbornanyl group, decahydronaphthyl group, and adamantyl group. Etc.
  • aryl group having 6 to 13 carbon atoms in the general formulas (G1) to (G3) include phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, mesityl group, o- Biphenyl group, m-biphenyl group, p-biphenyl group, 1-naphthyl group, 2-naphthyl group, fluorenyl group and the like can be mentioned.
  • the organometallic complex which is one embodiment of the present invention represented by the above general formulas (G1) to (G3) includes an imidazolyl skeleton containing a carbene carbon, a ligand having a triazine skeleton, and iridium.
  • the triazine skeleton has an electron donating property due to an excess of ⁇ electrons. That is, since electrons are donated from triazine to Ir, HOMO-LUMO can be lowered. Accordingly, carrier injectability can be improved, and thus, driving voltage of the light-emitting element can be reduced by using the light-emitting element.
  • the conjugation spreads by introducing triazine, the spectrum can be shifted by a long wavelength, and a desired emission color can be obtained.
  • a long wavelength shift of the spectrum is synonymous with a decrease in excitation energy, and the ratio of non-radiative deactivation is decreased due to this, so that the quantum yield can be increased.
  • organometallic complex represented by the structural formulas (100) to (122) is an example included in the organometallic complex that is one embodiment of the present invention, and the organometallic complex that is one embodiment of the present invention is It is not limited to this.
  • X 1 is halogen
  • R 1 to R 8 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted monocyclic saturated hydrocarbon having 5 to 7 carbon atoms.
  • R 1 and R 2 may form a ring structure by a substituted or unsubstituted saturated or unsaturated condensed ring, and the ring structure is either a hydrocarbon ring compound or a heterocyclic compound.
  • an imidazolium salt derivative represented by the general formula (G0) is obtained by coupling an imidazole derivative (a1-1) and a halogenated benzene compound (a2-1) as shown in the following synthesis scheme (A1). Thereafter, it can be obtained by reacting with a halide.
  • X 1 and X 2 are halogen
  • R 1 to R 8 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted monocyclic group having 5 to 7 carbon atoms It represents any one of the formula saturated hydrocarbon, a substituted or unsubstituted polycyclic saturated hydrocarbon having 7 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, and a cyano group.
  • R 1 and R 2 may form a ring structure by a substituted or unsubstituted saturated or unsaturated condensed ring, and the ring structure is either a hydrocarbon ring compound or a heterocyclic compound.
  • an imidazolium salt derivative represented by the general formula (G0) can be obtained by using a boronic acid (a1-2) of an imidazole derivative and a halide (a2) of a triazine. -2) and then reacting with a halide.
  • B is boronic acid, boronic acid ester or cyclic triol borate salt
  • X 1 and X 3 are halogen
  • R 1 to R 8 are each independently hydrogen, alkyl having 1 to 6 carbon atoms Group, substituted or unsubstituted monocyclic saturated hydrocarbon having 5 to 7 carbon atoms, substituted or unsubstituted polycyclic saturated hydrocarbon having 7 to 10 carbon atoms, or substituted or unsubstituted hydrocarbon having 6 to 13 carbon atoms It represents either an aryl group or a cyano group.
  • R 1 and R 2 may form a ring structure by a substituted or unsubstituted saturated or unsaturated condensed ring, and the ring structure is either a hydrocarbon ring compound or a heterocyclic compound.
  • an imidazolium salt derivative represented by the general formula (G0) can be obtained by reacting a benzene derivative-substituted diamine (a1-3) with a halide as shown in the synthesis scheme (A3). It can also be obtained.
  • A is hydrogen, an alkyl group or ammonium
  • X 1 is halogen
  • R 1 to R 8 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted carbon number Either a monocyclic saturated hydrocarbon of 5 to 7, a substituted or unsubstituted polycyclic saturated hydrocarbon having 7 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, or a cyano group
  • R 1 and R 2 may form a ring structure by a substituted or unsubstituted saturated or unsaturated condensed ring, and the ring structure is either a hydrocarbon ring compound or a heterocyclic compound.
  • an iridium compound containing halogen such as iridium chloride hydrate, chloro (1,5-cyclooctadiene) iridium (I) dimer), silver (I) oxide, And an imidazolium salt derivative represented by the general formula (G0), and then dissolved in an alcohol solvent (glycerol, ethylene glycol, 2-methoxyethanol, 2-ethoxyethanol, etc.) or a halogen solvent (chlorobenzene) Then, the organometallic complex represented by the general formula (G1) is obtained by heating.
  • halogen such as iridium chloride hydrate, chloro (1,5-cyclooctadiene) iridium (I) dimer
  • silver (I) oxide silver oxide
  • an imidazolium salt derivative represented by the general formula (G0) an imidazolium salt derivative represented by the general formula (G0)
  • an alcohol solvent glycerol, ethylene glycol, 2-methoxyethanol, 2-ethoxyethanol
  • X 1 is halogen
  • R 1 to R 8 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted monocyclic saturated hydrocarbon having 5 to 7 carbon atoms.
  • R 1 and R 2 may form a ring structure by a substituted or unsubstituted saturated or unsaturated condensed ring, and the ring structure is either a hydrocarbon ring compound or a heterocyclic compound.
  • the present invention is not limited to this and may be synthesized by any other synthesis method.
  • organometallic complex which is one embodiment of the present invention described above can emit phosphorescence, and thus can be used as a light-emitting material or a light-emitting substance of a light-emitting element.
  • a light-emitting element, a light-emitting device, an electronic device, or a lighting device with high emission efficiency can be realized.
  • a light-emitting element, a light-emitting device, an electronic device, or a lighting device with low power consumption can be realized.
  • Embodiment 2 In this embodiment, a light-emitting element using the organometallic complex described in Embodiment 1 will be described with reference to FIGS.
  • FIG. 1A illustrates a light-emitting element having an EL layer including a light-emitting layer between a pair of electrodes. Specifically, the EL layer 103 is sandwiched between the first electrode 101 and the second electrode 102.
  • FIG. 1B a plurality of (two layers in FIG. 1B) EL layers (103a and 103b) are provided between a pair of electrodes, and the charge generation layer 104 is provided between the EL layers.
  • 1 illustrates a light-emitting element having a stacked structure (tandem structure).
  • a light-emitting element having a tandem structure can realize a light-emitting device that can be driven at a low voltage and has low power consumption.
  • the charge generation layer 104 injects electrons into one EL layer (103a or 103b) and the other EL layer (103b or 103a). It has a function of injecting holes. Therefore, in FIG. 1B, when a voltage is applied to the first electrode 101 so that the potential is higher than that of the second electrode 102, electrons are injected from the charge generation layer 104 into the EL layer 103a, and the EL layer 103b. Holes are injected into this.
  • the charge generation layer 104 has a property of transmitting visible light in terms of light extraction efficiency (specifically, the visible light transmittance of the charge generation layer 104 is 40% or more). preferable. In addition, the charge generation layer 104 functions even when it has lower conductivity than the first electrode 101 or the second electrode 102.
  • FIG. 1C illustrates a stacked structure of the EL layer 103 of the light-emitting element which is one embodiment of the present invention.
  • the first electrode 101 functions as an anode.
  • the EL layer 103 has a structure in which a hole injection layer 111, a hole transport layer 112, a light-emitting layer 113, an electron transport layer 114, and an electron injection layer 115 are sequentially stacked over the first electrode 101.
  • a hole injection layer 111, a hole transport layer 112, a light-emitting layer 113, an electron transport layer 114, and an electron injection layer 115 are sequentially stacked over the first electrode 101.
  • each EL layer is sequentially stacked from the anode side as described above.
  • the stacking order is reversed.
  • Each of the light-emitting layers 113 included in the EL layers (103, 103a, and 103b) includes a light-emitting substance and a plurality of substances as appropriate in combination, so that fluorescent light emission or phosphorescence light emission having a desired light emission color can be obtained. be able to.
  • the light-emitting layer 113 may have a stacked structure with different emission colors. Note that in this case, different materials may be used for the light-emitting substance and other substances used for the stacked light-emitting layers. Alternatively, different light emission colors may be obtained from the plurality of EL layers (103a and 103b) illustrated in FIG. In this case as well, the light-emitting substance and other substances used for each light-emitting layer may be different materials.
  • the first electrode 101 illustrated in FIG. 1C is used as a reflective electrode
  • the second electrode 102 is used as a semi-transmissive / semi-reflective electrode
  • a micro optical resonator is used.
  • the (microcavity) structure light emission obtained from the light-emitting layer 113 included in the EL layer 103 can resonate between both electrodes, and light emission obtained from the second electrode 102 can be strengthened.
  • the first electrode 101 of the light-emitting element is a reflective electrode having a stacked structure of a reflective conductive material and a light-transmitting conductive material (transparent conductive film)
  • a film of the transparent conductive film Optical adjustment can be performed by controlling the thickness.
  • the distance between the first electrode 101 and the second electrode 102 is near m ⁇ / 2 (where m is a natural number) with respect to the wavelength ⁇ of light obtained from the light-emitting layer 113. It is preferable to adjust as follows.
  • an optical distance from the first electrode 101 to a region (light emitting region) where the desired light of the light emitting layer 113 can be obtained an optical distance from the first electrode 101 to a region (light emitting region) where the desired light of the light emitting layer 113 can be obtained.
  • the optical distance from the second electrode 102 to the region (light emitting region) where desired light can be obtained from the light emitting layer 113 is adjusted to be close to (2m ′ + 1) ⁇ / 4 (where m ′ is a natural number). It is preferable to do this.
  • the light emitting region herein refers to a recombination region between holes and electrons in the light emitting layer 113.
  • the spectrum of specific monochromatic light obtained from the light emitting layer 113 can be narrowed, and light emission with good color purity can be obtained.
  • the optical distance between the first electrode 101 and the second electrode 102 is strictly the total thickness from the reflective region of the first electrode 101 to the reflective region of the second electrode 102. it can. However, since it is difficult to precisely determine the reflection region in the first electrode 101 or the second electrode 102, it is assumed that any position of the first electrode 101 and the second electrode 102 is the reflection region. The above-mentioned effect can be sufficiently obtained. Strictly speaking, the optical distance between the first electrode 101 and the light emitting layer from which desired light can be obtained is the optical distance between the reflective region in the first electrode 101 and the light emitting region in the light emitting layer from which desired light can be obtained. It can be said that it is a distance.
  • any position of the first electrode 101 can be set as the reflection region, the desired region. It is assumed that the above-described effect can be sufficiently obtained by assuming an arbitrary position of the light emitting layer from which light is obtained as a light emitting region.
  • the light-emitting element illustrated in FIG. 1C has a microcavity structure, light having different wavelengths (monochromatic light) can be extracted even when the light-emitting element has the same EL layer. Accordingly, there is no need for separate coloring (for example, RGB) for obtaining different emission colors. Therefore, it is easy to realize high definition. A combination with a colored layer (color filter) is also possible. Furthermore, since it is possible to increase the emission intensity of the specific wavelength in the front direction, it is possible to reduce power consumption.
  • the light-emitting element illustrated in FIG. 1E is an example of the light-emitting element having the tandem structure illustrated in FIG. 1B.
  • three EL layers (103a, 103b, and 103c) are charge generation layers. (104a, 104b). Note that the three EL layers (103a, 103b, and 103c) each have a light emitting layer (113a, 113b, and 113c), and the light emission colors of the light emitting layers can be freely combined.
  • the light-emitting layer 113a can be blue, the light-emitting layer 113b can be red, green, or yellow, and the light-emitting layer 113c can be blue, but the light-emitting layer 113a can be red and the light-emitting layer 113b can be blue, green, or yellow. In any case, the light emitting layer 113c may be red.
  • At least one of the first electrode 101 and the second electrode 102 includes a light-transmitting electrode (a transparent electrode, a semi-transmissive / semi-reflective electrode, or the like).
  • a light-transmitting electrode a transparent electrode
  • the transparent electrode has a visible light transmittance of 40% or more.
  • the visible light reflectance of the semi-transmissive / semi-reflective electrode is 20% to 80%, preferably 40% to 70%.
  • These electrodes preferably have a resistivity of 1 ⁇ 10 ⁇ 2 ⁇ cm or less.
  • the reflective electrode when one of the first electrode 101 and the second electrode 102 is a reflective electrode (reflective electrode), the reflective electrode is visible.
  • the light reflectance is 40% to 100%, preferably 70% to 100%.
  • the electrode preferably has a resistivity of 1 ⁇ 10 ⁇ 2 ⁇ cm or less.
  • the first electrode 101 is formed as a reflective electrode
  • the second electrode 102 is formed as a semi-transmissive / semi-reflective electrode. Therefore, a desired electrode material can be formed by using a single layer or a plurality of layers and forming a single layer or a stack. Note that the second electrode 102 is formed by selecting a material in the same manner as described above after the EL layer 103b is formed. In addition, a sputtering method or a vacuum evaporation method can be used for manufacturing these electrodes.
  • First electrode and second electrode> As materials for forming the first electrode 101 and the second electrode 102, the following materials can be used in appropriate combination as long as the functions of both electrodes described above can be satisfied.
  • a metal, an alloy, an electrically conductive compound, a mixture thereof, and the like can be used as appropriate.
  • an In—Sn oxide also referred to as ITO
  • an In—Si—Sn oxide also referred to as ITSO
  • an In—Zn oxide an In—W—Zn oxide
  • elements belonging to Group 1 or Group 2 of the periodic table of elements not exemplified above for example, lithium (Li), cesium (Cs), calcium (Ca), strontium (Sr)), europium (Eu), ytterbium Rare earth metals such as (Yb), alloys containing these in appropriate combinations, other graphene, and the like can be used.
  • the hole injection layer 111a and the hole transport layer 112a of the EL layer 103a are sequentially formed over the first electrode 101 by a vacuum evaporation method. Stacked. After the EL layer 103a and the charge generation layer 104 are formed, the hole injection layer 111b and the hole transport layer 112b of the EL layer 103b are sequentially stacked on the charge generation layer 104 in the same manner.
  • the hole injection layer (111, 111a, 111b) is a layer for injecting holes from the first electrode 101 serving as an anode or the charge generation layer (104) into the EL layers (103, 103a, 103b). , A layer containing a material having a high hole injection property.
  • Examples of the material having a high hole injection property include transition metal oxides such as molybdenum oxide, vanadium oxide, ruthenium oxide, tungsten oxide, and manganese oxide.
  • phthalocyanine compounds such as phthalocyanine (abbreviation: H 2 Pc) and copper phthalocyanine (abbreviation: CuPC), 4,4′-bis [N- (4-diphenylaminophenyl) -N-phenylamino] biphenyl ( Abbreviation: DPAB), N, N′-bis ⁇ 4- [bis (3-methylphenyl) amino] phenyl ⁇ -N, N′-diphenyl- (1,1′-biphenyl) -4,4′-diamine ( An aromatic amine compound such as abbreviation (DNTPD) or a polymer such as poly (3,4-ethylenedioxythiophene) / poly (styrenesulfonic acid) (abbreviation: PEDOT / PS
  • a composite material including a hole-transporting material and an acceptor material can also be used.
  • electrons are extracted from the hole transporting material by the acceptor material, and holes are generated in the hole injection layer (111, 111a, 111b), via the hole transporting layer (112, 112a, 112b). Holes are injected into the light emitting layer (113, 113a, 113b).
  • the hole injection layer (111, 111a, 111b) may be formed as a single layer made of a composite material including a hole transporting material and an acceptor material (electron accepting material).
  • the material and the acceptor material (electron-accepting material) may be stacked in separate layers.
  • the hole transport layer (112, 112a, 112b) is configured to transfer holes injected from the first electrode 101 or the charge generation layer (104) by the hole injection layer (111, 111a, 111b). 113a, 113b).
  • the hole transport layers (112, 112a, 112b) are layers containing a hole transport material.
  • a material having a HOMO level that is the same as or close to the HOMO level of the hole injection layer (111, 111a, 111b) should be used. Is preferred.
  • an oxide of a metal belonging to Groups 4 to 8 in the periodic table can be used.
  • Specific examples include molybdenum oxide, vanadium oxide, niobium oxide, tantalum oxide, chromium oxide, tungsten oxide, manganese oxide, and rhenium oxide.
  • molybdenum oxide is especially preferable because it is stable in the air, has a low hygroscopic property, and is easy to handle.
  • organic acceptors such as quinodimethane derivatives, chloranil derivatives, and hexaazatriphenylene derivatives can be used.
  • F 4 -TCNQ 7,7,8,8-tetracyano-2,3,5,6-tetrafluoroquinodimethane
  • chloranil 2,3,6,7,10,11 -Hexacyano-1,4,5,8,9,12-hexaazatriphenylene (abbreviation: HAT-CN) or the like
  • HAT-CN 2,3,6,7,10,11 -Hexacyano-1,4,5,8,9,12-hexaazatriphenylene
  • a hole transporting material used for the hole injection layer (111, 111a, 111b) and the hole transport layer (112, 112a, 112b) a substance having a hole mobility of 10 ⁇ 6 cm 2 / Vs or more is used. preferable. Note that other than these substances, any substance that has a property of transporting more holes than electrons can be used.
  • a ⁇ -electron rich heteroaromatic compound for example, a carbazole derivative or an indole derivative
  • an aromatic amine compound is preferable.
  • 4,4′-bis [N- (1-naphthyl) is preferable.
  • NPB or ⁇ -NPD N, N′-bis (3-methylphenyl) -N, N′-diphenyl- [1,1′-biphenyl] -4,4 '-Diamine (abbreviation: TPD), 4,4'-bis [N- (spiro-9,9'-bifluoren-2-yl) -N-phenylamino] biphenyl (abbreviation: BSPB), 4-phenyl-4 '-(9-phenylfluoren-9-yl) triphenylamine (abbreviation: BPAFLP), 4-phenyl-3'-(9-phenylfluoren-9-yl) triphenylamine (abbreviation: m BPAFLP), 4-phenyl-4 ′-(9-phenyl-9H-carbazol-3-yl) triphenylamine (abbreviation: PCBA1BP), 3-
  • poly (N-vinylcarbazole) (abbreviation: PVK), poly (4-vinyltriphenylamine) (abbreviation: PVTPA), poly [N- (4- ⁇ N ′-[4- (4-diphenylamino)] Phenyl] phenyl-N′-phenylamino ⁇ phenyl) methacrylamide] (abbreviation: PTPDMA), poly [N, N′-bis (4-butylphenyl) -N, N′-bis (phenyl) benzidine] (abbreviation: Polymer compounds such as Poly-TPD can also be used.
  • the hole transporting material is not limited to the above, and various known materials may be used alone or in combination to form a hole injection layer (111, 111a, 111b) and a hole transport layer (112, 112a, 112b). ).
  • each of the hole transport layers (112, 112a, 112b) may be formed of a plurality of layers. That is, for example, a first hole transport layer and a second hole transport layer may be laminated.
  • the light-emitting layer 113a is formed over the hole-transport layer 112a of the EL layer 103a by a vacuum evaporation method.
  • the light emitting layer 113b is formed on the hole transport layer 112b of the EL layer 103b by a vacuum evaporation method.
  • the light emitting layers (113, 113a, 113b, 113c) are layers containing a light emitting substance.
  • a substance exhibiting a luminescent color such as blue, purple, blue-violet, green, yellow-green, yellow, orange, or red is appropriately used.
  • a structure exhibiting different light emission colors for example, white light emission obtained by combining light emission colors having complementary colors
  • a stacked structure in which one light emitting layer includes different light emitting substances may be used.
  • the light emitting layer may include one or more organic compounds (host material, assist material) in addition to the light emitting substance (guest material).
  • organic compounds host material, assist material
  • guest material the one or more kinds of organic compounds, one or both of a hole transporting material and an electron transporting material described in this embodiment can be used.
  • a light-emitting substance that can be used for the light-emitting layers (113, 113a, 113b, and 113c) a light-emitting substance that changes singlet excitation energy into light emission in the visible light region, or light emission that changes triplet excitation energy into light emission in the visible light region. Substances can be used.
  • Examples of other luminescent substances include the following.
  • Examples of the light-emitting substance that converts singlet excitation energy into light emission include substances that emit fluorescence (fluorescent materials).
  • fluorescent materials include fluorescence (fluorescent materials).
  • Examples include quinoxaline derivatives, quinoxaline derivatives, pyridine derivatives, pyrimidine derivatives, phenanthrene derivatives, and naphthalene derivatives.
  • a pyrene derivative is preferable because of its high emission quantum yield.
  • pyrene derivative examples include N, N′-bis (3-methylphenyl) -N, N′-bis [3- (9-phenyl-9H-fluoren-9-yl) phenyl] pyrene-1,6. -Diamine (abbreviation: 1,6 mM emFLPAPrn), N, N'-diphenyl-N, N'-bis [4- (9-phenyl-9H-fluoren-9-yl) phenyl] pyrene-1,6-diamine (abbreviation) : 1,6FLPAPrn), N, N′-bis (dibenzofuran-2-yl) -N, N′-diphenylpyrene-1,6-diamine (abbreviation: 1,6FrAPrn), N, N′-bis (dibenzothiophene) -2-yl) -N, N′-diphenylpyrene-1,6-diamine (abbreviation: 1,
  • Examples of the light-emitting substance that changes triplet excitation energy into light emission include phosphorescent substances (phosphorescent materials) and thermally activated delayed fluorescence (TADF) materials that exhibit thermally activated delayed fluorescence. .
  • phosphorescent substances phosphorescent materials
  • TADF thermally activated delayed fluorescence
  • phosphorescent materials include organometallic complexes, metal complexes (platinum complexes), and rare earth metal complexes. Since these exhibit different emission colors (emission peaks) for each substance, they are appropriately selected and used as necessary.
  • Examples of phosphorescent materials that exhibit blue or green color and whose emission spectrum peak wavelength is 450 nm or more and 570 nm or less include the following substances.
  • Examples of the phosphorescent material which exhibits green or yellow and has an emission spectrum peak wavelength of 495 nm or more and 590 nm or less include the following substances.
  • tris (4-methyl-6-phenylpyrimidinato) iridium (III) (abbreviation: [Ir (mppm) 3 ]
  • tris (4-t-butyl-6-phenylpyrimidinato) iridium (III) (Abbreviation: [Ir (tBupppm) 3 ])
  • (acetylacetonato) bis (6-methyl-4-phenylpyrimidinato) iridium (III) abbreviation: [Ir (mppm) 2 (acac)]
  • Acetylacetonato bis (6-tert-butyl-4-phenylpyrimidinato) iridium (III) (abbreviation: [Ir (tBupppm) 2 (acac)]
  • Acetylacetonato) bis [6- (2- Norbornyl) -4-phenylpyrimidinato] iridium (III) (abbreviation: [Ir (nbpppm
  • Examples of the phosphorescent material which exhibits yellow or red and has an emission spectrum peak wavelength of 570 nm or more and 750 nm or less include the following substances.
  • the organic compound (host material, assist material) used for the light emitting layer (113, 113a, 113b, 113c) one or more kinds of substances having an energy gap larger than that of the light emitting substance (guest material) are selected. Use it.
  • the light-emitting substance is a fluorescent material
  • an organic compound having a large energy level in the ⁇ multiplied excited state and a small energy level in the triplet excited state as the host material.
  • an organic compound having a triplet excitation energy larger than the triplet excitation energy (energy difference between the ground state and the triplet excited state) of the light-emitting substance may be selected as the host material.
  • oxadiazole derivatives triazole derivatives, benzimidazole derivatives, quinoxaline derivatives, dibenzoquinoxaline derivatives, dibenzothiophene derivatives, dibenzofuran derivatives, pyrimidine derivatives, triazine derivatives, pyridine derivatives
  • aromatic amines and carbazole derivatives can be used.
  • the following hole transporting materials and electron transporting materials can be used as the host material.
  • Examples of these host materials having a high hole transporting property include N, N′-di (p-tolyl) -N, N′-diphenyl-p-phenylenediamine (abbreviation: DTDPPA), 4,4′-bis [ N- (4-diphenylaminophenyl) -N-phenylamino] biphenyl (abbreviation: DPAB), N, N′-bis ⁇ 4- [bis (3-methylphenyl) amino] phenyl ⁇ -N, N′-diphenyl -(1,1′-biphenyl) -4,4′-diamine (abbreviation: DNTPD), 1,3,5-tris [N- (4-diphenylaminophenyl) -N-phenylamino] benzene (abbreviation: DPA3B)
  • An aromatic amine compound such as
  • PCzDPA1 3- [N- (4-diphenylaminophenyl) -N-phenylamino] -9-phenylcarbazole
  • PCzDPA2 3,6-bis [N- (4-diphenylaminophenyl) -N-phenyl Amino] -9-phenylcarbazole
  • PCzTPN2 3,6-bis [N- (4-diphenylaminophenyl) -N- (1-naphthyl) amino] -9-phenylcarbazole
  • PCzTPN2 3 -[N- (9-phenylcarbazol-3-yl) -N-phenylamino] -9-phenylcarbazole
  • PCzPCA1 3,6-bis [N- (9-phenylcarbazol-3-yl)- N-phenylamino] -9-phenylcarbazole
  • CBP 4,4′-di (N-carbazolyl) biphenyl
  • TCPB 1,3,5-tris [4- (N-carbazolyl) phenyl] benzene
  • NPB or ⁇ -NPD 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • NPB or ⁇ -NPD 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • NPB or ⁇ -NPD N, N ′ -Bis (3-methylphenyl) -N, N'-diphenyl- [1,1'-biphenyl] -4,4'-diamine
  • TPD 4,4 ', 4 "-tris (carbazole- 9-yl) triphenylamine
  • TCTA 4,4 ′, 4 ′′ -tris [N- (1-naphthyl) -N-phenylamino] triphenylamine
  • 1′-TNATA 4 , 4 ′, 4 ′′ -tris (N, N-diphenylamino) triphenylamine
  • PCPN 3- [4- (1-naphthyl) -phenyl] -9-phenyl-9H-carbazole
  • PCPPn 3- [4- (9-phenanthryl) -phenyl] -9-phenyl-9H-carbazole
  • PCCP 3,3′-bis (9-phenyl-9H-carbazole)
  • mCP 1,3-bis (N-carbazolyl) benzene
  • CzTP 3,6-bis ( 3,5-diphenylphenyl) -9-phenylcarbazole
  • CzTP 3,6-bis ( 3,5-diphenylphenyl) -9-phenylcarbazole
  • Examples of the host material having a high electron transporting property include tris (8-quinolinolato) aluminum (III) (abbreviation: Alq), tris (4-methyl-8-quinolinolato) aluminum (III) (abbreviation: Almq 3 ), and bis. (10-hydroxybenzo [h] quinolinato) beryllium (II) (abbreviation: BeBq 2 ), bis (2-methyl-8-quinolinolato) (4-phenylphenolato) aluminum (III) (abbreviation: BAlq), bis ( Metal complexes having a quinoline skeleton or a benzoquinoline skeleton, such as 8-quinolinolato) zinc (II) (abbreviation: Znq).
  • bis [2- (2-benzoxazolyl) phenolato] zinc (II) (abbreviation: ZnPBO), bis [2- (2-benzothiazolyl) phenolato] zinc (II) (abbreviation: ZnBTZ), etc.
  • ZnPBO bis [2- (2-benzoxazolyl) phenolato] zinc
  • ZnBTZ bis [2- (2-benzothiazolyl) phenolato] zinc
  • a metal complex having an oxazole-based or thiazole-based ligand can also be used.
  • poly (2,5-pyridinediyl) (abbreviation: PPy)
  • poly [(9,9-dihexylfluorene-2,7-diyl) -co- (pyridine-3,5-diyl)] (abbreviation: PF -Py)
  • poly [(9,9-dioctylfluorene-2,7-diyl) -co- (2,2′-bipyridine-6,6′-diyl)] (abbreviation: PF-BPy)
  • PPy poly [(9,9-dioctylfluorene-2,7-diyl) -co- (2,2′-bipyridine-6,6′-diyl)]
  • PF-BPy Molecular compounds
  • Examples of the host material include condensed polycyclic aromatic compounds such as anthracene derivatives, phenanthrene derivatives, pyrene derivatives, chrysene derivatives, and dibenzo [g, p] chrysene derivatives.
  • first compound and second compound are mixed with an organometallic complex. May be used.
  • various organic compounds can be used in appropriate combination.
  • a compound that easily receives holes (hole transporting material) and a compound that easily receives electrons (electrons) A combination with a transportable material) is particularly preferred.
  • the materials described in this embodiment can be used. With this configuration, high efficiency, low voltage, and long life can be realized simultaneously.
  • TADF material is a material that can up-convert triplet excited state to singlet excited state with a little thermal energy (interverse crossing) and efficiently emits light (fluorescence) from singlet excited state. is there.
  • the energy difference between the triplet excited level and the singlet excited level is 0 eV or more and 0.2 eV or less, preferably 0 eV or more and 0.1 eV or less.
  • delayed fluorescence in the TADF material refers to light emission having a remarkably long lifetime while having a spectrum similar to that of normal fluorescence. The lifetime is 10 ⁇ 6 seconds or longer, preferably 10 ⁇ 3 seconds or longer.
  • TADF material examples include fullerene and derivatives thereof, acridine derivatives such as proflavine, and eosin.
  • metal-containing porphyrins including magnesium (Mg), zinc (Zn), cadmium (Cd), tin (Sn), platinum (Pt), indium (In), palladium (Pd), and the like can be given.
  • metal-containing porphyrin examples include a protoporphyrin-tin fluoride complex (abbreviation: SnF 2 (Proto IX)), a mesoporphyrin-tin fluoride complex (abbreviation: SnF 2 (Meso IX)), and hematoporphyrin-tin fluoride.
  • SnF 2 Proto IX
  • SnF 2 mesoporphyrin-tin fluoride complex
  • hematoporphyrin-tin fluoride examples include hematoporphyrin-tin fluoride.
  • SnF 2 Hemato IX
  • SnF 2 coproporphyrin tetramethyl ester-tin fluoride complex
  • SnF 2 Copro III-4Me
  • SnF 2 octaethylporphyrin-tin fluoride complex
  • SnF 2 (OEP) Etioporphyrin-tin fluoride complex
  • PtCl 2 OEP octaethylporphyrin-platinum chloride complex
  • a substance in which a ⁇ -electron rich heteroaromatic ring and a ⁇ -electron deficient heteroaromatic ring are directly bonded increases both the donor property of the ⁇ -electron rich heteroaromatic ring and the acceptor property of the ⁇ -electron deficient heteroaromatic ring. This is particularly preferable because the energy difference between the singlet excited state and the triplet excited state becomes small.
  • TADF material when using TADF material, it can also be used in combination with another organic compound.
  • the electron-transport layer 114a is formed over the light-emitting layer 113a of the EL layer 103a by a vacuum evaporation method.
  • the electron transport layer 114b is formed on the light emitting layer 113b of the EL layer 103b by a vacuum evaporation method.
  • the electron transport layers (114, 114a, 114b) are formed by allowing the electrons injected from the second electrode 102 and the charge generation layer 104 to the light emitting layers (113, 113a, 113b) by the electron injection layers (115, 115a, 115b).
  • the layer to transport is layers containing an electron transport material.
  • the electron transporting material used for the electron transporting layer (114, 114a, 114b) is preferably a substance having an electron mobility of 1 ⁇ 10 ⁇ 6 cm 2 / Vs or higher. Note that other than these substances, any substance that has a property of transporting more electrons than holes can be used.
  • electron transporting materials include metal complexes having quinoline ligand, benzoquinoline ligand, oxazole ligand, or thiazole ligand, oxadiazole derivatives, triazole derivatives, phenanthroline derivatives, pyridine derivatives, bipyridine derivatives, etc. Is mentioned.
  • a ⁇ -electron deficient heteroaromatic compound such as a nitrogen-containing heteroaromatic compound can also be used.
  • Alq 3 tris (4-methyl-8-quinolinolato) aluminum (abbreviation: Almq 3 ), bis (10-hydroxybenzo [h] quinolinato) beryllium (abbreviation: BeBq 2 ), BAlq, bis [2 -(2-hydroxyphenyl) benzoxazolate] zinc (II) (abbreviation: Zn (BOX) 2 ), bis [2- (2-hydroxyphenyl) benzothiazolate] zinc (abbreviation: Zn (BTZ) 2 ), etc.
  • poly (2,5-pyridinediyl) (abbreviation: PPy)
  • poly [(9,9-dihexylfluorene-2,7-diyl) -co- (pyridine-3,5-diyl)] (abbreviation: PF -Py)
  • poly [(9,9-dioctylfluorene-2,7-diyl) -co- (2,2′-bipyridine-6,6′-diyl)] (abbreviation: PF-BPy)
  • PPy poly [(9,9-dioctylfluorene-2,7-diyl) -co- (2,2′-bipyridine-6,6′-diyl)]
  • PF-BPy Molecular compounds
  • the electron-transport layer (114, 114a, 114b) is not limited to a single layer, and may have a structure in which two or more layers made of the above substances are stacked.
  • an electron injection layer 115a is formed over the electron transport layer 114a of the EL layer 103a by a vacuum evaporation method. Thereafter, the EL layer 103a and the charge generation layer 104 are formed, and the electron transport layer 114b of the EL layer 103b is formed, and then the electron injection layer 115b is formed thereon by a vacuum deposition method.
  • the electron injection layers (115, 115a, 115b) are layers containing a substance having a high electron injection property.
  • the electron injection layer (115, 115a, 115b) includes an alkali metal such as lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF 2 ), lithium oxide (LiO x ), or the like. Earth metals or their compounds can be used. Alternatively, a rare earth metal compound such as erbium fluoride (ErF 3 ) can be used.
  • electride may be used for the electron injection layer (115, 115a, 115b). Examples of the electride include a substance obtained by adding a high concentration of electrons to a mixed oxide of calcium and aluminum. In addition, the substance which comprises the electron carrying layer (114, 114a, 114b) mentioned above can also be used.
  • a composite material obtained by mixing an organic compound and an electron donor (donor) may be used for the electron injection layer (115, 115a, 115b).
  • a composite material is excellent in electron injecting property and electron transporting property because electrons are generated in the organic compound by the electron donor.
  • the organic compound is preferably a material excellent in transporting the generated electrons.
  • an electron transport material metal complex used for the electron transport layer (114, 114a, 114b) described above, for example.
  • a heteroaromatic compound may be any substance that exhibits an electron donating property to the organic compound.
  • alkali metals, alkaline earth metals, and rare earth metals are preferable, and lithium, cesium, magnesium, calcium, erbium, ytterbium, and the like can be given.
  • Alkali metal oxides and alkaline earth metal oxides are preferable, and lithium oxide, calcium oxide, barium oxide, and the like can be given.
  • a Lewis base such as magnesium oxide can also be used.
  • an organic compound such as tetrathiafulvalene (abbreviation: TTF) can be used.
  • the optical distance between the second electrode 102 and the light-emitting layer 113b is less than ⁇ / 4 with respect to the wavelength of light exhibited by the light-emitting layer 113b. It is preferable to form such that In this case, adjustment can be performed by changing the film thickness of the electron transport layer 114b or the electron injection layer 115b.
  • the charge generation layer 104 injects electrons into the EL layer 103a and applies holes into the EL layer 103b when a voltage is applied between the first electrode (anode) 101 and the second electrode (cathode) 102.
  • the charge generation layer 104 has a function of injecting an electron donor (donor) to the electron transporting material even if the electron transporting material 104 has a structure in which an electron acceptor (acceptor) is added to the hole transporting material. It may be a configuration. Moreover, both these structures may be laminated
  • the materials described in this embodiment can be used as the hole-transporting material.
  • the electron acceptor include 7,7,8,8-tetracyano-2,3,5,6-tetrafluoroquinodimethane (abbreviation: F 4 -TCNQ), chloranil, and the like.
  • oxides of metals belonging to Groups 4 to 8 in the periodic table can be given. Specific examples include vanadium oxide, niobium oxide, tantalum oxide, chromium oxide, molybdenum oxide, tungsten oxide, manganese oxide, and rhenium oxide.
  • the materials described in this embodiment can be used as the electron transporting material.
  • the electron donor an alkali metal, an alkaline earth metal, a rare earth metal, a metal belonging to Groups 2 and 13 of the periodic table, or an oxide or carbonate thereof can be used.
  • lithium (Li), cesium (Cs), magnesium (Mg), calcium (Ca), ytterbium (Yb), indium (In), lithium oxide, cesium carbonate, or the like is preferably used.
  • An organic compound such as tetrathianaphthacene may be used as an electron donor.
  • the EL layer 103c in FIG. 1E may have a structure similar to that of the above-described EL layers (103, 103a, and 103b).
  • the charge generation layers 104a and 104b may have the same structure as the charge generation layer 104 described above.
  • the light-emitting element described in this embodiment can be formed over various substrates.
  • substrate is not limited to a specific thing.
  • a semiconductor substrate for example, a single crystal substrate or a silicon substrate
  • an SOI substrate for example, a glass substrate, a quartz substrate, a plastic substrate, a metal substrate, a stainless steel substrate, a substrate having stainless steel foil, a tungsten substrate
  • Examples include a substrate having a tungsten foil, a flexible substrate, a laminated film, a paper containing a fibrous material, or a base film.
  • examples of the glass substrate include barium borosilicate glass, aluminoborosilicate glass, and soda lime glass.
  • Examples of flexible substrates, bonded films, base films, etc. are synthetic materials such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polyether sulfone (PES), acrylic, etc. Examples thereof include resin, polypropylene, polyester, polyvinyl fluoride, or polyvinyl chloride, polyamide, polyimide, aramid, epoxy, inorganic vapor deposition film, and papers.
  • a vacuum process such as an evaporation method or a solution process such as a spin coating method or an inkjet method can be used.
  • vapor deposition physical vapor deposition (PVD) such as sputtering, ion plating, ion beam vapor deposition, molecular beam vapor deposition, or vacuum vapor deposition, or chemical vapor deposition (CVD) is used. be able to.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • functional layers hole injection layer (111, 111a, 111b), hole transport layer (112, 112a, 112b), light-emitting layer (113, 113a, 113b, 113c), electron transport included in the EL layer of the light-emitting element.
  • a vapor deposition method vacuum vapor deposition method, etc.
  • a coating method dip coating method
  • Die coating method bar coating method
  • spin coating method spin coating method
  • spray coating method etc.
  • printing method inkjet method, screen (stencil printing) method, offset (lithographic printing) method, flexographic (letter printing) method, gravure method, microcontact And the like.
  • each functional layer (a hole injection layer (111, 111a, 111b), a hole transport layer (112, 112a, 112b) included in the EL layer (103, 103a, 103b) of the light-emitting element described in this embodiment mode.
  • the light emitting layer (113, 113a, 113b, 113c), the electron transport layer (114, 114a, 114b), the electron injection layer (115, 115a, 115b)) and the charge generation layer (104, 104a, 104b) are described above.
  • the material is not limited, and other materials can be used in combination as long as they can satisfy the function of each layer.
  • high molecular compounds oligomers, dendrimers, polymers, etc.
  • medium molecular compounds compounds in the middle region between low molecules and polymers: molecular weight 400 to 4000
  • inorganic compounds quantum dot materials, etc.
  • quantum dot material a colloidal quantum dot material, an alloy type quantum dot material, a core / shell type quantum dot material, a core type quantum dot material, or the like can be used.
  • 2A is an active matrix light-emitting device in which a transistor (FET) 202 over a first substrate 201 and light-emitting elements (203R, 203G, 203B, and 203W) are electrically connected to each other.
  • the plurality of light emitting elements (203R, 203G, 203B, 203W) have a common EL layer 204, and the optical distance between the electrodes of each light emitting element depends on the emission color of each light emitting element. It has a tuned microcavity structure.
  • the light-emitting device is a top-emission light-emitting device in which light emission obtained from the EL layer 204 is emitted through color filters (206R, 206G, and 206B) formed over the second substrate 205.
  • the first electrode 207 is formed so as to function as a reflective electrode.
  • the second electrode 208 is formed so as to function as a semi-transmissive / semi-reflective electrode. Note that an electrode material for forming the first electrode 207 and the second electrode 208 may be used as appropriate with reference to the description of the other embodiments.
  • the light emitting element 203R is a red light emitting element
  • the light emitting element 203G is a green light emitting element
  • the light emitting element 203B is a blue light emitting element
  • the light emitting element 203W is a white light emitting element, FIG.
  • the light emitting element 203R is adjusted so that the optical distance 200R is between the first electrode 207 and the second electrode 208
  • the light emitting element 203G includes the first electrode 207 and the second electrode.
  • the light emitting element 203B is adjusted so that the optical distance 200B is between the first electrode 207 and the second electrode 208.
  • optical adjustment can be performed by stacking the conductive layer 210R over the first electrode 207 in the light-emitting element 203R and stacking the conductive layer 210G in the light-emitting element 203G.
  • color filters (206R, 206G, 206B) are formed on the second substrate 205.
  • the color filter is a filter that passes a specific wavelength range of visible light and blocks the specific wavelength range. Therefore, as shown in FIG. 2A, red light emission can be obtained from the light emitting element 203R by providing the color filter 206R that allows only the red wavelength region to pass through the position overlapping the light emitting element 203R.
  • green light emission can be obtained from the light emitting element 203G.
  • the color filter 206B that allows only the blue wavelength region to pass at a position overlapping the light emitting element 203B, blue light emission can be obtained from the light emitting element 203B.
  • the light emitting element 203W can obtain white light emission without providing a color filter.
  • a black layer (black matrix) 209 may be provided at an end of one type of color filter.
  • the color filters (206R, 206G, 206B) and the black layer 209 may be covered with an overcoat layer using a transparent material.
  • FIG. 2A a light emitting device having a structure for extracting light emission to the second substrate 205 side (top emission type) is shown, but the first substrate on which the FET 202 is formed as shown in FIG.
  • a light emitting device having a structure for extracting light to the 201 side (bottom emission type) may be used.
  • the first electrode 207 is formed to function as a semi-transmissive / semi-reflective electrode
  • the second electrode 208 is formed to function as a reflective electrode.
  • the first substrate 201 is at least a light-transmitting substrate.
  • the color filters (206R ′, 206G ′, and 206B ′) may be provided on the first substrate 201 side with respect to the light emitting elements (203R, 203G, and 203B) as shown in FIG.
  • the light-emitting element is a red light-emitting element, a green light-emitting element, a blue light-emitting element, or a white light-emitting element
  • the light-emitting element which is one embodiment of the present invention is limited to the structure.
  • a structure having a yellow light emitting element or an orange light emitting element may be used.
  • a material used for EL layers (a light emitting layer, a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, a charge generation layer, etc.) for manufacturing these light emitting elements, other embodiments are used. May be used as appropriate with reference to the description. In this case, it is necessary to select a color filter as appropriate in accordance with the emission color of the light emitting element.
  • a light-emitting device including a light-emitting element that exhibits a plurality of emission colors can be obtained.
  • an active matrix light-emitting device or a passive matrix light-emitting device can be manufactured.
  • an active matrix light-emitting device has a structure in which a light-emitting element and a transistor (FET) are combined. Therefore, both a passive matrix light-emitting device and an active matrix light-emitting device are included in one embodiment of the present invention.
  • FET transistor
  • the light-emitting element described in any of the other embodiments can be applied to the light-emitting device described in this embodiment.
  • an active matrix light-emitting device is described with reference to FIGS.
  • FIG. 3A is a top view illustrating the light-emitting device
  • FIG. 3B is a cross-sectional view taken along the chain line A-A ′ in FIG. 3A.
  • the active matrix light-emitting device includes a pixel portion 302, a driver circuit portion (source line driver circuit) 303, and driver circuit portions (gate line driver circuits) (304a and 304b) provided over the first substrate 301. .
  • the pixel portion 302 and the driver circuit portions (303, 304a, and 304b) are sealed between the first substrate 301 and the second substrate 306 by a sealant 305.
  • a lead wiring 307 is provided over the first substrate 301.
  • the lead wiring 307 is connected to the FPC 308 which is an external input terminal.
  • the FPC 308 transmits signals (eg, a video signal, a clock signal, a start signal, a reset signal, and the like) and a potential from the outside to the driving circuit units (303, 304a, and 304b).
  • a printed wiring board (PWB) may be attached to the FPC 308. Note that the state in which the FPC or PWB is attached is included in the light emitting device.
  • the pixel portion 302 is formed by a plurality of pixels including a FET (switching FET) 311, a FET (current control FET) 312, and a first electrode 313 electrically connected to the FET 312.
  • a FET switching FET
  • FET current control FET
  • first electrode 313 electrically connected to the FET 312. Note that the number of FETs included in each pixel is not particularly limited, and can be appropriately provided as necessary.
  • the FETs 309, 310, 311, and 312 are not particularly limited, and for example, a staggered type transistor or an inverted staggered type transistor can be applied. Further, a transistor structure such as a top gate type or a bottom gate type may be used.
  • crystallinity of the semiconductor there is no particular limitation on the crystallinity of the semiconductor that can be used for these FETs 309, 310, 311, and 312; an amorphous semiconductor, a semiconductor having crystallinity (a microcrystalline semiconductor, a polycrystalline semiconductor, a single crystal semiconductor, Alternatively, a semiconductor having a crystal region in part) may be used. Note that it is preferable to use a crystalline semiconductor because deterioration of transistor characteristics can be suppressed.
  • Group 14 elements for example, Group 14 elements, compound semiconductors, oxide semiconductors, organic semiconductors, and the like can be used.
  • a semiconductor containing silicon, a semiconductor containing gallium arsenide, an oxide semiconductor containing indium, or the like can be used.
  • the drive circuit unit 303 includes an FET 309 and an FET 310.
  • the FET 309 and the FET 310 may be formed of a circuit including a unipolar transistor (N-type or P-type only) or a CMOS circuit including an N-type transistor and a P-type transistor. May be.
  • a configuration in which a drive circuit is provided outside may be employed.
  • an end portion of the first electrode 313 is covered with an insulator 314.
  • the insulator 314 can be formed using an organic compound such as a negative photosensitive resin or a positive photosensitive resin (acrylic resin), or an inorganic compound such as silicon oxide, silicon oxynitride, or silicon nitride. . It is preferable that an upper end portion or a lower end portion of the insulator 314 have a curved surface having a curvature. Thereby, the coverage of the film formed on the upper layer of the insulator 314 can be improved.
  • the EL layer 315 and a second electrode 316 are stacked over the first electrode 313.
  • the EL layer 315 includes a light-emitting layer, a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, a charge generation layer, and the like.
  • the structures and materials described in the other embodiments can be applied to the structure of the light-emitting element 317 described in this embodiment.
  • the second electrode 316 is electrically connected to the FPC 308 which is an external input terminal.
  • 3B illustrates only one light-emitting element 317, it is assumed that a plurality of light-emitting elements are arranged in a matrix in the pixel portion 302.
  • light emitting elements capable of emitting three types (R, G, and B) of light emission can be selectively formed, so that a light emitting device capable of full color display can be formed.
  • the light emitting element that can obtain three types of light emission (R, G, B) for example, light emission that can emit light such as white (W), yellow (Y), magenta (M), and cyan (C).
  • An element may be formed.
  • a light emitting device capable of full color display may be obtained by combining with a color filter.
  • types of color filters red (R), green (G), blue (B), cyan (C), magenta (M), yellow (Y), and the like can be used.
  • the FETs (309, 310, 311 and 312) and the light emitting element 317 over the first substrate 301 are bonded to each other by attaching the second substrate 306 and the first substrate 301 with the sealant 305. 301, the second substrate 306, and a structure provided in a space 318 surrounded by the sealant 305.
  • the space 318 may be filled with an inert gas (such as nitrogen or argon) or an organic substance (including the sealant 305).
  • an epoxy resin or glass frit can be used as the sealant 305. Note that it is preferable to use a material that does not transmit moisture and oxygen as much as possible for the sealant 305.
  • a substrate that can be used for the first substrate 301 can be used as well. Therefore, various substrates described in other embodiments can be used as appropriate.
  • a plastic substrate made of FRP (Fiber-Reinforced Plastics), PVF (polyvinyl fluoride), polyester, acrylic, or the like can be used as the substrate.
  • the first substrate 301 and the second substrate 306 are preferably glass substrates from the viewpoint of adhesiveness.
  • an active matrix light-emitting device can be obtained.
  • the FET and the light-emitting element may be directly formed over the flexible substrate, but the FET and the light-emitting element are formed over another substrate having a release layer.
  • the FET and the light-emitting element may be peeled off by a peeling layer by applying heat, force, laser irradiation, and transferred to a flexible substrate.
  • the peeling layer for example, a laminated inorganic film of a tungsten film and a silicon oxide film, an organic resin film such as polyimide, or the like can be used.
  • flexible substrates include paper substrates, cellophane substrates, aramid film substrates, polyimide film substrates, fabric substrates (natural fibers (silk, cotton, hemp), synthetic fibers ( Nylon, polyurethane, polyester) or recycled fibers (including acetate, cupra, rayon, recycled polyester), leather substrates, rubber substrates, and the like.
  • paper substrates cellophane substrates
  • aramid film substrates polyimide film substrates
  • fabric substrates natural fibers (silk, cotton, hemp), synthetic fibers ( Nylon, polyurethane, polyester) or recycled fibers (including acetate, cupra, rayon, recycled polyester), leather substrates, rubber substrates, and the like.
  • 4A to 4E includes a housing 7000, a display portion 7001, a speaker 7003, an LED lamp 7004, operation keys 7005 (including a power switch or an operation switch), a connection terminal 7006, Sensor 7007 (force, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity , Including a function of measuring inclination, vibration, odor, or infrared light), microphones 7008, 7019, and the like.
  • Sensor 7007 force, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity , Including a function of measuring inclination, vibration, odor, or infrared light
  • microphones 7008, 7019 and the like.
  • FIG. 4A illustrates a mobile computer, which can include a switch 7009, an infrared port 7010, and the like in addition to the above objects.
  • FIG. 4B illustrates a portable image reproducing device (eg, a DVD reproducing device) provided with a recording medium, which includes a second display portion 7002, a recording medium reading portion 7011, and the like in addition to those described above. it can.
  • a portable image reproducing device eg, a DVD reproducing device
  • a recording medium which includes a second display portion 7002, a recording medium reading portion 7011, and the like in addition to those described above. it can.
  • FIG. 4C illustrates a goggle type display which can include a second display portion 7002, a support portion 7012, an earphone 7013, and the like in addition to the above components.
  • FIG. 4D illustrates a digital camera with a television receiving function, which can include an antenna 7014, a shutter button 7015, an image receiving portion 7016, and the like in addition to the above objects.
  • FIG. 4E illustrates a mobile phone (including a smartphone), which can include a display portion 7001, a microphone 7019, and the like in a housing 7000.
  • FIG. 4F illustrates a large television device (also referred to as a television or a television receiver) which can include a housing 7000, a display portion 7001, speakers 7003, and the like.
  • a configuration in which the casing 7000 is supported by a stand 7018 is shown.
  • the electronic devices illustrated in FIGS. 4A to 4F can have a variety of functions. For example, a function for displaying various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function for displaying a calendar, date or time, etc., a function for controlling processing by various software (programs) , Wireless communication function, function to connect to various computer networks using wireless communication function, function to transmit or receive various data using wireless communication function, read program or data recorded in recording medium
  • a function of displaying on the display portion can be provided. Further, in an electronic device having a plurality of display units, one display unit mainly displays image information and another one display unit mainly displays character information, or the plurality of display units consider parallax.
  • a function of displaying a three-dimensional image, etc. by displaying the obtained image. Furthermore, in an electronic device having an image receiving unit, a function for capturing a still image, a function for capturing a moving image, a function for correcting a captured image automatically or manually, and a captured image on a recording medium (externally or incorporated in a camera) A function of saving, a function of displaying a photographed image on a display portion, and the like can be provided. Note that the functions of the electronic devices illustrated in FIGS. 4A to 4F are not limited to these, and the electronic devices can have various functions.
  • FIG. 4G illustrates a smart watch, which includes a housing 7000, a display portion 7001, operation buttons 7022 and 7023, a connection terminal 7024, a band 7025, a clasp 7026, and the like.
  • a display portion 7001 mounted on a housing 7000 that also serves as a bezel portion has a non-rectangular display region.
  • the display portion 7001 can display an icon 7027 representing time, other icons 7028, and the like.
  • the display unit 7001 may be a touch panel (input / output device) equipped with a touch sensor (input device).
  • the smart watch illustrated in FIG. 4G can have a variety of functions. For example, a function for displaying various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function for displaying a calendar, date or time, etc., a function for controlling processing by various software (programs) , Wireless communication function, function to connect to various computer networks using wireless communication function, function to transmit or receive various data using wireless communication function, read program or data recorded in recording medium A function of displaying on the display portion can be provided.
  • a speaker In addition, a speaker, a sensor (force, displacement, position, velocity, acceleration, angular velocity, number of rotations, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current are included in the housing 7000. , Voltage, power, radiation, flow rate, humidity, gradient, vibration, odor or infrared measurement function), microphone, and the like.
  • the light-emitting device which is one embodiment of the present invention and the display device including the light-emitting element which is one embodiment of the present invention can be used for each display portion of the electronic device described in this embodiment and display with high color purity. Is possible.
  • FIGS. 5A to 5C a foldable portable information terminal as illustrated in FIGS. 5A to 5C can be given.
  • FIG. 5A illustrates the portable information terminal 9310 in a developed state.
  • FIG. 5B illustrates the portable information terminal 9310 in a state of changing from one of the expanded state and the folded state to the other.
  • FIG. 5C illustrates the portable information terminal 9310 in a folded state.
  • the portable information terminal 9310 is excellent in portability in the folded state and excellent in display listability due to a seamless wide display area in the expanded state.
  • the display portion 9311 is supported by three housings 9315 connected by a hinge 9313.
  • the display unit 9311 may be a touch panel (input / output device) equipped with a touch sensor (input device).
  • the display portion 9311 can be reversibly deformed from the expanded state to the folded state by bending the two housings 9315 via the hinge 9313.
  • the light-emitting device of one embodiment of the present invention can be used for the display portion 9311.
  • display with good color purity is possible.
  • a display region 9312 in the display portion 9311 is a display region located on a side surface of the portable information terminal 9310 in a folded state. In the display area 9312, information icons, frequently used applications, program shortcuts, and the like can be displayed, so that information can be confirmed and applications can be activated smoothly.
  • FIGS. 6A and 6B illustrate an automobile to which the light-emitting device is applied. That is, the light emitting device can be provided integrally with the automobile.
  • the present invention can be applied to a light 5101 (including a rear part of a vehicle body), a wheel 5102 of a tire, a part of or the whole of a door 5103 shown in FIG.
  • the present invention can be applied to a display portion 5104, a handle 5105, a shift lever 5106, a seat seat 5107, an inner rear view mirror 5108, and the like inside the automobile shown in FIG.
  • an electronic device or a vehicle using the light-emitting device or the display device which is one embodiment of the present invention can be obtained.
  • display with good color purity is possible.
  • applicable electronic devices and automobiles are not limited to those described in this embodiment, and can be applied in any field.
  • FIGS. 7A, 7B, 7C, and 7D each show an example of a cross-sectional view of a lighting device.
  • 7A and 7B are bottom emission type lighting devices that extract light to the substrate side
  • FIGS. 7C and 7D are top emission type lighting devices that extract light to the sealing substrate side. It is a lighting device.
  • a lighting device 4000 illustrated in FIG. 7A includes a light-emitting element 4002 over a substrate 4001.
  • a substrate 4003 having unevenness is provided outside the substrate 4001.
  • the light-emitting element 4002 includes a first electrode 4004, an EL layer 4005, and a second electrode 4006.
  • the first electrode 4004 is electrically connected to the electrode 4007, and the second electrode 4006 is electrically connected to the electrode 4008. Further, an auxiliary wiring 4009 that is electrically connected to the first electrode 4004 may be provided. Note that an insulating layer 4010 is formed over the auxiliary wiring 4009.
  • the substrate 4001 and the sealing substrate 4011 are bonded with a sealant 4012.
  • a desiccant 4013 is preferably provided between the sealing substrate 4011 and the light-emitting element 4002. Note that since the substrate 4003 has unevenness as illustrated in FIG. 7A, the light extraction efficiency of the light-emitting element 4002 can be improved.
  • a diffusion plate 4015 may be provided outside the substrate 4001 as in the lighting device 4100 in FIG.
  • a lighting device 4200 in FIG. 7C includes a light-emitting element 4202 over a substrate 4201.
  • the light-emitting element 4202 includes a first electrode 4204, an EL layer 4205, and a second electrode 4206.
  • the first electrode 4204 is electrically connected to the electrode 4207, and the second electrode 4206 is electrically connected to the electrode 4208. Further, an auxiliary wiring 4209 that is electrically connected to the second electrode 4206 may be provided. Further, an insulating layer 4210 may be provided below the auxiliary wiring 4209.
  • the substrate 4201 and the uneven sealing substrate 4211 are bonded with a sealant 4212. Further, a barrier film 4213 and a planarization film 4214 may be provided between the sealing substrate 4211 and the light-emitting element 4202. Note that the sealing substrate 4211 has unevenness as illustrated in FIG. 7C, so that extraction efficiency of light generated in the light-emitting element 4202 can be improved.
  • a diffusion plate 4215 may be provided over the light-emitting element 4202 as in the lighting device 4300 in FIG.
  • a lighting device having desired chromaticity can be provided by using a light-emitting device which is one embodiment of the present invention or a light-emitting element which is a part thereof.
  • the ceiling light 8001 includes a direct ceiling type and a ceiling embedded type. Note that such an illumination device is configured by combining a light emitting device with a housing or a cover. In addition, it can be applied to a cord pendant type (a cord hanging type from the ceiling).
  • the foot lamp 8002 can illuminate the floor surface and enhance the safety of the foot. For example, it is effective to use it for a bedroom, a staircase or a passage. In that case, the size and shape can be appropriately changed according to the size and structure of the room.
  • a stationary illumination device configured by combining a light emitting device and a support base can be provided.
  • the sheet-like illumination 8003 is a thin sheet-like illumination device. Since it is attached to the wall surface, it can be used for a wide range of purposes without taking up space. It is easy to increase the area. In addition, it can also be used for the wall surface and housing
  • an illumination device 8004 in which light from a light source is controlled only in a desired direction can be used.
  • a lighting device having a function as furniture can be obtained by applying the light-emitting device which is one embodiment of the present invention to a part of the furniture provided in the room or the light-emitting element which is a part of the light-emitting device. can do.
  • various lighting devices to which the light-emitting device is applied can be obtained. Note that these lighting devices are included in one embodiment of the present invention.
  • Step 1 Synthesis of 1- (3-bromophenyl-2-yl) -1H-benzimidazole> First, 25.0 g of benzimidazole, 65.9 g of 1-bromo-3-iodobenzene, 8.4 g of 1,10-phenanthroline, 15.8 g of cesium carbonate, 4.4 g of copper iodide, and 500 mL of DMF were placed in a three-necked flask. The inside of the flask was replaced with nitrogen. Then, it stirred at 110 degreeC for 24 hours. After the reaction, extraction with ethyl acetate was performed.
  • Step 2 Synthesis of 1- [3- (4,4,5,5, -tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl] -1H-benzimidazole>
  • 20.8 g of 1- (3-bromophenyl-2-yl) -1H-benzimidazole obtained in Step 1 above 21.6 g of bis (pinacolato) diboron and 1 L of dehydrated dioxane were placed in a three-necked flask, Was replaced with nitrogen.
  • Step 3 Synthesis of 1- [3- (4,6-di-tert-butyl-1,3,5-triazin-2-yl) phenyl] -1H-benzimidazole> Next, 12.8 g of 1- [3- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl] -1H-benzimidazole obtained in Step 2 above.
  • 2-chloro-4,6-di-tert-butyl-1,3,5-triazine 5.99 g
  • sodium carbonate 105.9 g
  • toluene 500 mL
  • ethanol 250 mL
  • water 500 mL
  • 1.52 g of tetrakis (triphenylphosphine) palladium (0) was added and stirred at 80 ° C. for 10 hours. After the reaction, extraction with toluene was performed.
  • Step 4 Synthesis of 1-methyl-3- [3- (4,6-di-tert-butyl-1,3,5-triazin-2-yl) phenyl] -1H-benzimidazolium iodide>
  • 5.49 g of 1- [3- (4,6-di-tert-butyl-1,3,5-triazin-2-yl) phenyl] -1H-benzimidazole obtained in Step 3 above dehydration 52 mL of toluene was placed in a three-necked flask, and the inside of the flask was purged with nitrogen. After adding 4.4 mL of iodomethane, the mixture was stirred at room temperature for 68 hours.
  • Step 5 Synthesis of fac- [Ir (5tznpmb) 3 ]> Furthermore, 1-methyl-3- [3- (4,6-di-tert-butyl-1,3,5-triazin-2-yl) phenyl] -1H-benzimidazolium iodide obtained in Step 4 above was used. 6.45 g, iridium chloride hydrate (IrCl 3 ⁇ H 2 O) (Fruya Metal Co., Ltd.) 1.08 g, silver (I) 2.81 g, 2-ethoxyethanol 110 mL were placed in a three-neck flask, Was replaced with nitrogen.
  • an ultraviolet-visible absorption spectrum (hereinafter, simply referred to as “absorption spectrum”) and an emission spectrum of fac- [Ir (5tznpmb) 3 ] in a dichloromethane solution were measured.
  • an ultraviolet-visible spectrophotometer (V550 type manufactured by JASCO Corporation) was used, and a dichloromethane solution of 8.1 ⁇ mol / L was put in a quartz cell and measured at room temperature.
  • the emission spectrum was measured using an absolute PL quantum yield measurement device (C11347-01, manufactured by Hamamatsu Photonics Co., Ltd.) and in a glove box (LAB Star M13, manufactured by Bright Co., Ltd., 1250/780) in a nitrogen atmosphere.
  • the dichloromethane deoxygenated solution 8.1 ⁇ mol / L was put in a quartz cell, sealed, and measured at room temperature.
  • the measurement results of the obtained absorption spectrum and emission spectrum are shown in FIG.
  • the horizontal axis represents wavelength
  • the vertical axis represents absorption intensity and emission intensity.
  • two solid lines are shown.
  • a thin line represents an absorption spectrum
  • a thick line represents an emission spectrum.
  • the absorption spectrum shown in FIG. 10 shows a result obtained by subtracting an absorption spectrum measured by putting only dichloromethane in a quartz cell from an absorption spectrum measured by putting a dichloromethane solution 8.1 ⁇ mol / L in a quartz cell.
  • the organometallic complex fac- [Ir (5tznpmb) 3 ]
  • fac- [Ir (5tznpmb) 3 ] which is one embodiment of the present invention, has emission peaks at 467 and 489 nm, and blue emission is observed from the dichloromethane solution. It was.
  • an ultraviolet-visible absorption spectrum (hereinafter, simply referred to as “absorption spectrum”) and an emission spectrum of mer- [Ir (5tznpmb) 3 ] in a dichloromethane solution were measured.
  • an ultraviolet-visible spectrophotometer (V550 type manufactured by JASCO Corporation) was used, and 0.010 mmol / L of a dichloromethane solution was placed in a quartz cell and measured at room temperature.
  • the emission spectrum was measured using an absolute PL quantum yield measurement device (C11347-01, manufactured by Hamamatsu Photonics Co., Ltd.) and in a glove box (LAB Star M13, manufactured by Bright Co., Ltd., 1250/780) in a nitrogen atmosphere.
  • the dichloromethane deoxygenated solution 0.010 mmol / L was put in a quartz cell, sealed, and measured at room temperature.
  • the measurement results of the obtained absorption spectrum and emission spectrum are shown in FIG.
  • the horizontal axis represents wavelength
  • the vertical axis represents absorption intensity and emission intensity.
  • two solid lines are shown.
  • a thin line represents the absorption spectrum
  • a thick line represents the emission spectrum.
  • the absorption spectrum shown in FIG. 12 shows the result of subtracting the absorption spectrum measured by putting only dichloromethane in a quartz cell from the absorption spectrum measured by putting 0.010 mmol / L of a dichloromethane solution in a quartz cell.
  • the organometallic complex which is one embodiment of the present invention, mer- [Ir (5tznpmb) 3 ], has an emission peak at 487 nm, and blue emission was observed from the dichloromethane solution.
  • the element of the light-emitting element 1 using fac- [Ir (5tznpmb) 3 ] (structural formula (100)) described in Example 1 for a light-emitting layer The structure, manufacturing method, and characteristics thereof will be described. Note that FIG. 13 shows an element structure of a light-emitting element used in this example, and Table 1 shows a specific structure. In addition, chemical formulas of materials used in this example are shown below.
  • the light-emitting element described in this example includes a hole injection layer 911, a hole transport layer 912, a light-emitting layer 913, an electron transport layer 914, and a first electrode 901 formed over a substrate 900.
  • the electron injection layer 915 is sequentially stacked, and the second electrode 903 is stacked on the electron injection layer 915.
  • the first electrode 901 was formed over the substrate 900.
  • the electrode area was 4 mm 2 (2 mm ⁇ 2 mm).
  • a glass substrate was used as the substrate 900.
  • the first electrode 901 was formed by depositing indium tin oxide (ITO) containing silicon oxide with a thickness of 70 nm by a sputtering method.
  • ITO indium tin oxide
  • the surface of the substrate was washed with water and baked at 200 ° C. for 1 hour, followed by UV ozone treatment for 370 seconds. Thereafter, the substrate is introduced into a vacuum vapor deposition apparatus whose internal pressure is reduced to about 10 ⁇ 4 Pa, vacuum baking is performed at 170 ° C. for 60 minutes in a heating chamber in the vacuum vapor deposition apparatus, and then the substrate is released for about 30 minutes. Chilled.
  • a hole injection layer 911 was formed over the first electrode 901.
  • the hole-injection layer 911 is obtained by reducing the pressure in the vacuum evaporation apparatus to 10 ⁇ 4 Pa, and then 1,3,5-tri (dibenzothiophen-4-yl) benzene (abbreviation: DBT3P-II) and molybdenum oxide.
  • the hole transport layer 912 was formed by vapor deposition using mCP so as to have a film thickness of 20 nm.
  • a light-emitting layer 913 was formed over the hole transport layer 912.
  • the light-emitting layer 913 uses 1,3-bis (N-carbazolyl) benzene (abbreviation: mCP) as a host material and (OC-6-22) -tris [4- (4,6-di-tert] as a guest material.
  • mCP 1,3-bis (N-carbazolyl) benzene
  • OC-6-22 -tris [4- (4,6-di-tert] as a guest material.
  • 35DCzPPy 3,5-bis (3- (9H-carbazol-9-yl) phenyl) pyridine
  • fac- [Ir (5tznpmb) 3 ] is used as the guest material
  • the film thickness was 10 nm.
  • an electron transport layer 914 was formed over the light emitting layer 913.
  • the electron-transporting layer 914 was formed by vapor deposition so that the film thickness of 1,3,5-tri [(3-pyrylyl) -phen-3-yl] benzene (abbreviation: TmPyPB) was 25 nm.
  • the electron injection layer 915 was formed over the electron transport layer 914.
  • the electron injection layer 915 was formed by vapor deposition using lithium fluoride (LiF) so as to have a film thickness of 1 nm.
  • a second electrode 903 was formed over the electron injection layer 915.
  • the second electrode 903 was formed by vapor deposition of aluminum so that the film thickness becomes 200 nm. Note that in this embodiment, the second electrode 903 functions as a cathode.
  • a light-emitting element in which an EL layer was sandwiched between a pair of electrodes was formed over the substrate 900.
  • the hole-injection layer 911, the hole-transport layer 912, the light-emitting layer 913, the electron-transport layer 914, and the electron-injection layer 915 described in the above steps are functional layers that constitute the EL layer in one embodiment of the present invention.
  • a vapor deposition method using a resistance heating method was used.
  • the light-emitting element manufactured as described above is sealed by another substrate (not shown).
  • a sealant is applied around the light emitting element formed on the substrate 900 in a glove box in a nitrogen atmosphere, and then a desiccant is provided.
  • Another substrate (not shown) was placed at a desired position on the substrate 900 and irradiated with ultraviolet light of 365 nm at 6 J / cm 2 .
  • the light-emitting element manufactured in this example exhibits favorable element characteristics.
  • FIG. 14 shows an emission spectrum when current is passed through the light-emitting element 1 at a current density of 12.5 mA / cm 2 .
  • the emission spectrum of the light-emitting element 1 has peaks near 463 nm and 486 nm, and is derived from luminescence of fac- [Ir (5tznpmb) 3 ] contained in the light-emitting layer 913. Is suggested.
  • an organometallic complex which is one embodiment of the present invention, fac- [Ir (5tznpmb) 3 ] (structural formula (100)), is obtained by measurement with a high emission quantum yield ( ⁇ ).
  • the emission quantum yield ( ⁇ ) and emission lifetime ( ⁇ ) are shown.
  • For the emission lifetime ( ⁇ ), using a picosecond fluorescence lifetime measurement system (manufactured by Hamamatsu Photonics), dichloromethane deoxygenated solution in a glove box (Bright Co., Ltd., LABstar M13 (1250/780) under nitrogen atmosphere. 0.11 mmol / L was placed in a quartz cell, sealed, and measured at room temperature.In this measurement, the solution was irradiated with a pulsed laser in order to measure the lifetime of luminescence exhibited by the solution, and attenuated after the laser irradiation.
  • the solution was irradiated with a 500 ps pulse laser at a period of 10 Hz, and the data measured repeatedly was integrated. Data with a high / N ratio were obtained.
  • the light emission lifetime ( ⁇ ) and the light emission rate constant (K) generally have a relationship represented by the following formula (2).
  • fac- [Ir (5tznpmb) 3 ] having a high emission quantum yield has no radiation loss compared to the radiation deactivation rate constant (K r ) as very large as 2.4 ⁇ 10 4. Since the activation rate constant (K nr ) is as small as 6.7 ⁇ 10 3 , it can be seen that the energy deactivated from the excited state can be efficiently changed to light emission, and a high emission quantum yield is exhibited.
  • fac- [Ir (5tznpmb) 3 ] and mer- [Ir (5tznpmb) 3 ] which is a comparison between facial (fac) and meridiona (mer)
  • a radiation deactivation rate constant although there is not much difference between the two is the K r
  • the radiationless deactivation rate constant K nr
  • luminescent quantum that nonradiative deactivation rate constant of Mel body K nr
  • the organometallic complex which is one embodiment of the present invention is characterized in that a ligand has a triazine skeleton. Therefore, this example shows that the organometallic complex which is one embodiment of the present invention has high emission quantum efficiency.
  • First electrode 102 Second electrode 103 EL layer 103a, 103b EL layer 104 Charge generation layer 111, 111a, 111b Hole injection layer 112, 112a, 112b Hole transport layer 113, 113a, 113b Light emitting layer 114, 114a , 114b Electron transport layer 115, 115a, 115b Electron injection layer 201 First substrate 202 Transistor (FET) 203R, 203G, 203B, 203W Light emitting element 204 EL layer 205 Second substrate 206R, 206G, 206B Color filter 206R ′, 206G ′, 206B ′ Color filter 207 First electrode 208 Second electrode 209 Black layer (black matrix ) 210R, 210G Conductive layer 301 First substrate 302 Pixel portion 303 Drive circuit portion (source line drive circuit) 304a, 304b Drive circuit section (gate line drive circuit) 305 Sealing material 306 Second substrate 307 Route wiring 308 FPC 309 FET 310

Abstract

Provided is a novel organic metal complex. That is, provided is a novel organic metal complex which is effective for enhancing device properties and reliability. This organic metal complex comprises: a ligand having an imidazolyl skeleton containing a carbene carbon and a triazine skeleton; and iridium. This organic metal complex is represented by general formula (G1). (In the formula, R1 to R8 are each independently a hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted monocyclic saturated hydrocarbon having 5 to 7 carbon atoms, a substituted or unsubstituted polycyclic saturated hydrocarbon having 7 to 10 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 13 carbon atoms. In addition, R1 and R2 may form a ring structure by a substituted or unsubstituted, saturated or unsaturated condensation, the ring structure being a hydrocarbon ring compound or a heterocyclic compound.)

Description

有機金属錯体、発光素子、発光装置、電子機器、および照明装置Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device
本発明の一態様は、有機金属錯体に関する。特に、三重項励起状態におけるエネルギーを発光に変換できる有機金属錯体に関する。また、有機金属錯体を用いた発光素子、発光装置、電子機器、および照明装置に関する。なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様の技術分野は、物、方法、または、製造方法に関する。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関する。また、具体的には、半導体装置、表示装置、液晶表示装置などを一例として挙げることができる。 One embodiment of the present invention relates to an organometallic complex. In particular, the present invention relates to an organometallic complex that can convert energy in a triplet excited state into light emission. In addition, the present invention relates to a light-emitting element, a light-emitting device, an electronic device, and a lighting device each using an organometallic complex. Note that one embodiment of the present invention is not limited to the above technical field. The technical field of one embodiment of the invention disclosed in this specification and the like relates to an object, a method, or a manufacturing method. Alternatively, one embodiment of the present invention relates to a process, a machine, a manufacture, or a composition (composition of matter). Specifically, a semiconductor device, a display device, a liquid crystal display device, and the like can be given as examples.
一対の電極間に発光物質である有機化合物を有する発光素子(有機EL素子ともいう)は、薄型軽量・高速応答・低電圧駆動などの特性を有することから、これらを適用したディスプレイは、次世代のフラットパネルディスプレイとして注目されている。この発光素子は、電圧が印加されると電極から注入された電子およびホールが再結合し、それによって発光物質が励起状態となり、その励起状態が基底状態に戻る際に発光する。なお、励起状態の種類としては、一重項励起状態(S)と三重項励起状態(T)とがあり、一重項励起状態からの発光が蛍光、三重項励起状態からの発光が燐光と呼ばれている。また、発光素子におけるそれらの統計的な生成比率は、S:T=1:3であると考えられている。 A light-emitting element (also referred to as an organic EL element) having an organic compound that is a light-emitting substance between a pair of electrodes has characteristics such as thin and light weight, high-speed response, and low-voltage driving. It is attracting attention as a flat panel display. In this light-emitting element, when a voltage is applied, electrons and holes injected from the electrode are recombined, whereby the light-emitting substance enters an excited state, and emits light when the excited state returns to the ground state. The types of excited states include a singlet excited state (S * ) and a triplet excited state (T * ). Light emitted from the singlet excited state is fluorescent, and light emitted from the triplet excited state is phosphorescent. being called. In addition, the statistical generation ratio of the light emitting elements is considered to be S * : T * = 1: 3.
また、上記発光物質のうち、一重項励起状態におけるエネルギーを発光に変換することが可能な化合物は蛍光性化合物(蛍光材料)と呼ばれ、三重項励起状態におけるエネルギーを発光に変換することが可能な化合物は燐光性化合物(燐光材料)と呼ばれる。 Among the above luminescent substances, compounds that can convert energy in singlet excited state into light emission are called fluorescent compounds (fluorescent materials), and can convert energy in triplet excited state into light emission. Such a compound is called a phosphorescent compound (phosphorescent material).
従って、上記の生成比率を根拠にした時、上記各発光物質を用いた発光素子における内部量子効率(注入したキャリアに対して発生するフォトンの割合)の理論的限界は、蛍光材料を用いた場合は25%、燐光材料を用いた場合は75%となる。 Therefore, based on the above generation ratio, the theoretical limit of the internal quantum efficiency (ratio of photons generated with respect to injected carriers) in a light emitting device using each of the above light emitting substances is limited when a fluorescent material is used. Is 25%, and is 75% when a phosphorescent material is used.
つまり、蛍光材料を用いた発光素子に比べて、燐光材料を用いた発光素子では、より高い効率を得ることが可能となる。そのため、近年では様々な種類の燐光材料の開発が盛んに行われている。特に、その燐光量子収率の高さゆえに、イリジウム等を中心金属とする有機金属錯体が注目されている(例えば、特許文献1。)。 That is, it is possible to obtain higher efficiency in a light emitting element using a phosphorescent material than in a light emitting element using a fluorescent material. Therefore, various kinds of phosphorescent materials have been actively developed in recent years. In particular, because of its high phosphorescent quantum yield, organometallic complexes having iridium or the like as a central metal have attracted attention (for example, Patent Document 1).
特開2009−23938号公報JP 2009-23938 A
上述した特許文献1において報告されているように優れた特性を示す燐光材料の開発が進んでいるが、さらに良好な特性を示す新規材料の開発が望まれている。 As reported in the above-mentioned Patent Document 1, the development of phosphorescent materials exhibiting excellent characteristics is progressing, but the development of new materials exhibiting even better characteristics is desired.
そこで、本発明の一態様では、新規な有機金属錯体を提供する。また、本発明の一態様では、発光効率の高い新規な有機金属錯体を提供する。また、本発明の一態様では、発光素子に用いることができる新規な有機金属錯体を提供する。また、本発明の一態様では、発光素子のEL層に用いることができる、新規な有機金属錯体を提供する。また、本発明の一態様では、新規な発光素子を提供する。また、新規な発光装置、新規な電子機器、または新規な照明装置を提供する。なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの課題の全てを解決する必要はない。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。 Thus, in one embodiment of the present invention, a novel organometallic complex is provided. In one embodiment of the present invention, a novel organometallic complex with high emission efficiency is provided. Another embodiment of the present invention provides a novel organometallic complex that can be used for a light-emitting element. Another embodiment of the present invention provides a novel organometallic complex that can be used for an EL layer of a light-emitting element. In one embodiment of the present invention, a novel light-emitting element is provided. In addition, a novel light-emitting device, a novel electronic device, or a novel lighting device is provided. Note that the description of these problems does not disturb the existence of other problems. Note that one embodiment of the present invention does not necessarily have to solve all of these problems. Issues other than these will be apparent from the description of the specification, drawings, claims, etc., and other issues can be extracted from the descriptions of the specification, drawings, claims, etc. It is.
本発明の一態様は、カルベン炭素を含むイミダゾリル骨格、およびトリアジン骨格を有する配位子と、イリジウムと、を有することを特徴とする有機金属錯体である。 One embodiment of the present invention is an organometallic complex including an imidazolyl skeleton containing a carbene carbon, a ligand having a triazine skeleton, and iridium.
また、本発明の別の一態様は、下記一般式(G1)で表される有機金属錯体である。 Another embodiment of the present invention is an organometallic complex represented by General Formula (G1) below.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
但し、一般式(G1)中、R~Rはそれぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数5~7の単環式飽和炭化水素、置換もしくは無置換の炭素数7~10の多環式飽和炭化水素、または置換もしくは無置換の炭素数6~13のアリール基、シアノ基のいずれかを表す。また、RとRは、置換もしくは無置換の飽和または不飽和の縮環による環構造を形成していても良く、前記環構造は、炭化水素環化合物または複素環化合物のいずれかである。 However, in general formula (G1), R 1 to R 8 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted monocyclic saturated hydrocarbon having 5 to 7 carbon atoms, substituted or It represents an unsubstituted polycyclic saturated hydrocarbon having 7 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, or a cyano group. R 1 and R 2 may form a ring structure by a substituted or unsubstituted saturated or unsaturated condensed ring, and the ring structure is either a hydrocarbon ring compound or a heterocyclic compound .
また、本発明の別の一態様は、下記一般式(G2)で表される有機金属錯体である。 Another embodiment of the present invention is an organometallic complex represented by General Formula (G2) below.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
但し、一般式(G2)中、R~R12はそれぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数5~7の単環式飽和炭化水素、置換もしくは無置換の炭素数7~10の多環式飽和炭化水素、または置換もしくは無置換の炭素数6~13のアリール基、シアノ基のいずれかを表す。また、a、b、c、およびdは、炭素または窒素のいずれかである。 However, in General Formula (G2), R 3 to R 12 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted monocyclic saturated hydrocarbon having 5 to 7 carbon atoms, substituted or It represents an unsubstituted polycyclic saturated hydrocarbon having 7 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, or a cyano group. A, b, c, and d are either carbon or nitrogen.
また、本発明の別の一態様は、下記一般式(G3)で表される有機金属錯体である。 Another embodiment of the present invention is an organometallic complex represented by General Formula (G3) below.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
但し、一般式(G3)中、R~RおよびR13~R16はそれぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数5~7の単環式飽和炭化水素、置換もしくは無置換の炭素数7~10の多環式飽和炭化水素、または置換もしくは無置換の炭素数6~13のアリール基、シアノ基のいずれかを表す。 However, in General Formula (G3), R 3 to R 8 and R 13 to R 16 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted monocyclic group having 5 to 7 carbon atoms. It represents a saturated hydrocarbon, a substituted or unsubstituted polycyclic saturated hydrocarbon having 7 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, or a cyano group.
上述した本発明の一態様である有機金属錯体は、カルベン炭素を含むイミダゾリル骨格、およびトリアジン骨格を有する配位子と、イリジウムと、を有する。トリアジン骨格は、π電子が過剰であるため電子供与性を有する。つまり、トリアジンからIrへ電子が供与されるため、HOMO−LUMOを下げることができる。これにより、キャリアの注入性を高めることができるため、発光素子に用いることで発光素子の駆動電圧を低減することができる。また、トリアジンを導入することで共役が広がるため、スペクトルを長波長シフトさせることができ、所望の発光色を得ることができる。なお、スペクトルが長波長シフトすることは、励起エネルギーが小さくなることと同義であり、これに起因して無放射失活の割合が小さくなるため、量子収率を高めることができる。 The organometallic complex which is one embodiment of the present invention described above includes an imidazolyl skeleton containing a carbene carbon, a ligand having a triazine skeleton, and iridium. The triazine skeleton has an electron donating property due to an excess of π electrons. That is, since electrons are donated from triazine to Ir, HOMO-LUMO can be lowered. Accordingly, carrier injectability can be improved, and thus, driving voltage of the light-emitting element can be reduced by using the light-emitting element. Moreover, since the conjugation spreads by introducing triazine, the spectrum can be shifted by a long wavelength, and a desired emission color can be obtained. Note that a long wavelength shift of the spectrum is synonymous with a decrease in excitation energy, and the ratio of non-radiative deactivation is decreased due to this, so that the quantum yield can be increased.
また、本発明の別の一態様は、下記構造式(100)で表される有機金属錯体である。 Another embodiment of the present invention is an organometallic complex represented by the following structural formula (100).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
また、本発明の一態様である有機金属錯体は燐光を発光することができる、すなわち三重項励起状態におけるエネルギーを発光に変換することが可能であるため、発光素子に適用することにより高効率化が可能となり、非常に有効である。したがって、本発明の一態様である有機金属錯体を用いた発光素子は、本発明の一態様に含まれるものとする。 In addition, since the organometallic complex which is one embodiment of the present invention can emit phosphorescence, that is, energy in a triplet excited state can be converted into light emission, high efficiency can be obtained by application to a light-emitting element. Is possible and is very effective. Therefore, a light-emitting element using the organometallic complex which is one embodiment of the present invention is included in one embodiment of the present invention.
また、本発明の別の一態様は、一対の電極間にEL層を有し、EL層は、発光層を有し、発光層は、上記に記載の有機金属錯体のいずれかを有する発光素子である。 Another embodiment of the present invention includes an EL layer between a pair of electrodes, the EL layer includes a light-emitting layer, and the light-emitting layer includes any of the organometallic complexes described above. It is.
また、本発明の別の一態様は、一対の電極間にEL層を有し、EL層は、発光層を有し、発光層は、複数の有機化合物を有し、複数の有機化合物のうち一は、上記に記載の有機金属錯体のいずれかを有する発光素子である。 Another embodiment of the present invention includes an EL layer between a pair of electrodes, the EL layer includes a light-emitting layer, the light-emitting layer includes a plurality of organic compounds, and the plurality of organic compounds. One is a light-emitting element having any of the organometallic complexes described above.
なお、本発明の一態様は、発光素子を有する発光装置だけでなく、発光装置を有する照明装置も範疇に含めるものである。従って、本明細書中における発光装置とは、画像表示デバイス、または光源(照明装置含む)を指す。また、発光装置にコネクター、例えばFPC(Flexible Printed Circuit)もしくはTCP(Tape Carrier Package)が取り付けられたモジュール、TCPの先にプリント配線板が設けられたモジュール、または発光素子にCOG(Chip On Glass)方式によりIC(集積回路)が直接実装されたモジュールも全て発光装置に含むものとする。 Note that one embodiment of the present invention includes not only a light-emitting device having a light-emitting element but also a lighting device having a light-emitting device. Therefore, the light-emitting device in this specification refers to an image display device or a light source (including a lighting device). In addition, a connector having a light emitting device such as an FPC (Flexible Printed Circuit) or TCP (Tape Carrier Package), a module having a printed wiring board provided on the end of TCP, or a COG (Chip On Glass) on the light emitting element It is assumed that the light emitting device also includes all modules on which IC (integrated circuit) is directly mounted by the method.
本発明の一態様では、新規な有機金属錯体を提供することができる。また、本発明の一態様では、発光効率の高い新規な有機金属錯体を提供することができる。また、本発明の一態様では、発光素子に用いることができる新規な有機金属錯体を提供することができる。また、本発明の一態様では、発光素子のEL層に用いることができる、新規な有機金属錯体を提供することができる。なお、新たな有機金属錯体を用いた新規な発光素子を提供することができる。また、新規な発光装置、新規な電子機器、または新規な照明装置を提供することができる。なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。 In one embodiment of the present invention, a novel organometallic complex can be provided. In one embodiment of the present invention, a novel organometallic complex with high emission efficiency can be provided. In one embodiment of the present invention, a novel organometallic complex that can be used for a light-emitting element can be provided. In one embodiment of the present invention, a novel organometallic complex that can be used for an EL layer of a light-emitting element can be provided. Note that a novel light-emitting element using a novel organometallic complex can be provided. In addition, a novel light-emitting device, a novel electronic device, or a novel lighting device can be provided. Note that the description of these effects does not disturb the existence of other effects. Note that one embodiment of the present invention does not necessarily have all of these effects. It should be noted that the effects other than these are naturally obvious from the description of the specification, drawings, claims, etc., and it is possible to extract the other effects from the descriptions of the specification, drawings, claims, etc. It is.
発光素子の構造について説明する図。4A and 4B illustrate a structure of a light-emitting element. 発光装置について説明する図。FIG. 6 illustrates a light-emitting device. 発光装置について説明する図。FIG. 6 illustrates a light-emitting device. 電子機器について説明する図。6A and 6B illustrate electronic devices. 電子機器について説明する図。6A and 6B illustrate electronic devices. 自動車について説明する図。The figure explaining a motor vehicle. 照明装置について説明する図。The figure explaining an illuminating device. 照明装置について説明する図。The figure explaining an illuminating device. 有機金属錯体([fac−Ir(5tznpmb)])のH−NMRチャート。 1 H-NMR chart of an organometallic complex ([fac-Ir (5tznpmb) 3 ]). 有機金属錯体([fac−Ir(5tznpmb)])の紫外・可視吸収スペクトル及び発光スペクトル。The ultraviolet-visible absorption spectrum and emission spectrum of an organometallic complex ([fac-Ir (5tznpmb) 3 ]). 有機金属錯体([mer−Ir(5tznpmb)])のH−NMRチャート。 1 H-NMR chart of an organometallic complex ([mer-Ir (5tznpmb) 3 ]). 有機金属錯体([mer−Ir(5tznpmb)])の紫外・可視吸収スペクトル及び発光スペクトル。The ultraviolet-visible absorption spectrum and emission spectrum of an organometallic complex ([mer-Ir (5tznpmb) 3 ]). 発光素子について説明する図。3A and 3B illustrate a light-emitting element. 発光素子1の発光スペクトルを示す図。FIG. 9 shows an emission spectrum of the light-emitting element 1.
以下、本発明の実施の形態について図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることが可能である。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and various changes can be made in form and details without departing from the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited to the description of the embodiments below.
なお、図面等において示す各構成の、位置、大きさ、範囲などは、理解の簡単のため、実際の位置、大きさ、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面等に開示された位置、大きさ、範囲などに限定されない。 Note that the position, size, range, and the like of each component illustrated in the drawings and the like may not represent the actual position, size, range, or the like for easy understanding. Therefore, the disclosed invention is not necessarily limited to the position, size, range, or the like disclosed in the drawings and the like.
(実施の形態1)
本実施の形態では、本発明の一態様である有機金属錯体について説明する。
(Embodiment 1)
In this embodiment, an organometallic complex which is one embodiment of the present invention will be described.
なお、本実施の形態で示す有機金属錯体は、カルベン炭素を含むイミダゾリル骨格、およびトリアジン骨格を有する配位子と、イリジウムとを有し、下記一般式(G1)で表される構造を有する。 Note that the organometallic complex described in this embodiment includes a ligand having an imidazolyl skeleton including a carbene carbon and a triazine skeleton, and iridium, and has a structure represented by the following general formula (G1).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
なお、一般式(G1)において、R~Rはそれぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数5~7の単環式飽和炭化水素、置換もしくは無置換の炭素数7~10の多環式飽和炭化水素、または置換もしくは無置換の炭素数6~13のアリール基、シアノ基のいずれかを表す。また、RとRは、置換もしくは無置換の飽和または不飽和の縮環による環構造を形成していても良く、前記環構造は、炭化水素環化合物または複素環化合物のいずれかである。 In General Formula (G1), R 1 to R 8 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted monocyclic saturated hydrocarbon having 5 to 7 carbon atoms, substituted or It represents an unsubstituted polycyclic saturated hydrocarbon having 7 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, or a cyano group. R 1 and R 2 may form a ring structure by a substituted or unsubstituted saturated or unsaturated condensed ring, and the ring structure is either a hydrocarbon ring compound or a heterocyclic compound .
また、本実施の形態で示す有機金属錯体は、下記一般式(G2)で表される。 The organometallic complex described in this embodiment is represented by the following general formula (G2).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
なお、一般式(G2)において、R~R12はそれぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数5~7の単環式飽和炭化水素、置換もしくは無置換の炭素数7~10の多環式飽和炭化水素、または置換もしくは無置換の炭素数6~13のアリール基、シアノ基のいずれかを表す。また、a、b、c、およびdは、炭素または窒素のいずれかである。 In General Formula (G2), R 3 to R 12 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted monocyclic saturated hydrocarbon having 5 to 7 carbon atoms, substituted or It represents an unsubstituted polycyclic saturated hydrocarbon having 7 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, or a cyano group. A, b, c, and d are either carbon or nitrogen.
また、本実施の形態で示す有機金属錯体は、下記一般式(G3)で表される。 The organometallic complex described in this embodiment is represented by the following general formula (G3).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
なお、一般式(G3)において、R~RおよびR13~R16はそれぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数5~7の単環式飽和炭化水素、置換もしくは無置換の炭素数7~10の多環式飽和炭化水素、または置換もしくは無置換の炭素数6~13のアリール基、シアノ基のいずれかを表す。 In General Formula (G3), R 3 to R 8 and R 13 to R 16 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted monocyclic group having 5 to 7 carbon atoms. It represents a saturated hydrocarbon, a substituted or unsubstituted polycyclic saturated hydrocarbon having 7 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, or a cyano group.
なお、上記一般式(G1)~一般式(G3)において、置換もしくは無置換の炭素数5~7の単環式飽和炭化水素、置換もしくは無置換の炭素数7~10の多環式飽和炭化水素、または置換もしくは無置換の炭素数6~13のアリール基、置換もしくは無置換の飽和または不飽和の縮環による環構造のいずれか、が置換基を有する場合、該置換基としてはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基のような炭素数1~6のアルキル基や、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、8,9,10−トリノルボルナニル基、のような炭素数5~7のシクロアルキル基や、フェニル基、ナフチル基、ビフェニル基のような炭素数6~12のアリール基、等が挙げられる。 In the above general formulas (G1) to (G3), a substituted or unsubstituted monocyclic saturated hydrocarbon having 5 to 7 carbon atoms, a substituted or unsubstituted polycyclic saturated carbon having 7 to 10 carbon atoms. When any of hydrogen, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, and a substituted or unsubstituted ring structure with a saturated or unsaturated condensed ring has a substituent, the substituent is a methyl group Alkyl group having 1 to 6 carbon atoms such as ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, cyclopentyl group, cyclohexyl group, C5-C7 cycloalkyl group such as cycloheptyl group, 8,9,10-trinorbornanyl group, C6-C12 such as phenyl group, naphthyl group and biphenyl group Aryl groups, and the like.
また、上記一般式(G1)~(G3)における炭素数1~6のアルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec−ブチル基、イソブチル基、tert−ブチル基、ペンチル基、イソペンチル基、sec−ペンチル基、tert−ペンチル基、ネオペンチル基、ヘキシル基、イソヘキシル基、3−メチルペンチル基、2−メチルペンチル基、2−エチルブチル基、1,2−ジメチルブチル基、2,3−ジメチルブチル基等が挙げられる。 Specific examples of the alkyl group having 1 to 6 carbon atoms in the general formulas (G1) to (G3) include methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, isobutyl group, tert-butyl group, pentyl group, isopentyl group, sec-pentyl group, tert-pentyl group, neopentyl group, hexyl group, isohexyl group, 3-methylpentyl group, 2-methylpentyl group, 2-ethylbutyl group, 1,2 -A dimethylbutyl group, a 2, 3- dimethylbutyl group, etc. are mentioned.
また、上記一般式(G1)~(G3)における炭素数5~7の単環式飽和炭化水素の具体例としては、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、2−メチルシクロヘキシル基、等が挙げられる。 Specific examples of the monocyclic saturated hydrocarbon having 5 to 7 carbon atoms in the general formulas (G1) to (G3) include a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a 2-methylcyclohexyl group, and the like. It is done.
また、上記一般式(G1)~(G3)における炭素数7~10の多環式飽和炭化水素の具体例としては、8,9,10−トリノルボルナニル基、デカヒドロナフチル基、アダマンチル基等が挙げられる。 Specific examples of the polycyclic saturated hydrocarbon having 7 to 10 carbon atoms in the general formulas (G1) to (G3) include 8,9,10-trinorbornanyl group, decahydronaphthyl group, and adamantyl group. Etc.
また、上記一般式(G1)~(G3)における炭素数6~13のアリール基の具体例としては、フェニル基、o−トリル基、m−トリル基、p−トリル基、メシチル基、o−ビフェニル基、m−ビフェニル基、p−ビフェニル基、1−ナフチル基、2−ナフチル基、フルオレニル基、等が挙げられる。 Specific examples of the aryl group having 6 to 13 carbon atoms in the general formulas (G1) to (G3) include phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, mesityl group, o- Biphenyl group, m-biphenyl group, p-biphenyl group, 1-naphthyl group, 2-naphthyl group, fluorenyl group and the like can be mentioned.
上述した一般式(G1)~(G3)で示される本発明の一態様である有機金属錯体は、カルベン炭素を含むイミダゾリル骨格、およびトリアジン骨格を有する配位子と、イリジウムと、を有する。トリアジン骨格は、π電子が過剰であるため電子供与性を有する。つまり、トリアジンからIrへ電子が供与されるため、HOMO−LUMOを下げることができる。これにより、キャリアの注入性を高めることができるため、発光素子に用いることで発光素子の駆動電圧を低減することができる。また、トリアジンを導入することで共役が広がるため、スペクトルを長波長シフトさせることができ、所望の発光色を得ることができる。なお、スペクトルが長波長シフトすることは、励起エネルギーが小さくなることと同義であり、これに起因して無放射失活の割合が小さくなるため、量子収率を高めることができる。 The organometallic complex which is one embodiment of the present invention represented by the above general formulas (G1) to (G3) includes an imidazolyl skeleton containing a carbene carbon, a ligand having a triazine skeleton, and iridium. The triazine skeleton has an electron donating property due to an excess of π electrons. That is, since electrons are donated from triazine to Ir, HOMO-LUMO can be lowered. Accordingly, carrier injectability can be improved, and thus, driving voltage of the light-emitting element can be reduced by using the light-emitting element. Moreover, since the conjugation spreads by introducing triazine, the spectrum can be shifted by a long wavelength, and a desired emission color can be obtained. Note that a long wavelength shift of the spectrum is synonymous with a decrease in excitation energy, and the ratio of non-radiative deactivation is decreased due to this, so that the quantum yield can be increased.
次に、上述した本発明の一態様である有機金属錯体の具体的な構造式を下記に示す。ただし、本発明はこれらに限定されることはない。 Next, specific structural formulas of the organometallic complex which is one embodiment of the present invention described above are shown below. However, the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
なお、上記構造式(100)~(122)で表される有機金属錯体は、本発明の一態様である有機金属錯体に含まれる一例であり、本発明の一態様である有機金属錯体は、これに限られない。 Note that the organometallic complex represented by the structural formulas (100) to (122) is an example included in the organometallic complex that is one embodiment of the present invention, and the organometallic complex that is one embodiment of the present invention is It is not limited to this.
次に、本発明の一態様であり、一般式(G1)で表される有機金属錯体の合成方法の一例について説明する。 Next, an example of a method for synthesizing the organometallic complex which is an embodiment of the present invention and is represented by General Formula (G1) is described.
≪一般式(G0)で表されるイミダゾリウム塩誘導体の合成方法≫
下記一般式(G0)で表されるイミダゾリウム塩誘導体は、以下のような3種類の合成スキーム(A1)、(A2)、(A3)で示す合成方法により合成することができる。
<< Method for Synthesizing Imidazolium Salt Derivative Represented by General Formula (G0) >>
The imidazolium salt derivative represented by the following general formula (G0) can be synthesized by the synthesis methods shown in the following three synthetic schemes (A1), (A2), and (A3).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
一般式(G0)において、Xはハロゲン、R~Rはそれぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数5~7の単環式飽和炭化水素、置換もしくは無置換の炭素数7~10の多環式飽和炭化水素、または置換もしくは無置換の炭素数6~13のアリール基、シアノ基のいずれかを表す。また、RとRは、置換もしくは無置換の飽和または不飽和の縮環による環構造を形成していても良く、環構造は、炭化水素環化合物または複素環化合物のいずれかである。 In General Formula (G0), X 1 is halogen, R 1 to R 8 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted monocyclic saturated hydrocarbon having 5 to 7 carbon atoms. Represents a substituted or unsubstituted polycyclic saturated hydrocarbon having 7 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, or a cyano group. R 1 and R 2 may form a ring structure by a substituted or unsubstituted saturated or unsaturated condensed ring, and the ring structure is either a hydrocarbon ring compound or a heterocyclic compound.
例えば、一般式(G0)で表されるイミダゾリウム塩誘導体は、下記合成スキーム(A1)に示すように、イミダゾール誘導体(a1−1)とハロゲン化ベンゼン化合物(a2−1)とをカップリングした後、ハロゲン化物と反応させることにより得ることができる。 For example, an imidazolium salt derivative represented by the general formula (G0) is obtained by coupling an imidazole derivative (a1-1) and a halogenated benzene compound (a2-1) as shown in the following synthesis scheme (A1). Thereafter, it can be obtained by reacting with a halide.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
上記合成スキーム(A1)において、XおよびXはハロゲン、R~Rはそれぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数5~7の単環式飽和炭化水素、置換もしくは無置換の炭素数7~10の多環式飽和炭化水素、または置換もしくは無置換の炭素数6~13のアリール基、シアノ基のいずれかを表す。また、RとRは、置換もしくは無置換の飽和または不飽和の縮環による環構造を形成していても良く、環構造は、炭化水素環化合物または複素環化合物のいずれかである。 In the above synthesis scheme (A1), X 1 and X 2 are halogen, R 1 to R 8 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted monocyclic group having 5 to 7 carbon atoms It represents any one of the formula saturated hydrocarbon, a substituted or unsubstituted polycyclic saturated hydrocarbon having 7 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, and a cyano group. R 1 and R 2 may form a ring structure by a substituted or unsubstituted saturated or unsaturated condensed ring, and the ring structure is either a hydrocarbon ring compound or a heterocyclic compound.
また、別の方法として、一般式(G0)で表されるイミダゾリウム塩誘導体は、下記合成スキーム(A2)に示すように、イミダゾール誘導体のボロン酸(a1−2)とトリアジンのハロゲン化物(a2−2)とをカップリングした後、ハロゲン化物と反応させることにより得ることもできる。 Alternatively, as shown in the following synthesis scheme (A2), an imidazolium salt derivative represented by the general formula (G0) can be obtained by using a boronic acid (a1-2) of an imidazole derivative and a halide (a2) of a triazine. -2) and then reacting with a halide.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
上記合成スキーム(A2)において、Bはボロン酸またはボロン酸エステルまたは環状トリオールボレート塩等、XおよびXはハロゲン、R~Rはそれぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数5~7の単環式飽和炭化水素、置換もしくは無置換の炭素数7~10の多環式飽和炭化水素、または置換もしくは無置換の炭素数6~13のアリール基、シアノ基のいずれかを表す。また、RとRは、置換もしくは無置換の飽和または不飽和の縮環による環構造を形成していても良く、環構造は、炭化水素環化合物または複素環化合物のいずれかである。 In the above synthesis scheme (A2), B is boronic acid, boronic acid ester or cyclic triol borate salt, X 1 and X 3 are halogen, R 1 to R 8 are each independently hydrogen, alkyl having 1 to 6 carbon atoms Group, substituted or unsubstituted monocyclic saturated hydrocarbon having 5 to 7 carbon atoms, substituted or unsubstituted polycyclic saturated hydrocarbon having 7 to 10 carbon atoms, or substituted or unsubstituted hydrocarbon having 6 to 13 carbon atoms It represents either an aryl group or a cyano group. R 1 and R 2 may form a ring structure by a substituted or unsubstituted saturated or unsaturated condensed ring, and the ring structure is either a hydrocarbon ring compound or a heterocyclic compound.
また、別の方法として、一般式(G0)で表されるイミダゾリウム塩誘導体は、合成スキーム(A3)に示すように、ベンゼン誘導体置換のジアミン(a1−3)とハロゲン化物を反応させることにより得ることもできる。 As another method, an imidazolium salt derivative represented by the general formula (G0) can be obtained by reacting a benzene derivative-substituted diamine (a1-3) with a halide as shown in the synthesis scheme (A3). It can also be obtained.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
上記合成スキーム(A3)において、Aは水素、アルキル基もしくはアンモニウム、Xはハロゲン、R~Rはそれぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数5~7の単環式飽和炭化水素、置換もしくは無置換の炭素数7~10の多環式飽和炭化水素、または置換もしくは無置換の炭素数6~13のアリール基、シアノ基のいずれかを表す。また、RとRは、置換もしくは無置換の飽和または不飽和の縮環による環構造を形成していても良く、環構造は、炭化水素環化合物または複素環化合物のいずれかである。 In the above synthesis scheme (A3), A is hydrogen, an alkyl group or ammonium, X 1 is halogen, R 1 to R 8 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted carbon number Either a monocyclic saturated hydrocarbon of 5 to 7, a substituted or unsubstituted polycyclic saturated hydrocarbon having 7 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, or a cyano group To express. R 1 and R 2 may form a ring structure by a substituted or unsubstituted saturated or unsaturated condensed ring, and the ring structure is either a hydrocarbon ring compound or a heterocyclic compound.
なお、上述した3種類の合成方法以外にも、イミダゾリウム塩誘導体(G0)の合成法には複数の公知の合成法が存在する。従って、いずれの方法を用いても良い。 In addition to the three synthetic methods described above, there are a plurality of known synthetic methods for synthesizing the imidazolium salt derivative (G0). Therefore, any method may be used.
また、上述の化合物(a1−1)、(a1−2)、(a1−3)、(a2−1)、(a2−2)は、様々な種類が市販されているか、あるいは合成可能であるため、一般式(G0)で表されるイミダゾリウム塩誘導体は数多くの種類を合成することができる。したがって、本発明の一態様である有機金属錯体は、その配位子のバリエーションが豊富であるという特徴がある。 In addition, various types of the above-described compounds (a1-1), (a1-2), (a1-3), (a2-1), and (a2-2) are commercially available or can be synthesized. Therefore, many types of imidazolium salt derivatives represented by General Formula (G0) can be synthesized. Therefore, the organometallic complex which is one embodiment of the present invention has a feature that the variation of the ligand is abundant.
≪一般式(G1)で表される有機金属錯体の合成方法≫
次に、本発明の一態様であり、一般式(G1)で表される有機金属錯体の合成方法を示す。
<< Method for Synthesizing Organometallic Complex Represented by General Formula (G1) >>
Next, a method for synthesizing the organometallic complex which is one embodiment of the present invention and is represented by General Formula (G1) is described.
下記合成スキーム(B)に示すように、ハロゲンを含むイリジウム化合物(塩化イリジウム水和物、クロロ(1,5−シクロオクタジエン)イリジウム(I)二量体等)と、酸化銀(I)と、一般式(G0)で表されるイミダゾリウム塩誘導体と、を混合した後、アルコール系溶媒(グリセロール、エチレングリコール、2−メトキシエタノール、2−エトキシエタノール等)またはハロゲン系溶媒(クロロベンゼン)に溶解させ、その後、加熱することにより、一般式(G1)で表される有機金属錯体が得られる。 As shown in the following synthetic scheme (B), an iridium compound containing halogen (such as iridium chloride hydrate, chloro (1,5-cyclooctadiene) iridium (I) dimer), silver (I) oxide, And an imidazolium salt derivative represented by the general formula (G0), and then dissolved in an alcohol solvent (glycerol, ethylene glycol, 2-methoxyethanol, 2-ethoxyethanol, etc.) or a halogen solvent (chlorobenzene) Then, the organometallic complex represented by the general formula (G1) is obtained by heating.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
合成スキーム(B)において、Xはハロゲン、R~Rはそれぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数5~7の単環式飽和炭化水素、置換もしくは無置換の炭素数7~10の多環式飽和炭化水素、または置換もしくは無置換の炭素数6~13のアリール基、シアノ基のいずれかを表す。また、RとRは、置換もしくは無置換の飽和または不飽和の縮環による環構造を形成していても良く、環構造は、炭化水素環化合物または複素環化合物のいずれかである。 In Synthesis Scheme (B), X 1 is halogen, R 1 to R 8 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted monocyclic saturated hydrocarbon having 5 to 7 carbon atoms. Represents a substituted or unsubstituted polycyclic saturated hydrocarbon having 7 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, or a cyano group. R 1 and R 2 may form a ring structure by a substituted or unsubstituted saturated or unsaturated condensed ring, and the ring structure is either a hydrocarbon ring compound or a heterocyclic compound.
以上、本発明の一態様である有機金属錯体の合成方法の一例について説明したが、本発明はこれに限定されることはなく、他のどのような合成方法によって合成されても良い。 As described above, the example of the method for synthesizing the organometallic complex which is one embodiment of the present invention has been described, but the present invention is not limited to this and may be synthesized by any other synthesis method.
なお、上述した本発明の一態様である有機金属錯体は、燐光を発光することが可能であるため、発光材料や発光素子の発光物質として利用できる。 Note that the organometallic complex which is one embodiment of the present invention described above can emit phosphorescence, and thus can be used as a light-emitting material or a light-emitting substance of a light-emitting element.
また、本発明の一態様である有機金属錯体を用いることで、発光効率の高い発光素子、発光装置、電子機器、または照明装置を実現することができる。また、消費電力が低い発光素子、発光装置、電子機器、または照明装置を実現することができる。 In addition, by using the organometallic complex which is one embodiment of the present invention, a light-emitting element, a light-emitting device, an electronic device, or a lighting device with high emission efficiency can be realized. In addition, a light-emitting element, a light-emitting device, an electronic device, or a lighting device with low power consumption can be realized.
なお、本実施の形態において、本発明の一態様について述べた。ただし、本発明の一態様は、これに限定されない。つまり、本実施の形態および他の実施の形態では、様々な発明の態様が記載されているため、本発明の一態様は、特定の態様に限定されない。 Note that one embodiment of the present invention is described in this embodiment. Note that one embodiment of the present invention is not limited to this. That is, in this embodiment and other embodiments, various aspects of the invention are described; therefore, one embodiment of the present invention is not limited to a particular aspect.
また、本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用いることができる。 The structure described in this embodiment can be combined as appropriate with any of the structures described in the other embodiments.
(実施の形態2)
本実施の形態では、実施の形態1で示した有機金属錯体を用いた発光素子について図1を用いて説明する。
(Embodiment 2)
In this embodiment, a light-emitting element using the organometallic complex described in Embodiment 1 will be described with reference to FIGS.
≪発光素子の基本的な構造≫
まず、発光素子の基本的な構造について説明する。図1(A)には、一対の電極間に発光層を含むEL層を有する発光素子を示す。具体的には、第1の電極101と第2の電極102との間にEL層103が挟まれた構造を有する。
≪Basic structure of light emitting element≫
First, the basic structure of the light emitting element will be described. FIG. 1A illustrates a light-emitting element having an EL layer including a light-emitting layer between a pair of electrodes. Specifically, the EL layer 103 is sandwiched between the first electrode 101 and the second electrode 102.
また、図1(B)には、一対の電極間に複数(図1(B)では、2層)のEL層(103a、103b)を有し、EL層の間に電荷発生層104を有する積層構造(タンデム構造)の発光素子を示す。タンデム構造の発光素子は、低電圧駆動が可能で消費電力が低い発光装置を実現することができる。 In FIG. 1B, a plurality of (two layers in FIG. 1B) EL layers (103a and 103b) are provided between a pair of electrodes, and the charge generation layer 104 is provided between the EL layers. 1 illustrates a light-emitting element having a stacked structure (tandem structure). A light-emitting element having a tandem structure can realize a light-emitting device that can be driven at a low voltage and has low power consumption.
電荷発生層104は、第1の電極101と第2の電極102に電圧を印加したときに、一方のEL層(103aまたは103b)に電子を注入し、他方のEL層(103bまたは103a)に正孔を注入する機能を有する。従って、図1(B)において、第1の電極101に第2の電極102よりも電位が高くなるように電圧を印加すると、電荷発生層104からEL層103aに電子が注入され、EL層103bに正孔が注入されることとなる。 When a voltage is applied to the first electrode 101 and the second electrode 102, the charge generation layer 104 injects electrons into one EL layer (103a or 103b) and the other EL layer (103b or 103a). It has a function of injecting holes. Therefore, in FIG. 1B, when a voltage is applied to the first electrode 101 so that the potential is higher than that of the second electrode 102, electrons are injected from the charge generation layer 104 into the EL layer 103a, and the EL layer 103b. Holes are injected into this.
なお、電荷発生層104は、光の取り出し効率の点から、可視光に対して透光性を有する(具体的には、電荷発生層104に対する可視光の透過率が、40%以上)ことが好ましい。また、電荷発生層104は、第1の電極101や第2の電極102よりも低い導電率であっても機能する。 Note that the charge generation layer 104 has a property of transmitting visible light in terms of light extraction efficiency (specifically, the visible light transmittance of the charge generation layer 104 is 40% or more). preferable. In addition, the charge generation layer 104 functions even when it has lower conductivity than the first electrode 101 or the second electrode 102.
また、図1(C)には、本発明の一態様である発光素子のEL層103の積層構造を示す。但し、この場合、第1の電極101は陽極として機能するものとする。EL層103は、第1の電極101上に、正孔(ホール)注入層111、正孔(ホール)輸送層112、発光層113、電子輸送層114、電子注入層115が順次積層された構造を有する。なお、図1(B)に示すタンデム構造のように複数のEL層を有する場合であっても、各EL層が、陽極側から上記のように順次積層される構造とする。また、第1の電極101が陰極で、第2の電極102が陽極の場合は、積層順は逆になる。 FIG. 1C illustrates a stacked structure of the EL layer 103 of the light-emitting element which is one embodiment of the present invention. However, in this case, the first electrode 101 functions as an anode. The EL layer 103 has a structure in which a hole injection layer 111, a hole transport layer 112, a light-emitting layer 113, an electron transport layer 114, and an electron injection layer 115 are sequentially stacked over the first electrode 101. Have Note that even in the case where a plurality of EL layers are provided as in the tandem structure illustrated in FIG. 1B, each EL layer is sequentially stacked from the anode side as described above. Further, when the first electrode 101 is a cathode and the second electrode 102 is an anode, the stacking order is reversed.
EL層(103、103a、103b)に含まれる発光層113は、それぞれ発光物質や複数の物質を適宜組み合わせて有しており、所望の発光色を呈する蛍光発光や燐光発光が得られる構成とすることができる。また、発光層113を発光色の異なる積層構造としてもよい。なお、この場合、積層された各発光層に用いる発光物質やその他の物質は、それぞれ異なる材料を用いればよい。また、図1(B)に示す複数のEL層(103a、103b)から、それぞれ異なる発光色が得られる構成としても良い。この場合も各発光層に用いる発光物質やその他の物質を異なる材料とすればよい。 Each of the light-emitting layers 113 included in the EL layers (103, 103a, and 103b) includes a light-emitting substance and a plurality of substances as appropriate in combination, so that fluorescent light emission or phosphorescence light emission having a desired light emission color can be obtained. be able to. Alternatively, the light-emitting layer 113 may have a stacked structure with different emission colors. Note that in this case, different materials may be used for the light-emitting substance and other substances used for the stacked light-emitting layers. Alternatively, different light emission colors may be obtained from the plurality of EL layers (103a and 103b) illustrated in FIG. In this case as well, the light-emitting substance and other substances used for each light-emitting layer may be different materials.
また、本発明の一態様である発光素子において、例えば、図1(C)に示す第1の電極101を反射電極とし、第2の電極102を半透過・半反射電極とし、微小光共振器(マイクロキャビティ)構造とすることにより、EL層103に含まれる発光層113から得られる発光を両電極間で共振させ、第2の電極102から得られる発光を強めることができる。 In the light-emitting element of one embodiment of the present invention, for example, the first electrode 101 illustrated in FIG. 1C is used as a reflective electrode, the second electrode 102 is used as a semi-transmissive / semi-reflective electrode, and a micro optical resonator is used. With the (microcavity) structure, light emission obtained from the light-emitting layer 113 included in the EL layer 103 can resonate between both electrodes, and light emission obtained from the second electrode 102 can be strengthened.
なお、発光素子の第1の電極101が、反射性を有する導電性材料と透光性を有する導電性材料(透明導電膜)との積層構造からなる反射電極である場合、透明導電膜の膜厚を制御することにより光学調整を行うことができる。具体的には、発光層113から得られる光の波長λに対して、第1の電極101と、第2の電極102との電極間距離がmλ/2(ただし、mは自然数)近傍となるように調整するのが好ましい。 Note that in the case where the first electrode 101 of the light-emitting element is a reflective electrode having a stacked structure of a reflective conductive material and a light-transmitting conductive material (transparent conductive film), a film of the transparent conductive film Optical adjustment can be performed by controlling the thickness. Specifically, the distance between the first electrode 101 and the second electrode 102 is near mλ / 2 (where m is a natural number) with respect to the wavelength λ of light obtained from the light-emitting layer 113. It is preferable to adjust as follows.
また、発光層113から得られる所望の光(波長:λ)を増幅させるために、第1の電極101から発光層113の所望の光が得られる領域(発光領域)までの光学距離と、第2の電極102から発光層113の所望の光が得られる領域(発光領域)までの光学距離と、をそれぞれ(2m’+1)λ/4(ただし、m’は自然数)近傍となるように調節するのが好ましい。なお、ここでいう発光領域とは、発光層113における正孔(ホール)と電子との再結合領域を示す。 Further, in order to amplify desired light (wavelength: λ) obtained from the light emitting layer 113, an optical distance from the first electrode 101 to a region (light emitting region) where the desired light of the light emitting layer 113 can be obtained, The optical distance from the second electrode 102 to the region (light emitting region) where desired light can be obtained from the light emitting layer 113 is adjusted to be close to (2m ′ + 1) λ / 4 (where m ′ is a natural number). It is preferable to do this. Note that the light emitting region herein refers to a recombination region between holes and electrons in the light emitting layer 113.
このような光学調整を行うことにより、発光層113から得られる特定の単色光のスペクトルを狭線化させ、色純度の良い発光を得ることができる。 By performing such optical adjustment, the spectrum of specific monochromatic light obtained from the light emitting layer 113 can be narrowed, and light emission with good color purity can be obtained.
但し、上記の場合、第1の電極101と第2の電極102との光学距離は、厳密には第1の電極101における反射領域から第2の電極102における反射領域までの総厚ということができる。しかし、第1の電極101や第2の電極102における反射領域を厳密に決定することは困難であるため、第1の電極101と第2の電極102の任意の位置を反射領域と仮定することで充分に上述の効果を得ることができるものとする。また、第1の電極101と、所望の光が得られる発光層との光学距離は、厳密には第1の電極101における反射領域と、所望の光が得られる発光層における発光領域との光学距離であるということができる。しかし、第1の電極101における反射領域や、所望の光が得られる発光層における発光領域を厳密に決定することは困難であるため、第1の電極101の任意の位置を反射領域、所望の光が得られる発光層の任意の位置を発光領域と仮定することで充分に上述の効果を得ることができるものとする。 However, in the above case, the optical distance between the first electrode 101 and the second electrode 102 is strictly the total thickness from the reflective region of the first electrode 101 to the reflective region of the second electrode 102. it can. However, since it is difficult to precisely determine the reflection region in the first electrode 101 or the second electrode 102, it is assumed that any position of the first electrode 101 and the second electrode 102 is the reflection region. The above-mentioned effect can be sufficiently obtained. Strictly speaking, the optical distance between the first electrode 101 and the light emitting layer from which desired light can be obtained is the optical distance between the reflective region in the first electrode 101 and the light emitting region in the light emitting layer from which desired light can be obtained. It can be said that it is a distance. However, since it is difficult to strictly determine the reflection region in the first electrode 101 and the light-emitting region in the light-emitting layer from which desired light can be obtained, any position of the first electrode 101 can be set as the reflection region, the desired region. It is assumed that the above-described effect can be sufficiently obtained by assuming an arbitrary position of the light emitting layer from which light is obtained as a light emitting region.
図1(C)に示す発光素子は、マイクロキャビティ構造を有するため、同じEL層を有していても異なる波長の光(単色光)を取り出すことができる。従って、異なる発光色を得るための塗り分け(例えば、RGB)が不要となる。従って、高精細化を実現することが容易である。また、着色層(カラーフィルタ)との組み合わせも可能である。さらに、特定波長の正面方向の発光強度を強めることが可能となるため、低消費電力化を図ることができる。 Since the light-emitting element illustrated in FIG. 1C has a microcavity structure, light having different wavelengths (monochromatic light) can be extracted even when the light-emitting element has the same EL layer. Accordingly, there is no need for separate coloring (for example, RGB) for obtaining different emission colors. Therefore, it is easy to realize high definition. A combination with a colored layer (color filter) is also possible. Furthermore, since it is possible to increase the emission intensity of the specific wavelength in the front direction, it is possible to reduce power consumption.
図1(E)に示す発光素子は、図1(B)に示したタンデム構造の発光素子の一例であり、図に示すように、3つのEL層(103a、103b、103c)が電荷発生層(104a、104b)を挟んで積層される構造を有する。なお、3つのEL層(103a、103b、103c)は、それぞれに発光層(113a、113b、113c)を有しており、各発光層の発光色は、自由に組み合わせることができる。例えば、発光層113aを青色、発光層113bを赤色、緑色、または黄色のいずれか、発光層113cを青色とすることができるが、発光層113aを赤色、発光層113bを青色、緑色、または黄色のいずれか、発光層113cを赤色とすることもできる。 The light-emitting element illustrated in FIG. 1E is an example of the light-emitting element having the tandem structure illustrated in FIG. 1B. As illustrated, three EL layers (103a, 103b, and 103c) are charge generation layers. (104a, 104b). Note that the three EL layers (103a, 103b, and 103c) each have a light emitting layer (113a, 113b, and 113c), and the light emission colors of the light emitting layers can be freely combined. For example, the light-emitting layer 113a can be blue, the light-emitting layer 113b can be red, green, or yellow, and the light-emitting layer 113c can be blue, but the light-emitting layer 113a can be red and the light-emitting layer 113b can be blue, green, or yellow. In any case, the light emitting layer 113c may be red.
なお、上述した本発明の一態様である発光素子において、第1の電極101と第2の電極102の少なくとも一方は、透光性を有する電極(透明電極、半透過・半反射電極など)とする。透光性を有する電極が透明電極の場合、透明電極の可視光の透過率は、40%以上とする。また、半透過・半反射電極の場合、半透過・半反射電極の可視光の反射率は、20%以上80%以下、好ましくは40%以上70%以下とする。また、これらの電極は、抵抗率が1×10−2Ωcm以下とするのが好ましい。 Note that in the above light-emitting element which is one embodiment of the present invention, at least one of the first electrode 101 and the second electrode 102 includes a light-transmitting electrode (a transparent electrode, a semi-transmissive / semi-reflective electrode, or the like). To do. When the light-transmitting electrode is a transparent electrode, the transparent electrode has a visible light transmittance of 40% or more. In the case of a semi-transmissive / semi-reflective electrode, the visible light reflectance of the semi-transmissive / semi-reflective electrode is 20% to 80%, preferably 40% to 70%. These electrodes preferably have a resistivity of 1 × 10 −2 Ωcm or less.
また、上述した本発明の一態様である発光素子において、第1の電極101と第2の電極102の一方が、反射性を有する電極(反射電極)である場合、反射性を有する電極の可視光の反射率は、40%以上100%以下、好ましくは70%以上100%以下とする。また、この電極は、抵抗率が1×10−2Ωcm以下とするのが好ましい。 In the light-emitting element which is one embodiment of the present invention described above, when one of the first electrode 101 and the second electrode 102 is a reflective electrode (reflective electrode), the reflective electrode is visible. The light reflectance is 40% to 100%, preferably 70% to 100%. The electrode preferably has a resistivity of 1 × 10 −2 Ωcm or less.
≪発光素子の具体的な構造および作製方法≫
次に、本発明の一態様である発光素子の具体的な構造および作製方法について、図1を用いて説明する。また、ここでは、図1(B)に示すタンデム構造を有し、マイクロキャビティ構造を備えた発光素子についても図1(D)を用いて説明する。図1(D)に示す発光素子がマイクロキャビティ構造を有する場合は、第1の電極101を反射電極として形成し、第2の電極102を半透過・半反射電極として形成する。従って、所望の電極材料を単数または複数用い、単層または積層して形成することができる。なお、第2の電極102は、EL層103bを形成した後、上記と同様に材料を選択して形成する。また、これらの電極の作製には、スパッタ法や真空蒸着法を用いることができる。
<< Specific structure and manufacturing method of light-emitting element >>
Next, a specific structure and a manufacturing method of the light-emitting element which is one embodiment of the present invention will be described with reference to FIGS. Here, a light-emitting element having the tandem structure illustrated in FIG. 1B and including a microcavity structure is also described with reference to FIG. In the case where the light-emitting element illustrated in FIG. 1D has a microcavity structure, the first electrode 101 is formed as a reflective electrode, and the second electrode 102 is formed as a semi-transmissive / semi-reflective electrode. Therefore, a desired electrode material can be formed by using a single layer or a plurality of layers and forming a single layer or a stack. Note that the second electrode 102 is formed by selecting a material in the same manner as described above after the EL layer 103b is formed. In addition, a sputtering method or a vacuum evaporation method can be used for manufacturing these electrodes.
<第1の電極および第2の電極>
第1の電極101および第2の電極102を形成する材料としては、上述した両電極の機能が満たせるのであれば、以下に示す材料を適宜組み合わせて用いることができる。例えば、金属、合金、電気伝導性化合物、およびこれらの混合物などを適宜用いることができる。具体的には、In−Sn酸化物(ITOともいう)、In−Si−Sn酸化物(ITSOともいう)、In−Zn酸化物、In−W−Zn酸化物が挙げられる。その他、アルミニウム(Al)、チタン(Ti)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、ガリウム(Ga)、亜鉛(Zn)、インジウム(In)、スズ(Sn)、モリブデン(Mo)、タンタル(Ta)、タングステン(W)、パラジウム(Pd)、金(Au)、白金(Pt)、銀(Ag)、イットリウム(Y)、ネオジム(Nd)などの金属、およびこれらを適宜組み合わせて含む合金を用いることもできる。その他、上記例示のない元素周期表の第1族または第2族に属する元素(例えば、リチウム(Li)、セシウム(Cs)、カルシウム(Ca)、ストロンチウム(Sr))、ユウロピウム(Eu)、イッテルビウム(Yb)などの希土類金属およびこれらを適宜組み合わせて含む合金、その他グラフェン等を用いることができる。
<First electrode and second electrode>
As materials for forming the first electrode 101 and the second electrode 102, the following materials can be used in appropriate combination as long as the functions of both electrodes described above can be satisfied. For example, a metal, an alloy, an electrically conductive compound, a mixture thereof, and the like can be used as appropriate. Specifically, an In—Sn oxide (also referred to as ITO), an In—Si—Sn oxide (also referred to as ITSO), an In—Zn oxide, and an In—W—Zn oxide can be given. In addition, aluminum (Al), titanium (Ti), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), gallium (Ga), zinc (Zn ), Indium (In), tin (Sn), molybdenum (Mo), tantalum (Ta), tungsten (W), palladium (Pd), gold (Au), platinum (Pt), silver (Ag), yttrium (Y ), A metal such as neodymium (Nd), and an alloy containing an appropriate combination thereof. In addition, elements belonging to Group 1 or Group 2 of the periodic table of elements not exemplified above (for example, lithium (Li), cesium (Cs), calcium (Ca), strontium (Sr)), europium (Eu), ytterbium Rare earth metals such as (Yb), alloys containing these in appropriate combinations, other graphene, and the like can be used.
図1(D)に示す発光素子において、第1の電極101が陽極である場合、第1の電極101上にEL層103aの正孔注入層111aおよび正孔輸送層112aが真空蒸着法により順次積層形成される。EL層103aおよび電荷発生層104が形成された後、電荷発生層104上にEL層103bの正孔注入層111bおよび正孔輸送層112bが同様に順次積層形成される。 In the light-emitting element illustrated in FIG. 1D, when the first electrode 101 is an anode, the hole injection layer 111a and the hole transport layer 112a of the EL layer 103a are sequentially formed over the first electrode 101 by a vacuum evaporation method. Stacked. After the EL layer 103a and the charge generation layer 104 are formed, the hole injection layer 111b and the hole transport layer 112b of the EL layer 103b are sequentially stacked on the charge generation layer 104 in the same manner.
<正孔注入層および正孔輸送層>
正孔注入層(111、111a、111b)は、陽極である第1の電極101や電荷発生層(104)からEL層(103、103a、103b)に正孔(ホール)を注入する層であり、正孔注入性の高い材料を含む層である。
<Hole injection layer and hole transport layer>
The hole injection layer (111, 111a, 111b) is a layer for injecting holes from the first electrode 101 serving as an anode or the charge generation layer (104) into the EL layers (103, 103a, 103b). , A layer containing a material having a high hole injection property.
正孔注入性の高い材料としては、モリブデン酸化物やバナジウム酸化物、ルテニウム酸化物、タングステン酸化物、マンガン酸化物等の遷移金属酸化物が挙げられる。この他、フタロシアニン(略称:HPc)や銅フタロシアニン(略称:CuPC)等のフタロシアニン系の化合物、4,4’−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ビフェニル(略称:DPAB)、N,N’−ビス{4−[ビス(3−メチルフェニル)アミノ]フェニル}−N,N’−ジフェニル−(1,1’−ビフェニル)−4,4’−ジアミン(略称:DNTPD)等の芳香族アミン化合物、またはポリ(3,4−エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(略称:PEDOT/PSS)等の高分子等を用いることができる。 Examples of the material having a high hole injection property include transition metal oxides such as molybdenum oxide, vanadium oxide, ruthenium oxide, tungsten oxide, and manganese oxide. In addition, phthalocyanine compounds such as phthalocyanine (abbreviation: H 2 Pc) and copper phthalocyanine (abbreviation: CuPC), 4,4′-bis [N- (4-diphenylaminophenyl) -N-phenylamino] biphenyl ( Abbreviation: DPAB), N, N′-bis {4- [bis (3-methylphenyl) amino] phenyl} -N, N′-diphenyl- (1,1′-biphenyl) -4,4′-diamine ( An aromatic amine compound such as abbreviation (DNTPD) or a polymer such as poly (3,4-ethylenedioxythiophene) / poly (styrenesulfonic acid) (abbreviation: PEDOT / PSS) can be used.
また、正孔注入性の高い材料としては、正孔輸送性材料とアクセプター性材料(電子受容性材料)を含む複合材料を用いることもできる。この場合、アクセプター性材料により正孔輸送性材料から電子が引き抜かれて正孔注入層(111、111a、111b)で正孔が発生し、正孔輸送層(112、112a、112b)を介して発光層(113、113a、113b)に正孔が注入される。なお、正孔注入層(111、111a、111b)は、正孔輸送性材料とアクセプター性材料(電子受容性材料)を含む複合材料からなる単層で形成しても良いが、正孔輸送性材料とアクセプター性材料(電子受容性材料)とをそれぞれ別の層で積層して形成しても良い。 As a material having a high hole-injecting property, a composite material including a hole-transporting material and an acceptor material (electron-accepting material) can also be used. In this case, electrons are extracted from the hole transporting material by the acceptor material, and holes are generated in the hole injection layer (111, 111a, 111b), via the hole transporting layer (112, 112a, 112b). Holes are injected into the light emitting layer (113, 113a, 113b). Note that the hole injection layer (111, 111a, 111b) may be formed as a single layer made of a composite material including a hole transporting material and an acceptor material (electron accepting material). The material and the acceptor material (electron-accepting material) may be stacked in separate layers.
正孔輸送層(112、112a、112b)は、正孔注入層(111、111a、111b)によって、第1の電極101や電荷発生層(104)から注入された正孔を発光層(113、113a、113b)に輸送する層である。なお、正孔輸送層(112、112a、112b)は、正孔輸送性材料を含む層である。正孔輸送層(112、112a、112b)に用いる正孔輸送性材料は、特に正孔注入層(111、111a、111b)のHOMO準位と同じ、あるいは近いHOMO準位を有するものを用いることが好ましい。 The hole transport layer (112, 112a, 112b) is configured to transfer holes injected from the first electrode 101 or the charge generation layer (104) by the hole injection layer (111, 111a, 111b). 113a, 113b). Note that the hole transport layers (112, 112a, 112b) are layers containing a hole transport material. As the hole transporting material used for the hole transport layer (112, 112a, 112b), a material having a HOMO level that is the same as or close to the HOMO level of the hole injection layer (111, 111a, 111b) should be used. Is preferred.
正孔注入層(111、111a、111b)に用いるアクセプター性材料としては、元素周期表における第4族乃至第8族に属する金属の酸化物を用いることができる。具体的には、酸化モリブデン、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化タングステン、酸化マンガン、酸化レニウムが挙げられる。中でも特に、酸化モリブデンは大気中でも安定であり、吸湿性が低く、扱いやすいため好ましい。その他、キノジメタン誘導体やクロラニル誘導体、ヘキサアザトリフェニレン誘導体などの有機アクセプターを用いることができる。具体的には、7,7,8,8−テトラシアノ−2,3,5,6−テトラフルオロキノジメタン(略称:F−TCNQ)、クロラニル、2,3,6,7,10,11−ヘキサシアノ−1,4,5,8,9,12−ヘキサアザトリフェニレン(略称:HAT−CN)等を用いることができる。 As an acceptor material used for the hole-injection layer (111, 111a, 111b), an oxide of a metal belonging to Groups 4 to 8 in the periodic table can be used. Specific examples include molybdenum oxide, vanadium oxide, niobium oxide, tantalum oxide, chromium oxide, tungsten oxide, manganese oxide, and rhenium oxide. Among these, molybdenum oxide is especially preferable because it is stable in the air, has a low hygroscopic property, and is easy to handle. In addition, organic acceptors such as quinodimethane derivatives, chloranil derivatives, and hexaazatriphenylene derivatives can be used. Specifically, 7,7,8,8-tetracyano-2,3,5,6-tetrafluoroquinodimethane (abbreviation: F 4 -TCNQ), chloranil, 2,3,6,7,10,11 -Hexacyano-1,4,5,8,9,12-hexaazatriphenylene (abbreviation: HAT-CN) or the like can be used.
正孔注入層(111、111a、111b)および正孔輸送層(112、112a、112b)に用いる正孔輸送性材料としては、10−6cm/Vs以上の正孔移動度を有する物質が好ましい。なお、電子よりも正孔の輸送性の高い物質であれば、これら以外のものを用いることができる。 As a hole transporting material used for the hole injection layer (111, 111a, 111b) and the hole transport layer (112, 112a, 112b), a substance having a hole mobility of 10 −6 cm 2 / Vs or more is used. preferable. Note that other than these substances, any substance that has a property of transporting more holes than electrons can be used.
正孔輸送性材料としては、π電子過剰型複素芳香族化合物(例えばカルバゾール誘導体やインドール誘導体)や芳香族アミン化合物が好ましく、具体例としては、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPBまたはα−NPD)、N,N’−ビス(3−メチルフェニル)−N,N’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン(略称:TPD)、4,4’−ビス[N−(スピロ−9,9’−ビフルオレン−2−イル)−N−フェニルアミノ]ビフェニル(略称:BSPB)、4−フェニル−4’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:BPAFLP)、4−フェニル−3’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:mBPAFLP)、4−フェニル−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBA1BP)、3−[4−(9−フェナントリル)−フェニル]−9−フェニル−9H−カルバゾール(略称:PCPPn)、N−(4−ビフェニル)−N−(9,9−ジメチル−9H−フルオレン−2−イル)−9−フェニル−9H−カルバゾール−3−アミン(略称:PCBiF)、N−(1,1’−ビフェニル−4−イル)−N−[4−(9−フェニル−9−H−カルバゾール−3−イル)フェニル]−9,9−ジメチル−9H−フルオレン−2−アミン(略称:PCBBiF)、4,4’−ジフェニル−4’’−(9−フェニル−9H−カルバゾール−3−イル)−トリフェニルアミン(略称:PCBBi1BP)、4−(1−ナフチル)−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBANB)、4,4’−ジ(1−ナフチル)−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBNBB)、9,9−ジメチル−N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]フルオレン−2−アミン(略称:PCBAF)、N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]スピロ−9,9’−ビフルオレン−2−アミン(略称:PCBASF)、4,4’,4’’−トリス(カルバゾール−9−イル)トリフェニルアミン(略称:TCTA)、4,4’,4’’−トリス(N,N−ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミン(略称:MTDATA)などの芳香族アミン骨格を有する化合物、1,3−ビス(N−カルバゾリル)ベンゼン(略称:mCP)、4,4’−ジ(N−カルバゾリル)ビフェニル(略称:CBP)、3,6−ビス(3,5−ジフェニルフェニル)−9−フェニルカルバゾール(略称:CzTP)、3,3’−ビス(9−フェニル−9H−カルバゾール)(略称:PCCP)、3−[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA1)、3,6−ビス[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA2)、3−[N−(1−ナフチル)−N−(9−フェニルカルバゾール−3−イル)アミノ]−9−フェニルカルバゾール(略称:PCzPCN1)、1,3,5−トリス[4−(N−カルバゾリル)フェニル]ベンゼン(略称:TCPB)、9−[4−(10−フェニル−9−アントラセニル)フェニル]−9H−カルバゾール(略称:CzPA)などのカルバゾール骨格を有する化合物、4,4’,4’’−(ベンゼン−1,3,5−トリイル)トリ(ジベンゾチオフェン)(略称:DBT3P−II)、2,8−ジフェニル−4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]ジベンゾチオフェン(略称:DBTFLP−III)、4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]−6−フェニルジベンゾチオフェン(略称:DBTFLP−IV)などのチオフェン骨格を有する化合物、4,4’,4’’−(ベンゼン−1,3,5−トリイル)トリ(ジベンゾフラン)(略称:DBF3P−II)、4−{3−[3−(9−フェニル−9H−フルオレン−9−イル)フェニル]フェニル}ジベンゾフラン(略称:mmDBFFLBi−II)などのフラン骨格を有する化合物が挙げられる。 As the hole transporting material, a π-electron rich heteroaromatic compound (for example, a carbazole derivative or an indole derivative) or an aromatic amine compound is preferable. As a specific example, 4,4′-bis [N- (1-naphthyl) is preferable. ) -N-phenylamino] biphenyl (abbreviation: NPB or α-NPD), N, N′-bis (3-methylphenyl) -N, N′-diphenyl- [1,1′-biphenyl] -4,4 '-Diamine (abbreviation: TPD), 4,4'-bis [N- (spiro-9,9'-bifluoren-2-yl) -N-phenylamino] biphenyl (abbreviation: BSPB), 4-phenyl-4 '-(9-phenylfluoren-9-yl) triphenylamine (abbreviation: BPAFLP), 4-phenyl-3'-(9-phenylfluoren-9-yl) triphenylamine (abbreviation: m BPAFLP), 4-phenyl-4 ′-(9-phenyl-9H-carbazol-3-yl) triphenylamine (abbreviation: PCBA1BP), 3- [4- (9-phenanthryl) -phenyl] -9-phenyl- 9H-carbazole (abbreviation: PCPPn), N- (4-biphenyl) -N- (9,9-dimethyl-9H-fluoren-2-yl) -9-phenyl-9H-carbazol-3-amine (abbreviation: PCBiF) ), N- (1,1′-biphenyl-4-yl) -N- [4- (9-phenyl-9-H-carbazol-3-yl) phenyl] -9,9-dimethyl-9H-fluorene- 2-Amine (abbreviation: PCBBiF), 4,4′-diphenyl-4 ″-(9-phenyl-9H-carbazol-3-yl) -triphenylamine (abbreviation: PCBBi1) P), 4- (1-naphthyl) -4 ′-(9-phenyl-9H-carbazol-3-yl) triphenylamine (abbreviation: PCBANB), 4,4′-di (1-naphthyl) -4 ′ '-(9-phenyl-9H-carbazol-3-yl) triphenylamine (abbreviation: PCBNBB), 9,9-dimethyl-N-phenyl-N- [4- (9-phenyl-9H-carbazole-3- Yl) phenyl] fluoren-2-amine (abbreviation: PCBAF), N-phenyl-N- [4- (9-phenyl-9H-carbazol-3-yl) phenyl] spiro-9,9'-bifluoren-2- Amine (abbreviation: PCBASF), 4,4 ′, 4 ″ -tris (carbazol-9-yl) triphenylamine (abbreviation: TCTA), 4,4 ′, 4 ″ -tris (N, N-diphe) Aromatic amine skeletons such as (lamino) triphenylamine (abbreviation: TDATA), 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine (abbreviation: MTDATA) 1,3-bis (N-carbazolyl) benzene (abbreviation: mCP), 4,4′-di (N-carbazolyl) biphenyl (abbreviation: CBP), 3,6-bis (3,5-diphenyl) Phenyl) -9-phenylcarbazole (abbreviation: CzTP), 3,3′-bis (9-phenyl-9H-carbazole) (abbreviation: PCCP), 3- [N- (9-phenylcarbazol-3-yl)- N-phenylamino] -9-phenylcarbazole (abbreviation: PCzPCA1), 3,6-bis [N- (9-phenylcarbazol-3-yl) -N-Fe Nylamino] -9-phenylcarbazole (abbreviation: PCzPCA2), 3- [N- (1-naphthyl) -N- (9-phenylcarbazol-3-yl) amino] -9-phenylcarbazole (abbreviation: PCzPCN1), 1 , 3,5-tris [4- (N-carbazolyl) phenyl] benzene (abbreviation: TCPB), 9- [4- (10-phenyl-9-anthracenyl) phenyl] -9H-carbazole (abbreviation: CzPA), etc. Compounds having a carbazole skeleton, 4,4 ′, 4 ″-(benzene-1,3,5-triyl) tri (dibenzothiophene) (abbreviation: DBT3P-II), 2,8-diphenyl-4- [4- (9-phenyl-9H-fluoren-9-yl) phenyl] dibenzothiophene (abbreviation: DBTFLP-III), 4- [4- (9- A compound having a thiophene skeleton such as phenyl-9H-fluoren-9-yl) phenyl] -6-phenyldibenzothiophene (abbreviation: DBTFLP-IV), 4,4 ′, 4 ″-(benzene-1,3,5) -Triyl) tri (dibenzofuran) (abbreviation: DBF3P-II), 4- {3- [3- (9-phenyl-9H-fluoren-9-yl) phenyl] phenyl} dibenzofuran (abbreviation: mmDBFFLBi-II), etc. Examples include compounds having a furan skeleton.
さらに、ポリ(N−ビニルカルバゾール)(略称:PVK)、ポリ(4−ビニルトリフェニルアミン)(略称:PVTPA)、ポリ[N−(4−{N’−[4−(4−ジフェニルアミノ)フェニル]フェニル−N’−フェニルアミノ}フェニル)メタクリルアミド](略称:PTPDMA)、ポリ[N,N’−ビス(4−ブチルフェニル)−N,N’−ビス(フェニル)ベンジジン](略称:Poly−TPD)などの高分子化合物を用いることもできる。 Further, poly (N-vinylcarbazole) (abbreviation: PVK), poly (4-vinyltriphenylamine) (abbreviation: PVTPA), poly [N- (4- {N ′-[4- (4-diphenylamino)] Phenyl] phenyl-N′-phenylamino} phenyl) methacrylamide] (abbreviation: PTPDMA), poly [N, N′-bis (4-butylphenyl) -N, N′-bis (phenyl) benzidine] (abbreviation: Polymer compounds such as Poly-TPD can also be used.
但し、正孔輸送性材料は、上記に限られることなく公知の様々な材料を1種または複数種組み合わせて正孔注入層(111、111a、111b)および正孔輸送層(112、112a、112b)に用いることができる。なお、正孔輸送層(112、112a、112b)は、各々複数の層から形成されていても良い。すなわち、例えば第1の正孔輸送層と第2の正孔輸送層とが積層されていても良い。 However, the hole transporting material is not limited to the above, and various known materials may be used alone or in combination to form a hole injection layer (111, 111a, 111b) and a hole transport layer (112, 112a, 112b). ). Note that each of the hole transport layers (112, 112a, 112b) may be formed of a plurality of layers. That is, for example, a first hole transport layer and a second hole transport layer may be laminated.
図1(D)に示す発光素子においては、EL層103aの正孔輸送層112a上に発光層113aが真空蒸着法により形成される。また、EL層103aおよび電荷発生層104が形成された後、EL層103bの正孔輸送層112b上に発光層113bが真空蒸着法により形成される。 In the light-emitting element illustrated in FIG. 1D, the light-emitting layer 113a is formed over the hole-transport layer 112a of the EL layer 103a by a vacuum evaporation method. In addition, after the EL layer 103a and the charge generation layer 104 are formed, the light emitting layer 113b is formed on the hole transport layer 112b of the EL layer 103b by a vacuum evaporation method.
<発光層>
発光層(113、113a、113b、113c)は、発光物質を含む層である。なお、発光物質としては、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、赤色などの発光色を呈する物質を適宜用いる。また、複数の発光層(113a、113b、113c)に異なる発光物質を用いることにより異なる発光色を呈する構成(例えば、補色の関係にある発光色を組み合わせて得られる白色発光)とすることができる。さらに、一つの発光層が異なる発光物質を有する積層構造であっても良い。
<Light emitting layer>
The light emitting layers (113, 113a, 113b, 113c) are layers containing a light emitting substance. Note that as the light-emitting substance, a substance exhibiting a luminescent color such as blue, purple, blue-violet, green, yellow-green, yellow, orange, or red is appropriately used. In addition, by using different light emitting substances for the plurality of light emitting layers (113a, 113b, 113c), a structure exhibiting different light emission colors (for example, white light emission obtained by combining light emission colors having complementary colors) can be obtained. . Furthermore, a stacked structure in which one light emitting layer includes different light emitting substances may be used.
また、発光層(113、113a、113b、113c)は、発光物質(ゲスト材料)に加えて、1種または複数種の有機化合物(ホスト材料、アシスト材料)を有していても良い。また、1種または複数種の有機化合物としては、本実施の形態で説明する正孔輸送性材料や電子輸送性材料の一方または両方を用いることができる。 Further, the light emitting layer (113, 113a, 113b, 113c) may include one or more organic compounds (host material, assist material) in addition to the light emitting substance (guest material). As the one or more kinds of organic compounds, one or both of a hole transporting material and an electron transporting material described in this embodiment can be used.
発光層(113、113a、113b、113c)に用いることができる発光物質としては、一重項励起エネルギーを可視光領域の発光に変える発光物質、または三重項励起エネルギーを可視光領域の発光に変える発光物質を用いることができる。 As a light-emitting substance that can be used for the light-emitting layers (113, 113a, 113b, and 113c), a light-emitting substance that changes singlet excitation energy into light emission in the visible light region, or light emission that changes triplet excitation energy into light emission in the visible light region. Substances can be used.
なお、他の発光物質としては、例えば、以下のようなものが挙げられる。 Examples of other luminescent substances include the following.
一重項励起エネルギーを発光に変える発光物質としては、蛍光を発する物質(蛍光材料)が挙げられ、例えば、ピレン誘導体、アントラセン誘導体、トリフェニレン誘導体、フルオレン誘導体、カルバゾール誘導体、ジベンゾチオフェン誘導体、ジベンゾフラン誘導体、ジベンゾキノキサリン誘導体、キノキサリン誘導体、ピリジン誘導体、ピリミジン誘導体、フェナントレン誘導体、ナフタレン誘導体などが挙げられる。特にピレン誘導体は発光量子収率が高いので好ましい。ピレン誘導体の具体例としては、N,N’−ビス(3−メチルフェニル)−N,N’−ビス〔3−(9−フェニル−9H−フルオレン−9−イル)フェニル〕ピレン−1,6−ジアミン(略称:1,6mMemFLPAPrn)、N,N’−ジフェニル−N,N’−ビス[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]ピレン−1,6−ジアミン(略称:1,6FLPAPrn)、N,N’−ビス(ジベンゾフラン−2−イル)−N,N’−ジフェニルピレン−1,6−ジアミン(略称:1,6FrAPrn)、N,N’−ビス(ジベンゾチオフェン−2−イル)−N,N’−ジフェニルピレン−1,6−ジアミン(略称:1,6ThAPrn)、N,N’−(ピレン−1,6−ジイル)ビス[(N−フェニルベンゾ[b]ナフト[1,2−d]フラン)−6−アミン](略称:1,6BnfAPrn)、N,N’−(ピレン−1,6−ジイル)ビス[(N−フェニルベンゾ[b]ナフト[1,2−d]フラン)−8−アミン](略称:1,6BnfAPrn−02)、N,N’−(ピレン−1,6−ジイル)ビス[(6,N−ジフェニルベンゾ[b]ナフト[1,2−d]フラン)−8−アミン](略称:1,6BnfAPrn−03)などが挙げられる。 Examples of the light-emitting substance that converts singlet excitation energy into light emission include substances that emit fluorescence (fluorescent materials). For example, pyrene derivatives, anthracene derivatives, triphenylene derivatives, fluorene derivatives, carbazole derivatives, dibenzothiophene derivatives, dibenzofuran derivatives, dibenzos Examples include quinoxaline derivatives, quinoxaline derivatives, pyridine derivatives, pyrimidine derivatives, phenanthrene derivatives, and naphthalene derivatives. In particular, a pyrene derivative is preferable because of its high emission quantum yield. Specific examples of the pyrene derivative include N, N′-bis (3-methylphenyl) -N, N′-bis [3- (9-phenyl-9H-fluoren-9-yl) phenyl] pyrene-1,6. -Diamine (abbreviation: 1,6 mM emFLPAPrn), N, N'-diphenyl-N, N'-bis [4- (9-phenyl-9H-fluoren-9-yl) phenyl] pyrene-1,6-diamine (abbreviation) : 1,6FLPAPrn), N, N′-bis (dibenzofuran-2-yl) -N, N′-diphenylpyrene-1,6-diamine (abbreviation: 1,6FrAPrn), N, N′-bis (dibenzothiophene) -2-yl) -N, N′-diphenylpyrene-1,6-diamine (abbreviation: 1,6ThAPrn), N, N ′-(pyrene-1,6-diyl) bis [(N-phenylbenzo [b ] [1,2-d] furan) -6-amine] (abbreviation: 1,6BnfAPrn), N, N ′-(pyrene-1,6-diyl) bis [(N-phenylbenzo [b] naphtho [1 , 2-d] furan) -8-amine] (abbreviation: 1,6BnfAPrn-02), N, N ′-(pyrene-1,6-diyl) bis [(6, N-diphenylbenzo [b] naphtho [ 1,2-d] furan) -8-amine] (abbreviation: 1,6BnfAPrn-03).
その他にも、5,6−ビス[4−(10−フェニル−9−アントリル)フェニル]−2,2’−ビピリジン(略称:PAP2BPy)、5,6−ビス[4’−(10−フェニル−9−アントリル)ビフェニル−4−イル]−2,2’−ビピリジン(略称:PAPP2BPy)、N,N’−ビス[4−(9H−カルバゾール−9−イル)フェニル]−N,N’−ジフェニルスチルベン−4,4’−ジアミン(略称:YGA2S)、4−(9H−カルバゾール−9−イル)−4’−(10−フェニル−9−アントリル)トリフェニルアミン(略称:YGAPA)、4−(9H−カルバゾール−9−イル)−4’−(9,10−ジフェニル−2−アントリル)トリフェニルアミン(略称:2YGAPPA)、N,9−ジフェニル−N−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール−3−アミン(略称:PCAPA)、4−(10−フェニル−9−アントリル)−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBAPA)、4−[4−(10−フェニル−9−アントリル)フェニル]−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBAPBA)、ペリレン、2,5,8,11−テトラ(tert−ブチル)ペリレン(略称:TBP)、N,N’’−(2−tert−ブチルアントラセン−9,10−ジイルジ−4,1−フェニレン)ビス[N,N’,N’−トリフェニル−1,4−フェニレンジアミン](略称:DPABPA)、N,9−ジフェニル−N−[4−(9,10−ジフェニル−2−アントリル)フェニル]−9H−カルバゾール−3−アミン(略称:2PCAPPA)、N−[4−(9,10−ジフェニル−2−アントリル)フェニル]−N,N’,N’−トリフェニル−1,4−フェニレンジアミン(略称:2DPAPPA)等を用いることができる。 In addition, 5,6-bis [4- (10-phenyl-9-anthryl) phenyl] -2,2′-bipyridine (abbreviation: PAP2BPy), 5,6-bis [4 ′-(10-phenyl-) 9-anthryl) biphenyl-4-yl] -2,2′-bipyridine (abbreviation: PAPP2BPy), N, N′-bis [4- (9H-carbazol-9-yl) phenyl] -N, N′-diphenyl Stilbene-4,4′-diamine (abbreviation: YGA2S), 4- (9H-carbazol-9-yl) -4 ′-(10-phenyl-9-anthryl) triphenylamine (abbreviation: YGAPA), 4- ( 9H-carbazol-9-yl) -4 ′-(9,10-diphenyl-2-anthryl) triphenylamine (abbreviation: 2YGAPPA), N, 9-diphenyl-N- [4- (10 Phenyl-9-anthryl) phenyl] -9H-carbazol-3-amine (abbreviation: PCAPA), 4- (10-phenyl-9-anthryl) -4 ′-(9-phenyl-9H-carbazol-3-yl) Triphenylamine (abbreviation: PCBAPA), 4- [4- (10-phenyl-9-anthryl) phenyl] -4 ′-(9-phenyl-9H-carbazol-3-yl) triphenylamine (abbreviation: PCBAPBA) Perylene, 2,5,8,11-tetra (tert-butyl) perylene (abbreviation: TBP), N, N ″-(2-tert-butylanthracene-9,10-diyldi-4,1-phenylene) Bis [N, N ′, N′-triphenyl-1,4-phenylenediamine] (abbreviation: DPABPA), N, 9-diphenyl-N- [4- ( , 10-diphenyl-2-anthryl) phenyl] -9H-carbazol-3-amine (abbreviation: 2PCAPPA), N- [4- (9,10-diphenyl-2-anthryl) phenyl] -N, N ′, N '-Triphenyl-1,4-phenylenediamine (abbreviation: 2DPAPPA) or the like can be used.
また、三重項励起エネルギーを発光に変える発光物質としては、例えば、燐光を発する物質(燐光材料)や熱活性化遅延蛍光を示す熱活性化遅延蛍光(Thermally activated delayed fluorescence:TADF)材料が挙げられる。 Examples of the light-emitting substance that changes triplet excitation energy into light emission include phosphorescent substances (phosphorescent materials) and thermally activated delayed fluorescence (TADF) materials that exhibit thermally activated delayed fluorescence. .
燐光材料としては、有機金属錯体、金属錯体(白金錯体)、希土類金属錯体等が挙げられる。これらは、物質ごとに異なる発光色(発光ピーク)を示すため、必要に応じて適宜選択して用いる。 Examples of phosphorescent materials include organometallic complexes, metal complexes (platinum complexes), and rare earth metal complexes. Since these exhibit different emission colors (emission peaks) for each substance, they are appropriately selected and used as necessary.
青色または緑色を呈し、発光スペクトルのピーク波長が450nm以上570nm以下である燐光材料としては、以下のような物質が挙げられる。 Examples of phosphorescent materials that exhibit blue or green color and whose emission spectrum peak wavelength is 450 nm or more and 570 nm or less include the following substances.
例えば、トリス{2−[5−(2−メチルフェニル)−4−(2,6−ジメチルフェニル)−4H−1,2,4−トリアゾール−3−イル−κN2]フェニル−κC}イリジウム(III)(略称:[Ir(mpptz−dmp)])、トリス(5−メチル−3,4−ジフェニル−4H−1,2,4−トリアゾラト)イリジウム(III)(略称:[Ir(Mptz)])、トリス[4−(3−ビフェニル)−5−イソプロピル−3−フェニル−4H−1,2,4−トリアゾラト]イリジウム(III)(略称:[Ir(iPrptz−3b)])、トリス[3−(5−ビフェニル)−5−イソプロピル−4−フェニル−4H−1,2,4−トリアゾラト]イリジウム(III)(略称:[Ir(iPr5btz)])、のような4H−トリアゾール骨格を有する有機金属錯体、トリス[3−メチル−1−(2−メチルフェニル)−5−フェニル−1H−1,2,4−トリアゾラト]イリジウム(III)(略称:[Ir(Mptz1−mp)])、トリス(1−メチル−5−フェニル−3−プロピル−1H−1,2,4−トリアゾラト)イリジウム(III)((略称:[Ir(Prptz1−Me)])のような1H−トリアゾール骨格を有する有機金属錯体、fac−トリス[1−(2,6−ジイソプロピルフェニル)−2−フェニル−1H−イミダゾール]イリジウム(III)(略称:[Ir(iPrpmi)])、トリス[3−(2,6−ジメチルフェニル)−7−メチルイミダゾ[1,2−f]フェナントリジナト]イリジウム(III)(略称:[Ir(dmpimpt−Me)])のようなイミダゾール骨格を有する有機金属錯体、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)テトラキス(1−ピラゾリル)ボラート(略称:FIr6)、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)ピコリナート(略称:FIrpic)、ビス{2−[3’,5’−ビス(トリフルオロメチル)フェニル]ピリジナト−N,C2’}イリジウム(III)ピコリナート(略称:[Ir(CFppy)(pic)])、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)アセチルアセトナート(略称:FIr(acac))のように電子吸引基を有するフェニルピリジン誘導体を配位子とする有機金属錯体等が挙げられる。 For example, tris {2- [5- (2-methylphenyl) -4- (2,6-dimethylphenyl) -4H-1,2,4-triazol-3-yl-κN2] phenyl-κC} iridium (III ) (Abbreviation: [Ir (mpppz-dmp) 3 ]), tris (5-methyl-3,4-diphenyl-4H-1,2,4-triazolato) iridium (III) (abbreviation: [Ir (Mptz) 3 ], Tris [4- (3-biphenyl) -5-isopropyl-3-phenyl-4H-1,2,4-triazolate] iridium (III) (abbreviation: [Ir (iPrptz-3b) 3 ]), tris [3- (5-biphenyl) -5-isopropyl-4-phenyl-4H-1,2,4-triazolato] iridium (III) (abbreviation: [Ir (iPr5btz) 3] ), like An organometallic complex having a 4H-triazole skeleton, tris [3-methyl-1- (2-methylphenyl) -5-phenyl-1H-1,2,4-triazolato] iridium (III) (abbreviation: [Ir (Mptz1 -Mp) 3 ]), tris (1-methyl-5-phenyl-3-propyl-1H-1,2,4-triazolate) iridium (III) ((abbreviation: [Ir (Prptz1-Me) 3 ]) Organometallic complex having such 1H-triazole skeleton, fac-tris [1- (2,6-diisopropylphenyl) -2-phenyl-1H-imidazole] iridium (III) (abbreviation: [Ir (iPrpmi) 3 ]) , Tris [3- (2,6-dimethylphenyl) -7-methylimidazo [1,2-f] phenanthridinato] iridium (III) ( Referred: [Ir (dmpimpt-Me) 3] an organometallic complex having an imidazole skeleton, such as), bis [2- (4 ', 6'-difluorophenyl) pyridinato -N, C 2'] iridium (III) tetrakis (1-pyrazolyl) borate (abbreviation: FIr6), bis [2- (4 ′, 6′-difluorophenyl) pyridinato-N, C 2 ′ ] iridium (III) picolinate (abbreviation: FIrpic), bis {2- [ 3 ′, 5′-bis (trifluoromethyl) phenyl] pyridinato-N, C 2 ′ } iridium (III) picolinate (abbreviation: [Ir (CF 3 ppy) 2 (pic)]), bis [2- (4 ', 6'-difluorophenyl) pyridinato -N, C 2'] iridium (III) acetylacetonate (abbreviation: FIr (acac) electron withdrawing group such as) Organometallic complexes of phenylpyridine derivative as a ligand having the like.
緑色または黄色を呈し、発光スペクトルのピーク波長が495nm以上590nm以下である燐光材料としては、以下のような物質が挙げられる。 Examples of the phosphorescent material which exhibits green or yellow and has an emission spectrum peak wavelength of 495 nm or more and 590 nm or less include the following substances.
例えば、トリス(4−メチル−6−フェニルピリミジナト)イリジウム(III)(略称:[Ir(mppm)])、トリス(4−t−ブチル−6−フェニルピリミジナト)イリジウム(III)(略称:[Ir(tBuppm)])、(アセチルアセトナト)ビス(6−メチル−4−フェニルピリミジナト)イリジウム(III)(略称:[Ir(mppm)(acac)])、(アセチルアセトナト)ビス(6−tert−ブチル−4−フェニルピリミジナト)イリジウム(III)(略称:[Ir(tBuppm)(acac)])、(アセチルアセトナト)ビス[6−(2−ノルボルニル)−4−フェニルピリミジナト]イリジウム(III)(略称:[Ir(nbppm)(acac)])、(アセチルアセトナト)ビス[5−メチル−6−(2−メチルフェニル)−4−フェニルピリミジナト]イリジウム(III)(略称:[Ir(mpmppm)(acac)])、(アセチルアセトナト)ビス{4,6−ジメチル−2−[6−(2,6−ジメチルフェニル)−4−ピリミジニル−κN3]フェニル−κC}イリジウム(III)(略称:[Ir(dmppm−dmp)(acac)])、(アセチルアセトナト)ビス(4,6−ジフェニルピリミジナト)イリジウム(III)(略称:[Ir(dppm)(acac)])のようなピリミジン骨格を有する有機金属イリジウム錯体、(アセチルアセトナト)ビス(3,5−ジメチル−2−フェニルピラジナト)イリジウム(III)(略称:[Ir(mppr−Me)(acac)])、(アセチルアセトナト)ビス(5−イソプロピル−3−メチル−2−フェニルピラジナト)イリジウム(III)(略称:[Ir(mppr−iPr)(acac)])のようなピラジン骨格を有する有機金属イリジウム錯体、トリス(2−フェニルピリジナト−N,C2’)イリジウム(III)(略称:[Ir(ppy)])、ビス(2−フェニルピリジナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(ppy)(acac)])、ビス(ベンゾ[h]キノリナト)イリジウム(III)アセチルアセトナート(略称:[Ir(bzq)(acac)])、トリス(ベンゾ[h]キノリナト)イリジウム(III)(略称:[Ir(bzq)])、トリス(2−フェニルキノリナト−N,C2’)イリジウム(III)(略称:[Ir(pq)])、ビス(2−フェニルキノリナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(pq)(acac)])のようなピリジン骨格を有する有機金属イリジウム錯体、ビス(2,4−ジフェニル−1,3−オキサゾラト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(dpo)(acac)])、ビス{2−[4’−(パーフルオロフェニル)フェニル]ピリジナト−N,C2’}イリジウム(III)アセチルアセトナート(略称:[Ir(p−PF−ph)(acac)])、ビス(2−フェニルベンゾチアゾラト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(bt)(acac)])などの有機金属錯体の他、トリス(アセチルアセトナト)(モノフェナントロリン)テルビウム(III)(略称:[Tb(acac)(Phen)])のような希土類金属錯体が挙げられる。 For example, tris (4-methyl-6-phenylpyrimidinato) iridium (III) (abbreviation: [Ir (mppm) 3 ]), tris (4-t-butyl-6-phenylpyrimidinato) iridium (III) (Abbreviation: [Ir (tBupppm) 3 ]), (acetylacetonato) bis (6-methyl-4-phenylpyrimidinato) iridium (III) (abbreviation: [Ir (mppm) 2 (acac)]), ( Acetylacetonato) bis (6-tert-butyl-4-phenylpyrimidinato) iridium (III) (abbreviation: [Ir (tBupppm) 2 (acac)]), (acetylacetonato) bis [6- (2- Norbornyl) -4-phenylpyrimidinato] iridium (III) (abbreviation: [Ir (nbppm) 2 (acac)]), (acetylacetona G) Bis [5-methyl-6- (2-methylphenyl) -4-phenylpyrimidinato] iridium (III) (abbreviation: [Ir (mpmppm) 2 (acac)]), (acetylacetonato) bis { 4,6-dimethyl-2- [6- (2,6-dimethylphenyl) -4-pyrimidinyl-κN3] phenyl-κC} iridium (III) (abbreviation: [Ir (dmppm-dmp) 2 (acac)]) , (Acetylacetonato) bis (4,6-diphenylpyrimidinato) iridium (III) (abbreviation: [Ir (dppm) 2 (acac)]), an organometallic iridium complex having a pyrimidine skeleton, isocyanatomethyl) bis (3,5-dimethyl-2-phenylpyrazinato) iridium (III) (abbreviation: [Ir (mppr-Me) 2 (acac ]), (Acetylacetonato) bis (5-isopropyl-3-methyl-2-phenylpyrazinato) iridium (III) (abbreviation: [Ir (mppr-iPr) pyrazine skeleton, such as 2 (acac)]) , Tris (2-phenylpyridinato-N, C 2 ′ ) iridium (III) (abbreviation: [Ir (ppy) 3 ]), bis (2-phenylpyridinato-N, C 2 ′ ) iridium (III) acetylacetonate (abbreviation: [Ir (ppy) 2 (acac)]), bis (benzo [h] quinolinato) iridium (III) acetylacetonate (abbreviation: [Ir (bzq) 2 ( acac)]), tris (benzo [h] quinolinato) iridium (III) (abbreviation: [Ir (bzq) 3] ), tris (2-Fenirukinori DOO -N, C 2 ') iridium (III) (abbreviation: [Ir (pq) 3] ), bis (2-phenylquinolinato--N, C 2') iridium (III) acetylacetonate (abbreviation: [Ir (Pq) 2 (acac)]), an organometallic iridium complex having a pyridine skeleton, bis (2,4-diphenyl-1,3-oxazolate-N, C 2 ′ ) iridium (III) acetylacetonate (abbreviation) : [Ir (dpo) 2 (acac)]), bis {2- [4 ′-(perfluorophenyl) phenyl] pyridinato-N, C 2 ′ } iridium (III) acetylacetonate (abbreviation: [Ir (p -PF-ph) 2 (acac) ]), bis (2-phenyl-benzothiazyl Zola DOO -N, C 2 ') iridium (III) acetylacetonate (abbreviation: [Ir (bt 2 (acac)]) other organometallic complexes such as tris (acetylacetonato) (monophenanthroline) terbium (III) (abbreviation: [Tb (acac) 3 ( Phen)]) include rare earth metal complex such as It is done.
黄色または赤色を呈し、発光スペクトルのピーク波長が570nm以上750nm以下である燐光材料としては、以下のような物質が挙げられる。 Examples of the phosphorescent material which exhibits yellow or red and has an emission spectrum peak wavelength of 570 nm or more and 750 nm or less include the following substances.
例えば、(ジイソブチリルメタナト)ビス[4,6−ビス(3−メチルフェニル)ピリミジナト]イリジウム(III)(略称:[Ir(5mdppm)(dibm)])、ビス[4,6−ビス(3−メチルフェニル)ピリミジナト](ジピバロイルメタナト)イリジウム(III)(略称:[Ir(5mdppm)(dpm)])、(ジピバロイルメタナト)ビス[4,6−ジ(ナフタレン−1−イル)ピリミジナト]イリジウム(III)(略称:[Ir(d1npm)(dpm)])のようなピリミジン骨格を有する有機金属錯体、(アセチルアセトナト)ビス(2,3,5−トリフェニルピラジナト)イリジウム(III)(略称:[Ir(tppr)(acac)])、ビス(2,3,5−トリフェニルピラジナト)(ジピバロイルメタナト)イリジウム(III)(略称:[Ir(tppr)(dpm)])、ビス{4,6−ジメチル−2−[3−(3,5−ジメチルフェニル)−5−フェニル−2−ピラジニル−κN]フェニル−κC}(2,6−ジメチル−3,5−ヘプタンジオナト−κO,O’)イリジウム(III)(略称:[Ir(dmdppr−P)(dibm)])、ビス{4,6−ジメチル−2−[5−(4−シアノ−2,6−ジメチルフェニル)−3−(3,5−ジメチルフェニル)−2−ピラジニル−κN]フェニル−κC}(2,2,6,6−テトラメチル−3,5−ヘプタンジオナト−κO,O’)イリジウム(III)(略称:[Ir(dmdppr−dmCP)(dpm)])、(アセチルアセトナト)ビス[2−メチル−3−フェニルキノキサリナト−N,C2’]イリジウム(III)(略称:[Ir(mpq)(acac)])、(アセチルアセトナト)ビス(2,3−ジフェニルキノキサリナト−N,C2’)イリジウム(III)(略称:[Ir(dpq)(acac)])、(アセチルアセトナト)ビス[2,3−ビス(4−フルオロフェニル)キノキサリナト]イリジウム(III)(略称:[Ir(Fdpq)(acac)])のようなピラジン骨格を有する有機金属錯体や、トリス(1−フェニルイソキノリナト−N,C2’)イリジウム(III)(略称:[Ir(piq)])、ビス(1−フェニルイソキノリナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(piq)(acac)])のようなピリジン骨格を有する有機金属錯体、2,3,7,8,12,13,17,18−オクタエチル−21H,23H−ポルフィリン白金(II)(略称:[PtOEP])のような白金錯体、トリス(1,3−ジフェニル−1,3−プロパンジオナト)(モノフェナントロリン)ユーロピウム(III)(略称:[Eu(DBM)(Phen)])、トリス[1−(2−テノイル)−3,3,3−トリフルオロアセトナト](モノフェナントロリン)ユーロピウム(III)(略称:[Eu(TTA)(Phen)])のような希土類金属錯体が挙げられる。 For example, (diisobutyrylmethanato) bis [4,6-bis (3-methylphenyl) pyrimidinato] iridium (III) (abbreviation: [Ir (5 mdppm) 2 (divm)]), bis [4,6-bis ( 3-methylphenyl) pyrimidinato] (dipivaloylmethanato) iridium (III) (abbreviation: [Ir (5 mdppm) 2 (dpm)]), (dipivaloylmethanato) bis [4,6-di (naphthalene- Organometallic complexes having a pyrimidine skeleton such as 1-yl) pyrimidinato] iridium (III) (abbreviation: [Ir (d1npm) 2 (dpm)]), (acetylacetonato) bis (2,3,5-triphenyl) Pirajinato) iridium (III) (abbreviation: [Ir (tppr) 2 ( acac)]), bis (2,3,5-triphenylpyrazinato (Dipivaloylmethanato) iridium (III) (abbreviation: [Ir (tppr) 2 ( dpm)]), bis {4,6-dimethyl-2- [3- (3,5-dimethylphenyl) -5- Phenyl-2-pyrazinyl-κN] phenyl-κC} (2,6-dimethyl-3,5-heptanedionato-κ 2 O, O ′) iridium (III) (abbreviation: [Ir (dmdppr-P) 2 (divm) ], Bis {4,6-dimethyl-2- [5- (4-cyano-2,6-dimethylphenyl) -3- (3,5-dimethylphenyl) -2-pyrazinyl-κN] phenyl-κC} (2,2,6,6-tetramethyl-3,5-heptanedionato-κ 2 O, O ′) iridium (III) (abbreviation: [Ir (dmdppr-dmCP) 2 (dpm)]), (acetylacetonato ) Screw [2 -Methyl-3-phenylquinoxalinato-N, C 2 ′ ] iridium (III) (abbreviation: [Ir (mpq) 2 (acac)]), (acetylacetonato) bis (2,3-diphenylquinoxalinato -N, C2 ' ) iridium (III) (abbreviation: [Ir (dpq) 2 (acac)]), (acetylacetonato) bis [2,3-bis (4-fluorophenyl) quinoxalinato] iridium (III) (Abbreviation: [Ir (Fdpq) 2 (acac)]) or an organometallic complex having a pyrazine skeleton, or tris (1-phenylisoquinolinato-N, C 2 ′ ) iridium (III) (abbreviation: [Ir (Piq) 3 ]), bis (1-phenylisoquinolinato-N, C 2 ′ ) iridium (III) acetylacetonate (abbreviation: [Ir (piq) 2 (aca c)])) of an organometallic complex having a pyridine skeleton, 2,3,7,8,12,13,17,18-octaethyl-21H, 23H-porphyrin platinum (II) (abbreviation: [PtOEP]) Platinum complexes such as tris (1,3-diphenyl-1,3-propanedionato) (monophenanthroline) europium (III) (abbreviation: [Eu (DBM) 3 (Phen)]), tris [1- (2 -Thenoyl) -3,3,3-trifluoroacetonato] (monophenanthroline) europium (III) (abbreviation: [Eu (TTA) 3 (Phen)]).
発光層(113、113a、113b、113c)に用いる有機化合物(ホスト材料、アシスト材料)としては、発光物質(ゲスト材料)のエネルギーギャップより大きなエネルギーギャップを有する物質を、一種もしくは複数種選択して用いればよい。 As the organic compound (host material, assist material) used for the light emitting layer (113, 113a, 113b, 113c), one or more kinds of substances having an energy gap larger than that of the light emitting substance (guest material) are selected. Use it.
発光物質が蛍光材料である場合、ホスト材料としては−重項励起状態のエネルギー準位が大きく、三重項励起状態のエネルギー準位が小さい有機化合物を用いるのが好ましい。例えば、アントラセン誘導体やテトラセン誘導体を用いるのが好ましい。具体的には、9−フェニル−3−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(略称:PCzPA)、3−[4−(1−ナフチル)−フェニル]−9−フェニル−9H−カルバゾール(略称:PCPN)、9−[4−(10−フェニル−9−アントラセニル)フェニル]−9H−カルバゾール(略称:CzPA)、7−[4−(10−フェニル−9−アントリル)フェニル]−7H−ジベンゾ[c,g]カルバゾール(略称:cgDBCzPA)、6−[3−(9,10−ジフェニル−2−アントリル)フェニル]−ベンゾ[b]ナフト[1,2−d]フラン(略称:2mBnfPPA)、9−フェニル−10−{4−(9−フェニル−9H−フルオレン−9−イル)ビフェニル−4’−イル}アントラセン(略称:FLPPA)、5,12−ジフェニルテトラセン、5,12−ビス(ビフェニル−2−イル)テトラセンなどが挙げられる。 In the case where the light-emitting substance is a fluorescent material, it is preferable to use an organic compound having a large energy level in the −multiplied excited state and a small energy level in the triplet excited state as the host material. For example, it is preferable to use an anthracene derivative or a tetracene derivative. Specifically, 9-phenyl-3- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazole (abbreviation: PCzPA), 3- [4- (1-naphthyl) -phenyl] -9 -Phenyl-9H-carbazole (abbreviation: PCPN), 9- [4- (10-phenyl-9-anthracenyl) phenyl] -9H-carbazole (abbreviation: CzPA), 7- [4- (10-phenyl-9- Anthryl) phenyl] -7H-dibenzo [c, g] carbazole (abbreviation: cgDBCzPA), 6- [3- (9,10-diphenyl-2-anthryl) phenyl] -benzo [b] naphtho [1,2-d ] Furan (abbreviation: 2 mBnfPPA), 9-phenyl-10- {4- (9-phenyl-9H-fluoren-9-yl) biphenyl-4'-yl} anthracene Abbreviation: FLPPA), 5,12 diphenyltetracene, 5,12-bis (biphenyl-2-yl) tetracene, and the like.
発光物質が燐光材料である場合、ホスト材料としては、発光物質の三重項励起エネルギー(基底状態と三重項励起状態とのエネルギー差)よりも三重項励起エネルギーの大きい有機化合物を選択すれば良い。なお、この場合には、亜鉛やアルミニウム系金属錯体の他、オキサジアゾール誘導体、トリアゾール誘導体、ベンゾイミダゾール誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、ジベンゾチオフェン誘導体、ジベンゾフラン誘導体、ピリミジン誘導体、トリアジン誘導体、ピリジン誘導体、ビピリジン誘導体、フェナントロリン誘導体等の他、芳香族アミンやカルバゾール誘導体等を用いることができる。 When the light-emitting substance is a phosphorescent material, an organic compound having a triplet excitation energy larger than the triplet excitation energy (energy difference between the ground state and the triplet excited state) of the light-emitting substance may be selected as the host material. In this case, in addition to zinc and aluminum-based metal complexes, oxadiazole derivatives, triazole derivatives, benzimidazole derivatives, quinoxaline derivatives, dibenzoquinoxaline derivatives, dibenzothiophene derivatives, dibenzofuran derivatives, pyrimidine derivatives, triazine derivatives, pyridine derivatives In addition to bipyridine derivatives and phenanthroline derivatives, aromatic amines and carbazole derivatives can be used.
ホスト材料として、より具体的には、例えば以下の正孔輸送性材料および電子輸送性材料を用いることができる。 More specifically, for example, the following hole transporting materials and electron transporting materials can be used as the host material.
これら正孔輸送性の高いホスト材料としては、例えば、N,N’−ジ(p−トリル)−N,N’−ジフェニル−p−フェニレンジアミン(略称:DTDPPA)、4,4’−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ビフェニル(略称:DPAB)、N,N’−ビス{4−[ビス(3−メチルフェニル)アミノ]フェニル}−N,N’−ジフェニル−(1,1’−ビフェニル)−4,4’−ジアミン(略称:DNTPD)、1,3,5−トリス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ベンゼン(略称:DPA3B)等の芳香族アミン化合物を挙げることができる。 Examples of these host materials having a high hole transporting property include N, N′-di (p-tolyl) -N, N′-diphenyl-p-phenylenediamine (abbreviation: DTDPPA), 4,4′-bis [ N- (4-diphenylaminophenyl) -N-phenylamino] biphenyl (abbreviation: DPAB), N, N′-bis {4- [bis (3-methylphenyl) amino] phenyl} -N, N′-diphenyl -(1,1′-biphenyl) -4,4′-diamine (abbreviation: DNTPD), 1,3,5-tris [N- (4-diphenylaminophenyl) -N-phenylamino] benzene (abbreviation: DPA3B) An aromatic amine compound such as
また、3−[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzDPA1)、3,6−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzDPA2)、3,6−ビス[N−(4−ジフェニルアミノフェニル)−N−(1−ナフチル)アミノ]−9−フェニルカルバゾール(略称:PCzTPN2)、3−[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA1)、3,6−ビス[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA2)、3−[N−(1−ナフチル)−N−(9−フェニルカルバゾール−3−イル)アミノ]−9−フェニルカルバゾール(略称:PCzPCN1)等のカルバゾール誘導体を挙げることができる。また、カルバゾール誘導体としては、他に、4,4’−ジ(N−カルバゾリル)ビフェニル(略称:CBP)、1,3,5−トリス[4−(N−カルバゾリル)フェニル]ベンゼン(略称:TCPB)、1,4−ビス[4−(N−カルバゾリル)フェニル]−2,3,5,6−テトラフェニルベンゼン等を用いることもできる。 In addition, 3- [N- (4-diphenylaminophenyl) -N-phenylamino] -9-phenylcarbazole (abbreviation: PCzDPA1), 3,6-bis [N- (4-diphenylaminophenyl) -N-phenyl Amino] -9-phenylcarbazole (abbreviation: PCzDPA2), 3,6-bis [N- (4-diphenylaminophenyl) -N- (1-naphthyl) amino] -9-phenylcarbazole (abbreviation: PCzTPN2), 3 -[N- (9-phenylcarbazol-3-yl) -N-phenylamino] -9-phenylcarbazole (abbreviation: PCzPCA1), 3,6-bis [N- (9-phenylcarbazol-3-yl)- N-phenylamino] -9-phenylcarbazole (abbreviation: PCzPCA2), 3- [N- (1-naphthyl) -N- (9 Phenyl-3-yl) amino] phenyl carbazole (abbreviation: PCzPCNl) can be mentioned carbazole derivatives such. As other carbazole derivatives, 4,4′-di (N-carbazolyl) biphenyl (abbreviation: CBP), 1,3,5-tris [4- (N-carbazolyl) phenyl] benzene (abbreviation: TCPB) ), 1,4-bis [4- (N-carbazolyl) phenyl] -2,3,5,6-tetraphenylbenzene and the like can also be used.
また、正孔輸送性の高いホスト材料としては、例えば、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPBまたはα−NPD)やN,N’−ビス(3−メチルフェニル)−N,N’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン(略称:TPD)、4,4’,4’’−トリス(カルバゾール−9−イル)トリフェニルアミン(略称:TCTA)、4,4’,4’’−トリス[N−(1−ナフチル)−N−フェニルアミノ]トリフェニルアミン(略称:1’−TNATA)、4,4’,4’’−トリス(N,N−ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミン(略称:m−MTDATA)、4,4’−ビス[N−(スピロ−9,9’−ビフルオレン−2−イル)−N−フェニルアミノ]ビフェニル(略称:BSPB)、4−フェニル−4’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:BPAFLP)、4−フェニル−3’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:mBPAFLP)、N−(9,9−ジメチル−9H−フルオレン−2−イル)−N−{9,9−ジメチル−2−[N’−フェニル−N’−(9,9−ジメチル−9H−フルオレン−2−イル)アミノ]−9H−フルオレン−7−イル}フェニルアミン(略称:DFLADFL)、N−(9,9−ジメチル−2−ジフェニルアミノ−9H−フルオレン−7−イル)ジフェニルアミン(略称:DPNF)、2−[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]スピロ−9,9’−ビフルオレン(略称:DPASF)、4−フェニル−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBA1BP)、4,4’−ジフェニル−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBBi1BP)、4−(1−ナフチル)−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBANB)、4,4’−ジ(1−ナフチル)−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBNBB)、4−フェニルジフェニル−(9−フェニル−9H−カルバゾール−3−イル)アミン(略称:PCA1BP)、N,N’−ビス(9−フェニルカルバゾール−3−イル)−N,N’−ジフェニルベンゼン−1,3−ジアミン(略称:PCA2B)、N,N’,N’’−トリフェニル−N,N’,N’’−トリス(9−フェニルカルバゾール−3−イル)ベンゼン−1,3,5−トリアミン(略称:PCA3B)、N−(4−ビフェニル)−N−(9,9−ジメチル−9H−フルオレン−2−イル)−9−フェニル−9H−カルバゾール−3−アミン(略称:PCBiF)、N−(1,1’−ビフェニル−4−イル)−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]−9,9−ジメチル−9H−フルオレン−2−アミン(略称:PCBBiF)、9,9−ジメチル−N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]フルオレン−2−アミン(略称:PCBAF)、N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]スピロ−9,9’−ビフルオレン−2−アミン(略称:PCBASF)、2−[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]スピロ−9,9’−ビフルオレン(略称:PCASF)、2,7−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]−スピロ−9,9’−ビフルオレン(略称:DPA2SF)、N−[4−(9H−カルバゾール−9−イル)フェニル]−N−(4−フェニル)フェニルアニリン(略称:YGA1BP)、N,N’−ビス[4−(カルバゾール−9−イル)フェニル]−N,N’−ジフェニル−9,9−ジメチルフルオレン−2,7−ジアミン(略称:YGA2F)などの芳香族アミン化合物等を用いることができる。また、3−[4−(1−ナフチル)−フェニル]−9−フェニル−9H−カルバゾール(略称:PCPN)、3−[4−(9−フェナントリル)−フェニル]−9−フェニル−9H−カルバゾール(略称:PCPPn)、3,3’−ビス(9−フェニル−9H−カルバゾール)(略称:PCCP)、1,3−ビス(N−カルバゾリル)ベンゼン(略称:mCP)、3,6−ビス(3,5−ジフェニルフェニル)−9−フェニルカルバゾール(略称:CzTP)、4−{3−[3−(9−フェニル−9H−フルオレン−9−イル)フェニル]フェニル}ジベンゾフラン(略称:mmDBFFLBi−II)、4,4’,4’’−(ベンゼン−1,3,5−トリイル)トリ(ジベンゾフラン)(略称:DBF3P−II)、1,3,5−トリ(ジベンゾチオフェン−4−イル)−ベンゼン(略称:DBT3P−II)、2,8−ジフェニル−4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]ジベンゾチオフェン(略称:DBTFLP−III)、4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]−6−フェニルジベンゾチオフェン(略称:DBTFLP−IV)、4−[3−(トリフェニレン−2−イル)フェニル]ジベンゾチオフェン(略称:mDBTPTp−II)等のカルバゾール化合物、チオフェン化合物、フラン化合物、フルオレン化合物、トリフェニレン化合物、フェナントレン化合物等を用いることができる。 As a host material having a high hole-transport property, for example, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (abbreviation: NPB or α-NPD), N, N ′ -Bis (3-methylphenyl) -N, N'-diphenyl- [1,1'-biphenyl] -4,4'-diamine (abbreviation: TPD), 4,4 ', 4 "-tris (carbazole- 9-yl) triphenylamine (abbreviation: TCTA), 4,4 ′, 4 ″ -tris [N- (1-naphthyl) -N-phenylamino] triphenylamine (abbreviation: 1′-TNATA), 4 , 4 ′, 4 ″ -tris (N, N-diphenylamino) triphenylamine (abbreviation: TDATA), 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino ] Triphenylamine (abbreviation m-MTDATA), 4,4′-bis [N- (spiro-9,9′-bifluoren-2-yl) -N-phenylamino] biphenyl (abbreviation: BSPB), 4-phenyl-4 ′-(9 -Phenylfluoren-9-yl) triphenylamine (abbreviation: BPAFLP), 4-phenyl-3 '-(9-phenylfluoren-9-yl) triphenylamine (abbreviation: mBPAFLP), N- (9,9- Dimethyl-9H-fluoren-2-yl) -N- {9,9-dimethyl-2- [N′-phenyl-N ′-(9,9-dimethyl-9H-fluoren-2-yl) amino] -9H -Fluoren-7-yl} phenylamine (abbreviation: DFLADFL), N- (9,9-dimethyl-2-diphenylamino-9H-fluoren-7-yl) diphenylamine (abbreviation: D) PNF), 2- [N- (4-diphenylaminophenyl) -N-phenylamino] spiro-9,9′-bifluorene (abbreviation: DPASF), 4-phenyl-4 ′-(9-phenyl-9H-carbazole) -3-yl) triphenylamine (abbreviation: PCBA1BP), 4,4′-diphenyl-4 ″-(9-phenyl-9H-carbazol-3-yl) triphenylamine (abbreviation: PCBBi1BP), 4- ( 1-naphthyl) -4 ′-(9-phenyl-9H-carbazol-3-yl) triphenylamine (abbreviation: PCBBANB), 4,4′-di (1-naphthyl) -4 ″-(9-phenyl) -9H-carbazol-3-yl) triphenylamine (abbreviation: PCBNBB), 4-phenyldiphenyl- (9-phenyl-9H-carbazol-3-i ) Amine (abbreviation: PCA1BP), N, N′-bis (9-phenylcarbazol-3-yl) -N, N′-diphenylbenzene-1,3-diamine (abbreviation: PCA2B), N, N ′, N "-Triphenyl-N, N ', N" -tris (9-phenylcarbazol-3-yl) benzene-1,3,5-triamine (abbreviation: PCA3B), N- (4-biphenyl) -N -(9,9-dimethyl-9H-fluoren-2-yl) -9-phenyl-9H-carbazol-3-amine (abbreviation: PCBiF), N- (1,1'-biphenyl-4-yl) -N -[4- (9-phenyl-9H-carbazol-3-yl) phenyl] -9,9-dimethyl-9H-fluoren-2-amine (abbreviation: PCBBiF), 9,9-dimethyl-N-phenyl-N -[4 (9-phenyl-9H-carbazol-3-yl) phenyl] fluoren-2-amine (abbreviation: PCBAF), N-phenyl-N- [4- (9-phenyl-9H-carbazol-3-yl) phenyl] Spiro-9,9′-bifluoren-2-amine (abbreviation: PCBASF), 2- [N- (9-phenylcarbazol-3-yl) -N-phenylamino] spiro-9,9′-bifluorene (abbreviation: PCASF), 2,7-bis [N- (4-diphenylaminophenyl) -N-phenylamino] -spiro-9,9′-bifluorene (abbreviation: DPA2SF), N- [4- (9H-carbazole-9) -Yl) phenyl] -N- (4-phenyl) phenylaniline (abbreviation: YGA1BP), N, N′-bis [4- (carbazol-9-yl) phenyl] An aromatic amine compound such as -N, N'-diphenyl-9,9-dimethylfluorene-2,7-diamine (abbreviation: YGA2F) can be used. 3- [4- (1-naphthyl) -phenyl] -9-phenyl-9H-carbazole (abbreviation: PCPN), 3- [4- (9-phenanthryl) -phenyl] -9-phenyl-9H-carbazole (Abbreviation: PCPPn), 3,3′-bis (9-phenyl-9H-carbazole) (abbreviation: PCCP), 1,3-bis (N-carbazolyl) benzene (abbreviation: mCP), 3,6-bis ( 3,5-diphenylphenyl) -9-phenylcarbazole (abbreviation: CzTP), 4- {3- [3- (9-phenyl-9H-fluoren-9-yl) phenyl] phenyl} dibenzofuran (abbreviation: mmDBFFLBi-II) ), 4,4 ′, 4 ″-(benzene-1,3,5-triyl) tri (dibenzofuran) (abbreviation: DBF3P-II), 1,3,5-tri (di) Nzothiophen-4-yl) -benzene (abbreviation: DBT3P-II), 2,8-diphenyl-4- [4- (9-phenyl-9H-fluoren-9-yl) phenyl] dibenzothiophene (abbreviation: DBTFLP-III) ), 4- [4- (9-phenyl-9H-fluoren-9-yl) phenyl] -6-phenyldibenzothiophene (abbreviation: DBTFLP-IV), 4- [3- (triphenylene-2-yl) phenyl] A carbazole compound such as dibenzothiophene (abbreviation: mDBTPTp-II), a thiophene compound, a furan compound, a fluorene compound, a triphenylene compound, a phenanthrene compound, or the like can be used.
 電子輸送性の高いホスト材料としては、例えば、トリス(8−キノリノラト)アルミニウム(III)(略称:Alq)、トリス(4−メチル−8−キノリノラト)アルミニウム(III)(略称:Almq)、ビス(10−ヒドロキシベンゾ[h]キノリナト)ベリリウム(II)(略称:BeBq)、ビス(2−メチル−8−キノリノラト)(4−フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8−キノリノラト)亜鉛(II)(略称:Znq)など、キノリン骨格またはベンゾキノリン骨格を有する金属錯体等である。また、この他ビス[2−(2−ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2−(2−ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)などのオキサゾール系、チアゾール系配位子を有する金属錯体なども用いることができる。さらに、金属錯体以外にも、2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾール(略称:PBD)や、1,3−ビス[5−(p−tert−ブチルフェニル)−1,3,4−オキサジアゾール−2−イル]ベンゼン(略称:OXD−7)、9−[4−(5−フェニル−1,3,4−オキサジアゾール−2−イル)フェニル]−9H−カルバゾール(略称:CO11)のようなオキサジアゾール誘導体や、3−(4−ビフェニリル)−4−フェニル−5−(4−tert−ブチルフェニル)−1,2,4−トリアゾール(略称:TAZ)のようなトリアゾール誘導体や、2,2’,2’’−(1,3,5−ベンゼントリイル)トリス(1−フェニル−1H−ベンゾイミダゾール)(略称:TPBI)、2−[3−(ジベンゾチオフェン−4−イル)フェニル]−1−フェニル−1H−ベンゾイミダゾール(略称:mDBTBIm−II)のようなイミダゾール骨格を有する化合物(特にベンゾイミダゾール誘導体)や、4,4’−ビス(5−メチルベンゾオキサゾール−2−イル)スチルベン(略称:BzOs)などのオキサゾール骨格を有する化合物(特にベンゾオキサゾール誘導体)や、バソフェナントロリン(略称:Bphen)、バソキュプロイン(略称:BCP)、2,9−ビス(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン(略称:NBphen)などのフェナントロリン誘導体や、2−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2mDBTPDBq−II)、2−[3’−(ジベンゾチオフェン−4−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mDBTBPDBq−II)、2−[3’−(9H−カルバゾール−9−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mCzBPDBq)、2−[4−(3,6−ジフェニル−9H−カルバゾール−9−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2CzPDBq−III)、7−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:7mDBTPDBq−II)、及び6−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:6mDBTPDBq−II)、4,6−ビス[3−(フェナントレン−9−イル)フェニル]ピリミジン(略称:4,6mPnP2Pm)、4,6−ビス[3−(4−ジベンゾチエニル)フェニル]ピリミジン(略称:4,6mDBTP2Pm−II)、4,6−ビス[3−(9H−カルバゾール−9−イル)フェニル]ピリミジン(略称:4,6mCzP2Pm)などのジアジン骨格を有する複素環化合物や、2−{4−[3−(N−フェニル−9H−カルバゾール−3−イル)−9H−カルバゾール−9−イル]フェニル}−4,6−ジフェニル−1,3,5−トリアジン(略称:PCCzPTzn)などのトリアジン骨格を有する複素環化合物や、3,5−ビス[3−(9H−カルバゾール−9−イル)フェニル]ピリジン(略称:35DCzPPy)、1,3,5−トリ[3−(3−ピリジル)フェニル]ベンゼン(略称:TmPyPB)などのピリジン骨格を有する複素環化合物も用いることができる。また、ポリ(2,5−ピリジンジイル)(略称:PPy)、ポリ[(9,9−ジヘキシルフルオレン−2,7−ジイル)−co−(ピリジン−3,5−ジイル)](略称:PF−Py)、ポリ[(9,9−ジオクチルフルオレン−2,7−ジイル)−co−(2,2’−ビピリジン−6,6’−ジイル)](略称:PF−BPy)のような高分子化合物を用いることもできる。 Examples of the host material having a high electron transporting property include tris (8-quinolinolato) aluminum (III) (abbreviation: Alq), tris (4-methyl-8-quinolinolato) aluminum (III) (abbreviation: Almq 3 ), and bis. (10-hydroxybenzo [h] quinolinato) beryllium (II) (abbreviation: BeBq 2 ), bis (2-methyl-8-quinolinolato) (4-phenylphenolato) aluminum (III) (abbreviation: BAlq), bis ( Metal complexes having a quinoline skeleton or a benzoquinoline skeleton, such as 8-quinolinolato) zinc (II) (abbreviation: Znq). In addition, bis [2- (2-benzoxazolyl) phenolato] zinc (II) (abbreviation: ZnPBO), bis [2- (2-benzothiazolyl) phenolato] zinc (II) (abbreviation: ZnBTZ), etc. A metal complex having an oxazole-based or thiazole-based ligand can also be used. In addition to metal complexes, 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole (abbreviation: PBD), 1,3-bis [5 -(P-tert-butylphenyl) -1,3,4-oxadiazol-2-yl] benzene (abbreviation: OXD-7), 9- [4- (5-phenyl-1,3,4-oxa) Oxadiazole derivatives such as diazol-2-yl) phenyl] -9H-carbazole (abbreviation: CO11), and 3- (4-biphenylyl) -4-phenyl-5- (4-tert-butylphenyl)- Triazole derivatives such as 1,2,4-triazole (abbreviation: TAZ) and 2,2 ′, 2 ″-(1,3,5-benzenetriyl) tris (1-phenyl-1H-benzimidazole) (Abbreviation: TPBI 2- [3- (dibenzothiophen-4-yl) phenyl] -1-phenyl-1H-benzimidazole (abbreviation: mDBTBIm-II), a compound having an imidazole skeleton (particularly a benzimidazole derivative), Compounds having an oxazole skeleton such as 4′-bis (5-methylbenzoxazol-2-yl) stilbene (abbreviation: BzOs) (particularly benzoxazole derivatives), bathophenanthroline (abbreviation: Bphen), bathocuproin (abbreviation: BCP) Phenanthroline derivatives such as 2,9-bis (naphthalen-2-yl) -4,7-diphenyl-1,10-phenanthroline (abbreviation: NBphen), and 2- [3- (dibenzothiophen-4-yl) phenyl ] Dibenzo [f, h] quinoxaline (abbreviation: 2mDB) PDBq-II), 2- [3 ′-(dibenzothiophen-4-yl) biphenyl-3-yl] dibenzo [f, h] quinoxaline (abbreviation: 2mDBTBPDBq-II), 2- [3 ′-(9H-carbazole) -9-yl) biphenyl-3-yl] dibenzo [f, h] quinoxaline (abbreviation: 2mCzBPDBq), 2- [4- (3,6-diphenyl-9H-carbazol-9-yl) phenyl] dibenzo [f, h] quinoxaline (abbreviation: 2CzPDBq-III), 7- [3- (dibenzothiophen-4-yl) phenyl] dibenzo [f, h] quinoxaline (abbreviation: 7mDBTPDBq-II), and 6- [3- (dibenzothiophene) -4-yl) phenyl] dibenzo [f, h] quinoxaline (abbreviation: 6mDBTPDBq-II), 4,6-bis [ 3- (phenanthrene-9-yl) phenyl] pyrimidine (abbreviation: 4,6mPnP2Pm), 4,6-bis [3- (4-dibenzothienyl) phenyl] pyrimidine (abbreviation: 4,6mDBTP2Pm-II), 4,6 A heterocyclic compound having a diazine skeleton such as -bis [3- (9H-carbazol-9-yl) phenyl] pyrimidine (abbreviation: 4,6mCzP2Pm), 2- {4- [3- (N-phenyl-9H- A heterocyclic compound having a triazine skeleton such as carbazol-3-yl) -9H-carbazol-9-yl] phenyl} -4,6-diphenyl-1,3,5-triazine (abbreviation: PCCzPTzn); -Bis [3- (9H-carbazol-9-yl) phenyl] pyridine (abbreviation: 35DCzPPy), 1,3,5-tri [3- ( - pyridyl) phenyl] benzene (abbreviation: TmPyPB) can also be used a heterocyclic compound having a pyridine skeleton such. In addition, poly (2,5-pyridinediyl) (abbreviation: PPy), poly [(9,9-dihexylfluorene-2,7-diyl) -co- (pyridine-3,5-diyl)] (abbreviation: PF -Py), poly [(9,9-dioctylfluorene-2,7-diyl) -co- (2,2′-bipyridine-6,6′-diyl)] (abbreviation: PF-BPy) Molecular compounds can also be used.
また、ホスト材料として、アントラセン誘導体、フェナントレン誘導体、ピレン誘導体、クリセン誘導体、ジベンゾ[g,p]クリセン誘導体等の縮合多環芳香族化合物が挙げられ、具体的には、9,10−ジフェニルアントラセン(略称:DPAnth)、N,N−ジフェニル−9−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール−3−アミン(略称:CzA1PA)、4−(10−フェニル−9−アントリル)トリフェニルアミン(略称:DPhPA)、YGAPA、PCAPA、N,9−ジフェニル−N−{4−[4−(10−フェニル−9−アントリル)フェニル]フェニル}−9H−カルバゾール−3−アミン(略称:PCAPBA)、2PCAPA、6,12−ジメトキシ−5,11−ジフェニルクリセン、DBC1、9−[4−(10−フェニル−9−アントラセニル)フェニル]−9H−カルバゾール(略称:CzPA)、3,6−ジフェニル−9−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(略称:DPCzPA)、9,10−ビス(3,5−ジフェニルフェニル)アントラセン(略称:DPPA)、9,10−ジ(2−ナフチル)アントラセン(略称:DNA)、2−tert−ブチル−9,10−ジ(2−ナフチル)アントラセン(略称:t−BuDNA)、9,9’−ビアントリル(略称:BANT)、9,9’−(スチルベン−3,3’−ジイル)ジフェナントレン(略称:DPNS)、9,9’−(スチルベン−4,4’−ジイル)ジフェナントレン(略称:DPNS2)、1,3,5−トリ(1−ピレニル)ベンゼン(略称:TPB3)などを用いることができる。 Examples of the host material include condensed polycyclic aromatic compounds such as anthracene derivatives, phenanthrene derivatives, pyrene derivatives, chrysene derivatives, and dibenzo [g, p] chrysene derivatives. Specifically, 9,10-diphenylanthracene ( Abbreviations: DPAnth), N, N-diphenyl-9- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazol-3-amine (abbreviation: CzA1PA), 4- (10-phenyl-9- Anthryl) triphenylamine (abbreviation: DPhPA), YGAPA, PCAPA, N, 9-diphenyl-N- {4- [4- (10-phenyl-9-anthryl) phenyl] phenyl} -9H-carbazol-3-amine (Abbreviation: PCAPBA), 2PCAPA, 6,12-dimethoxy-5,11-diphenyl Lysene, DBC1, 9- [4- (10-phenyl-9-anthracenyl) phenyl] -9H-carbazole (abbreviation: CzPA), 3,6-diphenyl-9- [4- (10-phenyl-9-anthryl) Phenyl] -9H-carbazole (abbreviation: DPCzPA), 9,10-bis (3,5-diphenylphenyl) anthracene (abbreviation: DPPA), 9,10-di (2-naphthyl) anthracene (abbreviation: DNA), 2 -Tert-butyl-9,10-di (2-naphthyl) anthracene (abbreviation: t-BuDNA), 9,9'-bianthryl (abbreviation: BANT), 9,9 '-(stilbene-3,3'-diyl ) Diphenanthrene (abbreviation: DPNS), 9,9 ′-(stilbene-4,4′-diyl) diphenanthrene (abbreviation: DPNS2), 1, 3, - tri (1-pyrenyl) benzene (abbreviation: TPB3), or the like can be used.
また、発光層(113、113a、113b、113c)に有機化合物を複数用いる場合、励起錯体を形成する2種類の化合物(第1の化合物および第2の化合物)と、有機金属錯体とを混合して用いてもよい。この場合、様々な有機化合物を適宜組み合わせて用いることができるが、効率よく励起錯体を形成するためには、正孔を受け取りやすい化合物(正孔輸送性材料)と、電子を受け取りやすい化合物(電子輸送性材料)とを組み合わせることが特に好ましい。なお、正孔輸送性材料および電子輸送性材料の具体例については、本実施の形態で示す材料を用いることができる。この構成により、高効率、低電圧、長寿命を同時に実現できる。 In the case where a plurality of organic compounds are used for the light-emitting layer (113, 113a, 113b, 113c), two types of compounds (first compound and second compound) that form an exciplex are mixed with an organometallic complex. May be used. In this case, various organic compounds can be used in appropriate combination. However, in order to efficiently form an exciplex, a compound that easily receives holes (hole transporting material) and a compound that easily receives electrons (electrons) A combination with a transportable material) is particularly preferred. Note that as specific examples of the hole-transport material and the electron-transport material, the materials described in this embodiment can be used. With this configuration, high efficiency, low voltage, and long life can be realized simultaneously.
TADF材料とは、三重項励起状態をわずかな熱エネルギーによって一重項励起状態にアップコンバート(逆項間交差)が可能で、一重項励起状態からの発光(蛍光)を効率よく呈する材料のことである。また、熱活性化遅延蛍光が効率良く得られる条件としては、三重項励起準位と一重項励起準位のエネルギー差が0eV以上0.2eV以下、好ましくは0eV以上0.1eV以下であることが挙げられる。また、TADF材料における遅延蛍光とは、通常の蛍光と同様のスペクトルを持ちながら、寿命が著しく長い発光をいう。その寿命は、10−6秒以上、好ましくは10−3秒以上である。 TADF material is a material that can up-convert triplet excited state to singlet excited state with a little thermal energy (interverse crossing) and efficiently emits light (fluorescence) from singlet excited state. is there. As a condition for efficiently obtaining thermally activated delayed fluorescence, the energy difference between the triplet excited level and the singlet excited level is 0 eV or more and 0.2 eV or less, preferably 0 eV or more and 0.1 eV or less. Can be mentioned. In addition, delayed fluorescence in the TADF material refers to light emission having a remarkably long lifetime while having a spectrum similar to that of normal fluorescence. The lifetime is 10 −6 seconds or longer, preferably 10 −3 seconds or longer.
TADF材料としては、例えば、フラーレンやその誘導体、プロフラビン等のアクリジン誘導体、エオシン等が挙げられる。また、マグネシウム(Mg)、亜鉛(Zn)、カドミウム(Cd)、スズ(Sn)、白金(Pt)、インジウム(In)、もしくはパラジウム(Pd)等を含む金属含有ポルフィリンが挙げられる。金属含有ポルフィリンとしては、例えば、プロトポルフィリン−フッ化スズ錯体(略称:SnF(Proto IX))、メソポルフィリン−フッ化スズ錯体(略称:SnF(Meso IX))、ヘマトポルフィリン−フッ化スズ錯体(略称:SnF(Hemato IX))、コプロポルフィリンテトラメチルエステル−フッ化スズ錯体(略称:SnF(Copro III−4Me))、オクタエチルポルフィリン−フッ化スズ錯体(略称:SnF(OEP))、エチオポルフィリン−フッ化スズ錯体(略称:SnF(Etio I))、オクタエチルポルフィリン−塩化白金錯体(略称:PtClOEP)等が挙げられる。 Examples of the TADF material include fullerene and derivatives thereof, acridine derivatives such as proflavine, and eosin. In addition, metal-containing porphyrins including magnesium (Mg), zinc (Zn), cadmium (Cd), tin (Sn), platinum (Pt), indium (In), palladium (Pd), and the like can be given. Examples of the metal-containing porphyrin include a protoporphyrin-tin fluoride complex (abbreviation: SnF 2 (Proto IX)), a mesoporphyrin-tin fluoride complex (abbreviation: SnF 2 (Meso IX)), and hematoporphyrin-tin fluoride. Complex (abbreviation: SnF 2 (Hemato IX)), coproporphyrin tetramethyl ester-tin fluoride complex (abbreviation: SnF 2 (Copro III-4Me)), octaethylporphyrin-tin fluoride complex (abbreviation: SnF 2 (OEP) )), Etioporphyrin-tin fluoride complex (abbreviation: SnF 2 (Etio I)), octaethylporphyrin-platinum chloride complex (abbreviation: PtCl 2 OEP), and the like.
その他にも、2−(ビフェニル−4−イル)−4,6−ビス(12−フェニルインドロ[2,3−a]カルバゾール−11−イル)−1,3,5−トリアジン(略称:PIC−TRZ)、2−{4−[3−(N−フェニル−9H−カルバゾール−3−イル)−9H−カルバゾール−9−イル]フェニル}−4,6−ジフェニル−1,3,5−トリアジン(略称:PCCzPTzn)、2−[4−(10H−フェノキサジン−10−イル)フェニル]−4,6−ジフェニル−1,3,5−トリアジン(略称:PXZ−TRZ)、3−[4−(5−フェニル−5,10−ジヒドロフェナジン−10−イル)フェニル]−4,5−ジフェニル−1,2,4−トリアゾール(略称:PPZ−3TPT)、3−(9,9−ジメチル−9H−アクリジン−10−イル)−9H−キサンテン−9−オン(略称:ACRXTN)、ビス[4−(9,9−ジメチル−9,10−ジヒドロアクリジン)フェニル]スルホン(略称:DMAC−DPS)、10−フェニル−10H,10’H−スピロ[アクリジン−9,9’−アントラセン]−10’−オン(略称:ACRSA)、等のπ電子過剰型複素芳香環及びπ電子不足型複素芳香環を有する複素環化合物を用いることができる。なお、π電子過剰型複素芳香環とπ電子不足型複素芳香環とが直接結合した物質は、π電子過剰型複素芳香環のドナー性とπ電子不足型複素芳香環のアクセプター性が共に強くなり、一重項励起状態と三重項励起状態のエネルギー差が小さくなるため、特に好ましい。 In addition, 2- (biphenyl-4-yl) -4,6-bis (12-phenylindolo [2,3-a] carbazol-11-yl) -1,3,5-triazine (abbreviation: PIC) -TRZ), 2- {4- [3- (N-phenyl-9H-carbazol-3-yl) -9H-carbazol-9-yl] phenyl} -4,6-diphenyl-1,3,5-triazine (Abbreviation: PCCzPTzn), 2- [4- (10H-phenoxazin-10-yl) phenyl] -4,6-diphenyl-1,3,5-triazine (abbreviation: PXZ-TRZ), 3- [4- (5-phenyl-5,10-dihydrophenazin-10-yl) phenyl] -4,5-diphenyl-1,2,4-triazole (abbreviation: PPZ-3TPT), 3- (9,9-dimethyl-9H -Acridine- 0-yl) -9H-xanthen-9-one (abbreviation: ACRXTN), bis [4- (9,9-dimethyl-9,10-dihydroacridine) phenyl] sulfone (abbreviation: DMAC-DPS), 10-phenyl -10H, 10'H-spiro [acridine-9,9'-anthracene] -10'-one (abbreviation: ACRSA), etc., a heterocyclic ring having a π-electron rich heteroaromatic ring and a π-electron deficient heteroaromatic ring Compounds can be used. In addition, a substance in which a π-electron rich heteroaromatic ring and a π-electron deficient heteroaromatic ring are directly bonded increases both the donor property of the π-electron rich heteroaromatic ring and the acceptor property of the π-electron deficient heteroaromatic ring. This is particularly preferable because the energy difference between the singlet excited state and the triplet excited state becomes small.
なお、TADF材料を用いる場合、他の有機化合物と組み合わせて用いることもできる。 In addition, when using TADF material, it can also be used in combination with another organic compound.
図1(D)に示す発光素子においては、EL層103aの発光層113a上に電子輸送層114aが真空蒸着法により形成される。また、EL層103aおよび電荷発生層104が形成された後、EL層103bの発光層113b上に電子輸送層114bが真空蒸着法により形成される。 In the light-emitting element illustrated in FIG. 1D, the electron-transport layer 114a is formed over the light-emitting layer 113a of the EL layer 103a by a vacuum evaporation method. In addition, after the EL layer 103a and the charge generation layer 104 are formed, the electron transport layer 114b is formed on the light emitting layer 113b of the EL layer 103b by a vacuum evaporation method.
<電子輸送層>
電子輸送層(114、114a、114b)は、電子注入層(115、115a、115b)によって、第2の電極102や電荷発生層104から注入された電子を発光層(113、113a、113b)に輸送する層である。なお、電子輸送層(114、114a、114b)は、電子輸送性材料を含む層である。電子輸送層(114、114a、114b)に用いる電子輸送性材料は、1×10−6cm/Vs以上の電子移動度を有する物質が好ましい。なお、正孔よりも電子の輸送性の高い物質であれば、これら以外のものを用いることができる。
<Electron transport layer>
The electron transport layers (114, 114a, 114b) are formed by allowing the electrons injected from the second electrode 102 and the charge generation layer 104 to the light emitting layers (113, 113a, 113b) by the electron injection layers (115, 115a, 115b). The layer to transport. Note that the electron transport layers (114, 114a, 114b) are layers containing an electron transport material. The electron transporting material used for the electron transporting layer (114, 114a, 114b) is preferably a substance having an electron mobility of 1 × 10 −6 cm 2 / Vs or higher. Note that other than these substances, any substance that has a property of transporting more electrons than holes can be used.
電子輸送性材料としては、キノリン配位子、ベンゾキノリン配位子、オキサゾール配位子、あるいはチアゾール配位子を有する金属錯体、オキサジアゾール誘導体、トリアゾール誘導体、フェナントロリン誘導体、ピリジン誘導体、ビピリジン誘導体などが挙げられる。その他、含窒素複素芳香族化合物のようなπ電子不足型複素芳香族化合物を用いることもできる。 Examples of electron transporting materials include metal complexes having quinoline ligand, benzoquinoline ligand, oxazole ligand, or thiazole ligand, oxadiazole derivatives, triazole derivatives, phenanthroline derivatives, pyridine derivatives, bipyridine derivatives, etc. Is mentioned. In addition, a π-electron deficient heteroaromatic compound such as a nitrogen-containing heteroaromatic compound can also be used.
具体的には、Alq、トリス(4−メチル−8−キノリノラト)アルミニウム(略称:Almq)、ビス(10−ヒドロキシベンゾ[h]キノリナト)ベリリウム(略称:BeBq)、BAlq、ビス[2−(2−ヒドロキシフェニル)ベンゾオキサゾラト]亜鉛(II)(略称:Zn(BOX))、ビス[2−(2−ヒドロキシフェニル)ベンゾチアゾラト]亜鉛(略称:Zn(BTZ))などの金属錯体、2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾール(略称:PBD)、OXD−7、33−(4’−tert−ブチルフェニル)−4−フェニル−5−(4’’−ビフェニル)−1,2,4−トリアゾール(略称:TAZ)、3−(4−tert−ブチルフェニル)−4−(4−エチルフェニル)−5−(4−ビフェニリル)−1,2,4−トリアゾール(略称:p−EtTAZ)、バソフェナントロリン(略称:Bphen)、バソキュプロイン(略称:BCP)、4,4’−ビス(5−メチルベンゾオキサゾール−2−イル)スチルベン(略称:BzOs)などの複素芳香族化合物、2−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2mDBTPDBq−II)、2−[3’−(ジベンゾチオフェン−4−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mDBTBPDBq−II)、2−[4−(3,6−ジフェニル−9H−カルバゾール−9−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2CzPDBq−III)、7−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:7mDBTPDBq−II)、6−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:6mDBTPDBq−II)等のキノキサリンないしはジベンゾキノキサリン誘導体を用いることができる。 Specifically, Alq 3 , tris (4-methyl-8-quinolinolato) aluminum (abbreviation: Almq 3 ), bis (10-hydroxybenzo [h] quinolinato) beryllium (abbreviation: BeBq 2 ), BAlq, bis [2 -(2-hydroxyphenyl) benzoxazolate] zinc (II) (abbreviation: Zn (BOX) 2 ), bis [2- (2-hydroxyphenyl) benzothiazolate] zinc (abbreviation: Zn (BTZ) 2 ), etc. Metal complex, 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole (abbreviation: PBD), OXD-7, 33- (4′-tert-butyl) Phenyl) -4-phenyl-5- (4 ″ -biphenyl) -1,2,4-triazole (abbreviation: TAZ), 3- (4-tert-butylphenyl)- 4- (4-ethylphenyl) -5- (4-biphenylyl) -1,2,4-triazole (abbreviation: p-EtTAZ), bathophenanthroline (abbreviation: Bphen), bathocuproin (abbreviation: BCP), 4,4 Heteroaromatic compounds such as' -bis (5-methylbenzoxazol-2-yl) stilbene (abbreviation: BzOs), 2- [3- (dibenzothiophen-4-yl) phenyl] dibenzo [f, h] quinoxaline ( Abbreviation: 2mDBTPDBq-II), 2- [3 ′-(dibenzothiophen-4-yl) biphenyl-3-yl] dibenzo [f, h] quinoxaline (abbreviation: 2mDBTBPDBq-II), 2- [4- (3 6-diphenyl-9H-carbazol-9-yl) phenyl] dibenzo [f, h] quinoxaline (abbreviation: 2CzPDBq-I) I), 7- [3- (dibenzothiophen-4-yl) phenyl] dibenzo [f, h] quinoxaline (abbreviation: 7mDBTPDBq-II), 6- [3- (dibenzothiophen-4-yl) phenyl] dibenzo [ f, h] quinoxaline or dibenzoquinoxaline derivatives such as quinoxaline (abbreviation: 6mDBTPDBq-II) can be used.
また、ポリ(2,5−ピリジンジイル)(略称:PPy)、ポリ[(9,9−ジヘキシルフルオレン−2,7−ジイル)−co−(ピリジン−3,5−ジイル)](略称:PF−Py)、ポリ[(9,9−ジオクチルフルオレン−2,7−ジイル)−co−(2,2’−ビピリジン−6,6’−ジイル)](略称:PF−BPy)のような高分子化合物を用いることもできる。 In addition, poly (2,5-pyridinediyl) (abbreviation: PPy), poly [(9,9-dihexylfluorene-2,7-diyl) -co- (pyridine-3,5-diyl)] (abbreviation: PF -Py), poly [(9,9-dioctylfluorene-2,7-diyl) -co- (2,2′-bipyridine-6,6′-diyl)] (abbreviation: PF-BPy) Molecular compounds can also be used.
また、電子輸送層(114、114a、114b)は、単層のものだけでなく、上記物質からなる層が2層以上積層した構造であってもよい。 Further, the electron-transport layer (114, 114a, 114b) is not limited to a single layer, and may have a structure in which two or more layers made of the above substances are stacked.
図1(D)に示す発光素子においては、EL層103aの電子輸送層114a上に電子注入層115aが真空蒸着法により形成される。その後、EL層103aおよび電荷発生層104が形成され、EL層103bの電子輸送層114bまで形成された後、上に電子注入層115bが真空蒸着法により形成される。 In the light-emitting element illustrated in FIG. 1D, an electron injection layer 115a is formed over the electron transport layer 114a of the EL layer 103a by a vacuum evaporation method. Thereafter, the EL layer 103a and the charge generation layer 104 are formed, and the electron transport layer 114b of the EL layer 103b is formed, and then the electron injection layer 115b is formed thereon by a vacuum deposition method.
<電子注入層>
電子注入層(115、115a、115b)は、電子注入性の高い物質を含む層である。電子注入層(115、115a、115b)には、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)、リチウム酸化物(LiO)等のようなアルカリ金属、アルカル土類金属、またはそれらの化合物を用いることができる。また、フッ化エルビウム(ErF)のような希土類金属化合物を用いることができる。また、電子注入層(115、115a、115b)にエレクトライドを用いてもよい。エレクトライドとしては、例えば、カルシウムとアルミニウムの混合酸化物に電子を高濃度添加した物質等が挙げられる。なお、上述した電子輸送層(114、114a、114b)を構成する物質を用いることもできる。
<Electron injection layer>
The electron injection layers (115, 115a, 115b) are layers containing a substance having a high electron injection property. The electron injection layer (115, 115a, 115b) includes an alkali metal such as lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF 2 ), lithium oxide (LiO x ), or the like. Earth metals or their compounds can be used. Alternatively, a rare earth metal compound such as erbium fluoride (ErF 3 ) can be used. Further, electride may be used for the electron injection layer (115, 115a, 115b). Examples of the electride include a substance obtained by adding a high concentration of electrons to a mixed oxide of calcium and aluminum. In addition, the substance which comprises the electron carrying layer (114, 114a, 114b) mentioned above can also be used.
また、電子注入層(115、115a、115b)に、有機化合物と電子供与体(ドナー)とを混合してなる複合材料を用いてもよい。このような複合材料は、電子供与体によって有機化合物に電子が発生するため、電子注入性および電子輸送性に優れている。この場合、有機化合物としては、発生した電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述した電子輸送層(114、114a、114b)に用いる電子輸送性材料(金属錯体や複素芳香族化合物等)を用いることができる。電子供与体としては、有機化合物に対し電子供与性を示す物質であればよい。具体的には、アルカリ金属やアルカリ土類金属や希土類金属が好ましく、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、アルカリ金属酸化物やアルカリ土類金属酸化物が好ましく、リチウム酸化物、カルシウム酸化物、バリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。 Alternatively, a composite material obtained by mixing an organic compound and an electron donor (donor) may be used for the electron injection layer (115, 115a, 115b). Such a composite material is excellent in electron injecting property and electron transporting property because electrons are generated in the organic compound by the electron donor. In this case, the organic compound is preferably a material excellent in transporting the generated electrons. Specifically, for example, an electron transport material (metal complex) used for the electron transport layer (114, 114a, 114b) described above, for example. Or a heteroaromatic compound). The electron donor may be any substance that exhibits an electron donating property to the organic compound. Specifically, alkali metals, alkaline earth metals, and rare earth metals are preferable, and lithium, cesium, magnesium, calcium, erbium, ytterbium, and the like can be given. Alkali metal oxides and alkaline earth metal oxides are preferable, and lithium oxide, calcium oxide, barium oxide, and the like can be given. A Lewis base such as magnesium oxide can also be used. Alternatively, an organic compound such as tetrathiafulvalene (abbreviation: TTF) can be used.
なお、例えば、発光層113bから得られる光を増幅させる場合には、第2の電極102と、発光層113bとの光学距離が、発光層113bが呈する光の波長に対してλ/4未満となるように形成するのが好ましい。この場合、電子輸送層114bまたは電子注入層115bの膜厚を変えることにより、調整することができる。 For example, in the case of amplifying light obtained from the light-emitting layer 113b, the optical distance between the second electrode 102 and the light-emitting layer 113b is less than λ / 4 with respect to the wavelength of light exhibited by the light-emitting layer 113b. It is preferable to form such that In this case, adjustment can be performed by changing the film thickness of the electron transport layer 114b or the electron injection layer 115b.
<電荷発生層>
電荷発生層104は、第1の電極(陽極)101と第2の電極(陰極)102との間に電圧を印加したときに、EL層103aに電子を注入し、EL層103bに正孔を注入する機能を有する、なお、電荷発生層104は、正孔輸送性材料に電子受容体(アクセプター)が添加された構成であっても、電子輸送性材料に電子供与体(ドナー)が添加された構成であってもよい。また、これらの両方の構成が積層されていても良い。なお、上述した材料を用いて電荷発生層104を形成することにより、EL層が積層された場合における駆動電圧の上昇を抑制することができる。
<Charge generation layer>
The charge generation layer 104 injects electrons into the EL layer 103a and applies holes into the EL layer 103b when a voltage is applied between the first electrode (anode) 101 and the second electrode (cathode) 102. Note that the charge generation layer 104 has a function of injecting an electron donor (donor) to the electron transporting material even if the electron transporting material 104 has a structure in which an electron acceptor (acceptor) is added to the hole transporting material. It may be a configuration. Moreover, both these structures may be laminated | stacked. Note that by forming the charge generation layer 104 using the above-described material, an increase in driving voltage in the case where an EL layer is stacked can be suppressed.
電荷発生層104において、正孔輸送性材料に電子受容体が添加された構成とする場合、正孔輸送性材料としては、本実施の形態で示した材料を用いることができる。また、電子受容体としては、7,7,8,8−テトラシアノ−2,3,5,6−テトラフルオロキノジメタン(略称:F−TCNQ)、クロラニル等を挙げることができる。また元素周期表における第4族乃至第8族に属する金属の酸化物を挙げることができる。具体的には、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化モリブデン、酸化タングステン、酸化マンガン、酸化レニウムなどが挙げられる。 In the case where the charge generation layer 104 has a structure in which an electron acceptor is added to a hole-transporting material, the materials described in this embodiment can be used as the hole-transporting material. Examples of the electron acceptor include 7,7,8,8-tetracyano-2,3,5,6-tetrafluoroquinodimethane (abbreviation: F 4 -TCNQ), chloranil, and the like. In addition, oxides of metals belonging to Groups 4 to 8 in the periodic table can be given. Specific examples include vanadium oxide, niobium oxide, tantalum oxide, chromium oxide, molybdenum oxide, tungsten oxide, manganese oxide, and rhenium oxide.
電荷発生層104において、電子輸送性材料に電子供与体が添加された構成とする場合、電子輸送性材料としては、本実施の形態で示した材料を用いることができる。また、電子供与体としては、アルカリ金属またはアルカリ土類金属または希土類金属または元素周期表における第2、第13族に属する金属およびその酸化物、炭酸塩を用いることができる。具体的には、リチウム(Li)、セシウム(Cs)、マグネシウム(Mg)、カルシウム(Ca)、イッテルビウム(Yb)、インジウム(In)、酸化リチウム、炭酸セシウムなどを用いることが好ましい。また、テトラチアナフタセンのような有機化合物を電子供与体として用いてもよい。 In the case where the charge generation layer 104 has a structure in which an electron donor is added to an electron transporting material, the materials described in this embodiment can be used as the electron transporting material. As the electron donor, an alkali metal, an alkaline earth metal, a rare earth metal, a metal belonging to Groups 2 and 13 of the periodic table, or an oxide or carbonate thereof can be used. Specifically, lithium (Li), cesium (Cs), magnesium (Mg), calcium (Ca), ytterbium (Yb), indium (In), lithium oxide, cesium carbonate, or the like is preferably used. An organic compound such as tetrathianaphthacene may be used as an electron donor.
なお、図1(E)のEL層103cは、上述したEL層(103、103a、103b)と同様の構成とすればよい。また、電荷発生層104a、104bについても、上述した電荷発生層104と同様の構成とすればよい。 Note that the EL layer 103c in FIG. 1E may have a structure similar to that of the above-described EL layers (103, 103a, and 103b). The charge generation layers 104a and 104b may have the same structure as the charge generation layer 104 described above.
<基板>
本実施の形態で示した発光素子は、様々な基板上に形成することができる。なお、基板の種類は、特定のものに限定されることはない。基板の一例としては、半導体基板(例えば単結晶基板又はシリコン基板)、SOI基板、ガラス基板、石英基板、プラスチック基板、金属基板、ステンレス・スチル基板、ステンレス・スチル・ホイルを有する基板、タングステン基板、タングステン・ホイルを有する基板、可撓性基板、貼り合わせフィルム、繊維状の材料を含む紙、又は基材フィルムなどが挙げられる。
<Board>
The light-emitting element described in this embodiment can be formed over various substrates. In addition, the kind of board | substrate is not limited to a specific thing. As an example of the substrate, a semiconductor substrate (for example, a single crystal substrate or a silicon substrate), an SOI substrate, a glass substrate, a quartz substrate, a plastic substrate, a metal substrate, a stainless steel substrate, a substrate having stainless steel foil, a tungsten substrate, Examples include a substrate having a tungsten foil, a flexible substrate, a laminated film, a paper containing a fibrous material, or a base film.
なお、ガラス基板の一例としては、バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラス、又はソーダライムガラスなどが挙げられる。また、可撓性基板、貼り合わせフィルム、基材フィルムなどの一例としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)に代表されるプラスチック、アクリル等の合成樹脂、ポリプロピレン、ポリエステル、ポリフッ化ビニル、又はポリ塩化ビニル、ポリアミド、ポリイミド、アラミド、エポキシ、無機蒸着フィルム、紙類などが挙げられる。 Note that examples of the glass substrate include barium borosilicate glass, aluminoborosilicate glass, and soda lime glass. Examples of flexible substrates, bonded films, base films, etc. are synthetic materials such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polyether sulfone (PES), acrylic, etc. Examples thereof include resin, polypropylene, polyester, polyvinyl fluoride, or polyvinyl chloride, polyamide, polyimide, aramid, epoxy, inorganic vapor deposition film, and papers.
なお、本実施の形態で示す発光素子の作製には、蒸着法などの真空プロセスや、スピンコート法やインクジェット法などの溶液プロセスを用いることができる。蒸着法を用いる場合には、スパッタ法、イオンプレーティング法、イオンビーム蒸着法、分子線蒸着法、真空蒸着法などの物理蒸着法(PVD法)や、化学蒸着法(CVD法)等を用いることができる。特に発光素子のEL層に含まれる機能層(正孔注入層(111、111a、111b)、正孔輸送層(112、112a、112b)、発光層(113、113a、113b、113c)、電子輸送層(114、114a、114b)、電子注入層(115、115a、115b))、および電荷発生層(104、104a、104b)については、蒸着法(真空蒸着法等)、塗布法(ディップコート法、ダイコート法、バーコート法、スピンコート法、スプレーコート法等)、印刷法(インクジェット法、スクリーン(孔版印刷)法、オフセット(平版印刷)法、フレキソ(凸版印刷)法、グラビア法、マイクロコンタクト法等)などの方法により形成することができる。 Note that for manufacturing the light-emitting element described in this embodiment, a vacuum process such as an evaporation method or a solution process such as a spin coating method or an inkjet method can be used. When vapor deposition is used, physical vapor deposition (PVD) such as sputtering, ion plating, ion beam vapor deposition, molecular beam vapor deposition, or vacuum vapor deposition, or chemical vapor deposition (CVD) is used. be able to. In particular, functional layers (hole injection layer (111, 111a, 111b), hole transport layer (112, 112a, 112b), light-emitting layer (113, 113a, 113b, 113c), electron transport included in the EL layer of the light-emitting element. For the layer (114, 114a, 114b), the electron injection layer (115, 115a, 115b)) and the charge generation layer (104, 104a, 104b), a vapor deposition method (vacuum vapor deposition method, etc.), a coating method (dip coating method) , Die coating method, bar coating method, spin coating method, spray coating method, etc.), printing method (inkjet method, screen (stencil printing) method, offset (lithographic printing) method, flexographic (letter printing) method, gravure method, microcontact And the like.
なお、本実施の形態で示す発光素子のEL層(103、103a、103b)を構成する各機能層(正孔注入層(111、111a、111b)、正孔輸送層(112、112a、112b)、発光層(113、113a、113b、113c)、電子輸送層(114、114a、114b)、電子注入層(115、115a、115b))や電荷発生層(104、104a、104b)は、上述した材料に限られることはなく、それ以外の材料であっても各層の機能を満たせるものであれば組み合わせて用いることができる。一例としては、高分子化合物(オリゴマー、デンドリマー、ポリマー等)、中分子化合物(低分子と高分子の中間領域の化合物:分子量400~4000)、無機化合物(量子ドット材料等)等を用いることができる。なお、量子ドット材料としては、コロイド状量子ドット材料、合金型量子ドット材料、コア・シェル型量子ドット材料、コア型量子ドット材料などを用いることができる。 Note that each functional layer (a hole injection layer (111, 111a, 111b), a hole transport layer (112, 112a, 112b) included in the EL layer (103, 103a, 103b) of the light-emitting element described in this embodiment mode. The light emitting layer (113, 113a, 113b, 113c), the electron transport layer (114, 114a, 114b), the electron injection layer (115, 115a, 115b)) and the charge generation layer (104, 104a, 104b) are described above. The material is not limited, and other materials can be used in combination as long as they can satisfy the function of each layer. For example, high molecular compounds (oligomers, dendrimers, polymers, etc.), medium molecular compounds (compounds in the middle region between low molecules and polymers: molecular weight 400 to 4000), inorganic compounds (quantum dot materials, etc.), etc. may be used. it can. As the quantum dot material, a colloidal quantum dot material, an alloy type quantum dot material, a core / shell type quantum dot material, a core type quantum dot material, or the like can be used.
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができるものとする。 The structure described in this embodiment can be combined as appropriate with any of the structures described in the other embodiments.
(実施の形態3)
本実施の形態では、本発明の一態様である発光装置について説明する。なお、図2(A)に示す発光装置は、第1の基板201上のトランジスタ(FET)202と発光素子(203R、203G、203B、203W)が電気的に接続されてなるアクティブマトリクス型の発光装置であり、複数の発光素子(203R、203G、203B、203W)は、共通のEL層204を有し、また、各発光素子の発光色に応じて、各発光素子の電極間の光学距離が調整されたマイクロキャビティ構造を有する。また、EL層204から得られた発光が第2の基板205に形成されたカラーフィルタ(206R、206G、206B)を介して射出されるトップエミッション型の発光装置である。
(Embodiment 3)
In this embodiment, a light-emitting device which is one embodiment of the present invention will be described. 2A is an active matrix light-emitting device in which a transistor (FET) 202 over a first substrate 201 and light-emitting elements (203R, 203G, 203B, and 203W) are electrically connected to each other. The plurality of light emitting elements (203R, 203G, 203B, 203W) have a common EL layer 204, and the optical distance between the electrodes of each light emitting element depends on the emission color of each light emitting element. It has a tuned microcavity structure. In addition, the light-emitting device is a top-emission light-emitting device in which light emission obtained from the EL layer 204 is emitted through color filters (206R, 206G, and 206B) formed over the second substrate 205.
図2(A)に示す発光装置は、第1の電極207を反射電極として機能するように形成する。また、第2の電極208を半透過・半反射電極として機能するように形成する。なお、第1の電極207および第2の電極208を形成する電極材料としては、他の実施形態の記載を参照し、適宜用いればよい。 In the light-emitting device illustrated in FIG. 2A, the first electrode 207 is formed so as to function as a reflective electrode. Further, the second electrode 208 is formed so as to function as a semi-transmissive / semi-reflective electrode. Note that an electrode material for forming the first electrode 207 and the second electrode 208 may be used as appropriate with reference to the description of the other embodiments.
また、図2(A)において、例えば、発光素子203Rを赤色発光素子、発光素子203Gを緑色発光素子、発光素子203Bを青色発光素子、発光素子203Wを白色発光素子とする場合、図2(B)に示すように発光素子203Rは、第1の電極207と第2の電極208との間が光学距離200Rとなるように調整し、発光素子203Gは、第1の電極207と第2の電極208との間が光学距離200Gとなるように調整し、発光素子203Bは、第1の電極207と第2の電極208との間が光学距離200Bとなるように調整する。なお、図2(B)に示すように、発光素子203Rにおいて導電層210Rを第1の電極207に積層し、発光素子203Gにおいて導電層210Gを積層することにより、光学調整を行うことができる。 In FIG. 2A, for example, when the light emitting element 203R is a red light emitting element, the light emitting element 203G is a green light emitting element, the light emitting element 203B is a blue light emitting element, and the light emitting element 203W is a white light emitting element, FIG. ), The light emitting element 203R is adjusted so that the optical distance 200R is between the first electrode 207 and the second electrode 208, and the light emitting element 203G includes the first electrode 207 and the second electrode. The light emitting element 203B is adjusted so that the optical distance 200B is between the first electrode 207 and the second electrode 208. Note that as illustrated in FIG. 2B, optical adjustment can be performed by stacking the conductive layer 210R over the first electrode 207 in the light-emitting element 203R and stacking the conductive layer 210G in the light-emitting element 203G.
第2の基板205には、カラーフィルタ(206R、206G、206B)が形成されている。なお、カラーフィルタは、可視光のうち特定の波長域を通過させ、特定の波長域を阻止するフィルタである。従って、図2(A)に示すように、発光素子203Rと重なる位置に赤の波長域のみを通過させるカラーフィルタ206Rを設けることにより、発光素子203Rから赤色発光を得ることができる。また、発光素子203Gと重なる位置に緑の波長域のみを通過させるカラーフィルタ206Gを設けることにより、発光素子203Gから緑色発光を得ることができる。また、発光素子203Bと重なる位置に青の波長域のみを通過させるカラーフィルタ206Bを設けることにより、発光素子203Bから青色発光を得ることができる。但し、発光素子203Wは、カラーフィルタを設けることなく白色発光を得ることができる。なお、1種のカラーフィルタの端部には、黒色層(ブラックマトリックス)209が設けられていてもよい。さらに、カラーフィルタ(206R、206G、206B)や黒色層209は、透明な材料を用いたオーバーコート層で覆われていても良い。 On the second substrate 205, color filters (206R, 206G, 206B) are formed. The color filter is a filter that passes a specific wavelength range of visible light and blocks the specific wavelength range. Therefore, as shown in FIG. 2A, red light emission can be obtained from the light emitting element 203R by providing the color filter 206R that allows only the red wavelength region to pass through the position overlapping the light emitting element 203R. In addition, by providing the color filter 206G that allows only the green wavelength region to pass at a position overlapping the light emitting element 203G, green light emission can be obtained from the light emitting element 203G. Further, by providing the color filter 206B that allows only the blue wavelength region to pass at a position overlapping the light emitting element 203B, blue light emission can be obtained from the light emitting element 203B. However, the light emitting element 203W can obtain white light emission without providing a color filter. Note that a black layer (black matrix) 209 may be provided at an end of one type of color filter. Further, the color filters (206R, 206G, 206B) and the black layer 209 may be covered with an overcoat layer using a transparent material.
図2(A)では、第2の基板205側に発光を取り出す構造(トップエミッション型)の発光装置を示したが、図2(C)に示すようにFET202が形成されている第1の基板201側に光を取り出す構造(ボトムエミッション型)の発光装置としても良い。なお、ボトムエミッション型の発光装置の場合には、第1の電極207を半透過・半反射電極として機能するように形成し、第2の電極208を反射電極として機能するように形成する。また、第1の基板201は、少なくとも透光性の基板を用いる。また、カラーフィルタ(206R’、206G’、206B’)は、図2(C)に示すように発光素子(203R、203G、203B)よりも第1の基板201側に設ければよい。 In FIG. 2A, a light emitting device having a structure for extracting light emission to the second substrate 205 side (top emission type) is shown, but the first substrate on which the FET 202 is formed as shown in FIG. A light emitting device having a structure for extracting light to the 201 side (bottom emission type) may be used. Note that in the case of a bottom emission type light-emitting device, the first electrode 207 is formed to function as a semi-transmissive / semi-reflective electrode, and the second electrode 208 is formed to function as a reflective electrode. The first substrate 201 is at least a light-transmitting substrate. Further, the color filters (206R ′, 206G ′, and 206B ′) may be provided on the first substrate 201 side with respect to the light emitting elements (203R, 203G, and 203B) as shown in FIG.
また、図2(A)において、発光素子が、赤色発光素子、緑色発光素子、青色発光素子、白色発光素子の場合について示したが、本発明の一態様である発光素子はその構成に限られることはなく、黄色の発光素子や橙色の発光素子を有する構成であっても良い。なお、これらの発光素子を作製するためにEL層(発光層、正孔注入層、正孔輸送層、電子輸送層、電子注入層、電荷発生層など)に用いる材料としては、他の実施形態の記載を参照し、適宜用いればよい。なお、その場合には、また、発光素子の発光色に応じてカラーフィルタを適宜選択する必要がある。 2A illustrates the case where the light-emitting element is a red light-emitting element, a green light-emitting element, a blue light-emitting element, or a white light-emitting element, the light-emitting element which is one embodiment of the present invention is limited to the structure. In other words, a structure having a yellow light emitting element or an orange light emitting element may be used. In addition, as a material used for EL layers (a light emitting layer, a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, a charge generation layer, etc.) for manufacturing these light emitting elements, other embodiments are used. May be used as appropriate with reference to the description. In this case, it is necessary to select a color filter as appropriate in accordance with the emission color of the light emitting element.
以上のような構成とすることにより、複数の発光色を呈する発光素子を備えた発光装置を得ることができる。 With the above structure, a light-emitting device including a light-emitting element that exhibits a plurality of emission colors can be obtained.
なお、本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることができるものとする。 Note that the structure described in this embodiment can be combined as appropriate with any of the structures described in the other embodiments.
(実施の形態4)
本実施の形態では、本発明の一態様である発光装置について説明する。
(Embodiment 4)
In this embodiment, a light-emitting device which is one embodiment of the present invention will be described.
本発明の一態様である発光素子の素子構成を適用することで、アクティブマトリクス型の発光装置やパッシブマトリクス型の発光装置を作製することができる。なお、アクティブマトリクス型の発光装置は、発光素子とトランジスタ(FET)とを組み合わせた構成を有する。従って、パッシブマトリクス型の発光装置、アクティブマトリクス型の発光装置は、いずれも本発明の一態様に含まれる。なお、本実施の形態に示す発光装置には、他の実施形態で説明した発光素子を適用することが可能である。 By applying the element structure of the light-emitting element which is one embodiment of the present invention, an active matrix light-emitting device or a passive matrix light-emitting device can be manufactured. Note that an active matrix light-emitting device has a structure in which a light-emitting element and a transistor (FET) are combined. Therefore, both a passive matrix light-emitting device and an active matrix light-emitting device are included in one embodiment of the present invention. Note that the light-emitting element described in any of the other embodiments can be applied to the light-emitting device described in this embodiment.
本実施の形態では、アクティブマトリクス型の発光装置について図3を用いて説明する。 In this embodiment, an active matrix light-emitting device is described with reference to FIGS.
なお、図3(A)は発光装置を示す上面図であり、図3(B)は図3(A)を鎖線A−A’で切断した断面図である。アクティブマトリクス型の発光装置は、第1の基板301上に設けられた画素部302、駆動回路部(ソース線駆動回路)303と、駆動回路部(ゲート線駆動回路)(304a、304b)を有する。画素部302および駆動回路部(303、304a、304b)は、シール材305によって、第1の基板301と第2の基板306との間に封止される。 3A is a top view illustrating the light-emitting device, and FIG. 3B is a cross-sectional view taken along the chain line A-A ′ in FIG. 3A. The active matrix light-emitting device includes a pixel portion 302, a driver circuit portion (source line driver circuit) 303, and driver circuit portions (gate line driver circuits) (304a and 304b) provided over the first substrate 301. . The pixel portion 302 and the driver circuit portions (303, 304a, and 304b) are sealed between the first substrate 301 and the second substrate 306 by a sealant 305.
また、第1の基板301上には、引き回し配線307が設けられる。引き回し配線307は、外部入力端子であるFPC308と接続される。なお、FPC308は、駆動回路部(303、304a、304b)に外部からの信号(例えば、ビデオ信号、クロック信号、スタート信号、リセット信号等)や電位を伝達する。また、FPC308にはプリント配線基板(PWB)が取り付けられていても良い。なお、これらFPCやのPWBが取り付けられた状態は、発光装置に含まれる。 A lead wiring 307 is provided over the first substrate 301. The lead wiring 307 is connected to the FPC 308 which is an external input terminal. Note that the FPC 308 transmits signals (eg, a video signal, a clock signal, a start signal, a reset signal, and the like) and a potential from the outside to the driving circuit units (303, 304a, and 304b). Further, a printed wiring board (PWB) may be attached to the FPC 308. Note that the state in which the FPC or PWB is attached is included in the light emitting device.
次に、図3(B)に断面構造を示す。 Next, a cross-sectional structure is shown in FIG.
画素部302は、FET(スイッチング用FET)311、FET(電流制御用FET)312、およびFET312と電気的に接続された第1の電極313を有する複数の画素により形成される。なお、各画素が有するFETの数は、特に限定されることはなく、必要に応じて適宜設けることができる。 The pixel portion 302 is formed by a plurality of pixels including a FET (switching FET) 311, a FET (current control FET) 312, and a first electrode 313 electrically connected to the FET 312. Note that the number of FETs included in each pixel is not particularly limited, and can be appropriately provided as necessary.
FET309、310、311、312は、特に限定されることはなく、例えば、スタガ型や逆スタガ型などのトランジスタを適用することができる。また、トップゲート型やボトムゲート型などのトランジスタ構造であってもよい。 The FETs 309, 310, 311, and 312 are not particularly limited, and for example, a staggered type transistor or an inverted staggered type transistor can be applied. Further, a transistor structure such as a top gate type or a bottom gate type may be used.
なお、これらのFET309、310、311、312に用いることのできる半導体の結晶性については特に限定されず、非晶質半導体、結晶性を有する半導体(微結晶半導体、多結晶半導体、単結晶半導体、又は一部に結晶領域を有する半導体)のいずれを用いてもよい。なお、結晶性を有する半導体を用いることで、トランジスタ特性の劣化を抑制できるため好ましい。 Note that there is no particular limitation on the crystallinity of the semiconductor that can be used for these FETs 309, 310, 311, and 312; an amorphous semiconductor, a semiconductor having crystallinity (a microcrystalline semiconductor, a polycrystalline semiconductor, a single crystal semiconductor, Alternatively, a semiconductor having a crystal region in part) may be used. Note that it is preferable to use a crystalline semiconductor because deterioration of transistor characteristics can be suppressed.
また、これらの半導体としては、例えば、第14族の元素、化合物半導体、酸化物半導体、有機半導体などを用いることができる。代表的には、シリコンを含む半導体、ガリウムヒ素を含む半導体、インジウムを含む酸化物半導体などを適用することができる。 As these semiconductors, for example, Group 14 elements, compound semiconductors, oxide semiconductors, organic semiconductors, and the like can be used. Typically, a semiconductor containing silicon, a semiconductor containing gallium arsenide, an oxide semiconductor containing indium, or the like can be used.
駆動回路部303は、FET309とFET310とを有する。なお、FET309とFET310は、単極性(N型またはP型のいずれか一方のみ)のトランジスタを含む回路で形成されても良いし、N型のトランジスタとP型のトランジスタを含むCMOS回路で形成されても良い。また、外部に駆動回路を有する構成としても良い。 The drive circuit unit 303 includes an FET 309 and an FET 310. Note that the FET 309 and the FET 310 may be formed of a circuit including a unipolar transistor (N-type or P-type only) or a CMOS circuit including an N-type transistor and a P-type transistor. May be. In addition, a configuration in which a drive circuit is provided outside may be employed.
第1の電極313の端部は、絶縁物314により覆われている。なお、絶縁物314には、ネガ型の感光性樹脂や、ポジ型の感光性樹脂(アクリル樹脂)などの有機化合物や、酸化シリコン、酸化窒化シリコン、窒化シリコン等の無機化合物を用いることができる。絶縁物314の上端部または下端部には、曲率を有する曲面を有するのが好ましい。これにより、絶縁物314の上層に形成される膜の被覆性を良好なものとすることができる。 An end portion of the first electrode 313 is covered with an insulator 314. Note that the insulator 314 can be formed using an organic compound such as a negative photosensitive resin or a positive photosensitive resin (acrylic resin), or an inorganic compound such as silicon oxide, silicon oxynitride, or silicon nitride. . It is preferable that an upper end portion or a lower end portion of the insulator 314 have a curved surface having a curvature. Thereby, the coverage of the film formed on the upper layer of the insulator 314 can be improved.
第1の電極313上には、EL層315及び第2の電極316が積層形成される。EL層315は、発光層、正孔注入層、正孔輸送層、電子輸送層、電子注入層、電荷発生層等を有する。 An EL layer 315 and a second electrode 316 are stacked over the first electrode 313. The EL layer 315 includes a light-emitting layer, a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, a charge generation layer, and the like.
なお、本実施の形態で示す発光素子317の構成は、他の実施の形態で説明した構成や材料を適用することができる。なお、ここでは図示しないが、第2の電極316は外部入力端子であるFPC308に電気的に接続されている。 Note that the structures and materials described in the other embodiments can be applied to the structure of the light-emitting element 317 described in this embodiment. Although not shown here, the second electrode 316 is electrically connected to the FPC 308 which is an external input terminal.
また、図3(B)に示す断面図では発光素子317を1つのみ図示しているが、画素部302において、複数の発光素子がマトリクス状に配置されているものとする。画素部302には、3種類(R、G、B)の発光が得られる発光素子をそれぞれ選択的に形成し、フルカラー表示可能な発光装置を形成することができる。また、3種類(R、G、B)の発光が得られる発光素子の他に、例えば、ホワイト(W)、イエロー(Y)、マゼンタ(M)、シアン(C)等の発光が得られる発光素子を形成してもよい。例えば、3種類(R、G、B)の発光が得られる発光素子に上述の数種類の発光が得られる発光素子を追加することにより、色純度の向上、消費電力の低減等の効果が得ることができる。また、カラーフィルタと組み合わせることによってフルカラー表示可能な発光装置としてもよい。なお、カラーフィルタの種類としては、赤(R)、緑(G)、青(B)、シアン(C)、マゼンタ(M)、イエロー(Y)等を用いることができる。 3B illustrates only one light-emitting element 317, it is assumed that a plurality of light-emitting elements are arranged in a matrix in the pixel portion 302. In the pixel portion 302, light emitting elements capable of emitting three types (R, G, and B) of light emission can be selectively formed, so that a light emitting device capable of full color display can be formed. In addition to the light emitting element that can obtain three types of light emission (R, G, B), for example, light emission that can emit light such as white (W), yellow (Y), magenta (M), and cyan (C). An element may be formed. For example, by adding the above-described light emitting elements capable of obtaining several types of light emission (R, G, B) to the light emitting elements capable of obtaining three types of light emission (R, G, B), effects such as improvement in color purity and reduction in power consumption can be obtained. Can do. Alternatively, a light emitting device capable of full color display may be obtained by combining with a color filter. Note that as types of color filters, red (R), green (G), blue (B), cyan (C), magenta (M), yellow (Y), and the like can be used.
第1の基板301上のFET(309、310、311、312)や、発光素子317は、第2の基板306と第1の基板301とをシール材305により貼り合わせることにより、第1の基板301、第2の基板306、およびシール材305で囲まれた空間318に備えられた構造を有する。なお、空間318には、不活性気体(窒素やアルゴン等)や有機物(シール材305を含む)で充填されていてもよい。 The FETs (309, 310, 311 and 312) and the light emitting element 317 over the first substrate 301 are bonded to each other by attaching the second substrate 306 and the first substrate 301 with the sealant 305. 301, the second substrate 306, and a structure provided in a space 318 surrounded by the sealant 305. Note that the space 318 may be filled with an inert gas (such as nitrogen or argon) or an organic substance (including the sealant 305).
シール材305には、エポキシ系樹脂やガラスフリットを用いることができる。なお、シール材305には、できるだけ水分や酸素を透過しない材料を用いることが好ましい。また、第2の基板306は、第1の基板301に用いることができるものを同様に用いることができる。従って、他の実施形態で説明した様々な基板を適宜用いることができるものとする。基板としてガラス基板や石英基板の他、FRP(Fiber−Reinforced Plastics)、PVF(ポリビニルフロライド)、ポリエステルまたはアクリル等からなるプラスチック基板を用いることができる。シール材としてガラスフリットを用いる場合には、接着性の観点から第1の基板301及び第2の基板306はガラス基板であることが好ましい。 As the sealant 305, an epoxy resin or glass frit can be used. Note that it is preferable to use a material that does not transmit moisture and oxygen as much as possible for the sealant 305. In addition, as the second substrate 306, a substrate that can be used for the first substrate 301 can be used as well. Therefore, various substrates described in other embodiments can be used as appropriate. In addition to a glass substrate and a quartz substrate, a plastic substrate made of FRP (Fiber-Reinforced Plastics), PVF (polyvinyl fluoride), polyester, acrylic, or the like can be used as the substrate. In the case where glass frit is used as the sealing material, the first substrate 301 and the second substrate 306 are preferably glass substrates from the viewpoint of adhesiveness.
以上のようにして、アクティブマトリクス型の発光装置を得ることができる。 As described above, an active matrix light-emitting device can be obtained.
また、アクティブマトリクス型の発光装置を可撓性基板に形成する場合、可撓性基板上にFETと発光素子とを直接形成しても良いが、剥離層を有する別の基板にFETと発光素子を形成した後、熱、力、レーザ照射などを与えることによりFETと発光素子を剥離層で剥離し、さらに可撓性基板に転載して作製しても良い。なお、剥離層としては、例えば、タングステン膜と酸化シリコン膜との無機膜の積層や、ポリイミド等の有機樹脂膜等を用いることができる。また可撓性基板としては、トランジスタを形成することが可能な基板に加え、紙基板、セロファン基板、アラミドフィルム基板、ポリイミドフィルム基板、布基板(天然繊維(絹、綿、麻)、合成繊維(ナイロン、ポリウレタン、ポリエステル)若しくは再生繊維(アセテート、キュプラ、レーヨン、再生ポリエステル)などを含む)、皮革基板、又はゴム基板などが挙げられる。これらの基板を用いることにより、耐久性や耐熱性に優れ、軽量化および薄型化を図ることができる。 In the case where an active matrix light-emitting device is formed over a flexible substrate, the FET and the light-emitting element may be directly formed over the flexible substrate, but the FET and the light-emitting element are formed over another substrate having a release layer. After forming, the FET and the light-emitting element may be peeled off by a peeling layer by applying heat, force, laser irradiation, and transferred to a flexible substrate. Note that as the peeling layer, for example, a laminated inorganic film of a tungsten film and a silicon oxide film, an organic resin film such as polyimide, or the like can be used. In addition to substrates that can form transistors, flexible substrates include paper substrates, cellophane substrates, aramid film substrates, polyimide film substrates, fabric substrates (natural fibers (silk, cotton, hemp), synthetic fibers ( Nylon, polyurethane, polyester) or recycled fibers (including acetate, cupra, rayon, recycled polyester), leather substrates, rubber substrates, and the like. By using these substrates, it is excellent in durability and heat resistance, and can be reduced in weight and thickness.
なお、本実施の形態に示す構成は、他の実施の形態に示した構成を適宜組み合わせて用いることができる。 Note that the structure described in this embodiment can be combined with any of the structures described in other embodiments as appropriate.
(実施の形態5)
本実施の形態では、本発明の一態様である発光装置、本発明の一態様である発光素子を有する表示装置を適用して完成させた様々な電子機器や自動車の一例について、説明する。
(Embodiment 5)
In this embodiment, examples of various electronic devices and automobiles completed by applying the light-emitting device which is one embodiment of the present invention and the display device including the light-emitting element which is one embodiment of the present invention will be described.
図4(A)~図4(E)に示す電子機器は、筐体7000、表示部7001、スピーカ7003、LEDランプ7004、操作キー7005(電源スイッチ、又は操作スイッチを含む)、接続端子7006、センサ7007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい、又は赤外線を測定する機能を含むもの)、マイクロフォン7008、7019等を有することができる。 4A to 4E includes a housing 7000, a display portion 7001, a speaker 7003, an LED lamp 7004, operation keys 7005 (including a power switch or an operation switch), a connection terminal 7006, Sensor 7007 (force, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity , Including a function of measuring inclination, vibration, odor, or infrared light), microphones 7008, 7019, and the like.
図4(A)はモバイルコンピュータであり、上述したものの他に、スイッチ7009、赤外線ポート7010、等を有することができる。 FIG. 4A illustrates a mobile computer, which can include a switch 7009, an infrared port 7010, and the like in addition to the above objects.
図4(B)は記録媒体を備えた携帯型の画像再生装置(たとえば、DVD再生装置)であり、上述したものの他に、第2表示部7002、記録媒体読込部7011、等を有することができる。 FIG. 4B illustrates a portable image reproducing device (eg, a DVD reproducing device) provided with a recording medium, which includes a second display portion 7002, a recording medium reading portion 7011, and the like in addition to those described above. it can.
図4(C)はゴーグル型ディスプレイであり、上述したものの他に、第2表示部7002、支持部7012、イヤホン7013、等を有することができる。 FIG. 4C illustrates a goggle type display which can include a second display portion 7002, a support portion 7012, an earphone 7013, and the like in addition to the above components.
図4(D)はテレビ受像機能付きデジタルカメラであり、上述したものの他に、アンテナ7014、シャッターボタン7015、受像部7016、等を有することができる。 FIG. 4D illustrates a digital camera with a television receiving function, which can include an antenna 7014, a shutter button 7015, an image receiving portion 7016, and the like in addition to the above objects.
図4(E)は携帯電話機(スマートフォンを含む)であり、筐体7000に、表示部7001、マイクロフォン7019、等を有することができる。 FIG. 4E illustrates a mobile phone (including a smartphone), which can include a display portion 7001, a microphone 7019, and the like in a housing 7000.
図4(F)は、大型のテレビジョン装置(テレビ、又はテレビジョン受信機ともいう)であり、筐体7000、表示部7001、スピーカ7003、等を有することができる。また、ここでは、スタンド7018により筐体7000を支持した構成を示している。 FIG. 4F illustrates a large television device (also referred to as a television or a television receiver) which can include a housing 7000, a display portion 7001, speakers 7003, and the like. Here, a configuration in which the casing 7000 is supported by a stand 7018 is shown.
図4(A)~図4(F)に示す電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付又は時刻などを表示する機能、様々なソフトウエア(プログラム)によって処理を制御する機能、無線通信機能、無線通信機能を用いて様々なコンピュータネットワークに接続する機能、無線通信機能を用いて様々なデータの送信又は受信を行う機能、記録媒体に記録されているプログラム又はデータを読み出して表示部に表示する機能、等を有することができる。さらに、複数の表示部を有する電子機器においては、一つの表示部を主として画像情報を表示し、別の一つの表示部を主として文字情報を表示する機能、または、複数の表示部に視差を考慮した画像を表示することで立体的な画像を表示する機能、等を有することができる。さらに、受像部を有する電子機器においては、静止画を撮影する機能、動画を撮影する機能、撮影した画像を自動または手動で補正する機能、撮影した画像を記録媒体(外部又はカメラに内蔵)に保存する機能、撮影した画像を表示部に表示する機能、等を有することができる。なお、図4(A)乃至図4(F)に示す電子機器が有することのできる機能はこれらに限定されず、様々な機能を有することができる。 The electronic devices illustrated in FIGS. 4A to 4F can have a variety of functions. For example, a function for displaying various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function for displaying a calendar, date or time, etc., a function for controlling processing by various software (programs) , Wireless communication function, function to connect to various computer networks using wireless communication function, function to transmit or receive various data using wireless communication function, read program or data recorded in recording medium A function of displaying on the display portion can be provided. Further, in an electronic device having a plurality of display units, one display unit mainly displays image information and another one display unit mainly displays character information, or the plurality of display units consider parallax. It is possible to have a function of displaying a three-dimensional image, etc. by displaying the obtained image. Furthermore, in an electronic device having an image receiving unit, a function for capturing a still image, a function for capturing a moving image, a function for correcting a captured image automatically or manually, and a captured image on a recording medium (externally or incorporated in a camera) A function of saving, a function of displaying a photographed image on a display portion, and the like can be provided. Note that the functions of the electronic devices illustrated in FIGS. 4A to 4F are not limited to these, and the electronic devices can have various functions.
図4(G)は、スマートウオッチであり、筐体7000、表示部7001、操作用ボタン7022、7023、接続端子7024、バンド7025、留め金7026、等を有する。 FIG. 4G illustrates a smart watch, which includes a housing 7000, a display portion 7001, operation buttons 7022 and 7023, a connection terminal 7024, a band 7025, a clasp 7026, and the like.
ベゼル部分を兼ねる筐体7000に搭載された表示部7001は、非矩形状の表示領域を有している。表示部7001は、時刻を表すアイコン7027、その他のアイコン7028等を表示することができる。また、表示部7001は、タッチセンサ(入力装置)を搭載したタッチパネル(入出力装置)であってもよい。 A display portion 7001 mounted on a housing 7000 that also serves as a bezel portion has a non-rectangular display region. The display portion 7001 can display an icon 7027 representing time, other icons 7028, and the like. The display unit 7001 may be a touch panel (input / output device) equipped with a touch sensor (input device).
なお、図4(G)に示すスマートウオッチは、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付又は時刻などを表示する機能、様々なソフトウエア(プログラム)によって処理を制御する機能、無線通信機能、無線通信機能を用いて様々なコンピュータネットワークに接続する機能、無線通信機能を用いて様々なデータの送信又は受信を行う機能、記録媒体に記録されているプログラム又はデータを読み出して表示部に表示する機能、等を有することができる。 Note that the smart watch illustrated in FIG. 4G can have a variety of functions. For example, a function for displaying various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a function for displaying a calendar, date or time, etc., a function for controlling processing by various software (programs) , Wireless communication function, function to connect to various computer networks using wireless communication function, function to transmit or receive various data using wireless communication function, read program or data recorded in recording medium A function of displaying on the display portion can be provided.
また、筐体7000の内部に、スピーカ、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい又は赤外線を測定する機能を含むもの)、マイクロフォン等を有することができる。 In addition, a speaker, a sensor (force, displacement, position, velocity, acceleration, angular velocity, number of rotations, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current are included in the housing 7000. , Voltage, power, radiation, flow rate, humidity, gradient, vibration, odor or infrared measurement function), microphone, and the like.
なお、本発明の一態様である発光装置および本発明の一態様である発光素子を有する表示装置は、本実施の形態に示す電子機器の各表示部に用いることができ、色純度の良い表示が可能となる。 Note that the light-emitting device which is one embodiment of the present invention and the display device including the light-emitting element which is one embodiment of the present invention can be used for each display portion of the electronic device described in this embodiment and display with high color purity. Is possible.
また、発光装置を適用した電子機器として、図5(A)~(C)に示すような折りたたみ可能な携帯情報端末が挙げられる。図5(A)には、展開した状態の携帯情報端末9310を示す。また、図5(B)には、展開した状態又は折りたたんだ状態の一方から他方に変化する途中の状態の携帯情報端末9310を示す。さらに、図5(C)には、折りたたんだ状態の携帯情報端末9310を示す。携帯情報端末9310は、折りたたんだ状態では可搬性に優れ、展開した状態では、継ぎ目のない広い表示領域により表示の一覧性に優れる。 In addition, as an electronic device to which the light-emitting device is applied, a foldable portable information terminal as illustrated in FIGS. 5A to 5C can be given. FIG. 5A illustrates the portable information terminal 9310 in a developed state. FIG. 5B illustrates the portable information terminal 9310 in a state of changing from one of the expanded state and the folded state to the other. Further, FIG. 5C illustrates the portable information terminal 9310 in a folded state. The portable information terminal 9310 is excellent in portability in the folded state and excellent in display listability due to a seamless wide display area in the expanded state.
表示部9311はヒンジ9313によって連結された3つの筐体9315に支持されている。なお、表示部9311は、タッチセンサ(入力装置)を搭載したタッチパネル(入出力装置)であってもよい。また、表示部9311は、ヒンジ9313を介して2つの筐体9315間を屈曲させることにより、携帯情報端末9310を展開した状態から折りたたんだ状態に可逆的に変形させることができる。本発明の一態様の発光装置を表示部9311に用いることができる。また、色純度の良い表示が可能となる。表示部9311における表示領域9312は折りたたんだ状態の携帯情報端末9310の側面に位置する表示領域である。表示領域9312には、情報アイコンや使用頻度の高いアプリやプログラムのショートカットなどを表示させることができ、情報の確認やアプリなどの起動をスムーズに行うことができる。 The display portion 9311 is supported by three housings 9315 connected by a hinge 9313. Note that the display unit 9311 may be a touch panel (input / output device) equipped with a touch sensor (input device). In addition, the display portion 9311 can be reversibly deformed from the expanded state to the folded state by bending the two housings 9315 via the hinge 9313. The light-emitting device of one embodiment of the present invention can be used for the display portion 9311. In addition, display with good color purity is possible. A display region 9312 in the display portion 9311 is a display region located on a side surface of the portable information terminal 9310 in a folded state. In the display area 9312, information icons, frequently used applications, program shortcuts, and the like can be displayed, so that information can be confirmed and applications can be activated smoothly.
また、発光装置を適用した自動車について、図6(A)(B)に示す。すなわち、発光装置を、自動車と一体にして設けることができる。具体的には、図6(A)に示す自動車の外側のライト5101(車体後部も含む)、タイヤのホイール5102、ドア5103の一部または全体などに適用することができる。また、図6(B)に示す自動車の内側の表示部5104、ハンドル5105、シフトレバー5106、座席シート5107、インナーリアビューミラー5108等に適用することができる。その他、ガラス窓の一部に適用してもよい。 FIGS. 6A and 6B illustrate an automobile to which the light-emitting device is applied. That is, the light emitting device can be provided integrally with the automobile. Specifically, the present invention can be applied to a light 5101 (including a rear part of a vehicle body), a wheel 5102 of a tire, a part of or the whole of a door 5103 shown in FIG. Further, the present invention can be applied to a display portion 5104, a handle 5105, a shift lever 5106, a seat seat 5107, an inner rear view mirror 5108, and the like inside the automobile shown in FIG. In addition, you may apply to some glass windows.
以上のようにして、本発明の一態様である発光装置や表示装置を適用した電子機器や自動車を得ることができる。なお、その場合には、色純度の良い表示が可能となる。なお、適用できる電子機器や自動車は、本実施の形態に示したものに限らず、あらゆる分野において適用することが可能である。 As described above, an electronic device or a vehicle using the light-emitting device or the display device which is one embodiment of the present invention can be obtained. In this case, display with good color purity is possible. Note that applicable electronic devices and automobiles are not limited to those described in this embodiment, and can be applied in any field.
なお、本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用いることができる。 Note that the structure described in this embodiment can be combined as appropriate with any of the structures described in the other embodiments.
(実施の形態6)
本実施の形態では、本発明の一態様である発光装置、またはその一部である発光素子を適用して作製される照明装置の構成について図7を用いて説明する。
(Embodiment 6)
In this embodiment, a structure of a light-emitting device which is one embodiment of the present invention or a lighting device manufactured using a light-emitting element which is a part thereof will be described with reference to FIGS.
図7(A)、(B)、(C)、(D)には、照明装置の断面図の一例を示す。なお、図7(A)、(B)は基板側に光を取り出すボトムエミッション型の照明装置であり、図7(C)、(D)は、封止基板側に光を取り出すトップエミッション型の照明装置である。 FIGS. 7A, 7B, 7C, and 7D each show an example of a cross-sectional view of a lighting device. 7A and 7B are bottom emission type lighting devices that extract light to the substrate side, and FIGS. 7C and 7D are top emission type lighting devices that extract light to the sealing substrate side. It is a lighting device.
図7(A)に示す照明装置4000は、基板4001上に発光素子4002を有する。また、基板4001の外側に凹凸を有する基板4003を有する。発光素子4002は、第1の電極4004と、EL層4005と、第2の電極4006を有する。 A lighting device 4000 illustrated in FIG. 7A includes a light-emitting element 4002 over a substrate 4001. In addition, a substrate 4003 having unevenness is provided outside the substrate 4001. The light-emitting element 4002 includes a first electrode 4004, an EL layer 4005, and a second electrode 4006.
第1の電極4004は、電極4007と電気的に接続され、第2の電極4006は電極4008と電気的に接続される。また、第1の電極4004と電気的に接続される補助配線4009を設けてもよい。なお、補助配線4009上には、絶縁層4010が形成されている。 The first electrode 4004 is electrically connected to the electrode 4007, and the second electrode 4006 is electrically connected to the electrode 4008. Further, an auxiliary wiring 4009 that is electrically connected to the first electrode 4004 may be provided. Note that an insulating layer 4010 is formed over the auxiliary wiring 4009.
また、基板4001と封止基板4011は、シール材4012で接着されている。また、封止基板4011と発光素子4002の間には、乾燥剤4013が設けられていることが好ましい。なお、基板4003は、図7(A)のような凹凸を有するため、発光素子4002で生じた光の取り出し効率を向上させることができる。 In addition, the substrate 4001 and the sealing substrate 4011 are bonded with a sealant 4012. In addition, a desiccant 4013 is preferably provided between the sealing substrate 4011 and the light-emitting element 4002. Note that since the substrate 4003 has unevenness as illustrated in FIG. 7A, the light extraction efficiency of the light-emitting element 4002 can be improved.
また、基板4003に代えて、図7(B)の照明装置4100のように、基板4001の外側に拡散板4015を設けてもよい。 Further, instead of the substrate 4003, a diffusion plate 4015 may be provided outside the substrate 4001 as in the lighting device 4100 in FIG.
図7(C)の照明装置4200は、基板4201上に発光素子4202を有する。発光素子4202は第1の電極4204と、EL層4205と、第2の電極4206とを有する。 A lighting device 4200 in FIG. 7C includes a light-emitting element 4202 over a substrate 4201. The light-emitting element 4202 includes a first electrode 4204, an EL layer 4205, and a second electrode 4206.
第1の電極4204は、電極4207と電気的に接続され、第2の電極4206は電極4208と電気的に接続される。また第2の電極4206と電気的に接続される補助配線4209を設けてもよい。また、補助配線4209の下部に、絶縁層4210を設けてもよい。 The first electrode 4204 is electrically connected to the electrode 4207, and the second electrode 4206 is electrically connected to the electrode 4208. Further, an auxiliary wiring 4209 that is electrically connected to the second electrode 4206 may be provided. Further, an insulating layer 4210 may be provided below the auxiliary wiring 4209.
基板4201と凹凸のある封止基板4211は、シール材4212で接着されている。また、封止基板4211と発光素子4202の間にバリア膜4213および平坦化膜4214を設けてもよい。なお、封止基板4211は、図7(C)のような凹凸を有するため、発光素子4202で生じた光の取り出し効率を向上させることができる。 The substrate 4201 and the uneven sealing substrate 4211 are bonded with a sealant 4212. Further, a barrier film 4213 and a planarization film 4214 may be provided between the sealing substrate 4211 and the light-emitting element 4202. Note that the sealing substrate 4211 has unevenness as illustrated in FIG. 7C, so that extraction efficiency of light generated in the light-emitting element 4202 can be improved.
また、封止基板4211に代えて、図7(D)の照明装置4300のように、発光素子4202の上に拡散板4215を設けてもよい。 Further, instead of the sealing substrate 4211, a diffusion plate 4215 may be provided over the light-emitting element 4202 as in the lighting device 4300 in FIG.
なお、本実施の形態で示すように、本発明の一態様である発光装置、またはその一部である発光素子を適用することで、所望の色度を有する照明装置を提供することができる。 Note that as described in this embodiment, a lighting device having desired chromaticity can be provided by using a light-emitting device which is one embodiment of the present invention or a light-emitting element which is a part thereof.
なお、本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用いることができる。 Note that the structure described in this embodiment can be combined as appropriate with any of the structures described in the other embodiments.
(実施の形態7)
本実施の形態では、本発明の一態様である発光装置、またはその一部である発光素子を適用して作製される照明装置の応用例について、図8を用いて説明する。
(Embodiment 7)
In this embodiment, application examples of a lighting device manufactured using a light-emitting device which is one embodiment of the present invention or a light-emitting element which is a part thereof will be described with reference to FIGS.
室内の照明装置としては、シーリングライト8001として応用できる。シーリングライト8001には、天井直付型や天井埋め込み型がある。なお、このような照明装置は、発光装置を筐体やカバーと組み合わせることにより構成される。その他にもコードペンダント型(天井からのコード吊り下げ式)への応用も可能である。 As an indoor lighting device, it can be applied as a ceiling light 8001. The ceiling light 8001 includes a direct ceiling type and a ceiling embedded type. Note that such an illumination device is configured by combining a light emitting device with a housing or a cover. In addition, it can be applied to a cord pendant type (a cord hanging type from the ceiling).
また、足元灯8002は、床面に灯りを照射し、足元の安全性を高めることができる。例えば、寝室や階段や通路などに使用するのが有効である。その場合、部屋の広さや構造に応じて適宜サイズや形状を変えることができる。また、発光装置と支持台とを組み合わせて構成される据え置き型の照明装置とすることも可能である。 Also, the foot lamp 8002 can illuminate the floor surface and enhance the safety of the foot. For example, it is effective to use it for a bedroom, a staircase or a passage. In that case, the size and shape can be appropriately changed according to the size and structure of the room. In addition, a stationary illumination device configured by combining a light emitting device and a support base can be provided.
また、シート状照明8003は、薄型のシート状の照明装置である。壁面に張り付けて使用するため、場所を取らず幅広い用途に用いることができる。なお、大面積化も容易である。なお、曲面を有する壁面や筐体に用いることもできる。 Further, the sheet-like illumination 8003 is a thin sheet-like illumination device. Since it is attached to the wall surface, it can be used for a wide range of purposes without taking up space. It is easy to increase the area. In addition, it can also be used for the wall surface and housing | casing which have a curved surface.
また、光源からの光が所望の方向のみに制御された照明装置8004を用いることもできる。 Alternatively, an illumination device 8004 in which light from a light source is controlled only in a desired direction can be used.
なお、上記以外にも室内に備えられた家具の一部に本発明の一態様である発光装置、またはその一部である発光素子を適用することにより、家具としての機能を備えた照明装置とすることができる。 In addition to the above, a lighting device having a function as furniture can be obtained by applying the light-emitting device which is one embodiment of the present invention to a part of the furniture provided in the room or the light-emitting element which is a part of the light-emitting device. can do.
以上のように、発光装置を適用した様々な照明装置が得られる。なお、これらの照明装置は本発明の一態様に含まれるものとする。 As described above, various lighting devices to which the light-emitting device is applied can be obtained. Note that these lighting devices are included in one embodiment of the present invention.
また、本実施の形態に示す構成は、他の実施の形態に示した構成と適宜組み合わせて用いることができる。 The structure described in this embodiment can be combined as appropriate with any of the structures described in the other embodiments.
≪合成例1≫
本実施例では、実施の形態1の構造式(100)で表される有機金属錯体、(OC−6−22)−トリス[4−(4,6−ジ−tert−ブチル−1,3,5−トリアジン−2−イル)−2−(3−メチル−1H−ベンゾイミダゾール−1−イル−2(3H)−イリデン−κC)フェニル−κC]イリジウム(III)(略称:fac−[Ir(5tznpmb)])の合成方法について説明する。なお、fac−[Ir(5tznpmb)]の構造を以下に示す。
<< Synthesis Example 1 >>
In this example, an organometallic complex represented by the structural formula (100) of Embodiment Mode 1, (OC-6-22) -tris [4- (4,6-di-tert-butyl-1,3, 5-triazin-2-yl) -2- (3-methyl-1H-benzimidazol-1-yl-2 (3H) -ylidene-κC 2 ) phenyl-κC] iridium (III) (abbreviation: fac- [Ir The synthesis method of (5tznpmb) 3 ]) will be described. Note that the structure of fac- [Ir (5tznpmb) 3 ] is shown below.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
<ステップ1:1−(3−ブロモフェニル−2−イル)−1H−ベンゾイミダゾールの合成>
まず、ベンゾイミダゾール25.0gと1−ブロモ−3−ヨードベンゼン65.9g、1,10−フェナントロリン8.4g、炭酸セシウム15.8g、ヨウ化銅4.4g、DMF500mLを、三口フラスコに入れ、フラスコ内部を窒素置換した。その後、110℃で24時間撹拌した。反応後、酢酸エチルによる抽出を行った。その後、トルエン:酢酸エチル=3:2を展開溶媒とするシリカゲルカラムクロマトグラフィーで精製し、目的のイミダゾール誘導体を得た(白色粉末、収量36.9g、収率64%)。上記合成方法の合成スキームを下記式(a−1)に示す。
<Step 1: Synthesis of 1- (3-bromophenyl-2-yl) -1H-benzimidazole>
First, 25.0 g of benzimidazole, 65.9 g of 1-bromo-3-iodobenzene, 8.4 g of 1,10-phenanthroline, 15.8 g of cesium carbonate, 4.4 g of copper iodide, and 500 mL of DMF were placed in a three-necked flask. The inside of the flask was replaced with nitrogen. Then, it stirred at 110 degreeC for 24 hours. After the reaction, extraction with ethyl acetate was performed. Then, it refine | purified by the silica gel column chromatography which uses toluene: ethyl acetate = 3: 2 as a developing solvent, The target imidazole derivative was obtained (white powder, yield 36.9g, yield 64%). A synthesis scheme of the synthesis method is shown in the following formula (a-1).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
<ステップ2:1−[3−(4,4,5,5,−テトラメチル−1,3,2−ジオキサボロラン−2−イル)フェニル]−1H−ベンゾイミダゾールの合成>
次に、上記ステップ1で得た、1−(3−ブロモフェニル−2−イル)−1H−ベンゾイミダゾール20.8gとビス(ピナコレート)ジボロン21.6g、脱水ジオキサン1Lを三口フラスコに入れ、内部を窒素置換した。フラスコ内を減圧下で撹拌することで脱気した後、酢酸カリウム28.4g、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド1.66gを加え、80℃で20時間半攪拌した。反応後、トルエンによる抽出を行った。その後、ヘキサン:酢酸エチル=1:1を展開溶媒とするシリカゲルカラムクロマトグラフィーで精製し、目的のイミダゾール誘導体を得た(赤色油状物、収量12.8g、収率52%)。上記合成方法の合成スキームを下記式(a−2)に示す。
<Step 2: Synthesis of 1- [3- (4,4,5,5, -tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl] -1H-benzimidazole>
Next, 20.8 g of 1- (3-bromophenyl-2-yl) -1H-benzimidazole obtained in Step 1 above, 21.6 g of bis (pinacolato) diboron and 1 L of dehydrated dioxane were placed in a three-necked flask, Was replaced with nitrogen. After the inside of the flask was degassed by stirring under reduced pressure, 28.4 g of potassium acetate and 1.66 g of bis (triphenylphosphine) palladium (II) dichloride were added, and the mixture was stirred at 80 ° C. for 20 and a half hours. After the reaction, extraction with toluene was performed. Then, it refine | purified by the silica gel column chromatography which uses hexane: ethyl acetate = 1: 1 as a developing solvent, The target imidazole derivative was obtained (red oily substance, yield 12.8g, yield 52%). A synthesis scheme of the synthesis method is shown in the following formula (a-2).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
<ステップ3:1−[3−(4,6−ジ−tert−ブチル−1,3,5−トリアジン−2−イル)フェニル]−1H−ベンゾイミダゾールの合成>
次に、上記ステップ2で得た、1−[3−(4,4,5,5,−テトラメチル−1,3,2−ジオキサボロラン−2−イル)フェニル]−1H−ベンゾイミダゾール12.8g、2−クロロ−4,6−ジ−tert−ブチル−1,3,5−トリアジン5.99g、炭酸ナトリウム105.9g、トルエン500mL、エタノール250mL、水500mLを三口フラスコに入れ、フラスコ内部を窒素置換した。フラスコ内を減圧下で撹拌することで脱気した後、テトラキス(トリフェニルホスフィン)パラジウム(0)1.52gを加え、80℃で10時間撹拌した。反応後、トルエンによる抽出を行った。その後、ヘキサン:酢酸エチル=2:1を展開溶媒とするシリカゲルカラムクロマトグラフィーで精製し、目的のイミダゾール誘導体を得た(白色粉末、収率83%)。上記合成方法の合成スキームを下記式(a−3)に示す。
<Step 3: Synthesis of 1- [3- (4,6-di-tert-butyl-1,3,5-triazin-2-yl) phenyl] -1H-benzimidazole>
Next, 12.8 g of 1- [3- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl] -1H-benzimidazole obtained in Step 2 above. , 2-chloro-4,6-di-tert-butyl-1,3,5-triazine (5.99 g), sodium carbonate (105.9 g), toluene (500 mL), ethanol (250 mL), and water (500 mL) were placed in a three-necked flask, and the flask was filled with nitrogen. Replaced. After the inside of the flask was degassed by stirring under reduced pressure, 1.52 g of tetrakis (triphenylphosphine) palladium (0) was added and stirred at 80 ° C. for 10 hours. After the reaction, extraction with toluene was performed. Then, it refine | purified by the silica gel column chromatography which uses hexane: ethyl acetate = 2: 1 as a developing solvent, and obtained the target imidazole derivative (white powder, yield 83%). A synthesis scheme of the synthesis method is represented by the following formula (a-3).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
<ステップ4:1−メチル−3−[3−(4,6−ジ−tert−ブチル−1,3,5−トリアジン−2−イル)フェニル]−1H−ベンゾイミダゾリウムヨージドの合成>
次に、上記ステップ3で得た、1−[3−(4,6−ジ−tert−ブチル−1,3,5−トリアジン−2−イル)フェニル]−1H−ベンゾイミダゾール5.49g、脱水トルエン52mLを三口フラスコに入れ、フラスコ内部を窒素置換した。ヨードメタン4.4mLを加えた後、室温で68時間撹拌した。得られた混合物を吸引ろ過、ろ物をトルエンで洗浄し、目的のイミダゾール誘導体を得た(白色粉末、収量3.69g、収率49%)。上記合成方法の合成スキームを下記式(a−4)に示す。
<Step 4: Synthesis of 1-methyl-3- [3- (4,6-di-tert-butyl-1,3,5-triazin-2-yl) phenyl] -1H-benzimidazolium iodide>
Next, 5.49 g of 1- [3- (4,6-di-tert-butyl-1,3,5-triazin-2-yl) phenyl] -1H-benzimidazole obtained in Step 3 above, dehydration 52 mL of toluene was placed in a three-necked flask, and the inside of the flask was purged with nitrogen. After adding 4.4 mL of iodomethane, the mixture was stirred at room temperature for 68 hours. The obtained mixture was suction filtered, and the filtrate was washed with toluene to obtain the target imidazole derivative (white powder, yield 3.69 g, yield 49%). A synthesis scheme of the synthesis method is shown in the following formula (a-4).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
<ステップ5:fac−[Ir(5tznpmb)]の合成>
さらに、上記ステップ4で得た、1−メチル−3−[3−(4,6−ジ−tert−ブチル−1,3,5−トリアジン−2−イル)フェニル]−1H−ベンゾイミダゾリウムヨージド6.45g、塩化イリジウム水和物(IrCl・HO)(フルヤ金属社製)1.08g、酸化銀(I)2.81g、2−エトキシエタノール110mLを三口フラスコに入れ、フラスコ内部を窒素置換した。
<Step 5: Synthesis of fac- [Ir (5tznpmb) 3 ]>
Furthermore, 1-methyl-3- [3- (4,6-di-tert-butyl-1,3,5-triazin-2-yl) phenyl] -1H-benzimidazolium iodide obtained in Step 4 above was used. 6.45 g, iridium chloride hydrate (IrCl 3 · H 2 O) (Fruya Metal Co., Ltd.) 1.08 g, silver (I) 2.81 g, 2-ethoxyethanol 110 mL were placed in a three-neck flask, Was replaced with nitrogen.
その後、80℃で29時間撹拌した。溶媒を留去し、得られた残渣を、ジクロロメタン:ヘキサン=1:1を展開溶媒とするフラッシュカラムクロマトグラフィーにより精製し、その後、ジクロロメタンとエタノールの混合溶媒にて再結晶することにより、本発明の一態様である有機金属錯体、fac−[Ir(5tznpmb)]を淡黄色粉末として得た(収量0.98g、収率19%)。 Then, it stirred at 80 degreeC for 29 hours. The solvent was distilled off, and the resulting residue was purified by flash column chromatography using dichloromethane: hexane = 1: 1 as a developing solvent, and then recrystallized with a mixed solvent of dichloromethane and ethanol. Of the organic metal complex, fac- [Ir (5tznpmb) 3 ], was obtained as a light yellow powder (yield 0.98 g, yield 19%).
得られた淡黄色粉末0.47gを、トレインサブリメーション法により昇華精製した。昇華精製条件は、圧力2.6Pa、アルゴンガスを流量5mL/minで流しながら、360℃で固体を加熱した。昇華精製後、目的物の淡黄色粉末を収量0.41g、収率87%で得た。上記合成方法の合成スキームを下記式(a−5)に示す。 0.47 g of the obtained pale yellow powder was purified by sublimation by a train sublimation method. As the sublimation purification conditions, the solid was heated at 360 ° C. while flowing a pressure of 2.6 Pa and argon gas at a flow rate of 5 mL / min. After purification by sublimation, 0.41 g of a pale yellow powder as a target product was obtained in a yield of 87%. A synthesis scheme of the synthesis method is shown in the following formula (a-5).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
なお、上記ステップ5で得られた淡黄色粉末の核磁気共鳴分光法(H−NMR)による分析結果を下記に示す。また、H−NMRチャートを図9に示す。このことから、本実施例において、本発明の一態様である有機金属錯体、fac−[Ir(5tznpmb)](構造式(100))が得られたことがわかった。 In addition, the analysis result by the nuclear magnetic resonance spectroscopy (< 1 > H-NMR) of the pale yellow powder obtained at the said step 5 is shown below. Further, the 1 H-NMR chart is shown in FIG. This indicates that in this example, an organometallic complex, fac- [Ir (5tznpmb) 3 ] (structural formula (100)), which is one embodiment of the present invention, was obtained.
H−NMR.δ(CDCl):1.42(s,54H),3.36(s,9H),6.80(d,3H),7.29−7.32(m,6H),7.40−7.44(m,3H),7.88(d,3H),8.36(d,3H),9.15(s,3H). 1 H-NMR. δ (CD 2 Cl 2 ): 1.42 (s, 54H), 3.36 (s, 9H), 6.80 (d, 3H), 7.29-7.32 (m, 6H), 7. 40-7.44 (m, 3H), 7.88 (d, 3H), 8.36 (d, 3H), 9.15 (s, 3H).
次に、fac−[Ir(5tznpmb)]のジクロロメタン溶液の紫外可視吸収スペクトル(以下、単に「吸収スペクトル」という)及び発光スペクトルを測定した。吸収スペクトルの測定には、紫外可視分光光度計((株)日本分光製 V550型)を用い、ジクロロメタン溶液8.1μmol/Lを石英セルに入れ、室温で測定を行った。 Next, an ultraviolet-visible absorption spectrum (hereinafter, simply referred to as “absorption spectrum”) and an emission spectrum of fac- [Ir (5tznpmb) 3 ] in a dichloromethane solution were measured. For the measurement of the absorption spectrum, an ultraviolet-visible spectrophotometer (V550 type manufactured by JASCO Corporation) was used, and a dichloromethane solution of 8.1 μmol / L was put in a quartz cell and measured at room temperature.
また、発光スペクトルの測定には、絶対PL量子収率測定装置((株)浜松ホトニクス製 C11347−01)を用い、グローブボックス((株)ブライト製 LABstarM13(1250/780)にて、窒素雰囲気下でジクロロメタン脱酸素溶液8.1μmol/Lを石英セルに入れ、密栓し、室温で測定を行った。 The emission spectrum was measured using an absolute PL quantum yield measurement device (C11347-01, manufactured by Hamamatsu Photonics Co., Ltd.) and in a glove box (LAB Star M13, manufactured by Bright Co., Ltd., 1250/780) in a nitrogen atmosphere. The dichloromethane deoxygenated solution 8.1 μmol / L was put in a quartz cell, sealed, and measured at room temperature.
得られた吸収スペクトル及び発光スペクトルの測定結果を図10に示す。横軸は波長、縦軸は吸収強度および発光強度を表す。また、図10において2本の実線が示されているが、細い実線は吸収スペクトルを示し、太い実線は発光スペクトルを示している。図10に示す吸収スペクトルは、ジクロロメタン溶液8.1μmol/Lを石英セルに入れて測定した吸収スペクトルから、ジクロロメタンのみを石英セルに入れて測定した吸収スペクトルを差し引いた結果を示している。 The measurement results of the obtained absorption spectrum and emission spectrum are shown in FIG. The horizontal axis represents wavelength, and the vertical axis represents absorption intensity and emission intensity. In FIG. 10, two solid lines are shown. A thin line represents an absorption spectrum, and a thick line represents an emission spectrum. The absorption spectrum shown in FIG. 10 shows a result obtained by subtracting an absorption spectrum measured by putting only dichloromethane in a quartz cell from an absorption spectrum measured by putting a dichloromethane solution 8.1 μmol / L in a quartz cell.
図10に示す通り、本発明の一態様である有機金属錯体、fac−[Ir(5tznpmb)]は、467、489nmに発光ピークを有しており、ジクロロメタン溶液からは青色の発光が観測された。 As shown in FIG. 10, the organometallic complex, fac- [Ir (5tznpmb) 3 ], which is one embodiment of the present invention, has emission peaks at 467 and 489 nm, and blue emission is observed from the dichloromethane solution. It was.
≪合成例2≫
本実施例では、実施の形態1の構造式(100)で表される有機金属錯体、(OC−6−21)−トリス[4−(4,6−ジ−tert−ブチル−1,3,5−トリアジン−2−イル)−2−(3−メチル−1H−ベンゾイミダゾール−1−イル−2(3H)−イリデン−κC)フェニル−κC]イリジウム(III)(略称:mer−[Ir(5tznpmb)])の合成方法について説明する。なお、mer−[Ir(5tznpmb)]の構造を以下に示す。
<< Synthesis Example 2 >>
In this example, an organometallic complex represented by the structural formula (100) of Embodiment 1, (OC-6-21) -tris [4- (4,6-di-tert-butyl-1,3, 5-Triazin-2-yl) -2- (3-methyl-1H-benzimidazol-1-yl-2 (3H) -ylidene-κC 2 ) phenyl-κC] iridium (III) (abbreviation: mer- [Ir The synthesis method of (5tznpmb) 3 ]) will be described. A structure of mer- [Ir (5tznpmb) 3 ] is shown below.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
本実施例で示すmer−[Ir(5tznpmb)]は、実施例1のステップ5で説明したフラッシュカラムクロマトグラフィーによる精製時に異性体として分離し、ジクロロメタンとエタノールの混合溶媒にて再結晶することにより得ることができる。(淡黄色粉末、収量1.24g、収率23%)。 Mer- [Ir (5tznpmb) 3 ] shown in this example is separated as an isomer during purification by flash column chromatography described in Step 5 of Example 1, and recrystallized in a mixed solvent of dichloromethane and ethanol. Can be obtained. (Pale yellow powder, yield 1.24 g, yield 23%).
なお、上記で得られた淡黄色粉末の核磁気共鳴分光法(H−NMR)による分析結果を下記に示す。また、H−NMRチャートを図11に示す。このことから、本実施例において、本発明の一態様である有機金属錯体、mer−[Ir(5tznpmb)](構造式(100))が得られたことがわかった。 In addition, the analysis result by the nuclear magnetic resonance spectroscopy (< 1 > H-NMR) of the pale yellow powder obtained above is shown below. Further, the 1 H-NMR chart is shown in FIG. This indicates that in this example, an organometallic complex that is one embodiment of the present invention, mer- [Ir (5tznpmb) 3 ] (structural formula (100)), was obtained.
H−NMR.δ(CDCl):1.41(s,36H),1.42(s,18H)3.31(s,3H),3.33(s,3H),3.42(s,3H),6.76(d,1H),7.05(d,1H),7.08(d,1H),7.32−7.36(m,6H),7.40−7.47(m,3H),7.84(d,1H),7.88(d,2H),8.32(d,1H)8.39(d,1H),8.40(d,1H),9.12(s,1H),9.17(s,2H). 1 H-NMR. δ (CD 2 Cl 2 ): 1.41 (s, 36H), 1.42 (s, 18H) 3.31 (s, 3H), 3.33 (s, 3H), 3.42 (s, 3H ), 6.76 (d, 1H), 7.05 (d, 1H), 7.08 (d, 1H), 7.32-7.36 (m, 6H), 7.40-7.47 ( m, 3H), 7.84 (d, 1H), 7.88 (d, 2H), 8.32 (d, 1H) 8.39 (d, 1H), 8.40 (d, 1H), 9 .12 (s, 1H), 9.17 (s, 2H).
次に、mer−[Ir(5tznpmb)]のジクロロメタン溶液の紫外可視吸収スペクトル(以下、単に「吸収スペクトル」という)及び発光スペクトルを測定した。吸収スペクトルの測定には、紫外可視分光光度計((株)日本分光製 V550型)を用い、ジクロロメタン溶液0.010mmol/Lを石英セルに入れ、室温で測定を行った。 Next, an ultraviolet-visible absorption spectrum (hereinafter, simply referred to as “absorption spectrum”) and an emission spectrum of mer- [Ir (5tznpmb) 3 ] in a dichloromethane solution were measured. For the measurement of the absorption spectrum, an ultraviolet-visible spectrophotometer (V550 type manufactured by JASCO Corporation) was used, and 0.010 mmol / L of a dichloromethane solution was placed in a quartz cell and measured at room temperature.
また、発光スペクトルの測定には、絶対PL量子収率測定装置((株)浜松ホトニクス製 C11347−01)を用い、グローブボックス((株)ブライト製 LABstarM13(1250/780)にて、窒素雰囲気下でジクロロメタン脱酸素溶液0.010mmol/Lを石英セルに入れ、密栓し、室温で測定を行った。 The emission spectrum was measured using an absolute PL quantum yield measurement device (C11347-01, manufactured by Hamamatsu Photonics Co., Ltd.) and in a glove box (LAB Star M13, manufactured by Bright Co., Ltd., 1250/780) in a nitrogen atmosphere. The dichloromethane deoxygenated solution 0.010 mmol / L was put in a quartz cell, sealed, and measured at room temperature.
得られた吸収スペクトル及び発光スペクトルの測定結果を図12に示す。横軸は波長、縦軸は吸収強度および発光強度を表す。また、図12において2本の実線が示されているが、細い実線は吸収スペクトルを示し、太い実線は発光スペクトルを示している。図12に示す吸収スペクトルは、ジクロロメタン溶液0.010mmol/Lを石英セルに入れて測定した吸収スペクトルから、ジクロロメタンのみを石英セルに入れて測定した吸収スペクトルを差し引いた結果を示している。 The measurement results of the obtained absorption spectrum and emission spectrum are shown in FIG. The horizontal axis represents wavelength, and the vertical axis represents absorption intensity and emission intensity. In FIG. 12, two solid lines are shown. A thin line represents the absorption spectrum, and a thick line represents the emission spectrum. The absorption spectrum shown in FIG. 12 shows the result of subtracting the absorption spectrum measured by putting only dichloromethane in a quartz cell from the absorption spectrum measured by putting 0.010 mmol / L of a dichloromethane solution in a quartz cell.
図12に示す通り、本発明の一態様である有機金属錯体、mer−[Ir(5tznpmb)]は、487nmに発光ピークを有しており、ジクロロメタン溶液からは青色の発光が観測された。 As shown in FIG. 12, the organometallic complex which is one embodiment of the present invention, mer- [Ir (5tznpmb) 3 ], has an emission peak at 487 nm, and blue emission was observed from the dichloromethane solution.
本実施例では、本発明の一態様である発光素子として、実施例1で説明した、fac−[Ir(5tznpmb)](構造式(100))を発光層に用いた発光素子1の素子構造、作製方法およびその特性について説明する。なお、本実施例で用いる発光素子の素子構造を図13に示し、具体的な構成について表1に示す。また、本実施例で用いる材料の化学式を以下に示す。 In this example, as the light-emitting element which is one embodiment of the present invention, the element of the light-emitting element 1 using fac- [Ir (5tznpmb) 3 ] (structural formula (100)) described in Example 1 for a light-emitting layer The structure, manufacturing method, and characteristics thereof will be described. Note that FIG. 13 shows an element structure of a light-emitting element used in this example, and Table 1 shows a specific structure. In addition, chemical formulas of materials used in this example are shown below.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
≪発光素子の作製≫
本実施例で示す発光素子は、図13に示すように基板900上に形成された第1の電極901上に正孔注入層911、正孔輸送層912、発光層913、電子輸送層914、電子注入層915が順次積層され、電子注入層915上に第2の電極903が積層された構造を有する。
≪Production of light emitting element≫
As shown in FIG. 13, the light-emitting element described in this example includes a hole injection layer 911, a hole transport layer 912, a light-emitting layer 913, an electron transport layer 914, and a first electrode 901 formed over a substrate 900. The electron injection layer 915 is sequentially stacked, and the second electrode 903 is stacked on the electron injection layer 915.
まず、基板900上に第1の電極901を形成した。電極面積は、4mm(2mm×2mm)とした。また、基板900には、ガラス基板を用いた。また、第1の電極901は、酸化珪素を含むインジウム錫酸化物(ITO)をスパッタリング法により、70nmの膜厚で成膜して形成した。 First, the first electrode 901 was formed over the substrate 900. The electrode area was 4 mm 2 (2 mm × 2 mm). As the substrate 900, a glass substrate was used. The first electrode 901 was formed by depositing indium tin oxide (ITO) containing silicon oxide with a thickness of 70 nm by a sputtering method.
ここで、前処理として、基板の表面を水で洗浄し、200℃で1時間焼成した後、UVオゾン処理を370秒行った。その後、10−4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において、170℃で60分間の真空焼成を行った後、基板を30分程度放冷した。 Here, as a pretreatment, the surface of the substrate was washed with water and baked at 200 ° C. for 1 hour, followed by UV ozone treatment for 370 seconds. Thereafter, the substrate is introduced into a vacuum vapor deposition apparatus whose internal pressure is reduced to about 10 −4 Pa, vacuum baking is performed at 170 ° C. for 60 minutes in a heating chamber in the vacuum vapor deposition apparatus, and then the substrate is released for about 30 minutes. Chilled.
次に、第1の電極901上に正孔注入層911を形成した。正孔注入層911は、真空蒸着装置内を10−4Paに減圧した後、1,3,5−トリ(ジベンゾチオフェン−4−イル)ベンゼン(略称:DBT3P−II)と酸化モリブデンとを、DBT3P−II:酸化モリブデン=2:1(質量比)とし、膜厚が15nmとなるようにそれぞれ共蒸着して形成した。 Next, a hole injection layer 911 was formed over the first electrode 901. The hole-injection layer 911 is obtained by reducing the pressure in the vacuum evaporation apparatus to 10 −4 Pa, and then 1,3,5-tri (dibenzothiophen-4-yl) benzene (abbreviation: DBT3P-II) and molybdenum oxide. DBT3P-II: molybdenum oxide = 2: 1 (mass ratio) was formed by co-evaporation so that the film thickness was 15 nm.
次に、正孔注入層911上に正孔輸送層912を形成した。正孔輸送層912は、mCPを用い、膜厚が20nmになるように蒸着して形成した。 Next, a hole transport layer 912 was formed over the hole injection layer 911. The hole transport layer 912 was formed by vapor deposition using mCP so as to have a film thickness of 20 nm.
次に、正孔輸送層912上に発光層913を形成した。 Next, a light-emitting layer 913 was formed over the hole transport layer 912.
発光層913は、ホスト材料として1,3−ビス(N−カルバゾリル)ベンゼン(略称:mCP)を用い、ゲスト材料として(OC−6−22)−トリス[4−(4,6−ジ−tert−ブチル−1,3,5−トリアジン−2−イル)−2−(3−メチル−1H−ベンゾイミダゾール−1−イル−2(3H)−イリデン−κC)フェニル−κC]イリジウム(III)(略称:fac−[Ir(5tznpmb)])を用い、重量比がmCP:fac−[Ir(5tznpmb)]=1:0.06となるように共蒸着し、膜厚を30nmとした。さらに、ホスト材料として3,5−bis(3−(9H−carbazol−9−yl)phenyl)pyridine(略称:35DCzPPy)を用い、ゲスト材料としてfac−[Ir(5tznpmb)]を用い、重量比が35DCzPPy:fac−[Ir(5tznpmb)]=1:0.06となるように共蒸着し、膜厚を10nmとした。以上により、発光素子1の発光層913を膜厚40nmで形成した。 The light-emitting layer 913 uses 1,3-bis (N-carbazolyl) benzene (abbreviation: mCP) as a host material and (OC-6-22) -tris [4- (4,6-di-tert] as a guest material. -Butyl-1,3,5-triazin-2-yl) -2- (3-methyl-1H-benzimidazol-1-yl-2 (3H) -iriden-κC 2 ) phenyl-κC] iridium (III) (Abbreviation: fac- [Ir (5tznpmb) 3 ]) and co-evaporated so that the weight ratio was mCP: fac- [Ir (5tznpmb) 3 ] = 1: 0.06, and the film thickness was 30 nm. . Further, 3,5-bis (3- (9H-carbazol-9-yl) phenyl) pyridine (abbreviation: 35DCzPPy) is used as the host material, fac- [Ir (5tznpmb) 3 ] is used as the guest material, and the weight ratio Was 35DCzPPy: fac- [Ir (5tznpmb) 3 ] = 1: 0.06, and the film thickness was 10 nm. Through the above steps, the light-emitting layer 913 of the light-emitting element 1 was formed with a thickness of 40 nm.
次に、発光層913上に電子輸送層914を形成した。電子輸送層914は、1,3,5−tri[(3−pyridyl)−phen−3−yl]benzene(略称:TmPyPB)の膜厚が25nmとなるように蒸着して形成した。 Next, an electron transport layer 914 was formed over the light emitting layer 913. The electron-transporting layer 914 was formed by vapor deposition so that the film thickness of 1,3,5-tri [(3-pyrylyl) -phen-3-yl] benzene (abbreviation: TmPyPB) was 25 nm.
次に、電子輸送層914上に電子注入層915を形成した。電子注入層915は、フッ化リチウム(LiF)を用い、膜厚が1nmになるように蒸着して形成した。 Next, an electron injection layer 915 was formed over the electron transport layer 914. The electron injection layer 915 was formed by vapor deposition using lithium fluoride (LiF) so as to have a film thickness of 1 nm.
次に、電子注入層915上に第2の電極903を形成した。第2の電極903は、アルミニウムを蒸着法により、膜厚が200nmとなるように形成した。なお、本実施例において、第2の電極903は、陰極として機能する。 Next, a second electrode 903 was formed over the electron injection layer 915. The second electrode 903 was formed by vapor deposition of aluminum so that the film thickness becomes 200 nm. Note that in this embodiment, the second electrode 903 functions as a cathode.
以上の工程により、基板900上に一対の電極間にEL層を挟んでなる発光素子を形成した。なお、上記工程で説明した正孔注入層911、正孔輸送層912、発光層913、電子輸送層914、電子注入層915は、本発明の一態様におけるEL層を構成する機能層である。また、上述した作製方法における蒸着工程では、全て抵抗加熱法による蒸着法を用いた。 Through the above process, a light-emitting element in which an EL layer was sandwiched between a pair of electrodes was formed over the substrate 900. Note that the hole-injection layer 911, the hole-transport layer 912, the light-emitting layer 913, the electron-transport layer 914, and the electron-injection layer 915 described in the above steps are functional layers that constitute the EL layer in one embodiment of the present invention. In addition, in the vapor deposition process in the manufacturing method described above, a vapor deposition method using a resistance heating method was used.
また、上記に示すように作製した発光素子は、別の基板(図示せず)により封止される。なお、別の基板(図示せず)を用いた封止の際は、窒素雰囲気のグローブボックス内において、シール材を基板900上に形成された発光素子の周囲に塗布した後、乾燥剤を備えた別の基板(図示せず)を基板900上の所望の位置に重ね、365nmの紫外光を6J/cm照射した。 In addition, the light-emitting element manufactured as described above is sealed by another substrate (not shown). Note that when sealing using another substrate (not shown), a sealant is applied around the light emitting element formed on the substrate 900 in a glove box in a nitrogen atmosphere, and then a desiccant is provided. Another substrate (not shown) was placed at a desired position on the substrate 900 and irradiated with ultraviolet light of 365 nm at 6 J / cm 2 .
≪発光素子の動作特性≫
作製した発光素子1の動作特性について測定した。なお、測定は室温(25℃に保たれた雰囲気)で行った。また、1000cd/m付近における発光素子1の主な初期特性値を以下の表2に示す。
≪Operating characteristics of light emitting element≫
The operating characteristics of the manufactured light-emitting element 1 were measured. The measurement was performed at room temperature (atmosphere kept at 25 ° C.). In addition, Table 2 below shows main initial characteristic values of the light-emitting element 1 around 1000 cd / m 2 .
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
上記結果から、本実施例で作製した発光素子は、良好な素子特性を示していることが分かる。 From the above results, it can be seen that the light-emitting element manufactured in this example exhibits favorable element characteristics.
また、発光素子1に12.5mA/cmの電流密度で電流を流した際の発光スペクトルを、図14に示す。図14に示す通り、発光素子1の発光スペクトルは、463nmおよび486nm付近にピークを有しており、発光層913に含まれる、fac−[Ir(5tznpmb)]の発光に由来していることが示唆される。 In addition, FIG. 14 shows an emission spectrum when current is passed through the light-emitting element 1 at a current density of 12.5 mA / cm 2 . As shown in FIG. 14, the emission spectrum of the light-emitting element 1 has peaks near 463 nm and 486 nm, and is derived from luminescence of fac- [Ir (5tznpmb) 3 ] contained in the light-emitting layer 913. Is suggested.
本実施例では、本発明の一態様である有機金属錯体、fac−[Ir(5tznpmb)](構造式(100))が高い発光量子収率(Φ)を示す要因について、測定により得られた発光量子収率(Φ)と発光寿命(τ)を用いて示す。なお、発光量子収率(Φ)と発光寿命(τ)の測定は、以下に示す複数の物質、fac−[Ir(5tznpmb)](構造式(100))、mer−[Ir(5tznpmb)](構造式(100))、トリス(1−フェニル−3−メチルベンゾイミダゾール−2−イリデン−C,C2’)イリジウム(III)(略称:fac−[Ir(pmb)])(構造式(200))、トリス(1−フェニル−3−メチルベンゾイミダゾール−2−イリデン−C,C2’)イリジウム(III)(略称:mer−[Ir(pmb)])(構造式(200))について行った。上記、複数の物質の構造式を以下に示す。 In this example, an organometallic complex which is one embodiment of the present invention, fac- [Ir (5tznpmb) 3 ] (structural formula (100)), is obtained by measurement with a high emission quantum yield (Φ). The emission quantum yield (Φ) and emission lifetime (τ) are shown. Note that the measurement of the light emission quantum yield (Φ) and the light emission lifetime (τ) was carried out using the following substances: fac- [Ir (5tznpmb) 3 ] (structural formula (100)), mer- [Ir (5tznpmb) 3 ] (Structural Formula (100)), Tris (1-phenyl-3-methylbenzimidazol-2-ylidene-C, C 2 ′ ) iridium (III) (abbreviation: fac- [Ir (pmb) 3 ]) ( Structural formula (200)), tris (1-phenyl-3-methylbenzimidazol-2-ylidene-C, C 2 ′ ) iridium (III) (abbreviation: mer- [Ir (pmb) 3 ]) (structural formula ( 200)). Structural formulas of the plurality of substances are shown below.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
なお、発光量子収率(Φ)については、絶対PL量子収率測定装置((株)浜松ホトニクス製 C11347−01)を用い、グローブボックス((株)ブライト製 LABstarM13(1250/780)にて、窒素雰囲気下でジクロロメタン脱酸素溶液8.1μmol/Lを石英セルに入れ、密栓し、室温で測定を行った。 In addition, about the light emission quantum yield ((PHI)), using an absolute PL quantum yield measuring device (C11347-01 made from Hamamatsu Photonics), in a glove box (LABstarM13 (1250/780) made from Bright), Under a nitrogen atmosphere, dichloromethane deoxygenated solution 8.1 μmol / L was put into a quartz cell, sealed, and measured at room temperature.
また、発光寿命(τ)については、ピコ秒蛍光寿命測定システム(浜松ホトニクス社製)を用い、グローブボックス((株)ブライト製 LABstarM13(1250/780)にて、窒素雰囲気下でジクロロメタン脱酸素溶液0.11mmol/Lを石英セルに入れ、密栓し、室温で測定を行った。本測定では、溶液が呈する発光の寿命を測定するため、溶液にパルスレーザを照射し、レーザ照射後から減衰していく発光をストリークカメラにより時間分解測定した。パルスレーザには波長が337nmの窒素ガスレーザを用い、500psのパルスレーザを10Hzの周期で溶液に照射し、繰り返し測定したデータを積算することにより、S/N比の高いデータを得た。 For the emission lifetime (τ), using a picosecond fluorescence lifetime measurement system (manufactured by Hamamatsu Photonics), dichloromethane deoxygenated solution in a glove box (Bright Co., Ltd., LABstar M13 (1250/780) under nitrogen atmosphere. 0.11 mmol / L was placed in a quartz cell, sealed, and measured at room temperature.In this measurement, the solution was irradiated with a pulsed laser in order to measure the lifetime of luminescence exhibited by the solution, and attenuated after the laser irradiation. Using a nitrogen gas laser with a wavelength of 337 nm as the pulse laser, the solution was irradiated with a 500 ps pulse laser at a period of 10 Hz, and the data measured repeatedly was integrated. Data with a high / N ratio were obtained.
発光量子収率(Φ)と速度定数には、一般に下記式(1)に示す関係がある。 The relationship between the emission quantum yield (Φ) and the rate constant is generally represented by the following formula (1).
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000031
また、発光寿命(τ)と発光速度定数(K)には、一般に下記式(2)に示す関係がある。 Further, the light emission lifetime (τ) and the light emission rate constant (K) generally have a relationship represented by the following formula (2).
Figure JPOXMLDOC01-appb-M000032
Figure JPOXMLDOC01-appb-M000032
従って、測定により得られた発光量子収率(Φ)と発光寿命(τ)を用いて、上記式(1)(2)により、各物質の発光速度定数(K)、放射失活定数(K)、無放射失活定数(Knr)を求めた。結果を表3に示す。 Therefore, by using the luminescence quantum yield (Φ) and the luminescence lifetime (τ) obtained by the measurement, the luminescence rate constant (K) and the radiation deactivation constant (K) of each substance according to the above formulas (1) and (2). r ), the non-radiative deactivation constant ( Knr ). The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
表3の結果から、発光量子収率の高いfac−[Ir(5tznpmb)]は、放射失活速度定数(K)が2.4×10と非常に大きいのに比べ、無放射失活速度定数(Knr)が、6.7×10と非常に小さいことから、励起状態から失活するエネルギーを効率良く発光に変えることができ、高い発光量子収率を示すことがわかる。 From the results of Table 3, fac- [Ir (5tznpmb) 3 ] having a high emission quantum yield has no radiation loss compared to the radiation deactivation rate constant (K r ) as very large as 2.4 × 10 4. Since the activation rate constant (K nr ) is as small as 6.7 × 10 3 , it can be seen that the energy deactivated from the excited state can be efficiently changed to light emission, and a high emission quantum yield is exhibited.
なお、フェイシャル体(fac)とメリジオナ体(mer)との比較である、fac−[Ir(5tznpmb)]と、mer−[Ir(5tznpmb)]との比較では、放射失活速度定数(K)には両者にあまり差がないものの、無放射失活速度定数(Knr)には、大きな差があり、メル体の無放射失活速度定数(Knr)が大きいことが発光量子収率を低くしている原因であることがわかる。この傾向は、fac−[Ir(pmb)]と、mer−[Ir(pmb)]との比較においても同様にみられる。 In addition, in the comparison between fac- [Ir (5tznpmb) 3 ] and mer- [Ir (5tznpmb) 3 ], which is a comparison between facial (fac) and meridiona (mer), a radiation deactivation rate constant ( although there is not much difference between the two is the K r), the radiationless deactivation rate constant (K nr), there is a large difference, luminescent quantum that nonradiative deactivation rate constant of Mel body (K nr) is large It can be seen that this is the cause of the low yield. This tendency is similarly seen in the comparison between fac- [Ir (pmb) 3 ] and mer- [Ir (pmb) 3 ].
また、トリアジン骨格を有するfac−[Ir(5tznpmb)](構造式(100))と、トリアジン骨格を有さないfac−[Ir(pmb)](構造式(200))との比較では、fac−[Ir(5tznpmb)]の発光量子収率が、78%であるのに対して、fac−[Ir(pmb)]の発光量子収率は、36%と低い。計算により求めた放射失活速度定数および無放射失活速度定数を比較すると、無放射失活速度定数の差がより大きく、fac−[Ir(5tznpmb)]の無放射失活速度定数の値は、fac−[Ir(pmb)]に値に比べて1/30程度であった。この結果から、配位子中のトリアジン骨格の有無により、無放射失活速度定数の値が大きく影響を受け、トリアジン骨格を有することで無放射失活速度が遅くなることから、励起状態からのエネルギー移動の多くが放射失活となり、高い発光量子効率が得られるという、配位子中のトリアジン骨格の有無による物性への影響を確認することができた。 In comparison between fac- [Ir (5tznpmb) 3 ] (structural formula (100)) having a triazine skeleton and fac- [Ir (pmb) 3 ] having no triazine skeleton (structural formula (200)) The luminescence quantum yield of fac- [Ir (5tznpmb) 3 ] is 78%, whereas the luminescence quantum yield of fac- [Ir (pmb) 3 ] is as low as 36%. When the radiation deactivation rate constant and the non-radiation deactivation rate constant obtained by calculation are compared, the difference in the non-radiation deactivation rate constant is larger, and the value of the non-radiation deactivation rate constant of fac- [Ir (5tznpmb) 3 ]. Was about 1/30 of the value of fac- [Ir (pmb) 3 ]. From this result, the value of the non-radiative deactivation rate constant is greatly influenced by the presence or absence of the triazine skeleton in the ligand, and the non-radiative deactivation rate is slowed by having the triazine skeleton. We confirmed the effect on physical properties due to the presence or absence of the triazine skeleton in the ligand, in which much of the energy transfer was radiation-inactivated and high emission quantum efficiency was obtained.
本発明の一態様である有機金属錯体は、配位子にトリアジン骨格を有することを特徴とする。従って、本実施例により、本発明の一態様である有機金属錯体が高い発光量子効率を有することを示した。 The organometallic complex which is one embodiment of the present invention is characterized in that a ligand has a triazine skeleton. Therefore, this example shows that the organometallic complex which is one embodiment of the present invention has high emission quantum efficiency.
101  第1の電極
102  第2の電極
103  EL層
103a、103b  EL層
104  電荷発生層
111、111a、111b  正孔注入層
112、112a、112b  正孔輸送層
113、113a、113b  発光層
114、114a、114b  電子輸送層
115、115a、115b  電子注入層
201  第1の基板
202  トランジスタ(FET)
203R、203G、203B、203W  発光素子
204  EL層
205  第2の基板
206R、206G、206B  カラーフィルタ
206R’、206G’、206B’  カラーフィルタ
207  第1の電極
208  第2の電極
209  黒色層(ブラックマトリックス)
210R、210G  導電層
301  第1の基板
302  画素部
303  駆動回路部(ソース線駆動回路)
304a、304b  駆動回路部(ゲート線駆動回路)
305  シール材
306  第2の基板
307  引き回し配線
308  FPC
309  FET
310  FET
311  FET
312  FET
313  第1の電極
314  絶縁物
315  EL層
316  第2の電極
317  発光素子
318  空間
900  基板
901  第1の電極
902  EL層
903  第2の電極
911  正孔注入層
912  正孔輸送層
913  発光層
914  電子輸送層
915  電子注入層
4000  照明装置
4001  基板
4002  発光素子
4003  基板
4004  第1の電極
4005  EL層
4006  第2の電極
4007  電極
4008  電極
4009  補助配線
4010  絶縁層
4011  封止基板
4012  シール材
4013  乾燥剤
4015  拡散板
4100  照明装置
4200  照明装置
4201  基板
4202  発光素子
4204  第1の電極
4205  EL層
4206  第2の電極
4207  電極
4208  電極
4209  補助配線
4210  絶縁層
4211  封止基板
4212  シール材
4213  バリア膜
4214  平坦化膜
4215  拡散板
4300  照明装置
5101  ライト
5102  ホイール
5103   ドア
5104  表示部
5105  ハンドル
5106  シフトレバー
5107  座席シート
5108  インナーリアビューミラー
7000  筐体
7001  表示部
7002  第2表示部
7003  スピーカ
7004  LEDランプ
7005  操作キー
7006  接続端子
7007  センサ
7008  マイクロフォン
7009  スイッチ
7010  赤外線ポート
7011  記録媒体読込部
7012  支持部
7013  イヤホン
7014  アンテナ
7015  シャッターボタン
7016  受像部
7018  スタンド
7019  マイクロフォン
7020  カメラ
7021  外部接続部
7022、7023  操作用ボタン
7024  接続端子
7025  バンド、
7026  留め金
7027  時刻を表すアイコン
7028  その他のアイコン
8001  照明装置
8002  照明装置
8003  照明装置
8004  照明装置
9310  携帯情報端末
9311  表示部
9312  表示領域
9313  ヒンジ
9315  筐体
101 First electrode 102 Second electrode 103 EL layer 103a, 103b EL layer 104 Charge generation layer 111, 111a, 111b Hole injection layer 112, 112a, 112b Hole transport layer 113, 113a, 113b Light emitting layer 114, 114a , 114b Electron transport layer 115, 115a, 115b Electron injection layer 201 First substrate 202 Transistor (FET)
203R, 203G, 203B, 203W Light emitting element 204 EL layer 205 Second substrate 206R, 206G, 206B Color filter 206R ′, 206G ′, 206B ′ Color filter 207 First electrode 208 Second electrode 209 Black layer (black matrix )
210R, 210G Conductive layer 301 First substrate 302 Pixel portion 303 Drive circuit portion (source line drive circuit)
304a, 304b Drive circuit section (gate line drive circuit)
305 Sealing material 306 Second substrate 307 Route wiring 308 FPC
309 FET
310 FET
311 FET
312 FET
313 First electrode 314 Insulator 315 EL layer 316 Second electrode 317 Light emitting element 318 Space 900 Substrate 901 First electrode 902 EL layer 903 Second electrode 911 Hole injection layer 912 Hole transport layer 913 Light emitting layer 914 Electron transport layer 915 Electron injection layer 4000 Lighting device 4001 Substrate 4002 Light emitting element 4003 Substrate 4004 First electrode 4005 EL layer 4006 Second electrode 4007 Electrode 4008 Electrode 4009 Auxiliary wiring 4010 Insulating layer 4011 Sealing substrate 4012 Sealing material 4013 Desiccant 4015 Diffuser 4100 Lighting device 4200 Lighting device 4201 Substrate 4202 Light emitting element 4204 First electrode 4205 EL layer 4206 Second electrode 4207 Electrode 4208 Electrode 4209 Auxiliary wiring 4210 Insulating layer 4211 Sealing substrate 212 Sealing material 4213 Barrier film 4214 Flattening film 4215 Diffuser 4300 Lighting device 5101 Light 5102 Wheel 5103 Door 5104 Display unit 5105 Handle 5106 Shift lever 5107 Seat seat 5108 Inner rear view mirror 7000 Housing 7001 Display unit 7002 Second display unit 7003 Speaker 7004 LED lamp 7005 Operation key 7006 Connection terminal 7007 Sensor 7008 Microphone 7009 Switch 7010 Infrared port 7011 Recording medium reading unit 7012 Support unit 7013 Earphone 7014 Antenna 7015 Shutter button 7016 Image receiving unit 7018 Stand 7019 Microphone 7020 Camera 7021 External connection unit 7022, 7023 Operation Button 7024 Connection terminal 7025 band,
7026 Clasp 7027 Icon 7028 Other icons 8001 Lighting device 8002 Lighting device 8003 Lighting device 8004 Lighting device 9310 Portable information terminal 9311 Display unit 9312 Display area 9313 Hinge 9315 Case

Claims (10)

  1.  一般式(G1)で表される有機金属錯体。
    Figure JPOXMLDOC01-appb-I000001
    (式中、R~Rはそれぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数5~7の単環式飽和炭化水素、置換もしくは無置換の炭素数7~10の多環式飽和炭化水素、または置換もしくは無置換の炭素数6~13のアリール基、シアノ基のいずれかを表す。また、RとRは、置換もしくは無置換の飽和または不飽和の縮環による環構造を形成していても良く、前記環構造は、炭化水素環化合物または複素環化合物のいずれかである。)
    An organometallic complex represented by the general formula (G1).
    Figure JPOXMLDOC01-appb-I000001
    (Wherein R 1 to R 8 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted monocyclic saturated hydrocarbon having 5 to 7 carbon atoms, a substituted or unsubstituted carbon number, 7 to 10 represents a polycyclic saturated hydrocarbon having 7 to 10 or a substituted or unsubstituted aryl group having 6 to 13 carbon atoms or a cyano group, and R 1 and R 2 are substituted or unsubstituted saturated or A ring structure may be formed by an unsaturated condensed ring, and the ring structure is either a hydrocarbon ring compound or a heterocyclic compound.
  2.  一般式(G2)で表される有機金属錯体。
    Figure JPOXMLDOC01-appb-I000002
    (式中、R~R12はそれぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数5~7の単環式飽和炭化水素、置換もしくは無置換の炭素数7~10の多環式飽和炭化水素、または置換もしくは無置換の炭素数6~13のアリール基、シアノ基のいずれかを表す。また、a、b、c、およびdは、炭素または窒素のいずれかである。)
    An organometallic complex represented by the general formula (G2).
    Figure JPOXMLDOC01-appb-I000002
    (Wherein R 3 to R 12 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted monocyclic saturated hydrocarbon having 5 to 7 carbon atoms, a substituted or unsubstituted carbon number, 7 to 10 represents a polycyclic saturated hydrocarbon, a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, or a cyano group, and a, b, c, and d are carbon or nitrogen. Either.)
  3.  一般式(G3)で表される有機金属錯体。
    Figure JPOXMLDOC01-appb-I000003
    (式中、R~RおよびR13~R16はそれぞれ独立に、水素、炭素数1~6のアルキル基、置換もしくは無置換の炭素数5~7の単環式飽和炭化水素、置換もしくは無置換の炭素数7~10の多環式飽和炭化水素、または置換もしくは無置換の炭素数6~13のアリール基、シアノ基のいずれかを表す。)
    An organometallic complex represented by the general formula (G3).
    Figure JPOXMLDOC01-appb-I000003
    (Wherein R 3 to R 8 and R 13 to R 16 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted monocyclic saturated hydrocarbon having 5 to 7 carbon atoms, substituted Alternatively, it represents an unsubstituted polycyclic saturated hydrocarbon having 7 to 10 carbon atoms, or a substituted or unsubstituted aryl group or cyano group having 6 to 13 carbon atoms.)
  4.  構造式(100)で表される有機金属錯体。
    Figure JPOXMLDOC01-appb-I000004
    An organometallic complex represented by the structural formula (100).
    Figure JPOXMLDOC01-appb-I000004
  5.  請求項1乃至請求項4のいずれか一に記載の有機金属錯体を用いた発光素子。 A light-emitting element using the organometallic complex according to any one of claims 1 to 4.
  6.  一対の電極間にEL層を有し、
     前記EL層は、請求項1乃至請求項4のいずれか一に記載の有機金属錯体を有する発光素子。
    An EL layer between the pair of electrodes;
    The EL layer is a light-emitting element having the organometallic complex according to any one of claims 1 to 4.
  7.  一対の電極間にEL層を有し、
     前記EL層は、発光層を有し、
     前記発光層は、請求項1乃至請求項4のいずれか一に記載の有機金属錯体を有する発光素子。
    An EL layer between the pair of electrodes;
    The EL layer has a light emitting layer,
    The said light emitting layer is a light emitting element which has an organometallic complex as described in any one of Claims 1 thru | or 4.
  8.  請求項5に記載の発光素子と、
     トランジスタ、または基板の少なくとも一と、
    を有する発光装置。
    A light emitting device according to claim 5;
    At least one of a transistor or a substrate;
    A light emitting device.
  9.  請求項8に記載の発光装置と、
     マイク、カメラ、操作用ボタン、外部接続部、または、スピーカの少なくとも一と、
    を有する電子機器。
    A light emitting device according to claim 8,
    At least one of a microphone, a camera, an operation button, an external connection unit, or a speaker;
    Electronic equipment having
  10.  請求項5乃に記載の発光素子と、
     筐体、カバー、または、支持台の少なくとも一と、
    を有する照明装置。
    A light emitting device according to claim 5;
    At least one of a housing, a cover, or a support base;
    A lighting device.
PCT/IB2018/052309 2017-04-14 2018-04-04 Organic metal complex, light emitting element, light emitting device, electronic device, and lighting device WO2018189623A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019512043A JPWO2018189623A1 (en) 2017-04-14 2018-04-04 Organometallic complex, light-emitting element, light-emitting device, electronic device, and lighting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-080485 2017-04-14
JP2017080485 2017-04-14

Publications (1)

Publication Number Publication Date
WO2018189623A1 true WO2018189623A1 (en) 2018-10-18

Family

ID=63793278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/052309 WO2018189623A1 (en) 2017-04-14 2018-04-04 Organic metal complex, light emitting element, light emitting device, electronic device, and lighting device

Country Status (2)

Country Link
JP (1) JPWO2018189623A1 (en)
WO (1) WO2018189623A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050260447A1 (en) * 2004-05-18 2005-11-24 Jason Brooks Cyclometallated iridium carbene complexes for use as hosts
JP2008521946A (en) * 2004-11-25 2008-06-26 ビーエーエスエフ ソシエタス・ヨーロピア Use of transition metal-carbene complexes in organic light emitting diodes (OLEDs)
JP2011121874A (en) * 2009-12-08 2011-06-23 Canon Inc Novel iridium complex, organic light emitting element, and image display
JP2011121875A (en) * 2009-12-08 2011-06-23 Canon Inc Novel iridium complex, and organic light emitting element comprising the same
JP2011121873A (en) * 2009-12-08 2011-06-23 Canon Inc Novel iridium complex, organic light-emitting element, and image display
US20160190483A1 (en) * 2014-12-30 2016-06-30 Samsung Display Co., Ltd. Organometallic compound and organic light-emitting device including the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050260447A1 (en) * 2004-05-18 2005-11-24 Jason Brooks Cyclometallated iridium carbene complexes for use as hosts
JP2008521946A (en) * 2004-11-25 2008-06-26 ビーエーエスエフ ソシエタス・ヨーロピア Use of transition metal-carbene complexes in organic light emitting diodes (OLEDs)
JP2011121874A (en) * 2009-12-08 2011-06-23 Canon Inc Novel iridium complex, organic light emitting element, and image display
JP2011121875A (en) * 2009-12-08 2011-06-23 Canon Inc Novel iridium complex, and organic light emitting element comprising the same
JP2011121873A (en) * 2009-12-08 2011-06-23 Canon Inc Novel iridium complex, organic light-emitting element, and image display
US20160190483A1 (en) * 2014-12-30 2016-06-30 Samsung Display Co., Ltd. Organometallic compound and organic light-emitting device including the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, YUQI ET AL.: "Substituent-effect investigation of facial and meridional tris (phenylbenzimidazolinato) Ir (III) carbene complexes: A theoretical perspective", SYNTHETIC METALS, vol. 232, 8 August 2017 (2017-08-08), pages 31 - 38, XP085209776 *

Also Published As

Publication number Publication date
JPWO2018189623A1 (en) 2020-03-12

Similar Documents

Publication Publication Date Title
JP6487103B1 (en) Organic compound, light emitting element, light emitting device, electronic device, and lighting device
JP7458452B2 (en) light emitting element
JP2018100267A (en) Organometallic complex, light-emitting element, light-emitting device, electronic apparatus, and lighting device
WO2019229583A1 (en) Organic compounds, light-emitting element, light-emitting device, electronic device, and illumination device
JP7143310B2 (en) organic compounds, light-emitting elements, light-emitting devices, electronic devices, and lighting devices
JP2019006763A (en) Organic compound, light-emitting element, light-emitting device, electronic apparatus, and lighting device
JP2018052929A (en) Organometallic complex, light-emitting element, light-emitting device, electronic apparatus, and lighting device
JP2019189540A (en) Organic compound, light emitting element, light emitting device, electronic apparatus, and illumination device
JP2023025011A (en) Light-emitting element
WO2019229584A1 (en) Organic compound, light-emitting element, light-emitting device, electronic equipment, and lighting device
JP7297758B2 (en) Light-emitting elements, light-emitting devices, electronic devices, and lighting devices
JP2022166086A (en) Compound
JP2021024863A (en) Organic compound, light-emitting device, light-emitting apparatus, electronic device and lighting device
WO2018178818A1 (en) Organic compound, light emitting element, light emitting device, electronic equipment, and lighting device
JP2019127483A (en) Organic compound, light-emitting element, light-emitting device, electronic apparatus, and lighting device
JP7287953B2 (en) Organometallic complex, light-emitting device, light-emitting device, electronic device, and lighting device
JP7225097B2 (en) organic compounds, light-emitting elements, light-emitting devices, electronic devices, and lighting devices
WO2018189623A1 (en) Organic metal complex, light emitting element, light emitting device, electronic device, and lighting device
WO2020058811A1 (en) Organic compound, light-emitting device, light-emitting equipment, electronic device, and illumination device
WO2020109922A1 (en) Composition for light emitting devices
JP2019142821A (en) Method of synthesizing organic compound having fused carbazole skeleton

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18785011

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019512043

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18785011

Country of ref document: EP

Kind code of ref document: A1